inetpeer: add parameter net for inet_getpeer_v4,v6
[firefly-linux-kernel-4.4.55.git] / net / ipv4 / tcp_ipv4.c
1 /*
2  * INET         An implementation of the TCP/IP protocol suite for the LINUX
3  *              operating system.  INET is implemented using the  BSD Socket
4  *              interface as the means of communication with the user level.
5  *
6  *              Implementation of the Transmission Control Protocol(TCP).
7  *
8  *              IPv4 specific functions
9  *
10  *
11  *              code split from:
12  *              linux/ipv4/tcp.c
13  *              linux/ipv4/tcp_input.c
14  *              linux/ipv4/tcp_output.c
15  *
16  *              See tcp.c for author information
17  *
18  *      This program is free software; you can redistribute it and/or
19  *      modify it under the terms of the GNU General Public License
20  *      as published by the Free Software Foundation; either version
21  *      2 of the License, or (at your option) any later version.
22  */
23
24 /*
25  * Changes:
26  *              David S. Miller :       New socket lookup architecture.
27  *                                      This code is dedicated to John Dyson.
28  *              David S. Miller :       Change semantics of established hash,
29  *                                      half is devoted to TIME_WAIT sockets
30  *                                      and the rest go in the other half.
31  *              Andi Kleen :            Add support for syncookies and fixed
32  *                                      some bugs: ip options weren't passed to
33  *                                      the TCP layer, missed a check for an
34  *                                      ACK bit.
35  *              Andi Kleen :            Implemented fast path mtu discovery.
36  *                                      Fixed many serious bugs in the
37  *                                      request_sock handling and moved
38  *                                      most of it into the af independent code.
39  *                                      Added tail drop and some other bugfixes.
40  *                                      Added new listen semantics.
41  *              Mike McLagan    :       Routing by source
42  *      Juan Jose Ciarlante:            ip_dynaddr bits
43  *              Andi Kleen:             various fixes.
44  *      Vitaly E. Lavrov        :       Transparent proxy revived after year
45  *                                      coma.
46  *      Andi Kleen              :       Fix new listen.
47  *      Andi Kleen              :       Fix accept error reporting.
48  *      YOSHIFUJI Hideaki @USAGI and:   Support IPV6_V6ONLY socket option, which
49  *      Alexey Kuznetsov                allow both IPv4 and IPv6 sockets to bind
50  *                                      a single port at the same time.
51  */
52
53 #define pr_fmt(fmt) "TCP: " fmt
54
55 #include <linux/bottom_half.h>
56 #include <linux/types.h>
57 #include <linux/fcntl.h>
58 #include <linux/module.h>
59 #include <linux/random.h>
60 #include <linux/cache.h>
61 #include <linux/jhash.h>
62 #include <linux/init.h>
63 #include <linux/times.h>
64 #include <linux/slab.h>
65
66 #include <net/net_namespace.h>
67 #include <net/icmp.h>
68 #include <net/inet_hashtables.h>
69 #include <net/tcp.h>
70 #include <net/transp_v6.h>
71 #include <net/ipv6.h>
72 #include <net/inet_common.h>
73 #include <net/timewait_sock.h>
74 #include <net/xfrm.h>
75 #include <net/netdma.h>
76 #include <net/secure_seq.h>
77 #include <net/tcp_memcontrol.h>
78
79 #include <linux/inet.h>
80 #include <linux/ipv6.h>
81 #include <linux/stddef.h>
82 #include <linux/proc_fs.h>
83 #include <linux/seq_file.h>
84
85 #include <linux/crypto.h>
86 #include <linux/scatterlist.h>
87
88 int sysctl_tcp_tw_reuse __read_mostly;
89 int sysctl_tcp_low_latency __read_mostly;
90 EXPORT_SYMBOL(sysctl_tcp_low_latency);
91
92
93 #ifdef CONFIG_TCP_MD5SIG
94 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
95                                __be32 daddr, __be32 saddr, const struct tcphdr *th);
96 #endif
97
98 struct inet_hashinfo tcp_hashinfo;
99 EXPORT_SYMBOL(tcp_hashinfo);
100
101 static inline __u32 tcp_v4_init_sequence(const struct sk_buff *skb)
102 {
103         return secure_tcp_sequence_number(ip_hdr(skb)->daddr,
104                                           ip_hdr(skb)->saddr,
105                                           tcp_hdr(skb)->dest,
106                                           tcp_hdr(skb)->source);
107 }
108
109 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
110 {
111         const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
112         struct tcp_sock *tp = tcp_sk(sk);
113
114         /* With PAWS, it is safe from the viewpoint
115            of data integrity. Even without PAWS it is safe provided sequence
116            spaces do not overlap i.e. at data rates <= 80Mbit/sec.
117
118            Actually, the idea is close to VJ's one, only timestamp cache is
119            held not per host, but per port pair and TW bucket is used as state
120            holder.
121
122            If TW bucket has been already destroyed we fall back to VJ's scheme
123            and use initial timestamp retrieved from peer table.
124          */
125         if (tcptw->tw_ts_recent_stamp &&
126             (twp == NULL || (sysctl_tcp_tw_reuse &&
127                              get_seconds() - tcptw->tw_ts_recent_stamp > 1))) {
128                 tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2;
129                 if (tp->write_seq == 0)
130                         tp->write_seq = 1;
131                 tp->rx_opt.ts_recent       = tcptw->tw_ts_recent;
132                 tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
133                 sock_hold(sktw);
134                 return 1;
135         }
136
137         return 0;
138 }
139 EXPORT_SYMBOL_GPL(tcp_twsk_unique);
140
141 static int tcp_repair_connect(struct sock *sk)
142 {
143         tcp_connect_init(sk);
144         tcp_finish_connect(sk, NULL);
145
146         return 0;
147 }
148
149 /* This will initiate an outgoing connection. */
150 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
151 {
152         struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
153         struct inet_sock *inet = inet_sk(sk);
154         struct tcp_sock *tp = tcp_sk(sk);
155         __be16 orig_sport, orig_dport;
156         __be32 daddr, nexthop;
157         struct flowi4 *fl4;
158         struct rtable *rt;
159         int err;
160         struct ip_options_rcu *inet_opt;
161
162         if (addr_len < sizeof(struct sockaddr_in))
163                 return -EINVAL;
164
165         if (usin->sin_family != AF_INET)
166                 return -EAFNOSUPPORT;
167
168         nexthop = daddr = usin->sin_addr.s_addr;
169         inet_opt = rcu_dereference_protected(inet->inet_opt,
170                                              sock_owned_by_user(sk));
171         if (inet_opt && inet_opt->opt.srr) {
172                 if (!daddr)
173                         return -EINVAL;
174                 nexthop = inet_opt->opt.faddr;
175         }
176
177         orig_sport = inet->inet_sport;
178         orig_dport = usin->sin_port;
179         fl4 = &inet->cork.fl.u.ip4;
180         rt = ip_route_connect(fl4, nexthop, inet->inet_saddr,
181                               RT_CONN_FLAGS(sk), sk->sk_bound_dev_if,
182                               IPPROTO_TCP,
183                               orig_sport, orig_dport, sk, true);
184         if (IS_ERR(rt)) {
185                 err = PTR_ERR(rt);
186                 if (err == -ENETUNREACH)
187                         IP_INC_STATS_BH(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
188                 return err;
189         }
190
191         if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
192                 ip_rt_put(rt);
193                 return -ENETUNREACH;
194         }
195
196         if (!inet_opt || !inet_opt->opt.srr)
197                 daddr = fl4->daddr;
198
199         if (!inet->inet_saddr)
200                 inet->inet_saddr = fl4->saddr;
201         inet->inet_rcv_saddr = inet->inet_saddr;
202
203         if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) {
204                 /* Reset inherited state */
205                 tp->rx_opt.ts_recent       = 0;
206                 tp->rx_opt.ts_recent_stamp = 0;
207                 if (likely(!tp->repair))
208                         tp->write_seq      = 0;
209         }
210
211         if (tcp_death_row.sysctl_tw_recycle &&
212             !tp->rx_opt.ts_recent_stamp && fl4->daddr == daddr) {
213                 struct inet_peer *peer = rt_get_peer(rt, fl4->daddr);
214                 /*
215                  * VJ's idea. We save last timestamp seen from
216                  * the destination in peer table, when entering state
217                  * TIME-WAIT * and initialize rx_opt.ts_recent from it,
218                  * when trying new connection.
219                  */
220                 if (peer) {
221                         inet_peer_refcheck(peer);
222                         if ((u32)get_seconds() - peer->tcp_ts_stamp <= TCP_PAWS_MSL) {
223                                 tp->rx_opt.ts_recent_stamp = peer->tcp_ts_stamp;
224                                 tp->rx_opt.ts_recent = peer->tcp_ts;
225                         }
226                 }
227         }
228
229         inet->inet_dport = usin->sin_port;
230         inet->inet_daddr = daddr;
231
232         inet_csk(sk)->icsk_ext_hdr_len = 0;
233         if (inet_opt)
234                 inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
235
236         tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT;
237
238         /* Socket identity is still unknown (sport may be zero).
239          * However we set state to SYN-SENT and not releasing socket
240          * lock select source port, enter ourselves into the hash tables and
241          * complete initialization after this.
242          */
243         tcp_set_state(sk, TCP_SYN_SENT);
244         err = inet_hash_connect(&tcp_death_row, sk);
245         if (err)
246                 goto failure;
247
248         rt = ip_route_newports(fl4, rt, orig_sport, orig_dport,
249                                inet->inet_sport, inet->inet_dport, sk);
250         if (IS_ERR(rt)) {
251                 err = PTR_ERR(rt);
252                 rt = NULL;
253                 goto failure;
254         }
255         /* OK, now commit destination to socket.  */
256         sk->sk_gso_type = SKB_GSO_TCPV4;
257         sk_setup_caps(sk, &rt->dst);
258
259         if (!tp->write_seq && likely(!tp->repair))
260                 tp->write_seq = secure_tcp_sequence_number(inet->inet_saddr,
261                                                            inet->inet_daddr,
262                                                            inet->inet_sport,
263                                                            usin->sin_port);
264
265         inet->inet_id = tp->write_seq ^ jiffies;
266
267         if (likely(!tp->repair))
268                 err = tcp_connect(sk);
269         else
270                 err = tcp_repair_connect(sk);
271
272         rt = NULL;
273         if (err)
274                 goto failure;
275
276         return 0;
277
278 failure:
279         /*
280          * This unhashes the socket and releases the local port,
281          * if necessary.
282          */
283         tcp_set_state(sk, TCP_CLOSE);
284         ip_rt_put(rt);
285         sk->sk_route_caps = 0;
286         inet->inet_dport = 0;
287         return err;
288 }
289 EXPORT_SYMBOL(tcp_v4_connect);
290
291 /*
292  * This routine does path mtu discovery as defined in RFC1191.
293  */
294 static void do_pmtu_discovery(struct sock *sk, const struct iphdr *iph, u32 mtu)
295 {
296         struct dst_entry *dst;
297         struct inet_sock *inet = inet_sk(sk);
298
299         /* We are not interested in TCP_LISTEN and open_requests (SYN-ACKs
300          * send out by Linux are always <576bytes so they should go through
301          * unfragmented).
302          */
303         if (sk->sk_state == TCP_LISTEN)
304                 return;
305
306         /* We don't check in the destentry if pmtu discovery is forbidden
307          * on this route. We just assume that no packet_to_big packets
308          * are send back when pmtu discovery is not active.
309          * There is a small race when the user changes this flag in the
310          * route, but I think that's acceptable.
311          */
312         if ((dst = __sk_dst_check(sk, 0)) == NULL)
313                 return;
314
315         dst->ops->update_pmtu(dst, mtu);
316
317         /* Something is about to be wrong... Remember soft error
318          * for the case, if this connection will not able to recover.
319          */
320         if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
321                 sk->sk_err_soft = EMSGSIZE;
322
323         mtu = dst_mtu(dst);
324
325         if (inet->pmtudisc != IP_PMTUDISC_DONT &&
326             inet_csk(sk)->icsk_pmtu_cookie > mtu) {
327                 tcp_sync_mss(sk, mtu);
328
329                 /* Resend the TCP packet because it's
330                  * clear that the old packet has been
331                  * dropped. This is the new "fast" path mtu
332                  * discovery.
