f874e1811eabaca6ba6ad06bae0c7bbb19ec4f90
[firefly-linux-kernel-4.4.55.git] / net / ipv4 / fib_trie.c
1 /*
2  *   This program is free software; you can redistribute it and/or
3  *   modify it under the terms of the GNU General Public License
4  *   as published by the Free Software Foundation; either version
5  *   2 of the License, or (at your option) any later version.
6  *
7  *   Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
8  *     & Swedish University of Agricultural Sciences.
9  *
10  *   Jens Laas <jens.laas@data.slu.se> Swedish University of
11  *     Agricultural Sciences.
12  *
13  *   Hans Liss <hans.liss@its.uu.se>  Uppsala Universitet
14  *
15  * This work is based on the LPC-trie which is originally described in:
16  *
17  * An experimental study of compression methods for dynamic tries
18  * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
19  * http://www.csc.kth.se/~snilsson/software/dyntrie2/
20  *
21  *
22  * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
23  * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
24  *
25  *
26  * Code from fib_hash has been reused which includes the following header:
27  *
28  *
29  * INET         An implementation of the TCP/IP protocol suite for the LINUX
30  *              operating system.  INET is implemented using the  BSD Socket
31  *              interface as the means of communication with the user level.
32  *
33  *              IPv4 FIB: lookup engine and maintenance routines.
34  *
35  *
36  * Authors:     Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
37  *
38  *              This program is free software; you can redistribute it and/or
39  *              modify it under the terms of the GNU General Public License
40  *              as published by the Free Software Foundation; either version
41  *              2 of the License, or (at your option) any later version.
42  *
43  * Substantial contributions to this work comes from:
44  *
45  *              David S. Miller, <davem@davemloft.net>
46  *              Stephen Hemminger <shemminger@osdl.org>
47  *              Paul E. McKenney <paulmck@us.ibm.com>
48  *              Patrick McHardy <kaber@trash.net>
49  */
50
51 #define VERSION "0.409"
52
53 #include <asm/uaccess.h>
54 #include <linux/bitops.h>
55 #include <linux/types.h>
56 #include <linux/kernel.h>
57 #include <linux/mm.h>
58 #include <linux/string.h>
59 #include <linux/socket.h>
60 #include <linux/sockios.h>
61 #include <linux/errno.h>
62 #include <linux/in.h>
63 #include <linux/inet.h>
64 #include <linux/inetdevice.h>
65 #include <linux/netdevice.h>
66 #include <linux/if_arp.h>
67 #include <linux/proc_fs.h>
68 #include <linux/rcupdate.h>
69 #include <linux/skbuff.h>
70 #include <linux/netlink.h>
71 #include <linux/init.h>
72 #include <linux/list.h>
73 #include <linux/slab.h>
74 #include <linux/export.h>
75 #include <net/net_namespace.h>
76 #include <net/ip.h>
77 #include <net/protocol.h>
78 #include <net/route.h>
79 #include <net/tcp.h>
80 #include <net/sock.h>
81 #include <net/ip_fib.h>
82 #include "fib_lookup.h"
83
84 #define MAX_STAT_DEPTH 32
85
86 #define KEYLENGTH       (8*sizeof(t_key))
87 #define KEY_MAX         ((t_key)~0)
88
89 typedef unsigned int t_key;
90
91 #define IS_TNODE(n) ((n)->bits)
92 #define IS_LEAF(n) (!(n)->bits)
93
94 #define get_index(_key, _kv) (((_key) ^ (_kv)->key) >> (_kv)->pos)
95
96 struct tnode {
97         t_key key;
98         unsigned char bits;             /* 2log(KEYLENGTH) bits needed */
99         unsigned char pos;              /* 2log(KEYLENGTH) bits needed */
100         unsigned char slen;
101         struct tnode __rcu *parent;
102         struct rcu_head rcu;
103         union {
104                 /* The fields in this struct are valid if bits > 0 (TNODE) */
105                 struct {
106                         t_key empty_children; /* KEYLENGTH bits needed */
107                         t_key full_children;  /* KEYLENGTH bits needed */
108                         struct tnode __rcu *child[0];
109                 };
110                 /* This list pointer if valid if bits == 0 (LEAF) */
111                 struct hlist_head list;
112         };
113 };
114
115 struct leaf_info {
116         struct hlist_node hlist;
117         int plen;
118         u32 mask_plen; /* ntohl(inet_make_mask(plen)) */
119         struct list_head falh;
120         struct rcu_head rcu;
121 };
122
123 #ifdef CONFIG_IP_FIB_TRIE_STATS
124 struct trie_use_stats {
125         unsigned int gets;
126         unsigned int backtrack;
127         unsigned int semantic_match_passed;
128         unsigned int semantic_match_miss;
129         unsigned int null_node_hit;
130         unsigned int resize_node_skipped;
131 };
132 #endif
133
134 struct trie_stat {
135         unsigned int totdepth;
136         unsigned int maxdepth;
137         unsigned int tnodes;
138         unsigned int leaves;
139         unsigned int nullpointers;
140         unsigned int prefixes;
141         unsigned int nodesizes[MAX_STAT_DEPTH];
142 };
143
144 struct trie {
145         struct tnode __rcu *trie;
146 #ifdef CONFIG_IP_FIB_TRIE_STATS
147         struct trie_use_stats __percpu *stats;
148 #endif
149 };
150
151 static void resize(struct trie *t, struct tnode *tn);
152 static size_t tnode_free_size;
153
154 /*
155  * synchronize_rcu after call_rcu for that many pages; it should be especially
156  * useful before resizing the root node with PREEMPT_NONE configs; the value was
157  * obtained experimentally, aiming to avoid visible slowdown.
158  */
159 static const int sync_pages = 128;
160
161 static struct kmem_cache *fn_alias_kmem __read_mostly;
162 static struct kmem_cache *trie_leaf_kmem __read_mostly;
163
164 /* caller must hold RTNL */
165 #define node_parent(n) rtnl_dereference((n)->parent)
166
167 /* caller must hold RCU read lock or RTNL */
168 #define node_parent_rcu(n) rcu_dereference_rtnl((n)->parent)
169
170 /* wrapper for rcu_assign_pointer */
171 static inline void node_set_parent(struct tnode *n, struct tnode *tp)
172 {
173         if (n)
174                 rcu_assign_pointer(n->parent, tp);
175 }
176
177 #define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER((n)->parent, p)
178
179 /* This provides us with the number of children in this node, in the case of a
180  * leaf this will return 0 meaning none of the children are accessible.
181  */
182 static inline unsigned long tnode_child_length(const struct tnode *tn)
183 {
184         return (1ul << tn->bits) & ~(1ul);
185 }
186
187 /* caller must hold RTNL */
188 static inline struct tnode *tnode_get_child(const struct tnode *tn,
189                                             unsigned long i)
190 {
191         return rtnl_dereference(tn->child[i]);
192 }
193
194 /* caller must hold RCU read lock or RTNL */
195 static inline struct tnode *tnode_get_child_rcu(const struct tnode *tn,
196                                                 unsigned long i)
197 {
198         return rcu_dereference_rtnl(tn->child[i]);
199 }
200
201 /* To understand this stuff, an understanding of keys and all their bits is
202  * necessary. Every node in the trie has a key associated with it, but not
203  * all of the bits in that key are significant.
204  *
205  * Consider a node 'n' and its parent 'tp'.
206  *
207  * If n is a leaf, every bit in its key is significant. Its presence is
208  * necessitated by path compression, since during a tree traversal (when
209  * searching for a leaf - unless we are doing an insertion) we will completely
210  * ignore all skipped bits we encounter. Thus we need to verify, at the end of
211  * a potentially successful search, that we have indeed been walking the
212  * correct key path.
213  *
214  * Note that we can never "miss" the correct key in the tree if present by
215  * following the wrong path. Path compression ensures that segments of the key
216  * that are the same for all keys with a given prefix are skipped, but the
217  * skipped part *is* identical for each node in the subtrie below the skipped
218  * bit! trie_insert() in this implementation takes care of that.
219  *
220  * if n is an internal node - a 'tnode' here, the various parts of its key
221  * have many different meanings.
222  *
223  * Example:
224  * _________________________________________________________________
225  * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
226  * -----------------------------------------------------------------
227  *  31  30  29  28  27  26  25  24  23  22  21  20  19  18  17  16
228  *
229  * _________________________________________________________________
230  * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
231  * -----------------------------------------------------------------
232  *  15  14  13  12  11  10   9   8   7   6   5   4   3   2   1   0
233  *
234  * tp->pos = 22
235  * tp->bits = 3
236  * n->pos = 13
237  * n->bits = 4
238  *
239  * First, let's just ignore the bits that come before the parent tp, that is
240  * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
241  * point we do not use them for anything.
242  *
243  * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
244  * index into the parent's child array. That is, they will be used to find
245  * 'n' among tp's children.
246  *
247  * The bits from (n->pos + n->bits) to (tn->pos - 1) - "S" - are skipped bits
248  * for the node n.
249  *
250  * All the bits we have seen so far are significant to the node n. The rest
251  * of the bits are really not needed or indeed known in n->key.
252  *
253  * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
254  * n's child array, and will of course be different for each child.
255  *
256  * The rest of the bits, from 0 to (n->pos + n->bits), are completely unknown
257  * at this point.
