d200a7ccbde69304160543ddcd8300df723ab601
[firefly-linux-kernel-4.4.55.git] / net / core / dev.c
1 /*
2  *      NET3    Protocol independent device support routines.
3  *
4  *              This program is free software; you can redistribute it and/or
5  *              modify it under the terms of the GNU General Public License
6  *              as published by the Free Software Foundation; either version
7  *              2 of the License, or (at your option) any later version.
8  *
9  *      Derived from the non IP parts of dev.c 1.0.19
10  *              Authors:        Ross Biro
11  *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *      Additional Authors:
15  *              Florian la Roche <rzsfl@rz.uni-sb.de>
16  *              Alan Cox <gw4pts@gw4pts.ampr.org>
17  *              David Hinds <dahinds@users.sourceforge.net>
18  *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *              Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *      Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *                                      to 2 if register_netdev gets called
25  *                                      before net_dev_init & also removed a
26  *                                      few lines of code in the process.
27  *              Alan Cox        :       device private ioctl copies fields back.
28  *              Alan Cox        :       Transmit queue code does relevant
29  *                                      stunts to keep the queue safe.
30  *              Alan Cox        :       Fixed double lock.
31  *              Alan Cox        :       Fixed promisc NULL pointer trap
32  *              ????????        :       Support the full private ioctl range
33  *              Alan Cox        :       Moved ioctl permission check into
34  *                                      drivers
35  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
36  *              Alan Cox        :       100 backlog just doesn't cut it when
37  *                                      you start doing multicast video 8)
38  *              Alan Cox        :       Rewrote net_bh and list manager.
39  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
40  *              Alan Cox        :       Took out transmit every packet pass
41  *                                      Saved a few bytes in the ioctl handler
42  *              Alan Cox        :       Network driver sets packet type before
43  *                                      calling netif_rx. Saves a function
44  *                                      call a packet.
45  *              Alan Cox        :       Hashed net_bh()
46  *              Richard Kooijman:       Timestamp fixes.
47  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
48  *              Alan Cox        :       Device lock protection.
49  *              Alan Cox        :       Fixed nasty side effect of device close
50  *                                      changes.
51  *              Rudi Cilibrasi  :       Pass the right thing to
52  *                                      set_mac_address()
53  *              Dave Miller     :       32bit quantity for the device lock to
54  *                                      make it work out on a Sparc.
55  *              Bjorn Ekwall    :       Added KERNELD hack.
56  *              Alan Cox        :       Cleaned up the backlog initialise.
57  *              Craig Metz      :       SIOCGIFCONF fix if space for under
58  *                                      1 device.
59  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
60  *                                      is no device open function.
61  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
62  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
63  *              Cyrus Durgin    :       Cleaned for KMOD
64  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
65  *                                      A network device unload needs to purge
66  *                                      the backlog queue.
67  *      Paul Rusty Russell      :       SIOCSIFNAME
68  *              Pekka Riikonen  :       Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *                                      indefinitely on dev->refcnt
71  *              J Hadi Salim    :       - Backlog queue sampling
72  *                                      - netif_rx() feedback
73  */
74
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/stat.h>
101 #include <net/dst.h>
102 #include <net/dst_metadata.h>
103 #include <net/pkt_sched.h>
104 #include <net/checksum.h>
105 #include <net/xfrm.h>
106 #include <linux/highmem.h>
107 #include <linux/init.h>
108 #include <linux/module.h>
109 #include <linux/netpoll.h>
110 #include <linux/rcupdate.h>
111 #include <linux/delay.h>
112 #include <net/iw_handler.h>
113 #include <asm/current.h>
114 #include <linux/audit.h>
115 #include <linux/dmaengine.h>
116 #include <linux/err.h>
117 #include <linux/ctype.h>
118 #include <linux/if_arp.h>
119 #include <linux/if_vlan.h>
120 #include <linux/ip.h>
121 #include <net/ip.h>
122 #include <net/mpls.h>
123 #include <linux/ipv6.h>
124 #include <linux/in.h>
125 #include <linux/jhash.h>
126 #include <linux/random.h>
127 #include <trace/events/napi.h>
128 #include <trace/events/net.h>
129 #include <trace/events/skb.h>
130 #include <linux/pci.h>
131 #include <linux/inetdevice.h>
132 #include <linux/cpu_rmap.h>
133 #include <linux/static_key.h>
134 #include <linux/hashtable.h>
135 #include <linux/vmalloc.h>
136 #include <linux/if_macvlan.h>
137 #include <linux/errqueue.h>
138 #include <linux/hrtimer.h>
139 #include <linux/netfilter_ingress.h>
140
141 #include "net-sysfs.h"
142
143 /* Instead of increasing this, you should create a hash table. */
144 #define MAX_GRO_SKBS 8
145
146 /* This should be increased if a protocol with a bigger head is added. */
147 #define GRO_MAX_HEAD (MAX_HEADER + 128)
148
149 static DEFINE_SPINLOCK(ptype_lock);
150 static DEFINE_SPINLOCK(offload_lock);
151 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
152 struct list_head ptype_all __read_mostly;       /* Taps */
153 static struct list_head offload_base __read_mostly;
154
155 static int netif_rx_internal(struct sk_buff *skb);
156 static int call_netdevice_notifiers_info(unsigned long val,
157                                          struct net_device *dev,
158                                          struct netdev_notifier_info *info);
159
160 /*
161  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
162  * semaphore.
163  *
164  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
165  *
166  * Writers must hold the rtnl semaphore while they loop through the
167  * dev_base_head list, and hold dev_base_lock for writing when they do the
168  * actual updates.  This allows pure readers to access the list even
169  * while a writer is preparing to update it.
170  *
171  * To put it another way, dev_base_lock is held for writing only to
172  * protect against pure readers; the rtnl semaphore provides the
173  * protection against other writers.
174  *
175  * See, for example usages, register_netdevice() and
176  * unregister_netdevice(), which must be called with the rtnl
177  * semaphore held.
178  */
179 DEFINE_RWLOCK(dev_base_lock);
180 EXPORT_SYMBOL(dev_base_lock);
181
182 /* protects napi_hash addition/deletion and napi_gen_id */
183 static DEFINE_SPINLOCK(napi_hash_lock);
184
185 static unsigned int napi_gen_id;
186 static DEFINE_HASHTABLE(napi_hash, 8);
187
188 static seqcount_t devnet_rename_seq;
189
190 static inline void dev_base_seq_inc(struct net *net)
191 {
192         while (++net->dev_base_seq == 0);
193 }
194
195 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
196 {
197         unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
198
199         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
200 }
201
202 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
203 {
204         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
205 }
206
207 static inline void rps_lock(struct softnet_data *sd)
208 {
209 #ifdef CONFIG_RPS
210         spin_lock(&sd->input_pkt_queue.lock);
211 #endif
212 }
213
214 static inline void rps_unlock(struct softnet_data *sd)
215 {
216 #ifdef CONFIG_RPS
217         spin_unlock(&sd->input_pkt_queue.lock);
218 #endif
219 }
220
221 /* Device list insertion */
222 static void list_netdevice(struct net_device *dev)
223 {
224         struct net *net = dev_net(dev);
225
226         ASSERT_RTNL();
227
228         write_lock_bh(&dev_base_lock);
229         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
230         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
231         hlist_add_head_rcu(&dev->index_hlist,
232                            dev_index_hash(net, dev->ifindex));
233         write_unlock_bh(&dev_base_lock);
234
235         dev_base_seq_inc(net);
236 }
237
238 /* Device list removal
239  * caller must respect a RCU grace period before freeing/reusing dev
240  */
241 static void unlist_netdevice(struct net_device *dev)
242 {
243         ASSERT_RTNL();
244
245         /* Unlink dev from the device chain */
246         write_lock_bh(&dev_base_lock);
247         list_del_rcu(&dev->dev_list);
248         hlist_del_rcu(&dev->name_hlist);
249         hlist_del_rcu(&dev->index_hlist);
250         write_unlock_bh(&dev_base_lock);
251
252         dev_base_seq_inc(dev_net(dev));
253 }
254
255 /*
256  *      Our notifier list
257  */
258
259 static RAW_NOTIFIER_HEAD(netdev_chain);
260
261 /*
262  *      Device drivers call our routines to queue packets here. We empty the
263  *      queue in the local softnet handler.
264  */
265
266 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
267 EXPORT_PER_CPU_SYMBOL(softnet_data);
268
269 #ifdef CONFIG_LOCKDEP
270 /*
271  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
272  * according to dev->type
273  */
274 static const unsigned short netdev_lock_type[] =
275         {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
276          ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
277          ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
278          ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
279          ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
280          ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
281          ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
282          ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
283          ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
284          ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
285          ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
286          ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
287          ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
288          ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
289          ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
290
291 static const char *const netdev_lock_name[] =
292         {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
293          "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
294          "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
295          "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
296          "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
297          "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
298          "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
299          "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
300          "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
301          "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
302          "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
303          "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
304          "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
305          "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
306          "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
307
308 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
309 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
310
311 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
312 {
313         int i;
314
315         for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
316                 if (netdev_lock_type[i] == dev_type)
317                         return i;
318         /* the last key is used by default */
319         return ARRAY_SIZE(netdev_lock_type) - 1;
320 }
321
322 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
323                                                  unsigned short dev_type)
324 {
325         int i;
326
327         i = netdev_lock_pos(dev_type);
328         lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
329                                    netdev_lock_name[i]);
330 }
331
332 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
333 {
334         int i;
335
336         i = netdev_lock_pos(dev->type);
337         lockdep_set_class_and_name(&dev->addr_list_lock,
338                                    &netdev_addr_lock_key[i],
339                                    netdev_lock_name[i]);
340 }
341 #else
342 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
343                                                  unsigned short dev_type)
344 {
345 }
346 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
347 {
348 }
349 #endif
350
351 /*******************************************************************************
352
353                 Protocol management and registration routines
354
355 *******************************************************************************/
356
357 /*
358  *      Add a protocol ID to the list. Now that the input handler is
359  *      smarter we can dispense with all the messy stuff that used to be
360  *      here.
361  *
362  *      BEWARE!!! Protocol handlers, mangling input packets,
363  *      MUST BE last in hash buckets and checking protocol handlers
364  *      MUST start from promiscuous ptype_all chain in net_bh.
365  *      It is true now, do not change it.
366  *      Explanation follows: if protocol handler, mangling packet, will
367  *      be the first on list, it is not able to sense, that packet
368  *      is cloned and should be copied-on-write, so that it will
369  *      change it and subsequent readers will get broken packet.
370  *                                                      --ANK (980803)
371  */
372
373 static inline struct list_head *ptype_head(const struct packet_type *pt)
374 {
375         if (pt->type == htons(ETH_P_ALL))
376                 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
377         else
378                 return pt->dev ? &pt->dev->ptype_specific :
379                                  &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
380 }
381
382 /**
383  *      dev_add_pack - add packet handler
384  *      @pt: packet type declaration
385  *
386  *      Add a protocol handler to the networking stack. The passed &packet_type
387  *      is linked into kernel lists and may not be freed until it has been
388  *      removed from the kernel lists.
389  *
390  *      This call does not sleep therefore it can not
391  *      guarantee all CPU's that are in middle of receiving packets
392  *      will see the new packet type (until the next received packet).
393  */
394
395 void dev_add_pack(struct packet_type *pt)
396 {
397         struct list_head *head = ptype_head(pt);
398
399         spin_lock(&ptype_lock);
400         list_add_rcu(&pt->list, head);
401         spin_unlock(&ptype_lock);
402 }
403 EXPORT_SYMBOL(dev_add_pack);
404
405 /**
406  *      __dev_remove_pack        - remove packet handler
407  *      @pt: packet type declaration
408  *
409  *      Remove a protocol handler that was previously added to the kernel
410  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
411  *      from the kernel lists and can be freed or reused once this function
412  *      returns.
413  *
414  *      The packet type might still be in use by receivers
415  *      and must not be freed until after all the CPU's have gone
416  *      through a quiescent state.
417  */
418 void __dev_remove_pack(struct packet_type *pt)
419 {
420         struct list_head *head = ptype_head(pt);
421         struct packet_type *pt1;
422
423         spin_lock(&ptype_lock);
424
425         list_for_each_entry(pt1, head, list) {
426                 if (pt == pt1) {
427                         list_del_rcu(&pt->list);
428                         goto out;
429                 }
430         }
431
432         pr_warn("dev_remove_pack: %p not found\n", pt);
433 out:
434         spin_unlock(&ptype_lock);
435 }
436 EXPORT_SYMBOL(__dev_remove_pack);
437
438 /**
439  *      dev_remove_pack  - remove packet handler
440  *      @pt: packet type declaration
441  *
442  *      Remove a protocol handler that was previously added to the kernel
443  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
444  *      from the kernel lists and can be freed or reused once this function
445  *      returns.
446  *
447  *      This call sleeps to guarantee that no CPU is looking at the packet
448  *      type after return.
449  */
450 void dev_remove_pack(struct packet_type *pt)
451 {
452         __dev_remove_pack(pt);
453
454         synchronize_net();
455 }
456 EXPORT_SYMBOL(dev_remove_pack);
457
458
459 /**
460  *      dev_add_offload - register offload handlers
461  *      @po: protocol offload declaration
462  *
463  *      Add protocol offload handlers to the networking stack. The passed
464  *      &proto_offload is linked into kernel lists and may not be freed until
465  *      it has been removed from the kernel lists.
466  *
467  *      This call does not sleep therefore it can not
468  *      guarantee all CPU's that are in middle of receiving packets
469  *      will see the new offload handlers (until the next received packet).
470  */
471 void dev_add_offload(struct packet_offload *po)
472 {
473         struct packet_offload *elem;
474
475         spin_lock(&offload_lock);
476         list_for_each_entry(elem, &offload_base, list) {
477                 if (po->priority < elem->priority)
478                         break;
479         }
480         list_add_rcu(&po->list, elem->list.prev);
481         spin_unlock(&offload_lock);
482 }
483 EXPORT_SYMBOL(dev_add_offload);
484
485 /**
486  *      __dev_remove_offload     - remove offload handler
487  *      @po: packet offload declaration
488  *
489  *      Remove a protocol offload handler that was previously added to the
490  *      kernel offload handlers by dev_add_offload(). The passed &offload_type
491  *      is removed from the kernel lists and can be freed or reused once this
492  *      function returns.
493  *
494  *      The packet type might still be in use by receivers
495  *      and must not be freed until after all the CPU's have gone
496  *      through a quiescent state.