333                  */
334                 tcp_simple_retransmit(sk);
335         } /* else let the usual retransmit timer handle it */
336 }
337
338 /*
339  * This routine is called by the ICMP module when it gets some
340  * sort of error condition.  If err < 0 then the socket should
341  * be closed and the error returned to the user.  If err > 0
342  * it's just the icmp type << 8 | icmp code.  After adjustment
343  * header points to the first 8 bytes of the tcp header.  We need
344  * to find the appropriate port.
345  *
346  * The locking strategy used here is very "optimistic". When
347  * someone else accesses the socket the ICMP is just dropped
348  * and for some paths there is no check at all.
349  * A more general error queue to queue errors for later handling
350  * is probably better.
351  *
352  */
353
354 void tcp_v4_err(struct sk_buff *icmp_skb, u32 info)
355 {
356         const struct iphdr *iph = (const struct iphdr *)icmp_skb->data;
357         struct tcphdr *th = (struct tcphdr *)(icmp_skb->data + (iph->ihl << 2));
358         struct inet_connection_sock *icsk;
359         struct tcp_sock *tp;
360         struct inet_sock *inet;
361         const int type = icmp_hdr(icmp_skb)->type;
362         const int code = icmp_hdr(icmp_skb)->code;
363         struct sock *sk;
364         struct sk_buff *skb;
365         __u32 seq;
366         __u32 remaining;
367         int err;
368         struct net *net = dev_net(icmp_skb->dev);
369
370         if (icmp_skb->len < (iph->ihl << 2) + 8) {
371                 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
372                 return;
373         }
374
375         sk = inet_lookup(net, &tcp_hashinfo, iph->daddr, th->dest,
376                         iph->saddr, th->source, inet_iif(icmp_skb));
377         if (!sk) {
378                 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
379                 return;
380         }
381         if (sk->sk_state == TCP_TIME_WAIT) {
382                 inet_twsk_put(inet_twsk(sk));
383                 return;
384         }
385
386         bh_lock_sock(sk);
387         /* If too many ICMPs get dropped on busy
388          * servers this needs to be solved differently.
389          */
390         if (sock_owned_by_user(sk))
391                 NET_INC_STATS_BH(net, LINUX_MIB_LOCKDROPPEDICMPS);
392
393         if (sk->sk_state == TCP_CLOSE)
394                 goto out;
395
396         if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
397                 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
398                 goto out;
399         }
400
401         icsk = inet_csk(sk);
402         tp = tcp_sk(sk);
403         seq = ntohl(th->seq);
404         if (sk->sk_state != TCP_LISTEN &&
405             !between(seq, tp->snd_una, tp->snd_nxt)) {
406                 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
407                 goto out;
408         }
409
410         switch (type) {
411         case ICMP_SOURCE_QUENCH:
412                 /* Just silently ignore these. */
413                 goto out;
414         case ICMP_PARAMETERPROB:
415                 err = EPROTO;
416                 break;
417         case ICMP_DEST_UNREACH:
418                 if (code > NR_ICMP_UNREACH)
419                         goto out;
420
421                 if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
422                         if (!sock_owned_by_user(sk))
423                                 do_pmtu_discovery(sk, iph, info);
424                         goto out;
425                 }
426
427                 err = icmp_err_convert[code].errno;
428                 /* check if icmp_skb allows revert of backoff
429                  * (see draft-zimmermann-tcp-lcd) */
430                 if (code != ICMP_NET_UNREACH && code != ICMP_HOST_UNREACH)
431                         break;
432                 if (seq != tp->snd_una  || !icsk->icsk_retransmits ||
433                     !icsk->icsk_backoff)
434                         break;
435
436                 if (sock_owned_by_user(sk))
437                         break;
438
439                 icsk->icsk_backoff--;
440                 inet_csk(sk)->icsk_rto = (tp->srtt ? __tcp_set_rto(tp) :
441                         TCP_TIMEOUT_INIT) << icsk->icsk_backoff;
442                 tcp_bound_rto(sk);
443
444                 skb = tcp_write_queue_head(sk);
445                 BUG_ON(!skb);
446
447                 remaining = icsk->icsk_rto - min(icsk->icsk_rto,
448                                 tcp_time_stamp - TCP_SKB_CB(skb)->when);
449
450                 if (remaining) {
451                         inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
452                                                   remaining, TCP_RTO_MAX);
453                 } else {
454                         /* RTO revert clocked out retransmission.
455                          * Will retransmit now */
456                         tcp_retransmit_timer(sk);
457                 }
458
459                 break;
460         case ICMP_TIME_EXCEEDED:
461                 err = EHOSTUNREACH;
462                 break;
463         default:
464                 goto out;
465         }
466
467         switch (sk->sk_state) {
468                 struct request_sock *req, **prev;
469         case TCP_LISTEN:
470                 if (sock_owned_by_user(sk))
471                         goto out;
472
473                 req = inet_csk_search_req(sk, &prev, th->dest,
474                                           iph->daddr, iph->saddr);
475                 if (!req)
476                         goto out;
477
478                 /* ICMPs are not backlogged, hence we cannot get
479                    an established socket here.
480                  */
481                 WARN_ON(req->sk);
482
483                 if (seq != tcp_rsk(req)->snt_isn) {
484                         NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
485                         goto out;
486                 }
487
488                 /*
489                  * Still in SYN_RECV, just remove it silently.
490                  * There is no good way to pass the error to the newly
491                  * created socket, and POSIX does not want network
492                  * errors returned from accept().
493                  */
494                 inet_csk_reqsk_queue_drop(sk, req, prev);
495                 goto out;
496
497         case TCP_SYN_SENT:
498         case TCP_SYN_RECV:  /* Cannot happen.
499                                It can f.e. if SYNs crossed.
500                              */
501                 if (!sock_owned_by_user(sk)) {
502                         sk->sk_err = err;
503
504                         sk->sk_error_report(sk);
505
506                         tcp_done(sk);
507                 } else {
508                         sk->sk_err_soft = err;
509                 }
510                 goto out;
511         }
512
513         /* If we've already connected we will keep trying
514          * until we time out, or the user gives up.
515          *
516          * rfc1122 4.2.3.9 allows to consider as hard errors
517          * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
518          * but it is obsoleted by pmtu discovery).
519          *
520          * Note, that in modern internet, where routing is unreliable
521          * and in each dark corner broken firewalls sit, sending random
522          * errors ordered by their masters even this two messages finally lose
523          * their original sense (even Linux sends invalid PORT_UNREACHs)
524          *
525          * Now we are in compliance with RFCs.
526          *                                                      --ANK (980905)
527          */
528
529         inet = inet_sk(sk);
530         if (!sock_owned_by_user(sk) && inet->recverr) {
531                 sk->sk_err = err;
532                 sk->sk_error_report(sk);
533         } else  { /* Only an error on timeout */
534                 sk->sk_err_soft = err;
535         }
536
537 out:
538         bh_unlock_sock(sk);
539         sock_put(sk);
540 }
541
542 static void __tcp_v4_send_check(struct sk_buff *skb,
543                                 __be32 saddr, __be32 daddr)
544 {
545         struct tcphdr *th = tcp_hdr(skb);
546
547         if (skb->ip_summed == CHECKSUM_PARTIAL) {
548                 th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0);
549                 skb->csum_start = skb_transport_header(skb) - skb->head;
550                 skb->csum_offset = offsetof(struct tcphdr, check);
551         } else {
552                 th->check = tcp_v4_check(skb->len, saddr, daddr,
553                                          csum_partial(th,
554                                                       th->doff << 2,
555                                                       skb->csum));
556         }
557 }
558
559 /* This routine computes an IPv4 TCP checksum. */
560 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)
561 {
562         const struct inet_sock *inet = inet_sk(sk);
563
564         __tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr);
565 }
566 EXPORT_SYMBOL(tcp_v4_send_check);
567
568 int tcp_v4_gso_send_check(struct sk_buff *skb)
569 {
570         const struct iphdr *iph;
571         struct tcphdr *th;
572
573         if (!pskb_may_pull(skb, sizeof(*th)))
574                 return -EINVAL;
575
576         iph = ip_hdr(skb);
577         th = tcp_hdr(skb);
578
579         th->check = 0;
580         skb->ip_summed = CHECKSUM_PARTIAL;
581         __tcp_v4_send_check(skb, iph->saddr, iph->daddr);
582         return 0;
583 }
584
585 /*
586  *      This routine will send an RST to the other tcp.
587  *
588  *      Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
589  *                    for reset.
590  *      Answer: if a packet caused RST, it is not for a socket
591  *              existing in our system, if it is matched to a socket,
592  *              it is just duplicate segment or bug in other side's TCP.
593  *              So that we build reply only basing on parameters
594  *              arrived with segment.
595  *      Exception: precedence violation. We do not implement it in any case.
596  */
597
598 static void tcp_v4_send_reset(struct sock *sk, struct sk_buff *skb)
599 {
600         const struct tcphdr *th = tcp_hdr(skb);
601         struct {
602                 struct tcphdr th;
603 #ifdef CONFIG_TCP_MD5SIG
604                 __be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)];
605 #endif
606         } rep;
607         struct ip_reply_arg arg;
608 #ifdef CONFIG_TCP_MD5SIG
609         struct tcp_md5sig_key *key;
610         const __u8 *hash_location = NULL;
611         unsigned char newhash[16];
612         int genhash;
613         struct sock *sk1 = NULL;
614 #endif
615         struct net *net;
616
617         /* Never send a reset in response to a reset. */
618         if (th->rst)
619                 return;
620
621         if (skb_rtable(skb)->rt_type != RTN_LOCAL)
622                 return;
623
624         /* Swap the send and the receive. */
625         memset(&rep, 0, sizeof(rep));
626         rep.th.dest   = th->source;
627         rep.th.source = th->dest;
628         rep.th.doff   = sizeof(struct tcphdr) / 4;
629         rep.th.rst    = 1;
630
631         if (th->ack) {
632                 rep.th.seq = th->ack_seq;
633         } else {
634                 rep.th.ack = 1;
635                 rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
636                                        skb->len - (th->doff << 2));
637         }
638
639         memset(&arg, 0, sizeof(arg));
640         arg.iov[0].iov_base = (unsigned char *)&rep;
641         arg.iov[0].iov_len  = sizeof(rep.th);
642
643 #ifdef CONFIG_TCP_MD5SIG
644         hash_location = tcp_parse_md5sig_option(th);
645         if (!sk && hash_location) {
646                 /*
647                  * active side is lost. Try to find listening socket through
648                  * source port, and then find md5 key through listening socket.
649                  * we are not loose security here:
650                  * Incoming packet is checked with md5 hash with finding key,
651                  * no RST generated if md5 hash doesn't match.
652                  */
653                 sk1 = __inet_lookup_listener(dev_net(skb_dst(skb)->dev),
654                                              &tcp_hashinfo, ip_hdr(skb)->daddr,
655                                              ntohs(th->source), inet_iif(skb));
656                 /* don't send rst if it can't find key */
657                 if (!sk1)
658                         return;
659                 rcu_read_lock();
660                 key = tcp_md5_do_lookup(sk1, (union tcp_md5_addr *)
661                                         &ip_hdr(skb)->saddr, AF_INET);
662                 if (!key)
663                         goto release_sk1;
664
665                 genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, NULL, skb);
666                 if (genhash || memcmp(hash_location, newhash, 16) != 0)
667                         goto release_sk1;
668         } else {
669                 key = sk ? tcp_md5_do_lookup(sk, (union tcp_md5_addr *)
670                                              &ip_hdr(skb)->saddr,
671                                              AF_INET) : NULL;
672         }
673
674         if (key) {
675                 rep.opt[0] = htonl((TCPOPT_NOP << 24) |
676                                    (TCPOPT_NOP << 16) |
677                                    (TCPOPT_MD5SIG << 8) |
678                                    TCPOLEN_MD5SIG);
679                 /* Update length and the length the header thinks exists */
680                 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
681                 rep.th.doff = arg.iov[0].iov_len / 4;
682
683                 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1],
684                                      key, ip_hdr(skb)->saddr,
685                                      ip_hdr(skb)->daddr, &rep.th);
686         }
687 #endif
688         arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
689                                       ip_hdr(skb)->saddr, /* XXX */
690                                       arg.iov[0].iov_len, IPPROTO_TCP, 0);
691         arg.csumoffset = offsetof(struct tcphdr, check) / 2;
692         arg.flags = (sk && inet_sk(sk)->transparent) ? IP_REPLY_ARG_NOSRCCHECK : 0;
693         /* When socket is gone, all binding information is lost.