258  */
259
260 static const int halve_threshold = 25;
261 static const int inflate_threshold = 50;
262 static const int halve_threshold_root = 15;
263 static const int inflate_threshold_root = 30;
264
265 static void __alias_free_mem(struct rcu_head *head)
266 {
267         struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
268         kmem_cache_free(fn_alias_kmem, fa);
269 }
270
271 static inline void alias_free_mem_rcu(struct fib_alias *fa)
272 {
273         call_rcu(&fa->rcu, __alias_free_mem);
274 }
275
276 #define TNODE_KMALLOC_MAX \
277         ilog2((PAGE_SIZE - sizeof(struct tnode)) / sizeof(struct tnode *))
278
279 static void __node_free_rcu(struct rcu_head *head)
280 {
281         struct tnode *n = container_of(head, struct tnode, rcu);
282
283         if (IS_LEAF(n))
284                 kmem_cache_free(trie_leaf_kmem, n);
285         else if (n->bits <= TNODE_KMALLOC_MAX)
286                 kfree(n);
287         else
288                 vfree(n);
289 }
290
291 #define node_free(n) call_rcu(&n->rcu, __node_free_rcu)
292
293 static inline void free_leaf_info(struct leaf_info *leaf)
294 {
295         kfree_rcu(leaf, rcu);
296 }
297
298 static struct tnode *tnode_alloc(size_t size)
299 {
300         if (size <= PAGE_SIZE)
301                 return kzalloc(size, GFP_KERNEL);
302         else
303                 return vzalloc(size);
304 }
305
306 static inline void empty_child_inc(struct tnode *n)
307 {
308         ++n->empty_children ? : ++n->full_children;
309 }
310
311 static inline void empty_child_dec(struct tnode *n)
312 {
313         n->empty_children-- ? : n->full_children--;
314 }
315
316 static struct tnode *leaf_new(t_key key)
317 {
318         struct tnode *l = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
319         if (l) {
320                 l->parent = NULL;
321                 /* set key and pos to reflect full key value
322                  * any trailing zeros in the key should be ignored
323                  * as the nodes are searched
324                  */
325                 l->key = key;
326                 l->slen = 0;
327                 l->pos = 0;
328                 /* set bits to 0 indicating we are not a tnode */
329                 l->bits = 0;
330
331                 INIT_HLIST_HEAD(&l->list);
332         }
333         return l;
334 }
335
336 static struct leaf_info *leaf_info_new(int plen)
337 {
338         struct leaf_info *li = kmalloc(sizeof(struct leaf_info),  GFP_KERNEL);
339         if (li) {
340                 li->plen = plen;
341                 li->mask_plen = ntohl(inet_make_mask(plen));
342                 INIT_LIST_HEAD(&li->falh);
343         }
344         return li;
345 }
346
347 static struct tnode *tnode_new(t_key key, int pos, int bits)
348 {
349         size_t sz = offsetof(struct tnode, child[1ul << bits]);
350         struct tnode *tn = tnode_alloc(sz);
351         unsigned int shift = pos + bits;
352
353         /* verify bits and pos their msb bits clear and values are valid */
354         BUG_ON(!bits || (shift > KEYLENGTH));
355
356         if (tn) {
357                 tn->parent = NULL;
358                 tn->slen = pos;
359                 tn->pos = pos;
360                 tn->bits = bits;
361                 tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0;
362                 if (bits == KEYLENGTH)
363                         tn->full_children = 1;
364                 else
365                         tn->empty_children = 1ul << bits;
366         }
367
368         pr_debug("AT %p s=%zu %zu\n", tn, sizeof(struct tnode),
369                  sizeof(struct tnode *) << bits);
370         return tn;
371 }
372
373 /* Check whether a tnode 'n' is "full", i.e. it is an internal node
374  * and no bits are skipped. See discussion in dyntree paper p. 6
375  */
376 static inline int tnode_full(const struct tnode *tn, const struct tnode *n)
377 {
378         return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n);
379 }
380
381 /* Add a child at position i overwriting the old value.
382  * Update the value of full_children and empty_children.
383  */
384 static void put_child(struct tnode *tn, unsigned long i, struct tnode *n)
385 {
386         struct tnode *chi = tnode_get_child(tn, i);
387         int isfull, wasfull;
388
389         BUG_ON(i >= tnode_child_length(tn));
390
391         /* update emptyChildren, overflow into fullChildren */
392         if (n == NULL && chi != NULL)
393                 empty_child_inc(tn);
394         if (n != NULL && chi == NULL)
395                 empty_child_dec(tn);
396
397         /* update fullChildren */
398         wasfull = tnode_full(tn, chi);
399         isfull = tnode_full(tn, n);
400
401         if (wasfull && !isfull)
402                 tn->full_children--;
403         else if (!wasfull && isfull)
404                 tn->full_children++;
405
406         if (n && (tn->slen < n->slen))
407                 tn->slen = n->slen;
408
409         rcu_assign_pointer(tn->child[i], n);
410 }
411
412 static void update_children(struct tnode *tn)
413 {
414         unsigned long i;
415
416         /* update all of the child parent pointers */
417         for (i = tnode_child_length(tn); i;) {
418                 struct tnode *inode = tnode_get_child(tn, --i);
419
420                 if (!inode)
421                         continue;
422
423                 /* Either update the children of a tnode that
424                  * already belongs to us or update the child
425                  * to point to ourselves.
426                  */
427                 if (node_parent(inode) == tn)
428                         update_children(inode);
429                 else
430                         node_set_parent(inode, tn);
431         }
432 }
433
434 static inline void put_child_root(struct tnode *tp, struct trie *t,
435                                   t_key key, struct tnode *n)
436 {
437         if (tp)
438                 put_child(tp, get_index(key, tp), n);
439         else
440                 rcu_assign_pointer(t->trie, n);
441 }
442
443 static inline void tnode_free_init(struct tnode *tn)
444 {
445         tn->rcu.next = NULL;
446 }
447
448 static inline void tnode_free_append(struct tnode *tn, struct tnode *n)
449 {
450         n->rcu.next = tn->rcu.next;
451         tn->rcu.next = &n->rcu;
452 }
453
454 static void tnode_free(struct tnode *tn)
455 {
456         struct callback_head *head = &tn->rcu;
457
458         while (head) {
459                 head = head->next;
460                 tnode_free_size += offsetof(struct tnode, child[1 << tn->bits]);
461                 node_free(tn);
462
463                 tn = container_of(head, struct tnode, rcu);
464         }
465
466         if (tnode_free_size >= PAGE_SIZE * sync_pages) {
467                 tnode_free_size = 0;
468                 synchronize_rcu();
469         }
470 }
471
472 static void replace(struct trie *t, struct tnode *oldtnode, struct tnode *tn)
473 {
474         struct tnode *tp = node_parent(oldtnode);
475         unsigned long i;
476
477         /* setup the parent pointer out of and back into this node */
478         NODE_INIT_PARENT(tn, tp);
479         put_child_root(tp, t, tn->key, tn);
480
481         /* update all of the child parent pointers */
482         update_children(tn);
483
484         /* all pointers should be clean so we are done */
485         tnode_free(oldtnode);
486
487         /* resize children now that oldtnode is freed */
488         for (i = tnode_child_length(tn); i;) {
489                 struct tnode *inode = tnode_get_child(tn, --i);
490
491                 /* resize child node */
492                 if (tnode_full(tn, inode))
493                         resize(t, inode);
494         }
495 }
496
497 static int inflate(struct trie *t, struct tnode *oldtnode)
498 {
499         struct tnode *tn;
500         unsigned long i;
501         t_key m;
502
503         pr_debug("In inflate\n");
504
505         tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1);
506         if (!tn)
507                 return -ENOMEM;
508
509         /* prepare oldtnode to be freed */
510         tnode_free_init(oldtnode);
511
512         /* Assemble all of the pointers in our cluster, in this case that
513          * represents all of the pointers out of our allocated nodes that
514          * point to existing tnodes and the links between our allocated
515          * nodes.
516          */
517         for (i = tnode_child_length(oldtnode), m = 1u << tn->pos; i;) {
518                 struct tnode *inode = tnode_get_child(oldtnode, --i);
519                 struct tnode *node0, *node1;
520                 unsigned long j, k;
521
522                 /* An empty child */
523                 if (inode == NULL)
524                         continue;
525
526                 /* A leaf or an internal node with skipped bits */
527                 if (!tnode_full(oldtnode, inode)) {
528                         put_child(tn, get_index(inode->key, tn), inode);
529                         continue;
530                 }
531
532                 /* drop the node in the old tnode free list */
533                 tnode_free_append(oldtnode, inode);
534
535                 /* An internal node with two children */
536                 if (inode->bits == 1) {
537                         put_child(tn, 2 * i + 1, tnode_get_child(inode, 1));
538                         put_child(tn, 2 * i, tnode_get_child(inode, 0));
539                         continue;
540                 }
541
542                 /* We will replace this node 'inode' with two new
543                  * ones, 'node0' and 'node1', each with half of the
544                  * original children. The two new nodes will have
545                  * a position one bit further down the key and this
546                  * means that the "significant" part of their keys
547                  * (see the discussion near the top of this file)
548                  * will differ by one bit, which will be "0" in
549                  * node0's key and "1" in node1's key. Since we are
550                  * moving the key position by one step, the bit that
551                  * we are moving away from - the bit at position
552                  * (tn->pos) - is the one that will differ between
553                  * node0 and node1. So... we synthesize that bit in the
554                  * two new keys.
555                  */
556                 node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1);
557                 if (!node1)
558                         goto nomem;
559                 node0 = tnode_new(inode->key, inode->pos, inode->bits - 1);
560
561                 tnode_free_append(tn, node1);
562                 if (!node0)
563                         goto nomem;
564                 tnode_free_append(tn, node0);
565
566                 /* populate child pointers in new nodes */
567                 for (k = tnode_child_length(inode), j = k / 2; j;) {
568                         put_child(node1, --j, tnode_get_child(inode, --k));
569                         put_child(node0, j, tnode_get_child(inode, j));
570                         put_child(node1, --j, tnode_get_child(inode, --k));
571                         put_child(node0, j, tnode_get_child(inode, j));
572                 }
573
574                 /* link new nodes to parent */
575                 NODE_INIT_PARENT(node1, tn);
576                 NODE_INIT_PARENT(node0, tn);
577
578                 /* link parent to nodes */
579                 put_child(tn, 2 * i + 1, node1);
580                 put_child(tn, 2 * i, node0);
581         }
582
583         /* setup the parent pointers into and out of this node */
584         replace(t, oldtnode, tn);
585
586         return 0;
587 nomem:
588         /* all pointers should be clean so we are done */
589         tnode_free(tn);
590         return -ENOMEM;
591 }
592
593 static int halve(struct trie *t, struct tnode *oldtnode)
594 {
595         struct tnode *tn;
596         unsigned long i;
597
598         pr_debug("In halve\n");
599
600         tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1);
601         if (!tn)
602                 return -ENOMEM;
603
604         /* prepare oldtnode to be freed */
605         tnode_free_init(oldtnode);
606
607         /* Assemble all of the pointers in our cluster, in this case that
608          * represents all of the pointers out of our allocated nodes that
609          * point to existing tnodes and the links between our allocated
610          * nodes.
