ASoC: wm8741: Allow master clock switching
[firefly-linux-kernel-4.4.55.git] / net / mac80211 / key.c
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2006-2007  Jiri Benc <jbenc@suse.cz>
5  * Copyright 2007-2008  Johannes Berg <johannes@sipsolutions.net>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12
13 #include <linux/if_ether.h>
14 #include <linux/etherdevice.h>
15 #include <linux/list.h>
16 #include <linux/rcupdate.h>
17 #include <linux/rtnetlink.h>
18 #include <linux/slab.h>
19 #include <linux/export.h>
20 #include <net/mac80211.h>
21 #include <asm/unaligned.h>
22 #include "ieee80211_i.h"
23 #include "driver-ops.h"
24 #include "debugfs_key.h"
25 #include "aes_ccm.h"
26 #include "aes_cmac.h"
27 #include "aes_gmac.h"
28 #include "aes_gcm.h"
29
30
31 /**
32  * DOC: Key handling basics
33  *
34  * Key handling in mac80211 is done based on per-interface (sub_if_data)
35  * keys and per-station keys. Since each station belongs to an interface,
36  * each station key also belongs to that interface.
37  *
38  * Hardware acceleration is done on a best-effort basis for algorithms
39  * that are implemented in software,  for each key the hardware is asked
40  * to enable that key for offloading but if it cannot do that the key is
41  * simply kept for software encryption (unless it is for an algorithm
42  * that isn't implemented in software).
43  * There is currently no way of knowing whether a key is handled in SW
44  * or HW except by looking into debugfs.
45  *
46  * All key management is internally protected by a mutex. Within all
47  * other parts of mac80211, key references are, just as STA structure
48  * references, protected by RCU. Note, however, that some things are
49  * unprotected, namely the key->sta dereferences within the hardware
50  * acceleration functions. This means that sta_info_destroy() must
51  * remove the key which waits for an RCU grace period.
52  */
53
54 static const u8 bcast_addr[ETH_ALEN] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
55
56 static void assert_key_lock(struct ieee80211_local *local)
57 {
58         lockdep_assert_held(&local->key_mtx);
59 }
60
61 static void increment_tailroom_need_count(struct ieee80211_sub_if_data *sdata)
62 {
63         /*
64          * When this count is zero, SKB resizing for allocating tailroom
65          * for IV or MMIC is skipped. But, this check has created two race
66          * cases in xmit path while transiting from zero count to one:
67          *
68          * 1. SKB resize was skipped because no key was added but just before
69          * the xmit key is added and SW encryption kicks off.
70          *
71          * 2. SKB resize was skipped because all the keys were hw planted but
72          * just before xmit one of the key is deleted and SW encryption kicks
73          * off.
74          *
75          * In both the above case SW encryption will find not enough space for
76          * tailroom and exits with WARN_ON. (See WARN_ONs at wpa.c)
77          *
78          * Solution has been explained at
79          * http://mid.gmane.org/1308590980.4322.19.camel@jlt3.sipsolutions.net
80          */
81
82         if (!sdata->crypto_tx_tailroom_needed_cnt++) {
83                 /*
84                  * Flush all XMIT packets currently using HW encryption or no
85                  * encryption at all if the count transition is from 0 -> 1.
86                  */
87                 synchronize_net();
88         }
89 }
90
91 static int ieee80211_key_enable_hw_accel(struct ieee80211_key *key)
92 {
93         struct ieee80211_sub_if_data *sdata;
94         struct sta_info *sta;
95         int ret = -EOPNOTSUPP;
96
97         might_sleep();
98
99         if (key->flags & KEY_FLAG_TAINTED) {
100                 /* If we get here, it's during resume and the key is
101                  * tainted so shouldn't be used/programmed any more.
102                  * However, its flags may still indicate that it was
103                  * programmed into the device (since we're in resume)
104                  * so clear that flag now to avoid trying to remove
105                  * it again later.
106                  */
107                 key->flags &= ~KEY_FLAG_UPLOADED_TO_HARDWARE;
108                 return -EINVAL;
109         }
110
111         if (!key->local->ops->set_key)
112                 goto out_unsupported;
113
114         assert_key_lock(key->local);
115
116         sta = key->sta;
117
118         /*
119          * If this is a per-STA GTK, check if it
120          * is supported; if not, return.
121          */
122         if (sta && !(key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE) &&
123             !(key->local->hw.flags & IEEE80211_HW_SUPPORTS_PER_STA_GTK))
124                 goto out_unsupported;
125
126         if (sta && !sta->uploaded)
127                 goto out_unsupported;
128
129         sdata = key->sdata;
130         if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN) {
131                 /*
132                  * The driver doesn't know anything about VLAN interfaces.
133                  * Hence, don't send GTKs for VLAN interfaces to the driver.