497  */
498 static void __dev_remove_offload(struct packet_offload *po)
499 {
500         struct list_head *head = &offload_base;
501         struct packet_offload *po1;
502
503         spin_lock(&offload_lock);
504
505         list_for_each_entry(po1, head, list) {
506                 if (po == po1) {
507                         list_del_rcu(&po->list);
508                         goto out;
509                 }
510         }
511
512         pr_warn("dev_remove_offload: %p not found\n", po);
513 out:
514         spin_unlock(&offload_lock);
515 }
516
517 /**
518  *      dev_remove_offload       - remove packet offload handler
519  *      @po: packet offload declaration
520  *
521  *      Remove a packet offload handler that was previously added to the kernel
522  *      offload handlers by dev_add_offload(). The passed &offload_type is
523  *      removed from the kernel lists and can be freed or reused once this
524  *      function returns.
525  *
526  *      This call sleeps to guarantee that no CPU is looking at the packet
527  *      type after return.
528  */
529 void dev_remove_offload(struct packet_offload *po)
530 {
531         __dev_remove_offload(po);
532
533         synchronize_net();
534 }
535 EXPORT_SYMBOL(dev_remove_offload);
536
537 /******************************************************************************
538
539                       Device Boot-time Settings Routines
540
541 *******************************************************************************/
542
543 /* Boot time configuration table */
544 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
545
546 /**
547  *      netdev_boot_setup_add   - add new setup entry
548  *      @name: name of the device
549  *      @map: configured settings for the device
550  *
551  *      Adds new setup entry to the dev_boot_setup list.  The function
552  *      returns 0 on error and 1 on success.  This is a generic routine to
553  *      all netdevices.
554  */
555 static int netdev_boot_setup_add(char *name, struct ifmap *map)
556 {
557         struct netdev_boot_setup *s;
558         int i;
559
560         s = dev_boot_setup;
561         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
562                 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
563                         memset(s[i].name, 0, sizeof(s[i].name));
564                         strlcpy(s[i].name, name, IFNAMSIZ);
565                         memcpy(&s[i].map, map, sizeof(s[i].map));
566                         break;
567                 }
568         }
569
570         return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
571 }
572
573 /**
574  *      netdev_boot_setup_check - check boot time settings
575  *      @dev: the netdevice
576  *
577  *      Check boot time settings for the device.
578  *      The found settings are set for the device to be used
579  *      later in the device probing.
580  *      Returns 0 if no settings found, 1 if they are.
581  */
582 int netdev_boot_setup_check(struct net_device *dev)
583 {
584         struct netdev_boot_setup *s = dev_boot_setup;
585         int i;
586
587         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
588                 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
589                     !strcmp(dev->name, s[i].name)) {
590                         dev->irq        = s[i].map.irq;
591                         dev->base_addr  = s[i].map.base_addr;
592                         dev->mem_start  = s[i].map.mem_start;
593                         dev->mem_end    = s[i].map.mem_end;
594                         return 1;
595                 }
596         }
597         return 0;
598 }
599 EXPORT_SYMBOL(netdev_boot_setup_check);
600
601
602 /**
603  *      netdev_boot_base        - get address from boot time settings
604  *      @prefix: prefix for network device
605  *      @unit: id for network device
606  *
607  *      Check boot time settings for the base address of device.
608  *      The found settings are set for the device to be used
609  *      later in the device probing.
610  *      Returns 0 if no settings found.
611  */
612 unsigned long netdev_boot_base(const char *prefix, int unit)
613 {
614         const struct netdev_boot_setup *s = dev_boot_setup;
615         char name[IFNAMSIZ];
616         int i;
617
618         sprintf(name, "%s%d", prefix, unit);
619
620         /*
621          * If device already registered then return base of 1
622          * to indicate not to probe for this interface
623          */
624         if (__dev_get_by_name(&init_net, name))
625                 return 1;
626
627         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
628                 if (!strcmp(name, s[i].name))
629                         return s[i].map.base_addr;
630         return 0;
631 }
632
633 /*
634  * Saves at boot time configured settings for any netdevice.
635  */
636 int __init netdev_boot_setup(char *str)
637 {
638         int ints[5];
639         struct ifmap map;
640
641         str = get_options(str, ARRAY_SIZE(ints), ints);
642         if (!str || !*str)
643                 return 0;
644
645         /* Save settings */
646         memset(&map, 0, sizeof(map));
647         if (ints[0] > 0)
648                 map.irq = ints[1];
649         if (ints[0] > 1)
650                 map.base_addr = ints[2];
651         if (ints[0] > 2)
652                 map.mem_start = ints[3];
653         if (ints[0] > 3)
654                 map.mem_end = ints[4];
655
656         /* Add new entry to the list */
657         return netdev_boot_setup_add(str, &map);
658 }
659
660 __setup("netdev=", netdev_boot_setup);
661
662 /*******************************************************************************
663
664                             Device Interface Subroutines
665
666 *******************************************************************************/
667
668 /**
669  *      dev_get_iflink  - get 'iflink' value of a interface
670  *      @dev: targeted interface
671  *
672  *      Indicates the ifindex the interface is linked to.
673  *      Physical interfaces have the same 'ifindex' and 'iflink' values.
674  */
675
676 int dev_get_iflink(const struct net_device *dev)
677 {
678         if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
679                 return dev->netdev_ops->ndo_get_iflink(dev);
680
681         return dev->ifindex;
682 }
683 EXPORT_SYMBOL(dev_get_iflink);
684
685 /**
686  *      dev_fill_metadata_dst - Retrieve tunnel egress information.
687  *      @dev: targeted interface
688  *      @skb: The packet.
689  *
690  *      For better visibility of tunnel traffic OVS needs to retrieve
691  *      egress tunnel information for a packet. Following API allows
692  *      user to get this info.
693  */
694 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
695 {
696         struct ip_tunnel_info *info;
697
698         if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
699                 return -EINVAL;
700
701         info = skb_tunnel_info_unclone(skb);
702         if (!info)
703                 return -ENOMEM;
704         if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
705                 return -EINVAL;
706
707         return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
708 }
709 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
710
711 /**
712  *      __dev_get_by_name       - find a device by its name
713  *      @net: the applicable net namespace
714  *      @name: name to find
715  *
716  *      Find an interface by name. Must be called under RTNL semaphore
717  *      or @dev_base_lock. If the name is found a pointer to the device
718  *      is returned. If the name is not found then %NULL is returned. The
719  *      reference counters are not incremented so the caller must be
720  *      careful with locks.
721  */
722
723 struct net_device *__dev_get_by_name(struct net *net, const char *name)
724 {
725         struct net_device *dev;
726         struct hlist_head *head = dev_name_hash(net, name);
727
728         hlist_for_each_entry(dev, head, name_hlist)
729                 if (!strncmp(dev->name, name, IFNAMSIZ))
730                         return dev;
731
732         return NULL;
733 }
734 EXPORT_SYMBOL(__dev_get_by_name);
735
736 /**
737  *      dev_get_by_name_rcu     - find a device by its name
738  *      @net: the applicable net namespace
739  *      @name: name to find
740  *
741  *      Find an interface by name.
742  *      If the name is found a pointer to the device is returned.
743  *      If the name is not found then %NULL is returned.
744  *      The reference counters are not incremented so the caller must be
745  *      careful with locks. The caller must hold RCU lock.
746  */
747
748 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
749 {
750         struct net_device *dev;
751         struct hlist_head *head = dev_name_hash(net, name);
752
753         hlist_for_each_entry_rcu(dev, head, name_hlist)
754                 if (!strncmp(dev->name, name, IFNAMSIZ))
755                         return dev;
756
757         return NULL;
758 }
759 EXPORT_SYMBOL(dev_get_by_name_rcu);
760
761 /**
762  *      dev_get_by_name         - find a device by its name
763  *      @net: the applicable net namespace
764  *      @name: name to find
765  *
766  *      Find an interface by name. This can be called from any
767  *      context and does its own locking. The returned handle has
768  *      the usage count incremented and the caller must use dev_put() to
769  *      release it when it is no longer needed. %NULL is returned if no
770  *      matching device is found.
771  */
772
773 struct net_device *dev_get_by_name(struct net *net, const char *name)
774 {
775         struct net_device *dev;
776
777         rcu_read_lock();
778         dev = dev_get_by_name_rcu(net, name);
779         if (dev)
780                 dev_hold(dev);
781         rcu_read_unlock();
782         return dev;
783 }
784 EXPORT_SYMBOL(dev_get_by_name);
785
786 /**
787  *      __dev_get_by_index - find a device by its ifindex
788  *      @net: the applicable net namespace
789  *      @ifindex: index of device
790  *
791  *      Search for an interface by index. Returns %NULL if the device
792  *      is not found or a pointer to the device. The device has not
793  *      had its reference counter increased so the caller must be careful
794  *      about locking. The caller must hold either the RTNL semaphore
795  *      or @dev_base_lock.
796  */
797
798 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
799 {
800         struct net_device *dev;
801         struct hlist_head *head = dev_index_hash(net, ifindex);
802
803         hlist_for_each_entry(dev, head, index_hlist)
804                 if (dev->ifindex == ifindex)
805                         return dev;
806
807         return NULL;
808 }
809 EXPORT_SYMBOL(__dev_get_by_index);
810
811 /**
812  *      dev_get_by_index_rcu - find a device by its ifindex
813  *      @net: the applicable net namespace
814  *      @ifindex: index of device
815  *
816  *      Search for an interface by index. Returns %NULL if the device
817  *      is not found or a pointer to the device. The device has not
818  *      had its reference counter increased so the caller must be careful
819  *      about locking. The caller must hold RCU lock.
820  */
821
822 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
823 {
824         struct net_device *dev;
825         struct hlist_head *head = dev_index_hash(net, ifindex);
826
827         hlist_for_each_entry_rcu(dev, head, index_hlist)
828                 if (dev->ifindex == ifindex)
829                         return dev;
830
831         return NULL;
832 }
833 EXPORT_SYMBOL(dev_get_by_index_rcu);
834
835
836 /**
837  *      dev_get_by_index - find a device by its ifindex
838  *      @net: the applicable net namespace
839  *      @ifindex: index of device
840  *
841  *      Search for an interface by index. Returns NULL if the device
842  *      is not found or a pointer to the device. The device returned has
843  *      had a reference added and the pointer is safe until the user calls
844  *      dev_put to indicate they have finished with it.
845  */
846
847 struct net_device *dev_get_by_index(struct net *net, int ifindex)
848 {
849         struct net_device *dev;
850
851         rcu_read_lock();
852         dev = dev_get_by_index_rcu(net, ifindex);
853         if (dev)
854                 dev_hold(dev);
855         rcu_read_unlock();
856         return dev;
857 }
858 EXPORT_SYMBOL(dev_get_by_index);
859
860 /**
861  *      netdev_get_name - get a netdevice name, knowing its ifindex.
862  *      @net: network namespace
863  *      @name: a pointer to the buffer where the name will be stored.
864  *      @ifindex: the ifindex of the interface to get the name from.
865  *
866  *      The use of raw_seqcount_begin() and cond_resched() before
867  *      retrying is required as we want to give the writers a chance
868  *      to complete when CONFIG_PREEMPT is not set.
869  */
870 int netdev_get_name(struct net *net, char *name, int ifindex)
871 {
872         struct net_device *dev;
873         unsigned int seq;
874
875 retry:
876         seq = raw_seqcount_begin(&devnet_rename_seq);
877         rcu_read_lock();
878         dev = dev_get_by_index_rcu(net, ifindex);
879         if (!dev) {
880                 rcu_read_unlock();
881                 return -ENODEV;
882         }
883
884         strcpy(name, dev->name);
885         rcu_read_unlock();
886         if (read_seqcount_retry(&devnet_rename_seq, seq)) {
887                 cond_resched();
888                 goto retry;
889         }
890
891         return 0;
892 }
893
894 /**
895  *      dev_getbyhwaddr_rcu - find a device by its hardware address
896  *      @net: the applicable net namespace
897  *      @type: media type of device
898  *      @ha: hardware address
899  *
900  *      Search for an interface by MAC address. Returns NULL if the device
901  *      is not found or a pointer to the device.
902  *      The caller must hold RCU or RTNL.
903  *      The returned device has not had its ref count increased
904  *      and the caller must therefore be careful about locking
905  *
906  */
907
908 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
909                                        const char *ha)
910 {
911         struct net_device *dev;
912
913         for_each_netdev_rcu(net, dev)
914                 if (dev->type == type &&
915                     !memcmp(dev->dev_addr, ha, dev->addr_len))
916                         return dev;
917
918         return NULL;
919 }
920 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
921
922 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
923 {
924         struct net_device *dev;
925
926         ASSERT_RTNL();
927         for_each_netdev(net, dev)
928                 if (dev->type == type)
929                         return dev;
930
931         return NULL;
932 }
933 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
934
935 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
936 {
937         struct net_device *dev, *ret = NULL;
938
939         rcu_read_lock();
940         for_each_netdev_rcu(net, dev)
941                 if (dev->type == type) {
942                         dev_hold(dev);
943                         ret = dev;
944                         break;
945                 }
946         rcu_read_unlock();
947         return ret;
948 }
949 EXPORT_SYMBOL(dev_getfirstbyhwtype);
950
951 /**
952  *      __dev_get_by_flags - find any device with given flags
953  *      @net: the applicable net namespace
954  *      @if_flags: IFF_* values
955  *      @mask: bitmask of bits in if_flags to check
956  *
957  *      Search for any interface with the given flags. Returns NULL if a device
958  *      is not found or a pointer to the device. Must be called inside
959  *      rtnl_lock(), and result refcount is unchanged.
960  */
961
962 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
963                                       unsigned short mask)
964 {
965         struct net_device *dev, *ret;
966
967         ASSERT_RTNL();
968
969         ret = NULL;
970         for_each_netdev(net, dev) {
971                 if (((dev->flags ^ if_flags) & mask) == 0) {
972                         ret = dev;
973                         break;
974                 }
975         }
976         return ret;
977 }
978 EXPORT_SYMBOL(__dev_get_by_flags);
979
980 /**
981  *      dev_valid_name - check if name is okay for network device
982  *      @name: name string
983  *
984  *      Network device names need to be valid file names to
985  *      to allow sysfs to work.  We also disallow any kind of
986  *      whitespace.
987  */
988 bool dev_valid_name(const char *name)
989 {
990         if (*name == '\0')
991                 return false;
992         if (strlen(name) >= IFNAMSIZ)
993                 return false;
994         if (!strcmp(name, ".") || !strcmp(name, ".."))
