Merge remote-tracking branch 'stable/linux-3.0.y' into develop-3.0-jb
[firefly-linux-kernel-4.4.55.git] / net / ipv4 / tcp_input.c
1 /*
2  * INET         An implementation of the TCP/IP protocol suite for the LINUX
3  *              operating system.  INET is implemented using the  BSD Socket
4  *              interface as the means of communication with the user level.
5  *
6  *              Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:     Ross Biro
9  *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *              Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *              Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *              Florian La Roche, <flla@stud.uni-sb.de>
13  *              Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *              Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *              Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *              Matthew Dillon, <dillon@apollo.west.oic.com>
17  *              Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *              Jorge Cwik, <jorge@laser.satlink.net>
19  */
20
21 /*
22  * Changes:
23  *              Pedro Roque     :       Fast Retransmit/Recovery.
24  *                                      Two receive queues.
25  *                                      Retransmit queue handled by TCP.
26  *                                      Better retransmit timer handling.
27  *                                      New congestion avoidance.
28  *                                      Header prediction.
29  *                                      Variable renaming.
30  *
31  *              Eric            :       Fast Retransmit.
32  *              Randy Scott     :       MSS option defines.
33  *              Eric Schenk     :       Fixes to slow start algorithm.
34  *              Eric Schenk     :       Yet another double ACK bug.
35  *              Eric Schenk     :       Delayed ACK bug fixes.
36  *              Eric Schenk     :       Floyd style fast retrans war avoidance.
37  *              David S. Miller :       Don't allow zero congestion window.
38  *              Eric Schenk     :       Fix retransmitter so that it sends
39  *                                      next packet on ack of previous packet.
40  *              Andi Kleen      :       Moved open_request checking here
41  *                                      and process RSTs for open_requests.
42  *              Andi Kleen      :       Better prune_queue, and other fixes.
43  *              Andrey Savochkin:       Fix RTT measurements in the presence of
44  *                                      timestamps.
45  *              Andrey Savochkin:       Check sequence numbers correctly when
46  *                                      removing SACKs due to in sequence incoming
47  *                                      data segments.
48  *              Andi Kleen:             Make sure we never ack data there is not
49  *                                      enough room for. Also make this condition
50  *                                      a fatal error if it might still happen.
51  *              Andi Kleen:             Add tcp_measure_rcv_mss to make
52  *                                      connections with MSS<min(MTU,ann. MSS)
53  *                                      work without delayed acks.
54  *              Andi Kleen:             Process packets with PSH set in the
55  *                                      fast path.
56  *              J Hadi Salim:           ECN support
57  *              Andrei Gurtov,
58  *              Pasi Sarolahti,
59  *              Panu Kuhlberg:          Experimental audit of TCP (re)transmission
60  *                                      engine. Lots of bugs are found.
61  *              Pasi Sarolahti:         F-RTO for dealing with spurious RTOs
62  */
63
64 #include <linux/mm.h>
65 #include <linux/slab.h>
66 #include <linux/module.h>
67 #include <linux/sysctl.h>
68 #include <linux/kernel.h>
69 #include <net/dst.h>
70 #include <net/tcp.h>
71 #include <net/inet_common.h>
72 #include <linux/ipsec.h>
73 #include <asm/unaligned.h>
74 #include <net/netdma.h>
75
76 int sysctl_tcp_timestamps __read_mostly = 1;
77 int sysctl_tcp_window_scaling __read_mostly = 1;
78 int sysctl_tcp_sack __read_mostly = 1;
79 int sysctl_tcp_fack __read_mostly = 1;
80 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
81 EXPORT_SYMBOL(sysctl_tcp_reordering);
82 int sysctl_tcp_ecn __read_mostly = 2;
83 EXPORT_SYMBOL(sysctl_tcp_ecn);
84 int sysctl_tcp_dsack __read_mostly = 1;
85 int sysctl_tcp_app_win __read_mostly = 31;
86 int sysctl_tcp_adv_win_scale __read_mostly = 1;
87 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
88
89 int sysctl_tcp_stdurg __read_mostly;
90 int sysctl_tcp_rfc1337 __read_mostly;
91 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
92 int sysctl_tcp_frto __read_mostly = 2;
93 int sysctl_tcp_frto_response __read_mostly;
94 int sysctl_tcp_nometrics_save __read_mostly;
95
96 int sysctl_tcp_thin_dupack __read_mostly;
97
98 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
99 int sysctl_tcp_abc __read_mostly;
100
101 #define FLAG_DATA               0x01 /* Incoming frame contained data.          */
102 #define FLAG_WIN_UPDATE         0x02 /* Incoming ACK was a window update.       */
103 #define FLAG_DATA_ACKED         0x04 /* This ACK acknowledged new data.         */
104 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted.  */
105 #define FLAG_SYN_ACKED          0x10 /* This ACK acknowledged SYN.              */
106 #define FLAG_DATA_SACKED        0x20 /* New SACK.                               */
107 #define FLAG_ECE                0x40 /* ECE in this ACK                         */
108 #define FLAG_DATA_LOST          0x80 /* SACK detected data lossage.             */
109 #define FLAG_SLOWPATH           0x100 /* Do not skip RFC checks for window update.*/
110 #define FLAG_ONLY_ORIG_SACKED   0x200 /* SACKs only non-rexmit sent before RTO */
111 #define FLAG_SND_UNA_ADVANCED   0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
112 #define FLAG_DSACKING_ACK       0x800 /* SACK blocks contained D-SACK info */
113 #define FLAG_NONHEAD_RETRANS_ACKED      0x1000 /* Non-head rexmitted data was ACKed */
114 #define FLAG_SACK_RENEGING      0x2000 /* snd_una advanced to a sacked seq */
115
116 #define FLAG_ACKED              (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
117 #define FLAG_NOT_DUP            (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
118 #define FLAG_CA_ALERT           (FLAG_DATA_SACKED|FLAG_ECE)
119 #define FLAG_FORWARD_PROGRESS   (FLAG_ACKED|FLAG_DATA_SACKED)
120 #define FLAG_ANY_PROGRESS       (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
121
122 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
123 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
124
125 /* Adapt the MSS value used to make delayed ack decision to the
126  * real world.
127  */
128 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
129 {
130         struct inet_connection_sock *icsk = inet_csk(sk);
131         const unsigned int lss = icsk->icsk_ack.last_seg_size;
132         unsigned int len;
133
134         icsk->icsk_ack.last_seg_size = 0;
135
136         /* skb->len may jitter because of SACKs, even if peer
137          * sends good full-sized frames.
138          */
139         len = skb_shinfo(skb)->gso_size ? : skb->len;
140         if (len >= icsk->icsk_ack.rcv_mss) {
141                 icsk->icsk_ack.rcv_mss = len;
142         } else {
143                 /* Otherwise, we make more careful check taking into account,
144                  * that SACKs block is variable.
145                  *
146                  * "len" is invariant segment length, including TCP header.
147                  */
148                 len += skb->data - skb_transport_header(skb);
149                 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
150                     /* If PSH is not set, packet should be
151                      * full sized, provided peer TCP is not badly broken.
152                      * This observation (if it is correct 8)) allows
153                      * to handle super-low mtu links fairly.
154                      */
155                     (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
156                      !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
157                         /* Subtract also invariant (if peer is RFC compliant),
158                          * tcp header plus fixed timestamp option length.
159                          * Resulting "len" is MSS free of SACK jitter.
160                          */
161                         len -= tcp_sk(sk)->tcp_header_len;
162                         icsk->icsk_ack.last_seg_size = len;
163                         if (len == lss) {
164                                 icsk->icsk_ack.rcv_mss = len;
165                                 return;
166                         }
167                 }
168                 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
169                         icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
170                 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
171         }
172 }
173
174 static void tcp_incr_quickack(struct sock *sk)
175 {
176         struct inet_connection_sock *icsk = inet_csk(sk);
177         unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
178
179         if (quickacks == 0)
180                 quickacks = 2;
181         if (quickacks > icsk->icsk_ack.quick)
182                 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
183 }
184
185 static void tcp_enter_quickack_mode(struct sock *sk)
186 {
187         struct inet_connection_sock *icsk = inet_csk(sk);
188         tcp_incr_quickack(sk);
189         icsk->icsk_ack.pingpong = 0;
190         icsk->icsk_ack.ato = TCP_ATO_MIN;
191 }
192
193 /* Send ACKs quickly, if "quick" count is not exhausted
194  * and the session is not interactive.
195  */
196
197 static inline int tcp_in_quickack_mode(const struct sock *sk)
198 {
199         const struct inet_connection_sock *icsk = inet_csk(sk);
200         return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
201 }
202
203 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
204 {
205         if (tp->ecn_flags & TCP_ECN_OK)
206                 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
207 }
208
209 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb)
210 {
211         if (tcp_hdr(skb)->cwr)
212                 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
213 }
214
215 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
216 {
217         tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
218 }
219
220 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb)
221 {
222         if (tp->ecn_flags & TCP_ECN_OK) {
223                 if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags))
224                         tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
225                 /* Funny extension: if ECT is not set on a segment,
226                  * it is surely retransmit. It is not in ECN RFC,
227                  * but Linux follows this rule. */
228                 else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags)))
229                         tcp_enter_quickack_mode((struct sock *)tp);
230         }
231 }
232
233 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th)
234 {
235         if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
236                 tp->ecn_flags &= ~TCP_ECN_OK;
237 }
238
239 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th)
240 {
241         if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
242                 tp->ecn_flags &= ~TCP_ECN_OK;
243 }
244
245 static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th)
246 {
247         if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
248                 return 1;
249         return 0;
250 }
251
252 /* Buffer size and advertised window tuning.
253  *
254  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
255  */
256
257 static void tcp_fixup_sndbuf(struct sock *sk)
258 {
259         int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
260                      sizeof(struct sk_buff);
261
262         if (sk->sk_sndbuf < 3 * sndmem) {
263                 sk->sk_sndbuf = 3 * sndmem;
264                 if (sk->sk_sndbuf > sysctl_tcp_wmem[2])
265                         sk->sk_sndbuf = sysctl_tcp_wmem[2];
266         }
267 }
268
269 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
270  *
271  * All tcp_full_space() is split to two parts: "network" buffer, allocated
272  * forward and advertised in receiver window (tp->rcv_wnd) and
273  * "application buffer", required to isolate scheduling/application
274  * latencies from network.
275  * window_clamp is maximal advertised window. It can be less than
276  * tcp_full_space(), in this case tcp_full_space() - window_clamp
277  * is reserved for "application" buffer. The less window_clamp is
278  * the smoother our behaviour from viewpoint of network, but the lower
279  * throughput and the higher sensitivity of the connection to losses. 8)
280  *
281  * rcv_ssthresh is more strict window_clamp used at "slow start"
282  * phase to predict further behaviour of this connection.
283  * It is used for two goals:
284  * - to enforce header prediction at sender, even when application
285  *   requires some significant "application buffer". It is check #1.
286  * - to prevent pruning of receive queue because of misprediction
287  *   of receiver window. Check #2.
288  *
289  * The scheme does not work when sender sends good segments opening
290  * window and then starts to feed us spaghetti. But it should work
291  * in common situations. Otherwise, we have to rely on queue collapsing.
292  */
293
294 /* Slow part of check#2. */
295 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
296 {
297         struct tcp_sock *tp = tcp_sk(sk);
298         /* Optimize this! */
299         int truesize = tcp_win_from_space(skb->truesize) >> 1;
300         int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
301
302         while (tp->rcv_ssthresh <= window) {
303                 if (truesize <= skb->len)
304                         return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
305
306                 truesize >>= 1;
307                 window >>= 1;
308         }
309         return 0;
310 }
311
312 static void tcp_grow_window(struct sock *sk, struct sk_buff *skb)
313 {
314         struct tcp_sock *tp = tcp_sk(sk);
315
316         /* Check #1 */
317         if (tp->rcv_ssthresh < tp->window_clamp &&
318             (int)tp->rcv_ssthresh < tcp_space(sk) &&
319             !tcp_memory_pressure) {
320                 int incr;
321
322                 /* Check #2. Increase window, if skb with such overhead
323                  * will fit to rcvbuf in future.
324                  */
325                 if (tcp_win_from_space(skb->truesize) <= skb->len)
326                         incr = 2 * tp->advmss;
327                 else
328                         incr = __tcp_grow_window(sk, skb);
329
330                 if (incr) {
331                         incr = max_t(int, incr, 2 * skb->len);
332                         tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
333                                                tp->window_clamp);
334                         inet_csk(sk)->icsk_ack.quick |= 1;
335                 }
336         }
337 }
338
339 /* 3. Tuning rcvbuf, when connection enters established state. */
340
341 static void tcp_fixup_rcvbuf(struct sock *sk)
342 {
343         struct tcp_sock *tp = tcp_sk(sk);
344         int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
345
346         /* Try to select rcvbuf so that 4 mss-sized segments
347          * will fit to window and corresponding skbs will fit to our rcvbuf.
348          * (was 3; 4 is minimum to allow fast retransmit to work.)
349          */
350         while (tcp_win_from_space(rcvmem) < tp->advmss)
351                 rcvmem += 128;
352         if (sk->sk_rcvbuf < 4 * rcvmem)
353                 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
354 }
355
356 /* 4. Try to fixup all. It is made immediately after connection enters
357  *    established state.
358  */
359 static void tcp_init_buffer_space(struct sock *sk)
360 {
361         struct tcp_sock *tp = tcp_sk(sk);
362         int maxwin;
363
364         if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
365                 tcp_fixup_rcvbuf(sk);
366         if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
367                 tcp_fixup_sndbuf(sk);
368
369         tp->rcvq_space.space = tp->rcv_wnd;
370
371         maxwin = tcp_full_space(sk);
372
373         if (tp->window_clamp >= maxwin) {
374                 tp->window_clamp = maxwin;
375
376                 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
377                         tp->window_clamp = max(maxwin -
378                                                (maxwin >> sysctl_tcp_app_win),
379                                                4 * tp->advmss);
380         }
381
382         /* Force reservation of one segment. */
383         if (sysctl_tcp_app_win &&
384             tp->window_clamp > 2 * tp->advmss &&
385             tp->window_clamp + tp->advmss > maxwin)
386                 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
387
388         tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
389         tp->snd_cwnd_stamp = tcp_time_stamp;
390 }
391
392 /* 5. Recalculate window clamp after socket hit its memory bounds. */
393 static void tcp_clamp_window(struct sock *sk)
394 {
395         struct tcp_sock *tp = tcp_sk(sk);
396         struct inet_connection_sock *icsk = inet_csk(sk);
397
398         icsk->icsk_ack.quick = 0;
399
400         if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
401             !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
402             !tcp_memory_pressure &&
403             atomic_long_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
404                 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
405                                     sysctl_tcp_rmem[2]);
406         }
407         if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
408                 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
409 }
410
411 /* Initialize RCV_MSS value.
412  * RCV_MSS is an our guess about MSS used by the peer.
413  * We haven't any direct information about the MSS.
414  * It's better to underestimate the RCV_MSS rather than overestimate.
415  * Overestimations make us ACKing less frequently than needed.
416  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
417  */
418 void tcp_initialize_rcv_mss(struct sock *sk)
419 {
420         struct tcp_sock *tp = tcp_sk(sk);
421         unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
422
423         hint = min(hint, tp->rcv_wnd / 2);
424         hint = min(hint, TCP_MSS_DEFAULT);
425         hint = max(hint, TCP_MIN_MSS);
426
427         inet_csk(sk)->icsk_ack.rcv_mss = hint;
428 }
429 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
430
431 /* Receiver "autotuning" code.
432  *
433  * The algorithm for RTT estimation w/o timestamps is based on
434  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
435  * <http://public.lanl.gov/radiant/pubs.html#DRS>
436  *
437  * More detail on this code can be found at
438  * <http://staff.psc.edu/jheffner/>,
439  * though this reference is out of date.  A new paper
440  * is pending.
441  */
442 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
443 {
444         u32 new_sample = tp->rcv_rtt_est.rtt;
445         long m = sample;
446
447         if (m == 0)
448                 m = 1;
449
450         if (new_sample != 0) {
451                 /* If we sample in larger samples in the non-timestamp
452                  * case, we could grossly overestimate the RTT especially
453                  * with chatty applications or bulk transfer apps which
454                  * are stalled on filesystem I/O.
455                  *
456                  * Also, since we are only going for a minimum in the
457                  * non-timestamp case, we do not smooth things out
458                  * else with timestamps disabled convergence takes too
459                  * long.
460                  */
461                 if (!win_dep) {
462                         m -= (new_sample >> 3);
463                         new_sample += m;
464                 } else {
465                         m <<= 3;
466                         if (m < new_sample)
467                                 new_sample = m;
468                 }
469         } else {
470                 /* No previous measure. */
471                 new_sample = m << 3;
472         }
473
474         if (tp->rcv_rtt_est.rtt != new_sample)
475                 tp->rcv_rtt_est.rtt = new_sample;
476 }
477
478 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
479 {
480         if (tp->rcv_rtt_est.time == 0)
481                 goto new_measure;
482         if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
483                 return;
484         tcp_rcv_rtt_update(tp, jiffies - tp->rcv_rtt_est.time, 1);
485
486 new_measure:
487         tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
488         tp->rcv_rtt_est.time = tcp_time_stamp;
489 }
490
491 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
492                                           const struct sk_buff *skb)
493 {
494         struct tcp_sock *tp = tcp_sk(sk);
495         if (tp->rx_opt.rcv_tsecr &&
496             (TCP_SKB_CB(skb)->end_seq -
497              TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
498                 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
499 }
500
501 /*
502  * This function should be called every time data is copied to user space.
503  * It calculates the appropriate TCP receive buffer space.
504  */
505 void tcp_rcv_space_adjust(struct sock *sk)
506 {
507         struct tcp_sock *tp = tcp_sk(sk);
508         int time;
509         int space;
510
511         if (tp->rcvq_space.time == 0)
512                 goto new_measure;
513
514         time = tcp_time_stamp - tp->rcvq_space.time;
515         if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
516                 return;
517
518         space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
519
520         space = max(tp->rcvq_space.space, space);
521
522         if (tp->rcvq_space.space != space) {
523                 int rcvmem;
524
525                 tp->rcvq_space.space = space;
526
527                 if (sysctl_tcp_moderate_rcvbuf &&
528                     !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
529                         int new_clamp = space;
530
531                         /* Receive space grows, normalize in order to
532                          * take into account packet headers and sk_buff
533                          * structure overhead.
534                          */
535                         space /= tp->advmss;
536                         if (!space)
537                                 space = 1;
538                         rcvmem = (tp->advmss + MAX_TCP_HEADER +
539                                   16 + sizeof(struct sk_buff));
540                         while (tcp_win_from_space(rcvmem) < tp->advmss)
541                                 rcvmem += 128;
542                         space *= rcvmem;
543                         space = min(space, sysctl_tcp_rmem[2]);
544                         if (space > sk->sk_rcvbuf) {
545                                 sk->sk_rcvbuf = space;
546
547                                 /* Make the window clamp follow along.  */
548                                 tp->window_clamp = new_clamp;
549                         }
550                 }
551         }
552
553 new_measure:
554         tp->rcvq_space.seq = tp->copied_seq;
555         tp->rcvq_space.time = tcp_time_stamp;
556 }
557
558 /* There is something which you must keep in mind when you analyze the
559  * behavior of the tp->ato delayed ack timeout interval.  When a
560  * connection starts up, we want to ack as quickly as possible.  The
561  * problem is that "good" TCP's do slow start at the beginning of data
562  * transmission.  The means that until we send the first few ACK's the
563  * sender will sit on his end and only queue most of his data, because
564  * he can only send snd_cwnd unacked packets at any given time.  For
565  * each ACK we send, he increments snd_cwnd and transmits more of his
566  * queue.  -DaveM
567  */
568 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
569 {
570         struct tcp_sock *tp = tcp_sk(sk);
571         struct inet_connection_sock *icsk = inet_csk(sk);
572         u32 now;
573
574         inet_csk_schedule_ack(sk);
575
576         tcp_measure_rcv_mss(sk, skb);
577
578         tcp_rcv_rtt_measure(tp);
579
580         now = tcp_time_stamp;
581
582         if (!icsk->icsk_ack.ato) {
583                 /* The _first_ data packet received, initialize
584                  * delayed ACK engine.
585                  */
586                 tcp_incr_quickack(sk);
587                 icsk->icsk_ack.ato = TCP_ATO_MIN;
588         } else {
589                 int m = now - icsk->icsk_ack.lrcvtime;
590
591                 if (m <= TCP_ATO_MIN / 2) {
592                         /* The fastest case is the first. */
593                         icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
594                 } else if (m < icsk->icsk_ack.ato) {
595                         icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
596                         if (icsk->icsk_ack.ato > icsk->icsk_rto)
597                                 icsk->icsk_ack.ato = icsk->icsk_rto;
598                 } else if (m > icsk->icsk_rto) {
599                         /* Too long gap. Apparently sender failed to
600                          * restart window, so that we send ACKs quickly.
601                          */
602                         tcp_incr_quickack(sk);
603                         sk_mem_reclaim(sk);
604                 }
605         }
606         icsk->icsk_ack.lrcvtime = now;
607
608         TCP_ECN_check_ce(tp, skb);
609
610         if (skb->len >= 128)
611                 tcp_grow_window(sk, skb);
612 }
613
614 /* Called to compute a smoothed rtt estimate. The data fed to this
615  * routine either comes from timestamps, or from segments that were
616  * known _not_ to have been retransmitted [see Karn/Partridge
617  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
618  * piece by Van Jacobson.
619  * NOTE: the next three routines used to be one big routine.
620  * To save cycles in the RFC 1323 implementation it was better to break
621  * it up into three procedures. -- erics
622  */
623 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
624 {
625         struct tcp_sock *tp = tcp_sk(sk);
626         long m = mrtt; /* RTT */
627
628         /*      The following amusing code comes from Jacobson's
629          *      article in SIGCOMM '88.  Note that rtt and mdev
630          *      are scaled versions of rtt and mean deviation.
631          *      This is designed to be as fast as possible
632          *      m stands for "measurement".
633          *
634          *      On a 1990 paper the rto value is changed to:
635          *      RTO = rtt + 4 * mdev
636          *
637          * Funny. This algorithm seems to be very broken.
638          * These formulae increase RTO, when it should be decreased, increase
639          * too slowly, when it should be increased quickly, decrease too quickly
640          * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
641          * does not matter how to _calculate_ it. Seems, it was trap
642          * that VJ failed to avoid. 8)
643          */
644         if (m == 0)
645                 m = 1;
646         if (tp->srtt != 0) {
647                 m -= (tp->srtt >> 3);   /* m is now error in rtt est */
648                 tp->srtt += m;          /* rtt = 7/8 rtt + 1/8 new */
649                 if (m < 0) {
650                         m = -m;         /* m is now abs(error) */
651                         m -= (tp->mdev >> 2);   /* similar update on mdev */
652                         /* This is similar to one of Eifel findings.
653                          * Eifel blocks mdev updates when rtt decreases.
654                          * This solution is a bit different: we use finer gain
655                          * for mdev in this case (alpha*beta).
656                          * Like Eifel it also prevents growth of rto,
657                          * but also it limits too fast rto decreases,
658                          * happening in pure Eifel.
659                          */
660                         if (m > 0)
661                                 m >>= 3;
662                 } else {
663                         m -= (tp->mdev >> 2);   /* similar update on mdev */
664                 }
665                 tp->mdev += m;          /* mdev = 3/4 mdev + 1/4 new */
666                 if (tp->mdev > tp->mdev_max) {
667                         tp->mdev_max = tp->mdev;
668                         if (tp->mdev_max > tp->rttvar)
669                                 tp->rttvar = tp->mdev_max;
670                 }
671                 if (after(tp->snd_una, tp->rtt_seq)) {
672                         if (tp->mdev_max < tp->rttvar)
673                                 tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
674                         tp->rtt_seq = tp->snd_nxt;
675                         tp->mdev_max = tcp_rto_min(sk);
676                 }
677         } else {
678                 /* no previous measure. */
679                 tp->srtt = m << 3;      /* take the measured time to be rtt */
680                 tp->mdev = m << 1;      /* make sure rto = 3*rtt */
681                 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
682                 tp->rtt_seq = tp->snd_nxt;
683         }
684 }
685
686 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
687  * routine referred to above.
688  */
689 static inline void tcp_set_rto(struct sock *sk)
690 {
691         const struct tcp_sock *tp = tcp_sk(sk);
692         /* Old crap is replaced with new one. 8)
693          *
694          * More seriously:
695          * 1. If rtt variance happened to be less 50msec, it is hallucination.
696          *    It cannot be less due to utterly erratic ACK generation made
697          *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
698          *    to do with delayed acks, because at cwnd>2 true delack timeout
699          *    is invisible. Actually, Linux-2.4 also generates erratic
700          *    ACKs in some circumstances.
701          */
702         inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
703
704         /* 2. Fixups made earlier cannot be right.
705          *    If we do not estimate RTO correctly without them,
706          *    all the algo is pure shit and should be replaced
707          *    with correct one. It is exactly, which we pretend to do.
708          */
709
710         /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
711          * guarantees that rto is higher.
712          */
713         tcp_bound_rto(sk);
714 }
715
716 /* Save metrics learned by this TCP session.