134                  */
135                 if (!(key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE))
136                         goto out_unsupported;
137         }
138
139         ret = drv_set_key(key->local, SET_KEY, sdata,
140                           sta ? &sta->sta : NULL, &key->conf);
141
142         if (!ret) {
143                 key->flags |= KEY_FLAG_UPLOADED_TO_HARDWARE;
144
145                 if (!((key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_MMIC) ||
146                       (key->conf.flags & IEEE80211_KEY_FLAG_RESERVE_TAILROOM)))
147                         sdata->crypto_tx_tailroom_needed_cnt--;
148
149                 WARN_ON((key->conf.flags & IEEE80211_KEY_FLAG_PUT_IV_SPACE) &&
150                         (key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_IV));
151
152                 return 0;
153         }
154
155         if (ret != -ENOSPC && ret != -EOPNOTSUPP && ret != 1)
156                 sdata_err(sdata,
157                           "failed to set key (%d, %pM) to hardware (%d)\n",
158                           key->conf.keyidx,
159                           sta ? sta->sta.addr : bcast_addr, ret);
160
161  out_unsupported:
162         switch (key->conf.cipher) {
163         case WLAN_CIPHER_SUITE_WEP40:
164         case WLAN_CIPHER_SUITE_WEP104:
165         case WLAN_CIPHER_SUITE_TKIP:
166         case WLAN_CIPHER_SUITE_CCMP:
167         case WLAN_CIPHER_SUITE_CCMP_256:
168         case WLAN_CIPHER_SUITE_AES_CMAC:
169         case WLAN_CIPHER_SUITE_BIP_CMAC_256:
170         case WLAN_CIPHER_SUITE_BIP_GMAC_128:
171         case WLAN_CIPHER_SUITE_BIP_GMAC_256:
172         case WLAN_CIPHER_SUITE_GCMP:
173         case WLAN_CIPHER_SUITE_GCMP_256:
174                 /* all of these we can do in software - if driver can */
175                 if (ret == 1)
176                         return 0;
177                 if (key->local->hw.flags & IEEE80211_HW_SW_CRYPTO_CONTROL)
178                         return -EINVAL;
179                 return 0;
180         default:
181                 return -EINVAL;
182         }
183 }
184
185 static void ieee80211_key_disable_hw_accel(struct ieee80211_key *key)
186 {
187         struct ieee80211_sub_if_data *sdata;
188         struct sta_info *sta;
189         int ret;
190
191         might_sleep();
192
193         if (!key || !key->local->ops->set_key)
194                 return;
195
196         assert_key_lock(key->local);
197
198         if (!(key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE))
199                 return;
200
201         sta = key->sta;
202         sdata = key->sdata;
203
204         if (!((key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_MMIC) ||
205               (key->conf.flags & IEEE80211_KEY_FLAG_RESERVE_TAILROOM)))
206                 increment_tailroom_need_count(sdata);
207
208         ret = drv_set_key(key->local, DISABLE_KEY, sdata,
209                           sta ? &sta->sta : NULL, &key->conf);
210
211         if (ret)
212                 sdata_err(sdata,
213                           "failed to remove key (%d, %pM) from hardware (%d)\n",
214                           key->conf.keyidx,
215                           sta ? sta->sta.addr : bcast_addr, ret);
216
217         key->flags &= ~KEY_FLAG_UPLOADED_TO_HARDWARE;
218 }
219
220 static void __ieee80211_set_default_key(struct ieee80211_sub_if_data *sdata,
221                                         int idx, bool uni, bool multi)
222 {
223         struct ieee80211_key *key = NULL;
224
225         assert_key_lock(sdata->local);
226
227         if (idx >= 0 && idx < NUM_DEFAULT_KEYS)
228                 key = key_mtx_dereference(sdata->local, sdata->keys[idx]);
229
230         if (uni) {
231                 rcu_assign_pointer(sdata->default_unicast_key, key);
232                 drv_set_default_unicast_key(sdata->local, sdata, idx);
233         }
234
235         if (multi)
236                 rcu_assign_pointer(sdata->default_multicast_key, key);
237
238         ieee80211_debugfs_key_update_default(sdata);
239 }
240
241 void ieee80211_set_default_key(struct ieee80211_sub_if_data *sdata, int idx,
242                                bool uni, bool multi)
243 {
244         mutex_lock(&sdata->local->key_mtx);
245         __ieee80211_set_default_key(sdata, idx, uni, multi);
246         mutex_unlock(&sdata->local->key_mtx);
247 }
248
249 static void
250 __ieee80211_set_default_mgmt_key(struct ieee80211_sub_if_data *sdata, int idx)
251 {
252         struct ieee80211_key *key = NULL;
253
254         assert_key_lock(sdata->local);
255
256         if (idx >= NUM_DEFAULT_KEYS &&
257             idx < NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
258                 key = key_mtx_dereference(sdata->local, sdata->keys[idx]);
259
260         rcu_assign_pointer(sdata->default_mgmt_key, key);
261
262         ieee80211_debugfs_key_update_default(sdata);
263 }
264
265 void ieee80211_set_default_mgmt_key(struct ieee80211_sub_if_data *sdata,
266                                     int idx)
267 {
268         mutex_lock(&sdata->local->key_mtx);
269         __ieee80211_set_default_mgmt_key(sdata, idx);
270         mutex_unlock(&sdata->local->key_mtx);
271 }
272
273
274 static void ieee80211_key_replace(struct ieee80211_sub_if_data *sdata,
275                                   struct sta_info *sta,
276                                   bool pairwise,
277                                   struct ieee80211_key *old,
278                                   struct ieee80211_key *new)
279 {
280         int idx;
281         bool defunikey, defmultikey, defmgmtkey;
282
283         /* caller must provide at least one old/new */
284         if (WARN_ON(!new && !old))
285                 return;
286
287         if (new)
288                 list_add_tail(&new->list, &sdata->key_list);
289
290         WARN_ON(new && old && new->conf.keyidx != old->conf.keyidx);
291
292         if (old)
293                 idx = old->conf.keyidx;
294         else
295                 idx = new->conf.keyidx;
296
297         if (sta) {
298                 if (pairwise) {
299                         rcu_assign_pointer(sta->ptk[idx], new);
300                         sta->ptk_idx = idx;
301                 } else {
302                         rcu_assign_pointer(sta->gtk[idx], new);
303                         sta->gtk_idx = idx;
304                 }
305         } else {
306                 defunikey = old &&
307                         old == key_mtx_dereference(sdata->local,
308                                                 sdata->default_unicast_key);
309                 defmultikey = old &&
310                         old == key_mtx_dereference(sdata->local,
311                                                 sdata->default_multicast_key);
312                 defmgmtkey = old &&
313                         old == key_mtx_dereference(sdata->local,
314                                                 sdata->default_mgmt_key);
315
316                 if (defunikey && !new)
317                         __ieee80211_set_default_key(sdata, -1, true, false);
318                 if (defmultikey && !new)
319                         __ieee80211_set_default_key(sdata, -1, false, true);
320                 if (defmgmtkey && !new)
321                         __ieee80211_set_default_mgmt_key(sdata, -1);
322
323                 rcu_assign_pointer(sdata->keys[idx], new);
324                 if (defunikey && new)
325                         __ieee80211_set_default_key(sdata, new->conf.keyidx,
326                                                     true, false);
327                 if (defmultikey && new)
328                         __ieee80211_set_default_key(sdata, new->conf.keyidx,
329                                                     false, true);
330                 if (defmgmtkey && new)
331                         __ieee80211_set_default_mgmt_key(sdata,
332                                                          new->conf.keyidx);
333         }
334
335         if (old)
336                 list_del(&old->list);
337 }
338
339 struct ieee80211_key *
340 ieee80211_key_alloc(u32 cipher, int idx, size_t key_len,
341                     const u8 *key_data,
342                     size_t seq_len, const u8 *seq,
343                     const struct ieee80211_cipher_scheme *cs)
344 {
345         struct ieee80211_key *key;
346         int i, j, err;
347
348         if (WARN_ON(idx < 0 || idx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS))
349                 return ERR_PTR(-EINVAL);
350
351         key = kzalloc(sizeof(struct ieee80211_key) + key_len, GFP_KERNEL);
352         if (!key)
353                 return ERR_PTR(-ENOMEM);
354
355         /*
356          * Default to software encryption; we'll later upload the
357          * key to the hardware if possible.