611          */
612         for (i = tnode_child_length(oldtnode); i;) {
613                 struct tnode *node1 = tnode_get_child(oldtnode, --i);
614                 struct tnode *node0 = tnode_get_child(oldtnode, --i);
615                 struct tnode *inode;
616
617                 /* At least one of the children is empty */
618                 if (!node1 || !node0) {
619                         put_child(tn, i / 2, node1 ? : node0);
620                         continue;
621                 }
622
623                 /* Two nonempty children */
624                 inode = tnode_new(node0->key, oldtnode->pos, 1);
625                 if (!inode) {
626                         tnode_free(tn);
627                         return -ENOMEM;
628                 }
629                 tnode_free_append(tn, inode);
630
631                 /* initialize pointers out of node */
632                 put_child(inode, 1, node1);
633                 put_child(inode, 0, node0);
634                 NODE_INIT_PARENT(inode, tn);
635
636                 /* link parent to node */
637                 put_child(tn, i / 2, inode);
638         }
639
640         /* setup the parent pointers into and out of this node */
641         replace(t, oldtnode, tn);
642
643         return 0;
644 }
645
646 static void collapse(struct trie *t, struct tnode *oldtnode)
647 {
648         struct tnode *n, *tp;
649         unsigned long i;
650
651         /* scan the tnode looking for that one child that might still exist */
652         for (n = NULL, i = tnode_child_length(oldtnode); !n && i;)
653                 n = tnode_get_child(oldtnode, --i);
654
655         /* compress one level */
656         tp = node_parent(oldtnode);
657         put_child_root(tp, t, oldtnode->key, n);
658         node_set_parent(n, tp);
659
660         /* drop dead node */
661         node_free(oldtnode);
662 }
663
664 static unsigned char update_suffix(struct tnode *tn)
665 {
666         unsigned char slen = tn->pos;
667         unsigned long stride, i;
668
669         /* search though the list of children looking for nodes that might
670          * have a suffix greater than the one we currently have.  This is
671          * why we start with a stride of 2 since a stride of 1 would
672          * represent the nodes with suffix length equal to tn->pos
673          */
674         for (i = 0, stride = 0x2ul ; i < tnode_child_length(tn); i += stride) {
675                 struct tnode *n = tnode_get_child(tn, i);
676
677                 if (!n || (n->slen <= slen))
678                         continue;
679
680                 /* update stride and slen based on new value */
681                 stride <<= (n->slen - slen);
682                 slen = n->slen;
683                 i &= ~(stride - 1);
684
685                 /* if slen covers all but the last bit we can stop here
686                  * there will be nothing longer than that since only node
687                  * 0 and 1 << (bits - 1) could have that as their suffix
688                  * length.
689                  */
690                 if ((slen + 1) >= (tn->pos + tn->bits))
691                         break;
692         }
693
694         tn->slen = slen;
695
696         return slen;
697 }
698
699 /* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
700  * the Helsinki University of Technology and Matti Tikkanen of Nokia
701  * Telecommunications, page 6:
702  * "A node is doubled if the ratio of non-empty children to all
703  * children in the *doubled* node is at least 'high'."
704  *
705  * 'high' in this instance is the variable 'inflate_threshold'. It
706  * is expressed as a percentage, so we multiply it with
707  * tnode_child_length() and instead of multiplying by 2 (since the
708  * child array will be doubled by inflate()) and multiplying
709  * the left-hand side by 100 (to handle the percentage thing) we
710  * multiply the left-hand side by 50.
711  *
712  * The left-hand side may look a bit weird: tnode_child_length(tn)
713  * - tn->empty_children is of course the number of non-null children
714  * in the current node. tn->full_children is the number of "full"
715  * children, that is non-null tnodes with a skip value of 0.
716  * All of those will be doubled in the resulting inflated tnode, so
717  * we just count them one extra time here.
718  *
719  * A clearer way to write this would be:
720  *
721  * to_be_doubled = tn->full_children;
722  * not_to_be_doubled = tnode_child_length(tn) - tn->empty_children -
723  *     tn->full_children;
724  *
725  * new_child_length = tnode_child_length(tn) * 2;
726  *
727  * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
728  *      new_child_length;
729  * if (new_fill_factor >= inflate_threshold)
730  *
731  * ...and so on, tho it would mess up the while () loop.
732  *
733  * anyway,
734  * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
735  *      inflate_threshold
736  *
737  * avoid a division:
738  * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
739  *      inflate_threshold * new_child_length
740  *
741  * expand not_to_be_doubled and to_be_doubled, and shorten:
742  * 100 * (tnode_child_length(tn) - tn->empty_children +
743  *    tn->full_children) >= inflate_threshold * new_child_length
744  *
745  * expand new_child_length:
746  * 100 * (tnode_child_length(tn) - tn->empty_children +
747  *    tn->full_children) >=
748  *      inflate_threshold * tnode_child_length(tn) * 2
749  *
750  * shorten again:
751  * 50 * (tn->full_children + tnode_child_length(tn) -
752  *    tn->empty_children) >= inflate_threshold *
753  *    tnode_child_length(tn)
754  *
755  */
756 static bool should_inflate(const struct tnode *tp, const struct tnode *tn)
757 {
758         unsigned long used = tnode_child_length(tn);
759         unsigned long threshold = used;
760
761         /* Keep root node larger */
762         threshold *= tp ? inflate_threshold : inflate_threshold_root;
763         used -= tn->empty_children;
764         used += tn->full_children;
765
766         /* if bits == KEYLENGTH then pos = 0, and will fail below */
767
768         return (used > 1) && tn->pos && ((50 * used) >= threshold);
769 }
770
771 static bool should_halve(const struct tnode *tp, const struct tnode *tn)
772 {
773         unsigned long used = tnode_child_length(tn);
774         unsigned long threshold = used;
775
776         /* Keep root node larger */
777         threshold *= tp ? halve_threshold : halve_threshold_root;
778         used -= tn->empty_children;
779
780         /* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */
781
782         return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold);
783 }
784
785 static bool should_collapse(const struct tnode *tn)
786 {
787         unsigned long used = tnode_child_length(tn);
788
789         used -= tn->empty_children;
790
791         /* account for bits == KEYLENGTH case */
792         if ((tn->bits == KEYLENGTH) && tn->full_children)
793                 used -= KEY_MAX;
794
795         /* One child or none, time to drop us from the trie */
796         return used < 2;
797 }
798
799 #define MAX_WORK 10
800 static void resize(struct trie *t, struct tnode *tn)
801 {
802         struct tnode *tp = node_parent(tn);
803         struct tnode __rcu **cptr;
804         int max_work = MAX_WORK;
805
806         pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
807                  tn, inflate_threshold, halve_threshold);
808
809         /* track the tnode via the pointer from the parent instead of
810          * doing it ourselves.  This way we can let RCU fully do its
811          * thing without us interfering
812          */
813         cptr = tp ? &tp->child[get_index(tn->key, tp)] : &t->trie;
814         BUG_ON(tn != rtnl_dereference(*cptr));
815
816         /* Double as long as the resulting node has a number of
817          * nonempty nodes that are above the threshold.
818          */
819         while (should_inflate(tp, tn) && max_work) {
820                 if (inflate(t, tn)) {
821 #ifdef CONFIG_IP_FIB_TRIE_STATS
822                         this_cpu_inc(t->stats->resize_node_skipped);
823 #endif
824                         break;
825                 }
826
827                 max_work--;
828                 tn = rtnl_dereference(*cptr);
829         }
830
831         /* Return if at least one inflate is run */
832         if (max_work != MAX_WORK)
833                 return;
834
835         /* Halve as long as the number of empty children in this
836          * node is above threshold.
837          */
838         while (should_halve(tp, tn) && max_work) {
839                 if (halve(t, tn)) {
840 #ifdef CONFIG_IP_FIB_TRIE_STATS
841                         this_cpu_inc(t->stats->resize_node_skipped);
842 #endif
843                         break;
844                 }
845
846                 max_work--;
847                 tn = rtnl_dereference(*cptr);
848         }
849
850         /* Only one child remains */
851         if (should_collapse(tn)) {
852                 collapse(t, tn);
853                 return;
854         }
855
856         /* Return if at least one deflate was run */
857         if (max_work != MAX_WORK)
858                 return;
859
860         /* push the suffix length to the parent node */
861         if (tn->slen > tn->pos) {
862                 unsigned char slen = update_suffix(tn);
863
864                 if (tp && (slen > tp->slen))
865                         tp->slen = slen;
866         }
867 }
868
869 /* readside must use rcu_read_lock currently dump routines
870  via get_fa_head and dump */
871
872 static struct leaf_info *find_leaf_info(struct tnode *l, int plen)
873 {
874         struct hlist_head *head = &l->list;
875         struct leaf_info *li;
876
877         hlist_for_each_entry_rcu(li, head, hlist)
878                 if (li->plen == plen)
879                         return li;
880
881         return NULL;
882 }
883
884 static inline struct list_head *get_fa_head(struct tnode *l, int plen)
885 {
886         struct leaf_info *li = find_leaf_info(l, plen);
887
888         if (!li)
889                 return NULL;
890
891         return &li->falh;
892 }
893
894 static void leaf_pull_suffix(struct tnode *l)
895 {
896         struct tnode *tp = node_parent(l);
897
898         while (tp && (tp->slen > tp->pos) && (tp->slen > l->slen)) {
899                 if (update_suffix(tp) > l->slen)
900                         break;
901                 tp = node_parent(tp);
902         }
903 }
904
905 static void leaf_push_suffix(struct tnode *l)
906 {
907         struct tnode *tn = node_parent(l);
908
909         /* if this is a new leaf then tn will be NULL and we can sort
910          * out parent suffix lengths as a part of trie_rebalance
911          */
912         while (tn && (tn->slen < l->slen)) {
913                 tn->slen = l->slen;
914                 tn = node_parent(tn);
915         }
916 }
917
918 static void remove_leaf_info(struct tnode *l, struct leaf_info *old)
919 {
920         struct hlist_node *prev;
921
922         /* record the location of the pointer to this object */
923         prev = rtnl_dereference(hlist_pprev_rcu(&old->hlist));
924
925         /* remove the leaf info from the list */
926         hlist_del_rcu(&old->hlist);
927
928         /* if we emptied the list this leaf will be freed and we can sort
929          * out parent suffix lengths as a part of trie_rebalance
930          */
931         if (hlist_empty(&l->list))
932                 return;
933
934         /* if we removed the tail then we need to update slen */
935         if (!rcu_access_pointer(hlist_next_rcu(prev))) {
936                 struct leaf_info *li = hlist_entry(prev, typeof(*li), hlist);
937
938                 l->slen = KEYLENGTH - li->plen;
939                 leaf_pull_suffix(l);
940         }
941 }
942
943 static void insert_leaf_info(struct tnode *l, struct leaf_info *new)
944 {
945         struct hlist_head *head = &l->list;
946         struct leaf_info *li = NULL, *last = NULL;
947
948         if (hlist_empty(head)) {
949                 hlist_add_head_rcu(&new->hlist, head);
950         } else {
951                 hlist_for_each_entry(li, head, hlist) {
952                         if (new->plen > li->plen)
953                                 break;
954
955                         last = li;
956                 }
957                 if (last)
958                         hlist_add_behind_rcu(&new->hlist, &last->hlist);
959                 else
960                         hlist_add_before_rcu(&new->hlist, &li->hlist);
961         }
962
963         /* if we added to the tail node then we need to update slen */
964         if (!rcu_access_pointer(hlist_next_rcu(&new->hlist))) {
965                 l->slen = KEYLENGTH - new->plen;
966                 leaf_push_suffix(l);
967         }
968 }
969
970 /* rcu_read_lock needs to be hold by caller from readside */
971 static struct tnode *fib_find_node(struct trie *t, u32 key)
972 {
973         struct tnode *n = rcu_dereference_rtnl(t->trie);
974
975         while (n) {
976                 unsigned long index = get_index(key, n);
977
978                 /* This bit of code is a bit tricky but it combines multiple
979                  * checks into a single check.  The prefix consists of the
980                  * prefix plus zeros for the bits in the cindex. The index
981                  * is the difference between the key and this value.  From
982                  * this we can actually derive several pieces of data.