717    This function is called only, when TCP finishes successfully
718    i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
719  */
720 void tcp_update_metrics(struct sock *sk)
721 {
722         struct tcp_sock *tp = tcp_sk(sk);
723         struct dst_entry *dst = __sk_dst_get(sk);
724
725         if (sysctl_tcp_nometrics_save)
726                 return;
727
728         dst_confirm(dst);
729
730         if (dst && (dst->flags & DST_HOST)) {
731                 const struct inet_connection_sock *icsk = inet_csk(sk);
732                 int m;
733                 unsigned long rtt;
734
735                 if (icsk->icsk_backoff || !tp->srtt) {
736                         /* This session failed to estimate rtt. Why?
737                          * Probably, no packets returned in time.
738                          * Reset our results.
739                          */
740                         if (!(dst_metric_locked(dst, RTAX_RTT)))
741                                 dst_metric_set(dst, RTAX_RTT, 0);
742                         return;
743                 }
744
745                 rtt = dst_metric_rtt(dst, RTAX_RTT);
746                 m = rtt - tp->srtt;
747
748                 /* If newly calculated rtt larger than stored one,
749                  * store new one. Otherwise, use EWMA. Remember,
750                  * rtt overestimation is always better than underestimation.
751                  */
752                 if (!(dst_metric_locked(dst, RTAX_RTT))) {
753                         if (m <= 0)
754                                 set_dst_metric_rtt(dst, RTAX_RTT, tp->srtt);
755                         else
756                                 set_dst_metric_rtt(dst, RTAX_RTT, rtt - (m >> 3));
757                 }
758
759                 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
760                         unsigned long var;
761                         if (m < 0)
762                                 m = -m;
763
764                         /* Scale deviation to rttvar fixed point */
765                         m >>= 1;
766                         if (m < tp->mdev)
767                                 m = tp->mdev;
768
769                         var = dst_metric_rtt(dst, RTAX_RTTVAR);
770                         if (m >= var)
771                                 var = m;
772                         else
773                                 var -= (var - m) >> 2;
774
775                         set_dst_metric_rtt(dst, RTAX_RTTVAR, var);
776                 }
777
778                 if (tcp_in_initial_slowstart(tp)) {
779                         /* Slow start still did not finish. */
780                         if (dst_metric(dst, RTAX_SSTHRESH) &&
781                             !dst_metric_locked(dst, RTAX_SSTHRESH) &&
782                             (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
783                                 dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_cwnd >> 1);
784                         if (!dst_metric_locked(dst, RTAX_CWND) &&
785                             tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
786                                 dst_metric_set(dst, RTAX_CWND, tp->snd_cwnd);
787                 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
788                            icsk->icsk_ca_state == TCP_CA_Open) {
789                         /* Cong. avoidance phase, cwnd is reliable. */
790                         if (!dst_metric_locked(dst, RTAX_SSTHRESH))
791                                 dst_metric_set(dst, RTAX_SSTHRESH,
792                                                max(tp->snd_cwnd >> 1, tp->snd_ssthresh));
793                         if (!dst_metric_locked(dst, RTAX_CWND))
794                                 dst_metric_set(dst, RTAX_CWND,
795                                                (dst_metric(dst, RTAX_CWND) +
796                                                 tp->snd_cwnd) >> 1);
797                 } else {
798                         /* Else slow start did not finish, cwnd is non-sense,
799                            ssthresh may be also invalid.
800                          */
801                         if (!dst_metric_locked(dst, RTAX_CWND))
802                                 dst_metric_set(dst, RTAX_CWND,
803                                                (dst_metric(dst, RTAX_CWND) +
804                                                 tp->snd_ssthresh) >> 1);
805                         if (dst_metric(dst, RTAX_SSTHRESH) &&
806                             !dst_metric_locked(dst, RTAX_SSTHRESH) &&
807                             tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH))
808                                 dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_ssthresh);
809                 }
810
811                 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
812                         if (dst_metric(dst, RTAX_REORDERING) < tp->reordering &&
813                             tp->reordering != sysctl_tcp_reordering)
814                                 dst_metric_set(dst, RTAX_REORDERING, tp->reordering);
815                 }
816         }
817 }
818
819 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
820 {
821         __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
822
823         if (!cwnd)
824                 cwnd = TCP_INIT_CWND;
825         return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
826 }
827
828 /* Set slow start threshold and cwnd not falling to slow start */
829 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
830 {
831         struct tcp_sock *tp = tcp_sk(sk);
832         const struct inet_connection_sock *icsk = inet_csk(sk);
833
834         tp->prior_ssthresh = 0;
835         tp->bytes_acked = 0;
836         if (icsk->icsk_ca_state < TCP_CA_CWR) {
837                 tp->undo_marker = 0;
838                 if (set_ssthresh)
839                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
840                 tp->snd_cwnd = min(tp->snd_cwnd,
841                                    tcp_packets_in_flight(tp) + 1U);
842                 tp->snd_cwnd_cnt = 0;
843                 tp->high_seq = tp->snd_nxt;
844                 tp->snd_cwnd_stamp = tcp_time_stamp;
845                 TCP_ECN_queue_cwr(tp);
846
847                 tcp_set_ca_state(sk, TCP_CA_CWR);
848         }
849 }
850
851 /*
852  * Packet counting of FACK is based on in-order assumptions, therefore TCP
853  * disables it when reordering is detected
854  */
855 static void tcp_disable_fack(struct tcp_sock *tp)
856 {
857         /* RFC3517 uses different metric in lost marker => reset on change */
858         if (tcp_is_fack(tp))
859                 tp->lost_skb_hint = NULL;
860         tp->rx_opt.sack_ok &= ~2;
861 }
862
863 /* Take a notice that peer is sending D-SACKs */
864 static void tcp_dsack_seen(struct tcp_sock *tp)
865 {
866         tp->rx_opt.sack_ok |= 4;
867 }
868
869 /* Initialize metrics on socket. */
870
871 static void tcp_init_metrics(struct sock *sk)
872 {
873         struct tcp_sock *tp = tcp_sk(sk);
874         struct dst_entry *dst = __sk_dst_get(sk);
875
876         if (dst == NULL)
877                 goto reset;
878
879         dst_confirm(dst);
880
881         if (dst_metric_locked(dst, RTAX_CWND))
882                 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
883         if (dst_metric(dst, RTAX_SSTHRESH)) {
884                 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
885                 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
886                         tp->snd_ssthresh = tp->snd_cwnd_clamp;
887         }
888         if (dst_metric(dst, RTAX_REORDERING) &&
889             tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
890                 tcp_disable_fack(tp);
891                 tp->reordering = dst_metric(dst, RTAX_REORDERING);
892         }
893
894         if (dst_metric(dst, RTAX_RTT) == 0)
895                 goto reset;
896
897         if (!tp->srtt && dst_metric_rtt(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
898                 goto reset;
899
900         /* Initial rtt is determined from SYN,SYN-ACK.
901          * The segment is small and rtt may appear much
902          * less than real one. Use per-dst memory
903          * to make it more realistic.
904          *
905          * A bit of theory. RTT is time passed after "normal" sized packet
906          * is sent until it is ACKed. In normal circumstances sending small
907          * packets force peer to delay ACKs and calculation is correct too.
908          * The algorithm is adaptive and, provided we follow specs, it
909          * NEVER underestimate RTT. BUT! If peer tries to make some clever
910          * tricks sort of "quick acks" for time long enough to decrease RTT
911          * to low value, and then abruptly stops to do it and starts to delay
912          * ACKs, wait for troubles.
913          */
914         if (dst_metric_rtt(dst, RTAX_RTT) > tp->srtt) {
915                 tp->srtt = dst_metric_rtt(dst, RTAX_RTT);
916                 tp->rtt_seq = tp->snd_nxt;
917         }
918         if (dst_metric_rtt(dst, RTAX_RTTVAR) > tp->mdev) {
919                 tp->mdev = dst_metric_rtt(dst, RTAX_RTTVAR);
920                 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
921         }
922         tcp_set_rto(sk);
923         if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp) {
924 reset:
925                 /* Play conservative. If timestamps are not
926                  * supported, TCP will fail to recalculate correct
927                  * rtt, if initial rto is too small. FORGET ALL AND RESET!
928                  */
929                 if (!tp->rx_opt.saw_tstamp && tp->srtt) {
930                         tp->srtt = 0;
931                         tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
932                         inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
933                 }
934         }
935         tp->snd_cwnd = tcp_init_cwnd(tp, dst);
936         tp->snd_cwnd_stamp = tcp_time_stamp;
937 }
938
939 static void tcp_update_reordering(struct sock *sk, const int metric,
940                                   const int ts)
941 {
942         struct tcp_sock *tp = tcp_sk(sk);
943         if (metric > tp->reordering) {
944                 int mib_idx;
945
946                 tp->reordering = min(TCP_MAX_REORDERING, metric);
947
948                 /* This exciting event is worth to be remembered. 8) */
949                 if (ts)
950                         mib_idx = LINUX_MIB_TCPTSREORDER;
951                 else if (tcp_is_reno(tp))
952                         mib_idx = LINUX_MIB_TCPRENOREORDER;
953                 else if (tcp_is_fack(tp))
954                         mib_idx = LINUX_MIB_TCPFACKREORDER;
955                 else
956                         mib_idx = LINUX_MIB_TCPSACKREORDER;
957
958                 NET_INC_STATS_BH(sock_net(sk), mib_idx);
959 #if FASTRETRANS_DEBUG > 1
960                 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
961                        tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
962                        tp->reordering,
963                        tp->fackets_out,
964                        tp->sacked_out,
965                        tp->undo_marker ? tp->undo_retrans : 0);
966 #endif
967                 tcp_disable_fack(tp);
968         }
969 }
970
971 /* This must be called before lost_out is incremented */
972 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
973 {
974         if ((tp->retransmit_skb_hint == NULL) ||
975             before(TCP_SKB_CB(skb)->seq,
976                    TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
977                 tp->retransmit_skb_hint = skb;
978
979         if (!tp->lost_out ||
980             after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
981                 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
982 }
983
984 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
985 {
986         if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
987                 tcp_verify_retransmit_hint(tp, skb);
988
989                 tp->lost_out += tcp_skb_pcount(skb);
990                 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
991         }
992 }
993
994 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
995                                             struct sk_buff *skb)
996 {
997         tcp_verify_retransmit_hint(tp, skb);
998
999         if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1000                 tp->lost_out += tcp_skb_pcount(skb);
1001                 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1002         }
1003 }
1004
1005 /* This procedure tags the retransmission queue when SACKs arrive.
1006  *
1007  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1008  * Packets in queue with these bits set are counted in variables
1009  * sacked_out, retrans_out and lost_out, correspondingly.
1010  *
1011  * Valid combinations are:
1012  * Tag  InFlight        Description
1013  * 0    1               - orig segment is in flight.
1014  * S    0               - nothing flies, orig reached receiver.
1015  * L    0               - nothing flies, orig lost by net.
1016  * R    2               - both orig and retransmit are in flight.
1017  * L|R  1               - orig is lost, retransmit is in flight.
1018  * S|R  1               - orig reached receiver, retrans is still in flight.
1019  * (L|S|R is logically valid, it could occur when L|R is sacked,
1020  *  but it is equivalent to plain S and code short-curcuits it to S.
1021  *  L|S is logically invalid, it would mean -1 packet in flight 8))
1022  *
1023  * These 6 states form finite state machine, controlled by the following events:
1024  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1025  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1026  * 3. Loss detection event of one of three flavors:
1027  *      A. Scoreboard estimator decided the packet is lost.
1028  *         A'. Reno "three dupacks" marks head of queue lost.
1029  *         A''. Its FACK modfication, head until snd.fack is lost.
1030  *      B. SACK arrives sacking data transmitted after never retransmitted
1031  *         hole was sent out.
1032  *      C. SACK arrives sacking SND.NXT at the moment, when the
1033  *         segment was retransmitted.
1034  * 4. D-SACK added new rule: D-SACK changes any tag to S.
1035  *
1036  * It is pleasant to note, that state diagram turns out to be commutative,
1037  * so that we are allowed not to be bothered by order of our actions,
1038  * when multiple events arrive simultaneously. (see the function below).
1039  *
1040  * Reordering detection.
1041  * --------------------
1042  * Reordering metric is maximal distance, which a packet can be displaced
1043  * in packet stream. With SACKs we can estimate it:
1044  *
1045  * 1. SACK fills old hole and the corresponding segment was not
1046  *    ever retransmitted -> reordering. Alas, we cannot use it
1047  *    when segment was retransmitted.
1048  * 2. The last flaw is solved with D-SACK. D-SACK arrives
1049  *    for retransmitted and already SACKed segment -> reordering..
1050  * Both of these heuristics are not used in Loss state, when we cannot
1051  * account for retransmits accurately.
1052  *
1053  * SACK block validation.
1054  * ----------------------
1055  *
1056  * SACK block range validation checks that the received SACK block fits to
1057  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1058  * Note that SND.UNA is not included to the range though being valid because
1059  * it means that the receiver is rather inconsistent with itself reporting
1060  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1061  * perfectly valid, however, in light of RFC2018 which explicitly states
1062  * that "SACK block MUST reflect the newest segment.  Even if the newest
1063  * segment is going to be discarded ...", not that it looks very clever
1064  * in case of head skb. Due to potentional receiver driven attacks, we
1065  * choose to avoid immediate execution of a walk in write queue due to
1066  * reneging and defer head skb's loss recovery to standard loss recovery
1067  * procedure that will eventually trigger (nothing forbids us doing this).
1068  *
1069  * Implements also blockage to start_seq wrap-around. Problem lies in the
1070  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1071  * there's no guarantee that it will be before snd_nxt (n). The problem
1072  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1073  * wrap (s_w):
1074  *
1075  *         <- outs wnd ->                          <- wrapzone ->
1076  *         u     e      n                         u_w   e_w  s n_w
1077  *         |     |      |                          |     |   |  |
1078  * |<------------+------+----- TCP seqno space --------------+---------->|
1079  * ...-- <2^31 ->|                                           |<--------...
1080  * ...---- >2^31 ------>|                                    |<--------...
1081  *
1082  * Current code wouldn't be vulnerable but it's better still to discard such
1083  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1084  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1085  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1086  * equal to the ideal case (infinite seqno space without wrap caused issues).
1087  *
1088  * With D-SACK the lower bound is extended to cover sequence space below
1089  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1090  * again, D-SACK block must not to go across snd_una (for the same reason as
1091  * for the normal SACK blocks, explained above). But there all simplicity
1092  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1093  * fully below undo_marker they do not affect behavior in anyway and can
1094  * therefore be safely ignored. In rare cases (which are more or less
1095  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1096  * fragmentation and packet reordering past skb's retransmission. To consider
1097  * them correctly, the acceptable range must be extended even more though
1098  * the exact amount is rather hard to quantify. However, tp->max_window can
1099  * be used as an exaggerated estimate.
1100  */
1101 static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1102                                   u32 start_seq, u32 end_seq)
1103 {
1104         /* Too far in future, or reversed (interpretation is ambiguous) */
1105         if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1106                 return 0;
1107
1108         /* Nasty start_seq wrap-around check (see comments above) */
1109         if (!before(start_seq, tp->snd_nxt))
1110                 return 0;
1111
1112         /* In outstanding window? ...This is valid exit for D-SACKs too.
1113          * start_seq == snd_una is non-sensical (see comments above)
1114          */
1115         if (after(start_seq, tp->snd_una))
1116                 return 1;
1117
1118         if (!is_dsack || !tp->undo_marker)
1119                 return 0;
1120
1121         /* ...Then it's D-SACK, and must reside below snd_una completely */
1122         if (after(end_seq, tp->snd_una))
1123                 return 0;
1124
1125         if (!before(start_seq, tp->undo_marker))
1126                 return 1;
1127
1128         /* Too old */
1129         if (!after(end_seq, tp->undo_marker))
1130                 return 0;
1131
1132         /* Undo_marker boundary crossing (overestimates a lot). Known already:
1133          *   start_seq < undo_marker and end_seq >= undo_marker.
1134          */
1135         return !before(start_seq, end_seq - tp->max_window);
1136 }
1137
1138 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1139  * Event "C". Later note: FACK people cheated me again 8), we have to account
1140  * for reordering! Ugly, but should help.
1141  *
1142  * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1143  * less than what is now known to be received by the other end (derived from
1144  * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1145  * retransmitted skbs to avoid some costly processing per ACKs.
1146  */
1147 static void tcp_mark_lost_retrans(struct sock *sk)
1148 {
1149         const struct inet_connection_sock *icsk = inet_csk(sk);
1150         struct tcp_sock *tp = tcp_sk(sk);
1151         struct sk_buff *skb;
1152         int cnt = 0;
1153         u32 new_low_seq = tp->snd_nxt;
1154         u32 received_upto = tcp_highest_sack_seq(tp);
1155
1156         if (!tcp_is_fack(tp) || !tp->retrans_out ||
1157             !after(received_upto, tp->lost_retrans_low) ||
1158             icsk->icsk_ca_state != TCP_CA_Recovery)
1159                 return;
1160
1161         tcp_for_write_queue(skb, sk) {
1162                 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1163
1164                 if (skb == tcp_send_head(sk))
1165                         break;
1166                 if (cnt == tp->retrans_out)
1167                         break;
1168                 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1169                         continue;
1170
1171                 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1172                         continue;
1173
1174                 /* TODO: We would like to get rid of tcp_is_fack(tp) only
1175                  * constraint here (see above) but figuring out that at
1176                  * least tp->reordering SACK blocks reside between ack_seq
1177                  * and received_upto is not easy task to do cheaply with
1178                  * the available datastructures.
1179                  *
1180                  * Whether FACK should check here for tp->reordering segs
1181                  * in-between one could argue for either way (it would be
1182                  * rather simple to implement as we could count fack_count
1183                  * during the walk and do tp->fackets_out - fack_count).
1184                  */
1185                 if (after(received_upto, ack_seq)) {
1186                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1187                         tp->retrans_out -= tcp_skb_pcount(skb);
1188
1189                         tcp_skb_mark_lost_uncond_verify(tp, skb);
1190                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1191                 } else {
1192                         if (before(ack_seq, new_low_seq))
1193                                 new_low_seq = ack_seq;
1194                         cnt += tcp_skb_pcount(skb);
1195                 }
1196         }
1197
1198         if (tp->retrans_out)
1199                 tp->lost_retrans_low = new_low_seq;
1200 }
1201
1202 static int tcp_check_dsack(struct sock *sk, struct sk_buff *ack_skb,
1203                            struct tcp_sack_block_wire *sp, int num_sacks,
1204                            u32 prior_snd_una)
1205 {
1206         struct tcp_sock *tp = tcp_sk(sk);
1207         u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1208         u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1209         int dup_sack = 0;
1210
1211         if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1212                 dup_sack = 1;
1213                 tcp_dsack_seen(tp);
1214                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1215         } else if (num_sacks > 1) {
1216                 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1217                 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1218
1219                 if (!after(end_seq_0, end_seq_1) &&
1220                     !before(start_seq_0, start_seq_1)) {
1221                         dup_sack = 1;
1222                         tcp_dsack_seen(tp);
1223                         NET_INC_STATS_BH(sock_net(sk),
1224                                         LINUX_MIB_TCPDSACKOFORECV);
1225                 }
1226         }
1227
1228         /* D-SACK for already forgotten data... Do dumb counting. */
1229         if (dup_sack && tp->undo_marker && tp->undo_retrans &&
1230             !after(end_seq_0, prior_snd_una) &&
1231             after(end_seq_0, tp->undo_marker))
1232                 tp->undo_retrans--;
1233
1234         return dup_sack;
1235 }
1236
1237 struct tcp_sacktag_state {
1238         int reord;
1239         int fack_count;
1240         int flag;
1241 };
1242
1243 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1244  * the incoming SACK may not exactly match but we can find smaller MSS
1245  * aligned portion of it that matches. Therefore we might need to fragment
1246  * which may fail and creates some hassle (caller must handle error case
1247  * returns).
1248  *
1249  * FIXME: this could be merged to shift decision code
1250  */
1251 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1252                                  u32 start_seq, u32 end_seq)
1253 {
1254         int in_sack, err;
1255         unsigned int pkt_len;
1256         unsigned int mss;
1257
1258         in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1259                   !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1260
1261         if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1262             after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1263                 mss = tcp_skb_mss(skb);
1264                 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1265
1266                 if (!in_sack) {
1267                         pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1268                         if (pkt_len < mss)
1269                                 pkt_len = mss;
1270                 } else {
1271                         pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1272                         if (pkt_len < mss)
1273                                 return -EINVAL;
1274                 }
1275
1276                 /* Round if necessary so that SACKs cover only full MSSes
1277                  * and/or the remaining small portion (if present)
1278                  */
1279                 if (pkt_len > mss) {
1280                         unsigned int new_len = (pkt_len / mss) * mss;
1281                         if (!in_sack && new_len < pkt_len) {
1282                                 new_len += mss;
1283                                 if (new_len > skb->len)
1284                                         return 0;
1285                         }
1286                         pkt_len = new_len;
1287                 }
1288                 err = tcp_fragment(sk, skb, pkt_len, mss);
1289                 if (err < 0)
1290                         return err;
1291         }
1292
1293         return in_sack;
1294 }
1295
1296 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1297 static u8 tcp_sacktag_one(struct sock *sk,
1298                           struct tcp_sacktag_state *state, u8 sacked,
1299                           u32 start_seq, u32 end_seq,
1300                           int dup_sack, int pcount)
1301 {
1302         struct tcp_sock *tp = tcp_sk(sk);
1303         int fack_count = state->fack_count;
1304
1305         /* Account D-SACK for retransmitted packet. */
1306         if (dup_sack && (sacked & TCPCB_RETRANS)) {
1307                 if (tp->undo_marker && tp->undo_retrans &&
1308                     after(end_seq, tp->undo_marker))
1309                         tp->undo_retrans--;
1310                 if (sacked & TCPCB_SACKED_ACKED)
1311                         state->reord = min(fack_count, state->reord);
1312         }
1313
1314         /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1315         if (!after(end_seq, tp->snd_una))
1316                 return sacked;
1317
1318         if (!(sacked & TCPCB_SACKED_ACKED)) {
1319                 if (sacked & TCPCB_SACKED_RETRANS) {
1320                         /* If the segment is not tagged as lost,
1321                          * we do not clear RETRANS, believing
1322                          * that retransmission is still in flight.
1323                          */
1324                         if (sacked & TCPCB_LOST) {
1325                                 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1326                                 tp->lost_out -= pcount;
1327                                 tp->retrans_out -= pcount;
1328                         }
1329                 } else {
1330                         if (!(sacked & TCPCB_RETRANS)) {
1331                                 /* New sack for not retransmitted frame,
1332                                  * which was in hole. It is reordering.
1333                                  */
1334                                 if (before(start_seq,
1335                                            tcp_highest_sack_seq(tp)))
1336                                         state->reord = min(fack_count,
1337                                                            state->reord);
1338
1339                                 /* SACK enhanced F-RTO (RFC4138; Appendix B) */
1340                                 if (!after(end_seq, tp->frto_highmark))
1341                                         state->flag |= FLAG_ONLY_ORIG_SACKED;
1342                         }
1343
1344                         if (sacked & TCPCB_LOST) {
1345                                 sacked &= ~TCPCB_LOST;
1346                                 tp->lost_out -= pcount;
1347                         }
1348                 }
1349
1350                 sacked |= TCPCB_SACKED_ACKED;
1351                 state->flag |= FLAG_DATA_SACKED;
1352                 tp->sacked_out += pcount;
1353
1354                 fack_count += pcount;
1355
1356                 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1357                 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1358                     before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1359                         tp->lost_cnt_hint += pcount;
1360
1361                 if (fack_count > tp->fackets_out)
1362                         tp->fackets_out = fack_count;
1363         }
1364
1365         /* D-SACK. We can detect redundant retransmission in S|R and plain R
1366          * frames and clear it. undo_retrans is decreased above, L|R frames
1367          * are accounted above as well.
1368          */
1369         if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1370                 sacked &= ~TCPCB_SACKED_RETRANS;
1371                 tp->retrans_out -= pcount;
1372         }
1373
1374         return sacked;
1375 }
1376
1377 /* Shift newly-SACKed bytes from this skb to the immediately previous
1378  * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1379  */
1380 static int tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1381                            struct tcp_sacktag_state *state,
1382                            unsigned int pcount, int shifted, int mss,
1383                            int dup_sack)
1384 {
1385         struct tcp_sock *tp = tcp_sk(sk);
1386         struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1387         u32 start_seq = TCP_SKB_CB(skb)->seq;   /* start of newly-SACKed */
1388         u32 end_seq = start_seq + shifted;      /* end of newly-SACKed */
1389
1390         BUG_ON(!pcount);
1391
1392         /* Adjust counters and hints for the newly sacked sequence
1393          * range but discard the return value since prev is already
1394          * marked. We must tag the range first because the seq
1395          * advancement below implicitly advances
1396          * tcp_highest_sack_seq() when skb is highest_sack.
1397          */
1398         tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1399                         start_seq, end_seq, dup_sack, pcount);
1400
1401         if (skb == tp->lost_skb_hint)
1402                 tp->lost_cnt_hint += pcount;
1403
1404         TCP_SKB_CB(prev)->end_seq += shifted;
1405         TCP_SKB_CB(skb)->seq += shifted;
1406
1407         skb_shinfo(prev)->gso_segs += pcount;
1408         BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
1409         skb_shinfo(skb)->gso_segs -= pcount;
1410
1411         /* When we're adding to gso_segs == 1, gso_size will be zero,
1412          * in theory this shouldn't be necessary but as long as DSACK
1413          * code can come after this skb later on it's better to keep
1414          * setting gso_size to something.