694          * routing might fail in this case. using iif for oif to
695          * make sure we can deliver it
696          */
697         arg.bound_dev_if = sk ? sk->sk_bound_dev_if : inet_iif(skb);
698
699         net = dev_net(skb_dst(skb)->dev);
700         arg.tos = ip_hdr(skb)->tos;
701         ip_send_reply(net->ipv4.tcp_sock, skb, ip_hdr(skb)->saddr,
702                       &arg, arg.iov[0].iov_len);
703
704         TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
705         TCP_INC_STATS_BH(net, TCP_MIB_OUTRSTS);
706
707 #ifdef CONFIG_TCP_MD5SIG
708 release_sk1:
709         if (sk1) {
710                 rcu_read_unlock();
711                 sock_put(sk1);
712         }
713 #endif
714 }
715
716 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
717    outside socket context is ugly, certainly. What can I do?
718  */
719
720 static void tcp_v4_send_ack(struct sk_buff *skb, u32 seq, u32 ack,
721                             u32 win, u32 ts, int oif,
722                             struct tcp_md5sig_key *key,
723                             int reply_flags, u8 tos)
724 {
725         const struct tcphdr *th = tcp_hdr(skb);
726         struct {
727                 struct tcphdr th;
728                 __be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2)
729 #ifdef CONFIG_TCP_MD5SIG
730                            + (TCPOLEN_MD5SIG_ALIGNED >> 2)
731 #endif
732                         ];
733         } rep;
734         struct ip_reply_arg arg;
735         struct net *net = dev_net(skb_dst(skb)->dev);
736
737         memset(&rep.th, 0, sizeof(struct tcphdr));
738         memset(&arg, 0, sizeof(arg));
739
740         arg.iov[0].iov_base = (unsigned char *)&rep;
741         arg.iov[0].iov_len  = sizeof(rep.th);
742         if (ts) {
743                 rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
744                                    (TCPOPT_TIMESTAMP << 8) |
745                                    TCPOLEN_TIMESTAMP);
746                 rep.opt[1] = htonl(tcp_time_stamp);
747                 rep.opt[2] = htonl(ts);
748                 arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
749         }
750
751         /* Swap the send and the receive. */
752         rep.th.dest    = th->source;
753         rep.th.source  = th->dest;
754         rep.th.doff    = arg.iov[0].iov_len / 4;
755         rep.th.seq     = htonl(seq);
756         rep.th.ack_seq = htonl(ack);
757         rep.th.ack     = 1;
758         rep.th.window  = htons(win);
759
760 #ifdef CONFIG_TCP_MD5SIG
761         if (key) {
762                 int offset = (ts) ? 3 : 0;
763
764                 rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
765                                           (TCPOPT_NOP << 16) |
766                                           (TCPOPT_MD5SIG << 8) |
767                                           TCPOLEN_MD5SIG);
768                 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
769                 rep.th.doff = arg.iov[0].iov_len/4;
770
771                 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset],
772                                     key, ip_hdr(skb)->saddr,
773                                     ip_hdr(skb)->daddr, &rep.th);
774         }
775 #endif
776         arg.flags = reply_flags;
777         arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
778                                       ip_hdr(skb)->saddr, /* XXX */
779                                       arg.iov[0].iov_len, IPPROTO_TCP, 0);
780         arg.csumoffset = offsetof(struct tcphdr, check) / 2;
781         if (oif)
782                 arg.bound_dev_if = oif;
783         arg.tos = tos;
784         ip_send_reply(net->ipv4.tcp_sock, skb, ip_hdr(skb)->saddr,
785                       &arg, arg.iov[0].iov_len);
786
787         TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
788 }
789
790 static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
791 {
792         struct inet_timewait_sock *tw = inet_twsk(sk);
793         struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
794
795         tcp_v4_send_ack(skb, tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
796                         tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
797                         tcptw->tw_ts_recent,
798                         tw->tw_bound_dev_if,
799                         tcp_twsk_md5_key(tcptw),
800                         tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0,
801                         tw->tw_tos
802                         );
803
804         inet_twsk_put(tw);
805 }
806
807 static void tcp_v4_reqsk_send_ack(struct sock *sk, struct sk_buff *skb,
808                                   struct request_sock *req)
809 {
810         tcp_v4_send_ack(skb, tcp_rsk(req)->snt_isn + 1,
811                         tcp_rsk(req)->rcv_isn + 1, req->rcv_wnd,
812                         req->ts_recent,
813                         0,
814                         tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&ip_hdr(skb)->daddr,
815                                           AF_INET),
816                         inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0,
817                         ip_hdr(skb)->tos);
818 }
819
820 /*
821  *      Send a SYN-ACK after having received a SYN.
822  *      This still operates on a request_sock only, not on a big
823  *      socket.
824  */
825 static int tcp_v4_send_synack(struct sock *sk, struct dst_entry *dst,
826                               struct request_sock *req,
827                               struct request_values *rvp,
828                               u16 queue_mapping)
829 {
830         const struct inet_request_sock *ireq = inet_rsk(req);
831         struct flowi4 fl4;
832         int err = -1;
833         struct sk_buff * skb;
834
835         /* First, grab a route. */
836         if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL)
837                 return -1;
838
839         skb = tcp_make_synack(sk, dst, req, rvp);
840
841         if (skb) {
842                 __tcp_v4_send_check(skb, ireq->loc_addr, ireq->rmt_addr);
843
844                 skb_set_queue_mapping(skb, queue_mapping);
845                 err = ip_build_and_send_pkt(skb, sk, ireq->loc_addr,
846                                             ireq->rmt_addr,
847                                             ireq->opt);
848                 err = net_xmit_eval(err);
849         }
850
851         return err;
852 }
853
854 static int tcp_v4_rtx_synack(struct sock *sk, struct request_sock *req,
855                               struct request_values *rvp)
856 {
857         TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_RETRANSSEGS);
858         return tcp_v4_send_synack(sk, NULL, req, rvp, 0);
859 }
860
861 /*
862  *      IPv4 request_sock destructor.
863  */
864 static void tcp_v4_reqsk_destructor(struct request_sock *req)
865 {
866         kfree(inet_rsk(req)->opt);
867 }
868
869 /*
870  * Return true if a syncookie should be sent
871  */
872 bool tcp_syn_flood_action(struct sock *sk,
873                          const struct sk_buff *skb,
874                          const char *proto)
875 {
876         const char *msg = "Dropping request";
877         bool want_cookie = false;
878         struct listen_sock *lopt;
879
880
881
882 #ifdef CONFIG_SYN_COOKIES
883         if (sysctl_tcp_syncookies) {
884                 msg = "Sending cookies";
885                 want_cookie = true;
886                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
887         } else
888 #endif
889                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
890
891         lopt = inet_csk(sk)->icsk_accept_queue.listen_opt;
892         if (!lopt->synflood_warned) {
893                 lopt->synflood_warned = 1;
894                 pr_info("%s: Possible SYN flooding on port %d. %s.  Check SNMP counters.\n",
895                         proto, ntohs(tcp_hdr(skb)->dest), msg);
896         }
897         return want_cookie;
898 }
899 EXPORT_SYMBOL(tcp_syn_flood_action);
900
901 /*
902  * Save and compile IPv4 options into the request_sock if needed.
903  */
904 static struct ip_options_rcu *tcp_v4_save_options(struct sock *sk,
905                                                   struct sk_buff *skb)
906 {
907         const struct ip_options *opt = &(IPCB(skb)->opt);
908         struct ip_options_rcu *dopt = NULL;
909
910         if (opt && opt->optlen) {
911                 int opt_size = sizeof(*dopt) + opt->optlen;
912
913                 dopt = kmalloc(opt_size, GFP_ATOMIC);
914                 if (dopt) {
915                         if (ip_options_echo(&dopt->opt, skb)) {
916                                 kfree(dopt);
917                                 dopt = NULL;
918                         }
919                 }
920         }
921         return dopt;
922 }
923
924 #ifdef CONFIG_TCP_MD5SIG
925 /*
926  * RFC2385 MD5 checksumming requires a mapping of
927  * IP address->MD5 Key.
928  * We need to maintain these in the sk structure.