995                 return false;
996
997         while (*name) {
998                 if (*name == '/' || *name == ':' || isspace(*name))
999                         return false;
1000                 name++;
1001         }
1002         return true;
1003 }
1004 EXPORT_SYMBOL(dev_valid_name);
1005
1006 /**
1007  *      __dev_alloc_name - allocate a name for a device
1008  *      @net: network namespace to allocate the device name in
1009  *      @name: name format string
1010  *      @buf:  scratch buffer and result name string
1011  *
1012  *      Passed a format string - eg "lt%d" it will try and find a suitable
1013  *      id. It scans list of devices to build up a free map, then chooses
1014  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1015  *      while allocating the name and adding the device in order to avoid
1016  *      duplicates.
1017  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1018  *      Returns the number of the unit assigned or a negative errno code.
1019  */
1020
1021 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1022 {
1023         int i = 0;
1024         const char *p;
1025         const int max_netdevices = 8*PAGE_SIZE;
1026         unsigned long *inuse;
1027         struct net_device *d;
1028
1029         p = strnchr(name, IFNAMSIZ-1, '%');
1030         if (p) {
1031                 /*
1032                  * Verify the string as this thing may have come from
1033                  * the user.  There must be either one "%d" and no other "%"
1034                  * characters.
1035                  */
1036                 if (p[1] != 'd' || strchr(p + 2, '%'))
1037                         return -EINVAL;
1038
1039                 /* Use one page as a bit array of possible slots */
1040                 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1041                 if (!inuse)
1042                         return -ENOMEM;
1043
1044                 for_each_netdev(net, d) {
1045                         if (!sscanf(d->name, name, &i))
1046                                 continue;
1047                         if (i < 0 || i >= max_netdevices)
1048                                 continue;
1049
1050                         /*  avoid cases where sscanf is not exact inverse of printf */
1051                         snprintf(buf, IFNAMSIZ, name, i);
1052                         if (!strncmp(buf, d->name, IFNAMSIZ))
1053                                 set_bit(i, inuse);
1054                 }
1055
1056                 i = find_first_zero_bit(inuse, max_netdevices);
1057                 free_page((unsigned long) inuse);
1058         }
1059
1060         if (buf != name)
1061                 snprintf(buf, IFNAMSIZ, name, i);
1062         if (!__dev_get_by_name(net, buf))
1063                 return i;
1064
1065         /* It is possible to run out of possible slots
1066          * when the name is long and there isn't enough space left
1067          * for the digits, or if all bits are used.
1068          */
1069         return -ENFILE;
1070 }
1071
1072 /**
1073  *      dev_alloc_name - allocate a name for a device
1074  *      @dev: device
1075  *      @name: name format string
1076  *
1077  *      Passed a format string - eg "lt%d" it will try and find a suitable
1078  *      id. It scans list of devices to build up a free map, then chooses
1079  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1080  *      while allocating the name and adding the device in order to avoid
1081  *      duplicates.
1082  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1083  *      Returns the number of the unit assigned or a negative errno code.
1084  */
1085
1086 int dev_alloc_name(struct net_device *dev, const char *name)
1087 {
1088         char buf[IFNAMSIZ];
1089         struct net *net;
1090         int ret;
1091
1092         BUG_ON(!dev_net(dev));
1093         net = dev_net(dev);
1094         ret = __dev_alloc_name(net, name, buf);
1095         if (ret >= 0)
1096                 strlcpy(dev->name, buf, IFNAMSIZ);
1097         return ret;
1098 }
1099 EXPORT_SYMBOL(dev_alloc_name);
1100
1101 static int dev_alloc_name_ns(struct net *net,
1102                              struct net_device *dev,
1103                              const char *name)
1104 {
1105         char buf[IFNAMSIZ];
1106         int ret;
1107
1108         ret = __dev_alloc_name(net, name, buf);
1109         if (ret >= 0)
1110                 strlcpy(dev->name, buf, IFNAMSIZ);
1111         return ret;
1112 }
1113
1114 static int dev_get_valid_name(struct net *net,
1115                               struct net_device *dev,
1116                               const char *name)
1117 {
1118         BUG_ON(!net);
1119
1120         if (!dev_valid_name(name))
1121                 return -EINVAL;
1122
1123         if (strchr(name, '%'))
1124                 return dev_alloc_name_ns(net, dev, name);
1125         else if (__dev_get_by_name(net, name))
1126                 return -EEXIST;
1127         else if (dev->name != name)
1128                 strlcpy(dev->name, name, IFNAMSIZ);
1129
1130         return 0;
1131 }
1132
1133 /**
1134  *      dev_change_name - change name of a device
1135  *      @dev: device
1136  *      @newname: name (or format string) must be at least IFNAMSIZ
1137  *
1138  *      Change name of a device, can pass format strings "eth%d".
1139  *      for wildcarding.
1140  */
1141 int dev_change_name(struct net_device *dev, const char *newname)
1142 {
1143         unsigned char old_assign_type;
1144         char oldname[IFNAMSIZ];
1145         int err = 0;
1146         int ret;
1147         struct net *net;
1148
1149         ASSERT_RTNL();
1150         BUG_ON(!dev_net(dev));
1151
1152         net = dev_net(dev);
1153         if (dev->flags & IFF_UP)
1154                 return -EBUSY;
1155
1156         write_seqcount_begin(&devnet_rename_seq);
1157
1158         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1159                 write_seqcount_end(&devnet_rename_seq);
1160                 return 0;
1161         }
1162
1163         memcpy(oldname, dev->name, IFNAMSIZ);
1164
1165         err = dev_get_valid_name(net, dev, newname);
1166         if (err < 0) {
1167                 write_seqcount_end(&devnet_rename_seq);
1168                 return err;
1169         }
1170
1171         if (oldname[0] && !strchr(oldname, '%'))
1172                 netdev_info(dev, "renamed from %s\n", oldname);
1173
1174         old_assign_type = dev->name_assign_type;
1175         dev->name_assign_type = NET_NAME_RENAMED;
1176
1177 rollback:
1178         ret = device_rename(&dev->dev, dev->name);
1179         if (ret) {
1180                 memcpy(dev->name, oldname, IFNAMSIZ);
1181                 dev->name_assign_type = old_assign_type;
1182                 write_seqcount_end(&devnet_rename_seq);
1183                 return ret;
1184         }
1185
1186         write_seqcount_end(&devnet_rename_seq);
1187
1188         netdev_adjacent_rename_links(dev, oldname);
1189
1190         write_lock_bh(&dev_base_lock);
1191         hlist_del_rcu(&dev->name_hlist);
1192         write_unlock_bh(&dev_base_lock);
1193
1194         synchronize_rcu();
1195
1196         write_lock_bh(&dev_base_lock);
1197         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1198         write_unlock_bh(&dev_base_lock);
1199
1200         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1201         ret = notifier_to_errno(ret);
1202
1203         if (ret) {
1204                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1205                 if (err >= 0) {
1206                         err = ret;
1207                         write_seqcount_begin(&devnet_rename_seq);
1208                         memcpy(dev->name, oldname, IFNAMSIZ);
1209                         memcpy(oldname, newname, IFNAMSIZ);
1210                         dev->name_assign_type = old_assign_type;
1211                         old_assign_type = NET_NAME_RENAMED;
1212                         goto rollback;
1213                 } else {
1214                         pr_err("%s: name change rollback failed: %d\n",
1215                                dev->name, ret);
1216                 }
1217         }
1218
1219         return err;
1220 }
1221
1222 /**
1223  *      dev_set_alias - change ifalias of a device
1224  *      @dev: device
1225  *      @alias: name up to IFALIASZ
1226  *      @len: limit of bytes to copy from info
1227  *
1228  *      Set ifalias for a device,
1229  */
1230 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1231 {
1232         char *new_ifalias;
1233
1234         ASSERT_RTNL();
1235
1236         if (len >= IFALIASZ)
1237                 return -EINVAL;
1238
1239         if (!len) {
1240                 kfree(dev->ifalias);
1241                 dev->ifalias = NULL;
1242                 return 0;
1243         }
1244
1245         new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1246         if (!new_ifalias)
1247                 return -ENOMEM;
1248         dev->ifalias = new_ifalias;
1249
1250         strlcpy(dev->ifalias, alias, len+1);
1251         return len;
1252 }
1253
1254
1255 /**
1256  *      netdev_features_change - device changes features
1257  *      @dev: device to cause notification
1258  *
1259  *      Called to indicate a device has changed features.
1260  */
1261 void netdev_features_change(struct net_device *dev)
1262 {
1263         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1264 }
1265 EXPORT_SYMBOL(netdev_features_change);
1266
1267 /**
1268  *      netdev_state_change - device changes state
1269  *      @dev: device to cause notification
1270  *
1271  *      Called to indicate a device has changed state. This function calls
1272  *      the notifier chains for netdev_chain and sends a NEWLINK message
1273  *      to the routing socket.
1274  */
1275 void netdev_state_change(struct net_device *dev)
1276 {
1277         if (dev->flags & IFF_UP) {
1278                 struct netdev_notifier_change_info change_info;
1279
1280                 change_info.flags_changed = 0;
1281                 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1282                                               &change_info.info);
1283                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1284         }
1285 }
1286 EXPORT_SYMBOL(netdev_state_change);
1287
1288 /**
1289  *      netdev_notify_peers - notify network peers about existence of @dev
1290  *      @dev: network device
1291  *
1292  * Generate traffic such that interested network peers are aware of
1293  * @dev, such as by generating a gratuitous ARP. This may be used when
1294  * a device wants to inform the rest of the network about some sort of
1295  * reconfiguration such as a failover event or virtual machine
1296  * migration.
1297  */
1298 void netdev_notify_peers(struct net_device *dev)
1299 {
1300         rtnl_lock();
1301         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1302         rtnl_unlock();
1303 }
1304 EXPORT_SYMBOL(netdev_notify_peers);
1305
1306 static int __dev_open(struct net_device *dev)
1307 {
1308         const struct net_device_ops *ops = dev->netdev_ops;
1309         int ret;
1310
1311         ASSERT_RTNL();
1312
1313         if (!netif_device_present(dev))
1314                 return -ENODEV;
1315
1316         /* Block netpoll from trying to do any rx path servicing.
1317          * If we don't do this there is a chance ndo_poll_controller
1318          * or ndo_poll may be running while we open the device
1319          */
1320         netpoll_poll_disable(dev);
1321
1322         ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1323         ret = notifier_to_errno(ret);
1324         if (ret)
1325                 return ret;
1326
1327         set_bit(__LINK_STATE_START, &dev->state);
1328
1329         if (ops->ndo_validate_addr)
1330                 ret = ops->ndo_validate_addr(dev);
1331
1332         if (!ret && ops->ndo_open)
1333                 ret = ops->ndo_open(dev);
1334
1335         netpoll_poll_enable(dev);
1336
1337         if (ret)
1338                 clear_bit(__LINK_STATE_START, &dev->state);
1339         else {
1340                 dev->flags |= IFF_UP;
1341                 dev_set_rx_mode(dev);
1342                 dev_activate(dev);
1343                 add_device_randomness(dev->dev_addr, dev->addr_len);
1344         }
1345
1346         return ret;
1347 }
1348
1349 /**
1350  *      dev_open        - prepare an interface for use.
1351  *      @dev:   device to open
1352  *
1353  *      Takes a device from down to up state. The device's private open
1354  *      function is invoked and then the multicast lists are loaded. Finally
1355  *      the device is moved into the up state and a %NETDEV_UP message is
1356  *      sent to the netdev notifier chain.
1357  *
1358  *      Calling this function on an active interface is a nop. On a failure
1359  *      a negative errno code is returned.
1360  */
1361 int dev_open(struct net_device *dev)
1362 {
1363         int ret;
1364
1365         if (dev->flags & IFF_UP)
1366                 return 0;
1367
1368         ret = __dev_open(dev);
1369         if (ret < 0)
1370                 return ret;
1371
1372         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1373         call_netdevice_notifiers(NETDEV_UP, dev);
1374
1375         return ret;
1376 }
1377 EXPORT_SYMBOL(dev_open);
1378
1379 static int __dev_close_many(struct list_head *head)
1380 {
1381         struct net_device *dev;
1382
1383         ASSERT_RTNL();
1384         might_sleep();
1385
1386         list_for_each_entry(dev, head, close_list) {
1387                 /* Temporarily disable netpoll until the interface is down */
1388                 netpoll_poll_disable(dev);
1389
1390                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1391
1392                 clear_bit(__LINK_STATE_START, &dev->state);
1393
1394                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1395                  * can be even on different cpu. So just clear netif_running().
1396                  *
1397                  * dev->stop() will invoke napi_disable() on all of it's
1398                  * napi_struct instances on this device.
1399                  */
1400                 smp_mb__after_atomic(); /* Commit netif_running(). */
1401         }
1402
1403         dev_deactivate_many(head);
1404
1405         list_for_each_entry(dev, head, close_list) {
1406                 const struct net_device_ops *ops = dev->netdev_ops;
1407
1408                 /*
1409                  *      Call the device specific close. This cannot fail.
1410                  *      Only if device is UP
1411                  *
1412                  *      We allow it to be called even after a DETACH hot-plug
1413                  *      event.
1414                  */
1415                 if (ops->ndo_stop)
1416                         ops->ndo_stop(dev);
1417
1418                 dev->flags &= ~IFF_UP;
1419                 netpoll_poll_enable(dev);
1420         }
1421
1422         return 0;
1423 }
1424
1425 static int __dev_close(struct net_device *dev)
1426 {
1427         int retval;
1428         LIST_HEAD(single);
1429
1430         list_add(&dev->close_list, &single);
1431         retval = __dev_close_many(&single);
1432         list_del(&single);
1433
1434         return retval;
1435 }
1436
1437 int dev_close_many(struct list_head *head, bool unlink)
1438 {
1439         struct net_device *dev, *tmp;
1440
1441         /* Remove the devices that don't need to be closed */
1442         list_for_each_entry_safe(dev, tmp, head, close_list)
1443                 if (!(dev->flags & IFF_UP))
1444                         list_del_init(&dev->close_list);
1445
1446         __dev_close_many(head);
1447
1448         list_for_each_entry_safe(dev, tmp, head, close_list) {
1449                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1450                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1451                 if (unlink)
1452                         list_del_init(&dev->close_list);
1453         }
1454
1455         return 0;
1456 }
1457 EXPORT_SYMBOL(dev_close_many);
1458
1459 /**
1460  *      dev_close - shutdown an interface.
