gro: use min_t() in skb_gro_reset_offset()
[firefly-linux-kernel-4.4.55.git] / net / core / dev.c
1 /*
2  *      NET3    Protocol independent device support routines.
3  *
4  *              This program is free software; you can redistribute it and/or
5  *              modify it under the terms of the GNU General Public License
6  *              as published by the Free Software Foundation; either version
7  *              2 of the License, or (at your option) any later version.
8  *
9  *      Derived from the non IP parts of dev.c 1.0.19
10  *              Authors:        Ross Biro
11  *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *      Additional Authors:
15  *              Florian la Roche <rzsfl@rz.uni-sb.de>
16  *              Alan Cox <gw4pts@gw4pts.ampr.org>
17  *              David Hinds <dahinds@users.sourceforge.net>
18  *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *              Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *      Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *                                      to 2 if register_netdev gets called
25  *                                      before net_dev_init & also removed a
26  *                                      few lines of code in the process.
27  *              Alan Cox        :       device private ioctl copies fields back.
28  *              Alan Cox        :       Transmit queue code does relevant
29  *                                      stunts to keep the queue safe.
30  *              Alan Cox        :       Fixed double lock.
31  *              Alan Cox        :       Fixed promisc NULL pointer trap
32  *              ????????        :       Support the full private ioctl range
33  *              Alan Cox        :       Moved ioctl permission check into
34  *                                      drivers
35  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
36  *              Alan Cox        :       100 backlog just doesn't cut it when
37  *                                      you start doing multicast video 8)
38  *              Alan Cox        :       Rewrote net_bh and list manager.
39  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
40  *              Alan Cox        :       Took out transmit every packet pass
41  *                                      Saved a few bytes in the ioctl handler
42  *              Alan Cox        :       Network driver sets packet type before
43  *                                      calling netif_rx. Saves a function
44  *                                      call a packet.
45  *              Alan Cox        :       Hashed net_bh()
46  *              Richard Kooijman:       Timestamp fixes.
47  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
48  *              Alan Cox        :       Device lock protection.
49  *              Alan Cox        :       Fixed nasty side effect of device close
50  *                                      changes.
51  *              Rudi Cilibrasi  :       Pass the right thing to
52  *                                      set_mac_address()
53  *              Dave Miller     :       32bit quantity for the device lock to
54  *                                      make it work out on a Sparc.
55  *              Bjorn Ekwall    :       Added KERNELD hack.
56  *              Alan Cox        :       Cleaned up the backlog initialise.
57  *              Craig Metz      :       SIOCGIFCONF fix if space for under
58  *                                      1 device.
59  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
60  *                                      is no device open function.
61  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
62  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
63  *              Cyrus Durgin    :       Cleaned for KMOD
64  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
65  *                                      A network device unload needs to purge
66  *                                      the backlog queue.
67  *      Paul Rusty Russell      :       SIOCSIFNAME
68  *              Pekka Riikonen  :       Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *                                      indefinitely on dev->refcnt
71  *              J Hadi Salim    :       - Backlog queue sampling
72  *                                      - netif_rx() feedback
73  */
74
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/stat.h>
101 #include <net/dst.h>
102 #include <net/dst_metadata.h>
103 #include <net/pkt_sched.h>
104 #include <net/checksum.h>
105 #include <net/xfrm.h>
106 #include <linux/highmem.h>
107 #include <linux/init.h>
108 #include <linux/module.h>
109 #include <linux/netpoll.h>
110 #include <linux/rcupdate.h>
111 #include <linux/delay.h>
112 #include <net/iw_handler.h>
113 #include <asm/current.h>
114 #include <linux/audit.h>
115 #include <linux/dmaengine.h>
116 #include <linux/err.h>
117 #include <linux/ctype.h>
118 #include <linux/if_arp.h>
119 #include <linux/if_vlan.h>
120 #include <linux/ip.h>
121 #include <net/ip.h>
122 #include <net/mpls.h>
123 #include <linux/ipv6.h>
124 #include <linux/in.h>
125 #include <linux/jhash.h>
126 #include <linux/random.h>
127 #include <trace/events/napi.h>
128 #include <trace/events/net.h>
129 #include <trace/events/skb.h>
130 #include <linux/pci.h>
131 #include <linux/inetdevice.h>
132 #include <linux/cpu_rmap.h>
133 #include <linux/static_key.h>
134 #include <linux/hashtable.h>
135 #include <linux/vmalloc.h>
136 #include <linux/if_macvlan.h>
137 #include <linux/errqueue.h>
138 #include <linux/hrtimer.h>
139 #include <linux/netfilter_ingress.h>
140
141 #include "net-sysfs.h"
142
143 /* Instead of increasing this, you should create a hash table. */
144 #define MAX_GRO_SKBS 8
145
146 /* This should be increased if a protocol with a bigger head is added. */
147 #define GRO_MAX_HEAD (MAX_HEADER + 128)
148
149 static DEFINE_SPINLOCK(ptype_lock);
150 static DEFINE_SPINLOCK(offload_lock);
151 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
152 struct list_head ptype_all __read_mostly;       /* Taps */
153 static struct list_head offload_base __read_mostly;
154
155 static int netif_rx_internal(struct sk_buff *skb);
156 static int call_netdevice_notifiers_info(unsigned long val,
157                                          struct net_device *dev,
158                                          struct netdev_notifier_info *info);
159
160 /*
161  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
162  * semaphore.
163  *
164  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
165  *
166  * Writers must hold the rtnl semaphore while they loop through the
167  * dev_base_head list, and hold dev_base_lock for writing when they do the
168  * actual updates.  This allows pure readers to access the list even
169  * while a writer is preparing to update it.
170  *
171  * To put it another way, dev_base_lock is held for writing only to
172  * protect against pure readers; the rtnl semaphore provides the
173  * protection against other writers.
174  *
175  * See, for example usages, register_netdevice() and
176  * unregister_netdevice(), which must be called with the rtnl
177  * semaphore held.
178  */
179 DEFINE_RWLOCK(dev_base_lock);
180 EXPORT_SYMBOL(dev_base_lock);
181
182 /* protects napi_hash addition/deletion and napi_gen_id */
183 static DEFINE_SPINLOCK(napi_hash_lock);
184
185 static unsigned int napi_gen_id;
186 static DEFINE_HASHTABLE(napi_hash, 8);
187
188 static seqcount_t devnet_rename_seq;
189
190 static inline void dev_base_seq_inc(struct net *net)
191 {
192         while (++net->dev_base_seq == 0);
193 }
194
195 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
196 {
197         unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
198
199         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
200 }
201
202 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
203 {
204         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
205 }
206
207 static inline void rps_lock(struct softnet_data *sd)
208 {
209 #ifdef CONFIG_RPS
210         spin_lock(&sd->input_pkt_queue.lock);
211 #endif
212 }
213
214 static inline void rps_unlock(struct softnet_data *sd)
215 {
216 #ifdef CONFIG_RPS
217         spin_unlock(&sd->input_pkt_queue.lock);
218 #endif
219 }
220
221 /* Device list insertion */
222 static void list_netdevice(struct net_device *dev)
223 {
224         struct net *net = dev_net(dev);
225
226         ASSERT_RTNL();
227
228         write_lock_bh(&dev_base_lock);
229         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
230         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
231         hlist_add_head_rcu(&dev->index_hlist,
232                            dev_index_hash(net, dev->ifindex));
233         write_unlock_bh(&dev_base_lock);
234
235         dev_base_seq_inc(net);
236 }
237
238 /* Device list removal
239  * caller must respect a RCU grace period before freeing/reusing dev
240  */
241 static void unlist_netdevice(struct net_device *dev)
242 {
243         ASSERT_RTNL();
244
245         /* Unlink dev from the device chain */
246         write_lock_bh(&dev_base_lock);
247         list_del_rcu(&dev->dev_list);
248         hlist_del_rcu(&dev->name_hlist);
249         hlist_del_rcu(&dev->index_hlist);
250         write_unlock_bh(&dev_base_lock);
251
252         dev_base_seq_inc(dev_net(dev));
253 }
254
255 /*
256  *      Our notifier list
257  */
258
259 static RAW_NOTIFIER_HEAD(netdev_chain);
260
261 /*
262  *      Device drivers call our routines to queue packets here. We empty the
263  *      queue in the local softnet handler.
264  */
265
266 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
267 EXPORT_PER_CPU_SYMBOL(softnet_data);
268
269 #ifdef CONFIG_LOCKDEP
270 /*
271  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
272  * according to dev->type
273  */
274 static const unsigned short netdev_lock_type[] =
275         {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
276          ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
277          ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
278          ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
279          ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
280          ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
281          ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
282          ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
283          ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
284          ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
285          ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
286          ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
287          ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
288          ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
289          ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
290
291 static const char *const netdev_lock_name[] =
292         {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
293          "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
294          "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
295          "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
296          "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
297          "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
298          "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
299          "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
300          "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
301          "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
302          "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
303          "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
304          "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
305          "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
306          "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
307
308 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
309 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
310
311 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
312 {
313         int i;
314
315         for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
316                 if (netdev_lock_type[i] == dev_type)
317                         return i;
318         /* the last key is used by default */
319         return ARRAY_SIZE(netdev_lock_type) - 1;
320 }
321
322 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
323                                                  unsigned short dev_type)
324 {
325         int i;
326
327         i = netdev_lock_pos(dev_type);
328         lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
329                                    netdev_lock_name[i]);
330 }
331
332 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
333 {
334         int i;
335
336         i = netdev_lock_pos(dev->type);
337         lockdep_set_class_and_name(&dev->addr_list_lock,
338                                    &netdev_addr_lock_key[i],
339                                    netdev_lock_name[i]);
340 }
341 #else
342 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
343                                                  unsigned short dev_type)
344 {
345 }
346 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
347 {
348 }
349 #endif
350
351 /*******************************************************************************
352
353                 Protocol management and registration routines
354
355 *******************************************************************************/
356
357 /*
358  *      Add a protocol ID to the list. Now that the input handler is
359  *      smarter we can dispense with all the messy stuff that used to be
360  *      here.
361  *
362  *      BEWARE!!! Protocol handlers, mangling input packets,
363  *      MUST BE last in hash buckets and checking protocol handlers
364  *      MUST start from promiscuous ptype_all chain in net_bh.
365  *      It is true now, do not change it.
366  *      Explanation follows: if protocol handler, mangling packet, will
367  *      be the first on list, it is not able to sense, that packet
368  *      is cloned and should be copied-on-write, so that it will
369  *      change it and subsequent readers will get broken packet.
370  *                                                      --ANK (980803)
371  */
372
373 static inline struct list_head *ptype_head(const struct packet_type *pt)
374 {
375         if (pt->type == htons(ETH_P_ALL))
376                 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
377         else
378                 return pt->dev ? &pt->dev->ptype_specific :
379                                  &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
380 }
381
382 /**
383  *      dev_add_pack - add packet handler
384  *      @pt: packet type declaration
385  *
386  *      Add a protocol handler to the networking stack. The passed &packet_type
387  *      is linked into kernel lists and may not be freed until it has been
388  *      removed from the kernel lists.
389  *
390  *      This call does not sleep therefore it can not
391  *      guarantee all CPU's that are in middle of receiving packets
392  *      will see the new packet type (until the next received packet).
393  */
394
395 void dev_add_pack(struct packet_type *pt)
396 {
397         struct list_head *head = ptype_head(pt);
398
399         spin_lock(&ptype_lock);
400         list_add_rcu(&pt->list, head);
401         spin_unlock(&ptype_lock);
402 }
403 EXPORT_SYMBOL(dev_add_pack);
404
405 /**
406  *      __dev_remove_pack        - remove packet handler
407  *      @pt: packet type declaration
408  *
409  *      Remove a protocol handler that was previously added to the kernel
410  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
411  *      from the kernel lists and can be freed or reused once this function
412  *      returns.
413  *
414  *      The packet type might still be in use by receivers
415  *      and must not be freed until after all the CPU's have gone
416  *      through a quiescent state.
417  */
418 void __dev_remove_pack(struct packet_type *pt)
419 {
420         struct list_head *head = ptype_head(pt);
421         struct packet_type *pt1;
422
423         spin_lock(&ptype_lock);
424
425         list_for_each_entry(pt1, head, list) {
426                 if (pt == pt1) {
427                         list_del_rcu(&pt->list);
428                         goto out;
429                 }
430         }
431
432         pr_warn("dev_remove_pack: %p not found\n", pt);
433 out:
434         spin_unlock(&ptype_lock);
435 }
436 EXPORT_SYMBOL(__dev_remove_pack);
437
438 /**
439  *      dev_remove_pack  - remove packet handler
440  *      @pt: packet type declaration
441  *
442  *      Remove a protocol handler that was previously added to the kernel
443  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
444  *      from the kernel lists and can be freed or reused once this function
445  *      returns.
446  *
447  *      This call sleeps to guarantee that no CPU is looking at the packet
448  *      type after return.
449  */
450 void dev_remove_pack(struct packet_type *pt)
451 {
452         __dev_remove_pack(pt);
453
454         synchronize_net();
455 }
456 EXPORT_SYMBOL(dev_remove_pack);
457
458
459 /**
460  *      dev_add_offload - register offload handlers
461  *      @po: protocol offload declaration
462  *
463  *      Add protocol offload handlers to the networking stack. The passed
464  *      &proto_offload is linked into kernel lists and may not be freed until
465  *      it has been removed from the kernel lists.
466  *
467  *      This call does not sleep therefore it can not
468  *      guarantee all CPU's that are in middle of receiving packets
469  *      will see the new offload handlers (until the next received packet).
470  */
471 void dev_add_offload(struct packet_offload *po)
472 {
473         struct packet_offload *elem;
474
475         spin_lock(&offload_lock);
476         list_for_each_entry(elem, &offload_base, list) {
477                 if (po->priority < elem->priority)
478                         break;
479         }
480         list_add_rcu(&po->list, elem->list.prev);
481         spin_unlock(&offload_lock);
482 }
483 EXPORT_SYMBOL(dev_add_offload);
484
485 /**
486  *      __dev_remove_offload     - remove offload handler
487  *      @po: packet offload declaration
488  *
489  *      Remove a protocol offload handler that was previously added to the
490  *      kernel offload handlers by dev_add_offload(). The passed &offload_type
491  *      is removed from the kernel lists and can be freed or reused once this
492  *      function returns.
493  *
494  *      The packet type might still be in use by receivers
495  *      and must not be freed until after all the CPU's have gone
496  *      through a quiescent state.
497  */
498 static void __dev_remove_offload(struct packet_offload *po)
499 {
500         struct list_head *head = &offload_base;
501         struct packet_offload *po1;
502
503         spin_lock(&offload_lock);
504
505         list_for_each_entry(po1, head, list) {
506                 if (po == po1) {
507                         list_del_rcu(&po->list);
508                         goto out;
509                 }
510         }
511
512         pr_warn("dev_remove_offload: %p not found\n", po);
513 out:
514         spin_unlock(&offload_lock);
515 }
516
517 /**
518  *      dev_remove_offload       - remove packet offload handler
519  *      @po: packet offload declaration
520  *
521  *      Remove a packet offload handler that was previously added to the kernel
522  *      offload handlers by dev_add_offload(). The passed &offload_type is
523  *      removed from the kernel lists and can be freed or reused once this
524  *      function returns.
525  *
526  *      This call sleeps to guarantee that no CPU is looking at the packet
527  *      type after return.
528  */
529 void dev_remove_offload(struct packet_offload *po)
530 {
531         __dev_remove_offload(po);
532
533         synchronize_net();
534 }
535 EXPORT_SYMBOL(dev_remove_offload);
536
537 /******************************************************************************
538
539                       Device Boot-time Settings Routines
540
541 *******************************************************************************/
542
543 /* Boot time configuration table */
544 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
545
546 /**
547  *      netdev_boot_setup_add   - add new setup entry
548  *      @name: name of the device
549  *      @map: configured settings for the device
550  *
551  *      Adds new setup entry to the dev_boot_setup list.  The function
552  *      returns 0 on error and 1 on success.  This is a generic routine to
553  *      all netdevices.
554  */
555 static int netdev_boot_setup_add(char *name, struct ifmap *map)
556 {
557         struct netdev_boot_setup *s;
558         int i;
559
560         s = dev_boot_setup;
561         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
562                 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
563                         memset(s[i].name, 0, sizeof(s[i].name));
564                         strlcpy(s[i].name, name, IFNAMSIZ);
565                         memcpy(&s[i].map, map, sizeof(s[i].map));
566                         break;
567                 }
568         }
569
570         return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
571 }
572
573 /**
574  *      netdev_boot_setup_check - check boot time settings
575  *      @dev: the netdevice
576  *
577  *      Check boot time settings for the device.
578  *      The found settings are set for the device to be used
579  *      later in the device probing.
580  *      Returns 0 if no settings found, 1 if they are.
581  */
582 int netdev_boot_setup_check(struct net_device *dev)
583 {
584         struct netdev_boot_setup *s = dev_boot_setup;
585         int i;
586
587         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
588                 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
589                     !strcmp(dev->name, s[i].name)) {
590                         dev->irq        = s[i].map.irq;
591                         dev->base_addr  = s[i].map.base_addr;
592                         dev->mem_start  = s[i].map.mem_start;
593                         dev->mem_end    = s[i].map.mem_end;
594                         return 1;
595                 }
596         }
597         return 0;
598 }
599 EXPORT_SYMBOL(netdev_boot_setup_check);
600
601
602 /**
603  *      netdev_boot_base        - get address from boot time settings
604  *      @prefix: prefix for network device
605  *      @unit: id for network device
606  *
607  *      Check boot time settings for the base address of device.
608  *      The found settings are set for the device to be used
609  *      later in the device probing.
610  *      Returns 0 if no settings found.
611  */
612 unsigned long netdev_boot_base(const char *prefix, int unit)
613 {
614         const struct netdev_boot_setup *s = dev_boot_setup;
615         char name[IFNAMSIZ];
616         int i;
617
618         sprintf(name, "%s%d", prefix, unit);
619
620         /*
621          * If device already registered then return base of 1
622          * to indicate not to probe for this interface
623          */
624         if (__dev_get_by_name(&init_net, name))
625                 return 1;
626
627         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
628                 if (!strcmp(name, s[i].name))
629                         return s[i].map.base_addr;
630         return 0;
631 }
632
633 /*
634  * Saves at boot time configured settings for any netdevice.
635  */
636 int __init netdev_boot_setup(char *str)
637 {
638         int ints[5];
639         struct ifmap map;
640
641         str = get_options(str, ARRAY_SIZE(ints), ints);
642         if (!str || !*str)
643                 return 0;
644
645         /* Save settings */
646         memset(&map, 0, sizeof(map));
647         if (ints[0] > 0)
648                 map.irq = ints[1];
649         if (ints[0] > 1)
650                 map.base_addr = ints[2];
651         if (ints[0] > 2)
652                 map.mem_start = ints[3];
653         if (ints[0] > 3)
654                 map.mem_end = ints[4];
655
656         /* Add new entry to the list */
657         return netdev_boot_setup_add(str, &map);
658 }
659
660 __setup("netdev=", netdev_boot_setup);
661
662 /*******************************************************************************
663
664                             Device Interface Subroutines
665
666 *******************************************************************************/
667
668 /**
669  *      dev_get_iflink  - get 'iflink' value of a interface
670  *      @dev: targeted interface
671  *
672  *      Indicates the ifindex the interface is linked to.
673  *      Physical interfaces have the same 'ifindex' and 'iflink' values.
674  */
675
676 int dev_get_iflink(const struct net_device *dev)
677 {
678         if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
679                 return dev->netdev_ops->ndo_get_iflink(dev);
680
681         return dev->ifindex;
682 }
683 EXPORT_SYMBOL(dev_get_iflink);
684
685 /**
686  *      dev_fill_metadata_dst - Retrieve tunnel egress information.
687  *      @dev: targeted interface
688  *      @skb: The packet.
689  *
690  *      For better visibility of tunnel traffic OVS needs to retrieve
691  *      egress tunnel information for a packet. Following API allows
692  *      user to get this info.
693  */
694 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
695 {
696         struct ip_tunnel_info *info;
697
698         if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
699                 return -EINVAL;
700
701         info = skb_tunnel_info_unclone(skb);
702         if (!info)
703                 return -ENOMEM;
704         if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
705                 return -EINVAL;
706
707         return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
708 }
709 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
710
711 /**
712  *      __dev_get_by_name       - find a device by its name
713  *      @net: the applicable net namespace
714  *      @name: name to find
715  *
716  *      Find an interface by name. Must be called under RTNL semaphore
717  *      or @dev_base_lock. If the name is found a pointer to the device
718  *      is returned. If the name is not found then %NULL is returned. The
719  *      reference counters are not incremented so the caller must be
720  *      careful with locks.
721  */
722
723 struct net_device *__dev_get_by_name(struct net *net, const char *name)
724 {
725         struct net_device *dev;
726         struct hlist_head *head = dev_name_hash(net, name);
727
728         hlist_for_each_entry(dev, head, name_hlist)
729                 if (!strncmp(dev->name, name, IFNAMSIZ))
730                         return dev;
731
732         return NULL;
733 }
734 EXPORT_SYMBOL(__dev_get_by_name);
735
736 /**
737  *      dev_get_by_name_rcu     - find a device by its name
738  *      @net: the applicable net namespace
739  *      @name: name to find
740  *
741  *      Find an interface by name.
742  *      If the name is found a pointer to the device is returned.
743  *      If the name is not found then %NULL is returned.
744  *      The reference counters are not incremented so the caller must be
745  *      careful with locks. The caller must hold RCU lock.
746  */
747
748 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
749 {
750         struct net_device *dev;
751         struct hlist_head *head = dev_name_hash(net, name);
752
753         hlist_for_each_entry_rcu(dev, head, name_hlist)
754                 if (!strncmp(dev->name, name, IFNAMSIZ))
755                         return dev;
756
757         return NULL;
758 }
759 EXPORT_SYMBOL(dev_get_by_name_rcu);
760
761 /**
762  *      dev_get_by_name         - find a device by its name
763  *      @net: the applicable net namespace
764  *      @name: name to find
765  *
766  *      Find an interface by name. This can be called from any
767  *      context and does its own locking. The returned handle has
768  *      the usage count incremented and the caller must use dev_put() to
769  *      release it when it is no longer needed. %NULL is returned if no
770  *      matching device is found.
771  */
772
773 struct net_device *dev_get_by_name(struct net *net, const char *name)
774 {
775         struct net_device *dev;
776
777         rcu_read_lock();
778         dev = dev_get_by_name_rcu(net, name);
779         if (dev)
780                 dev_hold(dev);
781         rcu_read_unlock();
782         return dev;
783 }
784 EXPORT_SYMBOL(dev_get_by_name);
785
786 /**
787  *      __dev_get_by_index - find a device by its ifindex
788  *      @net: the applicable net namespace
789  *      @ifindex: index of device
790  *
791  *      Search for an interface by index. Returns %NULL if the device
792  *      is not found or a pointer to the device. The device has not
793  *      had its reference counter increased so the caller must be careful
794  *      about locking. The caller must hold either the RTNL semaphore
795  *      or @dev_base_lock.
796  */
797
798 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
799 {
800         struct net_device *dev;
801         struct hlist_head *head = dev_index_hash(net, ifindex);
802
803         hlist_for_each_entry(dev, head, index_hlist)
804                 if (dev->ifindex == ifindex)
805                         return dev;
806
807         return NULL;
808 }
809 EXPORT_SYMBOL(__dev_get_by_index);
810
811 /**
812  *      dev_get_by_index_rcu - find a device by its ifindex
813  *      @net: the applicable net namespace
814  *      @ifindex: index of device
815  *
816  *      Search for an interface by index. Returns %NULL if the device
817  *      is not found or a pointer to the device. The device has not
818  *      had its reference counter increased so the caller must be careful
819  *      about locking. The caller must hold RCU lock.
820  */
821
822 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
823 {
824         struct net_device *dev;
825         struct hlist_head *head = dev_index_hash(net, ifindex);
826
827         hlist_for_each_entry_rcu(dev, head, index_hlist)
828                 if (dev->ifindex == ifindex)
829                         return dev;
830
831         return NULL;
832 }
833 EXPORT_SYMBOL(dev_get_by_index_rcu);
834
835
836 /**
837  *      dev_get_by_index - find a device by its ifindex
838  *      @net: the applicable net namespace
839  *      @ifindex: index of device
840  *
841  *      Search for an interface by index. Returns NULL if the device
842  *      is not found or a pointer to the device. The device returned has
843  *      had a reference added and the pointer is safe until the user calls
844  *      dev_put to indicate they have finished with it.
845  */
846
847 struct net_device *dev_get_by_index(struct net *net, int ifindex)
848 {
849         struct net_device *dev;
850
851         rcu_read_lock();
852         dev = dev_get_by_index_rcu(net, ifindex);
853         if (dev)
854                 dev_hold(dev);
855         rcu_read_unlock();
856         return dev;
857 }
858 EXPORT_SYMBOL(dev_get_by_index);
859
860 /**
861  *      netdev_get_name - get a netdevice name, knowing its ifindex.
862  *      @net: network namespace
863  *      @name: a pointer to the buffer where the name will be stored.
864  *      @ifindex: the ifindex of the interface to get the name from.
865  *
866  *      The use of raw_seqcount_begin() and cond_resched() before
867  *      retrying is required as we want to give the writers a chance
868  *      to complete when CONFIG_PREEMPT is not set.
869  */
870 int netdev_get_name(struct net *net, char *name, int ifindex)
871 {
872         struct net_device *dev;
873         unsigned int seq;
874
875 retry:
876         seq = raw_seqcount_begin(&devnet_rename_seq);
877         rcu_read_lock();
878         dev = dev_get_by_index_rcu(net, ifindex);
879         if (!dev) {
880                 rcu_read_unlock();
881                 return -ENODEV;
882         }
883
884         strcpy(name, dev->name);
885         rcu_read_unlock();
886         if (read_seqcount_retry(&devnet_rename_seq, seq)) {
887                 cond_resched();
888                 goto retry;
889         }
890
891         return 0;
892 }
893
894 /**
895  *      dev_getbyhwaddr_rcu - find a device by its hardware address
896  *      @net: the applicable net namespace
897  *      @type: media type of device
898  *      @ha: hardware address
899  *
900  *      Search for an interface by MAC address. Returns NULL if the device
901  *      is not found or a pointer to the device.
902  *      The caller must hold RCU or RTNL.
903  *      The returned device has not had its ref count increased
904  *      and the caller must therefore be careful about locking
905  *
906  */
907
908 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
909                                        const char *ha)
910 {
911         struct net_device *dev;
912
913         for_each_netdev_rcu(net, dev)
914                 if (dev->type == type &&
915                     !memcmp(dev->dev_addr, ha, dev->addr_len))
916                         return dev;
917
918         return NULL;
919 }
920 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
921
922 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
923 {
924         struct net_device *dev;
925
926         ASSERT_RTNL();
927         for_each_netdev(net, dev)
928                 if (dev->type == type)
929                         return dev;
930
931         return NULL;
932 }
933 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
934
935 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
936 {
937         struct net_device *dev, *ret = NULL;
938
939         rcu_read_lock();
940         for_each_netdev_rcu(net, dev)
941                 if (dev->type == type) {
942                         dev_hold(dev);
943                         ret = dev;
944                         break;
945                 }
946         rcu_read_unlock();
947         return ret;
948 }
949 EXPORT_SYMBOL(dev_getfirstbyhwtype);
950
951 /**
952  *      __dev_get_by_flags - find any device with given flags
953  *      @net: the applicable net namespace
954  *      @if_flags: IFF_* values
955  *      @mask: bitmask of bits in if_flags to check
956  *
957  *      Search for any interface with the given flags. Returns NULL if a device
958  *      is not found or a pointer to the device. Must be called inside
959  *      rtnl_lock(), and result refcount is unchanged.
960  */
961
962 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
963                                       unsigned short mask)
964 {
965         struct net_device *dev, *ret;
966
967         ASSERT_RTNL();
968
969         ret = NULL;
970         for_each_netdev(net, dev) {
971                 if (((dev->flags ^ if_flags) & mask) == 0) {
972                         ret = dev;
973                         break;
974                 }
975         }
976         return ret;
977 }
978 EXPORT_SYMBOL(__dev_get_by_flags);
979
980 /**
981  *      dev_valid_name - check if name is okay for network device
982  *      @name: name string
983  *
984  *      Network device names need to be valid file names to
985  *      to allow sysfs to work.  We also disallow any kind of
986  *      whitespace.
987  */
988 bool dev_valid_name(const char *name)
989 {
990         if (*name == '\0')
991                 return false;
992         if (strlen(name) >= IFNAMSIZ)
993                 return false;
994         if (!strcmp(name, ".") || !strcmp(name, ".."))
995                 return false;
996
997         while (*name) {
998                 if (*name == '/' || *name == ':' || isspace(*name))
999                         return false;
1000                 name++;
1001         }
1002         return true;
1003 }
1004 EXPORT_SYMBOL(dev_valid_name);
1005
1006 /**
1007  *      __dev_alloc_name - allocate a name for a device
1008  *      @net: network namespace to allocate the device name in
1009  *      @name: name format string
1010  *      @buf:  scratch buffer and result name string
1011  *
1012  *      Passed a format string - eg "lt%d" it will try and find a suitable
1013  *      id. It scans list of devices to build up a free map, then chooses
1014  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1015  *      while allocating the name and adding the device in order to avoid
1016  *      duplicates.
1017  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1018  *      Returns the number of the unit assigned or a negative errno code.
1019  */
1020
1021 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1022 {
1023         int i = 0;
1024         const char *p;
1025         const int max_netdevices = 8*PAGE_SIZE;
1026         unsigned long *inuse;
1027         struct net_device *d;
1028
1029         p = strnchr(name, IFNAMSIZ-1, '%');
1030         if (p) {
1031                 /*
1032                  * Verify the string as this thing may have come from
1033                  * the user.  There must be either one "%d" and no other "%"
1034                  * characters.