929  */
930
931 /* Find the Key structure for an address.  */
932 struct tcp_md5sig_key *tcp_md5_do_lookup(struct sock *sk,
933                                          const union tcp_md5_addr *addr,
934                                          int family)
935 {
936         struct tcp_sock *tp = tcp_sk(sk);
937         struct tcp_md5sig_key *key;
938         struct hlist_node *pos;
939         unsigned int size = sizeof(struct in_addr);
940         struct tcp_md5sig_info *md5sig;
941
942         /* caller either holds rcu_read_lock() or socket lock */
943         md5sig = rcu_dereference_check(tp->md5sig_info,
944                                        sock_owned_by_user(sk) ||
945                                        lockdep_is_held(&sk->sk_lock.slock));
946         if (!md5sig)
947                 return NULL;
948 #if IS_ENABLED(CONFIG_IPV6)
949         if (family == AF_INET6)
950                 size = sizeof(struct in6_addr);
951 #endif
952         hlist_for_each_entry_rcu(key, pos, &md5sig->head, node) {
953                 if (key->family != family)
954                         continue;
955                 if (!memcmp(&key->addr, addr, size))
956                         return key;
957         }
958         return NULL;
959 }
960 EXPORT_SYMBOL(tcp_md5_do_lookup);
961
962 struct tcp_md5sig_key *tcp_v4_md5_lookup(struct sock *sk,
963                                          struct sock *addr_sk)
964 {
965         union tcp_md5_addr *addr;
966
967         addr = (union tcp_md5_addr *)&inet_sk(addr_sk)->inet_daddr;
968         return tcp_md5_do_lookup(sk, addr, AF_INET);
969 }
970 EXPORT_SYMBOL(tcp_v4_md5_lookup);
971
972 static struct tcp_md5sig_key *tcp_v4_reqsk_md5_lookup(struct sock *sk,
973                                                       struct request_sock *req)
974 {
975         union tcp_md5_addr *addr;
976
977         addr = (union tcp_md5_addr *)&inet_rsk(req)->rmt_addr;
978         return tcp_md5_do_lookup(sk, addr, AF_INET);
979 }
980
981 /* This can be called on a newly created socket, from other files */
982 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
983                    int family, const u8 *newkey, u8 newkeylen, gfp_t gfp)
984 {
985         /* Add Key to the list */
986         struct tcp_md5sig_key *key;
987         struct tcp_sock *tp = tcp_sk(sk);
988         struct tcp_md5sig_info *md5sig;
989
990         key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&addr, AF_INET);
991         if (key) {
992                 /* Pre-existing entry - just update that one. */
993                 memcpy(key->key, newkey, newkeylen);
994                 key->keylen = newkeylen;
995                 return 0;
996         }
997
998         md5sig = rcu_dereference_protected(tp->md5sig_info,
999                                            sock_owned_by_user(sk));
1000         if (!md5sig) {
1001                 md5sig = kmalloc(sizeof(*md5sig), gfp);
1002                 if (!md5sig)
1003                         return -ENOMEM;
1004
1005                 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1006                 INIT_HLIST_HEAD(&md5sig->head);
1007                 rcu_assign_pointer(tp->md5sig_info, md5sig);
1008         }
1009
1010         key = sock_kmalloc(sk, sizeof(*key), gfp);
1011         if (!key)
1012                 return -ENOMEM;
1013         if (hlist_empty(&md5sig->head) && !tcp_alloc_md5sig_pool(sk)) {
1014                 sock_kfree_s(sk, key, sizeof(*key));
1015                 return -ENOMEM;
1016         }
1017
1018         memcpy(key->key, newkey, newkeylen);
1019         key->keylen = newkeylen;
1020         key->family = family;
1021         memcpy(&key->addr, addr,
1022                (family == AF_INET6) ? sizeof(struct in6_addr) :
1023                                       sizeof(struct in_addr));
1024         hlist_add_head_rcu(&key->node, &md5sig->head);
1025         return 0;
1026 }
1027 EXPORT_SYMBOL(tcp_md5_do_add);
1028
1029 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, int family)
1030 {
1031         struct tcp_sock *tp = tcp_sk(sk);
1032         struct tcp_md5sig_key *key;
1033         struct tcp_md5sig_info *md5sig;
1034
1035         key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&addr, AF_INET);
1036         if (!key)
1037                 return -ENOENT;
1038         hlist_del_rcu(&key->node);
1039         atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1040         kfree_rcu(key, rcu);
1041         md5sig = rcu_dereference_protected(tp->md5sig_info,
1042                                            sock_owned_by_user(sk));
1043         if (hlist_empty(&md5sig->head))
1044                 tcp_free_md5sig_pool();
1045         return 0;
1046 }
1047 EXPORT_SYMBOL(tcp_md5_do_del);
1048
1049 void tcp_clear_md5_list(struct sock *sk)
1050 {
1051         struct tcp_sock *tp = tcp_sk(sk);
1052         struct tcp_md5sig_key *key;
1053         struct hlist_node *pos, *n;
1054         struct tcp_md5sig_info *md5sig;
1055
1056         md5sig = rcu_dereference_protected(tp->md5sig_info, 1);
1057
1058         if (!hlist_empty(&md5sig->head))
1059                 tcp_free_md5sig_pool();
1060         hlist_for_each_entry_safe(key, pos, n, &md5sig->head, node) {
1061                 hlist_del_rcu(&key->node);
1062                 atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1063                 kfree_rcu(key, rcu);
1064         }
1065 }
1066
1067 static int tcp_v4_parse_md5_keys(struct sock *sk, char __user *optval,
1068                                  int optlen)
1069 {
1070         struct tcp_md5sig cmd;
1071         struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
1072
1073         if (optlen < sizeof(cmd))
1074                 return -EINVAL;
1075
1076         if (copy_from_user(&cmd, optval, sizeof(cmd)))
1077                 return -EFAULT;
1078
1079         if (sin->sin_family != AF_INET)
1080                 return -EINVAL;
1081
1082         if (!cmd.tcpm_key || !cmd.tcpm_keylen)
1083                 return tcp_md5_do_del(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1084                                       AF_INET);
1085
1086         if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
1087                 return -EINVAL;
1088
1089         return tcp_md5_do_add(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1090                               AF_INET, cmd.tcpm_key, cmd.tcpm_keylen,
1091                               GFP_KERNEL);
1092 }
1093
1094 static int tcp_v4_md5_hash_pseudoheader(struct tcp_md5sig_pool *hp,
1095                                         __be32 daddr, __be32 saddr, int nbytes)
1096 {
1097         struct tcp4_pseudohdr *bp;
1098         struct scatterlist sg;
1099
1100         bp = &hp->md5_blk.ip4;
1101
1102         /*
1103          * 1. the TCP pseudo-header (in the order: source IP address,
1104          * destination IP address, zero-padded protocol number, and
1105          * segment length)
1106          */
1107         bp->saddr = saddr;
1108         bp->daddr = daddr;
1109         bp->pad = 0;
1110         bp->protocol = IPPROTO_TCP;
1111         bp->len = cpu_to_be16(nbytes);
1112
1113         sg_init_one(&sg, bp, sizeof(*bp));
1114         return crypto_hash_update(&hp->md5_desc, &sg, sizeof(*bp));
1115 }
1116
1117 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
1118                                __be32 daddr, __be32 saddr, const struct tcphdr *th)
1119 {
1120         struct tcp_md5sig_pool *hp;
1121         struct hash_desc *desc;
1122
1123         hp = tcp_get_md5sig_pool();
1124         if (!hp)
1125                 goto clear_hash_noput;
1126         desc = &hp->md5_desc;
1127
1128         if (crypto_hash_init(desc))
1129                 goto clear_hash;
1130         if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, th->doff << 2))
1131                 goto clear_hash;
1132         if (tcp_md5_hash_header(hp, th))
1133                 goto clear_hash;
1134         if (tcp_md5_hash_key(hp, key))
1135                 goto clear_hash;
1136         if (crypto_hash_final(desc, md5_hash))
1137                 goto clear_hash;
1138
1139         tcp_put_md5sig_pool();
1140         return 0;
1141
1142 clear_hash:
1143         tcp_put_md5sig_pool();
1144 clear_hash_noput:
1145         memset(md5_hash, 0, 16);
1146         return 1;
1147 }
1148
1149 int tcp_v4_md5_hash_skb(char *md5_hash, struct tcp_md5sig_key *key,
1150                         const struct sock *sk, const struct request_sock *req,
1151                         const struct sk_buff *skb)
1152 {
1153         struct tcp_md5sig_pool *hp;
1154         struct hash_desc *desc;
1155         const struct tcphdr *th = tcp_hdr(skb);
1156         __be32 saddr, daddr;
1157
1158         if (sk) {
1159                 saddr = inet_sk(sk)->inet_saddr;
1160                 daddr = inet_sk(sk)->inet_daddr;
1161         } else if (req) {
1162                 saddr = inet_rsk(req)->loc_addr;
1163                 daddr = inet_rsk(req)->rmt_addr;
1164         } else {
1165                 const struct iphdr *iph = ip_hdr(skb);
1166                 saddr = iph->saddr;
1167                 daddr = iph->daddr;
1168         }
1169
1170         hp = tcp_get_md5sig_pool();
1171         if (!hp)
1172                 goto clear_hash_noput;
1173         desc = &hp->md5_desc;
1174
1175         if (crypto_hash_init(desc))
1176                 goto clear_hash;
1177
1178         if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, skb->len))
1179                 goto clear_hash;
1180         if (tcp_md5_hash_header(hp, th))
1181                 goto clear_hash;
1182         if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2))
1183                 goto clear_hash;
1184         if (tcp_md5_hash_key(hp, key))
1185                 goto clear_hash;
1186         if (crypto_hash_final(desc, md5_hash))
1187                 goto clear_hash;
1188
1189         tcp_put_md5sig_pool();
1190         return 0;
1191
1192 clear_hash:
1193         tcp_put_md5sig_pool();
1194 clear_hash_noput:
1195         memset(md5_hash, 0, 16);
1196         return 1;
1197 }
1198 EXPORT_SYMBOL(tcp_v4_md5_hash_skb);
1199
1200 static bool tcp_v4_inbound_md5_hash(struct sock *sk, const struct sk_buff *skb)
1201 {
1202         /*
1203          * This gets called for each TCP segment that arrives
1204          * so we want to be efficient.
1205          * We have 3 drop cases:
1206          * o No MD5 hash and one expected.
1207          * o MD5 hash and we're not expecting one.
1208          * o MD5 hash and its wrong.
1209          */
1210         const __u8 *hash_location = NULL;
1211         struct tcp_md5sig_key *hash_expected;
1212         const struct iphdr *iph = ip_hdr(skb);
1213         const struct tcphdr *th = tcp_hdr(skb);
1214         int genhash;
1215         unsigned char newhash[16];
1216
1217         hash_expected = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&iph->saddr,
1218                                           AF_INET);
1219         hash_location = tcp_parse_md5sig_option(th);
1220
1221         /* We've parsed the options - do we have a hash? */
1222         if (!hash_expected && !hash_location)
1223                 return false;
1224
1225         if (hash_expected && !hash_location) {
1226                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
1227                 return true;
1228         }
1229
1230         if (!hash_expected && hash_location) {
1231                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
1232                 return true;
1233         }
1234
1235         /* Okay, so this is hash_expected and hash_location -
1236          * so we need to calculate the checksum.
1237          */
1238         genhash = tcp_v4_md5_hash_skb(newhash,
1239                                       hash_expected,
1240                                       NULL, NULL, skb);
1241
1242         if (genhash || memcmp(hash_location, newhash, 16) != 0) {
1243                 net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s\n",
1244                                      &iph->saddr, ntohs(th->source),
1245                                      &iph->daddr, ntohs(th->dest),
1246                                      genhash ? " tcp_v4_calc_md5_hash failed"
1247                                      : "");
1248                 return true;
1249         }
1250         return false;
1251 }
1252
1253 #endif
1254
1255 struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1256         .family         =       PF_INET,
1257         .obj_size       =       sizeof(struct tcp_request_sock),
1258         .rtx_syn_ack    =       tcp_v4_rtx_synack,
1259         .send_ack       =       tcp_v4_reqsk_send_ack,
1260         .destructor     =       tcp_v4_reqsk_destructor,
1261         .send_reset     =       tcp_v4_send_reset,
1262         .syn_ack_timeout =      tcp_syn_ack_timeout,
1263 };
1264
1265 #ifdef CONFIG_TCP_MD5SIG
1266 static const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1267         .md5_lookup     =       tcp_v4_reqsk_md5_lookup,
1268         .calc_md5_hash  =       tcp_v4_md5_hash_skb,
1269 };
1270 #endif
1271
1272 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1273 {
1274         struct tcp_extend_values tmp_ext;
1275         struct tcp_options_received tmp_opt;
1276         const u8 *hash_location;
1277         struct request_sock *req;
1278         struct inet_request_sock *ireq;
1279         struct tcp_sock *tp = tcp_sk(sk);
1280         struct dst_entry *dst = NULL;
1281         __be32 saddr = ip_hdr(skb)->saddr;
1282         __be32 daddr = ip_hdr(skb)->daddr;
1283         __u32 isn = TCP_SKB_CB(skb)->when;
1284         bool want_cookie = false;
1285
1286         /* Never answer to SYNs send to broadcast or multicast */
1287         if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1288                 goto drop;
1289
1290         /* TW buckets are converted to open requests without
1291          * limitations, they conserve resources and peer is
1292          * evidently real one.
1293          */
1294         if (inet_csk_reqsk_queue_is_full(sk) && !isn) {
1295                 want_cookie = tcp_syn_flood_action(sk, skb, "TCP");
1296                 if (!want_cookie)
1297                         goto drop;
1298         }
1299
1300         /* Accept backlog is full. If we have already queued enough
1301          * of warm entries in syn queue, drop request. It is better than
1302          * clogging syn queue with openreqs with exponentially increasing
1303          * timeout.
1304          */
1305         if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1)
1306                 goto drop;
1307
1308         req = inet_reqsk_alloc(&tcp_request_sock_ops);
1309         if (!req)
1310                 goto drop;
1311
1312 #ifdef CONFIG_TCP_MD5SIG
1313         tcp_rsk(req)->af_specific = &tcp_request_sock_ipv4_ops;
1314 #endif
1315
1316         tcp_clear_options(&tmp_opt);
1317         tmp_opt.mss_clamp = TCP_MSS_DEFAULT;
1318         tmp_opt.user_mss  = tp->rx_opt.user_mss;
1319         tcp_parse_options(skb, &tmp_opt, &hash_location, 0);
1320
1321         if (tmp_opt.cookie_plus > 0 &&
1322             tmp_opt.saw_tstamp &&
1323             !tp->rx_opt.cookie_out_never &&
1324             (sysctl_tcp_cookie_size > 0 ||
1325              (tp->cookie_values != NULL &&
1326               tp->cookie_values->cookie_desired > 0))) {
1327                 u8 *c;
1328                 u32 *mess = &tmp_ext.cookie_bakery[COOKIE_DIGEST_WORDS];
1329                 int l = tmp_opt.cookie_plus - TCPOLEN_COOKIE_BASE;
1330
1331                 if (tcp_cookie_generator(&tmp_ext.cookie_bakery[0]) != 0)
1332                         goto drop_and_release;
1333
1334                 /* Secret recipe starts with IP addresses */
1335                 *mess++ ^= (__force u32)daddr;
1336                 *mess++ ^= (__force u32)saddr;
1337
1338                 /* plus variable length Initiator Cookie */
1339                 c = (u8 *)mess;
1340                 while (l-- > 0)
1341                         *c++ ^= *hash_location++;
1342
1343                 want_cookie = false;    /* not our kind of cookie */
1344                 tmp_ext.cookie_out_never = 0; /* false */
1345                 tmp_ext.cookie_plus = tmp_opt.cookie_plus;
1346         } else if (!tp->rx_opt.cookie_in_always) {
1347                 /* redundant indications, but ensure initialization. */
1348                 tmp_ext.cookie_out_never = 1; /* true */
1349                 tmp_ext.cookie_plus = 0;
1350         } else {
1351                 goto drop_and_release;
1352         }
1353         tmp_ext.cookie_in_always = tp->rx_opt.cookie_in_always;
1354
1355         if (want_cookie && !tmp_opt.saw_tstamp)
1356                 tcp_clear_options(&tmp_opt);
1357
1358         tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
1359         tcp_openreq_init(req, &tmp_opt, skb);
1360
1361         ireq = inet_rsk(req);
1362         ireq->loc_addr = daddr;
1363         ireq->rmt_addr = saddr;
1364         ireq->no_srccheck = inet_sk(sk)->transparent;
1365         ireq->opt = tcp_v4_save_options(sk, skb);
1366
1367         if (security_inet_conn_request(sk, skb, req))
1368                 goto drop_and_free;
1369
1370         if (!want_cookie || tmp_opt.tstamp_ok)
1371                 TCP_ECN_create_request(req, skb);
1372
1373         if (want_cookie) {
1374                 isn = cookie_v4_init_sequence(sk, skb, &req->mss);
1375                 req->cookie_ts = tmp_opt.tstamp_ok;
1376         } else if (!isn) {
1377                 struct inet_peer *peer = NULL;
1378                 struct flowi4 fl4;
1379
1380                 /* VJ's idea. We save last timestamp seen
1381                  * from the destination in peer table, when entering
1382                  * state TIME-WAIT, and check against it before
1383                  * accepting new connection request.