358          */
359         key->conf.flags = 0;
360         key->flags = 0;
361
362         key->conf.cipher = cipher;
363         key->conf.keyidx = idx;
364         key->conf.keylen = key_len;
365         switch (cipher) {
366         case WLAN_CIPHER_SUITE_WEP40:
367         case WLAN_CIPHER_SUITE_WEP104:
368                 key->conf.iv_len = IEEE80211_WEP_IV_LEN;
369                 key->conf.icv_len = IEEE80211_WEP_ICV_LEN;
370                 break;
371         case WLAN_CIPHER_SUITE_TKIP:
372                 key->conf.iv_len = IEEE80211_TKIP_IV_LEN;
373                 key->conf.icv_len = IEEE80211_TKIP_ICV_LEN;
374                 if (seq) {
375                         for (i = 0; i < IEEE80211_NUM_TIDS; i++) {
376                                 key->u.tkip.rx[i].iv32 =
377                                         get_unaligned_le32(&seq[2]);
378                                 key->u.tkip.rx[i].iv16 =
379                                         get_unaligned_le16(seq);
380                         }
381                 }
382                 spin_lock_init(&key->u.tkip.txlock);
383                 break;
384         case WLAN_CIPHER_SUITE_CCMP:
385                 key->conf.iv_len = IEEE80211_CCMP_HDR_LEN;
386                 key->conf.icv_len = IEEE80211_CCMP_MIC_LEN;
387                 if (seq) {
388                         for (i = 0; i < IEEE80211_NUM_TIDS + 1; i++)
389                                 for (j = 0; j < IEEE80211_CCMP_PN_LEN; j++)
390                                         key->u.ccmp.rx_pn[i][j] =
391                                                 seq[IEEE80211_CCMP_PN_LEN - j - 1];
392                 }
393                 /*
394                  * Initialize AES key state here as an optimization so that
395                  * it does not need to be initialized for every packet.
396                  */
397                 key->u.ccmp.tfm = ieee80211_aes_key_setup_encrypt(
398                         key_data, key_len, IEEE80211_CCMP_MIC_LEN);
399                 if (IS_ERR(key->u.ccmp.tfm)) {
400                         err = PTR_ERR(key->u.ccmp.tfm);
401                         kfree(key);
402                         return ERR_PTR(err);
403                 }
404                 break;
405         case WLAN_CIPHER_SUITE_CCMP_256:
406                 key->conf.iv_len = IEEE80211_CCMP_256_HDR_LEN;
407                 key->conf.icv_len = IEEE80211_CCMP_256_MIC_LEN;
408                 for (i = 0; seq && i < IEEE80211_NUM_TIDS + 1; i++)
409                         for (j = 0; j < IEEE80211_CCMP_256_PN_LEN; j++)
410                                 key->u.ccmp.rx_pn[i][j] =
411                                         seq[IEEE80211_CCMP_256_PN_LEN - j - 1];
412                 /* Initialize AES key state here as an optimization so that
413                  * it does not need to be initialized for every packet.
414                  */
415                 key->u.ccmp.tfm = ieee80211_aes_key_setup_encrypt(
416                         key_data, key_len, IEEE80211_CCMP_256_MIC_LEN);
417                 if (IS_ERR(key->u.ccmp.tfm)) {
418                         err = PTR_ERR(key->u.ccmp.tfm);
419                         kfree(key);
420                         return ERR_PTR(err);
421                 }
422                 break;
423         case WLAN_CIPHER_SUITE_AES_CMAC:
424         case WLAN_CIPHER_SUITE_BIP_CMAC_256:
425                 key->conf.iv_len = 0;
426                 if (cipher == WLAN_CIPHER_SUITE_AES_CMAC)
427                         key->conf.icv_len = sizeof(struct ieee80211_mmie);
428                 else
429                         key->conf.icv_len = sizeof(struct ieee80211_mmie_16);
430                 if (seq)
431                         for (j = 0; j < IEEE80211_CMAC_PN_LEN; j++)
432                                 key->u.aes_cmac.rx_pn[j] =
433                                         seq[IEEE80211_CMAC_PN_LEN - j - 1];
434                 /*
435                  * Initialize AES key state here as an optimization so that
436                  * it does not need to be initialized for every packet.