1461  *      @dev: device to shutdown
1462  *
1463  *      This function moves an active device into down state. A
1464  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1465  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1466  *      chain.
1467  */
1468 int dev_close(struct net_device *dev)
1469 {
1470         if (dev->flags & IFF_UP) {
1471                 LIST_HEAD(single);
1472
1473                 list_add(&dev->close_list, &single);
1474                 dev_close_many(&single, true);
1475                 list_del(&single);
1476         }
1477         return 0;
1478 }
1479 EXPORT_SYMBOL(dev_close);
1480
1481
1482 /**
1483  *      dev_disable_lro - disable Large Receive Offload on a device
1484  *      @dev: device
1485  *
1486  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1487  *      called under RTNL.  This is needed if received packets may be
1488  *      forwarded to another interface.
1489  */
1490 void dev_disable_lro(struct net_device *dev)
1491 {
1492         struct net_device *lower_dev;
1493         struct list_head *iter;
1494
1495         dev->wanted_features &= ~NETIF_F_LRO;
1496         netdev_update_features(dev);
1497
1498         if (unlikely(dev->features & NETIF_F_LRO))
1499                 netdev_WARN(dev, "failed to disable LRO!\n");
1500
1501         netdev_for_each_lower_dev(dev, lower_dev, iter)
1502                 dev_disable_lro(lower_dev);
1503 }
1504 EXPORT_SYMBOL(dev_disable_lro);
1505
1506 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1507                                    struct net_device *dev)
1508 {
1509         struct netdev_notifier_info info;
1510
1511         netdev_notifier_info_init(&info, dev);
1512         return nb->notifier_call(nb, val, &info);
1513 }
1514
1515 static int dev_boot_phase = 1;
1516
1517 /**
1518  *      register_netdevice_notifier - register a network notifier block
1519  *      @nb: notifier
1520  *
1521  *      Register a notifier to be called when network device events occur.
1522  *      The notifier passed is linked into the kernel structures and must
1523  *      not be reused until it has been unregistered. A negative errno code
1524  *      is returned on a failure.
1525  *
1526  *      When registered all registration and up events are replayed
1527  *      to the new notifier to allow device to have a race free
1528  *      view of the network device list.
1529  */
1530
1531 int register_netdevice_notifier(struct notifier_block *nb)
1532 {
1533         struct net_device *dev;
1534         struct net_device *last;
1535         struct net *net;
1536         int err;
1537
1538         rtnl_lock();
1539         err = raw_notifier_chain_register(&netdev_chain, nb);
1540         if (err)
1541                 goto unlock;
1542         if (dev_boot_phase)
1543                 goto unlock;
1544         for_each_net(net) {
1545                 for_each_netdev(net, dev) {
1546                         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1547                         err = notifier_to_errno(err);
1548                         if (err)
1549                                 goto rollback;
1550
1551                         if (!(dev->flags & IFF_UP))
1552                                 continue;
1553
1554                         call_netdevice_notifier(nb, NETDEV_UP, dev);
1555                 }
1556         }
1557
1558 unlock:
1559         rtnl_unlock();
1560         return err;
1561
1562 rollback:
1563         last = dev;
1564         for_each_net(net) {
1565                 for_each_netdev(net, dev) {
1566                         if (dev == last)
1567                                 goto outroll;
1568
1569                         if (dev->flags & IFF_UP) {
1570                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1571                                                         dev);
1572                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1573                         }
1574                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1575                 }
1576         }
1577
1578 outroll:
1579         raw_notifier_chain_unregister(&netdev_chain, nb);
1580         goto unlock;
1581 }
1582 EXPORT_SYMBOL(register_netdevice_notifier);
1583
1584 /**
1585  *      unregister_netdevice_notifier - unregister a network notifier block
1586  *      @nb: notifier
1587  *
1588  *      Unregister a notifier previously registered by
1589  *      register_netdevice_notifier(). The notifier is unlinked into the
1590  *      kernel structures and may then be reused. A negative errno code
1591  *      is returned on a failure.
1592  *
1593  *      After unregistering unregister and down device events are synthesized
1594  *      for all devices on the device list to the removed notifier to remove
1595  *      the need for special case cleanup code.
1596  */
1597
1598 int unregister_netdevice_notifier(struct notifier_block *nb)
1599 {
1600         struct net_device *dev;
1601         struct net *net;
1602         int err;
1603
1604         rtnl_lock();
1605         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1606         if (err)
1607                 goto unlock;
1608
1609         for_each_net(net) {
1610                 for_each_netdev(net, dev) {
1611                         if (dev->flags & IFF_UP) {
1612                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1613                                                         dev);
1614                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1615                         }
1616                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1617                 }
1618         }
1619 unlock:
1620         rtnl_unlock();
1621         return err;
1622 }
1623 EXPORT_SYMBOL(unregister_netdevice_notifier);
1624
1625 /**
1626  *      call_netdevice_notifiers_info - call all network notifier blocks
1627  *      @val: value passed unmodified to notifier function
1628  *      @dev: net_device pointer passed unmodified to notifier function
1629  *      @info: notifier information data
1630  *
1631  *      Call all network notifier blocks.  Parameters and return value
1632  *      are as for raw_notifier_call_chain().
1633  */
1634
1635 static int call_netdevice_notifiers_info(unsigned long val,
1636                                          struct net_device *dev,
1637                                          struct netdev_notifier_info *info)
1638 {
1639         ASSERT_RTNL();
1640         netdev_notifier_info_init(info, dev);
1641         return raw_notifier_call_chain(&netdev_chain, val, info);
1642 }
1643
1644 /**
1645  *      call_netdevice_notifiers - call all network notifier blocks
1646  *      @val: value passed unmodified to notifier function
1647  *      @dev: net_device pointer passed unmodified to notifier function
1648  *
1649  *      Call all network notifier blocks.  Parameters and return value
1650  *      are as for raw_notifier_call_chain().
1651  */
1652
1653 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1654 {
1655         struct netdev_notifier_info info;
1656
1657         return call_netdevice_notifiers_info(val, dev, &info);
1658 }
1659 EXPORT_SYMBOL(call_netdevice_notifiers);
1660
1661 #ifdef CONFIG_NET_INGRESS
1662 static struct static_key ingress_needed __read_mostly;
1663
1664 void net_inc_ingress_queue(void)
1665 {
1666         static_key_slow_inc(&ingress_needed);
1667 }
1668 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1669
1670 void net_dec_ingress_queue(void)
1671 {
1672         static_key_slow_dec(&ingress_needed);
1673 }
1674 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1675 #endif
1676
1677 static struct static_key netstamp_needed __read_mostly;
1678 #ifdef HAVE_JUMP_LABEL
1679 /* We are not allowed to call static_key_slow_dec() from irq context
1680  * If net_disable_timestamp() is called from irq context, defer the
1681  * static_key_slow_dec() calls.
1682  */
1683 static atomic_t netstamp_needed_deferred;
1684 #endif
1685
1686 void net_enable_timestamp(void)
1687 {
1688 #ifdef HAVE_JUMP_LABEL
1689         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1690
1691         if (deferred) {
1692                 while (--deferred)
1693                         static_key_slow_dec(&netstamp_needed);
1694                 return;
1695         }
1696 #endif
1697         static_key_slow_inc(&netstamp_needed);
1698 }
1699 EXPORT_SYMBOL(net_enable_timestamp);
1700
1701 void net_disable_timestamp(void)
1702 {
1703 #ifdef HAVE_JUMP_LABEL
1704         if (in_interrupt()) {
1705                 atomic_inc(&netstamp_needed_deferred);
1706                 return;
1707         }
1708 #endif
1709         static_key_slow_dec(&netstamp_needed);
1710 }
1711 EXPORT_SYMBOL(net_disable_timestamp);
1712
1713 static inline void net_timestamp_set(struct sk_buff *skb)
1714 {
1715         skb->tstamp.tv64 = 0;
1716         if (static_key_false(&netstamp_needed))
1717                 __net_timestamp(skb);
1718 }
1719
1720 #define net_timestamp_check(COND, SKB)                  \
1721         if (static_key_false(&netstamp_needed)) {               \
1722                 if ((COND) && !(SKB)->tstamp.tv64)      \
1723                         __net_timestamp(SKB);           \
1724         }                                               \
1725
1726 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb)
1727 {
1728         unsigned int len;
1729
1730         if (!(dev->flags & IFF_UP))
1731                 return false;
1732
1733         len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1734         if (skb->len <= len)
1735                 return true;
1736
1737         /* if TSO is enabled, we don't care about the length as the packet
1738          * could be forwarded without being segmented before
1739          */
1740         if (skb_is_gso(skb))
1741                 return true;
1742
1743         return false;
1744 }
1745 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1746
1747 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1748 {
1749         if (skb_orphan_frags(skb, GFP_ATOMIC) ||
1750             unlikely(!is_skb_forwardable(dev, skb))) {
1751                 atomic_long_inc(&dev->rx_dropped);
1752                 kfree_skb(skb);
1753                 return NET_RX_DROP;
1754         }
1755
1756         skb_scrub_packet(skb, true);
1757         skb->priority = 0;
1758         skb->protocol = eth_type_trans(skb, dev);
1759         skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1760
1761         return 0;
1762 }
1763 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1764
1765 /**
1766  * dev_forward_skb - loopback an skb to another netif
1767  *
1768  * @dev: destination network device
1769  * @skb: buffer to forward
1770  *
1771  * return values:
1772  *      NET_RX_SUCCESS  (no congestion)
1773  *      NET_RX_DROP     (packet was dropped, but freed)
1774  *
1775  * dev_forward_skb can be used for injecting an skb from the
1776  * start_xmit function of one device into the receive queue
1777  * of another device.
1778  *
1779  * The receiving device may be in another namespace, so
1780  * we have to clear all information in the skb that could
1781  * impact namespace isolation.
1782  */
1783 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1784 {
1785         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1786 }
1787 EXPORT_SYMBOL_GPL(dev_forward_skb);
1788
1789 static inline int deliver_skb(struct sk_buff *skb,
1790                               struct packet_type *pt_prev,
1791                               struct net_device *orig_dev)
1792 {
1793         if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1794                 return -ENOMEM;
1795         atomic_inc(&skb->users);
1796         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1797 }
1798
1799 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1800                                           struct packet_type **pt,
1801                                           struct net_device *orig_dev,
1802                                           __be16 type,
1803                                           struct list_head *ptype_list)
1804 {
1805         struct packet_type *ptype, *pt_prev = *pt;
1806
1807         list_for_each_entry_rcu(ptype, ptype_list, list) {
1808                 if (ptype->type != type)
1809                         continue;
1810                 if (pt_prev)
1811                         deliver_skb(skb, pt_prev, orig_dev);
1812                 pt_prev = ptype;
1813         }
1814         *pt = pt_prev;
1815 }
1816
1817 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1818 {
1819         if (!ptype->af_packet_priv || !skb->sk)
1820                 return false;
1821
1822         if (ptype->id_match)
1823                 return ptype->id_match(ptype, skb->sk);
1824         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1825                 return true;
1826
1827         return false;
1828 }
1829
1830 /*
1831  *      Support routine. Sends outgoing frames to any network
1832  *      taps currently in use.
1833  */
1834
1835 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1836 {
1837         struct packet_type *ptype;
1838         struct sk_buff *skb2 = NULL;
1839         struct packet_type *pt_prev = NULL;
1840         struct list_head *ptype_list = &ptype_all;
1841
1842         rcu_read_lock();
1843 again:
1844         list_for_each_entry_rcu(ptype, ptype_list, list) {
1845                 /* Never send packets back to the socket
1846                  * they originated from - MvS (miquels@drinkel.ow.org)
1847                  */
1848                 if (skb_loop_sk(ptype, skb))
1849                         continue;
1850
1851                 if (pt_prev) {
1852                         deliver_skb(skb2, pt_prev, skb->dev);
1853                         pt_prev = ptype;
1854                         continue;
1855                 }
1856
1857                 /* need to clone skb, done only once */
1858                 skb2 = skb_clone(skb, GFP_ATOMIC);
1859                 if (!skb2)
1860                         goto out_unlock;
1861
1862                 net_timestamp_set(skb2);
1863
1864                 /* skb->nh should be correctly
1865                  * set by sender, so that the second statement is
1866                  * just protection against buggy protocols.
1867                  */
1868                 skb_reset_mac_header(skb2);
1869
1870                 if (skb_network_header(skb2) < skb2->data ||
1871                     skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1872                         net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1873                                              ntohs(skb2->protocol),
1874                                              dev->name);
1875                         skb_reset_network_header(skb2);
1876                 }
1877
1878                 skb2->transport_header = skb2->network_header;
1879                 skb2->pkt_type = PACKET_OUTGOING;
1880                 pt_prev = ptype;
1881         }
1882
1883         if (ptype_list == &ptype_all) {
1884                 ptype_list = &dev->ptype_all;
1885                 goto again;
1886         }
1887 out_unlock:
1888         if (pt_prev)
1889                 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1890         rcu_read_unlock();
1891 }
1892
1893 /**
1894  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1895  * @dev: Network device
1896  * @txq: number of queues available
1897  *
1898  * If real_num_tx_queues is changed the tc mappings may no longer be
1899  * valid. To resolve this verify the tc mapping remains valid and if
1900  * not NULL the mapping. With no priorities mapping to this
1901  * offset/count pair it will no longer be used. In the worst case TC0
1902  * is invalid nothing can be done so disable priority mappings. If is
1903  * expected that drivers will fix this mapping if they can before
1904  * calling netif_set_real_num_tx_queues.