1384                  *
1385                  * If "isn" is not zero, this request hit alive
1386                  * timewait bucket, so that all the necessary checks
1387                  * are made in the function processing timewait state.
1388                  */
1389                 if (tmp_opt.saw_tstamp &&
1390                     tcp_death_row.sysctl_tw_recycle &&
1391                     (dst = inet_csk_route_req(sk, &fl4, req)) != NULL &&
1392                     fl4.daddr == saddr &&
1393                     (peer = rt_get_peer((struct rtable *)dst, fl4.daddr)) != NULL) {
1394                         inet_peer_refcheck(peer);
1395                         if ((u32)get_seconds() - peer->tcp_ts_stamp < TCP_PAWS_MSL &&
1396                             (s32)(peer->tcp_ts - req->ts_recent) >
1397                                                         TCP_PAWS_WINDOW) {
1398                                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
1399                                 goto drop_and_release;
1400                         }
1401                 }
1402                 /* Kill the following clause, if you dislike this way. */
1403                 else if (!sysctl_tcp_syncookies &&
1404                          (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
1405                           (sysctl_max_syn_backlog >> 2)) &&
1406                          (!peer || !peer->tcp_ts_stamp) &&
1407                          (!dst || !dst_metric(dst, RTAX_RTT))) {
1408                         /* Without syncookies last quarter of
1409                          * backlog is filled with destinations,
1410                          * proven to be alive.
1411                          * It means that we continue to communicate
1412                          * to destinations, already remembered
1413                          * to the moment of synflood.
1414                          */
1415                         LIMIT_NETDEBUG(KERN_DEBUG pr_fmt("drop open request from %pI4/%u\n"),
1416                                        &saddr, ntohs(tcp_hdr(skb)->source));
1417                         goto drop_and_release;
1418                 }
1419
1420                 isn = tcp_v4_init_sequence(skb);
1421         }
1422         tcp_rsk(req)->snt_isn = isn;
1423         tcp_rsk(req)->snt_synack = tcp_time_stamp;
1424
1425         if (tcp_v4_send_synack(sk, dst, req,
1426                                (struct request_values *)&tmp_ext,
1427                                skb_get_queue_mapping(skb)) ||
1428             want_cookie)
1429                 goto drop_and_free;
1430
1431         inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
1432         return 0;
1433
1434 drop_and_release:
1435         dst_release(dst);
1436 drop_and_free:
1437         reqsk_free(req);
1438 drop:
1439         return 0;
1440 }
1441 EXPORT_SYMBOL(tcp_v4_conn_request);
1442
1443
1444 /*
1445  * The three way handshake has completed - we got a valid synack -
1446  * now create the new socket.
1447  */
1448 struct sock *tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb,
1449                                   struct request_sock *req,
1450                                   struct dst_entry *dst)
1451 {
1452         struct inet_request_sock *ireq;
1453         struct inet_sock *newinet;
1454         struct tcp_sock *newtp;
1455         struct sock *newsk;
1456 #ifdef CONFIG_TCP_MD5SIG
1457         struct tcp_md5sig_key *key;
1458 #endif
1459         struct ip_options_rcu *inet_opt;
1460
1461         if (sk_acceptq_is_full(sk))
1462                 goto exit_overflow;
1463
1464         newsk = tcp_create_openreq_child(sk, req, skb);
1465         if (!newsk)
1466                 goto exit_nonewsk;
1467
1468         newsk->sk_gso_type = SKB_GSO_TCPV4;
1469
1470         newtp                 = tcp_sk(newsk);
1471         newinet               = inet_sk(newsk);
1472         ireq                  = inet_rsk(req);
1473         newinet->inet_daddr   = ireq->rmt_addr;
1474         newinet->inet_rcv_saddr = ireq->loc_addr;
1475         newinet->inet_saddr           = ireq->loc_addr;
1476         inet_opt              = ireq->opt;
1477         rcu_assign_pointer(newinet->inet_opt, inet_opt);
1478         ireq->opt             = NULL;
1479         newinet->mc_index     = inet_iif(skb);
1480         newinet->mc_ttl       = ip_hdr(skb)->ttl;
1481         newinet->rcv_tos      = ip_hdr(skb)->tos;
1482         inet_csk(newsk)->icsk_ext_hdr_len = 0;
1483         if (inet_opt)
1484                 inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
1485         newinet->inet_id = newtp->write_seq ^ jiffies;
1486
1487         if (!dst) {
1488                 dst = inet_csk_route_child_sock(sk, newsk, req);
1489                 if (!dst)
1490                         goto put_and_exit;
1491         } else {
1492                 /* syncookie case : see end of cookie_v4_check() */
1493         }
1494         sk_setup_caps(newsk, dst);
1495
1496         tcp_mtup_init(newsk);
1497         tcp_sync_mss(newsk, dst_mtu(dst));
1498         newtp->advmss = dst_metric_advmss(dst);
1499         if (tcp_sk(sk)->rx_opt.user_mss &&
1500             tcp_sk(sk)->rx_opt.user_mss < newtp->advmss)
1501                 newtp->advmss = tcp_sk(sk)->rx_opt.user_mss;
1502
1503         tcp_initialize_rcv_mss(newsk);
1504         if (tcp_rsk(req)->snt_synack)
1505                 tcp_valid_rtt_meas(newsk,
1506                     tcp_time_stamp - tcp_rsk(req)->snt_synack);
1507         newtp->total_retrans = req->retrans;
1508
1509 #ifdef CONFIG_TCP_MD5SIG
1510         /* Copy over the MD5 key from the original socket */
1511         key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&newinet->inet_daddr,
1512                                 AF_INET);
1513         if (key != NULL) {
1514                 /*
1515                  * We're using one, so create a matching key
1516                  * on the newsk structure. If we fail to get
1517                  * memory, then we end up not copying the key
1518                  * across. Shucks.
1519                  */
1520                 tcp_md5_do_add(newsk, (union tcp_md5_addr *)&newinet->inet_daddr,
1521                                AF_INET, key->key, key->keylen, GFP_ATOMIC);
1522                 sk_nocaps_add(newsk, NETIF_F_GSO_MASK);
1523         }
1524 #endif
1525
1526         if (__inet_inherit_port(sk, newsk) < 0)
1527                 goto put_and_exit;
1528         __inet_hash_nolisten(newsk, NULL);
1529
1530         return newsk;
1531
1532 exit_overflow:
1533         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1534 exit_nonewsk:
1535         dst_release(dst);
1536 exit:
1537         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
1538         return NULL;
1539 put_and_exit:
1540         tcp_clear_xmit_timers(newsk);
1541         tcp_cleanup_congestion_control(newsk);
1542         bh_unlock_sock(newsk);
1543         sock_put(newsk);
1544         goto exit;
1545 }
1546 EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
1547
1548 static struct sock *tcp_v4_hnd_req(struct sock *sk, struct sk_buff *skb)
1549 {
1550         struct tcphdr *th = tcp_hdr(skb);
1551         const struct iphdr *iph = ip_hdr(skb);
1552         struct sock *nsk;
1553         struct request_sock **prev;
1554         /* Find possible connection requests. */
1555         struct request_sock *req = inet_csk_search_req(sk, &prev, th->source,
1556                                                        iph->saddr, iph->daddr);
1557         if (req)
1558                 return tcp_check_req(sk, skb, req, prev);
1559
1560         nsk = inet_lookup_established(sock_net(sk), &tcp_hashinfo, iph->saddr,
1561                         th->source, iph->daddr, th->dest, inet_iif(skb));
1562
1563         if (nsk) {
1564                 if (nsk->sk_state != TCP_TIME_WAIT) {
1565                         bh_lock_sock(nsk);
1566                         return nsk;
1567                 }
1568                 inet_twsk_put(inet_twsk(nsk));
1569                 return NULL;
1570         }
1571
1572 #ifdef CONFIG_SYN_COOKIES
1573         if (!th->syn)
1574                 sk = cookie_v4_check(sk, skb, &(IPCB(skb)->opt));
1575 #endif
1576         return sk;
1577 }
1578
1579 static __sum16 tcp_v4_checksum_init(struct sk_buff *skb)
1580 {
1581         const struct iphdr *iph = ip_hdr(skb);
1582
1583         if (skb->ip_summed == CHECKSUM_COMPLETE) {
1584                 if (!tcp_v4_check(skb->len, iph->saddr,
1585                                   iph->daddr, skb->csum)) {
1586                         skb->ip_summed = CHECKSUM_UNNECESSARY;
1587                         return 0;
1588                 }
1589         }
1590
1591         skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
1592                                        skb->len, IPPROTO_TCP, 0);
1593
1594         if (skb->len <= 76) {
1595                 return __skb_checksum_complete(skb);
1596         }
1597         return 0;
1598 }
1599
1600
1601 /* The socket must have it's spinlock held when we get
1602  * here.
1603  *
1604  * We have a potential double-lock case here, so even when
1605  * doing backlog processing we use the BH locking scheme.
1606  * This is because we cannot sleep with the original spinlock
1607  * held.
1608  */
1609 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1610 {
1611         struct sock *rsk;
1612 #ifdef CONFIG_TCP_MD5SIG
1613         /*
1614          * We really want to reject the packet as early as possible
1615          * if:
1616          *  o We're expecting an MD5'd packet and this is no MD5 tcp option
1617          *  o There is an MD5 option and we're not expecting one
1618          */
1619         if (tcp_v4_inbound_md5_hash(sk, skb))
1620                 goto discard;
1621 #endif
1622
1623         if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1624                 sock_rps_save_rxhash(sk, skb);
1625                 if (tcp_rcv_established(sk, skb, tcp_hdr(skb), skb->len)) {
1626                         rsk = sk;
1627                         goto reset;
1628                 }
1629                 return 0;
1630         }
1631
1632         if (skb->len < tcp_hdrlen(skb) || tcp_checksum_complete(skb))
1633                 goto csum_err;
1634
1635         if (sk->sk_state == TCP_LISTEN) {
1636                 struct sock *nsk = tcp_v4_hnd_req(sk, skb);
1637                 if (!nsk)
1638                         goto discard;
1639
1640                 if (nsk != sk) {
1641                         sock_rps_save_rxhash(nsk, skb);
1642                         if (tcp_child_process(sk, nsk, skb)) {
1643                                 rsk = nsk;
1644                                 goto reset;
1645                         }
1646                         return 0;
1647                 }
1648         } else
1649                 sock_rps_save_rxhash(sk, skb);
1650
1651         if (tcp_rcv_state_process(sk, skb, tcp_hdr(skb), skb->len)) {
1652                 rsk = sk;
1653                 goto reset;
1654         }
1655         return 0;
1656
1657 reset:
1658         tcp_v4_send_reset(rsk, skb);
1659 discard:
1660         kfree_skb(skb);
1661         /* Be careful here. If this function gets more complicated and
1662          * gcc suffers from register pressure on the x86, sk (in %ebx)
1663          * might be destroyed here. This current version compiles correctly,
1664          * but you have been warned.