1415          */
1416         if (!skb_shinfo(prev)->gso_size) {
1417                 skb_shinfo(prev)->gso_size = mss;
1418                 skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1419         }
1420
1421         /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1422         if (skb_shinfo(skb)->gso_segs <= 1) {
1423                 skb_shinfo(skb)->gso_size = 0;
1424                 skb_shinfo(skb)->gso_type = 0;
1425         }
1426
1427         /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1428         TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1429
1430         if (skb->len > 0) {
1431                 BUG_ON(!tcp_skb_pcount(skb));
1432                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1433                 return 0;
1434         }
1435
1436         /* Whole SKB was eaten :-) */
1437
1438         if (skb == tp->retransmit_skb_hint)
1439                 tp->retransmit_skb_hint = prev;
1440         if (skb == tp->scoreboard_skb_hint)
1441                 tp->scoreboard_skb_hint = prev;
1442         if (skb == tp->lost_skb_hint) {
1443                 tp->lost_skb_hint = prev;
1444                 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1445         }
1446
1447         TCP_SKB_CB(skb)->flags |= TCP_SKB_CB(prev)->flags;
1448         if (skb == tcp_highest_sack(sk))
1449                 tcp_advance_highest_sack(sk, skb);
1450
1451         tcp_unlink_write_queue(skb, sk);
1452         sk_wmem_free_skb(sk, skb);
1453
1454         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1455
1456         return 1;
1457 }
1458
1459 /* I wish gso_size would have a bit more sane initialization than
1460  * something-or-zero which complicates things
1461  */
1462 static int tcp_skb_seglen(struct sk_buff *skb)
1463 {
1464         return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1465 }
1466
1467 /* Shifting pages past head area doesn't work */
1468 static int skb_can_shift(struct sk_buff *skb)
1469 {
1470         return !skb_headlen(skb) && skb_is_nonlinear(skb);
1471 }
1472
1473 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1474  * skb.
1475  */
1476 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1477                                           struct tcp_sacktag_state *state,
1478                                           u32 start_seq, u32 end_seq,
1479                                           int dup_sack)
1480 {
1481         struct tcp_sock *tp = tcp_sk(sk);
1482         struct sk_buff *prev;
1483         int mss;
1484         int pcount = 0;
1485         int len;
1486         int in_sack;
1487
1488         if (!sk_can_gso(sk))
1489                 goto fallback;
1490
1491         /* Normally R but no L won't result in plain S */
1492         if (!dup_sack &&
1493             (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1494                 goto fallback;
1495         if (!skb_can_shift(skb))
1496                 goto fallback;
1497         /* This frame is about to be dropped (was ACKed). */
1498         if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1499                 goto fallback;
1500
1501         /* Can only happen with delayed DSACK + discard craziness */
1502         if (unlikely(skb == tcp_write_queue_head(sk)))
1503                 goto fallback;
1504         prev = tcp_write_queue_prev(sk, skb);
1505
1506         if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1507                 goto fallback;
1508
1509         in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1510                   !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1511
1512         if (in_sack) {
1513                 len = skb->len;
1514                 pcount = tcp_skb_pcount(skb);
1515                 mss = tcp_skb_seglen(skb);
1516
1517                 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1518                  * drop this restriction as unnecessary
1519                  */
1520                 if (mss != tcp_skb_seglen(prev))
1521                         goto fallback;
1522         } else {
1523                 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1524                         goto noop;
1525                 /* CHECKME: This is non-MSS split case only?, this will
1526                  * cause skipped skbs due to advancing loop btw, original
1527                  * has that feature too
1528                  */
1529                 if (tcp_skb_pcount(skb) <= 1)
1530                         goto noop;
1531
1532                 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1533                 if (!in_sack) {
1534                         /* TODO: head merge to next could be attempted here
1535                          * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1536                          * though it might not be worth of the additional hassle
1537                          *
1538                          * ...we can probably just fallback to what was done
1539                          * previously. We could try merging non-SACKed ones
1540                          * as well but it probably isn't going to buy off
1541                          * because later SACKs might again split them, and
1542                          * it would make skb timestamp tracking considerably
1543                          * harder problem.
1544                          */
1545                         goto fallback;
1546                 }
1547
1548                 len = end_seq - TCP_SKB_CB(skb)->seq;
1549                 BUG_ON(len < 0);
1550                 BUG_ON(len > skb->len);
1551
1552                 /* MSS boundaries should be honoured or else pcount will
1553                  * severely break even though it makes things bit trickier.
1554                  * Optimize common case to avoid most of the divides
1555                  */
1556                 mss = tcp_skb_mss(skb);
1557
1558                 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1559                  * drop this restriction as unnecessary
1560                  */
1561                 if (mss != tcp_skb_seglen(prev))
1562                         goto fallback;
1563
1564                 if (len == mss) {
1565                         pcount = 1;
1566                 } else if (len < mss) {
1567                         goto noop;
1568                 } else {
1569                         pcount = len / mss;
1570                         len = pcount * mss;
1571                 }
1572         }
1573
1574         /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1575         if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1576                 goto fallback;
1577
1578         if (!skb_shift(prev, skb, len))
1579                 goto fallback;
1580         if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1581                 goto out;
1582
1583         /* Hole filled allows collapsing with the next as well, this is very
1584          * useful when hole on every nth skb pattern happens
1585          */
1586         if (prev == tcp_write_queue_tail(sk))
1587                 goto out;
1588         skb = tcp_write_queue_next(sk, prev);
1589
1590         if (!skb_can_shift(skb) ||
1591             (skb == tcp_send_head(sk)) ||
1592             ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1593             (mss != tcp_skb_seglen(skb)))
1594                 goto out;
1595
1596         len = skb->len;
1597         if (skb_shift(prev, skb, len)) {
1598                 pcount += tcp_skb_pcount(skb);
1599                 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1600         }
1601
1602 out:
1603         state->fack_count += pcount;
1604         return prev;
1605
1606 noop:
1607         return skb;
1608
1609 fallback:
1610         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1611         return NULL;
1612 }
1613
1614 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1615                                         struct tcp_sack_block *next_dup,
1616                                         struct tcp_sacktag_state *state,
1617                                         u32 start_seq, u32 end_seq,
1618                                         int dup_sack_in)
1619 {
1620         struct tcp_sock *tp = tcp_sk(sk);
1621         struct sk_buff *tmp;
1622
1623         tcp_for_write_queue_from(skb, sk) {
1624                 int in_sack = 0;
1625                 int dup_sack = dup_sack_in;
1626
1627                 if (skb == tcp_send_head(sk))
1628                         break;
1629
1630                 /* queue is in-order => we can short-circuit the walk early */
1631                 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1632                         break;
1633
1634                 if ((next_dup != NULL) &&
1635                     before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1636                         in_sack = tcp_match_skb_to_sack(sk, skb,
1637                                                         next_dup->start_seq,
1638                                                         next_dup->end_seq);
1639                         if (in_sack > 0)
1640                                 dup_sack = 1;
1641                 }
1642
1643                 /* skb reference here is a bit tricky to get right, since
1644                  * shifting can eat and free both this skb and the next,
1645                  * so not even _safe variant of the loop is enough.
1646                  */
1647                 if (in_sack <= 0) {
1648                         tmp = tcp_shift_skb_data(sk, skb, state,
1649                                                  start_seq, end_seq, dup_sack);
1650                         if (tmp != NULL) {
1651                                 if (tmp != skb) {
1652                                         skb = tmp;
1653                                         continue;
1654                                 }
1655
1656                                 in_sack = 0;
1657                         } else {
1658                                 in_sack = tcp_match_skb_to_sack(sk, skb,
1659                                                                 start_seq,
1660                                                                 end_seq);
1661                         }
1662                 }
1663
1664                 if (unlikely(in_sack < 0))
1665                         break;
1666
1667                 if (in_sack) {
1668                         TCP_SKB_CB(skb)->sacked =
1669                                 tcp_sacktag_one(sk,
1670                                                 state,
1671                                                 TCP_SKB_CB(skb)->sacked,
1672                                                 TCP_SKB_CB(skb)->seq,
1673                                                 TCP_SKB_CB(skb)->end_seq,
1674                                                 dup_sack,
1675                                                 tcp_skb_pcount(skb));
1676
1677                         if (!before(TCP_SKB_CB(skb)->seq,
1678                                     tcp_highest_sack_seq(tp)))
1679                                 tcp_advance_highest_sack(sk, skb);
1680                 }
1681
1682                 state->fack_count += tcp_skb_pcount(skb);
1683         }
1684         return skb;
1685 }
1686
1687 /* Avoid all extra work that is being done by sacktag while walking in
1688  * a normal way
1689  */
1690 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1691                                         struct tcp_sacktag_state *state,
1692                                         u32 skip_to_seq)
1693 {
1694         tcp_for_write_queue_from(skb, sk) {
1695                 if (skb == tcp_send_head(sk))
1696                         break;
1697
1698                 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1699                         break;
1700
1701                 state->fack_count += tcp_skb_pcount(skb);
1702         }
1703         return skb;
1704 }
1705
1706 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1707                                                 struct sock *sk,
1708                                                 struct tcp_sack_block *next_dup,
1709                                                 struct tcp_sacktag_state *state,
1710                                                 u32 skip_to_seq)
1711 {
1712         if (next_dup == NULL)
1713                 return skb;
1714
1715         if (before(next_dup->start_seq, skip_to_seq)) {
1716                 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1717                 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1718                                        next_dup->start_seq, next_dup->end_seq,
1719                                        1);
1720         }
1721
1722         return skb;
1723 }
1724
1725 static int tcp_sack_cache_ok(struct tcp_sock *tp, struct tcp_sack_block *cache)
1726 {
1727         return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1728 }
1729
1730 static int
1731 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb,
1732                         u32 prior_snd_una)
1733 {
1734         const struct inet_connection_sock *icsk = inet_csk(sk);
1735         struct tcp_sock *tp = tcp_sk(sk);
1736         unsigned char *ptr = (skb_transport_header(ack_skb) +
1737                               TCP_SKB_CB(ack_skb)->sacked);
1738         struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1739         struct tcp_sack_block sp[TCP_NUM_SACKS];
1740         struct tcp_sack_block *cache;
1741         struct tcp_sacktag_state state;
1742         struct sk_buff *skb;
1743         int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1744         int used_sacks;
1745         int found_dup_sack = 0;
1746         int i, j;
1747         int first_sack_index;
1748
1749         state.flag = 0;
1750         state.reord = tp->packets_out;
1751
1752         if (!tp->sacked_out) {
1753                 if (WARN_ON(tp->fackets_out))
1754                         tp->fackets_out = 0;
1755                 tcp_highest_sack_reset(sk);
1756         }
1757
1758         found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1759                                          num_sacks, prior_snd_una);
1760         if (found_dup_sack)
1761                 state.flag |= FLAG_DSACKING_ACK;
1762
1763         /* Eliminate too old ACKs, but take into
1764          * account more or less fresh ones, they can
1765          * contain valid SACK info.
1766          */
1767         if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1768                 return 0;
1769
1770         if (!tp->packets_out)
1771                 goto out;
1772
1773         used_sacks = 0;
1774         first_sack_index = 0;
1775         for (i = 0; i < num_sacks; i++) {
1776                 int dup_sack = !i && found_dup_sack;
1777
1778                 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1779                 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1780
1781                 if (!tcp_is_sackblock_valid(tp, dup_sack,
1782                                             sp[used_sacks].start_seq,
1783                                             sp[used_sacks].end_seq)) {
1784                         int mib_idx;
1785
1786                         if (dup_sack) {
1787                                 if (!tp->undo_marker)
1788                                         mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1789                                 else
1790                                         mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1791                         } else {
1792                                 /* Don't count olds caused by ACK reordering */
1793                                 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1794                                     !after(sp[used_sacks].end_seq, tp->snd_una))
1795                                         continue;
1796                                 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1797                         }
1798
1799                         NET_INC_STATS_BH(sock_net(sk), mib_idx);
1800                         if (i == 0)
1801                                 first_sack_index = -1;
1802                         continue;
1803                 }
1804
1805                 /* Ignore very old stuff early */
1806                 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1807                         continue;
1808
1809                 used_sacks++;
1810         }
1811
1812         /* order SACK blocks to allow in order walk of the retrans queue */
1813         for (i = used_sacks - 1; i > 0; i--) {
1814                 for (j = 0; j < i; j++) {
1815                         if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1816                                 swap(sp[j], sp[j + 1]);
1817
1818                                 /* Track where the first SACK block goes to */
1819                                 if (j == first_sack_index)
1820                                         first_sack_index = j + 1;
1821                         }
1822                 }
1823         }
1824
1825         skb = tcp_write_queue_head(sk);
1826         state.fack_count = 0;
1827         i = 0;
1828
1829         if (!tp->sacked_out) {
1830                 /* It's already past, so skip checking against it */
1831                 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1832         } else {
1833                 cache = tp->recv_sack_cache;
1834                 /* Skip empty blocks in at head of the cache */
1835                 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1836                        !cache->end_seq)
1837                         cache++;
1838         }
1839
1840         while (i < used_sacks) {
1841                 u32 start_seq = sp[i].start_seq;
1842                 u32 end_seq = sp[i].end_seq;
1843                 int dup_sack = (found_dup_sack && (i == first_sack_index));
1844                 struct tcp_sack_block *next_dup = NULL;
1845
1846                 if (found_dup_sack && ((i + 1) == first_sack_index))
1847                         next_dup = &sp[i + 1];
1848
1849                 /* Event "B" in the comment above. */
1850                 if (after(end_seq, tp->high_seq))
1851                         state.flag |= FLAG_DATA_LOST;
1852
1853                 /* Skip too early cached blocks */
1854                 while (tcp_sack_cache_ok(tp, cache) &&
1855                        !before(start_seq, cache->end_seq))
1856                         cache++;
1857
1858                 /* Can skip some work by looking recv_sack_cache? */
1859                 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1860                     after(end_seq, cache->start_seq)) {
1861
1862                         /* Head todo? */
1863                         if (before(start_seq, cache->start_seq)) {
1864                                 skb = tcp_sacktag_skip(skb, sk, &state,
1865                                                        start_seq);
1866                                 skb = tcp_sacktag_walk(skb, sk, next_dup,
1867                                                        &state,
1868                                                        start_seq,
1869                                                        cache->start_seq,
1870                                                        dup_sack);
1871                         }
1872
1873                         /* Rest of the block already fully processed? */
1874                         if (!after(end_seq, cache->end_seq))
1875                                 goto advance_sp;
1876
1877                         skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1878                                                        &state,
1879                                                        cache->end_seq);
1880
1881                         /* ...tail remains todo... */
1882                         if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1883                                 /* ...but better entrypoint exists! */
1884                                 skb = tcp_highest_sack(sk);
1885                                 if (skb == NULL)
1886                                         break;
1887                                 state.fack_count = tp->fackets_out;
1888                                 cache++;
1889                                 goto walk;
1890                         }
1891
1892                         skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
1893                         /* Check overlap against next cached too (past this one already) */
1894                         cache++;
1895                         continue;
1896                 }
1897
1898                 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1899                         skb = tcp_highest_sack(sk);
1900                         if (skb == NULL)
1901                                 break;
1902                         state.fack_count = tp->fackets_out;
1903                 }
1904                 skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
1905
1906 walk:
1907                 skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
1908                                        start_seq, end_seq, dup_sack);
1909
1910 advance_sp:
1911                 /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1912                  * due to in-order walk
1913                  */
1914                 if (after(end_seq, tp->frto_highmark))
1915                         state.flag &= ~FLAG_ONLY_ORIG_SACKED;
1916
1917                 i++;
1918         }
1919
1920         /* Clear the head of the cache sack blocks so we can skip it next time */
1921         for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1922                 tp->recv_sack_cache[i].start_seq = 0;
1923                 tp->recv_sack_cache[i].end_seq = 0;
1924         }
1925         for (j = 0; j < used_sacks; j++)
1926                 tp->recv_sack_cache[i++] = sp[j];
1927
1928         tcp_mark_lost_retrans(sk);
1929
1930         tcp_verify_left_out(tp);
1931
1932         if ((state.reord < tp->fackets_out) &&
1933             ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
1934             (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1935                 tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
1936
1937 out:
1938
1939 #if FASTRETRANS_DEBUG > 0
1940         WARN_ON((int)tp->sacked_out < 0);
1941         WARN_ON((int)tp->lost_out < 0);
1942         WARN_ON((int)tp->retrans_out < 0);
1943         WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1944 #endif
1945         return state.flag;
1946 }
1947
1948 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1949  * packets_out. Returns zero if sacked_out adjustement wasn't necessary.
1950  */
1951 static int tcp_limit_reno_sacked(struct tcp_sock *tp)
1952 {
1953         u32 holes;
1954
1955         holes = max(tp->lost_out, 1U);
1956         holes = min(holes, tp->packets_out);
1957
1958         if ((tp->sacked_out + holes) > tp->packets_out) {
1959                 tp->sacked_out = tp->packets_out - holes;
1960                 return 1;
1961         }
1962         return 0;
1963 }
1964
1965 /* If we receive more dupacks than we expected counting segments
1966  * in assumption of absent reordering, interpret this as reordering.
1967  * The only another reason could be bug in receiver TCP.
1968  */
1969 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1970 {
1971         struct tcp_sock *tp = tcp_sk(sk);
1972         if (tcp_limit_reno_sacked(tp))
1973                 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1974 }
1975
1976 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1977
1978 static void tcp_add_reno_sack(struct sock *sk)
1979 {
1980         struct tcp_sock *tp = tcp_sk(sk);
1981         tp->sacked_out++;
1982         tcp_check_reno_reordering(sk, 0);
1983         tcp_verify_left_out(tp);
1984 }
1985
1986 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1987
1988 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1989 {
1990         struct tcp_sock *tp = tcp_sk(sk);
1991
1992         if (acked > 0) {
1993                 /* One ACK acked hole. The rest eat duplicate ACKs. */
1994                 if (acked - 1 >= tp->sacked_out)
1995                         tp->sacked_out = 0;
1996                 else
1997                         tp->sacked_out -= acked - 1;
1998         }
1999         tcp_check_reno_reordering(sk, acked);
2000         tcp_verify_left_out(tp);
2001 }
2002
2003 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
2004 {
2005         tp->sacked_out = 0;
2006 }
2007
2008 static int tcp_is_sackfrto(const struct tcp_sock *tp)
2009 {
2010         return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp);
2011 }
2012
2013 /* F-RTO can only be used if TCP has never retransmitted anything other than
2014  * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
2015  */
2016 int tcp_use_frto(struct sock *sk)
2017 {
2018         const struct tcp_sock *tp = tcp_sk(sk);
2019         const struct inet_connection_sock *icsk = inet_csk(sk);
2020         struct sk_buff *skb;
2021
2022         if (!sysctl_tcp_frto)
2023                 return 0;
2024
2025         /* MTU probe and F-RTO won't really play nicely along currently */
2026         if (icsk->icsk_mtup.probe_size)
2027                 return 0;
2028
2029         if (tcp_is_sackfrto(tp))
2030                 return 1;
2031
2032         /* Avoid expensive walking of rexmit queue if possible */
2033         if (tp->retrans_out > 1)
2034                 return 0;
2035
2036         skb = tcp_write_queue_head(sk);
2037         if (tcp_skb_is_last(sk, skb))
2038                 return 1;
2039         skb = tcp_write_queue_next(sk, skb);    /* Skips head */
2040         tcp_for_write_queue_from(skb, sk) {
2041                 if (skb == tcp_send_head(sk))
2042                         break;
2043                 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2044                         return 0;
2045                 /* Short-circuit when first non-SACKed skb has been checked */
2046                 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2047                         break;
2048         }
2049         return 1;
2050 }
2051
2052 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
2053  * recovery a bit and use heuristics in tcp_process_frto() to detect if
2054  * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
2055  * keep retrans_out counting accurate (with SACK F-RTO, other than head
2056  * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
2057  * bits are handled if the Loss state is really to be entered (in
2058  * tcp_enter_frto_loss).
2059  *
2060  * Do like tcp_enter_loss() would; when RTO expires the second time it
2061  * does:
2062  *  "Reduce ssthresh if it has not yet been made inside this window."
2063  */
2064 void tcp_enter_frto(struct sock *sk)
2065 {
2066         const struct inet_connection_sock *icsk = inet_csk(sk);
2067         struct tcp_sock *tp = tcp_sk(sk);
2068         struct sk_buff *skb;
2069
2070         if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
2071             tp->snd_una == tp->high_seq ||
2072             ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
2073              !icsk->icsk_retransmits)) {
2074                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2075                 /* Our state is too optimistic in ssthresh() call because cwnd
2076                  * is not reduced until tcp_enter_frto_loss() when previous F-RTO
2077                  * recovery has not yet completed. Pattern would be this: RTO,
2078                  * Cumulative ACK, RTO (2xRTO for the same segment does not end
2079                  * up here twice).
2080                  * RFC4138 should be more specific on what to do, even though
2081                  * RTO is quite unlikely to occur after the first Cumulative ACK
2082                  * due to back-off and complexity of triggering events ...
2083                  */
2084                 if (tp->frto_counter) {
2085                         u32 stored_cwnd;
2086                         stored_cwnd = tp->snd_cwnd;
2087                         tp->snd_cwnd = 2;
2088                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2089                         tp->snd_cwnd = stored_cwnd;
2090                 } else {
2091                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2092                 }
2093                 /* ... in theory, cong.control module could do "any tricks" in
2094                  * ssthresh(), which means that ca_state, lost bits and lost_out
2095                  * counter would have to be faked before the call occurs. We
2096                  * consider that too expensive, unlikely and hacky, so modules
2097                  * using these in ssthresh() must deal these incompatibility
2098                  * issues if they receives CA_EVENT_FRTO and frto_counter != 0
2099                  */
2100                 tcp_ca_event(sk, CA_EVENT_FRTO);
2101         }
2102
2103         tp->undo_marker = tp->snd_una;
2104         tp->undo_retrans = 0;
2105
2106         skb = tcp_write_queue_head(sk);
2107         if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2108                 tp->undo_marker = 0;
2109         if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2110                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2111                 tp->retrans_out -= tcp_skb_pcount(skb);
2112         }
2113         tcp_verify_left_out(tp);
2114
2115         /* Too bad if TCP was application limited */
2116         tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2117
2118         /* Earlier loss recovery underway (see RFC4138; Appendix B).
2119          * The last condition is necessary at least in tp->frto_counter case.
2120          */
2121         if (tcp_is_sackfrto(tp) && (tp->frto_counter ||
2122             ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
2123             after(tp->high_seq, tp->snd_una)) {
2124                 tp->frto_highmark = tp->high_seq;
2125         } else {
2126                 tp->frto_highmark = tp->snd_nxt;
2127         }
2128         tcp_set_ca_state(sk, TCP_CA_Disorder);
2129         tp->high_seq = tp->snd_nxt;
2130         tp->frto_counter = 1;
2131 }
2132
2133 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
2134  * which indicates that we should follow the traditional RTO recovery,
2135  * i.e. mark everything lost and do go-back-N retransmission.
2136  */
2137 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
2138 {
2139         struct tcp_sock *tp = tcp_sk(sk);
2140         struct sk_buff *skb;
2141
2142         tp->lost_out = 0;
2143         tp->retrans_out = 0;
2144         if (tcp_is_reno(tp))
2145                 tcp_reset_reno_sack(tp);
2146
2147         tcp_for_write_queue(skb, sk) {
2148                 if (skb == tcp_send_head(sk))
2149                         break;
2150
2151                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2152                 /*
2153                  * Count the retransmission made on RTO correctly (only when
2154                  * waiting for the first ACK and did not get it)...
2155                  */
2156                 if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
2157                         /* For some reason this R-bit might get cleared? */
2158                         if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
2159                                 tp->retrans_out += tcp_skb_pcount(skb);
2160                         /* ...enter this if branch just for the first segment */
2161                         flag |= FLAG_DATA_ACKED;
2162                 } else {
2163                         if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2164                                 tp->undo_marker = 0;
2165                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2166                 }
2167
2168                 /* Marking forward transmissions that were made after RTO lost
2169                  * can cause unnecessary retransmissions in some scenarios,
2170                  * SACK blocks will mitigate that in some but not in all cases.
2171                  * We used to not mark them but it was causing break-ups with
2172                  * receivers that do only in-order receival.
2173                  *
2174                  * TODO: we could detect presence of such receiver and select
2175                  * different behavior per flow.
2176                  */
2177                 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2178                         TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2179                         tp->lost_out += tcp_skb_pcount(skb);
2180                         tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2181                 }
2182         }
2183         tcp_verify_left_out(tp);
2184
2185         tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
2186         tp->snd_cwnd_cnt = 0;
2187         tp->snd_cwnd_stamp = tcp_time_stamp;
2188         tp->frto_counter = 0;
2189         tp->bytes_acked = 0;
2190
2191         tp->reordering = min_t(unsigned int, tp->reordering,
2192                                sysctl_tcp_reordering);
2193         tcp_set_ca_state(sk, TCP_CA_Loss);
2194         tp->high_seq = tp->snd_nxt;
2195         TCP_ECN_queue_cwr(tp);
2196
2197         tcp_clear_all_retrans_hints(tp);
2198 }
2199
2200 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
2201 {
2202         tp->retrans_out = 0;
2203         tp->lost_out = 0;
2204
2205         tp->undo_marker = 0;
2206         tp->undo_retrans = 0;
2207 }
2208
2209 void tcp_clear_retrans(struct tcp_sock *tp)
2210 {
2211         tcp_clear_retrans_partial(tp);
2212
2213         tp->fackets_out = 0;
2214         tp->sacked_out = 0;
2215 }
2216
2217 /* Enter Loss state. If "how" is not zero, forget all SACK information
2218  * and reset tags completely, otherwise preserve SACKs. If receiver
2219  * dropped its ofo queue, we will know this due to reneging detection.