983                  *   if (index & (~0ul << bits))
984                  *     we have a mismatch in skip bits and failed
985                  *   else
986                  *     we know the value is cindex
987                  */
988                 if (index & (~0ul << n->bits))
989                         return NULL;
990
991                 /* we have found a leaf. Prefixes have already been compared */
992                 if (IS_LEAF(n))
993                         break;
994
995                 n = tnode_get_child_rcu(n, index);
996         }
997
998         return n;
999 }
1000
1001 static void trie_rebalance(struct trie *t, struct tnode *tn)
1002 {
1003         struct tnode *tp;
1004
1005         while ((tp = node_parent(tn)) != NULL) {
1006                 resize(t, tn);
1007                 tn = tp;
1008         }
1009
1010         /* Handle last (top) tnode */
1011         if (IS_TNODE(tn))
1012                 resize(t, tn);
1013 }
1014
1015 /* only used from updater-side */
1016
1017 static struct list_head *fib_insert_node(struct trie *t, u32 key, int plen)
1018 {
1019         struct list_head *fa_head = NULL;
1020         struct tnode *l, *n, *tp = NULL;
1021         struct leaf_info *li;
1022
1023         li = leaf_info_new(plen);
1024         if (!li)
1025                 return NULL;
1026         fa_head = &li->falh;
1027
1028         n = rtnl_dereference(t->trie);
1029
1030         /* If we point to NULL, stop. Either the tree is empty and we should
1031          * just put a new leaf in if, or we have reached an empty child slot,
1032          * and we should just put our new leaf in that.
1033          *
1034          * If we hit a node with a key that does't match then we should stop
1035          * and create a new tnode to replace that node and insert ourselves
1036          * and the other node into the new tnode.
1037          */
1038         while (n) {
1039                 unsigned long index = get_index(key, n);
1040
1041                 /* This bit of code is a bit tricky but it combines multiple
1042                  * checks into a single check.  The prefix consists of the
1043                  * prefix plus zeros for the "bits" in the prefix. The index
1044                  * is the difference between the key and this value.  From
1045                  * this we can actually derive several pieces of data.
1046                  *   if !(index >> bits)
1047                  *     we know the value is child index
1048                  *   else
1049                  *     we have a mismatch in skip bits and failed
1050                  */
1051                 if (index >> n->bits)
1052                         break;
1053
1054                 /* we have found a leaf. Prefixes have already been compared */
1055                 if (IS_LEAF(n)) {
1056                         /* Case 1: n is a leaf, and prefixes match*/
1057                         insert_leaf_info(n, li);
1058                         return fa_head;
1059                 }
1060
1061                 tp = n;
1062                 n = tnode_get_child_rcu(n, index);
1063         }
1064
1065         l = leaf_new(key);
1066         if (!l) {
1067                 free_leaf_info(li);
1068                 return NULL;
1069         }
1070
1071         insert_leaf_info(l, li);
1072
1073         /* Case 2: n is a LEAF or a TNODE and the key doesn't match.
1074          *
1075          *  Add a new tnode here
1076          *  first tnode need some special handling
1077          *  leaves us in position for handling as case 3
1078          */
1079         if (n) {
1080                 struct tnode *tn;
1081
1082                 tn = tnode_new(key, __fls(key ^ n->key), 1);
1083                 if (!tn) {
1084                         free_leaf_info(li);
1085                         node_free(l);
1086                         return NULL;
1087                 }
1088
1089                 /* initialize routes out of node */
1090                 NODE_INIT_PARENT(tn, tp);
1091                 put_child(tn, get_index(key, tn) ^ 1, n);
1092
1093                 /* start adding routes into the node */
1094                 put_child_root(tp, t, key, tn);
1095                 node_set_parent(n, tn);
1096
1097                 /* parent now has a NULL spot where the leaf can go */
1098                 tp = tn;
1099         }
1100
1101         /* Case 3: n is NULL, and will just insert a new leaf */
1102         if (tp) {
1103                 NODE_INIT_PARENT(l, tp);
1104                 put_child(tp, get_index(key, tp), l);
1105                 trie_rebalance(t, tp);
1106         } else {
1107                 rcu_assign_pointer(t->trie, l);
1108         }
1109
1110         return fa_head;
1111 }
1112
1113 /*
1114  * Caller must hold RTNL.
1115  */
1116 int fib_table_insert(struct fib_table *tb, struct fib_config *cfg)
1117 {
1118         struct trie *t = (struct trie *) tb->tb_data;
1119         struct fib_alias *fa, *new_fa;
1120         struct list_head *fa_head = NULL;
1121         struct fib_info *fi;
1122         int plen = cfg->fc_dst_len;
1123         u8 tos = cfg->fc_tos;
1124         u32 key, mask;
1125         int err;
1126         struct tnode *l;
1127
1128         if (plen > 32)
1129                 return -EINVAL;
1130
1131         key = ntohl(cfg->fc_dst);
1132
1133         pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1134
1135         mask = ntohl(inet_make_mask(plen));
1136
1137         if (key & ~mask)
1138                 return -EINVAL;
1139
1140         key = key & mask;
1141
1142         fi = fib_create_info(cfg);
1143         if (IS_ERR(fi)) {
1144                 err = PTR_ERR(fi);
1145                 goto err;
1146         }
1147
1148         l = fib_find_node(t, key);
1149         fa = NULL;
1150
1151         if (l) {
1152                 fa_head = get_fa_head(l, plen);
1153                 fa = fib_find_alias(fa_head, tos, fi->fib_priority);
1154         }
1155
1156         /* Now fa, if non-NULL, points to the first fib alias
1157          * with the same keys [prefix,tos,priority], if such key already
1158          * exists or to the node before which we will insert new one.
1159          *
1160          * If fa is NULL, we will need to allocate a new one and
1161          * insert to the head of f.
1162          *
1163          * If f is NULL, no fib node matched the destination key
1164          * and we need to allocate a new one of those as well.
1165          */
1166
1167         if (fa && fa->fa_tos == tos &&
1168             fa->fa_info->fib_priority == fi->fib_priority) {
1169                 struct fib_alias *fa_first, *fa_match;
1170
1171                 err = -EEXIST;
1172                 if (cfg->fc_nlflags & NLM_F_EXCL)
1173                         goto out;
1174
1175                 /* We have 2 goals:
1176                  * 1. Find exact match for type, scope, fib_info to avoid
1177                  * duplicate routes
1178                  * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1179                  */
1180                 fa_match = NULL;
1181                 fa_first = fa;
1182                 fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list);
1183                 list_for_each_entry_continue(fa, fa_head, fa_list) {
1184                         if (fa->fa_tos != tos)
1185                                 break;
1186                         if (fa->fa_info->fib_priority != fi->fib_priority)
1187                                 break;
1188                         if (fa->fa_type == cfg->fc_type &&
1189                             fa->fa_info == fi) {
1190                                 fa_match = fa;
1191                                 break;
1192                         }
1193                 }
1194
1195                 if (cfg->fc_nlflags & NLM_F_REPLACE) {
1196                         struct fib_info *fi_drop;
1197                         u8 state;
1198
1199                         fa = fa_first;
1200                         if (fa_match) {
1201                                 if (fa == fa_match)
1202                                         err = 0;
1203                                 goto out;
1204                         }
1205                         err = -ENOBUFS;
1206                         new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1207                         if (new_fa == NULL)
1208                                 goto out;
1209
1210                         fi_drop = fa->fa_info;
1211                         new_fa->fa_tos = fa->fa_tos;
1212                         new_fa->fa_info = fi;
1213                         new_fa->fa_type = cfg->fc_type;
1214                         state = fa->fa_state;
1215                         new_fa->fa_state = state & ~FA_S_ACCESSED;
1216
1217                         list_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1218                         alias_free_mem_rcu(fa);
1219
1220                         fib_release_info(fi_drop);
1221                         if (state & FA_S_ACCESSED)
1222                                 rt_cache_flush(cfg->fc_nlinfo.nl_net);
1223                         rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1224                                 tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE);
1225
1226                         goto succeeded;
1227                 }
1228                 /* Error if we find a perfect match which
1229                  * uses the same scope, type, and nexthop
1230                  * information.