437                  */
438                 key->u.aes_cmac.tfm =
439                         ieee80211_aes_cmac_key_setup(key_data, key_len);
440                 if (IS_ERR(key->u.aes_cmac.tfm)) {
441                         err = PTR_ERR(key->u.aes_cmac.tfm);
442                         kfree(key);
443                         return ERR_PTR(err);
444                 }
445                 break;
446         case WLAN_CIPHER_SUITE_BIP_GMAC_128:
447         case WLAN_CIPHER_SUITE_BIP_GMAC_256:
448                 key->conf.iv_len = 0;
449                 key->conf.icv_len = sizeof(struct ieee80211_mmie_16);
450                 if (seq)
451                         for (j = 0; j < IEEE80211_GMAC_PN_LEN; j++)
452                                 key->u.aes_gmac.rx_pn[j] =
453                                         seq[IEEE80211_GMAC_PN_LEN - j - 1];
454                 /* Initialize AES key state here as an optimization so that
455                  * it does not need to be initialized for every packet.
456                  */
457                 key->u.aes_gmac.tfm =
458                         ieee80211_aes_gmac_key_setup(key_data, key_len);
459                 if (IS_ERR(key->u.aes_gmac.tfm)) {
460                         err = PTR_ERR(key->u.aes_gmac.tfm);
461                         kfree(key);
462                         return ERR_PTR(err);
463                 }
464                 break;
465         case WLAN_CIPHER_SUITE_GCMP:
466         case WLAN_CIPHER_SUITE_GCMP_256:
467                 key->conf.iv_len = IEEE80211_GCMP_HDR_LEN;
468                 key->conf.icv_len = IEEE80211_GCMP_MIC_LEN;
469                 for (i = 0; seq && i < IEEE80211_NUM_TIDS + 1; i++)
470                         for (j = 0; j < IEEE80211_GCMP_PN_LEN; j++)
471                                 key->u.gcmp.rx_pn[i][j] =
472                                         seq[IEEE80211_GCMP_PN_LEN - j - 1];
473                 /* Initialize AES key state here as an optimization so that
474                  * it does not need to be initialized for every packet.
475                  */
476                 key->u.gcmp.tfm = ieee80211_aes_gcm_key_setup_encrypt(key_data,
477                                                                       key_len);
478                 if (IS_ERR(key->u.gcmp.tfm)) {
479                         err = PTR_ERR(key->u.gcmp.tfm);
480                         kfree(key);
481                         return ERR_PTR(err);
482                 }
483                 break;
484         default:
485                 if (cs) {
486                         size_t len = (seq_len > MAX_PN_LEN) ?
487                                                 MAX_PN_LEN : seq_len;
488
489                         key->conf.iv_len = cs->hdr_len;
490                         key->conf.icv_len = cs->mic_len;
491                         for (i = 0; i < IEEE80211_NUM_TIDS + 1; i++)
492                                 for (j = 0; j < len; j++)
493                                         key->u.gen.rx_pn[i][j] =
494                                                         seq[len - j - 1];
495                         key->flags |= KEY_FLAG_CIPHER_SCHEME;
496                 }
497         }
498         memcpy(key->conf.key, key_data, key_len);
499         INIT_LIST_HEAD(&key->list);
500
501         return key;
502 }
503
504 static void ieee80211_key_free_common(struct ieee80211_key *key)
505 {
506         switch (key->conf.cipher) {
507         case WLAN_CIPHER_SUITE_CCMP:
508         case WLAN_CIPHER_SUITE_CCMP_256:
509                 ieee80211_aes_key_free(key->u.ccmp.tfm);
510                 break;
511         case WLAN_CIPHER_SUITE_AES_CMAC:
512         case WLAN_CIPHER_SUITE_BIP_CMAC_256:
513                 ieee80211_aes_cmac_key_free(key->u.aes_cmac.tfm);
514                 break;
515         case WLAN_CIPHER_SUITE_BIP_GMAC_128:
516         case WLAN_CIPHER_SUITE_BIP_GMAC_256:
517                 ieee80211_aes_gmac_key_free(key->u.aes_gmac.tfm);
518                 break;
519         case WLAN_CIPHER_SUITE_GCMP:
520         case WLAN_CIPHER_SUITE_GCMP_256:
521                 ieee80211_aes_gcm_key_free(key->u.gcmp.tfm);
522                 break;
523         }
524         kzfree(key);
525 }
526
527 static void __ieee80211_key_destroy(struct ieee80211_key *key,
528                                     bool delay_tailroom)
529 {
530         if (key->local)
531                 ieee80211_key_disable_hw_accel(key);
532
533         if (key->local) {
534                 struct ieee80211_sub_if_data *sdata = key->sdata;
535
536                 ieee80211_debugfs_key_remove(key);
537
538                 if (delay_tailroom) {
539                         /* see ieee80211_delayed_tailroom_dec */
540                         sdata->crypto_tx_tailroom_pending_dec++;
541                         schedule_delayed_work(&sdata->dec_tailroom_needed_wk,
542                                               HZ/2);
543                 } else {
544                         sdata->crypto_tx_tailroom_needed_cnt--;
545                 }
546         }
547
548         ieee80211_key_free_common(key);
549 }
550
551 static void ieee80211_key_destroy(struct ieee80211_key *key,
552                                   bool delay_tailroom)
553 {
554         if (!key)
555                 return;
556
557         /*
558          * Synchronize so the TX path can no longer be using
559          * this key before we free/remove it.