2220  */
2221 void tcp_enter_loss(struct sock *sk, int how)
2222 {
2223         const struct inet_connection_sock *icsk = inet_csk(sk);
2224         struct tcp_sock *tp = tcp_sk(sk);
2225         struct sk_buff *skb;
2226
2227         /* Reduce ssthresh if it has not yet been made inside this window. */
2228         if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
2229             (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2230                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2231                 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2232                 tcp_ca_event(sk, CA_EVENT_LOSS);
2233         }
2234         tp->snd_cwnd       = 1;
2235         tp->snd_cwnd_cnt   = 0;
2236         tp->snd_cwnd_stamp = tcp_time_stamp;
2237
2238         tp->bytes_acked = 0;
2239         tcp_clear_retrans_partial(tp);
2240
2241         if (tcp_is_reno(tp))
2242                 tcp_reset_reno_sack(tp);
2243
2244         if (!how) {
2245                 /* Push undo marker, if it was plain RTO and nothing
2246                  * was retransmitted. */
2247                 tp->undo_marker = tp->snd_una;
2248         } else {
2249                 tp->sacked_out = 0;
2250                 tp->fackets_out = 0;
2251         }
2252         tcp_clear_all_retrans_hints(tp);
2253
2254         tcp_for_write_queue(skb, sk) {
2255                 if (skb == tcp_send_head(sk))
2256                         break;
2257
2258                 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2259                         tp->undo_marker = 0;
2260                 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
2261                 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
2262                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2263                         TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2264                         tp->lost_out += tcp_skb_pcount(skb);
2265                         tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2266                 }
2267         }
2268         tcp_verify_left_out(tp);
2269
2270         tp->reordering = min_t(unsigned int, tp->reordering,
2271                                sysctl_tcp_reordering);
2272         tcp_set_ca_state(sk, TCP_CA_Loss);
2273         tp->high_seq = tp->snd_nxt;
2274         TCP_ECN_queue_cwr(tp);
2275         /* Abort F-RTO algorithm if one is in progress */
2276         tp->frto_counter = 0;
2277 }
2278
2279 /* If ACK arrived pointing to a remembered SACK, it means that our
2280  * remembered SACKs do not reflect real state of receiver i.e.
2281  * receiver _host_ is heavily congested (or buggy).
2282  *
2283  * Do processing similar to RTO timeout.
2284  */
2285 static int tcp_check_sack_reneging(struct sock *sk, int flag)
2286 {
2287         if (flag & FLAG_SACK_RENEGING) {
2288                 struct inet_connection_sock *icsk = inet_csk(sk);
2289                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2290
2291                 tcp_enter_loss(sk, 1);
2292                 icsk->icsk_retransmits++;
2293                 tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
2294                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2295                                           icsk->icsk_rto, TCP_RTO_MAX);
2296                 return 1;
2297         }
2298         return 0;
2299 }
2300
2301 static inline int tcp_fackets_out(struct tcp_sock *tp)
2302 {
2303         return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2304 }
2305
2306 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2307  * counter when SACK is enabled (without SACK, sacked_out is used for
2308  * that purpose).
2309  *
2310  * Instead, with FACK TCP uses fackets_out that includes both SACKed
2311  * segments up to the highest received SACK block so far and holes in
2312  * between them.
2313  *
2314  * With reordering, holes may still be in flight, so RFC3517 recovery
2315  * uses pure sacked_out (total number of SACKed segments) even though
2316  * it violates the RFC that uses duplicate ACKs, often these are equal
2317  * but when e.g. out-of-window ACKs or packet duplication occurs,
2318  * they differ. Since neither occurs due to loss, TCP should really
2319  * ignore them.
2320  */
2321 static inline int tcp_dupack_heuristics(struct tcp_sock *tp)
2322 {
2323         return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2324 }
2325
2326 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
2327 {
2328         return tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto;
2329 }
2330
2331 static inline int tcp_head_timedout(struct sock *sk)
2332 {
2333         struct tcp_sock *tp = tcp_sk(sk);
2334
2335         return tp->packets_out &&
2336                tcp_skb_timedout(sk, tcp_write_queue_head(sk));
2337 }
2338
2339 /* Linux NewReno/SACK/FACK/ECN state machine.
2340  * --------------------------------------
2341  *
2342  * "Open"       Normal state, no dubious events, fast path.
2343  * "Disorder"   In all the respects it is "Open",
2344  *              but requires a bit more attention. It is entered when
2345  *              we see some SACKs or dupacks. It is split of "Open"
2346  *              mainly to move some processing from fast path to slow one.
2347  * "CWR"        CWND was reduced due to some Congestion Notification event.
2348  *              It can be ECN, ICMP source quench, local device congestion.
2349  * "Recovery"   CWND was reduced, we are fast-retransmitting.
2350  * "Loss"       CWND was reduced due to RTO timeout or SACK reneging.
2351  *
2352  * tcp_fastretrans_alert() is entered:
2353  * - each incoming ACK, if state is not "Open"
2354  * - when arrived ACK is unusual, namely:
2355  *      * SACK
2356  *      * Duplicate ACK.
2357  *      * ECN ECE.
2358  *
2359  * Counting packets in flight is pretty simple.
2360  *
2361  *      in_flight = packets_out - left_out + retrans_out
2362  *
2363  *      packets_out is SND.NXT-SND.UNA counted in packets.
2364  *
2365  *      retrans_out is number of retransmitted segments.
2366  *
2367  *      left_out is number of segments left network, but not ACKed yet.
2368  *
2369  *              left_out = sacked_out + lost_out
2370  *
2371  *     sacked_out: Packets, which arrived to receiver out of order
2372  *                 and hence not ACKed. With SACKs this number is simply
2373  *                 amount of SACKed data. Even without SACKs
2374  *                 it is easy to give pretty reliable estimate of this number,
2375  *                 counting duplicate ACKs.
2376  *
2377  *       lost_out: Packets lost by network. TCP has no explicit
2378  *                 "loss notification" feedback from network (for now).
2379  *                 It means that this number can be only _guessed_.
2380  *                 Actually, it is the heuristics to predict lossage that
2381  *                 distinguishes different algorithms.
2382  *
2383  *      F.e. after RTO, when all the queue is considered as lost,
2384  *      lost_out = packets_out and in_flight = retrans_out.
2385  *
2386  *              Essentially, we have now two algorithms counting
2387  *              lost packets.
2388  *
2389  *              FACK: It is the simplest heuristics. As soon as we decided
2390  *              that something is lost, we decide that _all_ not SACKed
2391  *              packets until the most forward SACK are lost. I.e.
2392  *              lost_out = fackets_out - sacked_out and left_out = fackets_out.
2393  *              It is absolutely correct estimate, if network does not reorder
2394  *              packets. And it loses any connection to reality when reordering
2395  *              takes place. We use FACK by default until reordering
2396  *              is suspected on the path to this destination.
2397  *
2398  *              NewReno: when Recovery is entered, we assume that one segment
2399  *              is lost (classic Reno). While we are in Recovery and
2400  *              a partial ACK arrives, we assume that one more packet
2401  *              is lost (NewReno). This heuristics are the same in NewReno
2402  *              and SACK.
2403  *
2404  *  Imagine, that's all! Forget about all this shamanism about CWND inflation
2405  *  deflation etc. CWND is real congestion window, never inflated, changes
2406  *  only according to classic VJ rules.
2407  *
2408  * Really tricky (and requiring careful tuning) part of algorithm
2409  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2410  * The first determines the moment _when_ we should reduce CWND and,
2411  * hence, slow down forward transmission. In fact, it determines the moment
2412  * when we decide that hole is caused by loss, rather than by a reorder.
2413  *
2414  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2415  * holes, caused by lost packets.
2416  *
2417  * And the most logically complicated part of algorithm is undo
2418  * heuristics. We detect false retransmits due to both too early
2419  * fast retransmit (reordering) and underestimated RTO, analyzing
2420  * timestamps and D-SACKs. When we detect that some segments were
2421  * retransmitted by mistake and CWND reduction was wrong, we undo
2422  * window reduction and abort recovery phase. This logic is hidden
2423  * inside several functions named tcp_try_undo_<something>.
2424  */
2425
2426 /* This function decides, when we should leave Disordered state
2427  * and enter Recovery phase, reducing congestion window.
2428  *
2429  * Main question: may we further continue forward transmission
2430  * with the same cwnd?
2431  */
2432 static int tcp_time_to_recover(struct sock *sk)
2433 {
2434         struct tcp_sock *tp = tcp_sk(sk);
2435         __u32 packets_out;
2436
2437         /* Do not perform any recovery during F-RTO algorithm */
2438         if (tp->frto_counter)
2439                 return 0;
2440
2441         /* Trick#1: The loss is proven. */
2442         if (tp->lost_out)
2443                 return 1;
2444
2445         /* Not-A-Trick#2 : Classic rule... */
2446         if (tcp_dupack_heuristics(tp) > tp->reordering)
2447                 return 1;
2448
2449         /* Trick#3 : when we use RFC2988 timer restart, fast
2450          * retransmit can be triggered by timeout of queue head.
2451          */
2452         if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2453                 return 1;
2454
2455         /* Trick#4: It is still not OK... But will it be useful to delay
2456          * recovery more?
2457          */
2458         packets_out = tp->packets_out;
2459         if (packets_out <= tp->reordering &&
2460             tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2461             !tcp_may_send_now(sk)) {
2462                 /* We have nothing to send. This connection is limited
2463                  * either by receiver window or by application.
2464                  */
2465                 return 1;
2466         }
2467
2468         /* If a thin stream is detected, retransmit after first
2469          * received dupack. Employ only if SACK is supported in order
2470          * to avoid possible corner-case series of spurious retransmissions
2471          * Use only if there are no unsent data.
2472          */
2473         if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2474             tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2475             tcp_is_sack(tp) && !tcp_send_head(sk))
2476                 return 1;
2477
2478         return 0;
2479 }
2480
2481 /* New heuristics: it is possible only after we switched to restart timer
2482  * each time when something is ACKed. Hence, we can detect timed out packets
2483  * during fast retransmit without falling to slow start.
2484  *
2485  * Usefulness of this as is very questionable, since we should know which of
2486  * the segments is the next to timeout which is relatively expensive to find
2487  * in general case unless we add some data structure just for that. The
2488  * current approach certainly won't find the right one too often and when it
2489  * finally does find _something_ it usually marks large part of the window
2490  * right away (because a retransmission with a larger timestamp blocks the
2491  * loop from advancing). -ij
2492  */
2493 static void tcp_timeout_skbs(struct sock *sk)
2494 {
2495         struct tcp_sock *tp = tcp_sk(sk);
2496         struct sk_buff *skb;
2497
2498         if (!tcp_is_fack(tp) || !tcp_head_timedout(sk))
2499                 return;
2500
2501         skb = tp->scoreboard_skb_hint;
2502         if (tp->scoreboard_skb_hint == NULL)
2503                 skb = tcp_write_queue_head(sk);
2504
2505         tcp_for_write_queue_from(skb, sk) {
2506                 if (skb == tcp_send_head(sk))
2507                         break;
2508                 if (!tcp_skb_timedout(sk, skb))
2509                         break;
2510
2511                 tcp_skb_mark_lost(tp, skb);
2512         }
2513
2514         tp->scoreboard_skb_hint = skb;
2515
2516         tcp_verify_left_out(tp);
2517 }
2518
2519 /* Mark head of queue up as lost. With RFC3517 SACK, the packets is
2520  * is against sacked "cnt", otherwise it's against facked "cnt"
2521  */
2522 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2523 {
2524         struct tcp_sock *tp = tcp_sk(sk);
2525         struct sk_buff *skb;
2526         int cnt, oldcnt;
2527         int err;
2528         unsigned int mss;
2529
2530         WARN_ON(packets > tp->packets_out);
2531         if (tp->lost_skb_hint) {
2532                 skb = tp->lost_skb_hint;
2533                 cnt = tp->lost_cnt_hint;
2534                 /* Head already handled? */
2535                 if (mark_head && skb != tcp_write_queue_head(sk))
2536                         return;
2537         } else {
2538                 skb = tcp_write_queue_head(sk);
2539                 cnt = 0;
2540         }
2541
2542         tcp_for_write_queue_from(skb, sk) {
2543                 if (skb == tcp_send_head(sk))
2544                         break;
2545                 /* TODO: do this better */
2546                 /* this is not the most efficient way to do this... */
2547                 tp->lost_skb_hint = skb;
2548                 tp->lost_cnt_hint = cnt;
2549
2550                 if (after(TCP_SKB_CB(skb)->end_seq, tp->high_seq))
2551                         break;
2552
2553                 oldcnt = cnt;
2554                 if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2555                     (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2556                         cnt += tcp_skb_pcount(skb);
2557
2558                 if (cnt > packets) {
2559                         if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2560                             (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2561                             (oldcnt >= packets))
2562                                 break;
2563
2564                         mss = skb_shinfo(skb)->gso_size;
2565                         err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2566                         if (err < 0)
2567                                 break;
2568                         cnt = packets;
2569                 }
2570
2571                 tcp_skb_mark_lost(tp, skb);
2572
2573                 if (mark_head)
2574                         break;
2575         }
2576         tcp_verify_left_out(tp);
2577 }
2578
2579 /* Account newly detected lost packet(s) */
2580
2581 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2582 {
2583         struct tcp_sock *tp = tcp_sk(sk);
2584
2585         if (tcp_is_reno(tp)) {
2586                 tcp_mark_head_lost(sk, 1, 1);
2587         } else if (tcp_is_fack(tp)) {
2588                 int lost = tp->fackets_out - tp->reordering;
2589                 if (lost <= 0)
2590                         lost = 1;
2591                 tcp_mark_head_lost(sk, lost, 0);
2592         } else {
2593                 int sacked_upto = tp->sacked_out - tp->reordering;
2594                 if (sacked_upto >= 0)
2595                         tcp_mark_head_lost(sk, sacked_upto, 0);
2596                 else if (fast_rexmit)
2597                         tcp_mark_head_lost(sk, 1, 1);
2598         }
2599
2600         tcp_timeout_skbs(sk);
2601 }
2602
2603 /* CWND moderation, preventing bursts due to too big ACKs
2604  * in dubious situations.
2605  */
2606 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2607 {
2608         tp->snd_cwnd = min(tp->snd_cwnd,
2609                            tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2610         tp->snd_cwnd_stamp = tcp_time_stamp;
2611 }
2612
2613 /* Lower bound on congestion window is slow start threshold
2614  * unless congestion avoidance choice decides to overide it.
2615  */
2616 static inline u32 tcp_cwnd_min(const struct sock *sk)
2617 {
2618         const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2619
2620         return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2621 }
2622
2623 /* Decrease cwnd each second ack. */
2624 static void tcp_cwnd_down(struct sock *sk, int flag)
2625 {
2626         struct tcp_sock *tp = tcp_sk(sk);
2627         int decr = tp->snd_cwnd_cnt + 1;
2628
2629         if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) ||
2630             (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) {
2631                 tp->snd_cwnd_cnt = decr & 1;
2632                 decr >>= 1;
2633
2634                 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2635                         tp->snd_cwnd -= decr;
2636
2637                 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2638                 tp->snd_cwnd_stamp = tcp_time_stamp;
2639         }
2640 }
2641
2642 /* Nothing was retransmitted or returned timestamp is less
2643  * than timestamp of the first retransmission.
2644  */
2645 static inline int tcp_packet_delayed(struct tcp_sock *tp)
2646 {
2647         return !tp->retrans_stamp ||
2648                 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2649                  before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2650 }
2651
2652 /* Undo procedures. */
2653
2654 #if FASTRETRANS_DEBUG > 1
2655 static void DBGUNDO(struct sock *sk, const char *msg)
2656 {
2657         struct tcp_sock *tp = tcp_sk(sk);
2658         struct inet_sock *inet = inet_sk(sk);
2659
2660         if (sk->sk_family == AF_INET) {
2661                 printk(KERN_DEBUG "Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2662                        msg,
2663                        &inet->inet_daddr, ntohs(inet->inet_dport),
2664                        tp->snd_cwnd, tcp_left_out(tp),
2665                        tp->snd_ssthresh, tp->prior_ssthresh,
2666                        tp->packets_out);
2667         }
2668 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
2669         else if (sk->sk_family == AF_INET6) {
2670                 struct ipv6_pinfo *np = inet6_sk(sk);
2671                 printk(KERN_DEBUG "Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2672                        msg,
2673                        &np->daddr, ntohs(inet->inet_dport),
2674                        tp->snd_cwnd, tcp_left_out(tp),
2675                        tp->snd_ssthresh, tp->prior_ssthresh,
2676                        tp->packets_out);
2677         }
2678 #endif
2679 }
2680 #else
2681 #define DBGUNDO(x...) do { } while (0)
2682 #endif
2683
2684 static void tcp_undo_cwr(struct sock *sk, const bool undo_ssthresh)
2685 {
2686         struct tcp_sock *tp = tcp_sk(sk);
2687
2688         if (tp->prior_ssthresh) {
2689                 const struct inet_connection_sock *icsk = inet_csk(sk);
2690
2691                 if (icsk->icsk_ca_ops->undo_cwnd)
2692                         tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2693                 else
2694                         tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2695
2696                 if (undo_ssthresh && tp->prior_ssthresh > tp->snd_ssthresh) {
2697                         tp->snd_ssthresh = tp->prior_ssthresh;
2698                         TCP_ECN_withdraw_cwr(tp);
2699                 }
2700         } else {
2701                 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2702         }
2703         tp->snd_cwnd_stamp = tcp_time_stamp;
2704 }
2705
2706 static inline int tcp_may_undo(struct tcp_sock *tp)
2707 {
2708         return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2709 }
2710
2711 /* People celebrate: "We love our President!" */
2712 static int tcp_try_undo_recovery(struct sock *sk)
2713 {
2714         struct tcp_sock *tp = tcp_sk(sk);
2715
2716         if (tcp_may_undo(tp)) {
2717                 int mib_idx;
2718
2719                 /* Happy end! We did not retransmit anything
2720                  * or our original transmission succeeded.
2721                  */
2722                 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2723                 tcp_undo_cwr(sk, true);
2724                 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2725                         mib_idx = LINUX_MIB_TCPLOSSUNDO;
2726                 else
2727                         mib_idx = LINUX_MIB_TCPFULLUNDO;
2728
2729                 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2730                 tp->undo_marker = 0;
2731         }
2732         if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2733                 /* Hold old state until something *above* high_seq
2734                  * is ACKed. For Reno it is MUST to prevent false
2735                  * fast retransmits (RFC2582). SACK TCP is safe. */
2736                 tcp_moderate_cwnd(tp);
2737                 return 1;
2738         }
2739         tcp_set_ca_state(sk, TCP_CA_Open);
2740         return 0;
2741 }
2742
2743 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2744 static void tcp_try_undo_dsack(struct sock *sk)
2745 {
2746         struct tcp_sock *tp = tcp_sk(sk);
2747
2748         if (tp->undo_marker && !tp->undo_retrans) {
2749                 DBGUNDO(sk, "D-SACK");
2750                 tcp_undo_cwr(sk, true);
2751                 tp->undo_marker = 0;
2752                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2753         }
2754 }
2755
2756 /* We can clear retrans_stamp when there are no retransmissions in the
2757  * window. It would seem that it is trivially available for us in
2758  * tp->retrans_out, however, that kind of assumptions doesn't consider
2759  * what will happen if errors occur when sending retransmission for the
2760  * second time. ...It could the that such segment has only
2761  * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2762  * the head skb is enough except for some reneging corner cases that
2763  * are not worth the effort.
2764  *
2765  * Main reason for all this complexity is the fact that connection dying
2766  * time now depends on the validity of the retrans_stamp, in particular,
2767  * that successive retransmissions of a segment must not advance
2768  * retrans_stamp under any conditions.
2769  */
2770 static int tcp_any_retrans_done(struct sock *sk)
2771 {
2772         struct tcp_sock *tp = tcp_sk(sk);
2773         struct sk_buff *skb;
2774
2775         if (tp->retrans_out)
2776                 return 1;
2777
2778         skb = tcp_write_queue_head(sk);
2779         if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2780                 return 1;
2781
2782         return 0;
2783 }
2784
2785 /* Undo during fast recovery after partial ACK. */
2786
2787 static int tcp_try_undo_partial(struct sock *sk, int acked)
2788 {
2789         struct tcp_sock *tp = tcp_sk(sk);
2790         /* Partial ACK arrived. Force Hoe's retransmit. */
2791         int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2792
2793         if (tcp_may_undo(tp)) {
2794                 /* Plain luck! Hole if filled with delayed
2795                  * packet, rather than with a retransmit.
2796                  */
2797                 if (!tcp_any_retrans_done(sk))
2798                         tp->retrans_stamp = 0;
2799
2800                 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2801
2802                 DBGUNDO(sk, "Hoe");
2803                 tcp_undo_cwr(sk, false);
2804                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2805
2806                 /* So... Do not make Hoe's retransmit yet.
2807                  * If the first packet was delayed, the rest
2808                  * ones are most probably delayed as well.
2809                  */
2810                 failed = 0;
2811         }
2812         return failed;
2813 }
2814
2815 /* Undo during loss recovery after partial ACK. */
2816 static int tcp_try_undo_loss(struct sock *sk)
2817 {
2818         struct tcp_sock *tp = tcp_sk(sk);
2819
2820         if (tcp_may_undo(tp)) {
2821                 struct sk_buff *skb;
2822                 tcp_for_write_queue(skb, sk) {
2823                         if (skb == tcp_send_head(sk))
2824                                 break;
2825                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2826                 }
2827
2828                 tcp_clear_all_retrans_hints(tp);
2829
2830                 DBGUNDO(sk, "partial loss");
2831                 tp->lost_out = 0;
2832                 tcp_undo_cwr(sk, true);
2833                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2834                 inet_csk(sk)->icsk_retransmits = 0;
2835                 tp->undo_marker = 0;
2836                 if (tcp_is_sack(tp))
2837                         tcp_set_ca_state(sk, TCP_CA_Open);
2838                 return 1;
2839         }
2840         return 0;
2841 }
2842
2843 static inline void tcp_complete_cwr(struct sock *sk)
2844 {
2845         struct tcp_sock *tp = tcp_sk(sk);
2846         /* Do not moderate cwnd if it's already undone in cwr or recovery */
2847         if (tp->undo_marker && tp->snd_cwnd > tp->snd_ssthresh) {
2848                 tp->snd_cwnd = tp->snd_ssthresh;
2849                 tp->snd_cwnd_stamp = tcp_time_stamp;
2850         }
2851         tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2852 }
2853
2854 static void tcp_try_keep_open(struct sock *sk)
2855 {
2856         struct tcp_sock *tp = tcp_sk(sk);
2857         int state = TCP_CA_Open;
2858
2859         if (tcp_left_out(tp) || tcp_any_retrans_done(sk) || tp->undo_marker)
2860                 state = TCP_CA_Disorder;
2861
2862         if (inet_csk(sk)->icsk_ca_state != state) {
2863                 tcp_set_ca_state(sk, state);
2864                 tp->high_seq = tp->snd_nxt;
2865         }
2866 }
2867
2868 static void tcp_try_to_open(struct sock *sk, int flag)
2869 {
2870         struct tcp_sock *tp = tcp_sk(sk);
2871
2872         tcp_verify_left_out(tp);
2873
2874         if (!tp->frto_counter && !tcp_any_retrans_done(sk))
2875                 tp->retrans_stamp = 0;
2876
2877         if (flag & FLAG_ECE)
2878                 tcp_enter_cwr(sk, 1);
2879
2880         if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2881                 tcp_try_keep_open(sk);
2882                 tcp_moderate_cwnd(tp);
2883         } else {
2884                 tcp_cwnd_down(sk, flag);
2885         }
2886 }
2887
2888 static void tcp_mtup_probe_failed(struct sock *sk)
2889 {
2890         struct inet_connection_sock *icsk = inet_csk(sk);
2891
2892         icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2893         icsk->icsk_mtup.probe_size = 0;
2894 }
2895
2896 static void tcp_mtup_probe_success(struct sock *sk)
2897 {
2898         struct tcp_sock *tp = tcp_sk(sk);
2899         struct inet_connection_sock *icsk = inet_csk(sk);
2900
2901         /* FIXME: breaks with very large cwnd */
2902         tp->prior_ssthresh = tcp_current_ssthresh(sk);
2903         tp->snd_cwnd = tp->snd_cwnd *
2904                        tcp_mss_to_mtu(sk, tp->mss_cache) /
2905                        icsk->icsk_mtup.probe_size;
2906         tp->snd_cwnd_cnt = 0;
2907         tp->snd_cwnd_stamp = tcp_time_stamp;
2908         tp->snd_ssthresh = tcp_current_ssthresh(sk);
2909
2910         icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2911         icsk->icsk_mtup.probe_size = 0;
2912         tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2913 }
2914
2915 /* Do a simple retransmit without using the backoff mechanisms in
2916  * tcp_timer. This is used for path mtu discovery.
2917  * The socket is already locked here.