1231                  */
1232                 if (fa_match)
1233                         goto out;
1234
1235                 if (!(cfg->fc_nlflags & NLM_F_APPEND))
1236                         fa = fa_first;
1237         }
1238         err = -ENOENT;
1239         if (!(cfg->fc_nlflags & NLM_F_CREATE))
1240                 goto out;
1241
1242         err = -ENOBUFS;
1243         new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1244         if (new_fa == NULL)
1245                 goto out;
1246
1247         new_fa->fa_info = fi;
1248         new_fa->fa_tos = tos;
1249         new_fa->fa_type = cfg->fc_type;
1250         new_fa->fa_state = 0;
1251         /*
1252          * Insert new entry to the list.
1253          */
1254
1255         if (!fa_head) {
1256                 fa_head = fib_insert_node(t, key, plen);
1257                 if (unlikely(!fa_head)) {
1258                         err = -ENOMEM;
1259                         goto out_free_new_fa;
1260                 }
1261         }
1262
1263         if (!plen)
1264                 tb->tb_num_default++;
1265
1266         list_add_tail_rcu(&new_fa->fa_list,
1267                           (fa ? &fa->fa_list : fa_head));
1268
1269         rt_cache_flush(cfg->fc_nlinfo.nl_net);
1270         rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, tb->tb_id,
1271                   &cfg->fc_nlinfo, 0);
1272 succeeded:
1273         return 0;
1274
1275 out_free_new_fa:
1276         kmem_cache_free(fn_alias_kmem, new_fa);
1277 out:
1278         fib_release_info(fi);
1279 err:
1280         return err;
1281 }
1282
1283 static inline t_key prefix_mismatch(t_key key, struct tnode *n)
1284 {
1285         t_key prefix = n->key;
1286
1287         return (key ^ prefix) & (prefix | -prefix);
1288 }
1289
1290 /* should be called with rcu_read_lock */
1291 int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
1292                      struct fib_result *res, int fib_flags)
1293 {
1294         struct trie *t = (struct trie *)tb->tb_data;
1295 #ifdef CONFIG_IP_FIB_TRIE_STATS
1296         struct trie_use_stats __percpu *stats = t->stats;
1297 #endif
1298         const t_key key = ntohl(flp->daddr);
1299         struct tnode *n, *pn;
1300         struct leaf_info *li;
1301         t_key cindex;
1302
1303         n = rcu_dereference(t->trie);
1304         if (!n)
1305                 return -EAGAIN;
1306
1307 #ifdef CONFIG_IP_FIB_TRIE_STATS
1308         this_cpu_inc(stats->gets);
1309 #endif
1310
1311         pn = n;
1312         cindex = 0;
1313
1314         /* Step 1: Travel to the longest prefix match in the trie */
1315         for (;;) {
1316                 unsigned long index = get_index(key, n);
1317
1318                 /* This bit of code is a bit tricky but it combines multiple
1319                  * checks into a single check.  The prefix consists of the
1320                  * prefix plus zeros for the "bits" in the prefix. The index
1321                  * is the difference between the key and this value.  From
1322                  * this we can actually derive several pieces of data.
1323                  *   if (index & (~0ul << bits))
1324                  *     we have a mismatch in skip bits and failed
1325                  *   else
1326                  *     we know the value is cindex
1327                  */
1328                 if (index & (~0ul << n->bits))
1329                         break;
1330
1331                 /* we have found a leaf. Prefixes have already been compared */
1332                 if (IS_LEAF(n))
1333                         goto found;
1334
1335                 /* only record pn and cindex if we are going to be chopping
1336                  * bits later.  Otherwise we are just wasting cycles.
1337                  */
1338                 if (n->slen > n->pos) {
1339                         pn = n;
1340                         cindex = index;
1341                 }
1342
1343                 n = tnode_get_child_rcu(n, index);
1344                 if (unlikely(!n))
1345                         goto backtrace;
1346         }
1347
1348         /* Step 2: Sort out leaves and begin backtracing for longest prefix */
1349         for (;;) {
1350                 /* record the pointer where our next node pointer is stored */
1351                 struct tnode __rcu **cptr = n->child;
1352
1353                 /* This test verifies that none of the bits that differ
1354                  * between the key and the prefix exist in the region of
1355                  * the lsb and higher in the prefix.
1356                  */
1357                 if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos))
1358                         goto backtrace;
1359
1360                 /* exit out and process leaf */
1361                 if (unlikely(IS_LEAF(n)))
1362                         break;
1363
1364                 /* Don't bother recording parent info.  Since we are in
1365                  * prefix match mode we will have to come back to wherever
1366                  * we started this traversal anyway
1367                  */
1368
1369                 while ((n = rcu_dereference(*cptr)) == NULL) {
1370 backtrace:
1371 #ifdef CONFIG_IP_FIB_TRIE_STATS
1372                         if (!n)
1373                                 this_cpu_inc(stats->null_node_hit);
1374 #endif
1375                         /* If we are at cindex 0 there are no more bits for
1376                          * us to strip at this level so we must ascend back
1377                          * up one level to see if there are any more bits to
1378                          * be stripped there.
1379                          */
1380                         while (!cindex) {
1381                                 t_key pkey = pn->key;
1382
1383                                 pn = node_parent_rcu(pn);
1384                                 if (unlikely(!pn))
1385                                         return -EAGAIN;
1386 #ifdef CONFIG_IP_FIB_TRIE_STATS
1387                                 this_cpu_inc(stats->backtrack);
1388 #endif
1389                                 /* Get Child's index */
1390                                 cindex = get_index(pkey, pn);
1391                         }
1392
1393                         /* strip the least significant bit from the cindex */
1394                         cindex &= cindex - 1;
1395
1396                         /* grab pointer for next child node */
1397                         cptr = &pn->child[cindex];
1398                 }
1399         }
1400
1401 found:
1402         /* Step 3: Process the leaf, if that fails fall back to backtracing */
1403         hlist_for_each_entry_rcu(li, &n->list, hlist) {
1404                 struct fib_alias *fa;
1405
1406                 if ((key ^ n->key) & li->mask_plen)
1407                         continue;
1408
1409                 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
1410                         struct fib_info *fi = fa->fa_info;
1411                         int nhsel, err;
1412
1413                         if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
1414                                 continue;
1415                         if (fi->fib_dead)
1416                                 continue;
1417                         if (fa->fa_info->fib_scope < flp->flowi4_scope)
1418                                 continue;
1419                         fib_alias_accessed(fa);
1420                         err = fib_props[fa->fa_type].error;
1421                         if (unlikely(err < 0)) {
1422 #ifdef CONFIG_IP_FIB_TRIE_STATS
1423                                 this_cpu_inc(stats->semantic_match_passed);
1424 #endif
1425                                 return err;
1426                         }
1427                         if (fi->fib_flags & RTNH_F_DEAD)
1428                                 continue;
1429                         for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) {
1430                                 const struct fib_nh *nh = &fi->fib_nh[nhsel];
1431
1432                                 if (nh->nh_flags & RTNH_F_DEAD)
1433                                         continue;
1434                                 if (flp->flowi4_oif && flp->flowi4_oif != nh->nh_oif)
1435                                         continue;
1436
1437                                 if (!(fib_flags & FIB_LOOKUP_NOREF))
1438                                         atomic_inc(&fi->fib_clntref);
1439
1440                                 res->prefixlen = li->plen;
1441                                 res->nh_sel = nhsel;
1442                                 res->type = fa->fa_type;
1443                                 res->scope = fi->fib_scope;
1444                                 res->fi = fi;
1445                                 res->table = tb;
1446                                 res->fa_head = &li->falh;
1447 #ifdef CONFIG_IP_FIB_TRIE_STATS
1448                                 this_cpu_inc(stats->semantic_match_passed);
1449 #endif
1450                                 return err;
1451                         }
1452                 }
1453
1454 #ifdef CONFIG_IP_FIB_TRIE_STATS
1455                 this_cpu_inc(stats->semantic_match_miss);
1456 #endif
1457         }
1458         goto backtrace;
1459 }
1460 EXPORT_SYMBOL_GPL(fib_table_lookup);
1461
1462 /*
1463  * Remove the leaf and return parent.
1464  */
1465 static void trie_leaf_remove(struct trie *t, struct tnode *l)
1466 {
1467         struct tnode *tp = node_parent(l);
1468
1469         pr_debug("entering trie_leaf_remove(%p)\n", l);
1470
1471         if (tp) {
1472                 put_child(tp, get_index(l->key, tp), NULL);
1473                 trie_rebalance(t, tp);
1474         } else {
1475                 RCU_INIT_POINTER(t->trie, NULL);
1476         }
1477
1478         node_free(l);
1479 }
1480
1481 /*
1482  * Caller must hold RTNL.