1665          */
1666         return 0;
1667
1668 csum_err:
1669         TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
1670         goto discard;
1671 }
1672 EXPORT_SYMBOL(tcp_v4_do_rcv);
1673
1674 /*
1675  *      From tcp_input.c
1676  */
1677
1678 int tcp_v4_rcv(struct sk_buff *skb)
1679 {
1680         const struct iphdr *iph;
1681         const struct tcphdr *th;
1682         struct sock *sk;
1683         int ret;
1684         struct net *net = dev_net(skb->dev);
1685
1686         if (skb->pkt_type != PACKET_HOST)
1687                 goto discard_it;
1688
1689         /* Count it even if it's bad */
1690         TCP_INC_STATS_BH(net, TCP_MIB_INSEGS);
1691
1692         if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
1693                 goto discard_it;
1694
1695         th = tcp_hdr(skb);
1696
1697         if (th->doff < sizeof(struct tcphdr) / 4)
1698                 goto bad_packet;
1699         if (!pskb_may_pull(skb, th->doff * 4))
1700                 goto discard_it;
1701
1702         /* An explanation is required here, I think.
1703          * Packet length and doff are validated by header prediction,
1704          * provided case of th->doff==0 is eliminated.
1705          * So, we defer the checks. */
1706         if (!skb_csum_unnecessary(skb) && tcp_v4_checksum_init(skb))
1707                 goto bad_packet;
1708
1709         th = tcp_hdr(skb);
1710         iph = ip_hdr(skb);
1711         TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1712         TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1713                                     skb->len - th->doff * 4);
1714         TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
1715         TCP_SKB_CB(skb)->when    = 0;
1716         TCP_SKB_CB(skb)->ip_dsfield = ipv4_get_dsfield(iph);
1717         TCP_SKB_CB(skb)->sacked  = 0;
1718
1719         sk = __inet_lookup_skb(&tcp_hashinfo, skb, th->source, th->dest);
1720         if (!sk)
1721                 goto no_tcp_socket;
1722
1723 process:
1724         if (sk->sk_state == TCP_TIME_WAIT)
1725                 goto do_time_wait;
1726
1727         if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
1728                 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
1729                 goto discard_and_relse;
1730         }
1731
1732         if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1733                 goto discard_and_relse;
1734         nf_reset(skb);
1735
1736         if (sk_filter(sk, skb))
1737                 goto discard_and_relse;
1738
1739         skb->dev = NULL;
1740
1741         bh_lock_sock_nested(sk);
1742         ret = 0;
1743         if (!sock_owned_by_user(sk)) {
1744 #ifdef CONFIG_NET_DMA
1745                 struct tcp_sock *tp = tcp_sk(sk);
1746                 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
1747                         tp->ucopy.dma_chan = net_dma_find_channel();
1748                 if (tp->ucopy.dma_chan)
1749                         ret = tcp_v4_do_rcv(sk, skb);
1750                 else
1751 #endif
1752                 {
1753                         if (!tcp_prequeue(sk, skb))
1754                                 ret = tcp_v4_do_rcv(sk, skb);
1755                 }
1756         } else if (unlikely(sk_add_backlog(sk, skb,
1757                                            sk->sk_rcvbuf + sk->sk_sndbuf))) {
1758                 bh_unlock_sock(sk);
1759                 NET_INC_STATS_BH(net, LINUX_MIB_TCPBACKLOGDROP);
1760                 goto discard_and_relse;
1761         }
1762         bh_unlock_sock(sk);
1763
1764         sock_put(sk);
1765
1766         return ret;
1767
1768 no_tcp_socket:
1769         if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1770                 goto discard_it;
1771
1772         if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1773 bad_packet:
1774                 TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
1775         } else {
1776                 tcp_v4_send_reset(NULL, skb);
1777         }
1778
1779 discard_it:
1780         /* Discard frame. */
1781         kfree_skb(skb);
1782         return 0;
1783
1784 discard_and_relse:
1785         sock_put(sk);
1786         goto discard_it;
1787
1788 do_time_wait:
1789         if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
1790                 inet_twsk_put(inet_twsk(sk));
1791                 goto discard_it;
1792         }
1793
1794         if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1795                 TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
1796                 inet_twsk_put(inet_twsk(sk));
1797                 goto discard_it;
1798         }
1799         switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
1800         case TCP_TW_SYN: {
1801                 struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev),
1802                                                         &tcp_hashinfo,
1803                                                         iph->daddr, th->dest,
1804                                                         inet_iif(skb));
1805                 if (sk2) {
1806                         inet_twsk_deschedule(inet_twsk(sk), &tcp_death_row);
1807                         inet_twsk_put(inet_twsk(sk));
1808                         sk = sk2;
1809                         goto process;
1810                 }
1811                 /* Fall through to ACK */
1812         }
1813         case TCP_TW_ACK:
1814                 tcp_v4_timewait_ack(sk, skb);
1815                 break;
1816         case TCP_TW_RST:
1817                 goto no_tcp_socket;
1818         case TCP_TW_SUCCESS:;
1819         }
1820         goto discard_it;
1821 }
1822
1823 struct inet_peer *tcp_v4_get_peer(struct sock *sk, bool *release_it)
1824 {
1825         struct rtable *rt = (struct rtable *) __sk_dst_get(sk);
1826         struct inet_sock *inet = inet_sk(sk);
1827         struct net *net = sock_net(sk);
1828         struct inet_peer *peer;
1829
1830         if (!rt ||
1831             inet->cork.fl.u.ip4.daddr != inet->inet_daddr) {
1832                 peer = inet_getpeer_v4(net, inet->inet_daddr, 1);
1833                 *release_it = true;
1834         } else {
1835                 if (!rt->peer)
1836                         rt_bind_peer(rt, inet->inet_daddr, 1);
1837                 peer = rt->peer;
1838                 *release_it = false;
1839         }
1840
1841         return peer;
1842 }
1843 EXPORT_SYMBOL(tcp_v4_get_peer);
1844
1845 void *tcp_v4_tw_get_peer(struct sock *sk)
1846 {
1847         const struct inet_timewait_sock *tw = inet_twsk(sk);
1848         struct net *net = sock_net(sk);
1849
1850         return inet_getpeer_v4(net, tw->tw_daddr, 1);
1851 }
1852 EXPORT_SYMBOL(tcp_v4_tw_get_peer);
1853
1854 static struct timewait_sock_ops tcp_timewait_sock_ops = {
1855         .twsk_obj_size  = sizeof(struct tcp_timewait_sock),
1856         .twsk_unique    = tcp_twsk_unique,
1857         .twsk_destructor= tcp_twsk_destructor,
1858         .twsk_getpeer   = tcp_v4_tw_get_peer,
1859 };
1860
1861 const struct inet_connection_sock_af_ops ipv4_specific = {
1862         .queue_xmit        = ip_queue_xmit,
1863         .send_check        = tcp_v4_send_check,
1864         .rebuild_header    = inet_sk_rebuild_header,
1865         .conn_request      = tcp_v4_conn_request,
1866         .syn_recv_sock     = tcp_v4_syn_recv_sock,
1867         .get_peer          = tcp_v4_get_peer,
1868         .net_header_len    = sizeof(struct iphdr),
1869         .setsockopt        = ip_setsockopt,
1870         .getsockopt        = ip_getsockopt,
1871         .addr2sockaddr     = inet_csk_addr2sockaddr,
1872         .sockaddr_len      = sizeof(struct sockaddr_in),
1873         .bind_conflict     = inet_csk_bind_conflict,
1874 #ifdef CONFIG_COMPAT
1875         .compat_setsockopt = compat_ip_setsockopt,
1876         .compat_getsockopt = compat_ip_getsockopt,
1877 #endif
1878 };
1879 EXPORT_SYMBOL(ipv4_specific);
1880
1881 #ifdef CONFIG_TCP_MD5SIG
1882 static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
1883         .md5_lookup             = tcp_v4_md5_lookup,
1884         .calc_md5_hash          = tcp_v4_md5_hash_skb,
1885         .md5_parse              = tcp_v4_parse_md5_keys,
1886 };
1887 #endif
1888
1889 /* NOTE: A lot of things set to zero explicitly by call to
1890  *       sk_alloc() so need not be done here.
1891  */
1892 static int tcp_v4_init_sock(struct sock *sk)
1893 {
1894         struct inet_connection_sock *icsk = inet_csk(sk);
1895
1896         tcp_init_sock(sk);
1897
1898         icsk->icsk_af_ops = &ipv4_specific;
1899
1900 #ifdef CONFIG_TCP_MD5SIG
1901         tcp_sk(sk)->af_specific = &tcp_sock_ipv4_specific;
1902 #endif
1903
1904         return 0;
1905 }
1906
1907 void tcp_v4_destroy_sock(struct sock *sk)
1908 {
1909         struct tcp_sock *tp = tcp_sk(sk);
1910
1911         tcp_clear_xmit_timers(sk);
1912
1913         tcp_cleanup_congestion_control(sk);
1914
1915         /* Cleanup up the write buffer. */
1916         tcp_write_queue_purge(sk);
1917
1918         /* Cleans up our, hopefully empty, out_of_order_queue. */
1919         __skb_queue_purge(&tp->out_of_order_queue);
1920
1921 #ifdef CONFIG_TCP_MD5SIG
1922         /* Clean up the MD5 key list, if any */
1923         if (tp->md5sig_info) {
1924                 tcp_clear_md5_list(sk);
1925                 kfree_rcu(tp->md5sig_info, rcu);
1926                 tp->md5sig_info = NULL;
1927         }
1928 #endif
1929
1930 #ifdef CONFIG_NET_DMA
1931         /* Cleans up our sk_async_wait_queue */
1932         __skb_queue_purge(&sk->sk_async_wait_queue);
1933 #endif
1934
1935         /* Clean prequeue, it must be empty really */
1936         __skb_queue_purge(&tp->ucopy.prequeue);
1937
1938         /* Clean up a referenced TCP bind bucket. */
1939         if (inet_csk(sk)->icsk_bind_hash)
1940                 inet_put_port(sk);
1941
1942         /*
1943          * If sendmsg cached page exists, toss it.
1944          */
1945         if (sk->sk_sndmsg_page) {
1946                 __free_page(sk->sk_sndmsg_page);
1947                 sk->sk_sndmsg_page = NULL;
1948         }
1949
1950         /* TCP Cookie Transactions */
1951         if (tp->cookie_values != NULL) {
1952                 kref_put(&tp->cookie_values->kref,
1953                          tcp_cookie_values_release);
1954                 tp->cookie_values = NULL;
1955         }
1956
1957         sk_sockets_allocated_dec(sk);
1958         sock_release_memcg(sk);
1959 }
1960 EXPORT_SYMBOL(tcp_v4_destroy_sock);
1961
1962 #ifdef CONFIG_PROC_FS
1963 /* Proc filesystem TCP sock list dumping. */
1964
1965 static inline struct inet_timewait_sock *tw_head(struct hlist_nulls_head *head)
1966 {
1967         return hlist_nulls_empty(head) ? NULL :
1968                 list_entry(head->first, struct inet_timewait_sock, tw_node);
1969 }
1970
1971 static inline struct inet_timewait_sock *tw_next(struct inet_timewait_sock *tw)
1972 {
1973         return !is_a_nulls(tw->tw_node.next) ?
1974                 hlist_nulls_entry(tw->tw_node.next, typeof(*tw), tw_node) : NULL;
1975 }
1976
1977 /*
1978  * Get next listener socket follow cur.  If cur is NULL, get first socket
1979  * starting from bucket given in st->bucket; when st->bucket is zero the
1980  * very first socket in the hash table is returned.