2918  */
2919 void tcp_simple_retransmit(struct sock *sk)
2920 {
2921         const struct inet_connection_sock *icsk = inet_csk(sk);
2922         struct tcp_sock *tp = tcp_sk(sk);
2923         struct sk_buff *skb;
2924         unsigned int mss = tcp_current_mss(sk);
2925         u32 prior_lost = tp->lost_out;
2926
2927         tcp_for_write_queue(skb, sk) {
2928                 if (skb == tcp_send_head(sk))
2929                         break;
2930                 if (tcp_skb_seglen(skb) > mss &&
2931                     !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2932                         if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2933                                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2934                                 tp->retrans_out -= tcp_skb_pcount(skb);
2935                         }
2936                         tcp_skb_mark_lost_uncond_verify(tp, skb);
2937                 }
2938         }
2939
2940         tcp_clear_retrans_hints_partial(tp);
2941
2942         if (prior_lost == tp->lost_out)
2943                 return;
2944
2945         if (tcp_is_reno(tp))
2946                 tcp_limit_reno_sacked(tp);
2947
2948         tcp_verify_left_out(tp);
2949
2950         /* Don't muck with the congestion window here.
2951          * Reason is that we do not increase amount of _data_
2952          * in network, but units changed and effective
2953          * cwnd/ssthresh really reduced now.
2954          */
2955         if (icsk->icsk_ca_state != TCP_CA_Loss) {
2956                 tp->high_seq = tp->snd_nxt;
2957                 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2958                 tp->prior_ssthresh = 0;
2959                 tp->undo_marker = 0;
2960                 tcp_set_ca_state(sk, TCP_CA_Loss);
2961         }
2962         tcp_xmit_retransmit_queue(sk);
2963 }
2964 EXPORT_SYMBOL(tcp_simple_retransmit);
2965
2966 /* Process an event, which can update packets-in-flight not trivially.
2967  * Main goal of this function is to calculate new estimate for left_out,
2968  * taking into account both packets sitting in receiver's buffer and
2969  * packets lost by network.
2970  *
2971  * Besides that it does CWND reduction, when packet loss is detected
2972  * and changes state of machine.
2973  *
2974  * It does _not_ decide what to send, it is made in function
2975  * tcp_xmit_retransmit_queue().
2976  */
2977 static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked, int flag)
2978 {
2979         struct inet_connection_sock *icsk = inet_csk(sk);
2980         struct tcp_sock *tp = tcp_sk(sk);
2981         int is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
2982         int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2983                                     (tcp_fackets_out(tp) > tp->reordering));
2984         int fast_rexmit = 0, mib_idx;
2985
2986         if (WARN_ON(!tp->packets_out && tp->sacked_out))
2987                 tp->sacked_out = 0;
2988         if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2989                 tp->fackets_out = 0;
2990
2991         /* Now state machine starts.
2992          * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2993         if (flag & FLAG_ECE)
2994                 tp->prior_ssthresh = 0;
2995
2996         /* B. In all the states check for reneging SACKs. */
2997         if (tcp_check_sack_reneging(sk, flag))
2998                 return;
2999
3000         /* C. Process data loss notification, provided it is valid. */
3001         if (tcp_is_fack(tp) && (flag & FLAG_DATA_LOST) &&
3002             before(tp->snd_una, tp->high_seq) &&
3003             icsk->icsk_ca_state != TCP_CA_Open &&
3004             tp->fackets_out > tp->reordering) {
3005                 tcp_mark_head_lost(sk, tp->fackets_out - tp->reordering, 0);
3006                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSS);
3007         }
3008
3009         /* D. Check consistency of the current state. */
3010         tcp_verify_left_out(tp);
3011
3012         /* E. Check state exit conditions. State can be terminated
3013          *    when high_seq is ACKed. */
3014         if (icsk->icsk_ca_state == TCP_CA_Open) {
3015                 WARN_ON(tp->retrans_out != 0);
3016                 tp->retrans_stamp = 0;
3017         } else if (!before(tp->snd_una, tp->high_seq)) {
3018                 switch (icsk->icsk_ca_state) {
3019                 case TCP_CA_Loss:
3020                         icsk->icsk_retransmits = 0;
3021                         if (tcp_try_undo_recovery(sk))
3022                                 return;
3023                         break;
3024
3025                 case TCP_CA_CWR:
3026                         /* CWR is to be held something *above* high_seq
3027                          * is ACKed for CWR bit to reach receiver. */
3028                         if (tp->snd_una != tp->high_seq) {
3029                                 tcp_complete_cwr(sk);
3030                                 tcp_set_ca_state(sk, TCP_CA_Open);
3031                         }
3032                         break;
3033
3034                 case TCP_CA_Disorder:
3035                         tcp_try_undo_dsack(sk);
3036                         if (!tp->undo_marker ||
3037                             /* For SACK case do not Open to allow to undo
3038                              * catching for all duplicate ACKs. */
3039                             tcp_is_reno(tp) || tp->snd_una != tp->high_seq) {
3040                                 tp->undo_marker = 0;
3041                                 tcp_set_ca_state(sk, TCP_CA_Open);
3042                         }
3043                         break;
3044
3045                 case TCP_CA_Recovery:
3046                         if (tcp_is_reno(tp))
3047                                 tcp_reset_reno_sack(tp);
3048                         if (tcp_try_undo_recovery(sk))
3049                                 return;
3050                         tcp_complete_cwr(sk);
3051                         break;
3052                 }
3053         }
3054
3055         /* F. Process state. */
3056         switch (icsk->icsk_ca_state) {
3057         case TCP_CA_Recovery:
3058                 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
3059                         if (tcp_is_reno(tp) && is_dupack)
3060                                 tcp_add_reno_sack(sk);
3061                 } else
3062                         do_lost = tcp_try_undo_partial(sk, pkts_acked);
3063                 break;
3064         case TCP_CA_Loss:
3065                 if (flag & FLAG_DATA_ACKED)
3066                         icsk->icsk_retransmits = 0;
3067                 if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
3068                         tcp_reset_reno_sack(tp);
3069                 if (!tcp_try_undo_loss(sk)) {
3070                         tcp_moderate_cwnd(tp);
3071                         tcp_xmit_retransmit_queue(sk);
3072                         return;
3073                 }
3074                 if (icsk->icsk_ca_state != TCP_CA_Open)
3075                         return;
3076                 /* Loss is undone; fall through to processing in Open state. */
3077         default:
3078                 if (tcp_is_reno(tp)) {
3079                         if (flag & FLAG_SND_UNA_ADVANCED)
3080                                 tcp_reset_reno_sack(tp);
3081                         if (is_dupack)
3082                                 tcp_add_reno_sack(sk);
3083                 }
3084
3085                 if (icsk->icsk_ca_state == TCP_CA_Disorder)
3086                         tcp_try_undo_dsack(sk);
3087
3088                 if (!tcp_time_to_recover(sk)) {
3089                         tcp_try_to_open(sk, flag);
3090                         return;
3091                 }
3092
3093                 /* MTU probe failure: don't reduce cwnd */
3094                 if (icsk->icsk_ca_state < TCP_CA_CWR &&
3095                     icsk->icsk_mtup.probe_size &&
3096                     tp->snd_una == tp->mtu_probe.probe_seq_start) {
3097                         tcp_mtup_probe_failed(sk);
3098                         /* Restores the reduction we did in tcp_mtup_probe() */
3099                         tp->snd_cwnd++;
3100                         tcp_simple_retransmit(sk);
3101                         return;
3102                 }
3103
3104                 /* Otherwise enter Recovery state */
3105
3106                 if (tcp_is_reno(tp))
3107                         mib_idx = LINUX_MIB_TCPRENORECOVERY;
3108                 else
3109                         mib_idx = LINUX_MIB_TCPSACKRECOVERY;
3110
3111                 NET_INC_STATS_BH(sock_net(sk), mib_idx);
3112
3113                 tp->high_seq = tp->snd_nxt;
3114                 tp->prior_ssthresh = 0;
3115                 tp->undo_marker = tp->snd_una;
3116                 tp->undo_retrans = tp->retrans_out;
3117
3118                 if (icsk->icsk_ca_state < TCP_CA_CWR) {
3119                         if (!(flag & FLAG_ECE))
3120                                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
3121                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
3122                         TCP_ECN_queue_cwr(tp);
3123                 }
3124
3125                 tp->bytes_acked = 0;
3126                 tp->snd_cwnd_cnt = 0;
3127                 tcp_set_ca_state(sk, TCP_CA_Recovery);
3128                 fast_rexmit = 1;
3129         }
3130
3131         if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
3132                 tcp_update_scoreboard(sk, fast_rexmit);
3133         tcp_cwnd_down(sk, flag);
3134         tcp_xmit_retransmit_queue(sk);
3135 }
3136
3137 static void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt)
3138 {
3139         tcp_rtt_estimator(sk, seq_rtt);
3140         tcp_set_rto(sk);
3141         inet_csk(sk)->icsk_backoff = 0;
3142 }
3143
3144 /* Read draft-ietf-tcplw-high-performance before mucking
3145  * with this code. (Supersedes RFC1323)
3146  */
3147 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
3148 {
3149         /* RTTM Rule: A TSecr value received in a segment is used to
3150          * update the averaged RTT measurement only if the segment
3151          * acknowledges some new data, i.e., only if it advances the
3152          * left edge of the send window.
3153          *
3154          * See draft-ietf-tcplw-high-performance-00, section 3.3.
3155          * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
3156          *
3157          * Changed: reset backoff as soon as we see the first valid sample.
3158          * If we do not, we get strongly overestimated rto. With timestamps
3159          * samples are accepted even from very old segments: f.e., when rtt=1
3160          * increases to 8, we retransmit 5 times and after 8 seconds delayed
3161          * answer arrives rto becomes 120 seconds! If at least one of segments
3162          * in window is lost... Voila.                          --ANK (010210)
3163          */
3164         struct tcp_sock *tp = tcp_sk(sk);
3165
3166         tcp_valid_rtt_meas(sk, tcp_time_stamp - tp->rx_opt.rcv_tsecr);
3167 }
3168
3169 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
3170 {
3171         /* We don't have a timestamp. Can only use
3172          * packets that are not retransmitted to determine
3173          * rtt estimates. Also, we must not reset the
3174          * backoff for rto until we get a non-retransmitted
3175          * packet. This allows us to deal with a situation
3176          * where the network delay has increased suddenly.
3177          * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
3178          */
3179
3180         if (flag & FLAG_RETRANS_DATA_ACKED)
3181                 return;
3182
3183         tcp_valid_rtt_meas(sk, seq_rtt);
3184 }
3185
3186 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
3187                                       const s32 seq_rtt)
3188 {
3189         const struct tcp_sock *tp = tcp_sk(sk);
3190         /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
3191         if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3192                 tcp_ack_saw_tstamp(sk, flag);
3193         else if (seq_rtt >= 0)
3194                 tcp_ack_no_tstamp(sk, seq_rtt, flag);
3195 }
3196
3197 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
3198 {
3199         const struct inet_connection_sock *icsk = inet_csk(sk);
3200         icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
3201         tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
3202 }
3203
3204 /* Restart timer after forward progress on connection.
3205  * RFC2988 recommends to restart timer to now+rto.
3206  */
3207 static void tcp_rearm_rto(struct sock *sk)
3208 {
3209         struct tcp_sock *tp = tcp_sk(sk);
3210
3211         if (!tp->packets_out) {
3212                 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3213         } else {
3214                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3215                                           inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3216         }
3217 }
3218
3219 /* If we get here, the whole TSO packet has not been acked. */
3220 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3221 {
3222         struct tcp_sock *tp = tcp_sk(sk);
3223         u32 packets_acked;
3224
3225         BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3226
3227         packets_acked = tcp_skb_pcount(skb);
3228         if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3229                 return 0;
3230         packets_acked -= tcp_skb_pcount(skb);
3231
3232         if (packets_acked) {
3233                 BUG_ON(tcp_skb_pcount(skb) == 0);
3234                 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3235         }
3236
3237         return packets_acked;
3238 }
3239
3240 /* Remove acknowledged frames from the retransmission queue. If our packet
3241  * is before the ack sequence we can discard it as it's confirmed to have
3242  * arrived at the other end.
3243  */
3244 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3245                                u32 prior_snd_una)
3246 {
3247         struct tcp_sock *tp = tcp_sk(sk);
3248         const struct inet_connection_sock *icsk = inet_csk(sk);
3249         struct sk_buff *skb;
3250         u32 now = tcp_time_stamp;
3251         int fully_acked = 1;
3252         int flag = 0;
3253         u32 pkts_acked = 0;
3254         u32 reord = tp->packets_out;
3255         u32 prior_sacked = tp->sacked_out;
3256         s32 seq_rtt = -1;
3257         s32 ca_seq_rtt = -1;
3258         ktime_t last_ackt = net_invalid_timestamp();
3259
3260         while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3261                 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3262                 u32 acked_pcount;
3263                 u8 sacked = scb->sacked;
3264
3265                 /* Determine how many packets and what bytes were acked, tso and else */
3266                 if (after(scb->end_seq, tp->snd_una)) {
3267                         if (tcp_skb_pcount(skb) == 1 ||
3268                             !after(tp->snd_una, scb->seq))
3269                                 break;
3270
3271                         acked_pcount = tcp_tso_acked(sk, skb);
3272                         if (!acked_pcount)
3273                                 break;
3274
3275                         fully_acked = 0;
3276                 } else {
3277                         acked_pcount = tcp_skb_pcount(skb);
3278                 }
3279
3280                 if (sacked & TCPCB_RETRANS) {
3281                         if (sacked & TCPCB_SACKED_RETRANS)
3282                                 tp->retrans_out -= acked_pcount;
3283                         flag |= FLAG_RETRANS_DATA_ACKED;
3284                         ca_seq_rtt = -1;
3285                         seq_rtt = -1;
3286                         if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
3287                                 flag |= FLAG_NONHEAD_RETRANS_ACKED;
3288                 } else {
3289                         ca_seq_rtt = now - scb->when;
3290                         last_ackt = skb->tstamp;
3291                         if (seq_rtt < 0) {
3292                                 seq_rtt = ca_seq_rtt;
3293                         }
3294                         if (!(sacked & TCPCB_SACKED_ACKED))
3295                                 reord = min(pkts_acked, reord);
3296                 }
3297
3298                 if (sacked & TCPCB_SACKED_ACKED)
3299                         tp->sacked_out -= acked_pcount;
3300                 if (sacked & TCPCB_LOST)
3301                         tp->lost_out -= acked_pcount;
3302
3303                 tp->packets_out -= acked_pcount;
3304                 pkts_acked += acked_pcount;
3305
3306                 /* Initial outgoing SYN's get put onto the write_queue
3307                  * just like anything else we transmit.  It is not
3308                  * true data, and if we misinform our callers that
3309                  * this ACK acks real data, we will erroneously exit
3310                  * connection startup slow start one packet too
3311                  * quickly.  This is severely frowned upon behavior.
3312                  */
3313                 if (!(scb->flags & TCPHDR_SYN)) {
3314                         flag |= FLAG_DATA_ACKED;
3315                 } else {
3316                         flag |= FLAG_SYN_ACKED;
3317                         tp->retrans_stamp = 0;
3318                 }
3319
3320                 if (!fully_acked)
3321                         break;
3322
3323                 tcp_unlink_write_queue(skb, sk);
3324                 sk_wmem_free_skb(sk, skb);
3325                 tp->scoreboard_skb_hint = NULL;
3326                 if (skb == tp->retransmit_skb_hint)
3327                         tp->retransmit_skb_hint = NULL;
3328                 if (skb == tp->lost_skb_hint)
3329                         tp->lost_skb_hint = NULL;
3330         }
3331
3332         if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3333                 tp->snd_up = tp->snd_una;
3334
3335         if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3336                 flag |= FLAG_SACK_RENEGING;
3337
3338         if (flag & FLAG_ACKED) {
3339                 const struct tcp_congestion_ops *ca_ops
3340                         = inet_csk(sk)->icsk_ca_ops;
3341
3342                 if (unlikely(icsk->icsk_mtup.probe_size &&
3343                              !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3344                         tcp_mtup_probe_success(sk);
3345                 }
3346
3347                 tcp_ack_update_rtt(sk, flag, seq_rtt);
3348                 tcp_rearm_rto(sk);
3349
3350                 if (tcp_is_reno(tp)) {
3351                         tcp_remove_reno_sacks(sk, pkts_acked);
3352                 } else {
3353                         int delta;
3354
3355                         /* Non-retransmitted hole got filled? That's reordering */
3356                         if (reord < prior_fackets)
3357                                 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3358
3359                         delta = tcp_is_fack(tp) ? pkts_acked :
3360                                                   prior_sacked - tp->sacked_out;
3361                         tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3362                 }
3363
3364                 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3365
3366                 if (ca_ops->pkts_acked) {
3367                         s32 rtt_us = -1;
3368
3369                         /* Is the ACK triggering packet unambiguous? */
3370                         if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
3371                                 /* High resolution needed and available? */
3372                                 if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
3373                                     !ktime_equal(last_ackt,
3374                                                  net_invalid_timestamp()))
3375                                         rtt_us = ktime_us_delta(ktime_get_real(),
3376                                                                 last_ackt);
3377                                 else if (ca_seq_rtt >= 0)
3378                                         rtt_us = jiffies_to_usecs(ca_seq_rtt);
3379                         }
3380
3381                         ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
3382                 }
3383         }
3384
3385 #if FASTRETRANS_DEBUG > 0
3386         WARN_ON((int)tp->sacked_out < 0);
3387         WARN_ON((int)tp->lost_out < 0);
3388         WARN_ON((int)tp->retrans_out < 0);
3389         if (!tp->packets_out && tcp_is_sack(tp)) {
3390                 icsk = inet_csk(sk);
3391                 if (tp->lost_out) {
3392                         printk(KERN_DEBUG "Leak l=%u %d\n",
3393                                tp->lost_out, icsk->icsk_ca_state);
3394                         tp->lost_out = 0;
3395                 }
3396                 if (tp->sacked_out) {
3397                         printk(KERN_DEBUG "Leak s=%u %d\n",
3398                                tp->sacked_out, icsk->icsk_ca_state);
3399                         tp->sacked_out = 0;
3400                 }
3401                 if (tp->retrans_out) {
3402                         printk(KERN_DEBUG "Leak r=%u %d\n",
3403                                tp->retrans_out, icsk->icsk_ca_state);
3404                         tp->retrans_out = 0;
3405                 }
3406         }
3407 #endif
3408         return flag;
3409 }
3410
3411 static void tcp_ack_probe(struct sock *sk)
3412 {
3413         const struct tcp_sock *tp = tcp_sk(sk);
3414         struct inet_connection_sock *icsk = inet_csk(sk);
3415
3416         /* Was it a usable window open? */
3417
3418         if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3419                 icsk->icsk_backoff = 0;
3420                 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3421                 /* Socket must be waked up by subsequent tcp_data_snd_check().
3422                  * This function is not for random using!
3423                  */
3424         } else {
3425                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3426                                           min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3427                                           TCP_RTO_MAX);
3428         }
3429 }
3430
3431 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
3432 {
3433         return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3434                 inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3435 }
3436
3437 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3438 {
3439         const struct tcp_sock *tp = tcp_sk(sk);
3440         return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
3441                 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
3442 }
3443
3444 /* Check that window update is acceptable.
3445  * The function assumes that snd_una<=ack<=snd_next.
3446  */
3447 static inline int tcp_may_update_window(const struct tcp_sock *tp,
3448                                         const u32 ack, const u32 ack_seq,
3449                                         const u32 nwin)
3450 {
3451         return  after(ack, tp->snd_una) ||
3452                 after(ack_seq, tp->snd_wl1) ||
3453                 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3454 }
3455
3456 /* Update our send window.
3457  *
3458  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3459  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3460  */
3461 static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack,
3462                                  u32 ack_seq)
3463 {
3464         struct tcp_sock *tp = tcp_sk(sk);
3465         int flag = 0;
3466         u32 nwin = ntohs(tcp_hdr(skb)->window);
3467
3468         if (likely(!tcp_hdr(skb)->syn))
3469                 nwin <<= tp->rx_opt.snd_wscale;
3470
3471         if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3472                 flag |= FLAG_WIN_UPDATE;
3473                 tcp_update_wl(tp, ack_seq);
3474
3475                 if (tp->snd_wnd != nwin) {
3476                         tp->snd_wnd = nwin;
3477
3478                         /* Note, it is the only place, where
3479                          * fast path is recovered for sending TCP.
3480                          */
3481                         tp->pred_flags = 0;
3482                         tcp_fast_path_check(sk);
3483
3484                         if (nwin > tp->max_window) {
3485                                 tp->max_window = nwin;
3486                                 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3487                         }
3488                 }
3489         }
3490
3491         tp->snd_una = ack;
3492
3493         return flag;
3494 }
3495
3496 /* A very conservative spurious RTO response algorithm: reduce cwnd and
3497  * continue in congestion avoidance.
3498  */
3499 static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
3500 {
3501         tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
3502         tp->snd_cwnd_cnt = 0;
3503         tp->bytes_acked = 0;
3504         TCP_ECN_queue_cwr(tp);
3505         tcp_moderate_cwnd(tp);
3506 }
3507
3508 /* A conservative spurious RTO response algorithm: reduce cwnd using
3509  * rate halving and continue in congestion avoidance.
3510  */
3511 static void tcp_ratehalving_spur_to_response(struct sock *sk)
3512 {
3513         tcp_enter_cwr(sk, 0);
3514 }
3515
3516 static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3517 {
3518         if (flag & FLAG_ECE)
3519                 tcp_ratehalving_spur_to_response(sk);
3520         else
3521                 tcp_undo_cwr(sk, true);
3522 }
3523
3524 /* F-RTO spurious RTO detection algorithm (RFC4138)
3525  *
3526  * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3527  * comments). State (ACK number) is kept in frto_counter. When ACK advances
3528  * window (but not to or beyond highest sequence sent before RTO):
3529  *   On First ACK,  send two new segments out.
3530  *   On Second ACK, RTO was likely spurious. Do spurious response (response
3531  *                  algorithm is not part of the F-RTO detection algorithm
3532  *                  given in RFC4138 but can be selected separately).
3533  * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3534  * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3535  * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3536  * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3537  *
3538  * Rationale: if the RTO was spurious, new ACKs should arrive from the
3539  * original window even after we transmit two new data segments.
3540  *
3541  * SACK version:
3542  *   on first step, wait until first cumulative ACK arrives, then move to
3543  *   the second step. In second step, the next ACK decides.
3544  *
3545  * F-RTO is implemented (mainly) in four functions:
3546  *   - tcp_use_frto() is used to determine if TCP is can use F-RTO
3547  *   - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3548  *     called when tcp_use_frto() showed green light
3549  *   - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3550  *   - tcp_enter_frto_loss() is called if there is not enough evidence
3551  *     to prove that the RTO is indeed spurious. It transfers the control
3552  *     from F-RTO to the conventional RTO recovery
3553  */
3554 static int tcp_process_frto(struct sock *sk, int flag)
3555 {
3556         struct tcp_sock *tp = tcp_sk(sk);
3557
3558         tcp_verify_left_out(tp);
3559
3560         /* Duplicate the behavior from Loss state (fastretrans_alert) */
3561         if (flag & FLAG_DATA_ACKED)
3562                 inet_csk(sk)->icsk_retransmits = 0;
3563
3564         if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
3565             ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
3566                 tp->undo_marker = 0;
3567
3568         if (!before(tp->snd_una, tp->frto_highmark)) {
3569                 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
3570                 return 1;
3571         }
3572
3573         if (!tcp_is_sackfrto(tp)) {
3574                 /* RFC4138 shortcoming in step 2; should also have case c):
3575                  * ACK isn't duplicate nor advances window, e.g., opposite dir
3576                  * data, winupdate
3577                  */
3578                 if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
3579                         return 1;
3580
3581                 if (!(flag & FLAG_DATA_ACKED)) {
3582                         tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
3583                                             flag);
3584                         return 1;
3585                 }
3586         } else {
3587                 if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
3588                         /* Prevent sending of new data. */
3589                         tp->snd_cwnd = min(tp->snd_cwnd,
3590                                            tcp_packets_in_flight(tp));
3591                         return 1;
3592                 }
3593
3594                 if ((tp->frto_counter >= 2) &&
3595                     (!(flag & FLAG_FORWARD_PROGRESS) ||
3596                      ((flag & FLAG_DATA_SACKED) &&
3597                       !(flag & FLAG_ONLY_ORIG_SACKED)))) {
3598                         /* RFC4138 shortcoming (see comment above) */
3599                         if (!(flag & FLAG_FORWARD_PROGRESS) &&
3600                             (flag & FLAG_NOT_DUP))
3601                                 return 1;
3602
3603                         tcp_enter_frto_loss(sk, 3, flag);
3604                         return 1;
3605                 }
3606         }
3607
3608         if (tp->frto_counter == 1) {
3609                 /* tcp_may_send_now needs to see updated state */
3610                 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
3611                 tp->frto_counter = 2;
3612
3613                 if (!tcp_may_send_now(sk))
3614                         tcp_enter_frto_loss(sk, 2, flag);
3615
3616                 return 1;
3617         } else {
3618                 switch (sysctl_tcp_frto_response) {
3619                 case 2:
3620                         tcp_undo_spur_to_response(sk, flag);
3621                         break;
3622                 case 1:
3623                         tcp_conservative_spur_to_response(tp);
3624                         break;
3625                 default:
3626                         tcp_ratehalving_spur_to_response(sk);
3627                         break;
3628                 }
3629                 tp->frto_counter = 0;
3630                 tp->undo_marker = 0;
3631                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSPURIOUSRTOS);
3632         }
3633         return 0;
3634 }
3635
3636 /* This routine deals with incoming acks, but not outgoing ones. */
3637 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
3638 {
3639         struct inet_connection_sock *icsk = inet_csk(sk);
3640         struct tcp_sock *tp = tcp_sk(sk);
3641         u32 prior_snd_una = tp->snd_una;
3642         u32 ack_seq = TCP_SKB_CB(skb)->seq;
3643         u32 ack = TCP_SKB_CB(skb)->ack_seq;
3644         u32 prior_in_flight;
3645         u32 prior_fackets;
3646         int prior_packets;
3647         int frto_cwnd = 0;
3648
3649         /* If the ack is older than previous acks
3650          * then we can probably ignore it.