1035                  */
1036                 if (p[1] != 'd' || strchr(p + 2, '%'))
1037                         return -EINVAL;
1038
1039                 /* Use one page as a bit array of possible slots */
1040                 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1041                 if (!inuse)
1042                         return -ENOMEM;
1043
1044                 for_each_netdev(net, d) {
1045                         if (!sscanf(d->name, name, &i))
1046                                 continue;
1047                         if (i < 0 || i >= max_netdevices)
1048                                 continue;
1049
1050                         /*  avoid cases where sscanf is not exact inverse of printf */
1051                         snprintf(buf, IFNAMSIZ, name, i);
1052                         if (!strncmp(buf, d->name, IFNAMSIZ))
1053                                 set_bit(i, inuse);
1054                 }
1055
1056                 i = find_first_zero_bit(inuse, max_netdevices);
1057                 free_page((unsigned long) inuse);
1058         }
1059
1060         if (buf != name)
1061                 snprintf(buf, IFNAMSIZ, name, i);
1062         if (!__dev_get_by_name(net, buf))
1063                 return i;
1064
1065         /* It is possible to run out of possible slots
1066          * when the name is long and there isn't enough space left
1067          * for the digits, or if all bits are used.
1068          */
1069         return -ENFILE;
1070 }
1071
1072 /**
1073  *      dev_alloc_name - allocate a name for a device
1074  *      @dev: device
1075  *      @name: name format string
1076  *
1077  *      Passed a format string - eg "lt%d" it will try and find a suitable
1078  *      id. It scans list of devices to build up a free map, then chooses
1079  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1080  *      while allocating the name and adding the device in order to avoid
1081  *      duplicates.
1082  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1083  *      Returns the number of the unit assigned or a negative errno code.
1084  */
1085
1086 int dev_alloc_name(struct net_device *dev, const char *name)
1087 {
1088         char buf[IFNAMSIZ];
1089         struct net *net;
1090         int ret;
1091
1092         BUG_ON(!dev_net(dev));
1093         net = dev_net(dev);
1094         ret = __dev_alloc_name(net, name, buf);
1095         if (ret >= 0)
1096                 strlcpy(dev->name, buf, IFNAMSIZ);
1097         return ret;
1098 }
1099 EXPORT_SYMBOL(dev_alloc_name);
1100
1101 static int dev_alloc_name_ns(struct net *net,
1102                              struct net_device *dev,
1103                              const char *name)
1104 {
1105         char buf[IFNAMSIZ];
1106         int ret;
1107
1108         ret = __dev_alloc_name(net, name, buf);
1109         if (ret >= 0)
1110                 strlcpy(dev->name, buf, IFNAMSIZ);
1111         return ret;
1112 }
1113
1114 static int dev_get_valid_name(struct net *net,
1115                               struct net_device *dev,
1116                               const char *name)
1117 {
1118         BUG_ON(!net);
1119
1120         if (!dev_valid_name(name))
1121                 return -EINVAL;
1122
1123         if (strchr(name, '%'))
1124                 return dev_alloc_name_ns(net, dev, name);
1125         else if (__dev_get_by_name(net, name))
1126                 return -EEXIST;
1127         else if (dev->name != name)
1128                 strlcpy(dev->name, name, IFNAMSIZ);
1129
1130         return 0;
1131 }
1132
1133 /**
1134  *      dev_change_name - change name of a device
1135  *      @dev: device
1136  *      @newname: name (or format string) must be at least IFNAMSIZ
1137  *
1138  *      Change name of a device, can pass format strings "eth%d".
1139  *      for wildcarding.
1140  */
1141 int dev_change_name(struct net_device *dev, const char *newname)
1142 {
1143         unsigned char old_assign_type;
1144         char oldname[IFNAMSIZ];
1145         int err = 0;
1146         int ret;
1147         struct net *net;
1148
1149         ASSERT_RTNL();
1150         BUG_ON(!dev_net(dev));
1151
1152         net = dev_net(dev);
1153         if (dev->flags & IFF_UP)
1154                 return -EBUSY;
1155
1156         write_seqcount_begin(&devnet_rename_seq);
1157
1158         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1159                 write_seqcount_end(&devnet_rename_seq);
1160                 return 0;
1161         }
1162
1163         memcpy(oldname, dev->name, IFNAMSIZ);
1164
1165         err = dev_get_valid_name(net, dev, newname);
1166         if (err < 0) {
1167                 write_seqcount_end(&devnet_rename_seq);
1168                 return err;
1169         }
1170
1171         if (oldname[0] && !strchr(oldname, '%'))
1172                 netdev_info(dev, "renamed from %s\n", oldname);
1173
1174         old_assign_type = dev->name_assign_type;
1175         dev->name_assign_type = NET_NAME_RENAMED;
1176
1177 rollback:
1178         ret = device_rename(&dev->dev, dev->name);
1179         if (ret) {
1180                 memcpy(dev->name, oldname, IFNAMSIZ);
1181                 dev->name_assign_type = old_assign_type;
1182                 write_seqcount_end(&devnet_rename_seq);
1183                 return ret;
1184         }
1185
1186         write_seqcount_end(&devnet_rename_seq);
1187
1188         netdev_adjacent_rename_links(dev, oldname);
1189
1190         write_lock_bh(&dev_base_lock);
1191         hlist_del_rcu(&dev->name_hlist);
1192         write_unlock_bh(&dev_base_lock);
1193
1194         synchronize_rcu();
1195
1196         write_lock_bh(&dev_base_lock);
1197         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1198         write_unlock_bh(&dev_base_lock);
1199
1200         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1201         ret = notifier_to_errno(ret);
1202
1203         if (ret) {
1204                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1205                 if (err >= 0) {
1206                         err = ret;
1207                         write_seqcount_begin(&devnet_rename_seq);
1208                         memcpy(dev->name, oldname, IFNAMSIZ);
1209                         memcpy(oldname, newname, IFNAMSIZ);
1210                         dev->name_assign_type = old_assign_type;
1211                         old_assign_type = NET_NAME_RENAMED;
1212                         goto rollback;
1213                 } else {
1214                         pr_err("%s: name change rollback failed: %d\n",
1215                                dev->name, ret);
1216                 }
1217         }
1218
1219         return err;
1220 }
1221
1222 /**
1223  *      dev_set_alias - change ifalias of a device
1224  *      @dev: device
1225  *      @alias: name up to IFALIASZ
1226  *      @len: limit of bytes to copy from info
1227  *
1228  *      Set ifalias for a device,
1229  */
1230 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1231 {
1232         char *new_ifalias;
1233
1234         ASSERT_RTNL();
1235
1236         if (len >= IFALIASZ)
1237                 return -EINVAL;
1238
1239         if (!len) {
1240                 kfree(dev->ifalias);
1241                 dev->ifalias = NULL;
1242                 return 0;
1243         }
1244
1245         new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1246         if (!new_ifalias)
1247                 return -ENOMEM;
1248         dev->ifalias = new_ifalias;
1249
1250         strlcpy(dev->ifalias, alias, len+1);
1251         return len;
1252 }
1253
1254
1255 /**
1256  *      netdev_features_change - device changes features
1257  *      @dev: device to cause notification
1258  *
1259  *      Called to indicate a device has changed features.
1260  */
1261 void netdev_features_change(struct net_device *dev)
1262 {
1263         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1264 }
1265 EXPORT_SYMBOL(netdev_features_change);
1266
1267 /**
1268  *      netdev_state_change - device changes state
1269  *      @dev: device to cause notification
1270  *
1271  *      Called to indicate a device has changed state. This function calls
1272  *      the notifier chains for netdev_chain and sends a NEWLINK message
1273  *      to the routing socket.
1274  */
1275 void netdev_state_change(struct net_device *dev)
1276 {
1277         if (dev->flags & IFF_UP) {
1278                 struct netdev_notifier_change_info change_info;
1279
1280                 change_info.flags_changed = 0;
1281                 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1282                                               &change_info.info);
1283                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1284         }
1285 }
1286 EXPORT_SYMBOL(netdev_state_change);
1287
1288 /**
1289  *      netdev_notify_peers - notify network peers about existence of @dev
1290  *      @dev: network device
1291  *
1292  * Generate traffic such that interested network peers are aware of
1293  * @dev, such as by generating a gratuitous ARP. This may be used when
1294  * a device wants to inform the rest of the network about some sort of
1295  * reconfiguration such as a failover event or virtual machine
1296  * migration.
1297  */
1298 void netdev_notify_peers(struct net_device *dev)
1299 {
1300         rtnl_lock();
1301         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1302         rtnl_unlock();
1303 }
1304 EXPORT_SYMBOL(netdev_notify_peers);
1305
1306 static int __dev_open(struct net_device *dev)
1307 {
1308         const struct net_device_ops *ops = dev->netdev_ops;
1309         int ret;
1310
1311         ASSERT_RTNL();
1312
1313         if (!netif_device_present(dev))
1314                 return -ENODEV;
1315
1316         /* Block netpoll from trying to do any rx path servicing.
1317          * If we don't do this there is a chance ndo_poll_controller
1318          * or ndo_poll may be running while we open the device
1319          */
1320         netpoll_poll_disable(dev);
1321
1322         ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1323         ret = notifier_to_errno(ret);
1324         if (ret)
1325                 return ret;
1326
1327         set_bit(__LINK_STATE_START, &dev->state);
1328
1329         if (ops->ndo_validate_addr)
1330                 ret = ops->ndo_validate_addr(dev);
1331
1332         if (!ret && ops->ndo_open)
1333                 ret = ops->ndo_open(dev);
1334
1335         netpoll_poll_enable(dev);
1336
1337         if (ret)
1338                 clear_bit(__LINK_STATE_START, &dev->state);
1339         else {
1340                 dev->flags |= IFF_UP;
1341                 dev_set_rx_mode(dev);
1342                 dev_activate(dev);
1343                 add_device_randomness(dev->dev_addr, dev->addr_len);
1344         }
1345
1346         return ret;
1347 }
1348
1349 /**
1350  *      dev_open        - prepare an interface for use.
1351  *      @dev:   device to open
1352  *
1353  *      Takes a device from down to up state. The device's private open
1354  *      function is invoked and then the multicast lists are loaded. Finally
1355  *      the device is moved into the up state and a %NETDEV_UP message is
1356  *      sent to the netdev notifier chain.
1357  *
1358  *      Calling this function on an active interface is a nop. On a failure
1359  *      a negative errno code is returned.
1360  */
1361 int dev_open(struct net_device *dev)
1362 {
1363         int ret;
1364
1365         if (dev->flags & IFF_UP)
1366                 return 0;
1367
1368         ret = __dev_open(dev);
1369         if (ret < 0)
1370                 return ret;
1371
1372         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1373         call_netdevice_notifiers(NETDEV_UP, dev);
1374
1375         return ret;
1376 }
1377 EXPORT_SYMBOL(dev_open);
1378
1379 static int __dev_close_many(struct list_head *head)
1380 {
1381         struct net_device *dev;
1382
1383         ASSERT_RTNL();
1384         might_sleep();
1385
1386         list_for_each_entry(dev, head, close_list) {
1387                 /* Temporarily disable netpoll until the interface is down */
1388                 netpoll_poll_disable(dev);
1389
1390                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1391
1392                 clear_bit(__LINK_STATE_START, &dev->state);
1393
1394                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1395                  * can be even on different cpu. So just clear netif_running().
1396                  *
1397                  * dev->stop() will invoke napi_disable() on all of it's
1398                  * napi_struct instances on this device.
1399                  */
1400                 smp_mb__after_atomic(); /* Commit netif_running(). */
1401         }
1402
1403         dev_deactivate_many(head);
1404
1405         list_for_each_entry(dev, head, close_list) {
1406                 const struct net_device_ops *ops = dev->netdev_ops;
1407
1408                 /*
1409                  *      Call the device specific close. This cannot fail.
1410                  *      Only if device is UP
1411                  *
1412                  *      We allow it to be called even after a DETACH hot-plug
1413                  *      event.
1414                  */
1415                 if (ops->ndo_stop)
1416                         ops->ndo_stop(dev);
1417
1418                 dev->flags &= ~IFF_UP;
1419                 netpoll_poll_enable(dev);
1420         }
1421
1422         return 0;
1423 }
1424
1425 static int __dev_close(struct net_device *dev)
1426 {
1427         int retval;
1428         LIST_HEAD(single);
1429
1430         list_add(&dev->close_list, &single);
1431         retval = __dev_close_many(&single);
1432         list_del(&single);
1433
1434         return retval;
1435 }
1436
1437 int dev_close_many(struct list_head *head, bool unlink)
1438 {
1439         struct net_device *dev, *tmp;
1440
1441         /* Remove the devices that don't need to be closed */
1442         list_for_each_entry_safe(dev, tmp, head, close_list)
1443                 if (!(dev->flags & IFF_UP))
1444                         list_del_init(&dev->close_list);
1445
1446         __dev_close_many(head);
1447
1448         list_for_each_entry_safe(dev, tmp, head, close_list) {
1449                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1450                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1451                 if (unlink)
1452                         list_del_init(&dev->close_list);
1453         }
1454
1455         return 0;
1456 }
1457 EXPORT_SYMBOL(dev_close_many);
1458
1459 /**
1460  *      dev_close - shutdown an interface.
1461  *      @dev: device to shutdown
1462  *
1463  *      This function moves an active device into down state. A
1464  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1465  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1466  *      chain.
1467  */
1468 int dev_close(struct net_device *dev)
1469 {
1470         if (dev->flags & IFF_UP) {
1471                 LIST_HEAD(single);
1472
1473                 list_add(&dev->close_list, &single);
1474                 dev_close_many(&single, true);
1475                 list_del(&single);
1476         }
1477         return 0;
1478 }
1479 EXPORT_SYMBOL(dev_close);
1480
1481
1482 /**
1483  *      dev_disable_lro - disable Large Receive Offload on a device
1484  *      @dev: device
1485  *
1486  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1487  *      called under RTNL.  This is needed if received packets may be
1488  *      forwarded to another interface.
1489  */
1490 void dev_disable_lro(struct net_device *dev)
1491 {
1492         struct net_device *lower_dev;
1493         struct list_head *iter;
1494
1495         dev->wanted_features &= ~NETIF_F_LRO;
1496         netdev_update_features(dev);
1497
1498         if (unlikely(dev->features & NETIF_F_LRO))
1499                 netdev_WARN(dev, "failed to disable LRO!\n");
1500
1501         netdev_for_each_lower_dev(dev, lower_dev, iter)
1502                 dev_disable_lro(lower_dev);
1503 }
1504 EXPORT_SYMBOL(dev_disable_lro);
1505
1506 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1507                                    struct net_device *dev)
1508 {
1509         struct netdev_notifier_info info;
1510
1511         netdev_notifier_info_init(&info, dev);
1512         return nb->notifier_call(nb, val, &info);
1513 }
1514
1515 static int dev_boot_phase = 1;
1516
1517 /**
1518  *      register_netdevice_notifier - register a network notifier block
1519  *      @nb: notifier
1520  *
1521  *      Register a notifier to be called when network device events occur.
1522  *      The notifier passed is linked into the kernel structures and must
1523  *      not be reused until it has been unregistered. A negative errno code
1524  *      is returned on a failure.
1525  *
1526  *      When registered all registration and up events are replayed
1527  *      to the new notifier to allow device to have a race free
1528  *      view of the network device list.
1529  */
1530
1531 int register_netdevice_notifier(struct notifier_block *nb)
1532 {
1533         struct net_device *dev;
1534         struct net_device *last;
1535         struct net *net;
1536         int err;
1537
1538         rtnl_lock();
1539         err = raw_notifier_chain_register(&netdev_chain, nb);
1540         if (err)
1541                 goto unlock;
1542         if (dev_boot_phase)
1543                 goto unlock;
1544         for_each_net(net) {
1545                 for_each_netdev(net, dev) {
1546                         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1547                         err = notifier_to_errno(err);
1548                         if (err)
1549                                 goto rollback;
1550
1551                         if (!(dev->flags & IFF_UP))
1552                                 continue;
1553
1554                         call_netdevice_notifier(nb, NETDEV_UP, dev);
1555                 }
1556         }
1557
1558 unlock:
1559         rtnl_unlock();
1560         return err;
1561
1562 rollback:
1563         last = dev;
1564         for_each_net(net) {
1565                 for_each_netdev(net, dev) {
1566                         if (dev == last)
1567                                 goto outroll;
1568
1569                         if (dev->flags & IFF_UP) {
1570                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1571                                                         dev);
1572                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1573                         }
1574                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1575                 }
1576         }
1577
1578 outroll:
1579         raw_notifier_chain_unregister(&netdev_chain, nb);
1580         goto unlock;
1581 }
1582 EXPORT_SYMBOL(register_netdevice_notifier);
1583
1584 /**
1585  *      unregister_netdevice_notifier - unregister a network notifier block
1586  *      @nb: notifier
1587  *
1588  *      Unregister a notifier previously registered by
1589  *      register_netdevice_notifier(). The notifier is unlinked into the
1590  *      kernel structures and may then be reused. A negative errno code
1591  *      is returned on a failure.
1592  *
1593  *      After unregistering unregister and down device events are synthesized
1594  *      for all devices on the device list to the removed notifier to remove
1595  *      the need for special case cleanup code.
1596  */
1597
1598 int unregister_netdevice_notifier(struct notifier_block *nb)
1599 {
1600         struct net_device *dev;
1601         struct net *net;
1602         int err;
1603
1604         rtnl_lock();
1605         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1606         if (err)
1607                 goto unlock;
1608
1609         for_each_net(net) {
1610                 for_each_netdev(net, dev) {
1611                         if (dev->flags & IFF_UP) {
1612                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1613                                                         dev);
1614                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1615                         }
1616                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1617                 }
1618         }
1619 unlock:
1620         rtnl_unlock();
1621         return err;
1622 }
1623 EXPORT_SYMBOL(unregister_netdevice_notifier);
1624
1625 /**
1626  *      call_netdevice_notifiers_info - call all network notifier blocks
1627  *      @val: value passed unmodified to notifier function
1628  *      @dev: net_device pointer passed unmodified to notifier function
1629  *      @info: notifier information data
1630  *
1631  *      Call all network notifier blocks.  Parameters and return value
1632  *      are as for raw_notifier_call_chain().
1633  */
1634
1635 static int call_netdevice_notifiers_info(unsigned long val,
1636                                          struct net_device *dev,
1637                                          struct netdev_notifier_info *info)
1638 {
1639         ASSERT_RTNL();
1640         netdev_notifier_info_init(info, dev);
1641         return raw_notifier_call_chain(&netdev_chain, val, info);
1642 }
1643
1644 /**
1645  *      call_netdevice_notifiers - call all network notifier blocks
1646  *      @val: value passed unmodified to notifier function
1647  *      @dev: net_device pointer passed unmodified to notifier function
1648  *
1649  *      Call all network notifier blocks.  Parameters and return value
1650  *      are as for raw_notifier_call_chain().
1651  */
1652
1653 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1654 {
1655         struct netdev_notifier_info info;
1656
1657         return call_netdevice_notifiers_info(val, dev, &info);
1658 }
1659 EXPORT_SYMBOL(call_netdevice_notifiers);
1660
1661 #ifdef CONFIG_NET_INGRESS
1662 static struct static_key ingress_needed __read_mostly;
1663
1664 void net_inc_ingress_queue(void)
1665 {
1666         static_key_slow_inc(&ingress_needed);
1667 }
1668 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1669
1670 void net_dec_ingress_queue(void)
1671 {
1672         static_key_slow_dec(&ingress_needed);
1673 }
1674 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1675 #endif
1676
1677 static struct static_key netstamp_needed __read_mostly;
1678 #ifdef HAVE_JUMP_LABEL
1679 /* We are not allowed to call static_key_slow_dec() from irq context
1680  * If net_disable_timestamp() is called from irq context, defer the
1681  * static_key_slow_dec() calls.
1682  */
1683 static atomic_t netstamp_needed_deferred;
1684 #endif
1685
1686 void net_enable_timestamp(void)
1687 {
1688 #ifdef HAVE_JUMP_LABEL
1689         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1690
1691         if (deferred) {
1692                 while (--deferred)
1693                         static_key_slow_dec(&netstamp_needed);
1694                 return;
1695         }
1696 #endif
1697         static_key_slow_inc(&netstamp_needed);
1698 }
1699 EXPORT_SYMBOL(net_enable_timestamp);
1700
1701 void net_disable_timestamp(void)
1702 {
1703 #ifdef HAVE_JUMP_LABEL
1704         if (in_interrupt()) {
1705                 atomic_inc(&netstamp_needed_deferred);
1706                 return;
1707         }
1708 #endif
1709         static_key_slow_dec(&netstamp_needed);
1710 }
1711 EXPORT_SYMBOL(net_disable_timestamp);
1712
1713 static inline void net_timestamp_set(struct sk_buff *skb)
1714 {
1715         skb->tstamp.tv64 = 0;
1716         if (static_key_false(&netstamp_needed))
1717                 __net_timestamp(skb);
1718 }
1719
1720 #define net_timestamp_check(COND, SKB)                  \
1721         if (static_key_false(&netstamp_needed)) {               \
1722                 if ((COND) && !(SKB)->tstamp.tv64)      \
1723                         __net_timestamp(SKB);           \
1724         }                                               \
1725
1726 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb)
1727 {
1728         unsigned int len;
1729
1730         if (!(dev->flags & IFF_UP))
1731                 return false;
1732
1733         len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1734         if (skb->len <= len)
1735                 return true;
1736
1737         /* if TSO is enabled, we don't care about the length as the packet
1738          * could be forwarded without being segmented before
1739          */
1740         if (skb_is_gso(skb))
1741                 return true;
1742
1743         return false;
1744 }
1745 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1746
1747 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1748 {
1749         if (skb_orphan_frags(skb, GFP_ATOMIC) ||
1750             unlikely(!is_skb_forwardable(dev, skb))) {
1751                 atomic_long_inc(&dev->rx_dropped);
1752                 kfree_skb(skb);
1753                 return NET_RX_DROP;
1754         }
1755
1756         skb_scrub_packet(skb, true);
1757         skb->priority = 0;
1758         skb->protocol = eth_type_trans(skb, dev);
1759         skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1760
1761         return 0;
1762 }
1763 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1764
1765 /**
1766  * dev_forward_skb - loopback an skb to another netif
1767  *
1768  * @dev: destination network device
1769  * @skb: buffer to forward
1770  *
1771  * return values:
1772  *      NET_RX_SUCCESS  (no congestion)
1773  *      NET_RX_DROP     (packet was dropped, but freed)
1774  *
1775  * dev_forward_skb can be used for injecting an skb from the
1776  * start_xmit function of one device into the receive queue
1777  * of another device.
1778  *
1779  * The receiving device may be in another namespace, so
1780  * we have to clear all information in the skb that could
1781  * impact namespace isolation.
1782  */
1783 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1784 {
1785         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1786 }
1787 EXPORT_SYMBOL_GPL(dev_forward_skb);
1788
1789 static inline int deliver_skb(struct sk_buff *skb,
1790                               struct packet_type *pt_prev,
1791                               struct net_device *orig_dev)
1792 {
1793         if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1794                 return -ENOMEM;
1795         atomic_inc(&skb->users);
1796         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1797 }
1798
1799 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1800                                           struct packet_type **pt,
1801                                           struct net_device *orig_dev,
1802                                           __be16 type,
1803                                           struct list_head *ptype_list)
1804 {
1805         struct packet_type *ptype, *pt_prev = *pt;
1806
1807         list_for_each_entry_rcu(ptype, ptype_list, list) {
1808                 if (ptype->type != type)
1809                         continue;
1810                 if (pt_prev)
1811                         deliver_skb(skb, pt_prev, orig_dev);
1812                 pt_prev = ptype;
1813         }
1814         *pt = pt_prev;
1815 }
1816
1817 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1818 {
1819         if (!ptype->af_packet_priv || !skb->sk)
1820                 return false;
1821
1822         if (ptype->id_match)
1823                 return ptype->id_match(ptype, skb->sk);
1824         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1825                 return true;
1826
1827         return false;
1828 }
1829
1830 /*
1831  *      Support routine. Sends outgoing frames to any network
1832  *      taps currently in use.
1833  */
1834
1835 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1836 {
1837         struct packet_type *ptype;
1838         struct sk_buff *skb2 = NULL;
1839         struct packet_type *pt_prev = NULL;
1840         struct list_head *ptype_list = &ptype_all;
1841
1842         rcu_read_lock();
1843 again:
1844         list_for_each_entry_rcu(ptype, ptype_list, list) {
1845                 /* Never send packets back to the socket
1846                  * they originated from - MvS (miquels@drinkel.ow.org)
1847                  */
1848                 if (skb_loop_sk(ptype, skb))
1849                         continue;
1850
1851                 if (pt_prev) {
1852                         deliver_skb(skb2, pt_prev, skb->dev);
1853                         pt_prev = ptype;
1854                         continue;
1855                 }
1856
1857                 /* need to clone skb, done only once */
1858                 skb2 = skb_clone(skb, GFP_ATOMIC);
1859                 if (!skb2)
1860                         goto out_unlock;
1861
1862                 net_timestamp_set(skb2);
1863
1864                 /* skb->nh should be correctly
1865                  * set by sender, so that the second statement is
1866                  * just protection against buggy protocols.
1867                  */
1868                 skb_reset_mac_header(skb2);
1869
1870                 if (skb_network_header(skb2) < skb2->data ||
1871                     skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1872                         net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1873                                              ntohs(skb2->protocol),
1874                                              dev->name);
1875                         skb_reset_network_header(skb2);
1876                 }
1877
1878                 skb2->transport_header = skb2->network_header;
1879                 skb2->pkt_type = PACKET_OUTGOING;
1880                 pt_prev = ptype;
1881         }
1882
1883         if (ptype_list == &ptype_all) {
1884                 ptype_list = &dev->ptype_all;
1885                 goto again;
1886         }
1887 out_unlock:
1888         if (pt_prev)
1889                 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1890         rcu_read_unlock();
1891 }
1892
1893 /**
1894  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1895  * @dev: Network device
1896  * @txq: number of queues available
1897  *
1898  * If real_num_tx_queues is changed the tc mappings may no longer be
1899  * valid. To resolve this verify the tc mapping remains valid and if
1900  * not NULL the mapping. With no priorities mapping to this
1901  * offset/count pair it will no longer be used. In the worst case TC0
1902  * is invalid nothing can be done so disable priority mappings. If is
1903  * expected that drivers will fix this mapping if they can before
1904  * calling netif_set_real_num_tx_queues.