1483  */
1484 int fib_table_delete(struct fib_table *tb, struct fib_config *cfg)
1485 {
1486         struct trie *t = (struct trie *) tb->tb_data;
1487         u32 key, mask;
1488         int plen = cfg->fc_dst_len;
1489         u8 tos = cfg->fc_tos;
1490         struct fib_alias *fa, *fa_to_delete;
1491         struct list_head *fa_head;
1492         struct tnode *l;
1493         struct leaf_info *li;
1494
1495         if (plen > 32)
1496                 return -EINVAL;
1497
1498         key = ntohl(cfg->fc_dst);
1499         mask = ntohl(inet_make_mask(plen));
1500
1501         if (key & ~mask)
1502                 return -EINVAL;
1503
1504         key = key & mask;
1505         l = fib_find_node(t, key);
1506
1507         if (!l)
1508                 return -ESRCH;
1509
1510         li = find_leaf_info(l, plen);
1511
1512         if (!li)
1513                 return -ESRCH;
1514
1515         fa_head = &li->falh;
1516         fa = fib_find_alias(fa_head, tos, 0);
1517
1518         if (!fa)
1519                 return -ESRCH;
1520
1521         pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
1522
1523         fa_to_delete = NULL;
1524         fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list);
1525         list_for_each_entry_continue(fa, fa_head, fa_list) {
1526                 struct fib_info *fi = fa->fa_info;
1527
1528                 if (fa->fa_tos != tos)
1529                         break;
1530
1531                 if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1532                     (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1533                      fa->fa_info->fib_scope == cfg->fc_scope) &&
1534                     (!cfg->fc_prefsrc ||
1535                      fi->fib_prefsrc == cfg->fc_prefsrc) &&
1536                     (!cfg->fc_protocol ||
1537                      fi->fib_protocol == cfg->fc_protocol) &&
1538                     fib_nh_match(cfg, fi) == 0) {
1539                         fa_to_delete = fa;
1540                         break;
1541                 }
1542         }
1543
1544         if (!fa_to_delete)
1545                 return -ESRCH;
1546
1547         fa = fa_to_delete;
1548         rtmsg_fib(RTM_DELROUTE, htonl(key), fa, plen, tb->tb_id,
1549                   &cfg->fc_nlinfo, 0);
1550
1551         list_del_rcu(&fa->fa_list);
1552
1553         if (!plen)
1554                 tb->tb_num_default--;
1555
1556         if (list_empty(fa_head)) {
1557                 remove_leaf_info(l, li);
1558                 free_leaf_info(li);
1559         }
1560
1561         if (hlist_empty(&l->list))
1562                 trie_leaf_remove(t, l);
1563
1564         if (fa->fa_state & FA_S_ACCESSED)
1565                 rt_cache_flush(cfg->fc_nlinfo.nl_net);
1566
1567         fib_release_info(fa->fa_info);
1568         alias_free_mem_rcu(fa);
1569         return 0;
1570 }
1571
1572 static int trie_flush_list(struct list_head *head)
1573 {
1574         struct fib_alias *fa, *fa_node;
1575         int found = 0;
1576
1577         list_for_each_entry_safe(fa, fa_node, head, fa_list) {
1578                 struct fib_info *fi = fa->fa_info;
1579
1580                 if (fi && (fi->fib_flags & RTNH_F_DEAD)) {
1581                         list_del_rcu(&fa->fa_list);
1582                         fib_release_info(fa->fa_info);
1583                         alias_free_mem_rcu(fa);
1584                         found++;
1585                 }
1586         }
1587         return found;
1588 }
1589
1590 static int trie_flush_leaf(struct tnode *l)
1591 {
1592         int found = 0;
1593         struct hlist_head *lih = &l->list;
1594         struct hlist_node *tmp;
1595         struct leaf_info *li = NULL;
1596
1597         hlist_for_each_entry_safe(li, tmp, lih, hlist) {
1598                 found += trie_flush_list(&li->falh);
1599
1600                 if (list_empty(&li->falh)) {
1601                         hlist_del_rcu(&li->hlist);
1602                         free_leaf_info(li);
1603                 }
1604         }
1605         return found;
1606 }
1607
1608 /*
1609  * Scan for the next right leaf starting at node p->child[idx]
1610  * Since we have back pointer, no recursion necessary.
1611  */
1612 static struct tnode *leaf_walk_rcu(struct tnode *p, struct tnode *c)
1613 {
1614         do {
1615                 unsigned long idx = c ? idx = get_index(c->key, p) + 1 : 0;
1616
1617                 while (idx < tnode_child_length(p)) {
1618                         c = tnode_get_child_rcu(p, idx++);
1619                         if (!c)
1620                                 continue;
1621
1622                         if (IS_LEAF(c))
1623                                 return c;
1624
1625                         /* Rescan start scanning in new node */
1626                         p = c;
1627                         idx = 0;
1628                 }
1629
1630                 /* Node empty, walk back up to parent */
1631                 c = p;
1632         } while ((p = node_parent_rcu(c)) != NULL);
1633
1634         return NULL; /* Root of trie */
1635 }
1636
1637 static struct tnode *trie_firstleaf(struct trie *t)
1638 {
1639         struct tnode *n = rcu_dereference_rtnl(t->trie);
1640
1641         if (!n)
1642                 return NULL;
1643
1644         if (IS_LEAF(n))          /* trie is just a leaf */
1645                 return n;
1646
1647         return leaf_walk_rcu(n, NULL);
1648 }
1649
1650 static struct tnode *trie_nextleaf(struct tnode *l)
1651 {
1652         struct tnode *p = node_parent_rcu(l);
1653
1654         if (!p)
1655                 return NULL;    /* trie with just one leaf */
1656
1657         return leaf_walk_rcu(p, l);
1658 }
1659
1660 static struct tnode *trie_leafindex(struct trie *t, int index)
1661 {
1662         struct tnode *l = trie_firstleaf(t);
1663
1664         while (l && index-- > 0)
1665                 l = trie_nextleaf(l);
1666
1667         return l;
1668 }
1669
1670
1671 /*
1672  * Caller must hold RTNL.
1673  */
1674 int fib_table_flush(struct fib_table *tb)
1675 {
1676         struct trie *t = (struct trie *) tb->tb_data;
1677         struct tnode *l, *ll = NULL;
1678         int found = 0;
1679
1680         for (l = trie_firstleaf(t); l; l = trie_nextleaf(l)) {
1681                 found += trie_flush_leaf(l);
1682
1683                 if (ll && hlist_empty(&ll->list))
1684                         trie_leaf_remove(t, ll);
1685                 ll = l;
1686         }
1687
1688         if (ll && hlist_empty(&ll->list))
1689                 trie_leaf_remove(t, ll);
1690
1691         pr_debug("trie_flush found=%d\n", found);
1692         return found;
1693 }
1694
1695 void fib_free_table(struct fib_table *tb)
1696 {
1697 #ifdef CONFIG_IP_FIB_TRIE_STATS
1698         struct trie *t = (struct trie *)tb->tb_data;
1699
1700         free_percpu(t->stats);
1701 #endif /* CONFIG_IP_FIB_TRIE_STATS */
1702         kfree(tb);
1703 }
1704
1705 static int fn_trie_dump_fa(t_key key, int plen, struct list_head *fah,
1706                            struct fib_table *tb,
1707                            struct sk_buff *skb, struct netlink_callback *cb)
1708 {
1709         int i, s_i;
1710         struct fib_alias *fa;
1711         __be32 xkey = htonl(key);
1712
1713         s_i = cb->args[5];
1714         i = 0;
1715
1716         /* rcu_read_lock is hold by caller */
1717
1718         list_for_each_entry_rcu(fa, fah, fa_list) {
1719                 if (i < s_i) {
1720                         i++;
1721                         continue;
1722                 }
1723
1724                 if (fib_dump_info(skb, NETLINK_CB(cb->skb).portid,
1725                                   cb->nlh->nlmsg_seq,
1726                                   RTM_NEWROUTE,
1727                                   tb->tb_id,
1728                                   fa->fa_type,
1729                                   xkey,
1730                                   plen,
1731                                   fa->fa_tos,
1732                                   fa->fa_info, NLM_F_MULTI) < 0) {
1733                         cb->args[5] = i;
1734                         return -1;
1735                 }
1736                 i++;
1737         }
1738         cb->args[5] = i;
1739         return skb->len;
1740 }
1741
1742 static int fn_trie_dump_leaf(struct tnode *l, struct fib_table *tb,
1743                         struct sk_buff *skb, struct netlink_callback *cb)
1744 {
1745         struct leaf_info *li;
1746         int i, s_i;
1747
1748         s_i = cb->args[4];
1749         i = 0;
1750
1751         /* rcu_read_lock is hold by caller */
1752         hlist_for_each_entry_rcu(li, &l->list, hlist) {
1753                 if (i < s_i) {
1754                         i++;
1755                         continue;
1756                 }
1757
1758                 if (i > s_i)
1759                         cb->args[5] = 0;
1760
1761                 if (list_empty(&li->falh))
1762                         continue;
1763
1764                 if (fn_trie_dump_fa(l->key, li->plen, &li->falh, tb, skb, cb) < 0) {
1765                         cb->args[4] = i;
1766                         return -1;
1767                 }
1768                 i++;
1769         }
1770
1771         cb->args[4] = i;
1772         return skb->len;
1773 }
1774
1775 int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
1776                    struct netlink_callback *cb)
1777 {
1778         struct tnode *l;
1779         struct trie *t = (struct trie *) tb->tb_data;
1780         t_key key = cb->args[2];
1781         int count = cb->args[3];
1782
1783         rcu_read_lock();
1784         /* Dump starting at last key.
1785          * Note: 0.0.0.0/0 (ie default) is first key.