3651          */
3652         if (before(ack, prior_snd_una))
3653                 goto old_ack;
3654
3655         /* If the ack includes data we haven't sent yet, discard
3656          * this segment (RFC793 Section 3.9).
3657          */
3658         if (after(ack, tp->snd_nxt))
3659                 goto invalid_ack;
3660
3661         if (after(ack, prior_snd_una))
3662                 flag |= FLAG_SND_UNA_ADVANCED;
3663
3664         if (sysctl_tcp_abc) {
3665                 if (icsk->icsk_ca_state < TCP_CA_CWR)
3666                         tp->bytes_acked += ack - prior_snd_una;
3667                 else if (icsk->icsk_ca_state == TCP_CA_Loss)
3668                         /* we assume just one segment left network */
3669                         tp->bytes_acked += min(ack - prior_snd_una,
3670                                                tp->mss_cache);
3671         }
3672
3673         prior_fackets = tp->fackets_out;
3674         prior_in_flight = tcp_packets_in_flight(tp);
3675
3676         if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3677                 /* Window is constant, pure forward advance.
3678                  * No more checks are required.
3679                  * Note, we use the fact that SND.UNA>=SND.WL2.
3680                  */
3681                 tcp_update_wl(tp, ack_seq);
3682                 tp->snd_una = ack;
3683                 flag |= FLAG_WIN_UPDATE;
3684
3685                 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3686
3687                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3688         } else {
3689                 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3690                         flag |= FLAG_DATA;
3691                 else
3692                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3693
3694                 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3695
3696                 if (TCP_SKB_CB(skb)->sacked)
3697                         flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3698
3699                 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3700                         flag |= FLAG_ECE;
3701
3702                 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3703         }
3704
3705         /* We passed data and got it acked, remove any soft error
3706          * log. Something worked...
3707          */
3708         sk->sk_err_soft = 0;
3709         icsk->icsk_probes_out = 0;
3710         tp->rcv_tstamp = tcp_time_stamp;
3711         prior_packets = tp->packets_out;
3712         if (!prior_packets)
3713                 goto no_queue;
3714
3715         /* See if we can take anything off of the retransmit queue. */
3716         flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una);
3717
3718         if (tp->frto_counter)
3719                 frto_cwnd = tcp_process_frto(sk, flag);
3720         /* Guarantee sacktag reordering detection against wrap-arounds */
3721         if (before(tp->frto_highmark, tp->snd_una))
3722                 tp->frto_highmark = 0;
3723
3724         if (tcp_ack_is_dubious(sk, flag)) {
3725                 /* Advance CWND, if state allows this. */
3726                 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3727                     tcp_may_raise_cwnd(sk, flag))
3728                         tcp_cong_avoid(sk, ack, prior_in_flight);
3729                 tcp_fastretrans_alert(sk, prior_packets - tp->packets_out,
3730                                       flag);
3731         } else {
3732                 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3733                         tcp_cong_avoid(sk, ack, prior_in_flight);
3734         }
3735
3736         if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3737                 dst_confirm(__sk_dst_get(sk));
3738
3739         return 1;
3740
3741 no_queue:
3742         /* If this ack opens up a zero window, clear backoff.  It was
3743          * being used to time the probes, and is probably far higher than
3744          * it needs to be for normal retransmission.
3745          */
3746         if (tcp_send_head(sk))
3747                 tcp_ack_probe(sk);
3748         return 1;
3749
3750 invalid_ack:
3751         SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3752         return -1;
3753
3754 old_ack:
3755         if (TCP_SKB_CB(skb)->sacked) {
3756                 tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3757                 if (icsk->icsk_ca_state == TCP_CA_Open)
3758                         tcp_try_keep_open(sk);
3759         }
3760
3761         SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3762         return 0;
3763 }
3764
3765 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3766  * But, this can also be called on packets in the established flow when
3767  * the fast version below fails.
3768  */
3769 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx,
3770                        u8 **hvpp, int estab)
3771 {
3772         unsigned char *ptr;
3773         struct tcphdr *th = tcp_hdr(skb);
3774         int length = (th->doff * 4) - sizeof(struct tcphdr);
3775
3776         ptr = (unsigned char *)(th + 1);
3777         opt_rx->saw_tstamp = 0;
3778
3779         while (length > 0) {
3780                 int opcode = *ptr++;
3781                 int opsize;
3782
3783                 switch (opcode) {
3784                 case TCPOPT_EOL:
3785                         return;
3786                 case TCPOPT_NOP:        /* Ref: RFC 793 section 3.1 */
3787                         length--;
3788                         continue;
3789                 default:
3790                         opsize = *ptr++;
3791                         if (opsize < 2) /* "silly options" */
3792                                 return;
3793                         if (opsize > length)
3794                                 return; /* don't parse partial options */
3795                         switch (opcode) {
3796                         case TCPOPT_MSS:
3797                                 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3798                                         u16 in_mss = get_unaligned_be16(ptr);
3799                                         if (in_mss) {
3800                                                 if (opt_rx->user_mss &&
3801                                                     opt_rx->user_mss < in_mss)
3802                                                         in_mss = opt_rx->user_mss;
3803                                                 opt_rx->mss_clamp = in_mss;
3804                                         }
3805                                 }
3806                                 break;
3807                         case TCPOPT_WINDOW:
3808                                 if (opsize == TCPOLEN_WINDOW && th->syn &&
3809                                     !estab && sysctl_tcp_window_scaling) {
3810                                         __u8 snd_wscale = *(__u8 *)ptr;
3811                                         opt_rx->wscale_ok = 1;
3812                                         if (snd_wscale > 14) {
3813                                                 if (net_ratelimit())
3814                                                         printk(KERN_INFO "tcp_parse_options: Illegal window "
3815                                                                "scaling value %d >14 received.\n",
3816                                                                snd_wscale);
3817                                                 snd_wscale = 14;
3818                                         }
3819                                         opt_rx->snd_wscale = snd_wscale;
3820                                 }
3821                                 break;
3822                         case TCPOPT_TIMESTAMP:
3823                                 if ((opsize == TCPOLEN_TIMESTAMP) &&
3824                                     ((estab && opt_rx->tstamp_ok) ||
3825                                      (!estab && sysctl_tcp_timestamps))) {
3826                                         opt_rx->saw_tstamp = 1;
3827                                         opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3828                                         opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3829                                 }
3830                                 break;
3831                         case TCPOPT_SACK_PERM:
3832                                 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3833                                     !estab && sysctl_tcp_sack) {
3834                                         opt_rx->sack_ok = 1;
3835                                         tcp_sack_reset(opt_rx);
3836                                 }
3837                                 break;
3838
3839                         case TCPOPT_SACK:
3840                                 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3841                                    !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3842                                    opt_rx->sack_ok) {
3843                                         TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3844                                 }
3845                                 break;
3846 #ifdef CONFIG_TCP_MD5SIG
3847                         case TCPOPT_MD5SIG:
3848                                 /*
3849                                  * The MD5 Hash has already been
3850                                  * checked (see tcp_v{4,6}_do_rcv()).
3851                                  */
3852                                 break;
3853 #endif
3854                         case TCPOPT_COOKIE:
3855                                 /* This option is variable length.
3856                                  */
3857                                 switch (opsize) {
3858                                 case TCPOLEN_COOKIE_BASE:
3859                                         /* not yet implemented */
3860                                         break;
3861                                 case TCPOLEN_COOKIE_PAIR:
3862                                         /* not yet implemented */
3863                                         break;
3864                                 case TCPOLEN_COOKIE_MIN+0:
3865                                 case TCPOLEN_COOKIE_MIN+2:
3866                                 case TCPOLEN_COOKIE_MIN+4:
3867                                 case TCPOLEN_COOKIE_MIN+6:
3868                                 case TCPOLEN_COOKIE_MAX:
3869                                         /* 16-bit multiple */
3870                                         opt_rx->cookie_plus = opsize;
3871                                         *hvpp = ptr;
3872                                         break;
3873                                 default:
3874                                         /* ignore option */
3875                                         break;
3876                                 }
3877                                 break;
3878                         }
3879
3880                         ptr += opsize-2;
3881                         length -= opsize;
3882                 }
3883         }
3884 }
3885 EXPORT_SYMBOL(tcp_parse_options);
3886
3887 static int tcp_parse_aligned_timestamp(struct tcp_sock *tp, struct tcphdr *th)
3888 {
3889         __be32 *ptr = (__be32 *)(th + 1);
3890
3891         if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3892                           | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3893                 tp->rx_opt.saw_tstamp = 1;
3894                 ++ptr;
3895                 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3896                 ++ptr;
3897                 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3898                 return 1;
3899         }
3900         return 0;
3901 }
3902
3903 /* Fast parse options. This hopes to only see timestamps.
3904  * If it is wrong it falls back on tcp_parse_options().
3905  */
3906 static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
3907                                   struct tcp_sock *tp, u8 **hvpp)
3908 {
3909         /* In the spirit of fast parsing, compare doff directly to constant
3910          * values.  Because equality is used, short doff can be ignored here.
3911          */
3912         if (th->doff == (sizeof(*th) / 4)) {
3913                 tp->rx_opt.saw_tstamp = 0;
3914                 return 0;
3915         } else if (tp->rx_opt.tstamp_ok &&
3916                    th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3917                 if (tcp_parse_aligned_timestamp(tp, th))
3918                         return 1;
3919         }
3920         tcp_parse_options(skb, &tp->rx_opt, hvpp, 1);
3921         return 1;
3922 }
3923
3924 #ifdef CONFIG_TCP_MD5SIG
3925 /*
3926  * Parse MD5 Signature option
3927  */
3928 u8 *tcp_parse_md5sig_option(struct tcphdr *th)
3929 {
3930         int length = (th->doff << 2) - sizeof (*th);
3931         u8 *ptr = (u8*)(th + 1);
3932
3933         /* If the TCP option is too short, we can short cut */
3934         if (length < TCPOLEN_MD5SIG)
3935                 return NULL;
3936
3937         while (length > 0) {
3938                 int opcode = *ptr++;
3939                 int opsize;
3940
3941                 switch(opcode) {
3942                 case TCPOPT_EOL:
3943                         return NULL;
3944                 case TCPOPT_NOP:
3945                         length--;
3946                         continue;
3947                 default:
3948                         opsize = *ptr++;
3949                         if (opsize < 2 || opsize > length)
3950                                 return NULL;
3951                         if (opcode == TCPOPT_MD5SIG)
3952                                 return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3953                 }
3954                 ptr += opsize - 2;
3955                 length -= opsize;
3956         }
3957         return NULL;
3958 }
3959 EXPORT_SYMBOL(tcp_parse_md5sig_option);
3960 #endif
3961
3962 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
3963 {
3964         tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3965         tp->rx_opt.ts_recent_stamp = get_seconds();
3966 }
3967
3968 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3969 {
3970         if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3971                 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3972                  * extra check below makes sure this can only happen
3973                  * for pure ACK frames.  -DaveM
3974                  *
3975                  * Not only, also it occurs for expired timestamps.
3976                  */
3977
3978                 if (tcp_paws_check(&tp->rx_opt, 0))
3979                         tcp_store_ts_recent(tp);
3980         }
3981 }
3982
3983 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3984  *
3985  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3986  * it can pass through stack. So, the following predicate verifies that
3987  * this segment is not used for anything but congestion avoidance or
3988  * fast retransmit. Moreover, we even are able to eliminate most of such
3989  * second order effects, if we apply some small "replay" window (~RTO)
3990  * to timestamp space.
3991  *
3992  * All these measures still do not guarantee that we reject wrapped ACKs
3993  * on networks with high bandwidth, when sequence space is recycled fastly,
3994  * but it guarantees that such events will be very rare and do not affect
3995  * connection seriously. This doesn't look nice, but alas, PAWS is really
3996  * buggy extension.
3997  *
3998  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3999  * states that events when retransmit arrives after original data are rare.
4000  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4001  * the biggest problem on large power networks even with minor reordering.
4002  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4003  * up to bandwidth of 18Gigabit/sec. 8) ]
4004  */
4005
4006 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
4007 {
4008         struct tcp_sock *tp = tcp_sk(sk);
4009         struct tcphdr *th = tcp_hdr(skb);
4010         u32 seq = TCP_SKB_CB(skb)->seq;
4011         u32 ack = TCP_SKB_CB(skb)->ack_seq;
4012
4013         return (/* 1. Pure ACK with correct sequence number. */
4014                 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
4015
4016                 /* 2. ... and duplicate ACK. */
4017                 ack == tp->snd_una &&
4018
4019                 /* 3. ... and does not update window. */
4020                 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4021
4022                 /* 4. ... and sits in replay window. */
4023                 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
4024 }
4025
4026 static inline int tcp_paws_discard(const struct sock *sk,
4027                                    const struct sk_buff *skb)
4028 {
4029         const struct tcp_sock *tp = tcp_sk(sk);
4030
4031         return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4032                !tcp_disordered_ack(sk, skb);
4033 }
4034
4035 /* Check segment sequence number for validity.
4036  *
4037  * Segment controls are considered valid, if the segment
4038  * fits to the window after truncation to the window. Acceptability
4039  * of data (and SYN, FIN, of course) is checked separately.
4040  * See tcp_data_queue(), for example.
4041  *
4042  * Also, controls (RST is main one) are accepted using RCV.WUP instead
4043  * of RCV.NXT. Peer still did not advance his SND.UNA when we
4044  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4045  * (borrowed from freebsd)
4046  */
4047
4048 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
4049 {
4050         return  !before(end_seq, tp->rcv_wup) &&
4051                 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4052 }
4053
4054 /* When we get a reset we do this. */
4055 static void tcp_reset(struct sock *sk)
4056 {
4057         /* We want the right error as BSD sees it (and indeed as we do). */
4058         switch (sk->sk_state) {
4059         case TCP_SYN_SENT:
4060                 sk->sk_err = ECONNREFUSED;
4061                 break;
4062         case TCP_CLOSE_WAIT:
4063                 sk->sk_err = EPIPE;
4064                 break;
4065         case TCP_CLOSE:
4066                 return;
4067         default:
4068                 sk->sk_err = ECONNRESET;
4069         }
4070         /* This barrier is coupled with smp_rmb() in tcp_poll() */
4071         smp_wmb();
4072
4073         if (!sock_flag(sk, SOCK_DEAD))
4074                 sk->sk_error_report(sk);
4075
4076         tcp_done(sk);
4077 }
4078
4079 /*
4080  *      Process the FIN bit. This now behaves as it is supposed to work
4081  *      and the FIN takes effect when it is validly part of sequence
4082  *      space. Not before when we get holes.
4083  *
4084  *      If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4085  *      (and thence onto LAST-ACK and finally, CLOSE, we never enter
4086  *      TIME-WAIT)
4087  *
4088  *      If we are in FINWAIT-1, a received FIN indicates simultaneous
4089  *      close and we go into CLOSING (and later onto TIME-WAIT)
4090  *
4091  *      If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4092  */
4093 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
4094 {
4095         struct tcp_sock *tp = tcp_sk(sk);
4096
4097         inet_csk_schedule_ack(sk);
4098
4099         sk->sk_shutdown |= RCV_SHUTDOWN;
4100         sock_set_flag(sk, SOCK_DONE);
4101
4102         switch (sk->sk_state) {
4103         case TCP_SYN_RECV:
4104         case TCP_ESTABLISHED:
4105                 /* Move to CLOSE_WAIT */
4106                 tcp_set_state(sk, TCP_CLOSE_WAIT);
4107                 inet_csk(sk)->icsk_ack.pingpong = 1;
4108                 break;
4109
4110         case TCP_CLOSE_WAIT:
4111         case TCP_CLOSING:
4112                 /* Received a retransmission of the FIN, do
4113                  * nothing.
4114                  */
4115                 break;
4116         case TCP_LAST_ACK:
4117                 /* RFC793: Remain in the LAST-ACK state. */
4118                 break;
4119
4120         case TCP_FIN_WAIT1:
4121                 /* This case occurs when a simultaneous close
4122                  * happens, we must ack the received FIN and
4123                  * enter the CLOSING state.
4124                  */
4125                 tcp_send_ack(sk);
4126                 tcp_set_state(sk, TCP_CLOSING);
4127                 break;
4128         case TCP_FIN_WAIT2:
4129                 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4130                 tcp_send_ack(sk);
4131                 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4132                 break;
4133         default:
4134                 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4135                  * cases we should never reach this piece of code.
4136                  */
4137                 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
4138                        __func__, sk->sk_state);
4139                 break;
4140         }
4141
4142         /* It _is_ possible, that we have something out-of-order _after_ FIN.
4143          * Probably, we should reset in this case. For now drop them.
4144          */
4145         __skb_queue_purge(&tp->out_of_order_queue);
4146         if (tcp_is_sack(tp))
4147                 tcp_sack_reset(&tp->rx_opt);
4148         sk_mem_reclaim(sk);
4149
4150         if (!sock_flag(sk, SOCK_DEAD)) {
4151                 sk->sk_state_change(sk);
4152
4153                 /* Do not send POLL_HUP for half duplex close. */
4154                 if (sk->sk_shutdown == SHUTDOWN_MASK ||
4155                     sk->sk_state == TCP_CLOSE)
4156                         sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4157                 else
4158                         sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4159         }
4160 }
4161
4162 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4163                                   u32 end_seq)
4164 {
4165         if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4166                 if (before(seq, sp->start_seq))
4167                         sp->start_seq = seq;
4168                 if (after(end_seq, sp->end_seq))
4169                         sp->end_seq = end_seq;
4170                 return 1;
4171         }
4172         return 0;
4173 }
4174
4175 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4176 {
4177         struct tcp_sock *tp = tcp_sk(sk);
4178
4179         if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4180                 int mib_idx;
4181
4182                 if (before(seq, tp->rcv_nxt))
4183                         mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4184                 else
4185                         mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4186
4187                 NET_INC_STATS_BH(sock_net(sk), mib_idx);
4188
4189                 tp->rx_opt.dsack = 1;
4190                 tp->duplicate_sack[0].start_seq = seq;
4191                 tp->duplicate_sack[0].end_seq = end_seq;
4192         }
4193 }
4194
4195 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4196 {
4197         struct tcp_sock *tp = tcp_sk(sk);
4198
4199         if (!tp->rx_opt.dsack)
4200                 tcp_dsack_set(sk, seq, end_seq);
4201         else
4202                 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4203 }
4204
4205 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
4206 {
4207         struct tcp_sock *tp = tcp_sk(sk);
4208
4209         if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4210             before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4211                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4212                 tcp_enter_quickack_mode(sk);
4213
4214                 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4215                         u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4216
4217                         if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4218                                 end_seq = tp->rcv_nxt;
4219                         tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4220                 }
4221         }
4222
4223         tcp_send_ack(sk);
4224 }
4225
4226 /* These routines update the SACK block as out-of-order packets arrive or
4227  * in-order packets close up the sequence space.
4228  */
4229 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4230 {
4231         int this_sack;
4232         struct tcp_sack_block *sp = &tp->selective_acks[0];
4233         struct tcp_sack_block *swalk = sp + 1;
4234
4235         /* See if the recent change to the first SACK eats into
4236          * or hits the sequence space of other SACK blocks, if so coalesce.
4237          */
4238         for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4239                 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4240                         int i;
4241
4242                         /* Zap SWALK, by moving every further SACK up by one slot.
4243                          * Decrease num_sacks.
4244                          */
4245                         tp->rx_opt.num_sacks--;
4246                         for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4247                                 sp[i] = sp[i + 1];
4248                         continue;
4249                 }
4250                 this_sack++, swalk++;
4251         }
4252 }
4253
4254 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4255 {
4256         struct tcp_sock *tp = tcp_sk(sk);
4257         struct tcp_sack_block *sp = &tp->selective_acks[0];
4258         int cur_sacks = tp->rx_opt.num_sacks;
4259         int this_sack;
4260
4261         if (!cur_sacks)
4262                 goto new_sack;
4263
4264         for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4265                 if (tcp_sack_extend(sp, seq, end_seq)) {
4266                         /* Rotate this_sack to the first one. */
4267                         for (; this_sack > 0; this_sack--, sp--)
4268                                 swap(*sp, *(sp - 1));
4269                         if (cur_sacks > 1)
4270                                 tcp_sack_maybe_coalesce(tp);
4271                         return;
4272                 }
4273         }
4274
4275         /* Could not find an adjacent existing SACK, build a new one,
4276          * put it at the front, and shift everyone else down.  We
4277          * always know there is at least one SACK present already here.
4278          *
4279          * If the sack array is full, forget about the last one.
4280          */
4281         if (this_sack >= TCP_NUM_SACKS) {
4282                 this_sack--;
4283                 tp->rx_opt.num_sacks--;
4284                 sp--;
4285         }
4286         for (; this_sack > 0; this_sack--, sp--)
4287                 *sp = *(sp - 1);
4288
4289 new_sack:
4290         /* Build the new head SACK, and we're done. */
4291         sp->start_seq = seq;
4292         sp->end_seq = end_seq;
4293         tp->rx_opt.num_sacks++;
4294 }
4295
4296 /* RCV.NXT advances, some SACKs should be eaten. */
4297
4298 static void tcp_sack_remove(struct tcp_sock *tp)
4299 {
4300         struct tcp_sack_block *sp = &tp->selective_acks[0];
4301         int num_sacks = tp->rx_opt.num_sacks;
4302         int this_sack;
4303
4304         /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4305         if (skb_queue_empty(&tp->out_of_order_queue)) {
4306                 tp->rx_opt.num_sacks = 0;
4307                 return;
4308         }
4309
4310         for (this_sack = 0; this_sack < num_sacks;) {
4311                 /* Check if the start of the sack is covered by RCV.NXT. */
4312                 if (!before(tp->rcv_nxt, sp->start_seq)) {
4313                         int i;
4314
4315                         /* RCV.NXT must cover all the block! */
4316                         WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4317
4318                         /* Zap this SACK, by moving forward any other SACKS. */
4319                         for (i=this_sack+1; i < num_sacks; i++)
4320                                 tp->selective_acks[i-1] = tp->selective_acks[i];
4321                         num_sacks--;
4322                         continue;
4323                 }
4324                 this_sack++;
4325                 sp++;
4326         }
4327         tp->rx_opt.num_sacks = num_sacks;
4328 }
4329
4330 /* This one checks to see if we can put data from the
4331  * out_of_order queue into the receive_queue.
4332  */
4333 static void tcp_ofo_queue(struct sock *sk)
4334 {
4335         struct tcp_sock *tp = tcp_sk(sk);
4336         __u32 dsack_high = tp->rcv_nxt;
4337         struct sk_buff *skb;
4338
4339         while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4340                 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4341                         break;
4342
4343                 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4344                         __u32 dsack = dsack_high;
4345                         if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4346                                 dsack_high = TCP_SKB_CB(skb)->end_seq;
4347                         tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4348                 }
4349
4350                 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4351                         SOCK_DEBUG(sk, "ofo packet was already received\n");
4352                         __skb_unlink(skb, &tp->out_of_order_queue);
4353                         __kfree_skb(skb);
4354                         continue;
4355                 }
4356                 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4357                            tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4358                            TCP_SKB_CB(skb)->end_seq);
4359
4360                 __skb_unlink(skb, &tp->out_of_order_queue);
4361                 __skb_queue_tail(&sk->sk_receive_queue, skb);
4362                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4363                 if (tcp_hdr(skb)->fin)
4364                         tcp_fin(skb, sk, tcp_hdr(skb));
4365         }
4366 }
4367
4368 static int tcp_prune_ofo_queue(struct sock *sk);
4369 static int tcp_prune_queue(struct sock *sk);
4370
4371 static inline int tcp_try_rmem_schedule(struct sock *sk, unsigned int size)
4372 {
4373         if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4374             !sk_rmem_schedule(sk, size)) {
4375
4376                 if (tcp_prune_queue(sk) < 0)
4377                         return -1;
4378
4379                 if (!sk_rmem_schedule(sk, size)) {
4380                         if (!tcp_prune_ofo_queue(sk))
4381                                 return -1;
4382
4383                         if (!sk_rmem_schedule(sk, size))
4384                                 return -1;
4385                 }
4386         }
4387         return 0;
4388 }
4389
4390 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4391 {
4392         struct tcphdr *th = tcp_hdr(skb);
4393         struct tcp_sock *tp = tcp_sk(sk);
4394         int eaten = -1;
4395
4396         if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4397                 goto drop;
4398
4399         skb_dst_drop(skb);
4400         __skb_pull(skb, th->doff * 4);
4401
4402         TCP_ECN_accept_cwr(tp, skb);
4403
4404         tp->rx_opt.dsack = 0;
4405
4406         /*  Queue data for delivery to the user.
4407          *  Packets in sequence go to the receive queue.
4408          *  Out of sequence packets to the out_of_order_queue.