1981  */
1982 static void *listening_get_next(struct seq_file *seq, void *cur)
1983 {
1984         struct inet_connection_sock *icsk;
1985         struct hlist_nulls_node *node;
1986         struct sock *sk = cur;
1987         struct inet_listen_hashbucket *ilb;
1988         struct tcp_iter_state *st = seq->private;
1989         struct net *net = seq_file_net(seq);
1990
1991         if (!sk) {
1992                 ilb = &tcp_hashinfo.listening_hash[st->bucket];
1993                 spin_lock_bh(&ilb->lock);
1994                 sk = sk_nulls_head(&ilb->head);
1995                 st->offset = 0;
1996                 goto get_sk;
1997         }
1998         ilb = &tcp_hashinfo.listening_hash[st->bucket];
1999         ++st->num;
2000         ++st->offset;
2001
2002         if (st->state == TCP_SEQ_STATE_OPENREQ) {
2003                 struct request_sock *req = cur;
2004
2005                 icsk = inet_csk(st->syn_wait_sk);
2006                 req = req->dl_next;
2007                 while (1) {
2008                         while (req) {
2009                                 if (req->rsk_ops->family == st->family) {
2010                                         cur = req;
2011                                         goto out;
2012                                 }
2013                                 req = req->dl_next;
2014                         }
2015                         if (++st->sbucket >= icsk->icsk_accept_queue.listen_opt->nr_table_entries)
2016                                 break;
2017 get_req:
2018                         req = icsk->icsk_accept_queue.listen_opt->syn_table[st->sbucket];
2019                 }
2020                 sk        = sk_nulls_next(st->syn_wait_sk);
2021                 st->state = TCP_SEQ_STATE_LISTENING;
2022                 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2023         } else {
2024                 icsk = inet_csk(sk);
2025                 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2026                 if (reqsk_queue_len(&icsk->icsk_accept_queue))
2027                         goto start_req;
2028                 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2029                 sk = sk_nulls_next(sk);
2030         }
2031 get_sk:
2032         sk_nulls_for_each_from(sk, node) {
2033                 if (!net_eq(sock_net(sk), net))
2034                         continue;
2035                 if (sk->sk_family == st->family) {
2036                         cur = sk;
2037                         goto out;
2038                 }
2039                 icsk = inet_csk(sk);
2040                 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2041                 if (reqsk_queue_len(&icsk->icsk_accept_queue)) {
2042 start_req:
2043                         st->uid         = sock_i_uid(sk);
2044                         st->syn_wait_sk = sk;
2045                         st->state       = TCP_SEQ_STATE_OPENREQ;
2046                         st->sbucket     = 0;
2047                         goto get_req;
2048                 }
2049                 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2050         }
2051         spin_unlock_bh(&ilb->lock);
2052         st->offset = 0;
2053         if (++st->bucket < INET_LHTABLE_SIZE) {
2054                 ilb = &tcp_hashinfo.listening_hash[st->bucket];
2055                 spin_lock_bh(&ilb->lock);
2056                 sk = sk_nulls_head(&ilb->head);
2057                 goto get_sk;
2058         }
2059         cur = NULL;
2060 out:
2061         return cur;
2062 }
2063
2064 static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
2065 {
2066         struct tcp_iter_state *st = seq->private;
2067         void *rc;
2068
2069         st->bucket = 0;
2070         st->offset = 0;
2071         rc = listening_get_next(seq, NULL);
2072
2073         while (rc && *pos) {
2074                 rc = listening_get_next(seq, rc);
2075                 --*pos;
2076         }
2077         return rc;
2078 }
2079
2080 static inline bool empty_bucket(struct tcp_iter_state *st)
2081 {
2082         return hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].chain) &&
2083                 hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].twchain);
2084 }
2085
2086 /*
2087  * Get first established socket starting from bucket given in st->bucket.
2088  * If st->bucket is zero, the very first socket in the hash is returned.
2089  */
2090 static void *established_get_first(struct seq_file *seq)
2091 {
2092         struct tcp_iter_state *st = seq->private;
2093         struct net *net = seq_file_net(seq);
2094         void *rc = NULL;
2095
2096         st->offset = 0;
2097         for (; st->bucket <= tcp_hashinfo.ehash_mask; ++st->bucket) {
2098                 struct sock *sk;
2099                 struct hlist_nulls_node *node;
2100                 struct inet_timewait_sock *tw;
2101                 spinlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket);
2102
2103                 /* Lockless fast path for the common case of empty buckets */
2104                 if (empty_bucket(st))
2105                         continue;
2106
2107                 spin_lock_bh(lock);
2108                 sk_nulls_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) {
2109                         if (sk->sk_family != st->family ||
2110                             !net_eq(sock_net(sk), net)) {
2111                                 continue;
2112                         }
2113                         rc = sk;
2114                         goto out;
2115                 }
2116                 st->state = TCP_SEQ_STATE_TIME_WAIT;
2117                 inet_twsk_for_each(tw, node,
2118                                    &tcp_hashinfo.ehash[st->bucket].twchain) {
2119                         if (tw->tw_family != st->family ||
2120                             !net_eq(twsk_net(tw), net)) {
2121                                 continue;
2122                         }
2123                         rc = tw;
2124                         goto out;
2125                 }
2126                 spin_unlock_bh(lock);
2127                 st->state = TCP_SEQ_STATE_ESTABLISHED;
2128         }
2129 out:
2130         return rc;
2131 }
2132
2133 static void *established_get_next(struct seq_file *seq, void *cur)
2134 {
2135         struct sock *sk = cur;
2136         struct inet_timewait_sock *tw;
2137         struct hlist_nulls_node *node;
2138         struct tcp_iter_state *st = seq->private;
2139         struct net *net = seq_file_net(seq);
2140
2141         ++st->num;
2142         ++st->offset;
2143
2144         if (st->state == TCP_SEQ_STATE_TIME_WAIT) {
2145                 tw = cur;
2146                 tw = tw_next(tw);
2147 get_tw:
2148                 while (tw && (tw->tw_family != st->family || !net_eq(twsk_net(tw), net))) {
2149                         tw = tw_next(tw);
2150                 }
2151                 if (tw) {
2152                         cur = tw;
2153                         goto out;
2154                 }
2155                 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2156                 st->state = TCP_SEQ_STATE_ESTABLISHED;
2157
2158                 /* Look for next non empty bucket */
2159                 st->offset = 0;
2160                 while (++st->bucket <= tcp_hashinfo.ehash_mask &&
2161                                 empty_bucket(st))
2162                         ;
2163                 if (st->bucket > tcp_hashinfo.ehash_mask)
2164                         return NULL;
2165
2166                 spin_lock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2167                 sk = sk_nulls_head(&tcp_hashinfo.ehash[st->bucket].chain);
2168         } else
2169                 sk = sk_nulls_next(sk);
2170
2171         sk_nulls_for_each_from(sk, node) {
2172                 if (sk->sk_family == st->family && net_eq(sock_net(sk), net))
2173                         goto found;
2174         }
2175
2176         st->state = TCP_SEQ_STATE_TIME_WAIT;
2177         tw = tw_head(&tcp_hashinfo.ehash[st->bucket].twchain);
2178         goto get_tw;
2179 found:
2180         cur = sk;
2181 out:
2182         return cur;
2183 }
2184
2185 static void *established_get_idx(struct seq_file *seq, loff_t pos)
2186 {
2187         struct tcp_iter_state *st = seq->private;
2188         void *rc;
2189
2190         st->bucket = 0;
2191         rc = established_get_first(seq);
2192
2193         while (rc && pos) {
2194                 rc = established_get_next(seq, rc);
2195                 --pos;
2196         }
2197         return rc;
2198 }
2199
2200 static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
2201 {
2202         void *rc;
2203         struct tcp_iter_state *st = seq->private;
2204
2205         st->state = TCP_SEQ_STATE_LISTENING;
2206         rc        = listening_get_idx(seq, &pos);
2207
2208         if (!rc) {
2209                 st->state = TCP_SEQ_STATE_ESTABLISHED;
2210                 rc        = established_get_idx(seq, pos);
2211         }
2212
2213         return rc;
2214 }
2215
2216 static void *tcp_seek_last_pos(struct seq_file *seq)
2217 {
2218         struct tcp_iter_state *st = seq->private;
2219         int offset = st->offset;
2220         int orig_num = st->num;
2221         void *rc = NULL;
2222
2223         switch (st->state) {
2224         case TCP_SEQ_STATE_OPENREQ:
2225         case TCP_SEQ_STATE_LISTENING:
2226                 if (st->bucket >= INET_LHTABLE_SIZE)
2227                         break;
2228                 st->state = TCP_SEQ_STATE_LISTENING;
2229                 rc = listening_get_next(seq, NULL);
2230                 while (offset-- && rc)
2231                         rc = listening_get_next(seq, rc);
2232                 if (rc)
2233                         break;
2234                 st->bucket = 0;
2235                 /* Fallthrough */
2236         case TCP_SEQ_STATE_ESTABLISHED:
2237         case TCP_SEQ_STATE_TIME_WAIT:
2238                 st->state = TCP_SEQ_STATE_ESTABLISHED;
2239                 if (st->bucket > tcp_hashinfo.ehash_mask)
2240                         break;
2241                 rc = established_get_first(seq);
2242                 while (offset-- && rc)
2243                         rc = established_get_next(seq, rc);
2244         }
2245
2246         st->num = orig_num;
2247
2248         return rc;
2249 }
2250
2251 static void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2252 {
2253         struct tcp_iter_state *st = seq->private;
2254         void *rc;
2255
2256         if (*pos && *pos == st->last_pos) {
2257                 rc = tcp_seek_last_pos(seq);
2258                 if (rc)
2259                         goto out;
2260         }
2261
2262         st->state = TCP_SEQ_STATE_LISTENING;
2263         st->num = 0;
2264         st->bucket = 0;
2265         st->offset = 0;
2266         rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2267
2268 out:
2269         st->last_pos = *pos;
2270         return rc;
2271 }
2272
2273 static void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2274 {
2275         struct tcp_iter_state *st = seq->private;
2276         void *rc = NULL;
2277
2278         if (v == SEQ_START_TOKEN) {
2279                 rc = tcp_get_idx(seq, 0);
2280                 goto out;
2281         }
2282
2283         switch (st->state) {
2284         case TCP_SEQ_STATE_OPENREQ:
2285         case TCP_SEQ_STATE_LISTENING:
2286                 rc = listening_get_next(seq, v);
2287                 if (!rc) {
2288                         st->state = TCP_SEQ_STATE_ESTABLISHED;
2289                         st->bucket = 0;
2290                         st->offset = 0;
2291                         rc        = established_get_first(seq);
2292                 }
2293                 break;
2294         case TCP_SEQ_STATE_ESTABLISHED:
2295         case TCP_SEQ_STATE_TIME_WAIT:
2296                 rc = established_get_next(seq, v);
2297                 break;
2298         }
2299 out:
2300         ++*pos;
2301         st->last_pos = *pos;
2302         return rc;
2303 }
2304
2305 static void tcp_seq_stop(struct seq_file *seq, void *v)
2306 {
2307         struct tcp_iter_state *st = seq->private;
2308
2309         switch (st->state) {
2310         case TCP_SEQ_STATE_OPENREQ:
2311                 if (v) {
2312                         struct inet_connection_sock *icsk = inet_csk(st->syn_wait_sk);
2313                         read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2314                 }
2315         case TCP_SEQ_STATE_LISTENING:
2316                 if (v != SEQ_START_TOKEN)
2317                         spin_unlock_bh(&tcp_hashinfo.listening_hash[st->bucket].lock);
2318                 break;
2319         case TCP_SEQ_STATE_TIME_WAIT:
2320         case TCP_SEQ_STATE_ESTABLISHED:
2321                 if (v)