1786          */
1787         if (count == 0)
1788                 l = trie_firstleaf(t);
1789         else {
1790                 /* Normally, continue from last key, but if that is missing
1791                  * fallback to using slow rescan
1792                  */
1793                 l = fib_find_node(t, key);
1794                 if (!l)
1795                         l = trie_leafindex(t, count);
1796         }
1797
1798         while (l) {
1799                 cb->args[2] = l->key;
1800                 if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) {
1801                         cb->args[3] = count;
1802                         rcu_read_unlock();
1803                         return -1;
1804                 }
1805
1806                 ++count;
1807                 l = trie_nextleaf(l);
1808                 memset(&cb->args[4], 0,
1809                        sizeof(cb->args) - 4*sizeof(cb->args[0]));
1810         }
1811         cb->args[3] = count;
1812         rcu_read_unlock();
1813
1814         return skb->len;
1815 }
1816
1817 void __init fib_trie_init(void)
1818 {
1819         fn_alias_kmem = kmem_cache_create("ip_fib_alias",
1820                                           sizeof(struct fib_alias),
1821                                           0, SLAB_PANIC, NULL);
1822
1823         trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
1824                                            max(sizeof(struct tnode),
1825                                                sizeof(struct leaf_info)),
1826                                            0, SLAB_PANIC, NULL);
1827 }
1828
1829
1830 struct fib_table *fib_trie_table(u32 id)
1831 {
1832         struct fib_table *tb;
1833         struct trie *t;
1834
1835         tb = kmalloc(sizeof(struct fib_table) + sizeof(struct trie),
1836                      GFP_KERNEL);
1837         if (tb == NULL)
1838                 return NULL;
1839
1840         tb->tb_id = id;
1841         tb->tb_default = -1;
1842         tb->tb_num_default = 0;
1843
1844         t = (struct trie *) tb->tb_data;
1845         RCU_INIT_POINTER(t->trie, NULL);
1846 #ifdef CONFIG_IP_FIB_TRIE_STATS
1847         t->stats = alloc_percpu(struct trie_use_stats);
1848         if (!t->stats) {
1849                 kfree(tb);
1850                 tb = NULL;
1851         }
1852 #endif
1853
1854         return tb;
1855 }
1856
1857 #ifdef CONFIG_PROC_FS
1858 /* Depth first Trie walk iterator */
1859 struct fib_trie_iter {
1860         struct seq_net_private p;
1861         struct fib_table *tb;
1862         struct tnode *tnode;
1863         unsigned int index;
1864         unsigned int depth;
1865 };
1866
1867 static struct tnode *fib_trie_get_next(struct fib_trie_iter *iter)
1868 {
1869         unsigned long cindex = iter->index;
1870         struct tnode *tn = iter->tnode;
1871         struct tnode *p;
1872
1873         /* A single entry routing table */
1874         if (!tn)
1875                 return NULL;
1876
1877         pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
1878                  iter->tnode, iter->index, iter->depth);
1879 rescan:
1880         while (cindex < tnode_child_length(tn)) {
1881                 struct tnode *n = tnode_get_child_rcu(tn, cindex);
1882
1883                 if (n) {
1884                         if (IS_LEAF(n)) {
1885                                 iter->tnode = tn;
1886                                 iter->index = cindex + 1;
1887                         } else {
1888                                 /* push down one level */
1889                                 iter->tnode = n;
1890                                 iter->index = 0;
1891                                 ++iter->depth;
1892                         }
1893                         return n;
1894                 }
1895
1896                 ++cindex;
1897         }
1898
1899         /* Current node exhausted, pop back up */
1900         p = node_parent_rcu(tn);
1901         if (p) {
1902                 cindex = get_index(tn->key, p) + 1;
1903                 tn = p;
1904                 --iter->depth;
1905                 goto rescan;
1906         }
1907
1908         /* got root? */
1909         return NULL;
1910 }
1911
1912 static struct tnode *fib_trie_get_first(struct fib_trie_iter *iter,
1913                                        struct trie *t)
1914 {
1915         struct tnode *n;
1916
1917         if (!t)
1918                 return NULL;
1919
1920         n = rcu_dereference(t->trie);
1921         if (!n)
1922                 return NULL;
1923
1924         if (IS_TNODE(n)) {
1925                 iter->tnode = n;
1926                 iter->index = 0;
1927                 iter->depth = 1;
1928         } else {
1929                 iter->tnode = NULL;
1930                 iter->index = 0;
1931                 iter->depth = 0;
1932         }
1933
1934         return n;
1935 }
1936
1937 static void trie_collect_stats(struct trie *t, struct trie_stat *s)
1938 {
1939         struct tnode *n;
1940         struct fib_trie_iter iter;
1941
1942         memset(s, 0, sizeof(*s));
1943
1944         rcu_read_lock();
1945         for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
1946                 if (IS_LEAF(n)) {
1947                         struct leaf_info *li;
1948
1949                         s->leaves++;
1950                         s->totdepth += iter.depth;
1951                         if (iter.depth > s->maxdepth)
1952                                 s->maxdepth = iter.depth;
1953
1954                         hlist_for_each_entry_rcu(li, &n->list, hlist)
1955                                 ++s->prefixes;
1956                 } else {
1957                         unsigned long i;
1958
1959                         s->tnodes++;
1960                         if (n->bits < MAX_STAT_DEPTH)
1961                                 s->nodesizes[n->bits]++;
1962
1963                         for (i = tnode_child_length(n); i--;) {
1964                                 if (!rcu_access_pointer(n->child[i]))
1965                                         s->nullpointers++;
1966                         }
1967                 }
1968         }
1969         rcu_read_unlock();
1970 }
1971
1972 /*
1973  *      This outputs /proc/net/fib_triestats
1974  */
1975 static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
1976 {
1977         unsigned int i, max, pointers, bytes, avdepth;
1978
1979         if (stat->leaves)
1980                 avdepth = stat->totdepth*100 / stat->leaves;
1981         else
1982                 avdepth = 0;
1983
1984         seq_printf(seq, "\tAver depth:     %u.%02d\n",
1985                    avdepth / 100, avdepth % 100);
1986         seq_printf(seq, "\tMax depth:      %u\n", stat->maxdepth);
1987
1988         seq_printf(seq, "\tLeaves:         %u\n", stat->leaves);
1989         bytes = sizeof(struct tnode) * stat->leaves;
1990
1991         seq_printf(seq, "\tPrefixes:       %u\n", stat->prefixes);
1992         bytes += sizeof(struct leaf_info) * stat->prefixes;
1993
1994         seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
1995         bytes += sizeof(struct tnode) * stat->tnodes;
1996
1997         max = MAX_STAT_DEPTH;
1998         while (max > 0 && stat->nodesizes[max-1] == 0)
1999                 max--;
2000
2001         pointers = 0;
2002         for (i = 1; i < max; i++)
2003                 if (stat->nodesizes[i] != 0) {
2004                         seq_printf(seq, "  %u: %u",  i, stat->nodesizes[i]);
2005                         pointers += (1<<i) * stat->nodesizes[i];
2006                 }
2007         seq_putc(seq, '\n');
2008         seq_printf(seq, "\tPointers: %u\n", pointers);
2009
2010         bytes += sizeof(struct tnode *) * pointers;
2011         seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2012         seq_printf(seq, "Total size: %u  kB\n", (bytes + 1023) / 1024);
2013 }
2014
2015 #ifdef CONFIG_IP_FIB_TRIE_STATS
2016 static void trie_show_usage(struct seq_file *seq,
2017                             const struct trie_use_stats __percpu *stats)
2018 {
2019         struct trie_use_stats s = { 0 };
2020         int cpu;
2021
2022         /* loop through all of the CPUs and gather up the stats */
2023         for_each_possible_cpu(cpu) {
2024                 const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu);
2025
2026                 s.gets += pcpu->gets;
2027                 s.backtrack += pcpu->backtrack;
2028                 s.semantic_match_passed += pcpu->semantic_match_passed;
2029                 s.semantic_match_miss += pcpu->semantic_match_miss;
2030                 s.null_node_hit += pcpu->null_node_hit;
2031                 s.resize_node_skipped += pcpu->resize_node_skipped;
2032         }
2033
2034         seq_printf(seq, "\nCounters:\n---------\n");
2035         seq_printf(seq, "gets = %u\n", s.gets);
2036         seq_printf(seq, "backtracks = %u\n", s.backtrack);
2037         seq_printf(seq, "semantic match passed = %u\n",
2038                    s.semantic_match_passed);
2039         seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss);
2040         seq_printf(seq, "null node hit= %u\n", s.null_node_hit);
2041         seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped);
2042 }
2043 #endif /*  CONFIG_IP_FIB_TRIE_STATS */
2044
2045 static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
2046 {
2047         if (tb->tb_id == RT_TABLE_LOCAL)
2048                 seq_puts(seq, "Local:\n");
2049         else if (tb->tb_id == RT_TABLE_MAIN)
2050                 seq_puts(seq, "Main:\n");
2051         else
2052                 seq_printf(seq, "Id %d:\n", tb->tb_id);
2053 }
2054
2055
2056 static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2057 {
2058         struct net *net = (struct net *)seq->private;
2059         unsigned int h;
2060
2061         seq_printf(seq,
2062                    "Basic info: size of leaf:"
2063                    " %Zd bytes, size of tnode: %Zd bytes.\n",
2064                    sizeof(struct tnode), sizeof(struct tnode));
2065
2066         for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2067                 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2068                 struct fib_table *tb;
2069
2070                 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2071                         struct trie *t = (struct trie *) tb->tb_data;
2072                         struct trie_stat stat;
2073
2074                         if (!t)
2075                                 continue;
2076
2077                         fib_table_print(seq, tb);
2078
2079                         trie_collect_stats(t, &stat);
2080                         trie_show_stats(seq, &stat);
2081 #ifdef CONFIG_IP_FIB_TRIE_STATS
2082                         trie_show_usage(seq, t->stats);
2083 #endif
2084                 }
2085         }
2086
2087         return 0;
2088 }
2089
2090 static int fib_triestat_seq_open(struct inode *inode, struct file *file)
2091 {
2092         return single_open_net(inode, file, fib_triestat_seq_show);
2093 }
2094
2095 static const struct file_operations fib_triestat_fops = {
2096         .owner  = THIS_MODULE,
2097         .open   = fib_triestat_seq_open,
2098         .read   = seq_read,
2099         .llseek = seq_lseek,
2100         .release = single_release_net,
2101 };
2102
2103 static struct tnode *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
2104 {
2105         struct fib_trie_iter *iter = seq->private;
2106         struct net *net = seq_file_net(seq);
2107         loff_t idx = 0;
2108         unsigned int h;
2109
2110         for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2111                 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2112                 struct fib_table *tb;
2113
2114                 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2115                         struct tnode *n;
2116
2117                         for (n = fib_trie_get_first(iter,
2118                                                     (struct trie *) tb->tb_data);
2119                              n; n = fib_trie_get_next(iter))
2120                                 if (pos == idx++) {
2121                                         iter->tb = tb;
2122                                         return n;
2123                                 }
2124                 }
2125         }
2126
2127         return NULL;
2128 }
2129
2130 static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2131         __acquires(RCU)
2132 {
2133         rcu_read_lock();
2134         return fib_trie_get_idx(seq, *pos);
2135 }
2136
2137 static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2138 {
2139         struct fib_trie_iter *iter = seq->private;
2140         struct net *net = seq_file_net(seq);