1905  */
1906 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1907 {
1908         int i;
1909         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1910
1911         /* If TC0 is invalidated disable TC mapping */
1912         if (tc->offset + tc->count > txq) {
1913                 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1914                 dev->num_tc = 0;
1915                 return;
1916         }
1917
1918         /* Invalidated prio to tc mappings set to TC0 */
1919         for (i = 1; i < TC_BITMASK + 1; i++) {
1920                 int q = netdev_get_prio_tc_map(dev, i);
1921
1922                 tc = &dev->tc_to_txq[q];
1923                 if (tc->offset + tc->count > txq) {
1924                         pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1925                                 i, q);
1926                         netdev_set_prio_tc_map(dev, i, 0);
1927                 }
1928         }
1929 }
1930
1931 #ifdef CONFIG_XPS
1932 static DEFINE_MUTEX(xps_map_mutex);
1933 #define xmap_dereference(P)             \
1934         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1935
1936 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1937                                         int cpu, u16 index)
1938 {
1939         struct xps_map *map = NULL;
1940         int pos;
1941
1942         if (dev_maps)
1943                 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1944
1945         for (pos = 0; map && pos < map->len; pos++) {
1946                 if (map->queues[pos] == index) {
1947                         if (map->len > 1) {
1948                                 map->queues[pos] = map->queues[--map->len];
1949                         } else {
1950                                 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1951                                 kfree_rcu(map, rcu);
1952                                 map = NULL;
1953                         }
1954                         break;
1955                 }
1956         }
1957
1958         return map;
1959 }
1960
1961 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1962 {
1963         struct xps_dev_maps *dev_maps;
1964         int cpu, i;
1965         bool active = false;
1966
1967         mutex_lock(&xps_map_mutex);
1968         dev_maps = xmap_dereference(dev->xps_maps);
1969
1970         if (!dev_maps)
1971                 goto out_no_maps;
1972
1973         for_each_possible_cpu(cpu) {
1974                 for (i = index; i < dev->num_tx_queues; i++) {
1975                         if (!remove_xps_queue(dev_maps, cpu, i))
1976                                 break;
1977                 }
1978                 if (i == dev->num_tx_queues)
1979                         active = true;
1980         }
1981
1982         if (!active) {
1983                 RCU_INIT_POINTER(dev->xps_maps, NULL);
1984                 kfree_rcu(dev_maps, rcu);
1985         }
1986
1987         for (i = index; i < dev->num_tx_queues; i++)
1988                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
1989                                              NUMA_NO_NODE);
1990
1991 out_no_maps:
1992         mutex_unlock(&xps_map_mutex);
1993 }
1994
1995 static struct xps_map *expand_xps_map(struct xps_map *map,
1996                                       int cpu, u16 index)
1997 {
1998         struct xps_map *new_map;
1999         int alloc_len = XPS_MIN_MAP_ALLOC;
2000         int i, pos;
2001
2002         for (pos = 0; map && pos < map->len; pos++) {
2003                 if (map->queues[pos] != index)
2004                         continue;
2005                 return map;
2006         }
2007
2008         /* Need to add queue to this CPU's existing map */
2009         if (map) {
2010                 if (pos < map->alloc_len)
2011                         return map;
2012
2013                 alloc_len = map->alloc_len * 2;
2014         }
2015
2016         /* Need to allocate new map to store queue on this CPU's map */
2017         new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2018                                cpu_to_node(cpu));
2019         if (!new_map)
2020                 return NULL;
2021
2022         for (i = 0; i < pos; i++)
2023                 new_map->queues[i] = map->queues[i];
2024         new_map->alloc_len = alloc_len;
2025         new_map->len = pos;
2026
2027         return new_map;
2028 }
2029
2030 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2031                         u16 index)
2032 {
2033         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2034         struct xps_map *map, *new_map;
2035         int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
2036         int cpu, numa_node_id = -2;
2037         bool active = false;
2038
2039         mutex_lock(&xps_map_mutex);
2040
2041         dev_maps = xmap_dereference(dev->xps_maps);
2042
2043         /* allocate memory for queue storage */
2044         for_each_online_cpu(cpu) {
2045                 if (!cpumask_test_cpu(cpu, mask))
2046                         continue;
2047
2048                 if (!new_dev_maps)
2049                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2050                 if (!new_dev_maps) {
2051                         mutex_unlock(&xps_map_mutex);
2052                         return -ENOMEM;
2053                 }
2054
2055                 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2056                                  NULL;
2057
2058                 map = expand_xps_map(map, cpu, index);
2059                 if (!map)
2060                         goto error;
2061
2062                 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2063         }
2064
2065         if (!new_dev_maps)
2066                 goto out_no_new_maps;
2067
2068         for_each_possible_cpu(cpu) {
2069                 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2070                         /* add queue to CPU maps */
2071                         int pos = 0;
2072
2073                         map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2074                         while ((pos < map->len) && (map->queues[pos] != index))
2075                                 pos++;
2076
2077                         if (pos == map->len)
2078                                 map->queues[map->len++] = index;
2079 #ifdef CONFIG_NUMA
2080                         if (numa_node_id == -2)
2081                                 numa_node_id = cpu_to_node(cpu);
2082                         else if (numa_node_id != cpu_to_node(cpu))
2083                                 numa_node_id = -1;
2084 #endif
2085                 } else if (dev_maps) {
2086                         /* fill in the new device map from the old device map */
2087                         map = xmap_dereference(dev_maps->cpu_map[cpu]);
2088                         RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2089                 }
2090
2091         }
2092
2093         rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2094
2095         /* Cleanup old maps */
2096         if (dev_maps) {
2097                 for_each_possible_cpu(cpu) {
2098                         new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2099                         map = xmap_dereference(dev_maps->cpu_map[cpu]);
2100                         if (map && map != new_map)
2101                                 kfree_rcu(map, rcu);
2102                 }
2103
2104                 kfree_rcu(dev_maps, rcu);
2105         }
2106
2107         dev_maps = new_dev_maps;
2108         active = true;
2109
2110 out_no_new_maps:
2111         /* update Tx queue numa node */
2112         netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2113                                      (numa_node_id >= 0) ? numa_node_id :
2114                                      NUMA_NO_NODE);
2115
2116         if (!dev_maps)
2117                 goto out_no_maps;
2118
2119         /* removes queue from unused CPUs */
2120         for_each_possible_cpu(cpu) {
2121                 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2122                         continue;
2123
2124                 if (remove_xps_queue(dev_maps, cpu, index))
2125                         active = true;
2126         }
2127
2128         /* free map if not active */
2129         if (!active) {
2130                 RCU_INIT_POINTER(dev->xps_maps, NULL);
2131                 kfree_rcu(dev_maps, rcu);
2132         }
2133
2134 out_no_maps:
2135         mutex_unlock(&xps_map_mutex);
2136
2137         return 0;
2138 error:
2139         /* remove any maps that we added */
2140         for_each_possible_cpu(cpu) {
2141                 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2142                 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2143                                  NULL;
2144                 if (new_map && new_map != map)
2145                         kfree(new_map);
2146         }
2147
2148         mutex_unlock(&xps_map_mutex);
2149
2150         kfree(new_dev_maps);
2151         return -ENOMEM;
2152 }
2153 EXPORT_SYMBOL(netif_set_xps_queue);
2154
2155 #endif
2156 /*
2157  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2158  * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2159  */
2160 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2161 {
2162         int rc;
2163
2164         if (txq < 1 || txq > dev->num_tx_queues)
2165                 return -EINVAL;
2166
2167         if (dev->reg_state == NETREG_REGISTERED ||
2168             dev->reg_state == NETREG_UNREGISTERING) {
2169                 ASSERT_RTNL();
2170
2171                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2172                                                   txq);
2173                 if (rc)
2174                         return rc;
2175
2176                 if (dev->num_tc)
2177                         netif_setup_tc(dev, txq);
2178
2179                 if (txq < dev->real_num_tx_queues) {
2180                         qdisc_reset_all_tx_gt(dev, txq);
2181 #ifdef CONFIG_XPS
2182                         netif_reset_xps_queues_gt(dev, txq);
2183 #endif
2184                 }
2185         }
2186
2187         dev->real_num_tx_queues = txq;
2188         return 0;
2189 }
2190 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2191
2192 #ifdef CONFIG_SYSFS
2193 /**
2194  *      netif_set_real_num_rx_queues - set actual number of RX queues used
2195  *      @dev: Network device
2196  *      @rxq: Actual number of RX queues
2197  *
2198  *      This must be called either with the rtnl_lock held or before
2199  *      registration of the net device.  Returns 0 on success, or a
2200  *      negative error code.  If called before registration, it always
2201  *      succeeds.
2202  */
2203 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2204 {
2205         int rc;
2206
2207         if (rxq < 1 || rxq > dev->num_rx_queues)
2208                 return -EINVAL;
2209
2210         if (dev->reg_state == NETREG_REGISTERED) {
2211                 ASSERT_RTNL();
2212
2213                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2214                                                   rxq);
2215                 if (rc)
2216                         return rc;
2217         }
2218
2219         dev->real_num_rx_queues = rxq;
2220         return 0;
2221 }
2222 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2223 #endif
2224
2225 /**
2226  * netif_get_num_default_rss_queues - default number of RSS queues
2227  *
2228  * This routine should set an upper limit on the number of RSS queues
2229  * used by default by multiqueue devices.
2230  */
2231 int netif_get_num_default_rss_queues(void)
2232 {
2233         return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2234 }
2235 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2236
2237 static inline void __netif_reschedule(struct Qdisc *q)
2238 {
2239         struct softnet_data *sd;
2240         unsigned long flags;
2241
2242         local_irq_save(flags);
2243         sd = this_cpu_ptr(&softnet_data);
2244         q->next_sched = NULL;
2245         *sd->output_queue_tailp = q;
2246         sd->output_queue_tailp = &q->next_sched;
2247         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2248         local_irq_restore(flags);
2249 }
2250
2251 void __netif_schedule(struct Qdisc *q)
2252 {
2253         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2254                 __netif_reschedule(q);
2255 }
2256 EXPORT_SYMBOL(__netif_schedule);
2257
2258 struct dev_kfree_skb_cb {
2259         enum skb_free_reason reason;
2260 };
2261
2262 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2263 {
2264         return (struct dev_kfree_skb_cb *)skb->cb;
2265 }
2266
2267 void netif_schedule_queue(struct netdev_queue *txq)
2268 {
2269         rcu_read_lock();
2270         if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2271                 struct Qdisc *q = rcu_dereference(txq->qdisc);
2272
2273                 __netif_schedule(q);
2274         }
2275         rcu_read_unlock();
2276 }
2277 EXPORT_SYMBOL(netif_schedule_queue);
2278
2279 /**
2280  *      netif_wake_subqueue - allow sending packets on subqueue
2281  *      @dev: network device
2282  *      @queue_index: sub queue index
2283  *
2284  * Resume individual transmit queue of a device with multiple transmit queues.
2285  */
2286 void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2287 {
2288         struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2289
2290         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2291                 struct Qdisc *q;
2292
2293                 rcu_read_lock();
2294                 q = rcu_dereference(txq->qdisc);
2295                 __netif_schedule(q);
2296                 rcu_read_unlock();
2297         }
2298 }
2299 EXPORT_SYMBOL(netif_wake_subqueue);
2300
2301 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2302 {
2303         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2304                 struct Qdisc *q;
2305
2306                 rcu_read_lock();
2307                 q = rcu_dereference(dev_queue->qdisc);
2308                 __netif_schedule(q);
2309                 rcu_read_unlock();
2310         }
2311 }
2312 EXPORT_SYMBOL(netif_tx_wake_queue);
2313
2314 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2315 {
2316         unsigned long flags;
2317
2318         if (likely(atomic_read(&skb->users) == 1)) {
2319                 smp_rmb();
2320                 atomic_set(&skb->users, 0);
2321         } else if (likely(!atomic_dec_and_test(&skb->users))) {
2322                 return;
2323         }
2324         get_kfree_skb_cb(skb)->reason = reason;
2325         local_irq_save(flags);
2326         skb->next = __this_cpu_read(softnet_data.completion_queue);
2327         __this_cpu_write(softnet_data.completion_queue, skb);
2328         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2329         local_irq_restore(flags);
2330 }
2331 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2332
2333 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2334 {
2335         if (in_irq() || irqs_disabled())
2336                 __dev_kfree_skb_irq(skb, reason);
2337         else
2338                 dev_kfree_skb(skb);
2339 }
2340 EXPORT_SYMBOL(__dev_kfree_skb_any);
2341
2342
2343 /**
2344  * netif_device_detach - mark device as removed
2345  * @dev: network device
2346  *
2347  * Mark device as removed from system and therefore no longer available.
2348  */
2349 void netif_device_detach(struct net_device *dev)
2350 {
2351         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2352             netif_running(dev)) {
2353                 netif_tx_stop_all_queues(dev);
2354         }
2355 }
2356 EXPORT_SYMBOL(netif_device_detach);
2357
2358 /**
2359  * netif_device_attach - mark device as attached
2360  * @dev: network device
2361  *
2362  * Mark device as attached from system and restart if needed.
2363  */
2364 void netif_device_attach(struct net_device *dev)
2365 {
2366         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2367             netif_running(dev)) {
2368                 netif_tx_wake_all_queues(dev);
2369                 __netdev_watchdog_up(dev);
2370         }
2371 }
2372 EXPORT_SYMBOL(netif_device_attach);
2373
2374 /*
2375  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2376  * to be used as a distribution range.
2377  */
2378 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2379                   unsigned int num_tx_queues)
2380 {
2381         u32 hash;
2382         u16 qoffset = 0;
2383         u16 qcount = num_tx_queues;
2384
2385         if (skb_rx_queue_recorded(skb)) {
2386                 hash = skb_get_rx_queue(skb);
2387                 while (unlikely(hash >= num_tx_queues))
2388                         hash -= num_tx_queues;
2389                 return hash;
2390         }
2391
2392         if (dev->num_tc) {
2393                 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2394                 qoffset = dev->tc_to_txq[tc].offset;
2395                 qcount = dev->tc_to_txq[tc].count;
2396         }
2397
2398         return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2399 }
2400 EXPORT_SYMBOL(__skb_tx_hash);
2401
2402 static void skb_warn_bad_offload(const struct sk_buff *skb)
2403 {
2404         static const netdev_features_t null_features = 0;
2405         struct net_device *dev = skb->dev;
2406         const char *name = "";
2407
2408         if (!net_ratelimit())
2409                 return;
2410
2411         if (dev) {
2412                 if (dev->dev.parent)
2413                         name = dev_driver_string(dev->dev.parent);
2414                 else
2415                         name = netdev_name(dev);
2416         }
2417         WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2418              "gso_type=%d ip_summed=%d\n",
2419              name, dev ? &dev->features : &null_features,
2420              skb->sk ? &skb->sk->sk_route_caps : &null_features,
2421              skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2422              skb_shinfo(skb)->gso_type, skb->ip_summed);
2423 }
2424
2425 /*
2426  * Invalidate hardware checksum when packet is to be mangled, and
2427  * complete checksum manually on outgoing path.
2428  */
2429 int skb_checksum_help(struct sk_buff *skb)
2430 {
2431         __wsum csum;
2432         int ret = 0, offset;
2433
2434         if (skb->ip_summed == CHECKSUM_COMPLETE)
2435                 goto out_set_summed;
2436
2437         if (unlikely(skb_shinfo(skb)->gso_size)) {
2438                 skb_warn_bad_offload(skb);
2439                 return -EINVAL;
2440         }
2441
2442         /* Before computing a checksum, we should make sure no frag could
2443          * be modified by an external entity : checksum could be wrong.
2444          */
2445         if (skb_has_shared_frag(skb)) {
2446                 ret = __skb_linearize(skb);
2447                 if (ret)
2448                         goto out;
2449         }
2450
2451         offset = skb_checksum_start_offset(skb);
2452         BUG_ON(offset >= skb_headlen(skb));
2453         csum = skb_checksum(skb, offset, skb->len - offset, 0);
2454
2455         offset += skb->csum_offset;
2456         BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2457
2458         if (skb_cloned(skb) &&
2459             !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2460                 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2461                 if (ret)
2462                         goto out;
2463         }
2464
2465         *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2466 out_set_summed:
2467         skb->ip_summed = CHECKSUM_NONE;
2468 out:
2469         return ret;
2470 }
2471 EXPORT_SYMBOL(skb_checksum_help);
2472
2473 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2474 {
2475         __be16 type = skb->protocol;
2476
2477         /* Tunnel gso handlers can set protocol to ethernet. */
2478         if (type == htons(ETH_P_TEB)) {
2479                 struct ethhdr *eth;
2480
2481                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2482                         return 0;
2483
2484                 eth = (struct ethhdr *)skb_mac_header(skb);
2485                 type = eth->h_proto;
2486         }
2487
2488         return __vlan_get_protocol(skb, type, depth);
2489 }
2490
2491 /**
2492  *      skb_mac_gso_segment - mac layer segmentation handler.
2493  *      @skb: buffer to segment
2494  *      @features: features for the output path (see dev->features)
2495  */
2496 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2497                                     netdev_features_t features)
2498 {
2499         struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2500         struct packet_offload *ptype;
2501         int vlan_depth = skb->mac_len;
2502         __be16 type = skb_network_protocol(skb, &vlan_depth);
2503
2504         if (unlikely(!type))
2505                 return ERR_PTR(-EINVAL);
2506
2507         __skb_pull(skb, vlan_depth);
2508
2509         rcu_read_lock();
2510         list_for_each_entry_rcu(ptype, &offload_base, list) {
2511                 if (ptype->type == type && ptype->callbacks.gso_segment) {
2512                         segs = ptype->callbacks.gso_segment(skb, features);
2513                         break;
2514                 }
2515         }
2516         rcu_read_unlock();
2517
2518         __skb_push(skb, skb->data - skb_mac_header(skb));
2519
2520         return segs;
2521 }
2522 EXPORT_SYMBOL(skb_mac_gso_segment);
2523
2524
2525 /* openvswitch calls this on rx path, so we need a different check.
2526  */
2527 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2528 {
2529         if (tx_path)
2530                 return skb->ip_summed != CHECKSUM_PARTIAL;
2531         else
2532                 return skb->ip_summed == CHECKSUM_NONE;
2533 }
2534
2535 /**
2536  *      __skb_gso_segment - Perform segmentation on skb.
2537  *      @skb: buffer to segment
2538  *      @features: features for the output path (see dev->features)
2539  *      @tx_path: whether it is called in TX path
2540  *
2541  *      This function segments the given skb and returns a list of segments.
2542  *
2543  *      It may return NULL if the skb requires no segmentation.  This is
2544  *      only possible when GSO is used for verifying header integrity.
2545  *
2546  *      Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
2547  */
2548 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2549                                   netdev_features_t features, bool tx_path)
2550 {
2551         if (unlikely(skb_needs_check(skb, tx_path))) {
2552                 int err;
2553
2554                 skb_warn_bad_offload(skb);
2555
2556                 err = skb_cow_head(skb, 0);
2557                 if (err < 0)
2558                         return ERR_PTR(err);
2559         }
2560
2561         BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2562                      sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2563
2564         SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2565         SKB_GSO_CB(skb)->encap_level = 0;
2566
2567         skb_reset_mac_header(skb);
2568         skb_reset_mac_len(skb);
2569
2570         return skb_mac_gso_segment(skb, features);
2571 }
2572 EXPORT_SYMBOL(__skb_gso_segment);
2573
2574 /* Take action when hardware reception checksum errors are detected. */
2575 #ifdef CONFIG_BUG
2576 void netdev_rx_csum_fault(struct net_device *dev)
2577 {
2578         if (net_ratelimit()) {
2579                 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2580                 dump_stack();
2581         }
2582 }
2583 EXPORT_SYMBOL(netdev_rx_csum_fault);
2584 #endif
2585
2586 /* Actually, we should eliminate this check as soon as we know, that:
2587  * 1. IOMMU is present and allows to map all the memory.
2588  * 2. No high memory really exists on this machine.
2589  */
2590
2591 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2592 {
2593 #ifdef CONFIG_HIGHMEM
2594         int i;
2595         if (!(dev->features & NETIF_F_HIGHDMA)) {
2596                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2597                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2598                         if (PageHighMem(skb_frag_page(frag)))
2599                                 return 1;
2600                 }
2601         }
2602
2603         if (PCI_DMA_BUS_IS_PHYS) {
2604                 struct device *pdev = dev->dev.parent;
2605
2606                 if (!pdev)
2607                         return 0;
2608                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2609                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2610                         dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2611                         if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2612                                 return 1;
2613                 }
2614         }
2615 #endif
2616         return 0;
2617 }
2618
2619 /* If MPLS offload request, verify we are testing hardware MPLS features
2620  * instead of standard features for the netdev.
2621  */
2622 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2623 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2624                                            netdev_features_t features,
2625                                            __be16 type)
2626 {
2627         if (eth_p_mpls(type))
2628                 features &= skb->dev->mpls_features;
2629
2630         return features;
2631 }
2632 #else
2633 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2634                                            netdev_features_t features,
2635                                            __be16 type)
2636 {
2637         return features;
2638 }
2639 #endif
2640
2641 static netdev_features_t harmonize_features(struct sk_buff *skb,
2642         netdev_features_t features)
2643 {
2644         int tmp;
2645         __be16 type;
2646
2647         type = skb_network_protocol(skb, &tmp);
2648         features = net_mpls_features(skb, features, type);
2649
2650         if (skb->ip_summed != CHECKSUM_NONE &&
2651             !can_checksum_protocol(features, type)) {
2652                 features &= ~NETIF_F_ALL_CSUM;
2653         } else if (illegal_highdma(skb->dev, skb)) {
2654                 features &= ~NETIF_F_SG;
2655         }
2656
2657         return features;
2658 }
2659
2660 netdev_features_t passthru_features_check(struct sk_buff *skb,
2661                                           struct net_device *dev,
2662                                           netdev_features_t features)
2663 {
2664         return features;
2665 }
2666 EXPORT_SYMBOL(passthru_features_check);
2667
2668 static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2669                                              struct net_device *dev,
2670                                              netdev_features_t features)
2671 {
2672         return vlan_features_check(skb, features);
2673 }
2674
2675 netdev_features_t netif_skb_features(struct sk_buff *skb)
2676 {
2677         struct net_device *dev = skb->dev;
2678         netdev_features_t features = dev->features;
2679         u16 gso_segs = skb_shinfo(skb)->gso_segs;
2680
2681         if (gso_segs > dev->gso_max_segs || gso_segs < dev->gso_min_segs)
2682                 features &= ~NETIF_F_GSO_MASK;
2683
2684         /* If encapsulation offload request, verify we are testing
2685          * hardware encapsulation features instead of standard
2686          * features for the netdev
2687          */
2688         if (skb->encapsulation)
2689                 features &= dev->hw_enc_features;
2690
2691         if (skb_vlan_tagged(skb))
2692                 features = netdev_intersect_features(features,
2693                                                      dev->vlan_features |
2694                                                      NETIF_F_HW_VLAN_CTAG_TX |
2695                                                      NETIF_F_HW_VLAN_STAG_TX);
2696
2697         if (dev->netdev_ops->ndo_features_check)
2698                 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2699                                                                 features);
2700         else
2701                 features &= dflt_features_check(skb, dev, features);
2702
2703         return harmonize_features(skb, features);
2704 }
2705 EXPORT_SYMBOL(netif_skb_features);
2706
2707 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2708                     struct netdev_queue *txq, bool more)
2709 {
2710         unsigned int len;
2711         int rc;
2712
2713         if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2714                 dev_queue_xmit_nit(skb, dev);
2715
2716         len = skb->len;
2717         trace_net_dev_start_xmit(skb, dev);
2718         rc = netdev_start_xmit(skb, dev, txq, more);
2719         trace_net_dev_xmit(skb, rc, dev, len);
2720
2721         return rc;
2722 }
2723
2724 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2725                                     struct netdev_queue *txq, int *ret)
2726 {
2727         struct sk_buff *skb = first;
2728         int rc = NETDEV_TX_OK;
2729
2730         while (skb) {
2731                 struct sk_buff *next = skb->next;
2732
2733                 skb->next = NULL;
2734                 rc = xmit_one(skb, dev, txq, next != NULL);
2735                 if (unlikely(!dev_xmit_complete(rc))) {
2736                         skb->next = next;
2737                         goto out;
2738                 }
2739
2740                 skb = next;
2741                 if (netif_xmit_stopped(txq) && skb) {
2742                         rc = NETDEV_TX_BUSY;
2743                         break;
2744                 }
2745         }
2746
2747 out:
2748         *ret = rc;
2749         return skb;
2750 }
2751
2752 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2753                                           netdev_features_t features)
2754 {
2755         if (skb_vlan_tag_present(skb) &&
2756             !vlan_hw_offload_capable(features, skb->vlan_proto))
2757                 skb = __vlan_hwaccel_push_inside(skb);
2758         return skb;
2759 }
2760
2761 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
2762 {
2763         netdev_features_t features;
2764
2765         if (skb->next)
2766                 return skb;
2767
2768         features = netif_skb_features(skb);
2769         skb = validate_xmit_vlan(skb, features);
2770         if (unlikely(!skb))
2771                 goto out_null;
2772
2773         if (netif_needs_gso(skb, features)) {
2774                 struct sk_buff *segs;
2775
2776                 segs = skb_gso_segment(skb, features);
2777                 if (IS_ERR(segs)) {
2778                         goto out_kfree_skb;
2779                 } else if (segs) {
2780                         consume_skb(skb);
2781                         skb = segs;
2782                 }
2783         } else {
2784                 if (skb_needs_linearize(skb, features) &&
2785                     __skb_linearize(skb))
2786                         goto out_kfree_skb;
2787
2788                 /* If packet is not checksummed and device does not
2789                  * support checksumming for this protocol, complete
2790                  * checksumming here.
2791                  */
2792                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2793                         if (skb->encapsulation)
2794                                 skb_set_inner_transport_header(skb,
2795                                                                skb_checksum_start_offset(skb));
2796                         else
2797                                 skb_set_transport_header(skb,
2798                                                          skb_checksum_start_offset(skb));
2799                         if (!(features & NETIF_F_ALL_CSUM) &&
2800                             skb_checksum_help(skb))
2801                                 goto out_kfree_skb;
2802                 }
2803         }
2804
2805         return skb;
2806
2807 out_kfree_skb:
2808         kfree_skb(skb);
2809 out_null:
2810         return NULL;
2811 }
2812
2813 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
2814 {
2815         struct sk_buff *next, *head = NULL, *tail;
2816
2817         for (; skb != NULL; skb = next) {
2818                 next = skb->next;
2819                 skb->next = NULL;
2820
2821                 /* in case skb wont be segmented, point to itself */
2822                 skb->prev = skb;
2823
2824                 skb = validate_xmit_skb(skb, dev);
2825                 if (!skb)
2826                         continue;
2827
2828                 if (!head)
2829                         head = skb;
2830                 else
2831                         tail->next = skb;
2832                 /* If skb was segmented, skb->prev points to
2833                  * the last segment. If not, it still contains skb.
2834                  */
2835                 tail = skb->prev;
2836         }
2837         return head;
2838 }
2839 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
2840
2841 static void qdisc_pkt_len_init(struct sk_buff *skb)
2842 {
2843         const struct skb_shared_info *shinfo = skb_shinfo(skb);
2844
2845         qdisc_skb_cb(skb)->pkt_len = skb->len;
2846
2847         /* To get more precise estimation of bytes sent on wire,
2848          * we add to pkt_len the headers size of all segments
2849          */
2850         if (shinfo->gso_size)  {
2851                 unsigned int hdr_len;
2852                 u16 gso_segs = shinfo->gso_segs;
2853
2854                 /* mac layer + network layer */
2855                 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2856
2857                 /* + transport layer */
2858                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
2859                         hdr_len += tcp_hdrlen(skb);
2860                 else
2861                         hdr_len += sizeof(struct udphdr);
2862
2863                 if (shinfo->gso_type & SKB_GSO_DODGY)
2864                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
2865                                                 shinfo->gso_size);
2866
2867                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
2868         }
2869 }
2870
2871 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2872                                  struct net_device *dev,
2873                                  struct netdev_queue *txq)
2874 {
2875         spinlock_t *root_lock = qdisc_lock(q);
2876         bool contended;
2877         int rc;
2878
2879         qdisc_pkt_len_init(skb);
2880         qdisc_calculate_pkt_len(skb, q);
2881         /*
2882          * Heuristic to force contended enqueues to serialize on a
2883          * separate lock before trying to get qdisc main lock.
2884          * This permits __QDISC___STATE_RUNNING owner to get the lock more
2885          * often and dequeue packets faster.
2886          */
2887         contended = qdisc_is_running(q);
2888         if (unlikely(contended))
2889                 spin_lock(&q->busylock);
2890
2891         spin_lock(root_lock);
2892         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2893                 kfree_skb(skb);
2894                 rc = NET_XMIT_DROP;
2895         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2896                    qdisc_run_begin(q)) {
2897                 /*
2898                  * This is a work-conserving queue; there are no old skbs
2899                  * waiting to be sent out; and the qdisc is not running -
2900                  * xmit the skb directly.
2901                  */
2902
2903                 qdisc_bstats_update(q, skb);
2904
2905                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
2906                         if (unlikely(contended)) {
2907                                 spin_unlock(&q->busylock);
2908                                 contended = false;
2909                         }
2910                         __qdisc_run(q);
2911                 } else
2912                         qdisc_run_end(q);
2913
2914                 rc = NET_XMIT_SUCCESS;
2915         } else {
2916                 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2917                 if (qdisc_run_begin(q)) {
2918                         if (unlikely(contended)) {
2919                                 spin_unlock(&q->busylock);
2920                                 contended = false;
2921                         }
2922                         __qdisc_run(q);
2923                 }
2924         }
2925         spin_unlock(root_lock);
2926         if (unlikely(contended))
2927                 spin_unlock(&q->busylock);
2928         return rc;
2929 }
2930
2931 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2932 static void skb_update_prio(struct sk_buff *skb)
2933 {
2934         struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2935
2936         if (!skb->priority && skb->sk && map) {
2937                 unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2938
2939                 if (prioidx < map->priomap_len)
2940                         skb->priority = map->priomap[prioidx];
2941         }
2942 }
2943 #else
2944 #define skb_update_prio(skb)
2945 #endif
2946
2947 DEFINE_PER_CPU(int, xmit_recursion);
2948 EXPORT_SYMBOL(xmit_recursion);
2949
2950 #define RECURSION_LIMIT 10
2951
2952 /**
2953  *      dev_loopback_xmit - loop back @skb
2954  *      @net: network namespace this loopback is happening in
2955  *      @sk:  sk needed to be a netfilter okfn
2956  *      @skb: buffer to transmit
2957  */
2958 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
2959 {
2960         skb_reset_mac_header(skb);
2961         __skb_pull(skb, skb_network_offset(skb));
2962         skb->pkt_type = PACKET_LOOPBACK;
2963         skb->ip_summed = CHECKSUM_UNNECESSARY;
2964         WARN_ON(!skb_dst(skb));
2965         skb_dst_force(skb);
2966         netif_rx_ni(skb);
2967         return 0;
2968 }
2969 EXPORT_SYMBOL(dev_loopback_xmit);
2970
2971 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
2972 {
2973 #ifdef CONFIG_XPS
2974         struct xps_dev_maps *dev_maps;
2975         struct xps_map *map;
2976         int queue_index = -1;
2977
2978         rcu_read_lock();
2979         dev_maps = rcu_dereference(dev->xps_maps);
2980         if (dev_maps) {
2981                 map = rcu_dereference(
2982                     dev_maps->cpu_map[skb->sender_cpu - 1]);
2983                 if (map) {
2984                         if (map->len == 1)
2985                                 queue_index = map->queues[0];
2986                         else
2987                                 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
2988                                                                            map->len)];
2989                         if (unlikely(queue_index >= dev->real_num_tx_queues))
2990                                 queue_index = -1;
2991                 }
2992         }
2993         rcu_read_unlock();
2994
2995         return queue_index;
2996 #else
2997         return -1;
2998 #endif
2999 }
3000
3001 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3002 {
3003         struct sock *sk = skb->sk;
3004         int queue_index = sk_tx_queue_get(sk);
3005
3006         if (queue_index < 0 || skb->ooo_okay ||
3007             queue_index >= dev->real_num_tx_queues) {
3008                 int new_index = get_xps_queue(dev, skb);
3009                 if (new_index < 0)
3010                         new_index = skb_tx_hash(dev, skb);
3011
3012                 if (queue_index != new_index && sk &&
3013                     sk_fullsock(sk) &&
3014                     rcu_access_pointer(sk->sk_dst_cache))
3015                         sk_tx_queue_set(sk, new_index);
3016
3017                 queue_index = new_index;
3018         }
3019
3020         return queue_index;
3021 }
3022
3023 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3024                                     struct sk_buff *skb,
3025                                     void *accel_priv)
3026 {
3027         int queue_index = 0;
3028
3029 #ifdef CONFIG_XPS
3030         if (skb->sender_cpu == 0)
3031                 skb->sender_cpu = raw_smp_processor_id() + 1;
3032 #endif
3033
3034         if (dev->real_num_tx_queues != 1) {
3035                 const struct net_device_ops *ops = dev->netdev_ops;
3036                 if (ops->ndo_select_queue)
3037                         queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3038                                                             __netdev_pick_tx);
3039                 else
3040                         queue_index = __netdev_pick_tx(dev, skb);
3041
3042                 if (!accel_priv)
3043                         queue_index = netdev_cap_txqueue(dev, queue_index);
3044         }
3045
3046         skb_set_queue_mapping(skb, queue_index);
3047         return netdev_get_tx_queue(dev, queue_index);
3048 }
3049
3050 /**
3051  *      __dev_queue_xmit - transmit a buffer
3052  *      @skb: buffer to transmit
3053  *      @accel_priv: private data used for L2 forwarding offload
3054  *
3055  *      Queue a buffer for transmission to a network device. The caller must
3056  *      have set the device and priority and built the buffer before calling
3057  *      this function. The function can be called from an interrupt.