1905  */
1906 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1907 {
1908         int i;
1909         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1910
1911         /* If TC0 is invalidated disable TC mapping */
1912         if (tc->offset + tc->count > txq) {
1913                 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1914                 dev->num_tc = 0;
1915                 return;
1916         }
1917
1918         /* Invalidated prio to tc mappings set to TC0 */
1919         for (i = 1; i < TC_BITMASK + 1; i++) {
1920                 int q = netdev_get_prio_tc_map(dev, i);
1921
1922                 tc = &dev->tc_to_txq[q];
1923                 if (tc->offset + tc->count > txq) {
1924                         pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1925                                 i, q);
1926                         netdev_set_prio_tc_map(dev, i, 0);
1927                 }
1928         }
1929 }
1930
1931 #ifdef CONFIG_XPS
1932 static DEFINE_MUTEX(xps_map_mutex);
1933 #define xmap_dereference(P)             \
1934         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1935
1936 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1937                                         int cpu, u16 index)
1938 {
1939         struct xps_map *map = NULL;
1940         int pos;
1941
1942         if (dev_maps)
1943                 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1944
1945         for (pos = 0; map && pos < map->len; pos++) {
1946                 if (map->queues[pos] == index) {
1947                         if (map->len > 1) {
1948                                 map->queues[pos] = map->queues[--map->len];
1949                         } else {
1950                                 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1951                                 kfree_rcu(map, rcu);
1952                                 map = NULL;
1953                         }
1954                         break;
1955                 }
1956         }
1957
1958         return map;
1959 }
1960
1961 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1962 {
1963         struct xps_dev_maps *dev_maps;
1964         int cpu, i;
1965         bool active = false;
1966
1967         mutex_lock(&xps_map_mutex);
1968         dev_maps = xmap_dereference(dev->xps_maps);
1969
1970         if (!dev_maps)
1971                 goto out_no_maps;
1972
1973         for_each_possible_cpu(cpu) {
1974                 for (i = index; i < dev->num_tx_queues; i++) {
1975                         if (!remove_xps_queue(dev_maps, cpu, i))
1976                                 break;
1977                 }
1978                 if (i == dev->num_tx_queues)
1979                         active = true;
1980         }
1981
1982         if (!active) {
1983                 RCU_INIT_POINTER(dev->xps_maps, NULL);
1984                 kfree_rcu(dev_maps, rcu);
1985         }
1986
1987         for (i = index; i < dev->num_tx_queues; i++)
1988                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
1989                                              NUMA_NO_NODE);
1990
1991 out_no_maps:
1992         mutex_unlock(&xps_map_mutex);
1993 }
1994
1995 static struct xps_map *expand_xps_map(struct xps_map *map,
1996                                       int cpu, u16 index)
1997 {
1998         struct xps_map *new_map;
1999         int alloc_len = XPS_MIN_MAP_ALLOC;
2000         int i, pos;
2001
2002         for (pos = 0; map && pos < map->len; pos++) {
2003                 if (map->queues[pos] != index)
2004                         continue;
2005                 return map;
2006         }
2007
2008         /* Need to add queue to this CPU's existing map */
2009         if (map) {
2010                 if (pos < map->alloc_len)
2011                         return map;
2012
2013                 alloc_len = map->alloc_len * 2;
2014         }
2015
2016         /* Need to allocate new map to store queue on this CPU's map */
2017         new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2018                                cpu_to_node(cpu));
2019         if (!new_map)
2020                 return NULL;
2021
2022         for (i = 0; i < pos; i++)
2023                 new_map->queues[i] = map->queues[i];
2024         new_map->alloc_len = alloc_len;
2025         new_map->len = pos;
2026
2027         return new_map;
2028 }
2029
2030 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2031                         u16 index)
2032 {
2033         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2034         struct xps_map *map, *new_map;
2035         int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
2036         int cpu, numa_node_id = -2;
2037         bool active = false;
2038
2039         mutex_lock(&xps_map_mutex);
2040
2041         dev_maps = xmap_dereference(dev->xps_maps);
2042
2043         /* allocate memory for queue storage */
2044         for_each_online_cpu(cpu) {
2045                 if (!cpumask_test_cpu(cpu, mask))
2046                         continue;
2047
2048                 if (!new_dev_maps)
2049                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2050                 if (!new_dev_maps) {
2051                         mutex_unlock(&xps_map_mutex);
2052                         return -ENOMEM;
2053                 }
2054
2055                 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2056                                  NULL;
2057
2058                 map = expand_xps_map(map, cpu, index);
2059                 if (!map)
2060                         goto error;
2061
2062                 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2063         }
2064
2065         if (!new_dev_maps)
2066                 goto out_no_new_maps;
2067
2068         for_each_possible_cpu(cpu) {
2069                 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2070                         /* add queue to CPU maps */
2071                         int pos = 0;
2072
2073                         map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2074                         while ((pos < map->len) && (map->queues[pos] != index))
2075                                 pos++;
2076
2077                         if (pos == map->len)
2078                                 map->queues[map->len++] = index;
2079 #ifdef CONFIG_NUMA
2080                         if (numa_node_id == -2)
2081                                 numa_node_id = cpu_to_node(cpu);
2082                         else if (numa_node_id != cpu_to_node(cpu))
2083                                 numa_node_id = -1;
2084 #endif
2085                 } else if (dev_maps) {
2086                         /* fill in the new device map from the old device map */
2087                         map = xmap_dereference(dev_maps->cpu_map[cpu]);
2088                         RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2089                 }
2090
2091         }
2092
2093         rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2094
2095         /* Cleanup old maps */
2096         if (dev_maps) {
2097                 for_each_possible_cpu(cpu) {
2098                         new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2099                         map = xmap_dereference(dev_maps->cpu_map[cpu]);
2100                         if (map && map != new_map)
2101                                 kfree_rcu(map, rcu);
2102                 }
2103
2104                 kfree_rcu(dev_maps, rcu);
2105         }
2106
2107         dev_maps = new_dev_maps;
2108         active = true;
2109
2110 out_no_new_maps:
2111         /* update Tx queue numa node */
2112         netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2113                                      (numa_node_id >= 0) ? numa_node_id :
2114                                      NUMA_NO_NODE);
2115
2116         if (!dev_maps)
2117                 goto out_no_maps;
2118
2119         /* removes queue from unused CPUs */
2120         for_each_possible_cpu(cpu) {
2121                 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2122                         continue;
2123
2124                 if (remove_xps_queue(dev_maps, cpu, index))
2125                         active = true;
2126         }
2127
2128         /* free map if not active */
2129         if (!active) {
2130                 RCU_INIT_POINTER(dev->xps_maps, NULL);
2131                 kfree_rcu(dev_maps, rcu);
2132         }
2133
2134 out_no_maps:
2135         mutex_unlock(&xps_map_mutex);
2136
2137         return 0;
2138 error:
2139         /* remove any maps that we added */
2140         for_each_possible_cpu(cpu) {
2141                 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2142                 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2143                                  NULL;
2144                 if (new_map && new_map != map)
2145                         kfree(new_map);
2146         }
2147
2148         mutex_unlock(&xps_map_mutex);
2149
2150         kfree(new_dev_maps);
2151         return -ENOMEM;
2152 }
2153 EXPORT_SYMBOL(netif_set_xps_queue);
2154
2155 #endif
2156 /*
2157  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2158  * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2159  */
2160 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2161 {
2162         int rc;
2163
2164         if (txq < 1 || txq > dev->num_tx_queues)
2165                 return -EINVAL;
2166
2167         if (dev->reg_state == NETREG_REGISTERED ||
2168             dev->reg_state == NETREG_UNREGISTERING) {
2169                 ASSERT_RTNL();
2170
2171                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2172                                                   txq);
2173                 if (rc)
2174                         return rc;
2175
2176                 if (dev->num_tc)
2177                         netif_setup_tc(dev, txq);
2178
2179                 if (txq < dev->real_num_tx_queues) {
2180                         qdisc_reset_all_tx_gt(dev, txq);
2181 #ifdef CONFIG_XPS
2182                         netif_reset_xps_queues_gt(dev, txq);
2183 #endif
2184                 }
2185         }
2186
2187         dev->real_num_tx_queues = txq;
2188         return 0;
2189 }
2190 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2191
2192 #ifdef CONFIG_SYSFS
2193 /**
2194  *      netif_set_real_num_rx_queues - set actual number of RX queues used
2195  *      @dev: Network device
2196  *      @rxq: Actual number of RX queues
2197  *
2198  *      This must be called either with the rtnl_lock held or before
2199  *      registration of the net device.  Returns 0 on success, or a
2200  *      negative error code.  If called before registration, it always
2201  *      succeeds.
2202  */
2203 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2204 {
2205         int rc;
2206
2207         if (rxq < 1 || rxq > dev->num_rx_queues)
2208                 return -EINVAL;
2209
2210         if (dev->reg_state == NETREG_REGISTERED) {
2211                 ASSERT_RTNL();
2212
2213                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2214                                                   rxq);
2215                 if (rc)
2216                         return rc;
2217         }
2218
2219         dev->real_num_rx_queues = rxq;
2220         return 0;
2221 }
2222 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2223 #endif
2224
2225 /**
2226  * netif_get_num_default_rss_queues - default number of RSS queues
2227  *
2228  * This routine should set an upper limit on the number of RSS queues
2229  * used by default by multiqueue devices.
2230  */
2231 int netif_get_num_default_rss_queues(void)
2232 {
2233         return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2234 }
2235 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2236
2237 static inline void __netif_reschedule(struct Qdisc *q)
2238 {
2239         struct softnet_data *sd;
2240         unsigned long flags;
2241
2242         local_irq_save(flags);
2243         sd = this_cpu_ptr(&softnet_data);
2244         q->next_sched = NULL;
2245         *sd->output_queue_tailp = q;
2246         sd->output_queue_tailp = &q->next_sched;
2247         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2248         local_irq_restore(flags);
2249 }
2250
2251 void __netif_schedule(struct Qdisc *q)
2252 {
2253         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2254                 __netif_reschedule(q);
2255 }
2256 EXPORT_SYMBOL(__netif_schedule);
2257
2258 struct dev_kfree_skb_cb {
2259         enum skb_free_reason reason;
2260 };
2261
2262 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2263 {
2264         return (struct dev_kfree_skb_cb *)skb->cb;
2265 }
2266
2267 void netif_schedule_queue(struct netdev_queue *txq)
2268 {
2269         rcu_read_lock();
2270         if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2271                 struct Qdisc *q = rcu_dereference(txq->qdisc);
2272
2273                 __netif_schedule(q);
2274         }
2275         rcu_read_unlock();
2276 }
2277 EXPORT_SYMBOL(netif_schedule_queue);
2278
2279 /**
2280  *      netif_wake_subqueue - allow sending packets on subqueue
2281  *      @dev: network device
2282  *      @queue_index: sub queue index
2283  *
2284  * Resume individual transmit queue of a device with multiple transmit queues.
2285  */
2286 void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2287 {
2288         struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2289
2290         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2291                 struct Qdisc *q;
2292
2293                 rcu_read_lock();
2294                 q = rcu_dereference(txq->qdisc);
2295                 __netif_schedule(q);
2296                 rcu_read_unlock();
2297         }
2298 }
2299 EXPORT_SYMBOL(netif_wake_subqueue);
2300
2301 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2302 {
2303         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2304                 struct Qdisc *q;
2305
2306                 rcu_read_lock();
2307                 q = rcu_dereference(dev_queue->qdisc);
2308                 __netif_schedule(q);
2309                 rcu_read_unlock();
2310         }
2311 }
2312 EXPORT_SYMBOL(netif_tx_wake_queue);
2313
2314 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2315 {
2316         unsigned long flags;
2317
2318         if (likely(atomic_read(&skb->users) == 1)) {
2319                 smp_rmb();
2320                 atomic_set(&skb->users, 0);
2321         } else if (likely(!atomic_dec_and_test(&skb->users))) {
2322                 return;
2323         }
2324         get_kfree_skb_cb(skb)->reason = reason;
2325         local_irq_save(flags);
2326         skb->next = __this_cpu_read(softnet_data.completion_queue);
2327         __this_cpu_write(softnet_data.completion_queue, skb);
2328         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2329         local_irq_restore(flags);
2330 }
2331 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2332
2333 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2334 {
2335         if (in_irq() || irqs_disabled())
2336                 __dev_kfree_skb_irq(skb, reason);
2337         else
2338                 dev_kfree_skb(skb);
2339 }
2340 EXPORT_SYMBOL(__dev_kfree_skb_any);
2341
2342
2343 /**
2344  * netif_device_detach - mark device as removed
2345  * @dev: network device
2346  *
2347  * Mark device as removed from system and therefore no longer available.
2348  */
2349 void netif_device_detach(struct net_device *dev)
2350 {
2351         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2352             netif_running(dev)) {
2353                 netif_tx_stop_all_queues(dev);
2354         }
2355 }
2356 EXPORT_SYMBOL(netif_device_detach);
2357
2358 /**
2359  * netif_device_attach - mark device as attached
2360  * @dev: network device
2361  *
2362  * Mark device as attached from system and restart if needed.
2363  */
2364 void netif_device_attach(struct net_device *dev)
2365 {
2366         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2367             netif_running(dev)) {
2368                 netif_tx_wake_all_queues(dev);
2369                 __netdev_watchdog_up(dev);
2370         }
2371 }
2372 EXPORT_SYMBOL(netif_device_attach);
2373
2374 /*
2375  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2376  * to be used as a distribution range.
2377  */
2378 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2379                   unsigned int num_tx_queues)
2380 {
2381         u32 hash;
2382         u16 qoffset = 0;
2383         u16 qcount = num_tx_queues;
2384
2385         if (skb_rx_queue_recorded(skb)) {
2386                 hash = skb_get_rx_queue(skb);
2387                 while (unlikely(hash >= num_tx_queues))
2388                         hash -= num_tx_queues;
2389                 return hash;
2390         }
2391
2392         if (dev->num_tc) {
2393                 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2394                 qoffset = dev->tc_to_txq[tc].offset;
2395                 qcount = dev->tc_to_txq[tc].count;
2396         }
2397
2398         return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2399 }
2400 EXPORT_SYMBOL(__skb_tx_hash);
2401
2402 static void skb_warn_bad_offload(const struct sk_buff *skb)
2403 {
2404         static const netdev_features_t null_features = 0;
2405         struct net_device *dev = skb->dev;
2406         const char *name = "";
2407
2408         if (!net_ratelimit())
2409                 return;
2410
2411         if (dev) {
2412                 if (dev->dev.parent)
2413                         name = dev_driver_string(dev->dev.parent);
2414                 else
2415                         name = netdev_name(dev);
2416         }
2417         WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2418              "gso_type=%d ip_summed=%d\n",
2419              name, dev ? &dev->features : &null_features,
2420              skb->sk ? &skb->sk->sk_route_caps : &null_features,
2421              skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2422              skb_shinfo(skb)->gso_type, skb->ip_summed);
2423 }
2424
2425 /*
2426  * Invalidate hardware checksum when packet is to be mangled, and
2427  * complete checksum manually on outgoing path.
2428  */
2429 int skb_checksum_help(struct sk_buff *skb)
2430 {
2431         __wsum csum;
2432         int ret = 0, offset;
2433
2434         if (skb->ip_summed == CHECKSUM_COMPLETE)
2435                 goto out_set_summed;
2436
2437         if (unlikely(skb_shinfo(skb)->gso_size)) {
2438                 skb_warn_bad_offload(skb);
2439                 return -EINVAL;
2440         }
2441
2442         /* Before computing a checksum, we should make sure no frag could
2443          * be modified by an external entity : checksum could be wrong.