560          */
561         synchronize_net();
562
563         __ieee80211_key_destroy(key, delay_tailroom);
564 }
565
566 void ieee80211_key_free_unused(struct ieee80211_key *key)
567 {
568         WARN_ON(key->sdata || key->local);
569         ieee80211_key_free_common(key);
570 }
571
572 int ieee80211_key_link(struct ieee80211_key *key,
573                        struct ieee80211_sub_if_data *sdata,
574                        struct sta_info *sta)
575 {
576         struct ieee80211_local *local = sdata->local;
577         struct ieee80211_key *old_key;
578         int idx, ret;
579         bool pairwise;
580
581         pairwise = key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE;
582         idx = key->conf.keyidx;
583         key->local = sdata->local;
584         key->sdata = sdata;
585         key->sta = sta;
586
587         mutex_lock(&sdata->local->key_mtx);
588
589         if (sta && pairwise)
590                 old_key = key_mtx_dereference(sdata->local, sta->ptk[idx]);
591         else if (sta)
592                 old_key = key_mtx_dereference(sdata->local, sta->gtk[idx]);
593         else
594                 old_key = key_mtx_dereference(sdata->local, sdata->keys[idx]);
595
596         increment_tailroom_need_count(sdata);
597
598         ieee80211_key_replace(sdata, sta, pairwise, old_key, key);
599         ieee80211_key_destroy(old_key, true);
600
601         ieee80211_debugfs_key_add(key);
602
603         if (!local->wowlan) {
604                 ret = ieee80211_key_enable_hw_accel(key);
605                 if (ret)
606                         ieee80211_key_free(key, true);
607         } else {
608                 ret = 0;
609         }
610
611         mutex_unlock(&sdata->local->key_mtx);
612
613         return ret;
614 }
615
616 void ieee80211_key_free(struct ieee80211_key *key, bool delay_tailroom)
617 {
618         if (!key)
619                 return;
620
621         /*
622          * Replace key with nothingness if it was ever used.
623          */
624         if (key->sdata)
625                 ieee80211_key_replace(key->sdata, key->sta,
626                                 key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE,
627                                 key, NULL);
628         ieee80211_key_destroy(key, delay_tailroom);
629 }
630
631 void ieee80211_enable_keys(struct ieee80211_sub_if_data *sdata)
632 {
633         struct ieee80211_key *key;
634
635         ASSERT_RTNL();
636
637         if (WARN_ON(!ieee80211_sdata_running(sdata)))
638                 return;
639
640         mutex_lock(&sdata->local->key_mtx);
641
642         sdata->crypto_tx_tailroom_needed_cnt = 0;
643
644         list_for_each_entry(key, &sdata->key_list, list) {
645                 increment_tailroom_need_count(sdata);
646                 ieee80211_key_enable_hw_accel(key);
647         }
648
649         mutex_unlock(&sdata->local->key_mtx);
650 }
651
652 void ieee80211_iter_keys(struct ieee80211_hw *hw,
653                          struct ieee80211_vif *vif,
654                          void (*iter)(struct ieee80211_hw *hw,
655                                       struct ieee80211_vif *vif,
656                                       struct ieee80211_sta *sta,
657                                       struct ieee80211_key_conf *key,
658                                       void *data),
659                          void *iter_data)
660 {
661         struct ieee80211_local *local = hw_to_local(hw);
662         struct ieee80211_key *key, *tmp;
663         struct ieee80211_sub_if_data *sdata;
664
665         ASSERT_RTNL();
666
667         mutex_lock(&local->key_mtx);
668         if (vif) {
669                 sdata = vif_to_sdata(vif);
670                 list_for_each_entry_safe(key, tmp, &sdata->key_list, list)
671                         iter(hw, &sdata->vif,
672                              key->sta ? &key->sta->sta : NULL,
673                              &key->conf, iter_data);
674         } else {
675                 list_for_each_entry(sdata, &local->interfaces, list)
676                         list_for_each_entry_safe(key, tmp,
677                                                  &sdata->key_list, list)
678                                 iter(hw, &sdata->vif,
679                                      key->sta ? &key->sta->sta : NULL,
680                                      &key->conf, iter_data);
681         }
682         mutex_unlock(&local->key_mtx);
683 }
684 EXPORT_SYMBOL(ieee80211_iter_keys);
685
686 static void ieee80211_free_keys_iface(struct ieee80211_sub_if_data *sdata,
687                                       struct list_head *keys)
688 {
689         struct ieee80211_key *key, *tmp;
690
691         sdata->crypto_tx_tailroom_needed_cnt -=
692                 sdata->crypto_tx_tailroom_pending_dec;
693         sdata->crypto_tx_tailroom_pending_dec = 0;
694
695         ieee80211_debugfs_key_remove_mgmt_default(sdata);
696
697         list_for_each_entry_safe(key, tmp, &sdata->key_list, list) {
698                 ieee80211_key_replace(key->sdata, key->sta,
699                                 key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE,
700                                 key, NULL);
701                 list_add_tail(&key->list, keys);
702         }
703
704         ieee80211_debugfs_key_update_default(sdata);
705 }
706
707 void ieee80211_free_keys(struct ieee80211_sub_if_data *sdata,
708                          bool force_synchronize)
709 {
710         struct ieee80211_local *local = sdata->local;