3058  *
3059  *      A negative errno code is returned on a failure. A success does not
3060  *      guarantee the frame will be transmitted as it may be dropped due
3061  *      to congestion or traffic shaping.
3062  *
3063  * -----------------------------------------------------------------------------------
3064  *      I notice this method can also return errors from the queue disciplines,
3065  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3066  *      be positive.
3067  *
3068  *      Regardless of the return value, the skb is consumed, so it is currently
3069  *      difficult to retry a send to this method.  (You can bump the ref count
3070  *      before sending to hold a reference for retry if you are careful.)
3071  *
3072  *      When calling this method, interrupts MUST be enabled.  This is because
3073  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3074  *          --BLG
3075  */
3076 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3077 {
3078         struct net_device *dev = skb->dev;
3079         struct netdev_queue *txq;
3080         struct Qdisc *q;
3081         int rc = -ENOMEM;
3082
3083         skb_reset_mac_header(skb);
3084
3085         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3086                 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3087
3088         /* Disable soft irqs for various locks below. Also
3089          * stops preemption for RCU.
3090          */
3091         rcu_read_lock_bh();
3092
3093         skb_update_prio(skb);
3094
3095         /* If device/qdisc don't need skb->dst, release it right now while
3096          * its hot in this cpu cache.
3097          */
3098         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3099                 skb_dst_drop(skb);
3100         else
3101                 skb_dst_force(skb);
3102
3103 #ifdef CONFIG_NET_SWITCHDEV
3104         /* Don't forward if offload device already forwarded */
3105         if (skb->offload_fwd_mark &&
3106             skb->offload_fwd_mark == dev->offload_fwd_mark) {
3107                 consume_skb(skb);
3108                 rc = NET_XMIT_SUCCESS;
3109                 goto out;
3110         }
3111 #endif
3112
3113         txq = netdev_pick_tx(dev, skb, accel_priv);
3114         q = rcu_dereference_bh(txq->qdisc);
3115
3116 #ifdef CONFIG_NET_CLS_ACT
3117         skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
3118 #endif
3119         trace_net_dev_queue(skb);
3120         if (q->enqueue) {
3121                 rc = __dev_xmit_skb(skb, q, dev, txq);
3122                 goto out;
3123         }
3124
3125         /* The device has no queue. Common case for software devices:
3126            loopback, all the sorts of tunnels...
3127
3128            Really, it is unlikely that netif_tx_lock protection is necessary
3129            here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3130            counters.)
3131            However, it is possible, that they rely on protection
3132            made by us here.
3133
3134            Check this and shot the lock. It is not prone from deadlocks.
3135            Either shot noqueue qdisc, it is even simpler 8)
3136          */
3137         if (dev->flags & IFF_UP) {
3138                 int cpu = smp_processor_id(); /* ok because BHs are off */
3139
3140                 if (txq->xmit_lock_owner != cpu) {
3141
3142                         if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
3143                                 goto recursion_alert;
3144
3145                         skb = validate_xmit_skb(skb, dev);
3146                         if (!skb)
3147                                 goto drop;
3148
3149                         HARD_TX_LOCK(dev, txq, cpu);
3150
3151                         if (!netif_xmit_stopped(txq)) {
3152                                 __this_cpu_inc(xmit_recursion);
3153                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3154                                 __this_cpu_dec(xmit_recursion);
3155                                 if (dev_xmit_complete(rc)) {
3156                                         HARD_TX_UNLOCK(dev, txq);
3157                                         goto out;
3158                                 }
3159                         }
3160                         HARD_TX_UNLOCK(dev, txq);
3161                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3162                                              dev->name);
3163                 } else {
3164                         /* Recursion is detected! It is possible,
3165                          * unfortunately
3166                          */
3167 recursion_alert:
3168                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3169                                              dev->name);
3170                 }
3171         }
3172
3173         rc = -ENETDOWN;
3174 drop:
3175         rcu_read_unlock_bh();
3176
3177         atomic_long_inc(&dev->tx_dropped);
3178         kfree_skb_list(skb);
3179         return rc;
3180 out:
3181         rcu_read_unlock_bh();
3182         return rc;
3183 }
3184
3185 int dev_queue_xmit(struct sk_buff *skb)
3186 {
3187         return __dev_queue_xmit(skb, NULL);
3188 }
3189 EXPORT_SYMBOL(dev_queue_xmit);
3190
3191 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3192 {
3193         return __dev_queue_xmit(skb, accel_priv);
3194 }
3195 EXPORT_SYMBOL(dev_queue_xmit_accel);
3196
3197
3198 /*=======================================================================
3199                         Receiver routines
3200   =======================================================================*/
3201
3202 int netdev_max_backlog __read_mostly = 1000;
3203 EXPORT_SYMBOL(netdev_max_backlog);
3204
3205 int netdev_tstamp_prequeue __read_mostly = 1;
3206 int netdev_budget __read_mostly = 300;
3207 int weight_p __read_mostly = 64;            /* old backlog weight */
3208
3209 /* Called with irq disabled */
3210 static inline void ____napi_schedule(struct softnet_data *sd,
3211                                      struct napi_struct *napi)
3212 {
3213         list_add_tail(&napi->poll_list, &sd->poll_list);
3214         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3215 }
3216
3217 #ifdef CONFIG_RPS
3218
3219 /* One global table that all flow-based protocols share. */
3220 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3221 EXPORT_SYMBOL(rps_sock_flow_table);
3222 u32 rps_cpu_mask __read_mostly;
3223 EXPORT_SYMBOL(rps_cpu_mask);
3224
3225 struct static_key rps_needed __read_mostly;
3226
3227 static struct rps_dev_flow *
3228 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3229             struct rps_dev_flow *rflow, u16 next_cpu)
3230 {
3231         if (next_cpu < nr_cpu_ids) {
3232 #ifdef CONFIG_RFS_ACCEL
3233                 struct netdev_rx_queue *rxqueue;
3234                 struct rps_dev_flow_table *flow_table;
3235                 struct rps_dev_flow *old_rflow;
3236                 u32 flow_id;
3237                 u16 rxq_index;
3238                 int rc;
3239
3240                 /* Should we steer this flow to a different hardware queue? */
3241                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3242                     !(dev->features & NETIF_F_NTUPLE))
3243                         goto out;
3244                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3245                 if (rxq_index == skb_get_rx_queue(skb))
3246                         goto out;
3247
3248                 rxqueue = dev->_rx + rxq_index;
3249                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3250                 if (!flow_table)
3251                         goto out;
3252                 flow_id = skb_get_hash(skb) & flow_table->mask;
3253                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3254                                                         rxq_index, flow_id);
3255                 if (rc < 0)
3256                         goto out;
3257                 old_rflow = rflow;
3258                 rflow = &flow_table->flows[flow_id];
3259                 rflow->filter = rc;
3260                 if (old_rflow->filter == rflow->filter)
3261                         old_rflow->filter = RPS_NO_FILTER;
3262         out:
3263 #endif
3264                 rflow->last_qtail =
3265                         per_cpu(softnet_data, next_cpu).input_queue_head;
3266         }
3267
3268         rflow->cpu = next_cpu;
3269         return rflow;
3270 }
3271
3272 /*
3273  * get_rps_cpu is called from netif_receive_skb and returns the target
3274  * CPU from the RPS map of the receiving queue for a given skb.
3275  * rcu_read_lock must be held on entry.
3276  */
3277 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3278                        struct rps_dev_flow **rflowp)
3279 {
3280         const struct rps_sock_flow_table *sock_flow_table;
3281         struct netdev_rx_queue *rxqueue = dev->_rx;
3282         struct rps_dev_flow_table *flow_table;
3283         struct rps_map *map;
3284         int cpu = -1;
3285         u32 tcpu;
3286         u32 hash;
3287
3288         if (skb_rx_queue_recorded(skb)) {
3289                 u16 index = skb_get_rx_queue(skb);
3290
3291                 if (unlikely(index >= dev->real_num_rx_queues)) {
3292                         WARN_ONCE(dev->real_num_rx_queues > 1,
3293                                   "%s received packet on queue %u, but number "
3294                                   "of RX queues is %u\n",
3295                                   dev->name, index, dev->real_num_rx_queues);
3296                         goto done;
3297                 }
3298                 rxqueue += index;
3299         }
3300
3301         /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3302
3303         flow_table = rcu_dereference(rxqueue->rps_flow_table);
3304         map = rcu_dereference(rxqueue->rps_map);
3305         if (!flow_table && !map)
3306                 goto done;
3307
3308         skb_reset_network_header(skb);
3309         hash = skb_get_hash(skb);
3310         if (!hash)
3311                 goto done;
3312
3313         sock_flow_table = rcu_dereference(rps_sock_flow_table);
3314         if (flow_table && sock_flow_table) {
3315                 struct rps_dev_flow *rflow;
3316                 u32 next_cpu;
3317                 u32 ident;
3318
3319                 /* First check into global flow table if there is a match */
3320                 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3321                 if ((ident ^ hash) & ~rps_cpu_mask)
3322                         goto try_rps;
3323
3324                 next_cpu = ident & rps_cpu_mask;
3325
3326                 /* OK, now we know there is a match,
3327                  * we can look at the local (per receive queue) flow table
3328                  */
3329                 rflow = &flow_table->flows[hash & flow_table->mask];
3330                 tcpu = rflow->cpu;
3331
3332                 /*
3333                  * If the desired CPU (where last recvmsg was done) is
3334                  * different from current CPU (one in the rx-queue flow
3335                  * table entry), switch if one of the following holds:
3336                  *   - Current CPU is unset (>= nr_cpu_ids).
3337                  *   - Current CPU is offline.
3338                  *   - The current CPU's queue tail has advanced beyond the
3339                  *     last packet that was enqueued using this table entry.
3340                  *     This guarantees that all previous packets for the flow
3341                  *     have been dequeued, thus preserving in order delivery.
3342                  */
3343                 if (unlikely(tcpu != next_cpu) &&
3344                     (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3345                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3346                       rflow->last_qtail)) >= 0)) {
3347                         tcpu = next_cpu;
3348                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3349                 }
3350
3351                 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3352                         *rflowp = rflow;
3353                         cpu = tcpu;
3354                         goto done;
3355                 }
3356         }
3357
3358 try_rps:
3359
3360         if (map) {
3361                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3362                 if (cpu_online(tcpu)) {
3363                         cpu = tcpu;
3364                         goto done;
3365                 }
3366         }
3367
3368 done:
3369         return cpu;
3370 }
3371
3372 #ifdef CONFIG_RFS_ACCEL
3373
3374 /**
3375  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3376  * @dev: Device on which the filter was set
3377  * @rxq_index: RX queue index
3378  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3379  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3380  *
3381  * Drivers that implement ndo_rx_flow_steer() should periodically call
3382  * this function for each installed filter and remove the filters for
3383  * which it returns %true.
3384  */
3385 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3386                          u32 flow_id, u16 filter_id)
3387 {
3388         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3389         struct rps_dev_flow_table *flow_table;
3390         struct rps_dev_flow *rflow;
3391         bool expire = true;
3392         unsigned int cpu;
3393
3394         rcu_read_lock();
3395         flow_table = rcu_dereference(rxqueue->rps_flow_table);
3396         if (flow_table && flow_id <= flow_table->mask) {
3397                 rflow = &flow_table->flows[flow_id];
3398                 cpu = ACCESS_ONCE(rflow->cpu);
3399                 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3400                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3401                            rflow->last_qtail) <
3402                      (int)(10 * flow_table->mask)))
3403                         expire = false;
3404         }
3405         rcu_read_unlock();
3406         return expire;
3407 }
3408 EXPORT_SYMBOL(rps_may_expire_flow);
3409
3410 #endif /* CONFIG_RFS_ACCEL */
3411
3412 /* Called from hardirq (IPI) context */
3413 static void rps_trigger_softirq(void *data)
3414 {
3415         struct softnet_data *sd = data;
3416
3417         ____napi_schedule(sd, &sd->backlog);
3418         sd->received_rps++;
3419 }
3420
3421 #endif /* CONFIG_RPS */
3422
3423 /*
3424  * Check if this softnet_data structure is another cpu one
3425  * If yes, queue it to our IPI list and return 1
3426  * If no, return 0
3427  */
3428 static int rps_ipi_queued(struct softnet_data *sd)
3429 {
3430 #ifdef CONFIG_RPS
3431         struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3432
3433         if (sd != mysd) {
3434                 sd->rps_ipi_next = mysd->rps_ipi_list;
3435                 mysd->rps_ipi_list = sd;
3436
3437                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3438                 return 1;
3439         }
3440 #endif /* CONFIG_RPS */
3441         return 0;
3442 }
3443
3444 #ifdef CONFIG_NET_FLOW_LIMIT
3445 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3446 #endif
3447
3448 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3449 {
3450 #ifdef CONFIG_NET_FLOW_LIMIT
3451         struct sd_flow_limit *fl;
3452         struct softnet_data *sd;
3453         unsigned int old_flow, new_flow;
3454
3455         if (qlen < (netdev_max_backlog >> 1))
3456                 return false;
3457
3458         sd = this_cpu_ptr(&softnet_data);
3459
3460         rcu_read_lock();
3461         fl = rcu_dereference(sd->flow_limit);
3462         if (fl) {
3463                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3464                 old_flow = fl->history[fl->history_head];
3465                 fl->history[fl->history_head] = new_flow;
3466
3467                 fl->history_head++;
3468                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3469
3470                 if (likely(fl->buckets[old_flow]))
3471                         fl->buckets[old_flow]--;
3472
3473                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3474                         fl->count++;
3475                         rcu_read_unlock();
3476                         return true;
3477                 }
3478         }
3479         rcu_read_unlock();
3480 #endif
3481         return false;
3482 }
3483
3484 /*
3485  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3486  * queue (may be a remote CPU queue).
3487  */
3488 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3489                               unsigned int *qtail)
3490 {
3491         struct softnet_data *sd;
3492         unsigned long flags;
3493         unsigned int qlen;
3494
3495         sd = &per_cpu(softnet_data, cpu);
3496
3497         local_irq_save(flags);
3498
3499         rps_lock(sd);
3500         if (!netif_running(skb->dev))
3501                 goto drop;
3502         qlen = skb_queue_len(&sd->input_pkt_queue);
3503         if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3504                 if (qlen) {
3505 enqueue:
3506                         __skb_queue_tail(&sd->input_pkt_queue, skb);
3507                         input_queue_tail_incr_save(sd, qtail);
3508                         rps_unlock(sd);
3509                         local_irq_restore(flags);
3510                         return NET_RX_SUCCESS;
3511                 }
3512
3513                 /* Schedule NAPI for backlog device
3514                  * We can use non atomic operation since we own the queue lock
3515                  */
3516                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3517                         if (!rps_ipi_queued(sd))
3518                                 ____napi_schedule(sd, &sd->backlog);
3519                 }
3520                 goto enqueue;
3521         }
3522
3523 drop:
3524         sd->dropped++;
3525         rps_unlock(sd);
3526
3527         local_irq_restore(flags);
3528
3529         atomic_long_inc(&skb->dev->rx_dropped);
3530         kfree_skb(skb);
3531         return NET_RX_DROP;
3532 }
3533
3534 static int netif_rx_internal(struct sk_buff *skb)
3535 {
3536         int ret;
3537
3538         net_timestamp_check(netdev_tstamp_prequeue, skb);
3539
3540         trace_netif_rx(skb);
3541 #ifdef CONFIG_RPS
3542         if (static_key_false(&rps_needed)) {
3543                 struct rps_dev_flow voidflow, *rflow = &voidflow;
3544                 int cpu;
3545
3546                 preempt_disable();
3547                 rcu_read_lock();
3548
3549                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3550                 if (cpu < 0)
3551                         cpu = smp_processor_id();
3552
3553                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3554
3555                 rcu_read_unlock();
3556                 preempt_enable();
3557         } else
3558 #endif
3559         {
3560                 unsigned int qtail;
3561                 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3562                 put_cpu();
3563         }
3564         return ret;
3565 }
3566
3567 /**
3568  *      netif_rx        -       post buffer to the network code
3569  *      @skb: buffer to post
3570  *
3571  *      This function receives a packet from a device driver and queues it for
3572  *      the upper (protocol) levels to process.  It always succeeds. The buffer
3573  *      may be dropped during processing for congestion control or by the
3574  *      protocol layers.
3575  *
3576  *      return values:
3577  *      NET_RX_SUCCESS  (no congestion)
3578  *      NET_RX_DROP     (packet was dropped)
3579  *
3580  */
3581
3582 int netif_rx(struct sk_buff *skb)
3583 {
3584         trace_netif_rx_entry(skb);
3585
3586         return netif_rx_internal(skb);
3587 }
3588 EXPORT_SYMBOL(netif_rx);
3589
3590 int netif_rx_ni(struct sk_buff *skb)
3591 {
3592         int err;
3593
3594         trace_netif_rx_ni_entry(skb);
3595
3596         preempt_disable();
3597         err = netif_rx_internal(skb);
3598         if (local_softirq_pending())
3599                 do_softirq();
3600         preempt_enable();
3601
3602         return err;
3603 }
3604 EXPORT_SYMBOL(netif_rx_ni);
3605
3606 static void net_tx_action(struct softirq_action *h)
3607 {
3608         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3609
3610         if (sd->completion_queue) {
3611                 struct sk_buff *clist;
3612
3613                 local_irq_disable();
3614                 clist = sd->completion_queue;
3615                 sd->completion_queue = NULL;
3616                 local_irq_enable();
3617
3618                 while (clist) {
3619                         struct sk_buff *skb = clist;
3620                         clist = clist->next;
3621
3622                         WARN_ON(atomic_read(&skb->users));
3623                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3624                                 trace_consume_skb(skb);
3625                         else
3626                                 trace_kfree_skb(skb, net_tx_action);
3627                         __kfree_skb(skb);
3628                 }
3629         }
3630
3631         if (sd->output_queue) {
3632                 struct Qdisc *head;
3633
3634                 local_irq_disable();
3635                 head = sd->output_queue;
3636                 sd->output_queue = NULL;
3637                 sd->output_queue_tailp = &sd->output_queue;
3638                 local_irq_enable();
3639
3640                 while (head) {
3641                         struct Qdisc *q = head;
3642                         spinlock_t *root_lock;
3643
3644                         head = head->next_sched;
3645
3646                         root_lock = qdisc_lock(q);
3647                         if (spin_trylock(root_lock)) {
3648                                 smp_mb__before_atomic();
3649                                 clear_bit(__QDISC_STATE_SCHED,
3650                                           &q->state);
3651                                 qdisc_run(q);
3652                                 spin_unlock(root_lock);
3653                         } else {
3654                                 if (!test_bit(__QDISC_STATE_DEACTIVATED,
3655                                               &q->state)) {
3656                                         __netif_reschedule(q);
3657                                 } else {
3658                                         smp_mb__before_atomic();
3659                                         clear_bit(__QDISC_STATE_SCHED,
3660                                                   &q->state);
3661                                 }
3662                         }
3663                 }
3664         }
3665 }
3666
3667 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3668     (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3669 /* This hook is defined here for ATM LANE */
3670 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3671                              unsigned char *addr) __read_mostly;
3672 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3673 #endif
3674
3675 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3676                                          struct packet_type **pt_prev,
3677                                          int *ret, struct net_device *orig_dev)
3678 {
3679 #ifdef CONFIG_NET_CLS_ACT
3680         struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
3681         struct tcf_result cl_res;
3682
3683         /* If there's at least one ingress present somewhere (so
3684          * we get here via enabled static key), remaining devices
3685          * that are not configured with an ingress qdisc will bail
3686          * out here.
3687          */
3688         if (!cl)
3689                 return skb;
3690         if (*pt_prev) {
3691                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3692                 *pt_prev = NULL;
3693         }
3694
3695         qdisc_skb_cb(skb)->pkt_len = skb->len;
3696         skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3697         qdisc_bstats_cpu_update(cl->q, skb);
3698
3699         switch (tc_classify(skb, cl, &cl_res, false)) {
3700         case TC_ACT_OK:
3701         case TC_ACT_RECLASSIFY:
3702                 skb->tc_index = TC_H_MIN(cl_res.classid);
3703                 break;
3704         case TC_ACT_SHOT:
3705                 qdisc_qstats_cpu_drop(cl->q);
3706         case TC_ACT_STOLEN:
3707         case TC_ACT_QUEUED:
3708                 kfree_skb(skb);
3709                 return NULL;
3710         case TC_ACT_REDIRECT:
3711                 /* skb_mac_header check was done by cls/act_bpf, so
3712                  * we can safely push the L2 header back before
3713                  * redirecting to another netdev
3714                  */
3715                 __skb_push(skb, skb->mac_len);
3716                 skb_do_redirect(skb);
3717                 return NULL;
3718         default:
3719                 break;
3720         }
3721 #endif /* CONFIG_NET_CLS_ACT */
3722         return skb;
3723 }
3724
3725 /**
3726  *      netdev_is_rx_handler_busy - check if receive handler is registered
3727  *      @dev: device to check
3728  *
3729  *      Check if a receive handler is already registered for a given device.
3730  *      Return true if there one.
3731  *
3732  *      The caller must hold the rtnl_mutex.
3733  */
3734 bool netdev_is_rx_handler_busy(struct net_device *dev)
3735 {
3736         ASSERT_RTNL();
3737         return dev && rtnl_dereference(dev->rx_handler);
3738 }
3739 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
3740
3741 /**
3742  *      netdev_rx_handler_register - register receive handler
3743  *      @dev: device to register a handler for
3744  *      @rx_handler: receive handler to register
3745  *      @rx_handler_data: data pointer that is used by rx handler
3746  *
3747  *      Register a receive handler for a device. This handler will then be
3748  *      called from __netif_receive_skb. A negative errno code is returned
3749  *      on a failure.
3750  *
3751  *      The caller must hold the rtnl_mutex.
3752  *
3753  *      For a general description of rx_handler, see enum rx_handler_result.
3754  */
3755 int netdev_rx_handler_register(struct net_device *dev,
3756                                rx_handler_func_t *rx_handler,
3757                                void *rx_handler_data)
3758 {
3759         ASSERT_RTNL();
3760
3761         if (dev->rx_handler)
3762                 return -EBUSY;
3763
3764         /* Note: rx_handler_data must be set before rx_handler */
3765         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3766         rcu_assign_pointer(dev->rx_handler, rx_handler);
3767
3768         return 0;
3769 }
3770 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3771
3772 /**
3773  *      netdev_rx_handler_unregister - unregister receive handler
3774  *      @dev: device to unregister a handler from
3775  *
3776  *      Unregister a receive handler from a device.
3777  *
3778  *      The caller must hold the rtnl_mutex.
3779  */
3780 void netdev_rx_handler_unregister(struct net_device *dev)
3781 {
3782
3783         ASSERT_RTNL();
3784         RCU_INIT_POINTER(dev->rx_handler, NULL);
3785         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3786          * section has a guarantee to see a non NULL rx_handler_data
3787          * as well.
3788          */
3789         synchronize_net();
3790         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3791 }
3792 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3793
3794 /*
3795  * Limit the use of PFMEMALLOC reserves to those protocols that implement
3796  * the special handling of PFMEMALLOC skbs.
3797  */
3798 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3799 {
3800         switch (skb->protocol) {
3801         case htons(ETH_P_ARP):
3802         case htons(ETH_P_IP):
3803         case htons(ETH_P_IPV6):
3804         case htons(ETH_P_8021Q):
3805         case htons(ETH_P_8021AD):
3806                 return true;
3807         default:
3808                 return false;
3809         }
3810 }
3811
3812 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
3813                              int *ret, struct net_device *orig_dev)
3814 {
3815 #ifdef CONFIG_NETFILTER_INGRESS
3816         if (nf_hook_ingress_active(skb)) {
3817                 if (*pt_prev) {
3818                         *ret = deliver_skb(skb, *pt_prev, orig_dev);
3819                         *pt_prev = NULL;
3820                 }
3821
3822                 return nf_hook_ingress(skb);
3823         }
3824 #endif /* CONFIG_NETFILTER_INGRESS */
3825         return 0;
3826 }
3827
3828 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
3829 {
3830         struct packet_type *ptype, *pt_prev;
3831         rx_handler_func_t *rx_handler;
3832         struct net_device *orig_dev;
3833         bool deliver_exact = false;
3834         int ret = NET_RX_DROP;
3835         __be16 type;
3836
3837         net_timestamp_check(!netdev_tstamp_prequeue, skb);
3838
3839         trace_netif_receive_skb(skb);
3840
3841         orig_dev = skb->dev;
3842
3843         skb_reset_network_header(skb);
3844         if (!skb_transport_header_was_set(skb))
3845                 skb_reset_transport_header(skb);
3846         skb_reset_mac_len(skb);
3847
3848         pt_prev = NULL;
3849
3850 another_round:
3851         skb->skb_iif = skb->dev->ifindex;
3852
3853         __this_cpu_inc(softnet_data.processed);
3854
3855         if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
3856             skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
3857                 skb = skb_vlan_untag(skb);
3858                 if (unlikely(!skb))
3859                         goto out;
3860         }
3861
3862 #ifdef CONFIG_NET_CLS_ACT
3863         if (skb->tc_verd & TC_NCLS) {
3864                 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3865                 goto ncls;
3866         }
3867 #endif
3868
3869         if (pfmemalloc)
3870                 goto skip_taps;
3871
3872         list_for_each_entry_rcu(ptype, &ptype_all, list) {
3873                 if (pt_prev)
3874                         ret = deliver_skb(skb, pt_prev, orig_dev);
3875                 pt_prev = ptype;
3876         }
3877
3878         list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
3879                 if (pt_prev)
3880                         ret = deliver_skb(skb, pt_prev, orig_dev);
3881                 pt_prev = ptype;
3882         }
3883
3884 skip_taps:
3885 #ifdef CONFIG_NET_INGRESS
3886         if (static_key_false(&ingress_needed)) {
3887                 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3888                 if (!skb)
3889                         goto out;
3890
3891                 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
3892                         goto out;
3893         }
3894 #endif
3895 #ifdef CONFIG_NET_CLS_ACT
3896         skb->tc_verd = 0;
3897 ncls:
3898 #endif
3899         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
3900                 goto drop;
3901
3902         if (skb_vlan_tag_present(skb)) {
3903                 if (pt_prev) {
3904                         ret = deliver_skb(skb, pt_prev, orig_dev);
3905                         pt_prev = NULL;
3906                 }
3907                 if (vlan_do_receive(&skb))
3908                         goto another_round;
3909                 else if (unlikely(!skb))
3910                         goto out;
3911         }
3912
3913         rx_handler = rcu_dereference(skb->dev->rx_handler);
3914         if (rx_handler) {
3915                 if (pt_prev) {
3916                         ret = deliver_skb(skb, pt_prev, orig_dev);
3917                         pt_prev = NULL;
3918                 }
3919                 switch (rx_handler(&skb)) {
3920                 case RX_HANDLER_CONSUMED:
3921                         ret = NET_RX_SUCCESS;
3922                         goto out;
3923                 case RX_HANDLER_ANOTHER:
3924                         goto another_round;
3925                 case RX_HANDLER_EXACT:
3926                         deliver_exact = true;
3927                 case RX_HANDLER_PASS:
3928                         break;
3929                 default:
3930                         BUG();
3931                 }
3932         }
3933
3934         if (unlikely(skb_vlan_tag_present(skb))) {
3935                 if (skb_vlan_tag_get_id(skb))
3936                         skb->pkt_type = PACKET_OTHERHOST;
3937                 /* Note: we might in the future use prio bits
3938                  * and set skb->priority like in vlan_do_receive()
3939                  * For the time being, just ignore Priority Code Point
3940                  */
3941                 skb->vlan_tci = 0;
3942         }
3943
3944         type = skb->protocol;
3945
3946         /* deliver only exact match when indicated */
3947         if (likely(!deliver_exact)) {
3948                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3949                                        &ptype_base[ntohs(type) &
3950                                                    PTYPE_HASH_MASK]);
3951         }
3952
3953         deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3954                                &orig_dev->ptype_specific);
3955
3956         if (unlikely(skb->dev != orig_dev)) {
3957                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3958                                        &skb->dev->ptype_specific);
3959         }
3960
3961         if (pt_prev) {
3962                 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3963                         goto drop;
3964                 else
3965                         ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3966         } else {
3967 drop:
3968                 atomic_long_inc(&skb->dev->rx_dropped);
3969                 kfree_skb(skb);
3970                 /* Jamal, now you will not able to escape explaining
3971                  * me how you were going to use this. :-)
3972                  */
3973                 ret = NET_RX_DROP;
3974         }
3975
3976 out:
3977         return ret;
3978 }
3979
3980 static int __netif_receive_skb(struct sk_buff *skb)
3981 {
3982         int ret;
3983
3984         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
3985                 unsigned long pflags = current->flags;
3986
3987                 /*
3988                  * PFMEMALLOC skbs are special, they should
3989                  * - be delivered to SOCK_MEMALLOC sockets only
3990                  * - stay away from userspace
3991                  * - have bounded memory usage
3992                  *
3993                  * Use PF_MEMALLOC as this saves us from propagating the allocation
3994                  * context down to all allocation sites.
3995                  */
3996                 current->flags |= PF_MEMALLOC;
3997                 ret = __netif_receive_skb_core(skb, true);
3998                 tsk_restore_flags(current, pflags, PF_MEMALLOC);
3999         } else
4000                 ret = __netif_receive_skb_core(skb, false);
4001
4002         return ret;
4003 }
4004
4005 static int netif_receive_skb_internal(struct sk_buff *skb)
4006 {
4007         int ret;
4008
4009         net_timestamp_check(netdev_tstamp_prequeue, skb);
4010
4011         if (skb_defer_rx_timestamp(skb))
4012                 return NET_RX_SUCCESS;
4013
4014         rcu_read_lock();
4015
4016 #ifdef CONFIG_RPS
4017         if (static_key_false(&rps_needed)) {
4018                 struct rps_dev_flow voidflow, *rflow = &voidflow;
4019                 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
4020
4021                 if (cpu >= 0) {
4022                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4023                         rcu_read_unlock();
4024                         return ret;
4025                 }
4026         }
4027 #endif
4028         ret = __netif_receive_skb(skb);
4029         rcu_read_unlock();
4030         return ret;
4031 }
4032
4033 /**
4034  *      netif_receive_skb - process receive buffer from network
4035  *      @skb: buffer to process
4036  *
4037  *      netif_receive_skb() is the main receive data processing function.