2444          */
2445         if (skb_has_shared_frag(skb)) {
2446                 ret = __skb_linearize(skb);
2447                 if (ret)
2448                         goto out;
2449         }
2450
2451         offset = skb_checksum_start_offset(skb);
2452         BUG_ON(offset >= skb_headlen(skb));
2453         csum = skb_checksum(skb, offset, skb->len - offset, 0);
2454
2455         offset += skb->csum_offset;
2456         BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2457
2458         if (skb_cloned(skb) &&
2459             !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2460                 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2461                 if (ret)
2462                         goto out;
2463         }
2464
2465         *(__sum16 *)(skb->data + offset) = csum_fold(csum);
2466 out_set_summed:
2467         skb->ip_summed = CHECKSUM_NONE;
2468 out:
2469         return ret;
2470 }
2471 EXPORT_SYMBOL(skb_checksum_help);
2472
2473 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2474 {
2475         __be16 type = skb->protocol;
2476
2477         /* Tunnel gso handlers can set protocol to ethernet. */
2478         if (type == htons(ETH_P_TEB)) {
2479                 struct ethhdr *eth;
2480
2481                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2482                         return 0;
2483
2484                 eth = (struct ethhdr *)skb_mac_header(skb);
2485                 type = eth->h_proto;
2486         }
2487
2488         return __vlan_get_protocol(skb, type, depth);
2489 }
2490
2491 /**
2492  *      skb_mac_gso_segment - mac layer segmentation handler.
2493  *      @skb: buffer to segment
2494  *      @features: features for the output path (see dev->features)
2495  */
2496 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2497                                     netdev_features_t features)
2498 {
2499         struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2500         struct packet_offload *ptype;
2501         int vlan_depth = skb->mac_len;
2502         __be16 type = skb_network_protocol(skb, &vlan_depth);
2503
2504         if (unlikely(!type))
2505                 return ERR_PTR(-EINVAL);
2506
2507         __skb_pull(skb, vlan_depth);
2508
2509         rcu_read_lock();
2510         list_for_each_entry_rcu(ptype, &offload_base, list) {
2511                 if (ptype->type == type && ptype->callbacks.gso_segment) {
2512                         segs = ptype->callbacks.gso_segment(skb, features);
2513                         break;
2514                 }
2515         }
2516         rcu_read_unlock();
2517
2518         __skb_push(skb, skb->data - skb_mac_header(skb));
2519
2520         return segs;
2521 }
2522 EXPORT_SYMBOL(skb_mac_gso_segment);
2523
2524
2525 /* openvswitch calls this on rx path, so we need a different check.
2526  */
2527 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2528 {
2529         if (tx_path)
2530                 return skb->ip_summed != CHECKSUM_PARTIAL;
2531         else
2532                 return skb->ip_summed == CHECKSUM_NONE;
2533 }
2534
2535 /**
2536  *      __skb_gso_segment - Perform segmentation on skb.
2537  *      @skb: buffer to segment
2538  *      @features: features for the output path (see dev->features)
2539  *      @tx_path: whether it is called in TX path
2540  *
2541  *      This function segments the given skb and returns a list of segments.
2542  *
2543  *      It may return NULL if the skb requires no segmentation.  This is
2544  *      only possible when GSO is used for verifying header integrity.
2545  *
2546  *      Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
2547  */
2548 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2549                                   netdev_features_t features, bool tx_path)
2550 {
2551         if (unlikely(skb_needs_check(skb, tx_path))) {
2552                 int err;
2553
2554                 skb_warn_bad_offload(skb);
2555
2556                 err = skb_cow_head(skb, 0);
2557                 if (err < 0)
2558                         return ERR_PTR(err);
2559         }
2560
2561         BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2562                      sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2563
2564         SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2565         SKB_GSO_CB(skb)->encap_level = 0;
2566
2567         skb_reset_mac_header(skb);
2568         skb_reset_mac_len(skb);
2569
2570         return skb_mac_gso_segment(skb, features);
2571 }
2572 EXPORT_SYMBOL(__skb_gso_segment);
2573
2574 /* Take action when hardware reception checksum errors are detected. */
2575 #ifdef CONFIG_BUG
2576 void netdev_rx_csum_fault(struct net_device *dev)
2577 {
2578         if (net_ratelimit()) {
2579                 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2580                 dump_stack();
2581         }
2582 }
2583 EXPORT_SYMBOL(netdev_rx_csum_fault);
2584 #endif
2585
2586 /* Actually, we should eliminate this check as soon as we know, that:
2587  * 1. IOMMU is present and allows to map all the memory.
2588  * 2. No high memory really exists on this machine.
2589  */
2590
2591 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2592 {
2593 #ifdef CONFIG_HIGHMEM
2594         int i;
2595         if (!(dev->features & NETIF_F_HIGHDMA)) {
2596                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2597                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2598                         if (PageHighMem(skb_frag_page(frag)))
2599                                 return 1;
2600                 }
2601         }
2602
2603         if (PCI_DMA_BUS_IS_PHYS) {
2604                 struct device *pdev = dev->dev.parent;
2605
2606                 if (!pdev)
2607                         return 0;
2608                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2609                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2610                         dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2611                         if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2612                                 return 1;
2613                 }
2614         }
2615 #endif
2616         return 0;
2617 }
2618
2619 /* If MPLS offload request, verify we are testing hardware MPLS features
2620  * instead of standard features for the netdev.
2621  */
2622 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2623 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2624                                            netdev_features_t features,
2625                                            __be16 type)
2626 {
2627         if (eth_p_mpls(type))
2628                 features &= skb->dev->mpls_features;
2629
2630         return features;
2631 }
2632 #else
2633 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2634                                            netdev_features_t features,
2635                                            __be16 type)
2636 {
2637         return features;
2638 }
2639 #endif
2640
2641 static netdev_features_t harmonize_features(struct sk_buff *skb,
2642         netdev_features_t features)
2643 {
2644         int tmp;
2645         __be16 type;
2646
2647         type = skb_network_protocol(skb, &tmp);
2648         features = net_mpls_features(skb, features, type);
2649
2650         if (skb->ip_summed != CHECKSUM_NONE &&
2651             !can_checksum_protocol(features, type)) {
2652                 features &= ~NETIF_F_ALL_CSUM;
2653         } else if (illegal_highdma(skb->dev, skb)) {
2654                 features &= ~NETIF_F_SG;
2655         }
2656
2657         return features;
2658 }
2659
2660 netdev_features_t passthru_features_check(struct sk_buff *skb,
2661                                           struct net_device *dev,
2662                                           netdev_features_t features)
2663 {
2664         return features;
2665 }
2666 EXPORT_SYMBOL(passthru_features_check);
2667
2668 static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2669                                              struct net_device *dev,
2670                                              netdev_features_t features)
2671 {
2672         return vlan_features_check(skb, features);
2673 }
2674
2675 netdev_features_t netif_skb_features(struct sk_buff *skb)
2676 {
2677         struct net_device *dev = skb->dev;
2678         netdev_features_t features = dev->features;
2679         u16 gso_segs = skb_shinfo(skb)->gso_segs;
2680
2681         if (gso_segs > dev->gso_max_segs || gso_segs < dev->gso_min_segs)
2682                 features &= ~NETIF_F_GSO_MASK;
2683
2684         /* If encapsulation offload request, verify we are testing
2685          * hardware encapsulation features instead of standard
2686          * features for the netdev
2687          */
2688         if (skb->encapsulation)
2689                 features &= dev->hw_enc_features;
2690
2691         if (skb_vlan_tagged(skb))
2692                 features = netdev_intersect_features(features,
2693                                                      dev->vlan_features |
2694                                                      NETIF_F_HW_VLAN_CTAG_TX |
2695                                                      NETIF_F_HW_VLAN_STAG_TX);
2696
2697         if (dev->netdev_ops->ndo_features_check)
2698                 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2699                                                                 features);
2700         else
2701                 features &= dflt_features_check(skb, dev, features);
2702
2703         return harmonize_features(skb, features);
2704 }
2705 EXPORT_SYMBOL(netif_skb_features);
2706
2707 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2708                     struct netdev_queue *txq, bool more)
2709 {
2710         unsigned int len;
2711         int rc;
2712
2713         if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2714                 dev_queue_xmit_nit(skb, dev);
2715
2716         len = skb->len;
2717         trace_net_dev_start_xmit(skb, dev);
2718         rc = netdev_start_xmit(skb, dev, txq, more);
2719         trace_net_dev_xmit(skb, rc, dev, len);
2720
2721         return rc;
2722 }
2723
2724 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2725                                     struct netdev_queue *txq, int *ret)
2726 {
2727         struct sk_buff *skb = first;
2728         int rc = NETDEV_TX_OK;
2729
2730         while (skb) {
2731                 struct sk_buff *next = skb->next;
2732
2733                 skb->next = NULL;
2734                 rc = xmit_one(skb, dev, txq, next != NULL);
2735                 if (unlikely(!dev_xmit_complete(rc))) {
2736                         skb->next = next;
2737                         goto out;
2738                 }
2739
2740                 skb = next;
2741                 if (netif_xmit_stopped(txq) && skb) {
2742                         rc = NETDEV_TX_BUSY;
2743                         break;
2744                 }
2745         }
2746
2747 out:
2748         *ret = rc;
2749         return skb;
2750 }
2751
2752 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2753                                           netdev_features_t features)
2754 {
2755         if (skb_vlan_tag_present(skb) &&
2756             !vlan_hw_offload_capable(features, skb->vlan_proto))
2757                 skb = __vlan_hwaccel_push_inside(skb);
2758         return skb;
2759 }
2760
2761 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
2762 {
2763         netdev_features_t features;
2764
2765         if (skb->next)
2766                 return skb;
2767
2768         features = netif_skb_features(skb);
2769         skb = validate_xmit_vlan(skb, features);
2770         if (unlikely(!skb))
2771                 goto out_null;
2772
2773         if (netif_needs_gso(skb, features)) {
2774                 struct sk_buff *segs;
2775
2776                 segs = skb_gso_segment(skb, features);
2777                 if (IS_ERR(segs)) {
2778                         goto out_kfree_skb;
2779                 } else if (segs) {
2780                         consume_skb(skb);
2781                         skb = segs;
2782                 }
2783         } else {
2784                 if (skb_needs_linearize(skb, features) &&
2785                     __skb_linearize(skb))
2786                         goto out_kfree_skb;
2787
2788                 /* If packet is not checksummed and device does not
2789                  * support checksumming for this protocol, complete
2790                  * checksumming here.
2791                  */
2792                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2793                         if (skb->encapsulation)
2794                                 skb_set_inner_transport_header(skb,
2795                                                                skb_checksum_start_offset(skb));
2796                         else
2797                                 skb_set_transport_header(skb,
2798                                                          skb_checksum_start_offset(skb));
2799                         if (!(features & NETIF_F_ALL_CSUM) &&
2800                             skb_checksum_help(skb))
2801                                 goto out_kfree_skb;
2802                 }
2803         }
2804
2805         return skb;
2806
2807 out_kfree_skb:
2808         kfree_skb(skb);
2809 out_null:
2810         return NULL;
2811 }
2812
2813 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
2814 {
2815         struct sk_buff *next, *head = NULL, *tail;
2816
2817         for (; skb != NULL; skb = next) {
2818                 next = skb->next;
2819                 skb->next = NULL;
2820
2821                 /* in case skb wont be segmented, point to itself */
2822                 skb->prev = skb;
2823
2824                 skb = validate_xmit_skb(skb, dev);
2825                 if (!skb)
2826                         continue;
2827
2828                 if (!head)
2829                         head = skb;
2830                 else
2831                         tail->next = skb;
2832                 /* If skb was segmented, skb->prev points to
2833                  * the last segment. If not, it still contains skb.
2834                  */
2835                 tail = skb->prev;
2836         }
2837         return head;
2838 }
2839
2840 static void qdisc_pkt_len_init(struct sk_buff *skb)
2841 {
2842         const struct skb_shared_info *shinfo = skb_shinfo(skb);
2843
2844         qdisc_skb_cb(skb)->pkt_len = skb->len;
2845
2846         /* To get more precise estimation of bytes sent on wire,
2847          * we add to pkt_len the headers size of all segments
2848          */
2849         if (shinfo->gso_size)  {
2850                 unsigned int hdr_len;
2851                 u16 gso_segs = shinfo->gso_segs;
2852
2853                 /* mac layer + network layer */
2854                 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2855
2856                 /* + transport layer */
2857                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
2858                         hdr_len += tcp_hdrlen(skb);
2859                 else
2860                         hdr_len += sizeof(struct udphdr);
2861
2862                 if (shinfo->gso_type & SKB_GSO_DODGY)
2863                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
2864                                                 shinfo->gso_size);
2865
2866                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
2867         }
2868 }
2869
2870 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2871                                  struct net_device *dev,
2872                                  struct netdev_queue *txq)
2873 {
2874         spinlock_t *root_lock = qdisc_lock(q);
2875         bool contended;
2876         int rc;
2877
2878         qdisc_pkt_len_init(skb);
2879         qdisc_calculate_pkt_len(skb, q);
2880         /*
2881          * Heuristic to force contended enqueues to serialize on a
2882          * separate lock before trying to get qdisc main lock.
2883          * This permits __QDISC___STATE_RUNNING owner to get the lock more
2884          * often and dequeue packets faster.
2885          */
2886         contended = qdisc_is_running(q);
2887         if (unlikely(contended))
2888                 spin_lock(&q->busylock);
2889
2890         spin_lock(root_lock);
2891         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2892                 kfree_skb(skb);
2893                 rc = NET_XMIT_DROP;
2894         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2895                    qdisc_run_begin(q)) {
2896                 /*
2897                  * This is a work-conserving queue; there are no old skbs
2898                  * waiting to be sent out; and the qdisc is not running -
2899                  * xmit the skb directly.