2141         struct fib_table *tb = iter->tb;
2142         struct hlist_node *tb_node;
2143         unsigned int h;
2144         struct tnode *n;
2145
2146         ++*pos;
2147         /* next node in same table */
2148         n = fib_trie_get_next(iter);
2149         if (n)
2150                 return n;
2151
2152         /* walk rest of this hash chain */
2153         h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
2154         while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
2155                 tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2156                 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2157                 if (n)
2158                         goto found;
2159         }
2160
2161         /* new hash chain */
2162         while (++h < FIB_TABLE_HASHSZ) {
2163                 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2164                 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2165                         n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2166                         if (n)
2167                                 goto found;
2168                 }
2169         }
2170         return NULL;
2171
2172 found:
2173         iter->tb = tb;
2174         return n;
2175 }
2176
2177 static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2178         __releases(RCU)
2179 {
2180         rcu_read_unlock();
2181 }
2182
2183 static void seq_indent(struct seq_file *seq, int n)
2184 {
2185         while (n-- > 0)
2186                 seq_puts(seq, "   ");
2187 }
2188
2189 static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
2190 {
2191         switch (s) {
2192         case RT_SCOPE_UNIVERSE: return "universe";
2193         case RT_SCOPE_SITE:     return "site";
2194         case RT_SCOPE_LINK:     return "link";
2195         case RT_SCOPE_HOST:     return "host";
2196         case RT_SCOPE_NOWHERE:  return "nowhere";
2197         default:
2198                 snprintf(buf, len, "scope=%d", s);
2199                 return buf;
2200         }
2201 }
2202
2203 static const char *const rtn_type_names[__RTN_MAX] = {
2204         [RTN_UNSPEC] = "UNSPEC",
2205         [RTN_UNICAST] = "UNICAST",
2206         [RTN_LOCAL] = "LOCAL",
2207         [RTN_BROADCAST] = "BROADCAST",
2208         [RTN_ANYCAST] = "ANYCAST",
2209         [RTN_MULTICAST] = "MULTICAST",
2210         [RTN_BLACKHOLE] = "BLACKHOLE",
2211         [RTN_UNREACHABLE] = "UNREACHABLE",
2212         [RTN_PROHIBIT] = "PROHIBIT",
2213         [RTN_THROW] = "THROW",
2214         [RTN_NAT] = "NAT",
2215         [RTN_XRESOLVE] = "XRESOLVE",
2216 };
2217
2218 static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
2219 {
2220         if (t < __RTN_MAX && rtn_type_names[t])
2221                 return rtn_type_names[t];
2222         snprintf(buf, len, "type %u", t);
2223         return buf;
2224 }
2225
2226 /* Pretty print the trie */
2227 static int fib_trie_seq_show(struct seq_file *seq, void *v)
2228 {
2229         const struct fib_trie_iter *iter = seq->private;
2230         struct tnode *n = v;
2231
2232         if (!node_parent_rcu(n))
2233                 fib_table_print(seq, iter->tb);
2234
2235         if (IS_TNODE(n)) {
2236                 __be32 prf = htonl(n->key);
2237
2238                 seq_indent(seq, iter->depth-1);
2239                 seq_printf(seq, "  +-- %pI4/%zu %u %u %u\n",
2240                            &prf, KEYLENGTH - n->pos - n->bits, n->bits,
2241                            n->full_children, n->empty_children);
2242         } else {
2243                 struct leaf_info *li;
2244                 __be32 val = htonl(n->key);
2245
2246                 seq_indent(seq, iter->depth);
2247                 seq_printf(seq, "  |-- %pI4\n", &val);
2248
2249                 hlist_for_each_entry_rcu(li, &n->list, hlist) {
2250                         struct fib_alias *fa;
2251
2252                         list_for_each_entry_rcu(fa, &li->falh, fa_list) {
2253                                 char buf1[32], buf2[32];
2254
2255                                 seq_indent(seq, iter->depth+1);
2256                                 seq_printf(seq, "  /%d %s %s", li->plen,
2257                                            rtn_scope(buf1, sizeof(buf1),
2258                                                      fa->fa_info->fib_scope),
2259                                            rtn_type(buf2, sizeof(buf2),
2260                                                     fa->fa_type));
2261                                 if (fa->fa_tos)
2262                                         seq_printf(seq, " tos=%d", fa->fa_tos);
2263                                 seq_putc(seq, '\n');
2264                         }
2265                 }
2266         }
2267
2268         return 0;
2269 }
2270
2271 static const struct seq_operations fib_trie_seq_ops = {
2272         .start  = fib_trie_seq_start,
2273         .next   = fib_trie_seq_next,
2274         .stop   = fib_trie_seq_stop,
2275         .show   = fib_trie_seq_show,
2276 };
2277
2278 static int fib_trie_seq_open(struct inode *inode, struct file *file)
2279 {
2280         return seq_open_net(inode, file, &fib_trie_seq_ops,
2281                             sizeof(struct fib_trie_iter));
2282 }
2283
2284 static const struct file_operations fib_trie_fops = {
2285         .owner  = THIS_MODULE,
2286         .open   = fib_trie_seq_open,
2287         .read   = seq_read,
2288         .llseek = seq_lseek,
2289         .release = seq_release_net,
2290 };
2291
2292 struct fib_route_iter {
2293         struct seq_net_private p;
2294         struct trie *main_trie;
2295         loff_t  pos;
2296         t_key   key;
2297 };
2298
2299 static struct tnode *fib_route_get_idx(struct fib_route_iter *iter, loff_t pos)
2300 {
2301         struct tnode *l = NULL;
2302         struct trie *t = iter->main_trie;
2303
2304         /* use cache location of last found key */
2305         if (iter->pos > 0 && pos >= iter->pos && (l = fib_find_node(t, iter->key)))
2306                 pos -= iter->pos;
2307         else {
2308                 iter->pos = 0;
2309                 l = trie_firstleaf(t);
2310         }
2311
2312         while (l && pos-- > 0) {
2313                 iter->pos++;
2314                 l = trie_nextleaf(l);
2315         }
2316
2317         if (l)
2318                 iter->key = pos;        /* remember it */
2319         else
2320                 iter->pos = 0;          /* forget it */
2321
2322         return l;
2323 }
2324
2325 static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2326         __acquires(RCU)
2327 {
2328         struct fib_route_iter *iter = seq->private;
2329         struct fib_table *tb;
2330
2331         rcu_read_lock();
2332         tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
2333         if (!tb)
2334                 return NULL;
2335
2336         iter->main_trie = (struct trie *) tb->tb_data;
2337         if (*pos == 0)
2338                 return SEQ_START_TOKEN;
2339         else
2340                 return fib_route_get_idx(iter, *pos - 1);
2341 }
2342
2343 static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2344 {
2345         struct fib_route_iter *iter = seq->private;
2346         struct tnode *l = v;
2347
2348         ++*pos;
2349         if (v == SEQ_START_TOKEN) {
2350                 iter->pos = 0;
2351                 l = trie_firstleaf(iter->main_trie);
2352         } else {
2353                 iter->pos++;
2354                 l = trie_nextleaf(l);
2355         }
2356
2357         if (l)
2358                 iter->key = l->key;
2359         else
2360                 iter->pos = 0;
2361         return l;
2362 }
2363
2364 static void fib_route_seq_stop(struct seq_file *seq, void *v)
2365         __releases(RCU)
2366 {
2367         rcu_read_unlock();
2368 }
2369
2370 static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
2371 {
2372         unsigned int flags = 0;
2373
2374         if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
2375                 flags = RTF_REJECT;
2376         if (fi && fi->fib_nh->nh_gw)
2377                 flags |= RTF_GATEWAY;
2378         if (mask == htonl(0xFFFFFFFF))
2379                 flags |= RTF_HOST;
2380         flags |= RTF_UP;
2381         return flags;
2382 }
2383
2384 /*
2385  *      This outputs /proc/net/route.
2386  *      The format of the file is not supposed to be changed
2387  *      and needs to be same as fib_hash output to avoid breaking
2388  *      legacy utilities
2389  */
2390 static int fib_route_seq_show(struct seq_file *seq, void *v)
2391 {
2392         struct tnode *l = v;
2393         struct leaf_info *li;
2394
2395         if (v == SEQ_START_TOKEN) {
2396                 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2397                            "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2398                            "\tWindow\tIRTT");
2399                 return 0;
2400         }
2401
2402         hlist_for_each_entry_rcu(li, &l->list, hlist) {
2403                 struct fib_alias *fa;
2404                 __be32 mask, prefix;
2405
2406                 mask = inet_make_mask(li->plen);
2407                 prefix = htonl(l->key);
2408
2409                 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
2410                         const struct fib_info *fi = fa->fa_info;
2411                         unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
2412
2413                         if (fa->fa_type == RTN_BROADCAST
2414                             || fa->fa_type == RTN_MULTICAST)
2415                                 continue;
2416
2417                         seq_setwidth(seq, 127);
2418
2419                         if (fi)
2420                                 seq_printf(seq,
2421                                          "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2422                                          "%d\t%08X\t%d\t%u\t%u",
2423                                          fi->fib_dev ? fi->fib_dev->name : "*",
2424                                          prefix,
2425                                          fi->fib_nh->nh_gw, flags, 0, 0,
2426                                          fi->fib_priority,
2427                                          mask,
2428                                          (fi->fib_advmss ?
2429                                           fi->fib_advmss + 40 : 0),
2430                                          fi->fib_window,
2431                                          fi->fib_rtt >> 3);
2432                         else
2433                                 seq_printf(seq,
2434                                          "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2435                                          "%d\t%08X\t%d\t%u\t%u",
2436                                          prefix, 0, flags, 0, 0, 0,
2437                                          mask, 0, 0, 0);
2438
2439                         seq_pad(seq, '\n');
2440                 }
2441         }
2442
2443         return 0;
2444 }
2445
2446 static const struct seq_operations fib_route_seq_ops = {
2447         .start  = fib_route_seq_start,
2448         .next   = fib_route_seq_next,
2449         .stop   = fib_route_seq_stop,
2450         .show   = fib_route_seq_show,
2451 };
2452
2453 static int fib_route_seq_open(struct inode *inode, struct file *file)
2454 {
2455         return seq_open_net(inode, file, &fib_route_seq_ops,
2456                             sizeof(struct fib_route_iter));
2457 }
2458
2459 static const struct file_operations fib_route_fops = {
2460         .owner  = THIS_MODULE,
2461         .open   = fib_route_seq_open,
2462         .read   = seq_read,
2463         .llseek = seq_lseek,
2464         .release = seq_release_net,
2465 };
2466
2467 int __net_init fib_proc_init(struct net *net)
2468 {
2469         if (!proc_create("fib_trie", S_IRUGO, net->proc_net, &fib_trie_fops))
2470                 goto out1;
2471
2472         if (!proc_create("fib_triestat", S_IRUGO, net->proc_net,
2473                          &fib_triestat_fops))
2474                 goto out2;
2475
2476         if (!proc_create("route", S_IRUGO, net->proc_net, &fib_route_fops))
2477                 goto out3;
2478
2479         return 0;
2480
2481 out3:
2482         remove_proc_entry("fib_triestat", net->proc_net);
2483 out2:
2484         remove_proc_entry("fib_trie", net->proc_net);
2485 out1:
2486         return -ENOMEM;
2487 }
2488
2489 void __net_exit fib_proc_exit(struct net *net)
2490 {
2491         remove_proc_entry("fib_trie", net->proc_net);
2492         remove_proc_entry("fib_triestat", net->proc_net);
2493         remove_proc_entry("route", net->proc_net);
2494 }
2495
2496 #endif /* CONFIG_PROC_FS */