711         struct ieee80211_sub_if_data *vlan;
712         struct ieee80211_key *key, *tmp;
713         LIST_HEAD(keys);
714
715         cancel_delayed_work_sync(&sdata->dec_tailroom_needed_wk);
716
717         mutex_lock(&local->key_mtx);
718
719         ieee80211_free_keys_iface(sdata, &keys);
720
721         if (sdata->vif.type == NL80211_IFTYPE_AP) {
722                 list_for_each_entry(vlan, &sdata->u.ap.vlans, u.vlan.list)
723                         ieee80211_free_keys_iface(vlan, &keys);
724         }
725
726         if (!list_empty(&keys) || force_synchronize)
727                 synchronize_net();
728         list_for_each_entry_safe(key, tmp, &keys, list)
729                 __ieee80211_key_destroy(key, false);
730
731         WARN_ON_ONCE(sdata->crypto_tx_tailroom_needed_cnt ||
732                      sdata->crypto_tx_tailroom_pending_dec);
733         if (sdata->vif.type == NL80211_IFTYPE_AP) {
734                 list_for_each_entry(vlan, &sdata->u.ap.vlans, u.vlan.list)
735                         WARN_ON_ONCE(vlan->crypto_tx_tailroom_needed_cnt ||
736                                      vlan->crypto_tx_tailroom_pending_dec);
737         }
738
739         mutex_unlock(&local->key_mtx);
740 }
741
742 void ieee80211_free_sta_keys(struct ieee80211_local *local,
743                              struct sta_info *sta)
744 {
745         struct ieee80211_key *key;
746         int i;
747
748         mutex_lock(&local->key_mtx);
749         for (i = 0; i < ARRAY_SIZE(sta->gtk); i++) {
750                 key = key_mtx_dereference(local, sta->gtk[i]);
751                 if (!key)
752                         continue;
753                 ieee80211_key_replace(key->sdata, key->sta,
754                                 key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE,
755                                 key, NULL);
756                 __ieee80211_key_destroy(key, true);
757         }
758
759         for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
760                 key = key_mtx_dereference(local, sta->ptk[i]);
761                 if (!key)
762                         continue;
763                 ieee80211_key_replace(key->sdata, key->sta,
764                                 key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE,
765                                 key, NULL);
766                 __ieee80211_key_destroy(key, true);
767         }
768
769         mutex_unlock(&local->key_mtx);
770 }
771
772 void ieee80211_delayed_tailroom_dec(struct work_struct *wk)
773 {
774         struct ieee80211_sub_if_data *sdata;
775
776         sdata = container_of(wk, struct ieee80211_sub_if_data,
777                              dec_tailroom_needed_wk.work);
778
779         /*
780          * The reason for the delayed tailroom needed decrementing is to
781          * make roaming faster: during roaming, all keys are first deleted
782          * and then new keys are installed. The first new key causes the
783          * crypto_tx_tailroom_needed_cnt to go from 0 to 1, which invokes
784          * the cost of synchronize_net() (which can be slow). Avoid this
785          * by deferring the crypto_tx_tailroom_needed_cnt decrementing on
786          * key removal for a while, so if we roam the value is larger than
787          * zero and no 0->1 transition happens.
788          *
789          * The cost is that if the AP switching was from an AP with keys
790          * to one without, we still allocate tailroom while it would no
791          * longer be needed. However, in the typical (fast) roaming case
792          * within an ESS this usually won't happen.
793          */
794
795         mutex_lock(&sdata->local->key_mtx);
796         sdata->crypto_tx_tailroom_needed_cnt -=
797                 sdata->crypto_tx_tailroom_pending_dec;
798         sdata->crypto_tx_tailroom_pending_dec = 0;
799         mutex_unlock(&sdata->local->key_mtx);
800 }
801
802 void ieee80211_gtk_rekey_notify(struct ieee80211_vif *vif, const u8 *bssid,
803                                 const u8 *replay_ctr, gfp_t gfp)
804 {
805         struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif);
806
807         trace_api_gtk_rekey_notify(sdata, bssid, replay_ctr);
808
809         cfg80211_gtk_rekey_notify(sdata->dev, bssid, replay_ctr, gfp);
810 }
811 EXPORT_SYMBOL_GPL(ieee80211_gtk_rekey_notify);
812
813 void ieee80211_get_key_tx_seq(struct ieee80211_key_conf *keyconf,
814                               struct ieee80211_key_seq *seq)
815 {
816         struct ieee80211_key *key;
817         u64 pn64;
818
819         if (WARN_ON(!(keyconf->flags & IEEE80211_KEY_FLAG_GENERATE_IV)))
820                 return;
821
822         key = container_of(keyconf, struct ieee80211_key, conf);
823
824         switch (key->conf.cipher) {
825         case WLAN_CIPHER_SUITE_TKIP:
826                 seq->tkip.iv32 = key->u.tkip.tx.iv32;
827                 seq->tkip.iv16 = key->u.tkip.tx.iv16;
828                 break;
829         case WLAN_CIPHER_SUITE_CCMP:
830         case WLAN_CIPHER_SUITE_CCMP_256:
831                 pn64 = atomic64_read(&key->u.ccmp.tx_pn);
832                 seq->ccmp.pn[5] = pn64;
833                 seq->ccmp.pn[4] = pn64 >> 8;
834                 seq->ccmp.pn[3] = pn64 >> 16;
835                 seq->ccmp.pn[2] = pn64 >> 24;
836                 seq->ccmp.pn[1] = pn64 >> 32;
837                 seq->ccmp.pn[0] = pn64 >> 40;
838                 break;
839         case WLAN_CIPHER_SUITE_AES_CMAC:
840         case WLAN_CIPHER_SUITE_BIP_CMAC_256:
841                 pn64 = atomic64_read(&key->u.aes_cmac.tx_pn);
842                 seq->ccmp.pn[5] = pn64;
843                 seq->ccmp.pn[4] = pn64 >> 8;
844                 seq->ccmp.pn[3] = pn64 >> 16;
845                 seq->ccmp.pn[2] = pn64 >> 24;
846                 seq->ccmp.pn[1] = pn64 >> 32;
847                 seq->ccmp.pn[0] = pn64 >> 40;
848                 break;
849         case WLAN_CIPHER_SUITE_BIP_GMAC_128:
850         case WLAN_CIPHER_SUITE_BIP_GMAC_256:
851                 pn64 = atomic64_read(&key->u.aes_gmac.tx_pn);
852                 seq->ccmp.pn[5] = pn64;
853                 seq->ccmp.pn[4] = pn64 >> 8;
854                 seq->ccmp.pn[3] = pn64 >> 16;
855                 seq->ccmp.pn[2] = pn64 >> 24;
856                 seq->ccmp.pn[1] = pn64 >> 32;
857                 seq->ccmp.pn[0] = pn64 >> 40;
858                 break;
859         case WLAN_CIPHER_SUITE_GCMP:
860         case WLAN_CIPHER_SUITE_GCMP_256:
861                 pn64 = atomic64_read(&key->u.gcmp.tx_pn);
862                 seq->gcmp.pn[5] = pn64;
863                 seq->gcmp.pn[4] = pn64 >> 8;
864                 seq->gcmp.pn[3] = pn64 >> 16;
865                 seq->gcmp.pn[2] = pn64 >> 24;
866                 seq->gcmp.pn[1] = pn64 >> 32;
867                 seq->gcmp.pn[0] = pn64 >> 40;
868                 break;
869         default:
870                 WARN_ON(1);
871         }
872 }
873 EXPORT_SYMBOL(ieee80211_get_key_tx_seq);
874
875 void ieee80211_get_key_rx_seq(struct ieee80211_key_conf *keyconf,
876                               int tid, struct ieee80211_key_seq *seq)
877 {
878         struct ieee80211_key *key;
879         const u8 *pn;
880
881         key = container_of(keyconf, struct ieee80211_key, conf);
882
883         switch (key->conf.cipher) {
884         case WLAN_CIPHER_SUITE_TKIP:
885                 if (WARN_ON(tid < 0 || tid >= IEEE80211_NUM_TIDS))
886                         return;
887                 seq->tkip.iv32 = key->u.tkip.rx[tid].iv32;
888                 seq->tkip.iv16 = key->u.tkip.rx[tid].iv16;
889                 break;
890         case WLAN_CIPHER_SUITE_CCMP:
891         case WLAN_CIPHER_SUITE_CCMP_256:
892                 if (WARN_ON(tid < -1 || tid >= IEEE80211_NUM_TIDS))
893                         return;
894                 if (tid < 0)
895                         pn = key->u.ccmp.rx_pn[IEEE80211_NUM_TIDS];
896                 else
897                         pn = key->u.ccmp.rx_pn[tid];
898                 memcpy(seq->ccmp.pn, pn, IEEE80211_CCMP_PN_LEN);
899                 break;
900         case WLAN_CIPHER_SUITE_AES_CMAC:
901         case WLAN_CIPHER_SUITE_BIP_CMAC_256:
902                 if (WARN_ON(tid != 0))
903                         return;
904                 pn = key->u.aes_cmac.rx_pn;
905                 memcpy(seq->aes_cmac.pn, pn, IEEE80211_CMAC_PN_LEN);
906                 break;
907         case WLAN_CIPHER_SUITE_BIP_GMAC_128:
908         case WLAN_CIPHER_SUITE_BIP_GMAC_256:
909                 if (WARN_ON(tid != 0))
910                         return;
911                 pn = key->u.aes_gmac.rx_pn;
912                 memcpy(seq->aes_gmac.pn, pn, IEEE80211_GMAC_PN_LEN);
913                 break;
914         case WLAN_CIPHER_SUITE_GCMP:
915         case WLAN_CIPHER_SUITE_GCMP_256:
916                 if (WARN_ON(tid < -1 || tid >= IEEE80211_NUM_TIDS))
917                         return;
918                 if (tid < 0)
919                         pn = key->u.gcmp.rx_pn[IEEE80211_NUM_TIDS];
920                 else
921                         pn = key->u.gcmp.rx_pn[tid];
922                 memcpy(seq->gcmp.pn, pn, IEEE80211_GCMP_PN_LEN);
923                 break;
924         }
925 }
926 EXPORT_SYMBOL(ieee80211_get_key_rx_seq);
927
928 void ieee80211_set_key_tx_seq(struct ieee80211_key_conf *keyconf,
929                               struct ieee80211_key_seq *seq)
930 {
931         struct ieee80211_key *key;
932         u64 pn64;
933
934         key = container_of(keyconf, struct ieee80211_key, conf);
935
936         switch (key->conf.cipher) {
937         case WLAN_CIPHER_SUITE_TKIP:
938                 key->u.tkip.tx.iv32 = seq->tkip.iv32;
939                 key->u.tkip.tx.iv16 = seq->tkip.iv16;
940                 break;
941         case WLAN_CIPHER_SUITE_CCMP:
942         case WLAN_CIPHER_SUITE_CCMP_256:
943                 pn64 = (u64)seq->ccmp.pn[5] |
944                        ((u64)seq->ccmp.pn[4] << 8) |
945                        ((u64)seq->ccmp.pn[3] << 16) |
946                        ((u64)seq->ccmp.pn[2] << 24) |
947                        ((u64)seq->ccmp.pn[1] << 32) |
948                        ((u64)seq->ccmp.pn[0] << 40);
949                 atomic64_set(&key->u.ccmp.tx_pn, pn64);
950                 break;
951         case WLAN_CIPHER_SUITE_AES_CMAC:
952         case WLAN_CIPHER_SUITE_BIP_CMAC_256:
953                 pn64 = (u64)seq->aes_cmac.pn[5] |
954                        ((u64)seq->aes_cmac.pn[4] << 8) |
955                        ((u64)seq->aes_cmac.pn[3] << 16) |
956                        ((u64)seq->aes_cmac.pn[2] << 24) |
957                        ((u64)seq->aes_cmac.pn[1] << 32) |
958                        ((u64)seq->aes_cmac.pn[0] << 40);
959                 atomic64_set(&key->u.aes_cmac.tx_pn, pn64);
960                 break;
961         case WLAN_CIPHER_SUITE_BIP_GMAC_128:
962         case WLAN_CIPHER_SUITE_BIP_GMAC_256:
963                 pn64 = (u64)seq->aes_gmac.pn[5] |
964                        ((u64)seq->aes_gmac.pn[4] << 8) |