2322                         spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2323                 break;
2324         }
2325 }
2326
2327 int tcp_seq_open(struct inode *inode, struct file *file)
2328 {
2329         struct tcp_seq_afinfo *afinfo = PDE(inode)->data;
2330         struct tcp_iter_state *s;
2331         int err;
2332
2333         err = seq_open_net(inode, file, &afinfo->seq_ops,
2334                           sizeof(struct tcp_iter_state));
2335         if (err < 0)
2336                 return err;
2337
2338         s = ((struct seq_file *)file->private_data)->private;
2339         s->family               = afinfo->family;
2340         s->last_pos             = 0;
2341         return 0;
2342 }
2343 EXPORT_SYMBOL(tcp_seq_open);
2344
2345 int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo)
2346 {
2347         int rc = 0;
2348         struct proc_dir_entry *p;
2349
2350         afinfo->seq_ops.start           = tcp_seq_start;
2351         afinfo->seq_ops.next            = tcp_seq_next;
2352         afinfo->seq_ops.stop            = tcp_seq_stop;
2353
2354         p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2355                              afinfo->seq_fops, afinfo);
2356         if (!p)
2357                 rc = -ENOMEM;
2358         return rc;
2359 }
2360 EXPORT_SYMBOL(tcp_proc_register);
2361
2362 void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo)
2363 {
2364         proc_net_remove(net, afinfo->name);
2365 }
2366 EXPORT_SYMBOL(tcp_proc_unregister);
2367
2368 static void get_openreq4(const struct sock *sk, const struct request_sock *req,
2369                          struct seq_file *f, int i, int uid, int *len)
2370 {
2371         const struct inet_request_sock *ireq = inet_rsk(req);
2372         int ttd = req->expires - jiffies;
2373
2374         seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2375                 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %u %d %pK%n",
2376                 i,
2377                 ireq->loc_addr,
2378                 ntohs(inet_sk(sk)->inet_sport),
2379                 ireq->rmt_addr,
2380                 ntohs(ireq->rmt_port),
2381                 TCP_SYN_RECV,
2382                 0, 0, /* could print option size, but that is af dependent. */
2383                 1,    /* timers active (only the expire timer) */
2384                 jiffies_to_clock_t(ttd),
2385                 req->retrans,
2386                 uid,
2387                 0,  /* non standard timer */
2388                 0, /* open_requests have no inode */
2389                 atomic_read(&sk->sk_refcnt),
2390                 req,
2391                 len);
2392 }
2393
2394 static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i, int *len)
2395 {
2396         int timer_active;
2397         unsigned long timer_expires;
2398         const struct tcp_sock *tp = tcp_sk(sk);
2399         const struct inet_connection_sock *icsk = inet_csk(sk);
2400         const struct inet_sock *inet = inet_sk(sk);
2401         __be32 dest = inet->inet_daddr;
2402         __be32 src = inet->inet_rcv_saddr;
2403         __u16 destp = ntohs(inet->inet_dport);
2404         __u16 srcp = ntohs(inet->inet_sport);
2405         int rx_queue;
2406
2407         if (icsk->icsk_pending == ICSK_TIME_RETRANS) {
2408                 timer_active    = 1;
2409                 timer_expires   = icsk->icsk_timeout;
2410         } else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
2411                 timer_active    = 4;
2412                 timer_expires   = icsk->icsk_timeout;
2413         } else if (timer_pending(&sk->sk_timer)) {
2414                 timer_active    = 2;
2415                 timer_expires   = sk->sk_timer.expires;
2416         } else {
2417                 timer_active    = 0;
2418                 timer_expires = jiffies;
2419         }
2420
2421         if (sk->sk_state == TCP_LISTEN)
2422                 rx_queue = sk->sk_ack_backlog;
2423         else
2424                 /*
2425                  * because we dont lock socket, we might find a transient negative value
2426                  */
2427                 rx_queue = max_t(int, tp->rcv_nxt - tp->copied_seq, 0);
2428
2429         seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2430                         "%08X %5d %8d %lu %d %pK %lu %lu %u %u %d%n",
2431                 i, src, srcp, dest, destp, sk->sk_state,
2432                 tp->write_seq - tp->snd_una,
2433                 rx_queue,
2434                 timer_active,
2435                 jiffies_to_clock_t(timer_expires - jiffies),
2436                 icsk->icsk_retransmits,
2437                 sock_i_uid(sk),
2438                 icsk->icsk_probes_out,
2439                 sock_i_ino(sk),
2440                 atomic_read(&sk->sk_refcnt), sk,
2441                 jiffies_to_clock_t(icsk->icsk_rto),
2442                 jiffies_to_clock_t(icsk->icsk_ack.ato),
2443                 (icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong,
2444                 tp->snd_cwnd,
2445                 tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh,
2446                 len);
2447 }
2448
2449 static void get_timewait4_sock(const struct inet_timewait_sock *tw,
2450                                struct seq_file *f, int i, int *len)
2451 {
2452         __be32 dest, src;
2453         __u16 destp, srcp;
2454         int ttd = tw->tw_ttd - jiffies;
2455
2456         if (ttd < 0)
2457                 ttd = 0;
2458
2459         dest  = tw->tw_daddr;
2460         src   = tw->tw_rcv_saddr;
2461         destp = ntohs(tw->tw_dport);
2462         srcp  = ntohs(tw->tw_sport);
2463
2464         seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2465                 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK%n",
2466                 i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
2467                 3, jiffies_to_clock_t(ttd), 0, 0, 0, 0,
2468                 atomic_read(&tw->tw_refcnt), tw, len);
2469 }
2470
2471 #define TMPSZ 150
2472
2473 static int tcp4_seq_show(struct seq_file *seq, void *v)
2474 {
2475         struct tcp_iter_state *st;
2476         int len;
2477
2478         if (v == SEQ_START_TOKEN) {
2479                 seq_printf(seq, "%-*s\n", TMPSZ - 1,
2480                            "  sl  local_address rem_address   st tx_queue "
2481                            "rx_queue tr tm->when retrnsmt   uid  timeout "
2482                            "inode");
2483                 goto out;
2484         }
2485         st = seq->private;
2486
2487         switch (st->state) {
2488         case TCP_SEQ_STATE_LISTENING:
2489         case TCP_SEQ_STATE_ESTABLISHED:
2490                 get_tcp4_sock(v, seq, st->num, &len);
2491                 break;
2492         case TCP_SEQ_STATE_OPENREQ:
2493                 get_openreq4(st->syn_wait_sk, v, seq, st->num, st->uid, &len);
2494                 break;
2495         case TCP_SEQ_STATE_TIME_WAIT:
2496                 get_timewait4_sock(v, seq, st->num, &len);
2497                 break;
2498         }
2499         seq_printf(seq, "%*s\n", TMPSZ - 1 - len, "");
2500 out:
2501         return 0;
2502 }
2503
2504 static const struct file_operations tcp_afinfo_seq_fops = {
2505         .owner   = THIS_MODULE,
2506         .open    = tcp_seq_open,
2507         .read    = seq_read,
2508         .llseek  = seq_lseek,
2509         .release = seq_release_net
2510 };
2511
2512 static struct tcp_seq_afinfo tcp4_seq_afinfo = {
2513         .name           = "tcp",
2514         .family         = AF_INET,
2515         .seq_fops       = &tcp_afinfo_seq_fops,
2516         .seq_ops        = {
2517                 .show           = tcp4_seq_show,
2518         },
2519 };
2520
2521 static int __net_init tcp4_proc_init_net(struct net *net)
2522 {
2523         return tcp_proc_register(net, &tcp4_seq_afinfo);
2524 }
2525
2526 static void __net_exit tcp4_proc_exit_net(struct net *net)
2527 {
2528         tcp_proc_unregister(net, &tcp4_seq_afinfo);
2529 }
2530
2531 static struct pernet_operations tcp4_net_ops = {
2532         .init = tcp4_proc_init_net,
2533         .exit = tcp4_proc_exit_net,
2534 };
2535
2536 int __init tcp4_proc_init(void)
2537 {
2538         return register_pernet_subsys(&tcp4_net_ops);
2539 }
2540
2541 void tcp4_proc_exit(void)
2542 {
2543         unregister_pernet_subsys(&tcp4_net_ops);
2544 }
2545 #endif /* CONFIG_PROC_FS */
2546
2547 struct sk_buff **tcp4_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2548 {
2549         const struct iphdr *iph = skb_gro_network_header(skb);
2550
2551         switch (skb->ip_summed) {
2552         case CHECKSUM_COMPLETE:
2553                 if (!tcp_v4_check(skb_gro_len(skb), iph->saddr, iph->daddr,
2554                                   skb->csum)) {
2555                         skb->ip_summed = CHECKSUM_UNNECESSARY;
2556                         break;
2557                 }
2558
2559                 /* fall through */
2560         case CHECKSUM_NONE:
2561                 NAPI_GRO_CB(skb)->flush = 1;
2562                 return NULL;
2563         }
2564
2565         return tcp_gro_receive(head, skb);
2566 }
2567
2568 int tcp4_gro_complete(struct sk_buff *skb)
2569 {
2570         const struct iphdr *iph = ip_hdr(skb);
2571         struct tcphdr *th = tcp_hdr(skb);
2572
2573         th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
2574                                   iph->saddr, iph->daddr, 0);
2575         skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
2576
2577         return tcp_gro_complete(skb);
2578 }
2579
2580 struct proto tcp_prot = {
2581         .name                   = "TCP",
2582         .owner                  = THIS_MODULE,
2583         .close                  = tcp_close,
2584         .connect                = tcp_v4_connect,
2585         .disconnect             = tcp_disconnect,
2586         .accept                 = inet_csk_accept,
2587         .ioctl                  = tcp_ioctl,
2588         .init                   = tcp_v4_init_sock,
2589         .destroy                = tcp_v4_destroy_sock,
2590         .shutdown               = tcp_shutdown,
2591         .setsockopt             = tcp_setsockopt,
2592         .getsockopt             = tcp_getsockopt,
2593         .recvmsg                = tcp_recvmsg,
2594         .sendmsg                = tcp_sendmsg,
2595         .sendpage               = tcp_sendpage,
2596         .backlog_rcv            = tcp_v4_do_rcv,
2597         .hash                   = inet_hash,
2598         .unhash                 = inet_unhash,
2599         .get_port               = inet_csk_get_port,
2600         .enter_memory_pressure  = tcp_enter_memory_pressure,
2601         .sockets_allocated      = &tcp_sockets_allocated,
2602         .orphan_count           = &tcp_orphan_count,
2603         .memory_allocated       = &tcp_memory_allocated,
2604         .memory_pressure        = &tcp_memory_pressure,
2605         .sysctl_wmem            = sysctl_tcp_wmem,
2606         .sysctl_rmem            = sysctl_tcp_rmem,
2607         .max_header             = MAX_TCP_HEADER,
2608         .obj_size               = sizeof(struct tcp_sock),
2609         .slab_flags             = SLAB_DESTROY_BY_RCU,
2610         .twsk_prot              = &tcp_timewait_sock_ops,
2611         .rsk_prot               = &tcp_request_sock_ops,
2612         .h.hashinfo             = &tcp_hashinfo,
2613         .no_autobind            = true,
2614 #ifdef CONFIG_COMPAT
2615         .compat_setsockopt      = compat_tcp_setsockopt,
2616         .compat_getsockopt      = compat_tcp_getsockopt,
2617 #endif
2618 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
2619         .init_cgroup            = tcp_init_cgroup,
2620         .destroy_cgroup         = tcp_destroy_cgroup,
2621         .proto_cgroup           = tcp_proto_cgroup,
2622 #endif
2623 };
2624 EXPORT_SYMBOL(tcp_prot);
2625
2626 static int __net_init tcp_sk_init(struct net *net)
2627 {
2628         return inet_ctl_sock_create(&net->ipv4.tcp_sock,
2629                                     PF_INET, SOCK_RAW, IPPROTO_TCP, net);
2630 }
2631
2632 static void __net_exit tcp_sk_exit(struct net *net)
2633 {
2634         inet_ctl_sock_destroy(net->ipv4.tcp_sock);
2635 }
2636
2637 static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list)
2638 {
2639         inet_twsk_purge(&tcp_hashinfo, &tcp_death_row, AF_INET);
2640 }
2641
2642 static struct pernet_operations __net_initdata tcp_sk_ops = {
2643        .init       = tcp_sk_init,
2644        .exit       = tcp_sk_exit,
2645        .exit_batch = tcp_sk_exit_batch,
2646 };
2647
2648 void __init tcp_v4_init(void)
2649 {
2650         inet_hashinfo_init(&tcp_hashinfo);
2651         if (register_pernet_subsys(&tcp_sk_ops))
2652                 panic("Failed to create the TCP control socket.\n");
2653 }