4038  *      It always succeeds. The buffer may be dropped during processing
4039  *      for congestion control or by the protocol layers.
4040  *
4041  *      This function may only be called from softirq context and interrupts
4042  *      should be enabled.
4043  *
4044  *      Return values (usually ignored):
4045  *      NET_RX_SUCCESS: no congestion
4046  *      NET_RX_DROP: packet was dropped
4047  */
4048 int netif_receive_skb(struct sk_buff *skb)
4049 {
4050         trace_netif_receive_skb_entry(skb);
4051
4052         return netif_receive_skb_internal(skb);
4053 }
4054 EXPORT_SYMBOL(netif_receive_skb);
4055
4056 /* Network device is going away, flush any packets still pending
4057  * Called with irqs disabled.
4058  */
4059 static void flush_backlog(void *arg)
4060 {
4061         struct net_device *dev = arg;
4062         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4063         struct sk_buff *skb, *tmp;
4064
4065         rps_lock(sd);
4066         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4067                 if (skb->dev == dev) {
4068                         __skb_unlink(skb, &sd->input_pkt_queue);
4069                         kfree_skb(skb);
4070                         input_queue_head_incr(sd);
4071                 }
4072         }
4073         rps_unlock(sd);
4074
4075         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4076                 if (skb->dev == dev) {
4077                         __skb_unlink(skb, &sd->process_queue);
4078                         kfree_skb(skb);
4079                         input_queue_head_incr(sd);
4080                 }
4081         }
4082 }
4083
4084 static int napi_gro_complete(struct sk_buff *skb)
4085 {
4086         struct packet_offload *ptype;
4087         __be16 type = skb->protocol;
4088         struct list_head *head = &offload_base;
4089         int err = -ENOENT;
4090
4091         BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4092
4093         if (NAPI_GRO_CB(skb)->count == 1) {
4094                 skb_shinfo(skb)->gso_size = 0;
4095                 goto out;
4096         }
4097
4098         rcu_read_lock();
4099         list_for_each_entry_rcu(ptype, head, list) {
4100                 if (ptype->type != type || !ptype->callbacks.gro_complete)
4101                         continue;
4102
4103                 err = ptype->callbacks.gro_complete(skb, 0);
4104                 break;
4105         }
4106         rcu_read_unlock();
4107
4108         if (err) {
4109                 WARN_ON(&ptype->list == head);
4110                 kfree_skb(skb);
4111                 return NET_RX_SUCCESS;
4112         }
4113
4114 out:
4115         return netif_receive_skb_internal(skb);
4116 }
4117
4118 /* napi->gro_list contains packets ordered by age.
4119  * youngest packets at the head of it.
4120  * Complete skbs in reverse order to reduce latencies.
4121  */
4122 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4123 {
4124         struct sk_buff *skb, *prev = NULL;
4125
4126         /* scan list and build reverse chain */
4127         for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4128                 skb->prev = prev;
4129                 prev = skb;
4130         }
4131
4132         for (skb = prev; skb; skb = prev) {
4133                 skb->next = NULL;
4134
4135                 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4136                         return;
4137
4138                 prev = skb->prev;
4139                 napi_gro_complete(skb);
4140                 napi->gro_count--;
4141         }
4142
4143         napi->gro_list = NULL;
4144 }
4145 EXPORT_SYMBOL(napi_gro_flush);
4146
4147 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4148 {
4149         struct sk_buff *p;
4150         unsigned int maclen = skb->dev->hard_header_len;
4151         u32 hash = skb_get_hash_raw(skb);
4152
4153         for (p = napi->gro_list; p; p = p->next) {
4154                 unsigned long diffs;
4155
4156                 NAPI_GRO_CB(p)->flush = 0;
4157
4158                 if (hash != skb_get_hash_raw(p)) {
4159                         NAPI_GRO_CB(p)->same_flow = 0;
4160                         continue;
4161                 }
4162
4163                 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4164                 diffs |= p->vlan_tci ^ skb->vlan_tci;
4165                 diffs |= skb_metadata_dst_cmp(p, skb);
4166                 if (maclen == ETH_HLEN)
4167                         diffs |= compare_ether_header(skb_mac_header(p),
4168                                                       skb_mac_header(skb));
4169                 else if (!diffs)
4170                         diffs = memcmp(skb_mac_header(p),
4171                                        skb_mac_header(skb),
4172                                        maclen);
4173                 NAPI_GRO_CB(p)->same_flow = !diffs;
4174         }
4175 }
4176
4177 static void skb_gro_reset_offset(struct sk_buff *skb)
4178 {
4179         const struct skb_shared_info *pinfo = skb_shinfo(skb);
4180         const skb_frag_t *frag0 = &pinfo->frags[0];
4181
4182         NAPI_GRO_CB(skb)->data_offset = 0;
4183         NAPI_GRO_CB(skb)->frag0 = NULL;
4184         NAPI_GRO_CB(skb)->frag0_len = 0;
4185
4186         if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4187             pinfo->nr_frags &&
4188             !PageHighMem(skb_frag_page(frag0))) {
4189                 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4190                 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
4191                                                     skb_frag_size(frag0),
4192                                                     skb->end - skb->tail);
4193         }
4194 }
4195
4196 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4197 {
4198         struct skb_shared_info *pinfo = skb_shinfo(skb);
4199
4200         BUG_ON(skb->end - skb->tail < grow);
4201
4202         memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4203
4204         skb->data_len -= grow;
4205         skb->tail += grow;
4206
4207         pinfo->frags[0].page_offset += grow;
4208         skb_frag_size_sub(&pinfo->frags[0], grow);
4209
4210         if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4211                 skb_frag_unref(skb, 0);
4212                 memmove(pinfo->frags, pinfo->frags + 1,
4213                         --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4214         }
4215 }
4216
4217 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4218 {
4219         struct sk_buff **pp = NULL;
4220         struct packet_offload *ptype;
4221         __be16 type = skb->protocol;
4222         struct list_head *head = &offload_base;
4223         int same_flow;
4224         enum gro_result ret;
4225         int grow;
4226
4227         if (!(skb->dev->features & NETIF_F_GRO))
4228                 goto normal;
4229
4230         if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad)
4231                 goto normal;
4232
4233         gro_list_prepare(napi, skb);
4234
4235         rcu_read_lock();
4236         list_for_each_entry_rcu(ptype, head, list) {
4237                 if (ptype->type != type || !ptype->callbacks.gro_receive)
4238                         continue;
4239
4240                 skb_set_network_header(skb, skb_gro_offset(skb));
4241                 skb_reset_mac_len(skb);
4242                 NAPI_GRO_CB(skb)->same_flow = 0;
4243                 NAPI_GRO_CB(skb)->flush = 0;
4244                 NAPI_GRO_CB(skb)->free = 0;
4245                 NAPI_GRO_CB(skb)->encap_mark = 0;
4246                 NAPI_GRO_CB(skb)->recursion_counter = 0;
4247                 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4248
4249                 /* Setup for GRO checksum validation */
4250                 switch (skb->ip_summed) {
4251                 case CHECKSUM_COMPLETE:
4252                         NAPI_GRO_CB(skb)->csum = skb->csum;
4253                         NAPI_GRO_CB(skb)->csum_valid = 1;
4254                         NAPI_GRO_CB(skb)->csum_cnt = 0;
4255                         break;
4256                 case CHECKSUM_UNNECESSARY:
4257                         NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4258                         NAPI_GRO_CB(skb)->csum_valid = 0;
4259                         break;
4260                 default:
4261                         NAPI_GRO_CB(skb)->csum_cnt = 0;
4262                         NAPI_GRO_CB(skb)->csum_valid = 0;
4263                 }
4264
4265                 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4266                 break;
4267         }
4268         rcu_read_unlock();
4269
4270         if (&ptype->list == head)
4271                 goto normal;
4272
4273         same_flow = NAPI_GRO_CB(skb)->same_flow;
4274         ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4275
4276         if (pp) {
4277                 struct sk_buff *nskb = *pp;
4278
4279                 *pp = nskb->next;
4280                 nskb->next = NULL;
4281                 napi_gro_complete(nskb);
4282                 napi->gro_count--;
4283         }
4284
4285         if (same_flow)
4286                 goto ok;
4287
4288         if (NAPI_GRO_CB(skb)->flush)
4289                 goto normal;
4290
4291         if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4292                 struct sk_buff *nskb = napi->gro_list;
4293
4294                 /* locate the end of the list to select the 'oldest' flow */
4295                 while (nskb->next) {
4296                         pp = &nskb->next;
4297                         nskb = *pp;
4298                 }
4299                 *pp = NULL;
4300                 nskb->next = NULL;
4301                 napi_gro_complete(nskb);
4302         } else {
4303                 napi->gro_count++;
4304         }
4305         NAPI_GRO_CB(skb)->count = 1;
4306         NAPI_GRO_CB(skb)->age = jiffies;
4307         NAPI_GRO_CB(skb)->last = skb;
4308         skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4309         skb->next = napi->gro_list;
4310         napi->gro_list = skb;
4311         ret = GRO_HELD;
4312
4313 pull:
4314         grow = skb_gro_offset(skb) - skb_headlen(skb);
4315         if (grow > 0)
4316                 gro_pull_from_frag0(skb, grow);
4317 ok:
4318         return ret;
4319
4320 normal:
4321         ret = GRO_NORMAL;
4322         goto pull;
4323 }
4324
4325 struct packet_offload *gro_find_receive_by_type(__be16 type)
4326 {
4327         struct list_head *offload_head = &offload_base;
4328         struct packet_offload *ptype;
4329
4330         list_for_each_entry_rcu(ptype, offload_head, list) {
4331                 if (ptype->type != type || !ptype->callbacks.gro_receive)
4332                         continue;
4333                 return ptype;
4334         }
4335         return NULL;
4336 }
4337 EXPORT_SYMBOL(gro_find_receive_by_type);
4338
4339 struct packet_offload *gro_find_complete_by_type(__be16 type)
4340 {
4341         struct list_head *offload_head = &offload_base;
4342         struct packet_offload *ptype;
4343
4344         list_for_each_entry_rcu(ptype, offload_head, list) {
4345                 if (ptype->type != type || !ptype->callbacks.gro_complete)
4346                         continue;
4347                 return ptype;
4348         }
4349         return NULL;
4350 }
4351 EXPORT_SYMBOL(gro_find_complete_by_type);
4352
4353 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4354 {
4355         switch (ret) {
4356         case GRO_NORMAL:
4357                 if (netif_receive_skb_internal(skb))
4358                         ret = GRO_DROP;
4359                 break;
4360
4361         case GRO_DROP:
4362                 kfree_skb(skb);
4363                 break;
4364
4365         case GRO_MERGED_FREE:
4366                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) {
4367                         skb_dst_drop(skb);
4368                         kmem_cache_free(skbuff_head_cache, skb);
4369                 } else {
4370                         __kfree_skb(skb);
4371                 }
4372                 break;
4373
4374         case GRO_HELD:
4375         case GRO_MERGED:
4376                 break;
4377         }
4378
4379         return ret;
4380 }
4381
4382 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4383 {
4384         trace_napi_gro_receive_entry(skb);
4385
4386         skb_gro_reset_offset(skb);
4387
4388         return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4389 }
4390 EXPORT_SYMBOL(napi_gro_receive);
4391
4392 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4393 {
4394         if (unlikely(skb->pfmemalloc)) {
4395                 consume_skb(skb);
4396                 return;
4397         }
4398         __skb_pull(skb, skb_headlen(skb));
4399         /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4400         skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4401         skb->vlan_tci = 0;
4402         skb->dev = napi->dev;
4403         skb->skb_iif = 0;
4404         skb->encapsulation = 0;
4405         skb_shinfo(skb)->gso_type = 0;
4406         skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4407
4408         napi->skb = skb;
4409 }
4410
4411 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4412 {
4413         struct sk_buff *skb = napi->skb;
4414
4415         if (!skb) {
4416                 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
4417                 napi->skb = skb;
4418         }
4419         return skb;
4420 }
4421 EXPORT_SYMBOL(napi_get_frags);
4422
4423 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4424                                       struct sk_buff *skb,
4425                                       gro_result_t ret)
4426 {
4427         switch (ret) {
4428         case GRO_NORMAL:
4429         case GRO_HELD:
4430                 __skb_push(skb, ETH_HLEN);
4431                 skb->protocol = eth_type_trans(skb, skb->dev);
4432                 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4433                         ret = GRO_DROP;
4434                 break;
4435
4436         case GRO_DROP:
4437         case GRO_MERGED_FREE:
4438                 napi_reuse_skb(napi, skb);
4439                 break;
4440
4441         case GRO_MERGED:
4442                 break;
4443         }
4444
4445         return ret;
4446 }
4447
4448 /* Upper GRO stack assumes network header starts at gro_offset=0
4449  * Drivers could call both napi_gro_frags() and napi_gro_receive()
4450  * We copy ethernet header into skb->data to have a common layout.
4451  */
4452 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4453 {
4454         struct sk_buff *skb = napi->skb;
4455         const struct ethhdr *eth;
4456         unsigned int hlen = sizeof(*eth);
4457
4458         napi->skb = NULL;
4459
4460         skb_reset_mac_header(skb);
4461         skb_gro_reset_offset(skb);
4462
4463         eth = skb_gro_header_fast(skb, 0);
4464         if (unlikely(skb_gro_header_hard(skb, hlen))) {
4465                 eth = skb_gro_header_slow(skb, hlen, 0);
4466                 if (unlikely(!eth)) {
4467                         napi_reuse_skb(napi, skb);
4468                         return NULL;
4469                 }
4470         } else {
4471                 gro_pull_from_frag0(skb, hlen);
4472                 NAPI_GRO_CB(skb)->frag0 += hlen;
4473                 NAPI_GRO_CB(skb)->frag0_len -= hlen;
4474         }
4475         __skb_pull(skb, hlen);
4476
4477         /*
4478          * This works because the only protocols we care about don't require
4479          * special handling.
4480          * We'll fix it up properly in napi_frags_finish()
4481          */
4482         skb->protocol = eth->h_proto;
4483
4484         return skb;
4485 }
4486
4487 gro_result_t napi_gro_frags(struct napi_struct *napi)
4488 {
4489         struct sk_buff *skb = napi_frags_skb(napi);
4490
4491         if (!skb)
4492                 return GRO_DROP;
4493
4494         trace_napi_gro_frags_entry(skb);
4495
4496         return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4497 }
4498 EXPORT_SYMBOL(napi_gro_frags);
4499
4500 /* Compute the checksum from gro_offset and return the folded value
4501  * after adding in any pseudo checksum.
4502  */
4503 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4504 {
4505         __wsum wsum;
4506         __sum16 sum;
4507
4508         wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4509
4510         /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4511         sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4512         if (likely(!sum)) {
4513                 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4514                     !skb->csum_complete_sw)
4515                         netdev_rx_csum_fault(skb->dev);
4516         }
4517
4518         NAPI_GRO_CB(skb)->csum = wsum;
4519         NAPI_GRO_CB(skb)->csum_valid = 1;
4520
4521         return sum;
4522 }
4523 EXPORT_SYMBOL(__skb_gro_checksum_complete);
4524
4525 /*
4526  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4527  * Note: called with local irq disabled, but exits with local irq enabled.
4528  */
4529 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4530 {
4531 #ifdef CONFIG_RPS
4532         struct softnet_data *remsd = sd->rps_ipi_list;
4533
4534         if (remsd) {
4535                 sd->rps_ipi_list = NULL;
4536
4537                 local_irq_enable();
4538
4539                 /* Send pending IPI's to kick RPS processing on remote cpus. */
4540                 while (remsd) {
4541                         struct softnet_data *next = remsd->rps_ipi_next;
4542
4543                         if (cpu_online(remsd->cpu))
4544                                 smp_call_function_single_async(remsd->cpu,
4545                                                            &remsd->csd);
4546                         remsd = next;
4547                 }
4548         } else
4549 #endif
4550                 local_irq_enable();
4551 }
4552
4553 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4554 {
4555 #ifdef CONFIG_RPS
4556         return sd->rps_ipi_list != NULL;
4557 #else
4558         return false;
4559 #endif
4560 }
4561
4562 static int process_backlog(struct napi_struct *napi, int quota)
4563 {
4564         int work = 0;
4565         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4566
4567         /* Check if we have pending ipi, its better to send them now,
4568          * not waiting net_rx_action() end.
4569          */
4570         if (sd_has_rps_ipi_waiting(sd)) {
4571                 local_irq_disable();
4572                 net_rps_action_and_irq_enable(sd);
4573         }
4574
4575         napi->weight = weight_p;
4576         local_irq_disable();
4577         while (1) {
4578                 struct sk_buff *skb;
4579
4580                 while ((skb = __skb_dequeue(&sd->process_queue))) {
4581                         rcu_read_lock();
4582                         local_irq_enable();
4583                         __netif_receive_skb(skb);
4584                         rcu_read_unlock();
4585                         local_irq_disable();
4586                         input_queue_head_incr(sd);
4587                         if (++work >= quota) {
4588                                 local_irq_enable();
4589                                 return work;
4590                         }
4591                 }
4592
4593                 rps_lock(sd);
4594                 if (skb_queue_empty(&sd->input_pkt_queue)) {
4595                         /*
4596                          * Inline a custom version of __napi_complete().
4597                          * only current cpu owns and manipulates this napi,
4598                          * and NAPI_STATE_SCHED is the only possible flag set
4599                          * on backlog.
4600                          * We can use a plain write instead of clear_bit(),
4601                          * and we dont need an smp_mb() memory barrier.
4602                          */
4603                         napi->state = 0;
4604                         rps_unlock(sd);
4605
4606                         break;
4607                 }
4608
4609                 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4610                                            &sd->process_queue);
4611                 rps_unlock(sd);
4612         }
4613         local_irq_enable();
4614
4615         return work;
4616 }
4617
4618 /**
4619  * __napi_schedule - schedule for receive
4620  * @n: entry to schedule
4621  *
4622  * The entry's receive function will be scheduled to run.
4623  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
4624  */
4625 void __napi_schedule(struct napi_struct *n)
4626 {
4627         unsigned long flags;
4628
4629         local_irq_save(flags);
4630         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4631         local_irq_restore(flags);
4632 }
4633 EXPORT_SYMBOL(__napi_schedule);
4634
4635 /**
4636  * __napi_schedule_irqoff - schedule for receive
4637  * @n: entry to schedule
4638  *
4639  * Variant of __napi_schedule() assuming hard irqs are masked
4640  */
4641 void __napi_schedule_irqoff(struct napi_struct *n)
4642 {
4643         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4644 }
4645 EXPORT_SYMBOL(__napi_schedule_irqoff);
4646
4647 void __napi_complete(struct napi_struct *n)
4648 {
4649         BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4650
4651         list_del_init(&n->poll_list);
4652         smp_mb__before_atomic();
4653         clear_bit(NAPI_STATE_SCHED, &n->state);
4654 }
4655 EXPORT_SYMBOL(__napi_complete);
4656
4657 void napi_complete_done(struct napi_struct *n, int work_done)
4658 {
4659         unsigned long flags;
4660
4661         /*
4662          * don't let napi dequeue from the cpu poll list
4663          * just in case its running on a different cpu
4664          */
4665         if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4666                 return;
4667
4668         if (n->gro_list) {
4669                 unsigned long timeout = 0;
4670
4671                 if (work_done)
4672                         timeout = n->dev->gro_flush_timeout;
4673
4674                 if (timeout)
4675                         hrtimer_start(&n->timer, ns_to_ktime(timeout),
4676                                       HRTIMER_MODE_REL_PINNED);
4677                 else
4678                         napi_gro_flush(n, false);
4679         }
4680         if (likely(list_empty(&n->poll_list))) {
4681                 WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state));
4682         } else {
4683                 /* If n->poll_list is not empty, we need to mask irqs */
4684                 local_irq_save(flags);
4685                 __napi_complete(n);
4686                 local_irq_restore(flags);
4687         }
4688 }
4689 EXPORT_SYMBOL(napi_complete_done);
4690
4691 /* must be called under rcu_read_lock(), as we dont take a reference */
4692 struct napi_struct *napi_by_id(unsigned int napi_id)
4693 {
4694         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4695         struct napi_struct *napi;
4696
4697         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4698                 if (napi->napi_id == napi_id)
4699                         return napi;
4700
4701         return NULL;
4702 }
4703 EXPORT_SYMBOL_GPL(napi_by_id);
4704
4705 void napi_hash_add(struct napi_struct *napi)
4706 {
4707         if (!test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) {
4708
4709                 spin_lock(&napi_hash_lock);
4710
4711                 /* 0 is not a valid id, we also skip an id that is taken
4712                  * we expect both events to be extremely rare
4713                  */
4714                 napi->napi_id = 0;
4715                 while (!napi->napi_id) {
4716                         napi->napi_id = ++napi_gen_id;
4717                         if (napi_by_id(napi->napi_id))
4718                                 napi->napi_id = 0;
4719                 }
4720
4721                 hlist_add_head_rcu(&napi->napi_hash_node,
4722                         &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
4723
4724                 spin_unlock(&napi_hash_lock);
4725         }
4726 }
4727 EXPORT_SYMBOL_GPL(napi_hash_add);
4728
4729 /* Warning : caller is responsible to make sure rcu grace period
4730  * is respected before freeing memory containing @napi
4731  */
4732 void napi_hash_del(struct napi_struct *napi)
4733 {
4734         spin_lock(&napi_hash_lock);
4735
4736         if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state))
4737                 hlist_del_rcu(&napi->napi_hash_node);
4738
4739         spin_unlock(&napi_hash_lock);
4740 }
4741 EXPORT_SYMBOL_GPL(napi_hash_del);
4742
4743 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
4744 {
4745         struct napi_struct *napi;
4746
4747         napi = container_of(timer, struct napi_struct, timer);
4748         if (napi->gro_list)
4749                 napi_schedule(napi);
4750
4751         return HRTIMER_NORESTART;
4752 }
4753
4754 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4755                     int (*poll)(struct napi_struct *, int), int weight)
4756 {
4757         INIT_LIST_HEAD(&napi->poll_list);
4758         hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
4759         napi->timer.function = napi_watchdog;
4760         napi->gro_count = 0;
4761         napi->gro_list = NULL;
4762         napi->skb = NULL;
4763         napi->poll = poll;
4764         if (weight > NAPI_POLL_WEIGHT)
4765                 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
4766                             weight, dev->name);
4767         napi->weight = weight;
4768         list_add(&napi->dev_list, &dev->napi_list);
4769         napi->dev = dev;
4770 #ifdef CONFIG_NETPOLL
4771         spin_lock_init(&napi->poll_lock);
4772         napi->poll_owner = -1;
4773 #endif
4774         set_bit(NAPI_STATE_SCHED, &napi->state);
4775 }
4776 EXPORT_SYMBOL(netif_napi_add);
4777
4778 void napi_disable(struct napi_struct *n)
4779 {
4780         might_sleep();
4781         set_bit(NAPI_STATE_DISABLE, &n->state);
4782
4783         while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
4784                 msleep(1);
4785         while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
4786                 msleep(1);
4787
4788         hrtimer_cancel(&n->timer);
4789
4790         clear_bit(NAPI_STATE_DISABLE, &n->state);
4791 }
4792 EXPORT_SYMBOL(napi_disable);
4793
4794 void netif_napi_del(struct napi_struct *napi)
4795 {
4796         list_del_init(&napi->dev_list);
4797         napi_free_frags(napi);
4798
4799         kfree_skb_list(napi->gro_list);
4800         napi->gro_list = NULL;
4801         napi->gro_count = 0;
4802 }
4803 EXPORT_SYMBOL(netif_napi_del);
4804
4805 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
4806 {
4807         void *have;
4808         int work, weight;
4809
4810         list_del_init(&n->poll_list);
4811
4812         have = netpoll_poll_lock(n);
4813
4814         weight = n->weight;
4815
4816         /* This NAPI_STATE_SCHED test is for avoiding a race
4817          * with netpoll's poll_napi().  Only the entity which
4818          * obtains the lock and sees NAPI_STATE_SCHED set will
4819          * actually make the ->poll() call.  Therefore we avoid
4820          * accidentally calling ->poll() when NAPI is not scheduled.
4821          */
4822         work = 0;
4823         if (test_bit(NAPI_STATE_SCHED, &n->state)) {
4824                 work = n->poll(n, weight);
4825                 trace_napi_poll(n);
4826         }
4827
4828         WARN_ON_ONCE(work > weight);
4829
4830         if (likely(work < weight))
4831                 goto out_unlock;
4832
4833         /* Drivers must not modify the NAPI state if they
4834          * consume the entire weight.  In such cases this code
4835          * still "owns" the NAPI instance and therefore can
4836          * move the instance around on the list at-will.
4837          */
4838         if (unlikely(napi_disable_pending(n))) {
4839                 napi_complete(n);
4840                 goto out_unlock;
4841         }
4842
4843         if (n->gro_list) {
4844                 /* flush too old packets
4845                  * If HZ < 1000, flush all packets.
4846                  */
4847                 napi_gro_flush(n, HZ >= 1000);
4848         }
4849
4850         /* Some drivers may have called napi_schedule
4851          * prior to exhausting their budget.
4852          */
4853         if (unlikely(!list_empty(&n->poll_list))) {
4854                 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
4855                              n->dev ? n->dev->name : "backlog");
4856                 goto out_unlock;
4857         }
4858
4859         list_add_tail(&n->poll_list, repoll);
4860
4861 out_unlock:
4862         netpoll_poll_unlock(have);
4863
4864         return work;
4865 }
4866
4867 static void net_rx_action(struct softirq_action *h)
4868 {
4869         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4870         unsigned long time_limit = jiffies + 2;
4871         int budget = netdev_budget;
4872         LIST_HEAD(list);
4873         LIST_HEAD(repoll);
4874
4875         local_irq_disable();
4876         list_splice_init(&sd->poll_list, &list);
4877         local_irq_enable();
4878
4879         for (;;) {
4880                 struct napi_struct *n;
4881
4882                 if (list_empty(&list)) {
4883                         if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
4884                                 return;
4885                         break;
4886                 }
4887
4888                 n = list_first_entry(&list, struct napi_struct, poll_list);
4889                 budget -= napi_poll(n, &repoll);
4890
4891                 /* If softirq window is exhausted then punt.
4892                  * Allow this to run for 2 jiffies since which will allow
4893                  * an average latency of 1.5/HZ.
4894                  */
4895                 if (unlikely(budget <= 0 ||
4896                              time_after_eq(jiffies, time_limit))) {
4897                         sd->time_squeeze++;
4898                         break;
4899                 }
4900         }
4901
4902         local_irq_disable();
4903
4904         list_splice_tail_init(&sd->poll_list, &list);
4905         list_splice_tail(&repoll, &list);
4906         list_splice(&list, &sd->poll_list);
4907         if (!list_empty(&sd->poll_list))
4908                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4909
4910         net_rps_action_and_irq_enable(sd);
4911 }
4912
4913 struct netdev_adjacent {
4914         struct net_device *dev;
4915
4916         /* upper master flag, there can only be one master device per list */
4917         bool master;
4918
4919         /* counter for the number of times this device was added to us */
4920         u16 ref_nr;
4921
4922         /* private field for the users */
4923         void *private;
4924
4925         struct list_head list;
4926         struct rcu_head rcu;
4927 };
4928
4929 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
4930                                                  struct list_head *adj_list)
4931 {
4932         struct netdev_adjacent *adj;
4933
4934         list_for_each_entry(adj, adj_list, list) {
4935                 if (adj->dev == adj_dev)
4936                         return adj;
4937         }
4938         return NULL;
4939 }
4940
4941 /**
4942  * netdev_has_upper_dev - Check if device is linked to an upper device
4943  * @dev: device
4944  * @upper_dev: upper device to check
4945  *
4946  * Find out if a device is linked to specified upper device and return true
4947  * in case it is. Note that this checks only immediate upper device,
4948  * not through a complete stack of devices. The caller must hold the RTNL lock.
4949  */
4950 bool netdev_has_upper_dev(struct net_device *dev,
4951                           struct net_device *upper_dev)
4952 {
4953         ASSERT_RTNL();
4954
4955         return __netdev_find_adj(upper_dev, &dev->all_adj_list.upper);
4956 }
4957 EXPORT_SYMBOL(netdev_has_upper_dev);
4958
4959 /**
4960  * netdev_has_any_upper_dev - Check if device is linked to some device
4961  * @dev: device
4962  *
4963  * Find out if a device is linked to an upper device and return true in case
4964  * it is. The caller must hold the RTNL lock.
4965  */
4966 static bool netdev_has_any_upper_dev(struct net_device *dev)
4967 {
4968         ASSERT_RTNL();
4969
4970         return !list_empty(&dev->all_adj_list.upper);
4971 }
4972
4973 /**
4974  * netdev_master_upper_dev_get - Get master upper device
4975  * @dev: device
4976  *
4977  * Find a master upper device and return pointer to it or NULL in case
4978  * it's not there. The caller must hold the RTNL lock.
4979  */
4980 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
4981 {
4982         struct netdev_adjacent *upper;
4983
4984         ASSERT_RTNL();
4985
4986         if (list_empty(&dev->adj_list.upper))
4987                 return NULL;
4988
4989         upper = list_first_entry(&dev->adj_list.upper,
4990                                  struct netdev_adjacent, list);
4991         if (likely(upper->master))
4992                 return upper->dev;
4993         return NULL;
4994 }
4995 EXPORT_SYMBOL(netdev_master_upper_dev_get);
4996
4997 void *netdev_adjacent_get_private(struct list_head *adj_list)
4998 {
4999         struct netdev_adjacent *adj;
5000
5001         adj = list_entry(adj_list, struct netdev_adjacent, list);
5002
5003         return adj->private;
5004 }
5005 EXPORT_SYMBOL(netdev_adjacent_get_private);
5006
5007 /**
5008  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5009  * @dev: device
5010  * @iter: list_head ** of the current position
5011  *
5012  * Gets the next device from the dev's upper list, starting from iter
5013  * position. The caller must hold RCU read lock.