965                        ((u64)seq->aes_gmac.pn[3] << 16) |
966                        ((u64)seq->aes_gmac.pn[2] << 24) |
967                        ((u64)seq->aes_gmac.pn[1] << 32) |
968                        ((u64)seq->aes_gmac.pn[0] << 40);
969                 atomic64_set(&key->u.aes_gmac.tx_pn, pn64);
970                 break;
971         case WLAN_CIPHER_SUITE_GCMP:
972         case WLAN_CIPHER_SUITE_GCMP_256:
973                 pn64 = (u64)seq->gcmp.pn[5] |
974                        ((u64)seq->gcmp.pn[4] << 8) |
975                        ((u64)seq->gcmp.pn[3] << 16) |
976                        ((u64)seq->gcmp.pn[2] << 24) |
977                        ((u64)seq->gcmp.pn[1] << 32) |
978                        ((u64)seq->gcmp.pn[0] << 40);
979                 atomic64_set(&key->u.gcmp.tx_pn, pn64);
980                 break;
981         default:
982                 WARN_ON(1);
983                 break;
984         }
985 }
986 EXPORT_SYMBOL_GPL(ieee80211_set_key_tx_seq);
987
988 void ieee80211_set_key_rx_seq(struct ieee80211_key_conf *keyconf,
989                               int tid, struct ieee80211_key_seq *seq)
990 {
991         struct ieee80211_key *key;
992         u8 *pn;
993
994         key = container_of(keyconf, struct ieee80211_key, conf);
995
996         switch (key->conf.cipher) {
997         case WLAN_CIPHER_SUITE_TKIP:
998                 if (WARN_ON(tid < 0 || tid >= IEEE80211_NUM_TIDS))
999                         return;
1000                 key->u.tkip.rx[tid].iv32 = seq->tkip.iv32;
1001                 key->u.tkip.rx[tid].iv16 = seq->tkip.iv16;
1002                 break;
1003         case WLAN_CIPHER_SUITE_CCMP:
1004         case WLAN_CIPHER_SUITE_CCMP_256:
1005                 if (WARN_ON(tid < -1 || tid >= IEEE80211_NUM_TIDS))
1006                         return;
1007                 if (tid < 0)
1008                         pn = key->u.ccmp.rx_pn[IEEE80211_NUM_TIDS];
1009                 else
1010                         pn = key->u.ccmp.rx_pn[tid];
1011                 memcpy(pn, seq->ccmp.pn, IEEE80211_CCMP_PN_LEN);
1012                 break;
1013         case WLAN_CIPHER_SUITE_AES_CMAC:
1014         case WLAN_CIPHER_SUITE_BIP_CMAC_256:
1015                 if (WARN_ON(tid != 0))
1016                         return;
1017                 pn = key->u.aes_cmac.rx_pn;
1018                 memcpy(pn, seq->aes_cmac.pn, IEEE80211_CMAC_PN_LEN);
1019                 break;
1020         case WLAN_CIPHER_SUITE_BIP_GMAC_128:
1021         case WLAN_CIPHER_SUITE_BIP_GMAC_256:
1022                 if (WARN_ON(tid != 0))
1023                         return;
1024                 pn = key->u.aes_gmac.rx_pn;
1025                 memcpy(pn, seq->aes_gmac.pn, IEEE80211_GMAC_PN_LEN);
1026                 break;
1027         case WLAN_CIPHER_SUITE_GCMP:
1028         case WLAN_CIPHER_SUITE_GCMP_256:
1029                 if (WARN_ON(tid < -1 || tid >= IEEE80211_NUM_TIDS))
1030                         return;
1031                 if (tid < 0)
1032                         pn = key->u.gcmp.rx_pn[IEEE80211_NUM_TIDS];
1033                 else
1034                         pn = key->u.gcmp.rx_pn[tid];
1035                 memcpy(pn, seq->gcmp.pn, IEEE80211_GCMP_PN_LEN);
1036                 break;
1037         default:
1038                 WARN_ON(1);
1039                 break;
1040         }
1041 }
1042 EXPORT_SYMBOL_GPL(ieee80211_set_key_rx_seq);
1043
1044 void ieee80211_remove_key(struct ieee80211_key_conf *keyconf)
1045 {
1046         struct ieee80211_key *key;
1047
1048         key = container_of(keyconf, struct ieee80211_key, conf);
1049
1050         assert_key_lock(key->local);
1051
1052         /*
1053          * if key was uploaded, we assume the driver will/has remove(d)
1054          * it, so adjust bookkeeping accordingly
1055          */
1056         if (key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE) {
1057                 key->flags &= ~KEY_FLAG_UPLOADED_TO_HARDWARE;
1058
1059                 if (!((key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_MMIC) ||
1060                       (key->conf.flags & IEEE80211_KEY_FLAG_RESERVE_TAILROOM)))
1061                         increment_tailroom_need_count(key->sdata);
1062         }
1063
1064         ieee80211_key_free(key, false);
1065 }
1066 EXPORT_SYMBOL_GPL(ieee80211_remove_key);
1067
1068 struct ieee80211_key_conf *
1069 ieee80211_gtk_rekey_add(struct ieee80211_vif *vif,
1070                         struct ieee80211_key_conf *keyconf)
1071 {
1072         struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif);
1073         struct ieee80211_local *local = sdata->local;
1074         struct ieee80211_key *key;
1075         int err;
1076
1077         if (WARN_ON(!local->wowlan))
1078                 return ERR_PTR(-EINVAL);
1079
1080         if (WARN_ON(vif->type != NL80211_IFTYPE_STATION))
1081                 return ERR_PTR(-EINVAL);
1082
1083         key = ieee80211_key_alloc(keyconf->cipher, keyconf->keyidx,
1084                                   keyconf->keylen, keyconf->key,
1085                                   0, NULL, NULL);
1086         if (IS_ERR(key))
1087                 return ERR_CAST(key);
1088
1089         if (sdata->u.mgd.mfp != IEEE80211_MFP_DISABLED)
1090                 key->conf.flags |= IEEE80211_KEY_FLAG_RX_MGMT;
1091
1092         err = ieee80211_key_link(key, sdata, NULL);
1093         if (err)
1094                 return ERR_PTR(err);
1095
1096         return &key->conf;
1097 }
1098 EXPORT_SYMBOL_GPL(ieee80211_gtk_rekey_add);