2900                  */
2901
2902                 qdisc_bstats_update(q, skb);
2903
2904                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
2905                         if (unlikely(contended)) {
2906                                 spin_unlock(&q->busylock);
2907                                 contended = false;
2908                         }
2909                         __qdisc_run(q);
2910                 } else
2911                         qdisc_run_end(q);
2912
2913                 rc = NET_XMIT_SUCCESS;
2914         } else {
2915                 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2916                 if (qdisc_run_begin(q)) {
2917                         if (unlikely(contended)) {
2918                                 spin_unlock(&q->busylock);
2919                                 contended = false;
2920                         }
2921                         __qdisc_run(q);
2922                 }
2923         }
2924         spin_unlock(root_lock);
2925         if (unlikely(contended))
2926                 spin_unlock(&q->busylock);
2927         return rc;
2928 }
2929
2930 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2931 static void skb_update_prio(struct sk_buff *skb)
2932 {
2933         struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2934
2935         if (!skb->priority && skb->sk && map) {
2936                 unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2937
2938                 if (prioidx < map->priomap_len)
2939                         skb->priority = map->priomap[prioidx];
2940         }
2941 }
2942 #else
2943 #define skb_update_prio(skb)
2944 #endif
2945
2946 DEFINE_PER_CPU(int, xmit_recursion);
2947 EXPORT_SYMBOL(xmit_recursion);
2948
2949 #define RECURSION_LIMIT 10
2950
2951 /**
2952  *      dev_loopback_xmit - loop back @skb
2953  *      @net: network namespace this loopback is happening in
2954  *      @sk:  sk needed to be a netfilter okfn
2955  *      @skb: buffer to transmit
2956  */
2957 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
2958 {
2959         skb_reset_mac_header(skb);
2960         __skb_pull(skb, skb_network_offset(skb));
2961         skb->pkt_type = PACKET_LOOPBACK;
2962         skb->ip_summed = CHECKSUM_UNNECESSARY;
2963         WARN_ON(!skb_dst(skb));
2964         skb_dst_force(skb);
2965         netif_rx_ni(skb);
2966         return 0;
2967 }
2968 EXPORT_SYMBOL(dev_loopback_xmit);
2969
2970 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
2971 {
2972 #ifdef CONFIG_XPS
2973         struct xps_dev_maps *dev_maps;
2974         struct xps_map *map;
2975         int queue_index = -1;
2976
2977         rcu_read_lock();
2978         dev_maps = rcu_dereference(dev->xps_maps);
2979         if (dev_maps) {
2980                 map = rcu_dereference(
2981                     dev_maps->cpu_map[skb->sender_cpu - 1]);
2982                 if (map) {
2983                         if (map->len == 1)
2984                                 queue_index = map->queues[0];
2985                         else
2986                                 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
2987                                                                            map->len)];
2988                         if (unlikely(queue_index >= dev->real_num_tx_queues))
2989                                 queue_index = -1;
2990                 }
2991         }
2992         rcu_read_unlock();
2993
2994         return queue_index;
2995 #else
2996         return -1;
2997 #endif
2998 }
2999
3000 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3001 {
3002         struct sock *sk = skb->sk;
3003         int queue_index = sk_tx_queue_get(sk);
3004
3005         if (queue_index < 0 || skb->ooo_okay ||
3006             queue_index >= dev->real_num_tx_queues) {
3007                 int new_index = get_xps_queue(dev, skb);
3008                 if (new_index < 0)
3009                         new_index = skb_tx_hash(dev, skb);
3010
3011                 if (queue_index != new_index && sk &&
3012                     sk_fullsock(sk) &&
3013                     rcu_access_pointer(sk->sk_dst_cache))
3014                         sk_tx_queue_set(sk, new_index);
3015
3016                 queue_index = new_index;
3017         }
3018
3019         return queue_index;
3020 }
3021
3022 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3023                                     struct sk_buff *skb,
3024                                     void *accel_priv)
3025 {
3026         int queue_index = 0;
3027
3028 #ifdef CONFIG_XPS
3029         if (skb->sender_cpu == 0)
3030                 skb->sender_cpu = raw_smp_processor_id() + 1;
3031 #endif
3032
3033         if (dev->real_num_tx_queues != 1) {
3034                 const struct net_device_ops *ops = dev->netdev_ops;
3035                 if (ops->ndo_select_queue)
3036                         queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3037                                                             __netdev_pick_tx);
3038                 else
3039                         queue_index = __netdev_pick_tx(dev, skb);
3040
3041                 if (!accel_priv)
3042                         queue_index = netdev_cap_txqueue(dev, queue_index);
3043         }
3044
3045         skb_set_queue_mapping(skb, queue_index);
3046         return netdev_get_tx_queue(dev, queue_index);
3047 }
3048
3049 /**
3050  *      __dev_queue_xmit - transmit a buffer
3051  *      @skb: buffer to transmit
3052  *      @accel_priv: private data used for L2 forwarding offload
3053  *
3054  *      Queue a buffer for transmission to a network device. The caller must
3055  *      have set the device and priority and built the buffer before calling
3056  *      this function. The function can be called from an interrupt.
3057  *
3058  *      A negative errno code is returned on a failure. A success does not
3059  *      guarantee the frame will be transmitted as it may be dropped due
3060  *      to congestion or traffic shaping.
3061  *
3062  * -----------------------------------------------------------------------------------
3063  *      I notice this method can also return errors from the queue disciplines,
3064  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3065  *      be positive.
3066  *
3067  *      Regardless of the return value, the skb is consumed, so it is currently
3068  *      difficult to retry a send to this method.  (You can bump the ref count
3069  *      before sending to hold a reference for retry if you are careful.)
3070  *
3071  *      When calling this method, interrupts MUST be enabled.  This is because
3072  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3073  *          --BLG
3074  */
3075 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3076 {
3077         struct net_device *dev = skb->dev;
3078         struct netdev_queue *txq;
3079         struct Qdisc *q;
3080         int rc = -ENOMEM;
3081
3082         skb_reset_mac_header(skb);
3083
3084         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3085                 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3086
3087         /* Disable soft irqs for various locks below. Also
3088          * stops preemption for RCU.
3089          */
3090         rcu_read_lock_bh();
3091
3092         skb_update_prio(skb);
3093
3094         /* If device/qdisc don't need skb->dst, release it right now while
3095          * its hot in this cpu cache.
3096          */
3097         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3098                 skb_dst_drop(skb);
3099         else
3100                 skb_dst_force(skb);
3101
3102 #ifdef CONFIG_NET_SWITCHDEV
3103         /* Don't forward if offload device already forwarded */
3104         if (skb->offload_fwd_mark &&
3105             skb->offload_fwd_mark == dev->offload_fwd_mark) {
3106                 consume_skb(skb);
3107                 rc = NET_XMIT_SUCCESS;
3108                 goto out;
3109         }
3110 #endif
3111
3112         txq = netdev_pick_tx(dev, skb, accel_priv);
3113         q = rcu_dereference_bh(txq->qdisc);
3114
3115 #ifdef CONFIG_NET_CLS_ACT
3116         skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
3117 #endif
3118         trace_net_dev_queue(skb);
3119         if (q->enqueue) {
3120                 rc = __dev_xmit_skb(skb, q, dev, txq);
3121                 goto out;
3122         }
3123
3124         /* The device has no queue. Common case for software devices:
3125            loopback, all the sorts of tunnels...
3126
3127            Really, it is unlikely that netif_tx_lock protection is necessary
3128            here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3129            counters.)
3130            However, it is possible, that they rely on protection
3131            made by us here.
3132
3133            Check this and shot the lock. It is not prone from deadlocks.
3134            Either shot noqueue qdisc, it is even simpler 8)
3135          */
3136         if (dev->flags & IFF_UP) {
3137                 int cpu = smp_processor_id(); /* ok because BHs are off */
3138
3139                 if (txq->xmit_lock_owner != cpu) {
3140
3141                         if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
3142                                 goto recursion_alert;
3143
3144                         skb = validate_xmit_skb(skb, dev);
3145                         if (!skb)
3146                                 goto drop;
3147
3148                         HARD_TX_LOCK(dev, txq, cpu);
3149
3150                         if (!netif_xmit_stopped(txq)) {
3151                                 __this_cpu_inc(xmit_recursion);
3152                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3153                                 __this_cpu_dec(xmit_recursion);
3154                                 if (dev_xmit_complete(rc)) {
3155                                         HARD_TX_UNLOCK(dev, txq);
3156                                         goto out;
3157                                 }
3158                         }
3159                         HARD_TX_UNLOCK(dev, txq);
3160                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3161                                              dev->name);
3162                 } else {
3163                         /* Recursion is detected! It is possible,
3164                          * unfortunately
3165                          */
3166 recursion_alert:
3167                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3168                                              dev->name);
3169                 }
3170         }
3171
3172         rc = -ENETDOWN;
3173 drop:
3174         rcu_read_unlock_bh();
3175
3176         atomic_long_inc(&dev->tx_dropped);
3177         kfree_skb_list(skb);
3178         return rc;
3179 out:
3180         rcu_read_unlock_bh();
3181         return rc;
3182 }
3183
3184 int dev_queue_xmit(struct sk_buff *skb)
3185 {
3186         return __dev_queue_xmit(skb, NULL);
3187 }
3188 EXPORT_SYMBOL(dev_queue_xmit);
3189
3190 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3191 {
3192         return __dev_queue_xmit(skb, accel_priv);
3193 }
3194 EXPORT_SYMBOL(dev_queue_xmit_accel);
3195
3196
3197 /*=======================================================================
3198                         Receiver routines
3199   =======================================================================*/
3200
3201 int netdev_max_backlog __read_mostly = 1000;
3202 EXPORT_SYMBOL(netdev_max_backlog);
3203
3204 int netdev_tstamp_prequeue __read_mostly = 1;
3205 int netdev_budget __read_mostly = 300;
3206 int weight_p __read_mostly = 64;            /* old backlog weight */
3207
3208 /* Called with irq disabled */
3209 static inline void ____napi_schedule(struct softnet_data *sd,
3210                                      struct napi_struct *napi)
3211 {
3212         list_add_tail(&napi->poll_list, &sd->poll_list);
3213         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3214 }
3215
3216 #ifdef CONFIG_RPS
3217
3218 /* One global table that all flow-based protocols share. */
3219 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3220 EXPORT_SYMBOL(rps_sock_flow_table);
3221 u32 rps_cpu_mask __read_mostly;
3222 EXPORT_SYMBOL(rps_cpu_mask);
3223
3224 struct static_key rps_needed __read_mostly;
3225
3226 static struct rps_dev_flow *
3227 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3228             struct rps_dev_flow *rflow, u16 next_cpu)
3229 {
3230         if (next_cpu < nr_cpu_ids) {
3231 #ifdef CONFIG_RFS_ACCEL
3232                 struct netdev_rx_queue *rxqueue;
3233                 struct rps_dev_flow_table *flow_table;
3234                 struct rps_dev_flow *old_rflow;
3235                 u32 flow_id;
3236                 u16 rxq_index;
3237                 int rc;
3238
3239                 /* Should we steer this flow to a different hardware queue? */
3240                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3241                     !(dev->features & NETIF_F_NTUPLE))
3242                         goto out;
3243                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3244                 if (rxq_index == skb_get_rx_queue(skb))
3245                         goto out;
3246
3247                 rxqueue = dev->_rx + rxq_index;
3248                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3249                 if (!flow_table)
3250                         goto out;
3251                 flow_id = skb_get_hash(skb) & flow_table->mask;
3252                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3253                                                         rxq_index, flow_id);
3254                 if (rc < 0)
3255                         goto out;
3256                 old_rflow = rflow;
3257                 rflow = &flow_table->flows[flow_id];
3258                 rflow->filter = rc;
3259                 if (old_rflow->filter == rflow->filter)
3260                         old_rflow->filter = RPS_NO_FILTER;
3261         out:
3262 #endif
3263                 rflow->last_qtail =
3264                         per_cpu(softnet_data, next_cpu).input_queue_head;
3265         }
3266
3267         rflow->cpu = next_cpu;
3268         return rflow;
3269 }
3270
3271 /*
3272  * get_rps_cpu is called from netif_receive_skb and returns the target
3273  * CPU from the RPS map of the receiving queue for a given skb.
3274  * rcu_read_lock must be held on entry.
3275  */
3276 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3277                        struct rps_dev_flow **rflowp)
3278 {
3279         const struct rps_sock_flow_table *sock_flow_table;
3280         struct netdev_rx_queue *rxqueue = dev->_rx;
3281         struct rps_dev_flow_table *flow_table;
3282         struct rps_map *map;
3283         int cpu = -1;
3284         u32 tcpu;
3285         u32 hash;
3286
3287         if (skb_rx_queue_recorded(skb)) {
3288                 u16 index = skb_get_rx_queue(skb);
3289
3290                 if (unlikely(index >= dev->real_num_rx_queues)) {
3291                         WARN_ONCE(dev->real_num_rx_queues > 1,
3292                                   "%s received packet on queue %u, but number "
3293                                   "of RX queues is %u\n",
3294                                   dev->name, index, dev->real_num_rx_queues);
3295                         goto done;
3296                 }
3297                 rxqueue += index;
3298         }
3299
3300         /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3301
3302         flow_table = rcu_dereference(rxqueue->rps_flow_table);
3303         map = rcu_dereference(rxqueue->rps_map);
3304         if (!flow_table && !map)
3305                 goto done;
3306
3307         skb_reset_network_header(skb);
3308         hash = skb_get_hash(skb);
3309         if (!hash)
3310                 goto done;
3311
3312         sock_flow_table = rcu_dereference(rps_sock_flow_table);
3313         if (flow_table && sock_flow_table) {
3314                 struct rps_dev_flow *rflow;
3315                 u32 next_cpu;
3316                 u32 ident;
3317
3318                 /* First check into global flow table if there is a match */
3319                 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3320                 if ((ident ^ hash) & ~rps_cpu_mask)
3321                         goto try_rps;
3322
3323                 next_cpu = ident & rps_cpu_mask;
3324
3325                 /* OK, now we know there is a match,
3326                  * we can look at the local (per receive queue) flow table
3327                  */
3328                 rflow = &flow_table->flows[hash & flow_table->mask];
3329                 tcpu = rflow->cpu;
3330
3331                 /*
3332                  * If the desired CPU (where last recvmsg was done) is
3333                  * different from current CPU (one in the rx-queue flow
3334                  * table entry), switch if one of the following holds:
3335                  *   - Current CPU is unset (>= nr_cpu_ids).
3336                  *   - Current CPU is offline.
3337                  *   - The current CPU's queue tail has advanced beyond the
3338                  *     last packet that was enqueued using this table entry.
3339                  *     This guarantees that all previous packets for the flow
3340                  *     have been dequeued, thus preserving in order delivery.