5014  */
5015 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5016                                                  struct list_head **iter)
5017 {
5018         struct netdev_adjacent *upper;
5019
5020         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5021
5022         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5023
5024         if (&upper->list == &dev->adj_list.upper)
5025                 return NULL;
5026
5027         *iter = &upper->list;
5028
5029         return upper->dev;
5030 }
5031 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5032
5033 /**
5034  * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
5035  * @dev: device
5036  * @iter: list_head ** of the current position
5037  *
5038  * Gets the next device from the dev's upper list, starting from iter
5039  * position. The caller must hold RCU read lock.
5040  */
5041 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
5042                                                      struct list_head **iter)
5043 {
5044         struct netdev_adjacent *upper;
5045
5046         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5047
5048         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5049
5050         if (&upper->list == &dev->all_adj_list.upper)
5051                 return NULL;
5052
5053         *iter = &upper->list;
5054
5055         return upper->dev;
5056 }
5057 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
5058
5059 /**
5060  * netdev_lower_get_next_private - Get the next ->private from the
5061  *                                 lower neighbour list
5062  * @dev: device
5063  * @iter: list_head ** of the current position
5064  *
5065  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5066  * list, starting from iter position. The caller must hold either hold the
5067  * RTNL lock or its own locking that guarantees that the neighbour lower
5068  * list will remain unchanged.
5069  */
5070 void *netdev_lower_get_next_private(struct net_device *dev,
5071                                     struct list_head **iter)
5072 {
5073         struct netdev_adjacent *lower;
5074
5075         lower = list_entry(*iter, struct netdev_adjacent, list);
5076
5077         if (&lower->list == &dev->adj_list.lower)
5078                 return NULL;
5079
5080         *iter = lower->list.next;
5081
5082         return lower->private;
5083 }
5084 EXPORT_SYMBOL(netdev_lower_get_next_private);
5085
5086 /**
5087  * netdev_lower_get_next_private_rcu - Get the next ->private from the
5088  *                                     lower neighbour list, RCU
5089  *                                     variant
5090  * @dev: device
5091  * @iter: list_head ** of the current position
5092  *
5093  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5094  * list, starting from iter position. The caller must hold RCU read lock.
5095  */
5096 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5097                                         struct list_head **iter)
5098 {
5099         struct netdev_adjacent *lower;
5100
5101         WARN_ON_ONCE(!rcu_read_lock_held());
5102
5103         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5104
5105         if (&lower->list == &dev->adj_list.lower)
5106                 return NULL;
5107
5108         *iter = &lower->list;
5109
5110         return lower->private;
5111 }
5112 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5113
5114 /**
5115  * netdev_lower_get_next - Get the next device from the lower neighbour
5116  *                         list
5117  * @dev: device
5118  * @iter: list_head ** of the current position
5119  *
5120  * Gets the next netdev_adjacent from the dev's lower neighbour
5121  * list, starting from iter position. The caller must hold RTNL lock or
5122  * its own locking that guarantees that the neighbour lower
5123  * list will remain unchanged.
5124  */
5125 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5126 {
5127         struct netdev_adjacent *lower;
5128
5129         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
5130
5131         if (&lower->list == &dev->adj_list.lower)
5132                 return NULL;
5133
5134         *iter = &lower->list;
5135
5136         return lower->dev;
5137 }
5138 EXPORT_SYMBOL(netdev_lower_get_next);
5139
5140 /**
5141  * netdev_lower_get_first_private_rcu - Get the first ->private from the
5142  *                                     lower neighbour list, RCU
5143  *                                     variant
5144  * @dev: device
5145  *
5146  * Gets the first netdev_adjacent->private from the dev's lower neighbour
5147  * list. The caller must hold RCU read lock.
5148  */
5149 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
5150 {
5151         struct netdev_adjacent *lower;
5152
5153         lower = list_first_or_null_rcu(&dev->adj_list.lower,
5154                         struct netdev_adjacent, list);
5155         if (lower)
5156                 return lower->private;
5157         return NULL;
5158 }
5159 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
5160
5161 /**
5162  * netdev_master_upper_dev_get_rcu - Get master upper device
5163  * @dev: device
5164  *
5165  * Find a master upper device and return pointer to it or NULL in case
5166  * it's not there. The caller must hold the RCU read lock.
5167  */
5168 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
5169 {
5170         struct netdev_adjacent *upper;
5171
5172         upper = list_first_or_null_rcu(&dev->adj_list.upper,
5173                                        struct netdev_adjacent, list);
5174         if (upper && likely(upper->master))
5175                 return upper->dev;
5176         return NULL;
5177 }
5178 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
5179
5180 static int netdev_adjacent_sysfs_add(struct net_device *dev,
5181                               struct net_device *adj_dev,
5182                               struct list_head *dev_list)
5183 {
5184         char linkname[IFNAMSIZ+7];
5185         sprintf(linkname, dev_list == &dev->adj_list.upper ?
5186                 "upper_%s" : "lower_%s", adj_dev->name);
5187         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
5188                                  linkname);
5189 }
5190 static void netdev_adjacent_sysfs_del(struct net_device *dev,
5191                                char *name,
5192                                struct list_head *dev_list)
5193 {
5194         char linkname[IFNAMSIZ+7];
5195         sprintf(linkname, dev_list == &dev->adj_list.upper ?
5196                 "upper_%s" : "lower_%s", name);
5197         sysfs_remove_link(&(dev->dev.kobj), linkname);
5198 }
5199
5200 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
5201                                                  struct net_device *adj_dev,
5202                                                  struct list_head *dev_list)
5203 {
5204         return (dev_list == &dev->adj_list.upper ||
5205                 dev_list == &dev->adj_list.lower) &&
5206                 net_eq(dev_net(dev), dev_net(adj_dev));
5207 }
5208
5209 static int __netdev_adjacent_dev_insert(struct net_device *dev,
5210                                         struct net_device *adj_dev,
5211                                         u16 ref_nr,
5212                                         struct list_head *dev_list,
5213                                         void *private, bool master)
5214 {
5215         struct netdev_adjacent *adj;
5216         int ret;
5217
5218         adj = __netdev_find_adj(adj_dev, dev_list);
5219
5220         if (adj) {
5221                 adj->ref_nr += ref_nr;
5222                 return 0;
5223         }
5224
5225         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5226         if (!adj)
5227                 return -ENOMEM;
5228
5229         adj->dev = adj_dev;
5230         adj->master = master;
5231         adj->ref_nr = ref_nr;
5232         adj->private = private;
5233         dev_hold(adj_dev);
5234
5235         pr_debug("dev_hold for %s, because of link added from %s to %s\n",
5236                  adj_dev->name, dev->name, adj_dev->name);
5237
5238         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
5239                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5240                 if (ret)
5241                         goto free_adj;
5242         }
5243
5244         /* Ensure that master link is always the first item in list. */
5245         if (master) {
5246                 ret = sysfs_create_link(&(dev->dev.kobj),
5247                                         &(adj_dev->dev.kobj), "master");
5248                 if (ret)
5249                         goto remove_symlinks;
5250
5251                 list_add_rcu(&adj->list, dev_list);
5252         } else {
5253                 list_add_tail_rcu(&adj->list, dev_list);
5254         }
5255
5256         return 0;
5257
5258 remove_symlinks:
5259         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5260                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5261 free_adj:
5262         kfree(adj);
5263         dev_put(adj_dev);
5264
5265         return ret;
5266 }
5267
5268 static void __netdev_adjacent_dev_remove(struct net_device *dev,
5269                                          struct net_device *adj_dev,
5270                                          u16 ref_nr,
5271                                          struct list_head *dev_list)
5272 {
5273         struct netdev_adjacent *adj;
5274
5275         adj = __netdev_find_adj(adj_dev, dev_list);
5276
5277         if (!adj) {
5278                 pr_err("tried to remove device %s from %s\n",
5279                        dev->name, adj_dev->name);
5280                 BUG();
5281         }
5282
5283         if (adj->ref_nr > ref_nr) {
5284                 pr_debug("%s to %s ref_nr-%d = %d\n", dev->name, adj_dev->name,
5285                          ref_nr, adj->ref_nr-ref_nr);
5286                 adj->ref_nr -= ref_nr;
5287                 return;
5288         }
5289
5290         if (adj->master)
5291                 sysfs_remove_link(&(dev->dev.kobj), "master");
5292
5293         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5294                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5295
5296         list_del_rcu(&adj->list);
5297         pr_debug("dev_put for %s, because link removed from %s to %s\n",
5298                  adj_dev->name, dev->name, adj_dev->name);
5299         dev_put(adj_dev);
5300         kfree_rcu(adj, rcu);
5301 }
5302
5303 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5304                                             struct net_device *upper_dev,
5305                                             u16 ref_nr,
5306                                             struct list_head *up_list,
5307                                             struct list_head *down_list,
5308                                             void *private, bool master)
5309 {
5310         int ret;
5311
5312         ret = __netdev_adjacent_dev_insert(dev, upper_dev, ref_nr, up_list,
5313                                            private, master);
5314         if (ret)
5315                 return ret;
5316
5317         ret = __netdev_adjacent_dev_insert(upper_dev, dev, ref_nr, down_list,
5318                                            private, false);
5319         if (ret) {
5320                 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
5321                 return ret;
5322         }
5323
5324         return 0;
5325 }
5326
5327 static int __netdev_adjacent_dev_link(struct net_device *dev,
5328                                       struct net_device *upper_dev,
5329                                       u16 ref_nr)
5330 {
5331         return __netdev_adjacent_dev_link_lists(dev, upper_dev, ref_nr,
5332                                                 &dev->all_adj_list.upper,
5333                                                 &upper_dev->all_adj_list.lower,
5334                                                 NULL, false);
5335 }
5336
5337 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5338                                                struct net_device *upper_dev,
5339                                                u16 ref_nr,
5340                                                struct list_head *up_list,
5341                                                struct list_head *down_list)
5342 {
5343         __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
5344         __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
5345 }
5346
5347 static void __netdev_adjacent_dev_unlink(struct net_device *dev,
5348                                          struct net_device *upper_dev,
5349                                          u16 ref_nr)
5350 {
5351         __netdev_adjacent_dev_unlink_lists(dev, upper_dev, ref_nr,
5352                                            &dev->all_adj_list.upper,
5353                                            &upper_dev->all_adj_list.lower);
5354 }
5355
5356 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5357                                                 struct net_device *upper_dev,
5358                                                 void *private, bool master)
5359 {
5360         int ret = __netdev_adjacent_dev_link(dev, upper_dev, 1);
5361
5362         if (ret)
5363                 return ret;
5364
5365         ret = __netdev_adjacent_dev_link_lists(dev, upper_dev, 1,
5366                                                &dev->adj_list.upper,
5367                                                &upper_dev->adj_list.lower,
5368                                                private, master);
5369         if (ret) {
5370                 __netdev_adjacent_dev_unlink(dev, upper_dev, 1);
5371                 return ret;
5372         }
5373
5374         return 0;
5375 }
5376
5377 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5378                                                    struct net_device *upper_dev)
5379 {
5380         __netdev_adjacent_dev_unlink(dev, upper_dev, 1);
5381         __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
5382                                            &dev->adj_list.upper,
5383                                            &upper_dev->adj_list.lower);
5384 }
5385
5386 static int __netdev_upper_dev_link(struct net_device *dev,
5387                                    struct net_device *upper_dev, bool master,
5388                                    void *private)
5389 {
5390         struct netdev_notifier_changeupper_info changeupper_info;
5391         struct netdev_adjacent *i, *j, *to_i, *to_j;
5392         int ret = 0;
5393
5394         ASSERT_RTNL();
5395
5396         if (dev == upper_dev)
5397                 return -EBUSY;
5398
5399         /* To prevent loops, check if dev is not upper device to upper_dev. */
5400         if (__netdev_find_adj(dev, &upper_dev->all_adj_list.upper))
5401                 return -EBUSY;
5402
5403         if (__netdev_find_adj(upper_dev, &dev->adj_list.upper))
5404                 return -EEXIST;
5405
5406         if (master && netdev_master_upper_dev_get(dev))
5407                 return -EBUSY;
5408
5409         changeupper_info.upper_dev = upper_dev;
5410         changeupper_info.master = master;
5411         changeupper_info.linking = true;
5412
5413         ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5414                                             &changeupper_info.info);
5415         ret = notifier_to_errno(ret);
5416         if (ret)
5417                 return ret;
5418
5419         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, private,
5420                                                    master);
5421         if (ret)
5422                 return ret;
5423
5424         /* Now that we linked these devs, make all the upper_dev's
5425          * all_adj_list.upper visible to every dev's all_adj_list.lower an
5426          * versa, and don't forget the devices itself. All of these
5427          * links are non-neighbours.
5428          */
5429         list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5430                 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5431                         pr_debug("Interlinking %s with %s, non-neighbour\n",
5432                                  i->dev->name, j->dev->name);
5433                         ret = __netdev_adjacent_dev_link(i->dev, j->dev, i->ref_nr);
5434                         if (ret)
5435                                 goto rollback_mesh;
5436                 }
5437         }
5438
5439         /* add dev to every upper_dev's upper device */
5440         list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5441                 pr_debug("linking %s's upper device %s with %s\n",
5442                          upper_dev->name, i->dev->name, dev->name);
5443                 ret = __netdev_adjacent_dev_link(dev, i->dev, i->ref_nr);
5444                 if (ret)
5445                         goto rollback_upper_mesh;
5446         }
5447
5448         /* add upper_dev to every dev's lower device */
5449         list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5450                 pr_debug("linking %s's lower device %s with %s\n", dev->name,
5451                          i->dev->name, upper_dev->name);
5452                 ret = __netdev_adjacent_dev_link(i->dev, upper_dev, i->ref_nr);
5453                 if (ret)
5454                         goto rollback_lower_mesh;
5455         }
5456
5457         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5458                                       &changeupper_info.info);
5459         return 0;
5460
5461 rollback_lower_mesh:
5462         to_i = i;
5463         list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5464                 if (i == to_i)
5465                         break;
5466                 __netdev_adjacent_dev_unlink(i->dev, upper_dev, i->ref_nr);
5467         }
5468
5469         i = NULL;
5470
5471 rollback_upper_mesh:
5472         to_i = i;
5473         list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5474                 if (i == to_i)
5475                         break;
5476                 __netdev_adjacent_dev_unlink(dev, i->dev, i->ref_nr);
5477         }
5478
5479         i = j = NULL;
5480
5481 rollback_mesh:
5482         to_i = i;
5483         to_j = j;
5484         list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5485                 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5486                         if (i == to_i && j == to_j)
5487                                 break;
5488                         __netdev_adjacent_dev_unlink(i->dev, j->dev, i->ref_nr);
5489                 }
5490                 if (i == to_i)
5491                         break;
5492         }
5493
5494         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5495
5496         return ret;
5497 }
5498
5499 /**
5500  * netdev_upper_dev_link - Add a link to the upper device
5501  * @dev: device
5502  * @upper_dev: new upper device
5503  *
5504  * Adds a link to device which is upper to this one. The caller must hold
5505  * the RTNL lock. On a failure a negative errno code is returned.
5506  * On success the reference counts are adjusted and the function
5507  * returns zero.
5508  */
5509 int netdev_upper_dev_link(struct net_device *dev,
5510                           struct net_device *upper_dev)
5511 {
5512         return __netdev_upper_dev_link(dev, upper_dev, false, NULL);
5513 }
5514 EXPORT_SYMBOL(netdev_upper_dev_link);
5515
5516 /**
5517  * netdev_master_upper_dev_link - Add a master link to the upper device
5518  * @dev: device
5519  * @upper_dev: new upper device
5520  *
5521  * Adds a link to device which is upper to this one. In this case, only
5522  * one master upper device can be linked, although other non-master devices
5523  * might be linked as well. The caller must hold the RTNL lock.
5524  * On a failure a negative errno code is returned. On success the reference
5525  * counts are adjusted and the function returns zero.
5526  */
5527 int netdev_master_upper_dev_link(struct net_device *dev,
5528                                  struct net_device *upper_dev)
5529 {
5530         return __netdev_upper_dev_link(dev, upper_dev, true, NULL);
5531 }
5532 EXPORT_SYMBOL(netdev_master_upper_dev_link);
5533
5534 int netdev_master_upper_dev_link_private(struct net_device *dev,
5535                                          struct net_device *upper_dev,
5536                                          void *private)
5537 {
5538         return __netdev_upper_dev_link(dev, upper_dev, true, private);
5539 }
5540 EXPORT_SYMBOL(netdev_master_upper_dev_link_private);
5541
5542 /**
5543  * netdev_upper_dev_unlink - Removes a link to upper device
5544  * @dev: device
5545  * @upper_dev: new upper device
5546  *
5547  * Removes a link to device which is upper to this one. The caller must hold
5548  * the RTNL lock.
5549  */
5550 void netdev_upper_dev_unlink(struct net_device *dev,
5551                              struct net_device *upper_dev)
5552 {
5553         struct netdev_notifier_changeupper_info changeupper_info;
5554         struct netdev_adjacent *i, *j;
5555         ASSERT_RTNL();
5556
5557         changeupper_info.upper_dev = upper_dev;
5558         changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
5559         changeupper_info.linking = false;
5560
5561         call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5562                                       &changeupper_info.info);
5563
5564         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5565
5566         /* Here is the tricky part. We must remove all dev's lower
5567          * devices from all upper_dev's upper devices and vice
5568          * versa, to maintain the graph relationship.
5569          */
5570         list_for_each_entry(i, &dev->all_adj_list.lower, list)
5571                 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5572                         __netdev_adjacent_dev_unlink(i->dev, j->dev, i->ref_nr);
5573
5574         /* remove also the devices itself from lower/upper device
5575          * list
5576          */
5577         list_for_each_entry(i, &dev->all_adj_list.lower, list)
5578                 __netdev_adjacent_dev_unlink(i->dev, upper_dev, i->ref_nr);
5579
5580         list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5581                 __netdev_adjacent_dev_unlink(dev, i->dev, i->ref_nr);
5582
5583         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5584                                       &changeupper_info.info);
5585 }
5586 EXPORT_SYMBOL(netdev_upper_dev_unlink);
5587
5588 /**
5589  * netdev_bonding_info_change - Dispatch event about slave change
5590  * @dev: device
5591  * @bonding_info: info to dispatch
5592  *
5593  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
5594  * The caller must hold the RTNL lock.
5595  */
5596 void netdev_bonding_info_change(struct net_device *dev,
5597                                 struct netdev_bonding_info *bonding_info)
5598 {
5599         struct netdev_notifier_bonding_info     info;
5600
5601         memcpy(&info.bonding_info, bonding_info,
5602                sizeof(struct netdev_bonding_info));
5603         call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
5604                                       &info.info);
5605 }
5606 EXPORT_SYMBOL(netdev_bonding_info_change);
5607
5608 static void netdev_adjacent_add_links(struct net_device *dev)
5609 {
5610         struct netdev_adjacent *iter;
5611
5612         struct net *net = dev_net(dev);
5613
5614         list_for_each_entry(iter, &dev->adj_list.upper, list) {
5615                 if (!net_eq(net,dev_net(iter->dev)))
5616                         continue;
5617                 netdev_adjacent_sysfs_add(iter->dev, dev,
5618                                           &iter->dev->adj_list.lower);
5619                 netdev_adjacent_sysfs_add(dev, iter->dev,
5620                                           &dev->adj_list.upper);
5621         }
5622
5623         list_for_each_entry(iter, &dev->adj_list.lower, list) {
5624                 if (!net_eq(net,dev_net(iter->dev)))
5625                         continue;
5626                 netdev_adjacent_sysfs_add(iter->dev, dev,
5627                                           &iter->dev->adj_list.upper);
5628                 netdev_adjacent_sysfs_add(dev, iter->dev,
5629                                           &dev->adj_list.lower);
5630         }
5631 }
5632
5633 static void netdev_adjacent_del_links(struct net_device *dev)
5634 {
5635         struct netdev_adjacent *iter;
5636
5637         struct net *net = dev_net(dev);
5638
5639         list_for_each_entry(iter, &dev->adj_list.upper, list) {
5640                 if (!net_eq(net,dev_net(iter->dev)))
5641                         continue;
5642                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5643                                           &iter->dev->adj_list.lower);
5644                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5645                                           &dev->adj_list.upper);
5646         }
5647
5648         list_for_each_entry(iter, &dev->adj_list.lower, list) {
5649                 if (!net_eq(net,dev_net(iter->dev)))
5650                         continue;
5651                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5652                                           &iter->dev->adj_list.upper);
5653                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5654                                           &dev->adj_list.lower);
5655         }
5656 }
5657
5658 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
5659 {
5660         struct netdev_adjacent *iter;
5661
5662         struct net *net = dev_net(dev);
5663
5664         list_for_each_entry(iter, &dev->adj_list.upper, list) {
5665                 if (!net_eq(net,dev_net(iter->dev)))
5666                         continue;
5667                 netdev_adjacent_sysfs_del(iter->dev, oldname,
5668                                           &iter->dev->adj_list.lower);
5669                 netdev_adjacent_sysfs_add(iter->dev, dev,
5670                                           &iter->dev->adj_list.lower);
5671         }
5672
5673         list_for_each_entry(iter, &dev->adj_list.lower, list) {
5674                 if (!net_eq(net,dev_net(iter->dev)))
5675                         continue;
5676                 netdev_adjacent_sysfs_del(iter->dev, oldname,
5677                                           &iter->dev->adj_list.upper);
5678                 netdev_adjacent_sysfs_add(iter->dev, dev,
5679                                           &iter->dev->adj_list.upper);
5680         }
5681 }
5682
5683 void *netdev_lower_dev_get_private(struct net_device *dev,
5684                                    struct net_device *lower_dev)
5685 {
5686         struct netdev_adjacent *lower;
5687
5688         if (!lower_dev)
5689                 return NULL;
5690         lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
5691         if (!lower)
5692                 return NULL;
5693
5694         return lower->private;
5695 }
5696 EXPORT_SYMBOL(netdev_lower_dev_get_private);
5697
5698
5699 int dev_get_nest_level(struct net_device *dev,
5700                        bool (*type_check)(struct net_device *dev))
5701 {
5702         struct net_device *lower = NULL;
5703         struct list_head *iter;
5704         int max_nest = -1;
5705         int nest;
5706
5707         ASSERT_RTNL();
5708
5709         netdev_for_each_lower_dev(dev, lower, iter) {
5710                 nest = dev_get_nest_level(lower, type_check);
5711                 if (max_nest < nest)
5712                         max_nest = nest;
5713         }
5714
5715         if (type_check(dev))
5716                 max_nest++;
5717
5718         return max_nest;
5719 }
5720 EXPORT_SYMBOL(dev_get_nest_level);
5721
5722 static void dev_change_rx_flags(struct net_device *dev, int flags)
5723 {
5724         const struct net_device_ops *ops = dev->netdev_ops;
5725
5726         if (ops->ndo_change_rx_flags)
5727                 ops->ndo_change_rx_flags(dev, flags);
5728 }
5729
5730 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
5731 {
5732         unsigned int old_flags = dev->flags;
5733         kuid_t uid;
5734         kgid_t gid;
5735
5736         ASSERT_RTNL();
5737
5738         dev->flags |= IFF_PROMISC;
5739         dev->promiscuity += inc;
5740         if (dev->promiscuity == 0) {
5741                 /*
5742                  * Avoid overflow.
5743                  * If inc causes overflow, untouch promisc and return error.
5744                  */
5745                 if (inc < 0)
5746                         dev->flags &= ~IFF_PROMISC;
5747                 else {
5748                         dev->promiscuity -= inc;
5749                         pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
5750                                 dev->name);
5751                         return -EOVERFLOW;
5752                 }
5753         }
5754         if (dev->flags != old_flags) {
5755                 pr_info("device %s %s promiscuous mode\n",
5756                         dev->name,
5757                         dev->flags & IFF_PROMISC ? "entered" : "left");
5758                 if (audit_enabled) {
5759                         current_uid_gid(&uid, &gid);
5760                         audit_log(current->audit_context, GFP_ATOMIC,
5761                                 AUDIT_ANOM_PROMISCUOUS,
5762                                 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
5763                                 dev->name, (dev->flags & IFF_PROMISC),
5764                                 (old_flags & IFF_PROMISC),
5765                                 from_kuid(&init_user_ns, audit_get_loginuid(current)),
5766                                 from_kuid(&init_user_ns, uid),
5767                                 from_kgid(&init_user_ns, gid),
5768                                 audit_get_sessionid(current));
5769                 }
5770
5771                 dev_change_rx_flags(dev, IFF_PROMISC);
5772         }
5773         if (notify)
5774                 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
5775         return 0;
5776 }
5777
5778 /**
5779  *      dev_set_promiscuity     - update promiscuity count on a device
5780  *      @dev: device
5781  *      @inc: modifier
5782  *
5783  *      Add or remove promiscuity from a device. While the count in the device
5784  *      remains above zero the interface remains promiscuous. Once it hits zero
5785  *      the device reverts back to normal filtering operation. A negative inc
5786  *      value is used to drop promiscuity on the device.
5787  *      Return 0 if successful or a negative errno code on error.
5788  */
5789 int dev_set_promiscuity(struct net_device *dev, int inc)
5790 {
5791         unsigned int old_flags = dev->flags;
5792         int err;
5793
5794         err = __dev_set_promiscuity(dev, inc, true);
5795         if (err < 0)
5796                 return err;
5797         if (dev->flags != old_flags)
5798                 dev_set_rx_mode(dev);
5799         return err;
5800 }
5801 EXPORT_SYMBOL(dev_set_promiscuity);
5802
5803 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
5804 {
5805         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
5806
5807         ASSERT_RTNL();
5808
5809         dev->flags |= IFF_ALLMULTI;
5810         dev->allmulti += inc;
5811         if (dev->allmulti == 0) {
5812                 /*
5813                  * Avoid overflow.
5814                  * If inc causes overflow, untouch allmulti and return error.
5815                  */
5816                 if (inc < 0)
5817                         dev->flags &= ~IFF_ALLMULTI;
5818                 else {
5819                         dev->allmulti -= inc;
5820                         pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
5821                                 dev->name);
5822                         return -EOVERFLOW;
5823                 }
5824         }
5825         if (dev->flags ^ old_flags) {
5826                 dev_change_rx_flags(dev, IFF_ALLMULTI);
5827                 dev_set_rx_mode(dev);
5828                 if (notify)
5829                         __dev_notify_flags(dev, old_flags,
5830                                            dev->gflags ^ old_gflags);
5831         }
5832         return 0;
5833 }
5834
5835 /**
5836  *      dev_set_allmulti        - update allmulti count on a device
5837  *      @dev: device
5838  *      @inc: modifier
5839  *
5840  *      Add or remove reception of all multicast frames to a device. While the
5841  *      count in the device remains above zero the interface remains listening
5842  *      to all interfaces. Once it hits zero the device reverts back to normal
5843  *      filtering operation. A negative @inc value is used to drop the counter
5844  *      when releasing a resource needing all multicasts.
5845  *      Return 0 if successful or a negative errno code on error.
5846  */
5847
5848 int dev_set_allmulti(struct net_device *dev, int inc)
5849 {
5850         return __dev_set_allmulti(dev, inc, true);
5851 }
5852 EXPORT_SYMBOL(dev_set_allmulti);
5853
5854 /*
5855  *      Upload unicast and multicast address lists to device and
5856  *      configure RX filtering. When the device doesn't support unicast
5857  *      filtering it is put in promiscuous mode while unicast addresses
5858  *      are present.
5859  */
5860 void __dev_set_rx_mode(struct net_device *dev)
5861 {
5862         const struct net_device_ops *ops = dev->netdev_ops;
5863
5864         /* dev_open will call this function so the list will stay sane. */
5865         if (!(dev->flags&IFF_UP))
5866                 return;
5867
5868         if (!netif_device_present(dev))
5869                 return;
5870
5871         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
5872                 /* Unicast addresses changes may only happen under the rtnl,
5873                  * therefore calling __dev_set_promiscuity here is safe.
5874                  */
5875                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
5876                         __dev_set_promiscuity(dev, 1, false);
5877                         dev->uc_promisc = true;
5878                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
5879                         __dev_set_promiscuity(dev, -1, false);
5880                         dev->uc_promisc = false;
5881                 }
5882         }
5883
5884         if (ops->ndo_set_rx_mode)
5885                 ops->ndo_set_rx_mode(dev);
5886 }
5887
5888 void dev_set_rx_mode(struct net_device *dev)
5889 {
5890         netif_addr_lock_bh(dev);
5891         __dev_set_rx_mode(dev);
5892         netif_addr_unlock_bh(dev);
5893 }
5894
5895 /**
5896  *      dev_get_flags - get flags reported to userspace
5897  *      @dev: device
5898  *
5899  *      Get the combination of flag bits exported through APIs to userspace.
5900  */
5901 unsigned int dev_get_flags(const struct net_device *dev)
5902 {
5903         unsigned int flags;
5904
5905         flags = (dev->flags & ~(IFF_PROMISC |
5906                                 IFF_ALLMULTI |
5907                                 IFF_RUNNING |
5908                                 IFF_LOWER_UP |
5909                                 IFF_DORMANT)) |
5910                 (dev->gflags & (IFF_PROMISC |
5911                                 IFF_ALLMULTI));
5912
5913         if (netif_running(dev)) {
5914                 if (netif_oper_up(dev))
5915                         flags |= IFF_RUNNING;
5916                 if (netif_carrier_ok(dev))
5917                         flags |= IFF_LOWER_UP;
5918                 if (netif_dormant(dev))
5919                         flags |= IFF_DORMANT;
5920         }
5921
5922         return flags;
5923 }
5924 EXPORT_SYMBOL(dev_get_flags);
5925
5926 int __dev_change_flags(struct net_device *dev, unsigned int flags)
5927 {
5928         unsigned int old_flags = dev->flags;
5929         int ret;
5930
5931         ASSERT_RTNL();
5932
5933         /*
5934          *      Set the flags on our device.
5935          */
5936
5937         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
5938                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
5939                                IFF_AUTOMEDIA)) |
5940                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
5941                                     IFF_ALLMULTI));
5942
5943         /*
5944          *      Load in the correct multicast list now the flags have changed.