4409          */
4410         if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4411                 if (tcp_receive_window(tp) == 0)
4412                         goto out_of_window;
4413
4414                 /* Ok. In sequence. In window. */
4415                 if (tp->ucopy.task == current &&
4416                     tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4417                     sock_owned_by_user(sk) && !tp->urg_data) {
4418                         int chunk = min_t(unsigned int, skb->len,
4419                                           tp->ucopy.len);
4420
4421                         __set_current_state(TASK_RUNNING);
4422
4423                         local_bh_enable();
4424                         if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
4425                                 tp->ucopy.len -= chunk;
4426                                 tp->copied_seq += chunk;
4427                                 eaten = (chunk == skb->len);
4428                                 tcp_rcv_space_adjust(sk);
4429                         }
4430                         local_bh_disable();
4431                 }
4432
4433                 if (eaten <= 0) {
4434 queue_and_out:
4435                         if (eaten < 0 &&
4436                             tcp_try_rmem_schedule(sk, skb->truesize))
4437                                 goto drop;
4438
4439                         skb_set_owner_r(skb, sk);
4440                         __skb_queue_tail(&sk->sk_receive_queue, skb);
4441                 }
4442                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4443                 if (skb->len)
4444                         tcp_event_data_recv(sk, skb);
4445                 if (th->fin)
4446                         tcp_fin(skb, sk, th);
4447
4448                 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4449                         tcp_ofo_queue(sk);
4450
4451                         /* RFC2581. 4.2. SHOULD send immediate ACK, when
4452                          * gap in queue is filled.
4453                          */
4454                         if (skb_queue_empty(&tp->out_of_order_queue))
4455                                 inet_csk(sk)->icsk_ack.pingpong = 0;
4456                 }
4457
4458                 if (tp->rx_opt.num_sacks)
4459                         tcp_sack_remove(tp);
4460
4461                 tcp_fast_path_check(sk);
4462
4463                 if (eaten > 0)
4464                         __kfree_skb(skb);
4465                 else if (!sock_flag(sk, SOCK_DEAD))
4466                         sk->sk_data_ready(sk, 0);
4467                 return;
4468         }
4469
4470         if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4471                 /* A retransmit, 2nd most common case.  Force an immediate ack. */
4472                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4473                 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4474
4475 out_of_window:
4476                 tcp_enter_quickack_mode(sk);
4477                 inet_csk_schedule_ack(sk);
4478 drop:
4479                 __kfree_skb(skb);
4480                 return;
4481         }
4482
4483         /* Out of window. F.e. zero window probe. */
4484         if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4485                 goto out_of_window;
4486
4487         tcp_enter_quickack_mode(sk);
4488
4489         if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4490                 /* Partial packet, seq < rcv_next < end_seq */
4491                 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4492                            tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4493                            TCP_SKB_CB(skb)->end_seq);
4494
4495                 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4496
4497                 /* If window is closed, drop tail of packet. But after
4498                  * remembering D-SACK for its head made in previous line.
4499                  */
4500                 if (!tcp_receive_window(tp))
4501                         goto out_of_window;
4502                 goto queue_and_out;
4503         }
4504
4505         TCP_ECN_check_ce(tp, skb);
4506
4507         if (tcp_try_rmem_schedule(sk, skb->truesize))
4508                 goto drop;
4509
4510         /* Disable header prediction. */
4511         tp->pred_flags = 0;
4512         inet_csk_schedule_ack(sk);
4513
4514         SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4515                    tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4516
4517         skb_set_owner_r(skb, sk);
4518
4519         if (!skb_peek(&tp->out_of_order_queue)) {
4520                 /* Initial out of order segment, build 1 SACK. */
4521                 if (tcp_is_sack(tp)) {
4522                         tp->rx_opt.num_sacks = 1;
4523                         tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4524                         tp->selective_acks[0].end_seq =
4525                                                 TCP_SKB_CB(skb)->end_seq;
4526                 }
4527                 __skb_queue_head(&tp->out_of_order_queue, skb);
4528         } else {
4529                 struct sk_buff *skb1 = skb_peek_tail(&tp->out_of_order_queue);
4530                 u32 seq = TCP_SKB_CB(skb)->seq;
4531                 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4532
4533                 if (seq == TCP_SKB_CB(skb1)->end_seq) {
4534                         __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4535
4536                         if (!tp->rx_opt.num_sacks ||
4537                             tp->selective_acks[0].end_seq != seq)
4538                                 goto add_sack;
4539
4540                         /* Common case: data arrive in order after hole. */
4541                         tp->selective_acks[0].end_seq = end_seq;
4542                         return;
4543                 }
4544
4545                 /* Find place to insert this segment. */
4546                 while (1) {
4547                         if (!after(TCP_SKB_CB(skb1)->seq, seq))
4548                                 break;
4549                         if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
4550                                 skb1 = NULL;
4551                                 break;
4552                         }
4553                         skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
4554                 }
4555
4556                 /* Do skb overlap to previous one? */
4557                 if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4558                         if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4559                                 /* All the bits are present. Drop. */
4560                                 __kfree_skb(skb);
4561                                 tcp_dsack_set(sk, seq, end_seq);
4562                                 goto add_sack;
4563                         }
4564                         if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4565                                 /* Partial overlap. */
4566                                 tcp_dsack_set(sk, seq,
4567                                               TCP_SKB_CB(skb1)->end_seq);
4568                         } else {
4569                                 if (skb_queue_is_first(&tp->out_of_order_queue,
4570                                                        skb1))
4571                                         skb1 = NULL;
4572                                 else
4573                                         skb1 = skb_queue_prev(
4574                                                 &tp->out_of_order_queue,
4575                                                 skb1);
4576                         }
4577                 }
4578                 if (!skb1)
4579                         __skb_queue_head(&tp->out_of_order_queue, skb);
4580                 else
4581                         __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4582
4583                 /* And clean segments covered by new one as whole. */
4584                 while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
4585                         skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
4586
4587                         if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4588                                 break;
4589                         if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4590                                 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4591                                                  end_seq);
4592                                 break;
4593                         }
4594                         __skb_unlink(skb1, &tp->out_of_order_queue);
4595                         tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4596                                          TCP_SKB_CB(skb1)->end_seq);
4597                         __kfree_skb(skb1);
4598                 }
4599
4600 add_sack:
4601                 if (tcp_is_sack(tp))
4602                         tcp_sack_new_ofo_skb(sk, seq, end_seq);
4603         }
4604 }
4605
4606 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4607                                         struct sk_buff_head *list)
4608 {
4609         struct sk_buff *next = NULL;
4610
4611         if (!skb_queue_is_last(list, skb))
4612                 next = skb_queue_next(list, skb);
4613
4614         __skb_unlink(skb, list);
4615         __kfree_skb(skb);
4616         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4617
4618         return next;
4619 }
4620
4621 /* Collapse contiguous sequence of skbs head..tail with
4622  * sequence numbers start..end.
4623  *
4624  * If tail is NULL, this means until the end of the list.
4625  *
4626  * Segments with FIN/SYN are not collapsed (only because this
4627  * simplifies code)
4628  */
4629 static void
4630 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4631              struct sk_buff *head, struct sk_buff *tail,
4632              u32 start, u32 end)
4633 {
4634         struct sk_buff *skb, *n;
4635         bool end_of_skbs;
4636
4637         /* First, check that queue is collapsible and find
4638          * the point where collapsing can be useful. */
4639         skb = head;
4640 restart:
4641         end_of_skbs = true;
4642         skb_queue_walk_from_safe(list, skb, n) {
4643                 if (skb == tail)
4644                         break;
4645                 /* No new bits? It is possible on ofo queue. */
4646                 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4647                         skb = tcp_collapse_one(sk, skb, list);
4648                         if (!skb)
4649                                 break;
4650                         goto restart;
4651                 }
4652
4653                 /* The first skb to collapse is:
4654                  * - not SYN/FIN and
4655                  * - bloated or contains data before "start" or
4656                  *   overlaps to the next one.
4657                  */
4658                 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4659                     (tcp_win_from_space(skb->truesize) > skb->len ||
4660                      before(TCP_SKB_CB(skb)->seq, start))) {
4661                         end_of_skbs = false;
4662                         break;
4663                 }
4664
4665                 if (!skb_queue_is_last(list, skb)) {
4666                         struct sk_buff *next = skb_queue_next(list, skb);
4667                         if (next != tail &&
4668                             TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
4669                                 end_of_skbs = false;
4670                                 break;
4671                         }
4672                 }
4673
4674                 /* Decided to skip this, advance start seq. */
4675                 start = TCP_SKB_CB(skb)->end_seq;
4676         }
4677         if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4678                 return;
4679
4680         while (before(start, end)) {
4681                 struct sk_buff *nskb;
4682                 unsigned int header = skb_headroom(skb);
4683                 int copy = SKB_MAX_ORDER(header, 0);
4684
4685                 /* Too big header? This can happen with IPv6. */
4686                 if (copy < 0)
4687                         return;
4688                 if (end - start < copy)
4689                         copy = end - start;
4690                 nskb = alloc_skb(copy + header, GFP_ATOMIC);
4691                 if (!nskb)
4692                         return;
4693
4694                 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4695                 skb_set_network_header(nskb, (skb_network_header(skb) -
4696                                               skb->head));
4697                 skb_set_transport_header(nskb, (skb_transport_header(skb) -
4698                                                 skb->head));
4699                 skb_reserve(nskb, header);
4700                 memcpy(nskb->head, skb->head, header);
4701                 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4702                 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4703                 __skb_queue_before(list, skb, nskb);
4704                 skb_set_owner_r(nskb, sk);
4705
4706                 /* Copy data, releasing collapsed skbs. */
4707                 while (copy > 0) {
4708                         int offset = start - TCP_SKB_CB(skb)->seq;
4709                         int size = TCP_SKB_CB(skb)->end_seq - start;
4710
4711                         BUG_ON(offset < 0);
4712                         if (size > 0) {
4713                                 size = min(copy, size);
4714                                 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4715                                         BUG();
4716                                 TCP_SKB_CB(nskb)->end_seq += size;
4717                                 copy -= size;
4718                                 start += size;
4719                         }
4720                         if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4721                                 skb = tcp_collapse_one(sk, skb, list);
4722                                 if (!skb ||
4723                                     skb == tail ||
4724                                     tcp_hdr(skb)->syn ||
4725                                     tcp_hdr(skb)->fin)
4726                                         return;
4727                         }
4728                 }
4729         }
4730 }
4731
4732 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4733  * and tcp_collapse() them until all the queue is collapsed.
4734  */
4735 static void tcp_collapse_ofo_queue(struct sock *sk)
4736 {
4737         struct tcp_sock *tp = tcp_sk(sk);
4738         struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4739         struct sk_buff *head;
4740         u32 start, end;
4741
4742         if (skb == NULL)
4743                 return;
4744
4745         start = TCP_SKB_CB(skb)->seq;
4746         end = TCP_SKB_CB(skb)->end_seq;
4747         head = skb;
4748
4749         for (;;) {
4750                 struct sk_buff *next = NULL;
4751
4752                 if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
4753                         next = skb_queue_next(&tp->out_of_order_queue, skb);
4754                 skb = next;
4755
4756                 /* Segment is terminated when we see gap or when
4757                  * we are at the end of all the queue. */
4758                 if (!skb ||
4759                     after(TCP_SKB_CB(skb)->seq, end) ||
4760                     before(TCP_SKB_CB(skb)->end_seq, start)) {
4761                         tcp_collapse(sk, &tp->out_of_order_queue,
4762                                      head, skb, start, end);
4763                         head = skb;
4764                         if (!skb)
4765                                 break;
4766                         /* Start new segment */
4767                         start = TCP_SKB_CB(skb)->seq;
4768                         end = TCP_SKB_CB(skb)->end_seq;
4769                 } else {
4770                         if (before(TCP_SKB_CB(skb)->seq, start))
4771                                 start = TCP_SKB_CB(skb)->seq;
4772                         if (after(TCP_SKB_CB(skb)->end_seq, end))
4773                                 end = TCP_SKB_CB(skb)->end_seq;
4774                 }
4775         }
4776 }
4777
4778 /*
4779  * Purge the out-of-order queue.
4780  * Return true if queue was pruned.
4781  */
4782 static int tcp_prune_ofo_queue(struct sock *sk)
4783 {
4784         struct tcp_sock *tp = tcp_sk(sk);
4785         int res = 0;
4786
4787         if (!skb_queue_empty(&tp->out_of_order_queue)) {
4788                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4789                 __skb_queue_purge(&tp->out_of_order_queue);
4790
4791                 /* Reset SACK state.  A conforming SACK implementation will
4792                  * do the same at a timeout based retransmit.  When a connection
4793                  * is in a sad state like this, we care only about integrity
4794                  * of the connection not performance.
4795                  */
4796                 if (tp->rx_opt.sack_ok)
4797                         tcp_sack_reset(&tp->rx_opt);
4798                 sk_mem_reclaim(sk);
4799                 res = 1;
4800         }
4801         return res;
4802 }
4803
4804 /* Reduce allocated memory if we can, trying to get
4805  * the socket within its memory limits again.
4806  *
4807  * Return less than zero if we should start dropping frames
4808  * until the socket owning process reads some of the data
4809  * to stabilize the situation.
4810  */
4811 static int tcp_prune_queue(struct sock *sk)
4812 {
4813         struct tcp_sock *tp = tcp_sk(sk);
4814
4815         SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4816
4817         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4818
4819         if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4820                 tcp_clamp_window(sk);
4821         else if (tcp_memory_pressure)
4822                 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4823
4824         tcp_collapse_ofo_queue(sk);
4825         if (!skb_queue_empty(&sk->sk_receive_queue))
4826                 tcp_collapse(sk, &sk->sk_receive_queue,
4827                              skb_peek(&sk->sk_receive_queue),
4828                              NULL,
4829                              tp->copied_seq, tp->rcv_nxt);
4830         sk_mem_reclaim(sk);
4831
4832         if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4833                 return 0;
4834
4835         /* Collapsing did not help, destructive actions follow.
4836          * This must not ever occur. */
4837
4838         tcp_prune_ofo_queue(sk);
4839
4840         if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4841                 return 0;
4842
4843         /* If we are really being abused, tell the caller to silently
4844          * drop receive data on the floor.  It will get retransmitted
4845          * and hopefully then we'll have sufficient space.
4846          */
4847         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4848
4849         /* Massive buffer overcommit. */
4850         tp->pred_flags = 0;
4851         return -1;
4852 }
4853
4854 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4855  * As additional protections, we do not touch cwnd in retransmission phases,
4856  * and if application hit its sndbuf limit recently.
4857  */
4858 void tcp_cwnd_application_limited(struct sock *sk)
4859 {
4860         struct tcp_sock *tp = tcp_sk(sk);
4861
4862         if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4863             sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4864                 /* Limited by application or receiver window. */
4865                 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4866                 u32 win_used = max(tp->snd_cwnd_used, init_win);
4867                 if (win_used < tp->snd_cwnd) {
4868                         tp->snd_ssthresh = tcp_current_ssthresh(sk);
4869                         tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4870                 }
4871                 tp->snd_cwnd_used = 0;
4872         }
4873         tp->snd_cwnd_stamp = tcp_time_stamp;
4874 }
4875
4876 static int tcp_should_expand_sndbuf(struct sock *sk)
4877 {
4878         struct tcp_sock *tp = tcp_sk(sk);
4879
4880         /* If the user specified a specific send buffer setting, do
4881          * not modify it.
4882          */
4883         if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4884                 return 0;
4885
4886         /* If we are under global TCP memory pressure, do not expand.  */
4887         if (tcp_memory_pressure)
4888                 return 0;
4889
4890         /* If we are under soft global TCP memory pressure, do not expand.  */
4891         if (atomic_long_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
4892                 return 0;
4893
4894         /* If we filled the congestion window, do not expand.  */
4895         if (tp->packets_out >= tp->snd_cwnd)
4896                 return 0;
4897
4898         return 1;
4899 }
4900
4901 /* When incoming ACK allowed to free some skb from write_queue,
4902  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4903  * on the exit from tcp input handler.
4904  *
4905  * PROBLEM: sndbuf expansion does not work well with largesend.
4906  */
4907 static void tcp_new_space(struct sock *sk)
4908 {
4909         struct tcp_sock *tp = tcp_sk(sk);
4910
4911         if (tcp_should_expand_sndbuf(sk)) {
4912                 int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
4913                         MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
4914                 int demanded = max_t(unsigned int, tp->snd_cwnd,
4915                                      tp->reordering + 1);
4916                 sndmem *= 2 * demanded;
4917                 if (sndmem > sk->sk_sndbuf)
4918                         sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
4919                 tp->snd_cwnd_stamp = tcp_time_stamp;
4920         }
4921
4922         sk->sk_write_space(sk);
4923 }
4924
4925 static void tcp_check_space(struct sock *sk)
4926 {
4927         if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4928                 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4929                 if (sk->sk_socket &&
4930                     test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4931                         tcp_new_space(sk);
4932         }
4933 }
4934
4935 static inline void tcp_data_snd_check(struct sock *sk)
4936 {
4937         tcp_push_pending_frames(sk);
4938         tcp_check_space(sk);
4939 }
4940
4941 /*
4942  * Check if sending an ack is needed.
4943  */
4944 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4945 {
4946         struct tcp_sock *tp = tcp_sk(sk);
4947
4948             /* More than one full frame received... */
4949         if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
4950              /* ... and right edge of window advances far enough.
4951               * (tcp_recvmsg() will send ACK otherwise). Or...
4952               */
4953              __tcp_select_window(sk) >= tp->rcv_wnd) ||
4954             /* We ACK each frame or... */
4955             tcp_in_quickack_mode(sk) ||
4956             /* We have out of order data. */
4957             (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
4958                 /* Then ack it now */
4959                 tcp_send_ack(sk);
4960         } else {
4961                 /* Else, send delayed ack. */
4962                 tcp_send_delayed_ack(sk);
4963         }
4964 }
4965
4966 static inline void tcp_ack_snd_check(struct sock *sk)
4967 {
4968         if (!inet_csk_ack_scheduled(sk)) {
4969                 /* We sent a data segment already. */
4970                 return;
4971         }
4972         __tcp_ack_snd_check(sk, 1);
4973 }
4974
4975 /*
4976  *      This routine is only called when we have urgent data
4977  *      signaled. Its the 'slow' part of tcp_urg. It could be
4978  *      moved inline now as tcp_urg is only called from one
4979  *      place. We handle URGent data wrong. We have to - as
4980  *      BSD still doesn't use the correction from RFC961.
4981  *      For 1003.1g we should support a new option TCP_STDURG to permit
4982  *      either form (or just set the sysctl tcp_stdurg).
4983  */
4984
4985 static void tcp_check_urg(struct sock *sk, struct tcphdr *th)
4986 {
4987         struct tcp_sock *tp = tcp_sk(sk);
4988         u32 ptr = ntohs(th->urg_ptr);
4989
4990         if (ptr && !sysctl_tcp_stdurg)
4991                 ptr--;
4992         ptr += ntohl(th->seq);
4993
4994         /* Ignore urgent data that we've already seen and read. */
4995         if (after(tp->copied_seq, ptr))
4996                 return;
4997
4998         /* Do not replay urg ptr.
4999          *
5000          * NOTE: interesting situation not covered by specs.
5001          * Misbehaving sender may send urg ptr, pointing to segment,
5002          * which we already have in ofo queue. We are not able to fetch
5003          * such data and will stay in TCP_URG_NOTYET until will be eaten
5004          * by recvmsg(). Seems, we are not obliged to handle such wicked
5005          * situations. But it is worth to think about possibility of some
5006          * DoSes using some hypothetical application level deadlock.
5007          */
5008         if (before(ptr, tp->rcv_nxt))
5009                 return;
5010
5011         /* Do we already have a newer (or duplicate) urgent pointer? */
5012         if (tp->urg_data && !after(ptr, tp->urg_seq))
5013                 return;
5014
5015         /* Tell the world about our new urgent pointer. */
5016         sk_send_sigurg(sk);
5017
5018         /* We may be adding urgent data when the last byte read was
5019          * urgent. To do this requires some care. We cannot just ignore
5020          * tp->copied_seq since we would read the last urgent byte again
5021          * as data, nor can we alter copied_seq until this data arrives
5022          * or we break the semantics of SIOCATMARK (and thus sockatmark())
5023          *
5024          * NOTE. Double Dutch. Rendering to plain English: author of comment
5025          * above did something sort of  send("A", MSG_OOB); send("B", MSG_OOB);
5026          * and expect that both A and B disappear from stream. This is _wrong_.
5027          * Though this happens in BSD with high probability, this is occasional.
5028          * Any application relying on this is buggy. Note also, that fix "works"
5029          * only in this artificial test. Insert some normal data between A and B and we will
5030          * decline of BSD again. Verdict: it is better to remove to trap
5031          * buggy users.
5032          */
5033         if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5034             !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5035                 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5036                 tp->copied_seq++;
5037                 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5038                         __skb_unlink(skb, &sk->sk_receive_queue);
5039                         __kfree_skb(skb);
5040                 }
5041         }
5042
5043         tp->urg_data = TCP_URG_NOTYET;
5044         tp->urg_seq = ptr;
5045
5046         /* Disable header prediction. */
5047         tp->pred_flags = 0;
5048 }
5049
5050 /* This is the 'fast' part of urgent handling. */
5051 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
5052 {
5053         struct tcp_sock *tp = tcp_sk(sk);
5054
5055         /* Check if we get a new urgent pointer - normally not. */
5056         if (th->urg)
5057                 tcp_check_urg(sk, th);
5058
5059         /* Do we wait for any urgent data? - normally not... */
5060         if (tp->urg_data == TCP_URG_NOTYET) {
5061                 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5062                           th->syn;
5063
5064                 /* Is the urgent pointer pointing into this packet? */
5065                 if (ptr < skb->len) {
5066                         u8 tmp;
5067                         if (skb_copy_bits(skb, ptr, &tmp, 1))
5068                                 BUG();
5069                         tp->urg_data = TCP_URG_VALID | tmp;
5070                         if (!sock_flag(sk, SOCK_DEAD))
5071                                 sk->sk_data_ready(sk, 0);
5072                 }
5073         }
5074 }
5075
5076 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
5077 {
5078         struct tcp_sock *tp = tcp_sk(sk);
5079         int chunk = skb->len - hlen;
5080         int err;
5081
5082         local_bh_enable();
5083         if (skb_csum_unnecessary(skb))
5084                 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
5085         else
5086                 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
5087                                                        tp->ucopy.iov);
5088
5089         if (!err) {
5090                 tp->ucopy.len -= chunk;
5091                 tp->copied_seq += chunk;
5092                 tcp_rcv_space_adjust(sk);
5093         }
5094
5095         local_bh_disable();
5096         return err;
5097 }
5098
5099 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
5100                                             struct sk_buff *skb)
5101 {
5102         __sum16 result;
5103
5104         if (sock_owned_by_user(sk)) {
5105                 local_bh_enable();
5106                 result = __tcp_checksum_complete(skb);
5107                 local_bh_disable();
5108         } else {
5109                 result = __tcp_checksum_complete(skb);
5110         }
5111         return result;
5112 }
5113
5114 static inline int tcp_checksum_complete_user(struct sock *sk,
5115                                              struct sk_buff *skb)
5116 {
5117         return !skb_csum_unnecessary(skb) &&
5118                __tcp_checksum_complete_user(sk, skb);
5119 }
5120
5121 #ifdef CONFIG_NET_DMA
5122 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
5123                                   int hlen)
5124 {
5125         struct tcp_sock *tp = tcp_sk(sk);
5126         int chunk = skb->len - hlen;
5127         int dma_cookie;
5128         int copied_early = 0;
5129
5130         if (tp->ucopy.wakeup)
5131                 return 0;
5132
5133         if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
5134                 tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY);
5135
5136         if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
5137
5138                 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
5139                                                          skb, hlen,
5140                                                          tp->ucopy.iov, chunk,
5141                                                          tp->ucopy.pinned_list);
5142
5143                 if (dma_cookie < 0)
5144                         goto out;
5145
5146                 tp->ucopy.dma_cookie = dma_cookie;
5147                 copied_early = 1;
5148
5149                 tp->ucopy.len -= chunk;
5150                 tp->copied_seq += chunk;
5151                 tcp_rcv_space_adjust(sk);
5152
5153                 if ((tp->ucopy.len == 0) ||
5154                     (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
5155                     (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
5156                         tp->ucopy.wakeup = 1;
5157                         sk->sk_data_ready(sk, 0);
5158                 }
5159         } else if (chunk > 0) {
5160                 tp->ucopy.wakeup = 1;
5161                 sk->sk_data_ready(sk, 0);
5162         }
5163 out:
5164         return copied_early;
5165 }
5166 #endif /* CONFIG_NET_DMA */
5167
5168 /* Does PAWS and seqno based validation of an incoming segment, flags will
5169  * play significant role here.
5170  */
5171 static int tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5172                               struct tcphdr *th, int syn_inerr)
5173 {
5174         u8 *hash_location;
5175         struct tcp_sock *tp = tcp_sk(sk);
5176
5177         /* RFC1323: H1. Apply PAWS check first. */
5178         if (tcp_fast_parse_options(skb, th, tp, &hash_location) &&
5179             tp->rx_opt.saw_tstamp &&
5180             tcp_paws_discard(sk, skb)) {
5181                 if (!th->rst) {
5182                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5183                         tcp_send_dupack(sk, skb);
5184                         goto discard;
5185                 }
5186                 /* Reset is accepted even if it did not pass PAWS. */
5187         }
5188
5189         /* Step 1: check sequence number */
5190         if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5191                 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5192                  * (RST) segments are validated by checking their SEQ-fields."
5193                  * And page 69: "If an incoming segment is not acceptable,
5194                  * an acknowledgment should be sent in reply (unless the RST
5195                  * bit is set, if so drop the segment and return)".