5945          */
5946
5947         if ((old_flags ^ flags) & IFF_MULTICAST)
5948                 dev_change_rx_flags(dev, IFF_MULTICAST);
5949
5950         dev_set_rx_mode(dev);
5951
5952         /*
5953          *      Have we downed the interface. We handle IFF_UP ourselves
5954          *      according to user attempts to set it, rather than blindly
5955          *      setting it.
5956          */
5957
5958         ret = 0;
5959         if ((old_flags ^ flags) & IFF_UP)
5960                 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
5961
5962         if ((flags ^ dev->gflags) & IFF_PROMISC) {
5963                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
5964                 unsigned int old_flags = dev->flags;
5965
5966                 dev->gflags ^= IFF_PROMISC;
5967
5968                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
5969                         if (dev->flags != old_flags)
5970                                 dev_set_rx_mode(dev);
5971         }
5972
5973         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
5974            is important. Some (broken) drivers set IFF_PROMISC, when
5975            IFF_ALLMULTI is requested not asking us and not reporting.
5976          */
5977         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
5978                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
5979
5980                 dev->gflags ^= IFF_ALLMULTI;
5981                 __dev_set_allmulti(dev, inc, false);
5982         }
5983
5984         return ret;
5985 }
5986
5987 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
5988                         unsigned int gchanges)
5989 {
5990         unsigned int changes = dev->flags ^ old_flags;
5991
5992         if (gchanges)
5993                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
5994
5995         if (changes & IFF_UP) {
5996                 if (dev->flags & IFF_UP)
5997                         call_netdevice_notifiers(NETDEV_UP, dev);
5998                 else
5999                         call_netdevice_notifiers(NETDEV_DOWN, dev);
6000         }
6001
6002         if (dev->flags & IFF_UP &&
6003             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6004                 struct netdev_notifier_change_info change_info;
6005
6006                 change_info.flags_changed = changes;
6007                 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
6008                                               &change_info.info);
6009         }
6010 }
6011
6012 /**
6013  *      dev_change_flags - change device settings
6014  *      @dev: device
6015  *      @flags: device state flags
6016  *
6017  *      Change settings on device based state flags. The flags are
6018  *      in the userspace exported format.
6019  */
6020 int dev_change_flags(struct net_device *dev, unsigned int flags)
6021 {
6022         int ret;
6023         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
6024
6025         ret = __dev_change_flags(dev, flags);
6026         if (ret < 0)
6027                 return ret;
6028
6029         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
6030         __dev_notify_flags(dev, old_flags, changes);
6031         return ret;
6032 }
6033 EXPORT_SYMBOL(dev_change_flags);
6034
6035 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
6036 {
6037         const struct net_device_ops *ops = dev->netdev_ops;
6038
6039         if (ops->ndo_change_mtu)
6040                 return ops->ndo_change_mtu(dev, new_mtu);
6041
6042         dev->mtu = new_mtu;
6043         return 0;
6044 }
6045
6046 /**
6047  *      dev_set_mtu - Change maximum transfer unit
6048  *      @dev: device
6049  *      @new_mtu: new transfer unit
6050  *
6051  *      Change the maximum transfer size of the network device.
6052  */
6053 int dev_set_mtu(struct net_device *dev, int new_mtu)
6054 {
6055         int err, orig_mtu;
6056
6057         if (new_mtu == dev->mtu)
6058                 return 0;
6059
6060         /*      MTU must be positive.    */
6061         if (new_mtu < 0)
6062                 return -EINVAL;
6063
6064         if (!netif_device_present(dev))
6065                 return -ENODEV;
6066
6067         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6068         err = notifier_to_errno(err);
6069         if (err)
6070                 return err;
6071
6072         orig_mtu = dev->mtu;
6073         err = __dev_set_mtu(dev, new_mtu);
6074
6075         if (!err) {
6076                 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6077                 err = notifier_to_errno(err);
6078                 if (err) {
6079                         /* setting mtu back and notifying everyone again,
6080                          * so that they have a chance to revert changes.
6081                          */
6082                         __dev_set_mtu(dev, orig_mtu);
6083                         call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6084                 }
6085         }
6086         return err;
6087 }
6088 EXPORT_SYMBOL(dev_set_mtu);
6089
6090 /**
6091  *      dev_set_group - Change group this device belongs to
6092  *      @dev: device
6093  *      @new_group: group this device should belong to
6094  */
6095 void dev_set_group(struct net_device *dev, int new_group)
6096 {
6097         dev->group = new_group;
6098 }
6099 EXPORT_SYMBOL(dev_set_group);
6100
6101 /**
6102  *      dev_set_mac_address - Change Media Access Control Address
6103  *      @dev: device
6104  *      @sa: new address
6105  *
6106  *      Change the hardware (MAC) address of the device
6107  */
6108 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6109 {
6110         const struct net_device_ops *ops = dev->netdev_ops;
6111         int err;
6112
6113         if (!ops->ndo_set_mac_address)
6114                 return -EOPNOTSUPP;
6115         if (sa->sa_family != dev->type)
6116                 return -EINVAL;
6117         if (!netif_device_present(dev))
6118                 return -ENODEV;
6119         err = ops->ndo_set_mac_address(dev, sa);
6120         if (err)
6121                 return err;
6122         dev->addr_assign_type = NET_ADDR_SET;
6123         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
6124         add_device_randomness(dev->dev_addr, dev->addr_len);
6125         return 0;
6126 }
6127 EXPORT_SYMBOL(dev_set_mac_address);
6128
6129 /**
6130  *      dev_change_carrier - Change device carrier
6131  *      @dev: device
6132  *      @new_carrier: new value
6133  *
6134  *      Change device carrier
6135  */
6136 int dev_change_carrier(struct net_device *dev, bool new_carrier)
6137 {
6138         const struct net_device_ops *ops = dev->netdev_ops;
6139
6140         if (!ops->ndo_change_carrier)
6141                 return -EOPNOTSUPP;
6142         if (!netif_device_present(dev))
6143                 return -ENODEV;
6144         return ops->ndo_change_carrier(dev, new_carrier);
6145 }
6146 EXPORT_SYMBOL(dev_change_carrier);
6147
6148 /**
6149  *      dev_get_phys_port_id - Get device physical port ID
6150  *      @dev: device
6151  *      @ppid: port ID
6152  *
6153  *      Get device physical port ID
6154  */
6155 int dev_get_phys_port_id(struct net_device *dev,
6156                          struct netdev_phys_item_id *ppid)
6157 {
6158         const struct net_device_ops *ops = dev->netdev_ops;
6159
6160         if (!ops->ndo_get_phys_port_id)
6161                 return -EOPNOTSUPP;
6162         return ops->ndo_get_phys_port_id(dev, ppid);
6163 }
6164 EXPORT_SYMBOL(dev_get_phys_port_id);
6165
6166 /**
6167  *      dev_get_phys_port_name - Get device physical port name
6168  *      @dev: device
6169  *      @name: port name
6170  *
6171  *      Get device physical port name
6172  */
6173 int dev_get_phys_port_name(struct net_device *dev,
6174                            char *name, size_t len)
6175 {
6176         const struct net_device_ops *ops = dev->netdev_ops;
6177
6178         if (!ops->ndo_get_phys_port_name)
6179                 return -EOPNOTSUPP;
6180         return ops->ndo_get_phys_port_name(dev, name, len);
6181 }
6182 EXPORT_SYMBOL(dev_get_phys_port_name);
6183
6184 /**
6185  *      dev_change_proto_down - update protocol port state information
6186  *      @dev: device
6187  *      @proto_down: new value
6188  *
6189  *      This info can be used by switch drivers to set the phys state of the
6190  *      port.
6191  */
6192 int dev_change_proto_down(struct net_device *dev, bool proto_down)
6193 {
6194         const struct net_device_ops *ops = dev->netdev_ops;
6195
6196         if (!ops->ndo_change_proto_down)
6197                 return -EOPNOTSUPP;
6198         if (!netif_device_present(dev))
6199                 return -ENODEV;
6200         return ops->ndo_change_proto_down(dev, proto_down);
6201 }
6202 EXPORT_SYMBOL(dev_change_proto_down);
6203
6204 /**
6205  *      dev_new_index   -       allocate an ifindex
6206  *      @net: the applicable net namespace
6207  *
6208  *      Returns a suitable unique value for a new device interface
6209  *      number.  The caller must hold the rtnl semaphore or the
6210  *      dev_base_lock to be sure it remains unique.
6211  */
6212 static int dev_new_index(struct net *net)
6213 {
6214         int ifindex = net->ifindex;
6215         for (;;) {
6216                 if (++ifindex <= 0)
6217                         ifindex = 1;
6218                 if (!__dev_get_by_index(net, ifindex))
6219                         return net->ifindex = ifindex;
6220         }
6221 }
6222
6223 /* Delayed registration/unregisteration */
6224 static LIST_HEAD(net_todo_list);
6225 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
6226
6227 static void net_set_todo(struct net_device *dev)
6228 {
6229         list_add_tail(&dev->todo_list, &net_todo_list);
6230         dev_net(dev)->dev_unreg_count++;
6231 }
6232
6233 static void rollback_registered_many(struct list_head *head)
6234 {
6235         struct net_device *dev, *tmp;
6236         LIST_HEAD(close_head);
6237
6238         BUG_ON(dev_boot_phase);
6239         ASSERT_RTNL();
6240
6241         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
6242                 /* Some devices call without registering
6243                  * for initialization unwind. Remove those
6244                  * devices and proceed with the remaining.
6245                  */
6246                 if (dev->reg_state == NETREG_UNINITIALIZED) {
6247                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
6248                                  dev->name, dev);
6249
6250                         WARN_ON(1);
6251                         list_del(&dev->unreg_list);
6252                         continue;
6253                 }
6254                 dev->dismantle = true;
6255                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
6256         }
6257
6258         /* If device is running, close it first. */
6259         list_for_each_entry(dev, head, unreg_list)
6260                 list_add_tail(&dev->close_list, &close_head);
6261         dev_close_many(&close_head, true);
6262
6263         list_for_each_entry(dev, head, unreg_list) {
6264                 /* And unlink it from device chain. */
6265                 unlist_netdevice(dev);
6266
6267                 dev->reg_state = NETREG_UNREGISTERING;
6268                 on_each_cpu(flush_backlog, dev, 1);
6269         }
6270
6271         synchronize_net();
6272
6273         list_for_each_entry(dev, head, unreg_list) {
6274                 struct sk_buff *skb = NULL;
6275
6276                 /* Shutdown queueing discipline. */
6277                 dev_shutdown(dev);
6278
6279
6280                 /* Notify protocols, that we are about to destroy
6281                    this device. They should clean all the things.
6282                 */
6283                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6284
6285                 if (!dev->rtnl_link_ops ||
6286                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6287                         skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
6288                                                      GFP_KERNEL);
6289
6290                 /*
6291                  *      Flush the unicast and multicast chains
6292                  */
6293                 dev_uc_flush(dev);
6294                 dev_mc_flush(dev);
6295
6296                 if (dev->netdev_ops->ndo_uninit)
6297                         dev->netdev_ops->ndo_uninit(dev);
6298
6299                 if (skb)
6300                         rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
6301
6302                 /* Notifier chain MUST detach us all upper devices. */
6303                 WARN_ON(netdev_has_any_upper_dev(dev));
6304
6305                 /* Remove entries from kobject tree */
6306                 netdev_unregister_kobject(dev);
6307 #ifdef CONFIG_XPS
6308                 /* Remove XPS queueing entries */
6309                 netif_reset_xps_queues_gt(dev, 0);
6310 #endif
6311         }
6312
6313         synchronize_net();
6314
6315         list_for_each_entry(dev, head, unreg_list)
6316                 dev_put(dev);
6317 }
6318
6319 static void rollback_registered(struct net_device *dev)
6320 {
6321         LIST_HEAD(single);
6322
6323         list_add(&dev->unreg_list, &single);
6324         rollback_registered_many(&single);
6325         list_del(&single);
6326 }
6327
6328 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
6329         struct net_device *upper, netdev_features_t features)
6330 {
6331         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6332         netdev_features_t feature;
6333         int feature_bit;
6334
6335         for_each_netdev_feature(&upper_disables, feature_bit) {
6336                 feature = __NETIF_F_BIT(feature_bit);
6337                 if (!(upper->wanted_features & feature)
6338                     && (features & feature)) {
6339                         netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
6340                                    &feature, upper->name);
6341                         features &= ~feature;
6342                 }
6343         }
6344
6345         return features;
6346 }
6347
6348 static void netdev_sync_lower_features(struct net_device *upper,
6349         struct net_device *lower, netdev_features_t features)
6350 {
6351         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6352         netdev_features_t feature;
6353         int feature_bit;
6354
6355         for_each_netdev_feature(&upper_disables, feature_bit) {
6356                 feature = __NETIF_F_BIT(feature_bit);
6357                 if (!(features & feature) && (lower->features & feature)) {
6358                         netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
6359                                    &feature, lower->name);
6360                         lower->wanted_features &= ~feature;
6361                         netdev_update_features(lower);
6362
6363                         if (unlikely(lower->features & feature))
6364                                 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
6365                                             &feature, lower->name);
6366                 }
6367         }
6368 }
6369
6370 static netdev_features_t netdev_fix_features(struct net_device *dev,
6371         netdev_features_t features)
6372 {
6373         /* Fix illegal checksum combinations */
6374         if ((features & NETIF_F_HW_CSUM) &&
6375             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6376                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
6377                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6378         }
6379
6380         /* TSO requires that SG is present as well. */
6381         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6382                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
6383                 features &= ~NETIF_F_ALL_TSO;
6384         }
6385
6386         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6387                                         !(features & NETIF_F_IP_CSUM)) {
6388                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6389                 features &= ~NETIF_F_TSO;
6390                 features &= ~NETIF_F_TSO_ECN;
6391         }
6392
6393         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6394                                          !(features & NETIF_F_IPV6_CSUM)) {
6395                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6396                 features &= ~NETIF_F_TSO6;
6397         }
6398
6399         /* TSO ECN requires that TSO is present as well. */
6400         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6401                 features &= ~NETIF_F_TSO_ECN;
6402
6403         /* Software GSO depends on SG. */
6404         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6405                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
6406                 features &= ~NETIF_F_GSO;
6407         }
6408
6409         /* UFO needs SG and checksumming */
6410         if (features & NETIF_F_UFO) {
6411                 /* maybe split UFO into V4 and V6? */
6412                 if (!((features & NETIF_F_GEN_CSUM) ||
6413                     (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
6414                             == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6415                         netdev_dbg(dev,
6416                                 "Dropping NETIF_F_UFO since no checksum offload features.\n");
6417                         features &= ~NETIF_F_UFO;
6418                 }
6419
6420                 if (!(features & NETIF_F_SG)) {
6421                         netdev_dbg(dev,
6422                                 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
6423                         features &= ~NETIF_F_UFO;
6424                 }
6425         }
6426
6427 #ifdef CONFIG_NET_RX_BUSY_POLL
6428         if (dev->netdev_ops->ndo_busy_poll)
6429                 features |= NETIF_F_BUSY_POLL;
6430         else
6431 #endif
6432                 features &= ~NETIF_F_BUSY_POLL;
6433
6434         return features;
6435 }
6436
6437 int __netdev_update_features(struct net_device *dev)
6438 {
6439         struct net_device *upper, *lower;
6440         netdev_features_t features;
6441         struct list_head *iter;
6442         int err = -1;
6443
6444         ASSERT_RTNL();
6445
6446         features = netdev_get_wanted_features(dev);
6447
6448         if (dev->netdev_ops->ndo_fix_features)
6449                 features = dev->netdev_ops->ndo_fix_features(dev, features);
6450
6451         /* driver might be less strict about feature dependencies */
6452         features = netdev_fix_features(dev, features);
6453
6454         /* some features can't be enabled if they're off an an upper device */
6455         netdev_for_each_upper_dev_rcu(dev, upper, iter)
6456                 features = netdev_sync_upper_features(dev, upper, features);
6457
6458         if (dev->features == features)
6459                 goto sync_lower;
6460
6461         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
6462                 &dev->features, &features);
6463
6464         if (dev->netdev_ops->ndo_set_features)
6465                 err = dev->netdev_ops->ndo_set_features(dev, features);
6466         else
6467                 err = 0;
6468
6469         if (unlikely(err < 0)) {
6470                 netdev_err(dev,
6471                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
6472                         err, &features, &dev->features);
6473                 /* return non-0 since some features might have changed and
6474                  * it's better to fire a spurious notification than miss it
6475                  */
6476                 return -1;
6477         }
6478
6479 sync_lower:
6480         /* some features must be disabled on lower devices when disabled
6481          * on an upper device (think: bonding master or bridge)
6482          */
6483         netdev_for_each_lower_dev(dev, lower, iter)
6484                 netdev_sync_lower_features(dev, lower, features);
6485
6486         if (!err)
6487                 dev->features = features;
6488
6489         return err < 0 ? 0 : 1;
6490 }
6491
6492 /**
6493  *      netdev_update_features - recalculate device features
6494  *      @dev: the device to check
6495  *
6496  *      Recalculate dev->features set and send notifications if it
6497  *      has changed. Should be called after driver or hardware dependent
6498  *      conditions might have changed that influence the features.
6499  */
6500 void netdev_update_features(struct net_device *dev)
6501 {
6502         if (__netdev_update_features(dev))
6503                 netdev_features_change(dev);
6504 }
6505 EXPORT_SYMBOL(netdev_update_features);
6506
6507 /**
6508  *      netdev_change_features - recalculate device features
6509  *      @dev: the device to check
6510  *
6511  *      Recalculate dev->features set and send notifications even
6512  *      if they have not changed. Should be called instead of
6513  *      netdev_update_features() if also dev->vlan_features might
6514  *      have changed to allow the changes to be propagated to stacked
6515  *      VLAN devices.
6516  */
6517 void netdev_change_features(struct net_device *dev)
6518 {
6519         __netdev_update_features(dev);
6520         netdev_features_change(dev);
6521 }
6522 EXPORT_SYMBOL(netdev_change_features);
6523
6524 /**
6525  *      netif_stacked_transfer_operstate -      transfer operstate
6526  *      @rootdev: the root or lower level device to transfer state from
6527  *      @dev: the device to transfer operstate to
6528  *
6529  *      Transfer operational state from root to device. This is normally
6530  *      called when a stacking relationship exists between the root
6531  *      device and the device(a leaf device).
6532  */
6533 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
6534                                         struct net_device *dev)
6535 {
6536         if (rootdev->operstate == IF_OPER_DORMANT)
6537                 netif_dormant_on(dev);
6538         else
6539                 netif_dormant_off(dev);
6540
6541         if (netif_carrier_ok(rootdev)) {
6542                 if (!netif_carrier_ok(dev))
6543                         netif_carrier_on(dev);
6544         } else {
6545                 if (netif_carrier_ok(dev))
6546                         netif_carrier_off(dev);
6547         }
6548 }
6549 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
6550
6551 #ifdef CONFIG_SYSFS
6552 static int netif_alloc_rx_queues(struct net_device *dev)
6553 {
6554         unsigned int i, count = dev->num_rx_queues;
6555         struct netdev_rx_queue *rx;
6556         size_t sz = count * sizeof(*rx);
6557
6558         BUG_ON(count < 1);
6559
6560         rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6561         if (!rx) {
6562                 rx = vzalloc(sz);
6563                 if (!rx)
6564                         return -ENOMEM;
6565         }
6566         dev->_rx = rx;
6567
6568         for (i = 0; i < count; i++)
6569                 rx[i].dev = dev;
6570         return 0;
6571 }
6572 #endif
6573
6574 static void netdev_init_one_queue(struct net_device *dev,
6575                                   struct netdev_queue *queue, void *_unused)
6576 {
6577         /* Initialize queue lock */
6578         spin_lock_init(&queue->_xmit_lock);
6579         netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
6580         queue->xmit_lock_owner = -1;
6581         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
6582         queue->dev = dev;
6583 #ifdef CONFIG_BQL
6584         dql_init(&queue->dql, HZ);
6585 #endif
6586 }
6587
6588 static void netif_free_tx_queues(struct net_device *dev)
6589 {
6590         kvfree(dev->_tx);
6591 }
6592
6593 static int netif_alloc_netdev_queues(struct net_device *dev)
6594 {
6595         unsigned int count = dev->num_tx_queues;
6596         struct netdev_queue *tx;
6597         size_t sz = count * sizeof(*tx);
6598
6599         if (count < 1 || count > 0xffff)
6600                 return -EINVAL;
6601
6602         tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6603         if (!tx) {
6604                 tx = vzalloc(sz);
6605                 if (!tx)
6606                         return -ENOMEM;
6607         }
6608         dev->_tx = tx;
6609
6610         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
6611         spin_lock_init(&dev->tx_global_lock);
6612
6613         return 0;
6614 }
6615
6616 void netif_tx_stop_all_queues(struct net_device *dev)
6617 {
6618         unsigned int i;
6619
6620         for (i = 0; i < dev->num_tx_queues; i++) {
6621                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
6622                 netif_tx_stop_queue(txq);
6623         }
6624 }
6625 EXPORT_SYMBOL(netif_tx_stop_all_queues);
6626
6627 /**
6628  *      register_netdevice      - register a network device
6629  *      @dev: device to register
6630  *
6631  *      Take a completed network device structure and add it to the kernel
6632  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6633  *      chain. 0 is returned on success. A negative errno code is returned
6634  *      on a failure to set up the device, or if the name is a duplicate.
6635  *
6636  *      Callers must hold the rtnl semaphore. You may want
6637  *      register_netdev() instead of this.
6638  *
6639  *      BUGS:
6640  *      The locking appears insufficient to guarantee two parallel registers
6641  *      will not get the same name.
6642  */
6643
6644 int register_netdevice(struct net_device *dev)
6645 {
6646         int ret;
6647         struct net *net = dev_net(dev);
6648
6649         BUG_ON(dev_boot_phase);
6650         ASSERT_RTNL();
6651
6652         might_sleep();
6653
6654         /* When net_device's are persistent, this will be fatal. */
6655         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
6656         BUG_ON(!net);
6657
6658         spin_lock_init(&dev->addr_list_lock);
6659         netdev_set_addr_lockdep_class(dev);
6660
6661         ret = dev_get_valid_name(net, dev, dev->name);
6662         if (ret < 0)
6663                 goto out;
6664
6665         /* Init, if this function is available */
6666         if (dev->netdev_ops->ndo_init) {
6667                 ret = dev->netdev_ops->ndo_init(dev);
6668                 if (ret) {
6669                         if (ret > 0)
6670                                 ret = -EIO;
6671                         goto out;
6672                 }
6673         }
6674
6675         if (((dev->hw_features | dev->features) &
6676              NETIF_F_HW_VLAN_CTAG_FILTER) &&
6677             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
6678              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
6679                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
6680                 ret = -EINVAL;
6681                 goto err_uninit;
6682         }
6683
6684         ret = -EBUSY;
6685         if (!dev->ifindex)
6686                 dev->ifindex = dev_new_index(net);
6687         else if (__dev_get_by_index(net, dev->ifindex))
6688                 goto err_uninit;
6689
6690         /* Transfer changeable features to wanted_features and enable
6691          * software offloads (GSO and GRO).
6692          */
6693         dev->hw_features |= NETIF_F_SOFT_FEATURES;
6694         dev->features |= NETIF_F_SOFT_FEATURES;
6695         dev->wanted_features = dev->features & dev->hw_features;
6696
6697         if (!(dev->flags & IFF_LOOPBACK)) {
6698                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
6699         }
6700
6701         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
6702          */
6703         dev->vlan_features |= NETIF_F_HIGHDMA;
6704
6705         /* Make NETIF_F_SG inheritable to tunnel devices.
6706          */
6707         dev->hw_enc_features |= NETIF_F_SG;
6708
6709         /* Make NETIF_F_SG inheritable to MPLS.
6710          */
6711         dev->mpls_features |= NETIF_F_SG;
6712
6713         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
6714         ret = notifier_to_errno(ret);
6715         if (ret)
6716                 goto err_uninit;
6717
6718         ret = netdev_register_kobject(dev);
6719         if (ret)
6720                 goto err_uninit;
6721         dev->reg_state = NETREG_REGISTERED;
6722
6723         __netdev_update_features(dev);
6724
6725         /*
6726          *      Default initial state at registry is that the
6727          *      device is present.
6728          */
6729
6730         set_bit(__LINK_STATE_PRESENT, &dev->state);
6731
6732         linkwatch_init_dev(dev);
6733
6734         dev_init_scheduler(dev);
6735         dev_hold(dev);
6736         list_netdevice(dev);
6737         add_device_randomness(dev->dev_addr, dev->addr_len);
6738
6739         /* If the device has permanent device address, driver should
6740          * set dev_addr and also addr_assign_type should be set to
6741          * NET_ADDR_PERM (default value).
6742          */
6743         if (dev->addr_assign_type == NET_ADDR_PERM)
6744                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
6745
6746         /* Notify protocols, that a new device appeared. */
6747         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
6748         ret = notifier_to_errno(ret);
6749         if (ret) {
6750                 rollback_registered(dev);
6751                 dev->reg_state = NETREG_UNREGISTERED;
6752         }
6753         /*
6754          *      Prevent userspace races by waiting until the network
6755          *      device is fully setup before sending notifications.
6756          */
6757         if (!dev->rtnl_link_ops ||
6758             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6759                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
6760
6761 out:
6762         return ret;
6763
6764 err_uninit:
6765         if (dev->netdev_ops->ndo_uninit)
6766                 dev->netdev_ops->ndo_uninit(dev);
6767         goto out;
6768 }
6769 EXPORT_SYMBOL(register_netdevice);
6770
6771 /**
6772  *      init_dummy_netdev       - init a dummy network device for NAPI
6773  *      @dev: device to init
6774  *
6775  *      This takes a network device structure and initialize the minimum
6776  *      amount of fields so it can be used to schedule NAPI polls without
6777  *      registering a full blown interface. This is to be used by drivers
6778  *      that need to tie several hardware interfaces to a single NAPI
6779  *      poll scheduler due to HW limitations.
6780  */
6781 int init_dummy_netdev(struct net_device *dev)
6782 {
6783         /* Clear everything. Note we don't initialize spinlocks
6784          * are they aren't supposed to be taken by any of the
6785          * NAPI code and this dummy netdev is supposed to be
6786          * only ever used for NAPI polls
6787          */
6788         memset(dev, 0, sizeof(struct net_device));
6789
6790         /* make sure we BUG if trying to hit standard
6791          * register/unregister code path
6792          */
6793         dev->reg_state = NETREG_DUMMY;
6794
6795         /* NAPI wants this */
6796         INIT_LIST_HEAD(&dev->napi_list);
6797
6798         /* a dummy interface is started by default */
6799         set_bit(__LINK_STATE_PRESENT, &dev->state);
6800         set_bit(__LINK_STATE_START, &dev->state);
6801
6802         /* Note : We dont allocate pcpu_refcnt for dummy devices,
6803          * because users of this 'device' dont need to change
6804          * its refcount.
6805          */
6806
6807         return 0;
6808 }
6809 EXPORT_SYMBOL_GPL(init_dummy_netdev);
6810
6811
6812 /**
6813  *      register_netdev - register a network device
6814  *      @dev: device to register
6815  *
6816  *      Take a completed network device structure and add it to the kernel
6817  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6818  *      chain. 0 is returned on success. A negative errno code is returned
6819  *      on a failure to set up the device, or if the name is a duplicate.
6820  *
6821  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
6822  *      and expands the device name if you passed a format string to
6823  *      alloc_netdev.
6824  */
6825 int register_netdev(struct net_device *dev)
6826 {
6827         int err;
6828
6829         rtnl_lock();
6830         err = register_netdevice(dev);
6831         rtnl_unlock();
6832         return err;
6833 }
6834 EXPORT_SYMBOL(register_netdev);
6835
6836 int netdev_refcnt_read(const struct net_device *dev)
6837 {
6838         int i, refcnt = 0;
6839
6840         for_each_possible_cpu(i)
6841                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
6842         return refcnt;
6843 }
6844 EXPORT_SYMBOL(netdev_refcnt_read);
6845
6846 /**
6847  * netdev_wait_allrefs - wait until all references are gone.
6848  * @dev: target net_device
6849  *
6850  * This is called when unregistering network devices.
6851  *
6852  * Any protocol or device that holds a reference should register
6853  * for netdevice notification, and cleanup and put back the
6854  * reference if they receive an UNREGISTER event.
6855  * We can get stuck here if buggy protocols don't correctly
6856  * call dev_put.
6857  */
6858 static void netdev_wait_allrefs(struct net_device *dev)
6859 {
6860         unsigned long rebroadcast_time, warning_time;
6861         int refcnt;
6862
6863         linkwatch_forget_dev(dev);
6864
6865         rebroadcast_time = warning_time = jiffies;
6866         refcnt = netdev_refcnt_read(dev);
6867
6868         while (refcnt != 0) {
6869                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6870                         rtnl_lock();
6871
6872                         /* Rebroadcast unregister notification */
6873                         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6874
6875                         __rtnl_unlock();
6876                         rcu_barrier();
6877                         rtnl_lock();
6878
6879                         call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6880                         if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
6881                                      &dev->state)) {
6882                                 /* We must not have linkwatch events
6883                                  * pending on unregister. If this
6884                                  * happens, we simply run the queue
6885                                  * unscheduled, resulting in a noop
6886                                  * for this device.
6887                                  */
6888                                 linkwatch_run_queue();
6889                         }
6890
6891                         __rtnl_unlock();
6892
6893                         rebroadcast_time = jiffies;
6894                 }
6895
6896                 msleep(250);
6897
6898                 refcnt = netdev_refcnt_read(dev);
6899
6900                 if (time_after(jiffies, warning_time + 10 * HZ)) {
6901                         pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
6902                                  dev->name, refcnt);
6903                         warning_time = jiffies;
6904                 }
6905         }
6906 }
6907
6908 /* The sequence is:
6909  *
6910  *      rtnl_lock();
6911  *      ...
6912  *      register_netdevice(x1);
6913  *      register_netdevice(x2);
6914  *      ...
6915  *      unregister_netdevice(y1);
6916  *      unregister_netdevice(y2);
6917  *      ...
6918  *      rtnl_unlock();
6919  *      free_netdev(y1);
6920  *      free_netdev(y2);
6921  *
6922  * We are invoked by rtnl_unlock().
6923  * This allows us to deal with problems:
6924  * 1) We can delete sysfs objects which invoke hotplug
6925  *    without deadlocking with linkwatch via keventd.
6926  * 2) Since we run with the RTNL semaphore not held, we can sleep
6927  *    safely in order to wait for the netdev refcnt to drop to zero.
6928  *
6929  * We must not return until all unregister events added during
6930  * the interval the lock was held have been completed.
6931  */
6932 void netdev_run_todo(void)
6933 {
6934         struct list_head list;
6935
6936         /* Snapshot list, allow later requests */
6937         list_replace_init(&net_todo_list, &list);
6938
6939         __rtnl_unlock();
6940
6941
6942         /* Wait for rcu callbacks to finish before next phase */
6943         if (!list_empty(&list))
6944                 rcu_barrier();
6945
6946         while (!list_empty(&list)) {
6947                 struct net_device *dev
6948                         = list_first_entry(&list, struct net_device, todo_list);
6949                 list_del(&dev->todo_list);
6950
6951                 rtnl_lock();
6952                 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6953                 __rtnl_unlock();
6954
6955                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
6956                         pr_err("network todo '%s' but state %d\n",
6957                                dev->name, dev->reg_state);
6958                         dump_stack();
6959                         continue;
6960                 }
6961
6962                 dev->reg_state = NETREG_UNREGISTERED;
6963
6964                 netdev_wait_allrefs(dev);
6965
6966                 /* paranoia */
6967                 BUG_ON(netdev_refcnt_read(dev));
6968                 BUG_ON(!list_empty(&dev->ptype_all));
6969                 BUG_ON(!list_empty(&dev->ptype_specific));
6970                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
6971                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
6972                 WARN_ON(dev->dn_ptr);
6973
6974                 if (dev->destructor)
6975                         dev->destructor(dev);
6976
6977                 /* Report a network device has been unregistered */
6978                 rtnl_lock();
6979                 dev_net(dev)->dev_unreg_count--;
6980                 __rtnl_unlock();
6981                 wake_up(&netdev_unregistering_wq);
6982
6983                 /* Free network device */
6984                 kobject_put(&dev->dev.kobj);
6985         }
6986 }
6987
6988 /* Convert net_device_stats to rtnl_link_stats64.  They have the same
6989  * fields in the same order, with only the type differing.
6990  */
6991 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
6992                              const struct net_device_stats *netdev_stats)
6993 {
6994 #if BITS_PER_LONG == 64
6995         BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
6996         memcpy(stats64, netdev_stats, sizeof(*stats64));
6997 #else
6998         size_t i, n = sizeof(*stats64) / sizeof(u64);
6999         const unsigned long *src = (const unsigned long *)netdev_stats;
7000         u64 *dst = (u64 *)stats64;
7001
7002         BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
7003                      sizeof(*stats64) / sizeof(u64));
7004         for (i = 0; i < n; i++)
7005                 dst[i] = src[i];
7006 #endif
7007 }
7008 EXPORT_SYMBOL(netdev_stats_to_stats64);
7009
7010 /**
7011  *      dev_get_stats   - get network device statistics
7012  *      @dev: device to get statistics from
7013  *      @storage: place to store stats
7014  *
7015  *      Get network statistics from device. Return @storage.
7016  *      The device driver may provide its own method by setting
7017  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
7018  *      otherwise the internal statistics structure is used.
7019  */
7020 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
7021                                         struct rtnl_link_stats64 *storage)
7022 {
7023         const struct net_device_ops *ops = dev->netdev_ops;
7024
7025         if (ops->ndo_get_stats64) {
7026                 memset(storage, 0, sizeof(*storage));
7027                 ops->ndo_get_stats64(dev, storage);
7028         } else if (ops->ndo_get_stats) {
7029                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
7030         } else {
7031                 netdev_stats_to_stats64(storage, &dev->stats);
7032         }
7033         storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
7034         storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
7035         return storage;
7036 }
7037 EXPORT_SYMBOL(dev_get_stats);
7038
7039 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
7040 {
7041         struct netdev_queue *queue = dev_ingress_queue(dev);
7042
7043 #ifdef CONFIG_NET_CLS_ACT
7044         if (queue)
7045                 return queue;
7046         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
7047         if (!queue)
7048                 return NULL;
7049         netdev_init_one_queue(dev, queue, NULL);
7050         RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
7051         queue->qdisc_sleeping = &noop_qdisc;
7052         rcu_assign_pointer(dev->ingress_queue, queue);
7053 #endif
7054         return queue;
7055 }
7056
7057 static const struct ethtool_ops default_ethtool_ops;
7058
7059 void netdev_set_default_ethtool_ops(struct net_device *dev,
7060                                     const struct ethtool_ops *ops)
7061 {
7062         if (dev->ethtool_ops == &default_ethtool_ops)
7063                 dev->ethtool_ops = ops;
7064 }
7065 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
7066
7067 void netdev_freemem(struct net_device *dev)
7068 {
7069         char *addr = (char *)dev - dev->padded;
7070
7071         kvfree(addr);
7072 }
7073
7074 /**
7075  *      alloc_netdev_mqs - allocate network device
7076  *      @sizeof_priv:           size of private data to allocate space for
7077  *      @name:                  device name format string
7078  *      @name_assign_type:      origin of device name
7079  *      @setup:                 callback to initialize device
7080  *      @txqs:                  the number of TX subqueues to allocate
7081  *      @rxqs:                  the number of RX subqueues to allocate
7082  *
7083  *      Allocates a struct net_device with private data area for driver use
7084  *      and performs basic initialization.  Also allocates subqueue structs
7085  *      for each queue on the device.
7086  */
7087 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
7088                 unsigned char name_assign_type,
7089                 void (*setup)(struct net_device *),
7090                 unsigned int txqs, unsigned int rxqs)
7091 {
7092         struct net_device *dev;
7093         size_t alloc_size;
7094         struct net_device *p;
7095
7096         BUG_ON(strlen(name) >= sizeof(dev->name));
7097
7098         if (txqs < 1) {
7099                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
7100                 return NULL;
7101         }
7102
7103 #ifdef CONFIG_SYSFS
7104         if (rxqs < 1) {
7105                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
7106                 return NULL;
7107         }
7108 #endif
7109
7110         alloc_size = sizeof(struct net_device);
7111         if (sizeof_priv) {
7112                 /* ensure 32-byte alignment of private area */
7113                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
7114                 alloc_size += sizeof_priv;
7115         }
7116         /* ensure 32-byte alignment of whole construct */
7117         alloc_size += NETDEV_ALIGN - 1;
7118
7119         p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7120         if (!p)
7121                 p = vzalloc(alloc_size);
7122         if (!p)
7123                 return NULL;
7124
7125         dev = PTR_ALIGN(p, NETDEV_ALIGN);
7126         dev->padded = (char *)dev - (char *)p;
7127
7128         dev->pcpu_refcnt = alloc_percpu(int);
7129         if (!dev->pcpu_refcnt)
7130                 goto free_dev;
7131
7132         if (dev_addr_init(dev))
7133                 goto free_pcpu;
7134
7135         dev_mc_init(dev);
7136         dev_uc_init(dev);
7137
7138         dev_net_set(dev, &init_net);
7139
7140         dev->gso_max_size = GSO_MAX_SIZE;
7141         dev->gso_max_segs = GSO_MAX_SEGS;
7142         dev->gso_min_segs = 0;
7143
7144         INIT_LIST_HEAD(&dev->napi_list);
7145         INIT_LIST_HEAD(&dev->unreg_list);
7146         INIT_LIST_HEAD(&dev->close_list);
7147         INIT_LIST_HEAD(&dev->link_watch_list);
7148         INIT_LIST_HEAD(&dev->adj_list.upper);
7149         INIT_LIST_HEAD(&dev->adj_list.lower);
7150         INIT_LIST_HEAD(&dev->all_adj_list.upper);
7151         INIT_LIST_HEAD(&dev->all_adj_list.lower);
7152         INIT_LIST_HEAD(&dev->ptype_all);
7153         INIT_LIST_HEAD(&dev->ptype_specific);
7154         dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
7155         setup(dev);
7156
7157         if (!dev->tx_queue_len) {
7158                 dev->priv_flags |= IFF_NO_QUEUE;
7159                 dev->tx_queue_len = 1;
7160         }
7161
7162         dev->num_tx_queues = txqs;
7163         dev->real_num_tx_queues = txqs;
7164         if (netif_alloc_netdev_queues(dev))
7165                 goto free_all;
7166
7167 #ifdef CONFIG_SYSFS
7168         dev->num_rx_queues = rxqs;
7169         dev->real_num_rx_queues = rxqs;
7170         if (netif_alloc_rx_queues(dev))
7171                 goto free_all;
7172 #endif
7173
7174         strcpy(dev->name, name);
7175         dev->name_assign_type = name_assign_type;
7176         dev->group = INIT_NETDEV_GROUP;
7177         if (!dev->ethtool_ops)
7178                 dev->ethtool_ops = &default_ethtool_ops;
7179
7180         nf_hook_ingress_init(dev);
7181
7182         return dev;
7183
7184 free_all:
7185         free_netdev(dev);
7186         return NULL;
7187
7188 free_pcpu:
7189         free_percpu(dev->pcpu_refcnt);
7190 free_dev:
7191         netdev_freemem(dev);
7192         return NULL;
7193 }
7194 EXPORT_SYMBOL(alloc_netdev_mqs);
7195
7196 /**
7197  *      free_netdev - free network device
7198  *      @dev: device
7199  *
7200  *      This function does the last stage of destroying an allocated device
7201  *      interface. The reference to the device object is released.
7202  *      If this is the last reference then it will be freed.
7203  */
7204 void free_netdev(struct net_device *dev)
7205 {
7206         struct napi_struct *p, *n;
7207
7208         netif_free_tx_queues(dev);
7209 #ifdef CONFIG_SYSFS
7210         kvfree(dev->_rx);
7211 #endif
7212
7213         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
7214
7215         /* Flush device addresses */
7216         dev_addr_flush(dev);
7217
7218         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
7219                 netif_napi_del(p);
7220
7221         free_percpu(dev->pcpu_refcnt);
7222         dev->pcpu_refcnt = NULL;
7223
7224         /*  Compatibility with error handling in drivers */
7225         if (dev->reg_state == NETREG_UNINITIALIZED) {
7226                 netdev_freemem(dev);
7227                 return;
7228         }
7229
7230         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
7231         dev->reg_state = NETREG_RELEASED;
7232
7233         /* will free via device release */
7234         put_device(&dev->dev);
7235 }
7236 EXPORT_SYMBOL(free_netdev);
7237
7238 /**
7239  *      synchronize_net -  Synchronize with packet receive processing
7240  *
7241  *      Wait for packets currently being received to be done.
7242  *      Does not block later packets from starting.
7243  */
7244 void synchronize_net(void)
7245 {
7246         might_sleep();
7247         if (rtnl_is_locked())
7248                 synchronize_rcu_expedited();
7249         else
7250                 synchronize_rcu();
7251 }
7252 EXPORT_SYMBOL(synchronize_net);
7253
7254 /**
7255  *      unregister_netdevice_queue - remove device from the kernel
7256  *      @dev: device
7257  *      @head: list
7258  *
7259  *      This function shuts down a device interface and removes it
7260  *      from the kernel tables.
7261  *      If head not NULL, device is queued to be unregistered later.
7262  *
7263  *      Callers must hold the rtnl semaphore.  You may want
7264  *      unregister_netdev() instead of this.
7265  */
7266
7267 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
7268 {
7269         ASSERT_RTNL();
7270
7271         if (head) {
7272                 list_move_tail(&dev->unreg_list, head);
7273         } else {
7274                 rollback_registered(dev);
7275                 /* Finish processing unregister after unlock */
7276                 net_set_todo(dev);
7277         }
7278 }
7279 EXPORT_SYMBOL(unregister_netdevice_queue);
7280
7281 /**
7282  *      unregister_netdevice_many - unregister many devices
7283  *      @head: list of devices
7284  *
7285  *  Note: As most callers use a stack allocated list_head,
7286  *  we force a list_del() to make sure stack wont be corrupted later.
7287  */
7288 void unregister_netdevice_many(struct list_head *head)
7289 {
7290         struct net_device *dev;
7291
7292         if (!list_empty(head)) {
7293                 rollback_registered_many(head);
7294                 list_for_each_entry(dev, head, unreg_list)
7295                         net_set_todo(dev);
7296                 list_del(head);
7297         }
7298 }
7299 EXPORT_SYMBOL(unregister_netdevice_many);
7300
7301 /**
7302  *      unregister_netdev - remove device from the kernel
7303  *      @dev: device
7304  *
7305  *      This function shuts down a device interface and removes it
7306  *      from the kernel tables.
7307  *
7308  *      This is just a wrapper for unregister_netdevice that takes
7309  *      the rtnl semaphore.  In general you want to use this and not
7310  *      unregister_netdevice.
7311  */
7312 void unregister_netdev(struct net_device *dev)
7313 {
7314         rtnl_lock();
7315         unregister_netdevice(dev);
7316         rtnl_unlock();
7317 }
7318 EXPORT_SYMBOL(unregister_netdev);
7319
7320 /**
7321  *      dev_change_net_namespace - move device to different nethost namespace
7322  *      @dev: device
7323  *      @net: network namespace
7324  *      @pat: If not NULL name pattern to try if the current device name
7325  *            is already taken in the destination network namespace.
7326  *
7327  *      This function shuts down a device interface and moves it
7328  *      to a new network namespace. On success 0 is returned, on
7329  *      a failure a netagive errno code is returned.
7330  *
7331  *      Callers must hold the rtnl semaphore.
7332  */
7333
7334 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
7335 {
7336         int err;
7337
7338         ASSERT_RTNL();
7339
7340         /* Don't allow namespace local devices to be moved. */
7341         err = -EINVAL;
7342         if (dev->features & NETIF_F_NETNS_LOCAL)
7343                 goto out;
7344
7345         /* Ensure the device has been registrered */
7346         if (dev->reg_state != NETREG_REGISTERED)
7347                 goto out;
7348
7349         /* Get out if there is nothing todo */
7350         err = 0;
7351         if (net_eq(dev_net(dev), net))
7352                 goto out;
7353
7354         /* Pick the destination device name, and ensure
7355          * we can use it in the destination network namespace.
7356          */
7357         err = -EEXIST;
7358         if (__dev_get_by_name(net, dev->name)) {
7359                 /* We get here if we can't use the current device name */
7360                 if (!pat)
7361                         goto out;
7362                 if (dev_get_valid_name(net, dev, pat) < 0)
7363                         goto out;
7364         }
7365
7366         /*
7367          * And now a mini version of register_netdevice unregister_netdevice.
7368          */
7369
7370         /* If device is running close it first. */
7371         dev_close(dev);
7372
7373         /* And unlink it from device chain */
7374         err = -ENODEV;
7375         unlist_netdevice(dev);
7376
7377         synchronize_net();
7378
7379         /* Shutdown queueing discipline. */
7380         dev_shutdown(dev);
7381
7382         /* Notify protocols, that we are about to destroy
7383            this device. They should clean all the things.
7384
7385            Note that dev->reg_state stays at NETREG_REGISTERED.
7386            This is wanted because this way 8021q and macvlan know
7387            the device is just moving and can keep their slaves up.
7388         */
7389         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7390         rcu_barrier();
7391         call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7392         rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
7393
7394         /*
7395          *      Flush the unicast and multicast chains
7396          */
7397         dev_uc_flush(dev);
7398         dev_mc_flush(dev);
7399
7400         /* Send a netdev-removed uevent to the old namespace */
7401         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
7402         netdev_adjacent_del_links(dev);
7403
7404         /* Actually switch the network namespace */
7405         dev_net_set(dev, net);
7406
7407         /* If there is an ifindex conflict assign a new one */
7408         if (__dev_get_by_index(net, dev->ifindex))
7409                 dev->ifindex = dev_new_index(net);
7410
7411         /* Send a netdev-add uevent to the new namespace */
7412         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
7413         netdev_adjacent_add_links(dev);
7414
7415         /* Fixup kobjects */
7416         err = device_rename(&dev->dev, dev->name);
7417         WARN_ON(err);
7418
7419         /* Add the device back in the hashes */
7420         list_netdevice(dev);
7421
7422         /* Notify protocols, that a new device appeared. */
7423         call_netdevice_notifiers(NETDEV_REGISTER, dev);
7424
7425         /*
7426          *      Prevent userspace races by waiting until the network
7427          *      device is fully setup before sending notifications.
7428          */
7429         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7430
7431         synchronize_net();
7432         err = 0;
7433 out:
7434         return err;
7435 }
7436 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
7437
7438 static int dev_cpu_callback(struct notifier_block *nfb,
7439                             unsigned long action,
7440                             void *ocpu)
7441 {
7442         struct sk_buff **list_skb;
7443         struct sk_buff *skb;
7444         unsigned int cpu, oldcpu = (unsigned long)ocpu;
7445         struct softnet_data *sd, *oldsd;
7446
7447         if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
7448                 return NOTIFY_OK;
7449
7450         local_irq_disable();
7451         cpu = smp_processor_id();
7452         sd = &per_cpu(softnet_data, cpu);
7453         oldsd = &per_cpu(softnet_data, oldcpu);
7454
7455         /* Find end of our completion_queue. */
7456         list_skb = &sd->completion_queue;
7457         while (*list_skb)
7458                 list_skb = &(*list_skb)->next;
7459         /* Append completion queue from offline CPU. */
7460         *list_skb = oldsd->completion_queue;
7461         oldsd->completion_queue = NULL;
7462
7463         /* Append output queue from offline CPU. */
7464         if (oldsd->output_queue) {
7465                 *sd->output_queue_tailp = oldsd->output_queue;
7466                 sd->output_queue_tailp = oldsd->output_queue_tailp;
7467                 oldsd->output_queue = NULL;
7468                 oldsd->output_queue_tailp = &oldsd->output_queue;
7469         }
7470         /* Append NAPI poll list from offline CPU, with one exception :
7471          * process_backlog() must be called by cpu owning percpu backlog.
7472          * We properly handle process_queue & input_pkt_queue later.
7473          */
7474         while (!list_empty(&oldsd->poll_list)) {
7475                 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
7476                                                             struct napi_struct,
7477                                                             poll_list);
7478
7479                 list_del_init(&napi->poll_list);
7480                 if (napi->poll == process_backlog)
7481                         napi->state = 0;
7482                 else
7483                         ____napi_schedule(sd, napi);
7484         }
7485
7486         raise_softirq_irqoff(NET_TX_SOFTIRQ);
7487         local_irq_enable();
7488
7489         /* Process offline CPU's input_pkt_queue */
7490         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
7491                 netif_rx_ni(skb);
7492                 input_queue_head_incr(oldsd);
7493         }
7494         while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
7495                 netif_rx_ni(skb);
7496                 input_queue_head_incr(oldsd);
7497         }
7498
7499         return NOTIFY_OK;
7500 }
7501
7502
7503 /**
7504  *      netdev_increment_features - increment feature set by one
7505  *      @all: current feature set
7506  *      @one: new feature set
7507  *      @mask: mask feature set
7508  *
7509  *      Computes a new feature set after adding a device with feature set
7510  *      @one to the master device with current feature set @all.  Will not
7511  *      enable anything that is off in @mask. Returns the new feature set.
7512  */
7513 netdev_features_t netdev_increment_features(netdev_features_t all,
7514         netdev_features_t one, netdev_features_t mask)
7515 {
7516         if (mask & NETIF_F_GEN_CSUM)
7517                 mask |= NETIF_F_ALL_CSUM;
7518         mask |= NETIF_F_VLAN_CHALLENGED;
7519
7520         all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
7521         all &= one | ~NETIF_F_ALL_FOR_ALL;
7522
7523         /* If one device supports hw checksumming, set for all. */
7524         if (all & NETIF_F_GEN_CSUM)
7525                 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
7526
7527         return all;
7528 }
7529 EXPORT_SYMBOL(netdev_increment_features);
7530
7531 static struct hlist_head * __net_init netdev_create_hash(void)
7532 {
7533         int i;
7534         struct hlist_head *hash;
7535
7536         hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
7537         if (hash != NULL)
7538                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
7539                         INIT_HLIST_HEAD(&hash[i]);
7540
7541         return hash;
7542 }
7543
7544 /* Initialize per network namespace state */
7545 static int __net_init netdev_init(struct net *net)
7546 {
7547         if (net != &init_net)
7548                 INIT_LIST_HEAD(&net->dev_base_head);
7549
7550         net->dev_name_head = netdev_create_hash();
7551         if (net->dev_name_head == NULL)
7552                 goto err_name;
7553
7554         net->dev_index_head = netdev_create_hash();
7555         if (net->dev_index_head == NULL)
7556                 goto err_idx;
7557
7558         return 0;
7559
7560 err_idx:
7561         kfree(net->dev_name_head);
7562 err_name:
7563         return -ENOMEM;
7564 }
7565
7566 /**
7567  *      netdev_drivername - network driver for the device
7568  *      @dev: network device
7569  *
7570  *      Determine network driver for device.
7571  */
7572 const char *netdev_drivername(const struct net_device *dev)
7573 {
7574         const struct device_driver *driver;
7575         const struct device *parent;
7576         const char *empty = "";
7577
7578         parent = dev->dev.parent;
7579         if (!parent)
7580                 return empty;
7581
7582         driver = parent->driver;
7583         if (driver && driver->name)
7584                 return driver->name;
7585         return empty;
7586 }
7587
7588 static void __netdev_printk(const char *level, const struct net_device *dev,
7589                             struct va_format *vaf)
7590 {
7591         if (dev && dev->dev.parent) {
7592                 dev_printk_emit(level[1] - '0',
7593                                 dev->dev.parent,
7594                                 "%s %s %s%s: %pV",
7595                                 dev_driver_string(dev->dev.parent),
7596                                 dev_name(dev->dev.parent),
7597                                 netdev_name(dev), netdev_reg_state(dev),
7598                                 vaf);
7599         } else if (dev) {
7600                 printk("%s%s%s: %pV",
7601                        level, netdev_name(dev), netdev_reg_state(dev), vaf);
7602         } else {
7603                 printk("%s(NULL net_device): %pV", level, vaf);
7604         }
7605 }
7606
7607 void netdev_printk(const char *level, const struct net_device *dev,
7608                    const char *format, ...)
7609 {
7610         struct va_format vaf;
7611         va_list args;
7612
7613         va_start(args, format);
7614
7615         vaf.fmt = format;
7616         vaf.va = &args;
7617
7618         __netdev_printk(level, dev, &vaf);
7619
7620         va_end(args);
7621 }
7622 EXPORT_SYMBOL(netdev_printk);
7623
7624 #define define_netdev_printk_level(func, level)                 \
7625 void func(const struct net_device *dev, const char *fmt, ...)   \
7626 {                                                               \
7627         struct va_format vaf;                                   \
7628         va_list args;                                           \
7629                                                                 \
7630         va_start(args, fmt);                                    \
7631                                                                 \
7632         vaf.fmt = fmt;                                          \
7633         vaf.va = &args;                                         \
7634                                                                 \
7635         __netdev_printk(level, dev, &vaf);                      \
7636                                                                 \
7637         va_end(args);                                           \
7638 }                                                               \
7639 EXPORT_SYMBOL(func);
7640
7641 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
7642 define_netdev_printk_level(netdev_alert, KERN_ALERT);
7643 define_netdev_printk_level(netdev_crit, KERN_CRIT);
7644 define_netdev_printk_level(netdev_err, KERN_ERR);
7645 define_netdev_printk_level(netdev_warn, KERN_WARNING);
7646 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
7647 define_netdev_printk_level(netdev_info, KERN_INFO);
7648
7649 static void __net_exit netdev_exit(struct net *net)
7650 {
7651         kfree(net->dev_name_head);
7652         kfree(net->dev_index_head);
7653 }
7654
7655 static struct pernet_operations __net_initdata netdev_net_ops = {
7656         .init = netdev_init,
7657         .exit = netdev_exit,
7658 };
7659
7660 static void __net_exit default_device_exit(struct net *net)
7661 {
7662         struct net_device *dev, *aux;
7663         /*
7664          * Push all migratable network devices back to the
7665          * initial network namespace
7666          */
7667         rtnl_lock();
7668         for_each_netdev_safe(net, dev, aux) {
7669                 int err;
7670                 char fb_name[IFNAMSIZ];
7671
7672                 /* Ignore unmoveable devices (i.e. loopback) */
7673                 if (dev->features & NETIF_F_NETNS_LOCAL)
7674                         continue;
7675
7676                 /* Leave virtual devices for the generic cleanup */
7677                 if (dev->rtnl_link_ops)
7678                         continue;
7679
7680                 /* Push remaining network devices to init_net */
7681                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
7682                 err = dev_change_net_namespace(dev, &init_net, fb_name);
7683                 if (err) {
7684                         pr_emerg("%s: failed to move %s to init_net: %d\n",
7685                                  __func__, dev->name, err);
7686                         BUG();
7687                 }
7688         }
7689         rtnl_unlock();
7690 }
7691
7692 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
7693 {
7694         /* Return with the rtnl_lock held when there are no network
7695          * devices unregistering in any network namespace in net_list.
7696          */
7697         struct net *net;
7698         bool unregistering;
7699         DEFINE_WAIT_FUNC(wait, woken_wake_function);
7700
7701         add_wait_queue(&netdev_unregistering_wq, &wait);
7702         for (;;) {
7703                 unregistering = false;
7704                 rtnl_lock();
7705                 list_for_each_entry(net, net_list, exit_list) {
7706                         if (net->dev_unreg_count > 0) {
7707                                 unregistering = true;
7708                                 break;
7709                         }
7710                 }
7711                 if (!unregistering)
7712                         break;
7713                 __rtnl_unlock();
7714
7715                 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
7716         }
7717         remove_wait_queue(&netdev_unregistering_wq, &wait);
7718 }
7719
7720 static void __net_exit default_device_exit_batch(struct list_head *net_list)
7721 {
7722         /* At exit all network devices most be removed from a network
7723          * namespace.  Do this in the reverse order of registration.
7724          * Do this across as many network namespaces as possible to
7725          * improve batching efficiency.
7726          */
7727         struct net_device *dev;
7728         struct net *net;
7729         LIST_HEAD(dev_kill_list);
7730
7731         /* To prevent network device cleanup code from dereferencing
7732          * loopback devices or network devices that have been freed
7733          * wait here for all pending unregistrations to complete,
7734          * before unregistring the loopback device and allowing the
7735          * network namespace be freed.
7736          *
7737          * The netdev todo list containing all network devices
7738          * unregistrations that happen in default_device_exit_batch
7739          * will run in the rtnl_unlock() at the end of
7740          * default_device_exit_batch.
7741          */
7742         rtnl_lock_unregistering(net_list);
7743         list_for_each_entry(net, net_list, exit_list) {
7744                 for_each_netdev_reverse(net, dev) {
7745                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
7746                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
7747                         else
7748                                 unregister_netdevice_queue(dev, &dev_kill_list);
7749                 }
7750         }
7751         unregister_netdevice_many(&dev_kill_list);
7752         rtnl_unlock();
7753 }
7754
7755 static struct pernet_operations __net_initdata default_device_ops = {
7756         .exit = default_device_exit,
7757         .exit_batch = default_device_exit_batch,
7758 };
7759
7760 /*
7761  *      Initialize the DEV module. At boot time this walks the device list and
7762  *      unhooks any devices that fail to initialise (normally hardware not
7763  *      present) and leaves us with a valid list of present and active devices.
7764  *
7765  */
7766
7767 /*
7768  *       This is called single threaded during boot, so no need
7769  *       to take the rtnl semaphore.
7770  */
7771 static int __init net_dev_init(void)
7772 {
7773         int i, rc = -ENOMEM;
7774
7775         BUG_ON(!dev_boot_phase);
7776
7777         if (dev_proc_init())
7778                 goto out;
7779
7780         if (netdev_kobject_init())
7781                 goto out;
7782
7783         INIT_LIST_HEAD(&ptype_all);
7784         for (i = 0; i < PTYPE_HASH_SIZE; i++)
7785                 INIT_LIST_HEAD(&ptype_base[i]);
7786
7787         INIT_LIST_HEAD(&offload_base);
7788
7789         if (register_pernet_subsys(&netdev_net_ops))
7790                 goto out;
7791
7792         /*
7793          *      Initialise the packet receive queues.
7794          */
7795
7796         for_each_possible_cpu(i) {
7797                 struct softnet_data *sd = &per_cpu(softnet_data, i);
7798
7799                 skb_queue_head_init(&sd->input_pkt_queue);
7800                 skb_queue_head_init(&sd->process_queue);
7801                 INIT_LIST_HEAD(&sd->poll_list);
7802                 sd->output_queue_tailp = &sd->output_queue;
7803 #ifdef CONFIG_RPS
7804                 sd->csd.func = rps_trigger_softirq;
7805                 sd->csd.info = sd;
7806                 sd->cpu = i;
7807 #endif
7808
7809                 sd->backlog.poll = process_backlog;
7810                 sd->backlog.weight = weight_p;
7811         }
7812
7813         dev_boot_phase = 0;
7814
7815         /* The loopback device is special if any other network devices
7816          * is present in a network namespace the loopback device must
7817          * be present. Since we now dynamically allocate and free the
7818          * loopback device ensure this invariant is maintained by
7819          * keeping the loopback device as the first device on the
7820          * list of network devices.  Ensuring the loopback devices
7821          * is the first device that appears and the last network device
7822          * that disappears.
7823          */
7824         if (register_pernet_device(&loopback_net_ops))
7825                 goto out;
7826
7827         if (register_pernet_device(&default_device_ops))
7828                 goto out;
7829
7830         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
7831         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
7832
7833         hotcpu_notifier(dev_cpu_callback, 0);
7834         dst_subsys_init();
7835         rc = 0;
7836 out:
7837         return rc;
7838 }
7839
7840 subsys_initcall(net_dev_init);