5196                  */
5197                 if (!th->rst)
5198                         tcp_send_dupack(sk, skb);
5199                 goto discard;
5200         }
5201
5202         /* Step 2: check RST bit */
5203         if (th->rst) {
5204                 tcp_reset(sk);
5205                 goto discard;
5206         }
5207
5208         /* ts_recent update must be made after we are sure that the packet
5209          * is in window.
5210          */
5211         tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
5212
5213         /* step 3: check security and precedence [ignored] */
5214
5215         /* step 4: Check for a SYN in window. */
5216         if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5217                 if (syn_inerr)
5218                         TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5219                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONSYN);
5220                 tcp_reset(sk);
5221                 return -1;
5222         }
5223
5224         return 1;
5225
5226 discard:
5227         __kfree_skb(skb);
5228         return 0;
5229 }
5230
5231 /*
5232  *      TCP receive function for the ESTABLISHED state.
5233  *
5234  *      It is split into a fast path and a slow path. The fast path is
5235  *      disabled when:
5236  *      - A zero window was announced from us - zero window probing
5237  *        is only handled properly in the slow path.
5238  *      - Out of order segments arrived.
5239  *      - Urgent data is expected.
5240  *      - There is no buffer space left
5241  *      - Unexpected TCP flags/window values/header lengths are received
5242  *        (detected by checking the TCP header against pred_flags)
5243  *      - Data is sent in both directions. Fast path only supports pure senders
5244  *        or pure receivers (this means either the sequence number or the ack
5245  *        value must stay constant)
5246  *      - Unexpected TCP option.
5247  *
5248  *      When these conditions are not satisfied it drops into a standard
5249  *      receive procedure patterned after RFC793 to handle all cases.
5250  *      The first three cases are guaranteed by proper pred_flags setting,
5251  *      the rest is checked inline. Fast processing is turned on in
5252  *      tcp_data_queue when everything is OK.
5253  */
5254 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5255                         struct tcphdr *th, unsigned len)
5256 {
5257         struct tcp_sock *tp = tcp_sk(sk);
5258         int res;
5259
5260         /*
5261          *      Header prediction.
5262          *      The code loosely follows the one in the famous
5263          *      "30 instruction TCP receive" Van Jacobson mail.
5264          *
5265          *      Van's trick is to deposit buffers into socket queue
5266          *      on a device interrupt, to call tcp_recv function
5267          *      on the receive process context and checksum and copy
5268          *      the buffer to user space. smart...
5269          *
5270          *      Our current scheme is not silly either but we take the
5271          *      extra cost of the net_bh soft interrupt processing...
5272          *      We do checksum and copy also but from device to kernel.
5273          */
5274
5275         tp->rx_opt.saw_tstamp = 0;
5276
5277         /*      pred_flags is 0xS?10 << 16 + snd_wnd
5278          *      if header_prediction is to be made
5279          *      'S' will always be tp->tcp_header_len >> 2
5280          *      '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5281          *  turn it off (when there are holes in the receive
5282          *       space for instance)
5283          *      PSH flag is ignored.
5284          */
5285
5286         if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5287             TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5288             !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5289                 int tcp_header_len = tp->tcp_header_len;
5290
5291                 /* Timestamp header prediction: tcp_header_len
5292                  * is automatically equal to th->doff*4 due to pred_flags
5293                  * match.
5294                  */
5295
5296                 /* Check timestamp */
5297                 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5298                         /* No? Slow path! */
5299                         if (!tcp_parse_aligned_timestamp(tp, th))
5300                                 goto slow_path;
5301
5302                         /* If PAWS failed, check it more carefully in slow path */
5303                         if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5304                                 goto slow_path;
5305
5306                         /* DO NOT update ts_recent here, if checksum fails
5307                          * and timestamp was corrupted part, it will result
5308                          * in a hung connection since we will drop all
5309                          * future packets due to the PAWS test.
5310                          */
5311                 }
5312
5313                 if (len <= tcp_header_len) {
5314                         /* Bulk data transfer: sender */
5315                         if (len == tcp_header_len) {
5316                                 /* Predicted packet is in window by definition.
5317                                  * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5318                                  * Hence, check seq<=rcv_wup reduces to:
5319                                  */
5320                                 if (tcp_header_len ==
5321                                     (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5322                                     tp->rcv_nxt == tp->rcv_wup)
5323                                         tcp_store_ts_recent(tp);
5324
5325                                 /* We know that such packets are checksummed
5326                                  * on entry.
5327                                  */
5328                                 tcp_ack(sk, skb, 0);
5329                                 __kfree_skb(skb);
5330                                 tcp_data_snd_check(sk);
5331                                 return 0;
5332                         } else { /* Header too small */
5333                                 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5334                                 goto discard;
5335                         }
5336                 } else {
5337                         int eaten = 0;
5338                         int copied_early = 0;
5339
5340                         if (tp->copied_seq == tp->rcv_nxt &&
5341                             len - tcp_header_len <= tp->ucopy.len) {
5342 #ifdef CONFIG_NET_DMA
5343                                 if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
5344                                         copied_early = 1;
5345                                         eaten = 1;
5346                                 }
5347 #endif
5348                                 if (tp->ucopy.task == current &&
5349                                     sock_owned_by_user(sk) && !copied_early) {
5350                                         __set_current_state(TASK_RUNNING);
5351
5352                                         if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
5353                                                 eaten = 1;
5354                                 }
5355                                 if (eaten) {
5356                                         /* Predicted packet is in window by definition.
5357                                          * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5358                                          * Hence, check seq<=rcv_wup reduces to:
5359                                          */
5360                                         if (tcp_header_len ==
5361                                             (sizeof(struct tcphdr) +
5362                                              TCPOLEN_TSTAMP_ALIGNED) &&
5363                                             tp->rcv_nxt == tp->rcv_wup)
5364                                                 tcp_store_ts_recent(tp);
5365
5366                                         tcp_rcv_rtt_measure_ts(sk, skb);
5367
5368                                         __skb_pull(skb, tcp_header_len);
5369                                         tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5370                                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5371                                 }
5372                                 if (copied_early)
5373                                         tcp_cleanup_rbuf(sk, skb->len);
5374                         }
5375                         if (!eaten) {
5376                                 if (tcp_checksum_complete_user(sk, skb))
5377                                         goto csum_error;
5378
5379                                 /* Predicted packet is in window by definition.
5380                                  * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5381                                  * Hence, check seq<=rcv_wup reduces to:
5382                                  */
5383                                 if (tcp_header_len ==
5384                                     (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5385                                     tp->rcv_nxt == tp->rcv_wup)
5386                                         tcp_store_ts_recent(tp);
5387
5388                                 tcp_rcv_rtt_measure_ts(sk, skb);
5389
5390                                 if ((int)skb->truesize > sk->sk_forward_alloc)
5391                                         goto step5;
5392
5393                                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5394
5395                                 /* Bulk data transfer: receiver */
5396                                 __skb_pull(skb, tcp_header_len);
5397                                 __skb_queue_tail(&sk->sk_receive_queue, skb);
5398                                 skb_set_owner_r(skb, sk);
5399                                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5400                         }
5401
5402                         tcp_event_data_recv(sk, skb);
5403
5404                         if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5405                                 /* Well, only one small jumplet in fast path... */
5406                                 tcp_ack(sk, skb, FLAG_DATA);
5407                                 tcp_data_snd_check(sk);
5408                                 if (!inet_csk_ack_scheduled(sk))
5409                                         goto no_ack;
5410                         }
5411
5412                         if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
5413                                 __tcp_ack_snd_check(sk, 0);
5414 no_ack:
5415 #ifdef CONFIG_NET_DMA
5416                         if (copied_early)
5417                                 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
5418                         else
5419 #endif
5420                         if (eaten)
5421                                 __kfree_skb(skb);
5422                         else
5423                                 sk->sk_data_ready(sk, 0);
5424                         return 0;
5425                 }
5426         }
5427
5428 slow_path:
5429         if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5430                 goto csum_error;
5431
5432         /*
5433          *      Standard slow path.
5434          */
5435
5436         res = tcp_validate_incoming(sk, skb, th, 1);
5437         if (res <= 0)
5438                 return -res;
5439
5440 step5:
5441         if (th->ack && tcp_ack(sk, skb, FLAG_SLOWPATH) < 0)
5442                 goto discard;
5443
5444         tcp_rcv_rtt_measure_ts(sk, skb);
5445
5446         /* Process urgent data. */
5447         tcp_urg(sk, skb, th);
5448
5449         /* step 7: process the segment text */
5450         tcp_data_queue(sk, skb);
5451
5452         tcp_data_snd_check(sk);
5453         tcp_ack_snd_check(sk);
5454         return 0;
5455
5456 csum_error:
5457         TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5458
5459 discard:
5460         __kfree_skb(skb);
5461         return 0;
5462 }
5463 EXPORT_SYMBOL(tcp_rcv_established);
5464
5465 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5466                                          struct tcphdr *th, unsigned len)
5467 {
5468         u8 *hash_location;
5469         struct inet_connection_sock *icsk = inet_csk(sk);
5470         struct tcp_sock *tp = tcp_sk(sk);
5471         struct tcp_cookie_values *cvp = tp->cookie_values;
5472         int saved_clamp = tp->rx_opt.mss_clamp;
5473
5474         tcp_parse_options(skb, &tp->rx_opt, &hash_location, 0);
5475
5476         if (th->ack) {
5477                 /* rfc793:
5478                  * "If the state is SYN-SENT then
5479                  *    first check the ACK bit
5480                  *      If the ACK bit is set
5481                  *        If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5482                  *        a reset (unless the RST bit is set, if so drop
5483                  *        the segment and return)"
5484                  *
5485                  *  We do not send data with SYN, so that RFC-correct
5486                  *  test reduces to:
5487                  */
5488                 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
5489                         goto reset_and_undo;
5490
5491                 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5492                     !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5493                              tcp_time_stamp)) {
5494                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5495                         goto reset_and_undo;
5496                 }
5497
5498                 /* Now ACK is acceptable.
5499                  *
5500                  * "If the RST bit is set
5501                  *    If the ACK was acceptable then signal the user "error:
5502                  *    connection reset", drop the segment, enter CLOSED state,
5503                  *    delete TCB, and return."
5504                  */
5505
5506                 if (th->rst) {
5507                         tcp_reset(sk);
5508                         goto discard;
5509                 }
5510
5511                 /* rfc793:
5512                  *   "fifth, if neither of the SYN or RST bits is set then
5513                  *    drop the segment and return."
5514                  *
5515                  *    See note below!
5516                  *                                        --ANK(990513)
5517                  */
5518                 if (!th->syn)
5519                         goto discard_and_undo;
5520
5521                 /* rfc793:
5522                  *   "If the SYN bit is on ...
5523                  *    are acceptable then ...
5524                  *    (our SYN has been ACKed), change the connection
5525                  *    state to ESTABLISHED..."
5526                  */
5527
5528                 TCP_ECN_rcv_synack(tp, th);
5529
5530                 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5531                 tcp_ack(sk, skb, FLAG_SLOWPATH);
5532
5533                 /* Ok.. it's good. Set up sequence numbers and
5534                  * move to established.
5535                  */
5536                 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5537                 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5538
5539                 /* RFC1323: The window in SYN & SYN/ACK segments is
5540                  * never scaled.
5541                  */
5542                 tp->snd_wnd = ntohs(th->window);
5543                 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5544
5545                 if (!tp->rx_opt.wscale_ok) {
5546                         tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5547                         tp->window_clamp = min(tp->window_clamp, 65535U);
5548                 }
5549
5550                 if (tp->rx_opt.saw_tstamp) {
5551                         tp->rx_opt.tstamp_ok       = 1;
5552                         tp->tcp_header_len =
5553                                 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5554                         tp->advmss          -= TCPOLEN_TSTAMP_ALIGNED;
5555                         tcp_store_ts_recent(tp);
5556                 } else {
5557                         tp->tcp_header_len = sizeof(struct tcphdr);
5558                 }
5559
5560                 if (tcp_is_sack(tp) && sysctl_tcp_fack)
5561                         tcp_enable_fack(tp);
5562
5563                 tcp_mtup_init(sk);
5564                 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5565                 tcp_initialize_rcv_mss(sk);
5566
5567                 /* Remember, tcp_poll() does not lock socket!
5568                  * Change state from SYN-SENT only after copied_seq
5569                  * is initialized. */
5570                 tp->copied_seq = tp->rcv_nxt;
5571
5572                 if (cvp != NULL &&
5573                     cvp->cookie_pair_size > 0 &&
5574                     tp->rx_opt.cookie_plus > 0) {
5575                         int cookie_size = tp->rx_opt.cookie_plus
5576                                         - TCPOLEN_COOKIE_BASE;
5577                         int cookie_pair_size = cookie_size
5578                                              + cvp->cookie_desired;
5579
5580                         /* A cookie extension option was sent and returned.
5581                          * Note that each incoming SYNACK replaces the
5582                          * Responder cookie.  The initial exchange is most
5583                          * fragile, as protection against spoofing relies
5584                          * entirely upon the sequence and timestamp (above).
5585                          * This replacement strategy allows the correct pair to
5586                          * pass through, while any others will be filtered via
5587                          * Responder verification later.
5588                          */
5589                         if (sizeof(cvp->cookie_pair) >= cookie_pair_size) {
5590                                 memcpy(&cvp->cookie_pair[cvp->cookie_desired],
5591                                        hash_location, cookie_size);
5592                                 cvp->cookie_pair_size = cookie_pair_size;
5593                         }
5594                 }
5595
5596                 smp_mb();
5597                 tcp_set_state(sk, TCP_ESTABLISHED);
5598
5599                 security_inet_conn_established(sk, skb);
5600
5601                 /* Make sure socket is routed, for correct metrics.  */
5602                 icsk->icsk_af_ops->rebuild_header(sk);
5603
5604                 tcp_init_metrics(sk);
5605
5606                 tcp_init_congestion_control(sk);
5607
5608                 /* Prevent spurious tcp_cwnd_restart() on first data
5609                  * packet.
5610                  */
5611                 tp->lsndtime = tcp_time_stamp;
5612
5613                 tcp_init_buffer_space(sk);
5614
5615                 if (sock_flag(sk, SOCK_KEEPOPEN))
5616                         inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5617
5618                 if (!tp->rx_opt.snd_wscale)
5619                         __tcp_fast_path_on(tp, tp->snd_wnd);
5620                 else
5621                         tp->pred_flags = 0;
5622
5623                 if (!sock_flag(sk, SOCK_DEAD)) {
5624                         sk->sk_state_change(sk);
5625                         sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5626                 }
5627
5628                 if (sk->sk_write_pending ||
5629                     icsk->icsk_accept_queue.rskq_defer_accept ||
5630                     icsk->icsk_ack.pingpong) {
5631                         /* Save one ACK. Data will be ready after
5632                          * several ticks, if write_pending is set.
5633                          *
5634                          * It may be deleted, but with this feature tcpdumps
5635                          * look so _wonderfully_ clever, that I was not able
5636                          * to stand against the temptation 8)     --ANK
5637                          */
5638                         inet_csk_schedule_ack(sk);
5639                         icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5640                         icsk->icsk_ack.ato       = TCP_ATO_MIN;
5641                         tcp_incr_quickack(sk);
5642                         tcp_enter_quickack_mode(sk);
5643                         inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5644                                                   TCP_DELACK_MAX, TCP_RTO_MAX);
5645
5646 discard:
5647                         __kfree_skb(skb);
5648                         return 0;
5649                 } else {
5650                         tcp_send_ack(sk);
5651                 }
5652                 return -1;
5653         }
5654
5655         /* No ACK in the segment */
5656
5657         if (th->rst) {
5658                 /* rfc793:
5659                  * "If the RST bit is set
5660                  *
5661                  *      Otherwise (no ACK) drop the segment and return."
5662                  */
5663
5664                 goto discard_and_undo;
5665         }
5666
5667         /* PAWS check. */
5668         if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5669             tcp_paws_reject(&tp->rx_opt, 0))
5670                 goto discard_and_undo;
5671
5672         if (th->syn) {
5673                 /* We see SYN without ACK. It is attempt of
5674                  * simultaneous connect with crossed SYNs.
5675                  * Particularly, it can be connect to self.
5676                  */
5677                 tcp_set_state(sk, TCP_SYN_RECV);
5678
5679                 if (tp->rx_opt.saw_tstamp) {
5680                         tp->rx_opt.tstamp_ok = 1;
5681                         tcp_store_ts_recent(tp);
5682                         tp->tcp_header_len =
5683                                 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5684                 } else {
5685                         tp->tcp_header_len = sizeof(struct tcphdr);
5686                 }
5687
5688                 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5689                 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5690
5691                 /* RFC1323: The window in SYN & SYN/ACK segments is
5692                  * never scaled.
5693                  */
5694                 tp->snd_wnd    = ntohs(th->window);
5695                 tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5696                 tp->max_window = tp->snd_wnd;
5697
5698                 TCP_ECN_rcv_syn(tp, th);
5699
5700                 tcp_mtup_init(sk);
5701                 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5702                 tcp_initialize_rcv_mss(sk);
5703
5704                 tcp_send_synack(sk);
5705 #if 0
5706                 /* Note, we could accept data and URG from this segment.
5707                  * There are no obstacles to make this.
5708                  *
5709                  * However, if we ignore data in ACKless segments sometimes,
5710                  * we have no reasons to accept it sometimes.
5711                  * Also, seems the code doing it in step6 of tcp_rcv_state_process
5712                  * is not flawless. So, discard packet for sanity.
5713                  * Uncomment this return to process the data.
5714                  */
5715                 return -1;
5716 #else
5717                 goto discard;
5718 #endif
5719         }
5720         /* "fifth, if neither of the SYN or RST bits is set then
5721          * drop the segment and return."
5722          */
5723
5724 discard_and_undo:
5725         tcp_clear_options(&tp->rx_opt);
5726         tp->rx_opt.mss_clamp = saved_clamp;
5727         goto discard;
5728
5729 reset_and_undo:
5730         tcp_clear_options(&tp->rx_opt);
5731         tp->rx_opt.mss_clamp = saved_clamp;
5732         return 1;
5733 }
5734
5735 /*
5736  *      This function implements the receiving procedure of RFC 793 for
5737  *      all states except ESTABLISHED and TIME_WAIT.
5738  *      It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5739  *      address independent.
5740  */
5741
5742 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5743                           struct tcphdr *th, unsigned len)
5744 {
5745         struct tcp_sock *tp = tcp_sk(sk);
5746         struct inet_connection_sock *icsk = inet_csk(sk);
5747         int queued = 0;
5748         int res;
5749
5750         tp->rx_opt.saw_tstamp = 0;
5751
5752         switch (sk->sk_state) {
5753         case TCP_CLOSE:
5754                 goto discard;
5755
5756         case TCP_LISTEN:
5757                 if (th->ack)
5758                         return 1;
5759
5760                 if (th->rst)
5761                         goto discard;
5762
5763                 if (th->syn) {
5764                         if (th->fin)
5765                                 goto discard;
5766                         if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5767                                 return 1;
5768
5769                         /* Now we have several options: In theory there is
5770                          * nothing else in the frame. KA9Q has an option to
5771                          * send data with the syn, BSD accepts data with the
5772                          * syn up to the [to be] advertised window and
5773                          * Solaris 2.1 gives you a protocol error. For now
5774                          * we just ignore it, that fits the spec precisely
5775                          * and avoids incompatibilities. It would be nice in
5776                          * future to drop through and process the data.
5777                          *
5778                          * Now that TTCP is starting to be used we ought to
5779                          * queue this data.
5780                          * But, this leaves one open to an easy denial of
5781                          * service attack, and SYN cookies can't defend
5782                          * against this problem. So, we drop the data
5783                          * in the interest of security over speed unless
5784                          * it's still in use.
5785                          */
5786                         kfree_skb(skb);
5787                         return 0;
5788                 }
5789                 goto discard;
5790
5791         case TCP_SYN_SENT:
5792                 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5793                 if (queued >= 0)
5794                         return queued;
5795
5796                 /* Do step6 onward by hand. */
5797                 tcp_urg(sk, skb, th);
5798                 __kfree_skb(skb);
5799                 tcp_data_snd_check(sk);
5800                 return 0;
5801         }
5802
5803         res = tcp_validate_incoming(sk, skb, th, 0);
5804         if (res <= 0)
5805                 return -res;
5806
5807         /* step 5: check the ACK field */
5808         if (th->ack) {
5809                 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH) > 0;
5810
5811                 switch (sk->sk_state) {
5812                 case TCP_SYN_RECV:
5813                         if (acceptable) {
5814                                 tp->copied_seq = tp->rcv_nxt;
5815                                 smp_mb();
5816                                 tcp_set_state(sk, TCP_ESTABLISHED);
5817                                 sk->sk_state_change(sk);
5818
5819                                 /* Note, that this wakeup is only for marginal
5820                                  * crossed SYN case. Passively open sockets
5821                                  * are not waked up, because sk->sk_sleep ==
5822                                  * NULL and sk->sk_socket == NULL.
5823                                  */
5824                                 if (sk->sk_socket)
5825                                         sk_wake_async(sk,
5826                                                       SOCK_WAKE_IO, POLL_OUT);
5827
5828                                 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5829                                 tp->snd_wnd = ntohs(th->window) <<
5830                                               tp->rx_opt.snd_wscale;
5831                                 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5832
5833                                 /* tcp_ack considers this ACK as duplicate
5834                                  * and does not calculate rtt.
5835                                  * Force it here.
5836                                  */
5837                                 tcp_ack_update_rtt(sk, 0, 0);
5838
5839                                 if (tp->rx_opt.tstamp_ok)
5840                                         tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5841
5842                                 /* Make sure socket is routed, for
5843                                  * correct metrics.
5844                                  */
5845                                 icsk->icsk_af_ops->rebuild_header(sk);
5846
5847                                 tcp_init_metrics(sk);
5848
5849                                 tcp_init_congestion_control(sk);
5850
5851                                 /* Prevent spurious tcp_cwnd_restart() on
5852                                  * first data packet.
5853                                  */
5854                                 tp->lsndtime = tcp_time_stamp;
5855
5856                                 tcp_mtup_init(sk);
5857                                 tcp_initialize_rcv_mss(sk);
5858                                 tcp_init_buffer_space(sk);
5859                                 tcp_fast_path_on(tp);
5860                         } else {
5861                                 return 1;
5862                         }
5863                         break;
5864
5865                 case TCP_FIN_WAIT1:
5866                         if (tp->snd_una == tp->write_seq) {
5867                                 tcp_set_state(sk, TCP_FIN_WAIT2);
5868                                 sk->sk_shutdown |= SEND_SHUTDOWN;
5869                                 dst_confirm(__sk_dst_get(sk));
5870
5871                                 if (!sock_flag(sk, SOCK_DEAD))
5872                                         /* Wake up lingering close() */
5873                                         sk->sk_state_change(sk);
5874                                 else {
5875                                         int tmo;
5876
5877                                         if (tp->linger2 < 0 ||
5878                                             (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5879                                              after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5880                                                 tcp_done(sk);
5881                                                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5882                                                 return 1;
5883                                         }
5884
5885                                         tmo = tcp_fin_time(sk);
5886                                         if (tmo > TCP_TIMEWAIT_LEN) {
5887                                                 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5888                                         } else if (th->fin || sock_owned_by_user(sk)) {
5889                                                 /* Bad case. We could lose such FIN otherwise.
5890                                                  * It is not a big problem, but it looks confusing
5891                                                  * and not so rare event. We still can lose it now,
5892                                                  * if it spins in bh_lock_sock(), but it is really
5893                                                  * marginal case.
5894                                                  */
5895                                                 inet_csk_reset_keepalive_timer(sk, tmo);
5896                                         } else {
5897                                                 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5898                                                 goto discard;
5899                                         }
5900                                 }
5901                         }
5902                         break;
5903
5904                 case TCP_CLOSING:
5905                         if (tp->snd_una == tp->write_seq) {
5906                                 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5907                                 goto discard;
5908                         }
5909                         break;
5910
5911                 case TCP_LAST_ACK:
5912                         if (tp->snd_una == tp->write_seq) {
5913                                 tcp_update_metrics(sk);
5914                                 tcp_done(sk);
5915                                 goto discard;
5916                         }
5917                         break;
5918                 }
5919         } else
5920                 goto discard;
5921
5922         /* step 6: check the URG bit */
5923         tcp_urg(sk, skb, th);
5924
5925         /* step 7: process the segment text */
5926         switch (sk->sk_state) {
5927         case TCP_CLOSE_WAIT:
5928         case TCP_CLOSING:
5929         case TCP_LAST_ACK:
5930                 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5931                         break;
5932         case TCP_FIN_WAIT1:
5933         case TCP_FIN_WAIT2:
5934                 /* RFC 793 says to queue data in these states,
5935                  * RFC 1122 says we MUST send a reset.
5936                  * BSD 4.4 also does reset.
5937                  */
5938                 if (sk->sk_shutdown & RCV_SHUTDOWN) {
5939                         if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5940                             after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5941                                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5942                                 tcp_reset(sk);
5943                                 return 1;
5944                         }
5945                 }
5946                 /* Fall through */
5947         case TCP_ESTABLISHED:
5948                 tcp_data_queue(sk, skb);
5949                 queued = 1;
5950                 break;
5951         }
5952
5953         /* tcp_data could move socket to TIME-WAIT */
5954         if (sk->sk_state != TCP_CLOSE) {
5955                 tcp_data_snd_check(sk);
5956                 tcp_ack_snd_check(sk);
5957         }
5958
5959         if (!queued) {
5960 discard:
5961                 __kfree_skb(skb);
5962         }
5963         return 0;
5964 }
5965 EXPORT_SYMBOL(tcp_rcv_state_process);