3341                  */
3342                 if (unlikely(tcpu != next_cpu) &&
3343                     (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3344                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3345                       rflow->last_qtail)) >= 0)) {
3346                         tcpu = next_cpu;
3347                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3348                 }
3349
3350                 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3351                         *rflowp = rflow;
3352                         cpu = tcpu;
3353                         goto done;
3354                 }
3355         }
3356
3357 try_rps:
3358
3359         if (map) {
3360                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3361                 if (cpu_online(tcpu)) {
3362                         cpu = tcpu;
3363                         goto done;
3364                 }
3365         }
3366
3367 done:
3368         return cpu;
3369 }
3370
3371 #ifdef CONFIG_RFS_ACCEL
3372
3373 /**
3374  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3375  * @dev: Device on which the filter was set
3376  * @rxq_index: RX queue index
3377  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3378  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3379  *
3380  * Drivers that implement ndo_rx_flow_steer() should periodically call
3381  * this function for each installed filter and remove the filters for
3382  * which it returns %true.
3383  */
3384 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3385                          u32 flow_id, u16 filter_id)
3386 {
3387         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3388         struct rps_dev_flow_table *flow_table;
3389         struct rps_dev_flow *rflow;
3390         bool expire = true;
3391         unsigned int cpu;
3392
3393         rcu_read_lock();
3394         flow_table = rcu_dereference(rxqueue->rps_flow_table);
3395         if (flow_table && flow_id <= flow_table->mask) {
3396                 rflow = &flow_table->flows[flow_id];
3397                 cpu = ACCESS_ONCE(rflow->cpu);
3398                 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3399                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3400                            rflow->last_qtail) <
3401                      (int)(10 * flow_table->mask)))
3402                         expire = false;
3403         }
3404         rcu_read_unlock();
3405         return expire;
3406 }
3407 EXPORT_SYMBOL(rps_may_expire_flow);
3408
3409 #endif /* CONFIG_RFS_ACCEL */
3410
3411 /* Called from hardirq (IPI) context */
3412 static void rps_trigger_softirq(void *data)
3413 {
3414         struct softnet_data *sd = data;
3415
3416         ____napi_schedule(sd, &sd->backlog);
3417         sd->received_rps++;
3418 }
3419
3420 #endif /* CONFIG_RPS */
3421
3422 /*
3423  * Check if this softnet_data structure is another cpu one
3424  * If yes, queue it to our IPI list and return 1
3425  * If no, return 0
3426  */
3427 static int rps_ipi_queued(struct softnet_data *sd)
3428 {
3429 #ifdef CONFIG_RPS
3430         struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3431
3432         if (sd != mysd) {
3433                 sd->rps_ipi_next = mysd->rps_ipi_list;
3434                 mysd->rps_ipi_list = sd;
3435
3436                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3437                 return 1;
3438         }
3439 #endif /* CONFIG_RPS */
3440         return 0;
3441 }
3442
3443 #ifdef CONFIG_NET_FLOW_LIMIT
3444 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3445 #endif
3446
3447 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3448 {
3449 #ifdef CONFIG_NET_FLOW_LIMIT
3450         struct sd_flow_limit *fl;
3451         struct softnet_data *sd;
3452         unsigned int old_flow, new_flow;
3453
3454         if (qlen < (netdev_max_backlog >> 1))
3455                 return false;
3456
3457         sd = this_cpu_ptr(&softnet_data);
3458
3459         rcu_read_lock();
3460         fl = rcu_dereference(sd->flow_limit);
3461         if (fl) {
3462                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3463                 old_flow = fl->history[fl->history_head];
3464                 fl->history[fl->history_head] = new_flow;
3465
3466                 fl->history_head++;
3467                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3468
3469                 if (likely(fl->buckets[old_flow]))
3470                         fl->buckets[old_flow]--;
3471
3472                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3473                         fl->count++;
3474                         rcu_read_unlock();
3475                         return true;
3476                 }
3477         }
3478         rcu_read_unlock();
3479 #endif
3480         return false;
3481 }
3482
3483 /*
3484  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3485  * queue (may be a remote CPU queue).
3486  */
3487 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3488                               unsigned int *qtail)
3489 {
3490         struct softnet_data *sd;
3491         unsigned long flags;
3492         unsigned int qlen;
3493
3494         sd = &per_cpu(softnet_data, cpu);
3495
3496         local_irq_save(flags);
3497
3498         rps_lock(sd);
3499         if (!netif_running(skb->dev))
3500                 goto drop;
3501         qlen = skb_queue_len(&sd->input_pkt_queue);
3502         if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3503                 if (qlen) {
3504 enqueue:
3505                         __skb_queue_tail(&sd->input_pkt_queue, skb);
3506                         input_queue_tail_incr_save(sd, qtail);
3507                         rps_unlock(sd);
3508                         local_irq_restore(flags);
3509                         return NET_RX_SUCCESS;
3510                 }
3511
3512                 /* Schedule NAPI for backlog device
3513                  * We can use non atomic operation since we own the queue lock
3514                  */
3515                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3516                         if (!rps_ipi_queued(sd))
3517                                 ____napi_schedule(sd, &sd->backlog);
3518                 }
3519                 goto enqueue;
3520         }
3521
3522 drop:
3523         sd->dropped++;
3524         rps_unlock(sd);
3525
3526         local_irq_restore(flags);
3527
3528         atomic_long_inc(&skb->dev->rx_dropped);
3529         kfree_skb(skb);
3530         return NET_RX_DROP;
3531 }
3532
3533 static int netif_rx_internal(struct sk_buff *skb)
3534 {
3535         int ret;
3536
3537         net_timestamp_check(netdev_tstamp_prequeue, skb);
3538
3539         trace_netif_rx(skb);
3540 #ifdef CONFIG_RPS
3541         if (static_key_false(&rps_needed)) {
3542                 struct rps_dev_flow voidflow, *rflow = &voidflow;
3543                 int cpu;
3544
3545                 preempt_disable();
3546                 rcu_read_lock();
3547
3548                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3549                 if (cpu < 0)
3550                         cpu = smp_processor_id();
3551
3552                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3553
3554                 rcu_read_unlock();
3555                 preempt_enable();
3556         } else
3557 #endif
3558         {
3559                 unsigned int qtail;
3560                 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3561                 put_cpu();
3562         }
3563         return ret;
3564 }
3565
3566 /**
3567  *      netif_rx        -       post buffer to the network code
3568  *      @skb: buffer to post
3569  *
3570  *      This function receives a packet from a device driver and queues it for
3571  *      the upper (protocol) levels to process.  It always succeeds. The buffer
3572  *      may be dropped during processing for congestion control or by the
3573  *      protocol layers.
3574  *
3575  *      return values:
3576  *      NET_RX_SUCCESS  (no congestion)
3577  *      NET_RX_DROP     (packet was dropped)
3578  *
3579  */
3580
3581 int netif_rx(struct sk_buff *skb)
3582 {
3583         trace_netif_rx_entry(skb);
3584
3585         return netif_rx_internal(skb);
3586 }
3587 EXPORT_SYMBOL(netif_rx);
3588
3589 int netif_rx_ni(struct sk_buff *skb)
3590 {
3591         int err;
3592
3593         trace_netif_rx_ni_entry(skb);
3594
3595         preempt_disable();
3596         err = netif_rx_internal(skb);
3597         if (local_softirq_pending())
3598                 do_softirq();
3599         preempt_enable();
3600
3601         return err;
3602 }
3603 EXPORT_SYMBOL(netif_rx_ni);
3604
3605 static void net_tx_action(struct softirq_action *h)
3606 {
3607         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3608
3609         if (sd->completion_queue) {
3610                 struct sk_buff *clist;
3611
3612                 local_irq_disable();
3613                 clist = sd->completion_queue;
3614                 sd->completion_queue = NULL;
3615                 local_irq_enable();
3616
3617                 while (clist) {
3618                         struct sk_buff *skb = clist;
3619                         clist = clist->next;
3620
3621                         WARN_ON(atomic_read(&skb->users));
3622                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3623                                 trace_consume_skb(skb);
3624                         else
3625                                 trace_kfree_skb(skb, net_tx_action);
3626                         __kfree_skb(skb);
3627                 }
3628         }
3629
3630         if (sd->output_queue) {
3631                 struct Qdisc *head;
3632
3633                 local_irq_disable();
3634                 head = sd->output_queue;
3635                 sd->output_queue = NULL;
3636                 sd->output_queue_tailp = &sd->output_queue;
3637                 local_irq_enable();
3638
3639                 while (head) {
3640                         struct Qdisc *q = head;
3641                         spinlock_t *root_lock;
3642
3643                         head = head->next_sched;
3644
3645                         root_lock = qdisc_lock(q);
3646                         if (spin_trylock(root_lock)) {
3647                                 smp_mb__before_atomic();
3648                                 clear_bit(__QDISC_STATE_SCHED,
3649                                           &q->state);
3650                                 qdisc_run(q);
3651                                 spin_unlock(root_lock);
3652                         } else {
3653                                 if (!test_bit(__QDISC_STATE_DEACTIVATED,
3654                                               &q->state)) {
3655                                         __netif_reschedule(q);
3656                                 } else {
3657                                         smp_mb__before_atomic();
3658                                         clear_bit(__QDISC_STATE_SCHED,
3659                                                   &q->state);
3660                                 }
3661                         }
3662                 }
3663         }
3664 }
3665
3666 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3667     (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3668 /* This hook is defined here for ATM LANE */
3669 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3670                              unsigned char *addr) __read_mostly;
3671 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3672 #endif
3673
3674 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3675                                          struct packet_type **pt_prev,
3676                                          int *ret, struct net_device *orig_dev)
3677 {
3678 #ifdef CONFIG_NET_CLS_ACT
3679         struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
3680         struct tcf_result cl_res;
3681
3682         /* If there's at least one ingress present somewhere (so
3683          * we get here via enabled static key), remaining devices
3684          * that are not configured with an ingress qdisc will bail
3685          * out here.
3686          */
3687         if (!cl)
3688                 return skb;
3689         if (*pt_prev) {
3690                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3691                 *pt_prev = NULL;
3692         }
3693
3694         qdisc_skb_cb(skb)->pkt_len = skb->len;
3695         skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3696         qdisc_bstats_cpu_update(cl->q, skb);
3697
3698         switch (tc_classify(skb, cl, &cl_res, false)) {
3699         case TC_ACT_OK:
3700         case TC_ACT_RECLASSIFY:
3701                 skb->tc_index = TC_H_MIN(cl_res.classid);
3702                 break;
3703         case TC_ACT_SHOT:
3704                 qdisc_qstats_cpu_drop(cl->q);
3705         case TC_ACT_STOLEN:
3706         case TC_ACT_QUEUED:
3707                 kfree_skb(skb);
3708                 return NULL;
3709         case TC_ACT_REDIRECT:
3710                 /* skb_mac_header check was done by cls/act_bpf, so
3711                  * we can safely push the L2 header back before
3712                  * redirecting to another netdev
3713                  */
3714                 __skb_push(skb, skb->mac_len);
3715                 skb_do_redirect(skb);
3716                 return NULL;
3717         default:
3718                 break;
3719         }
3720 #endif /* CONFIG_NET_CLS_ACT */
3721         return skb;
3722 }
3723
3724 /**
3725  *      netdev_is_rx_handler_busy - check if receive handler is registered
3726  *      @dev: device to check
3727  *
3728  *      Check if a receive handler is already registered for a given device.
3729  *      Return true if there one.
3730  *
3731  *      The caller must hold the rtnl_mutex.
3732  */
3733 bool netdev_is_rx_handler_busy(struct net_device *dev)
3734 {
3735         ASSERT_RTNL();
3736         return dev && rtnl_dereference(dev->rx_handler);
3737 }
3738 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
3739
3740 /**
3741  *      netdev_rx_handler_register - register receive handler
3742  *      @dev: device to register a handler for
3743  *      @rx_handler: receive handler to register
3744  *      @rx_handler_data: data pointer that is used by rx handler
3745  *
3746  *      Register a receive handler for a device. This handler will then be
3747  *      called from __netif_receive_skb. A negative errno code is returned
3748  *      on a failure.
3749  *
3750  *      The caller must hold the rtnl_mutex.
3751  *
3752  *      For a general description of rx_handler, see enum rx_handler_result.
3753  */
3754 int netdev_rx_handler_register(struct net_device *dev,
3755                                rx_handler_func_t *rx_handler,
3756                                void *rx_handler_data)
3757 {
3758         ASSERT_RTNL();
3759
3760         if (dev->rx_handler)
3761                 return -EBUSY;
3762
3763         /* Note: rx_handler_data must be set before rx_handler */
3764         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3765         rcu_assign_pointer(dev->rx_handler, rx_handler);
3766
3767         return 0;
3768 }
3769 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3770
3771 /**
3772  *      netdev_rx_handler_unregister - unregister receive handler
3773  *      @dev: device to unregister a handler from
3774  *
3775  *      Unregister a receive handler from a device.
3776  *
3777  *      The caller must hold the rtnl_mutex.
3778  */
3779 void netdev_rx_handler_unregister(struct net_device *dev)
3780 {
3781
3782         ASSERT_RTNL();
3783         RCU_INIT_POINTER(dev->rx_handler, NULL);
3784         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3785          * section has a guarantee to see a non NULL rx_handler_data
3786          * as well.
3787          */
3788         synchronize_net();
3789         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3790 }
3791 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3792
3793 /*
3794  * Limit the use of PFMEMALLOC reserves to those protocols that implement
3795  * the special handling of PFMEMALLOC skbs.
3796  */
3797 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3798 {
3799         switch (skb->protocol) {
3800         case htons(ETH_P_ARP):
3801         case htons(ETH_P_IP):
3802         case htons(ETH_P_IPV6):
3803         case htons(ETH_P_8021Q):
3804         case htons(ETH_P_8021AD):
3805                 return true;
3806         default:
3807                 return false;
3808         }
3809 }
3810
3811 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
3812                              int *ret, struct net_device *orig_dev)
3813 {
3814 #ifdef CONFIG_NETFILTER_INGRESS
3815         if (nf_hook_ingress_active(skb)) {
3816                 if (*pt_prev) {
3817                         *ret = deliver_skb(skb, *pt_prev, orig_dev);
3818                         *pt_prev = NULL;
3819                 }
3820
3821                 return nf_hook_ingress(skb);
3822         }
3823 #endif /* CONFIG_NETFILTER_INGRESS */
3824         return 0;
3825 }
3826
3827 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
3828 {
3829         struct packet_type *ptype, *pt_prev;
3830         rx_handler_func_t *rx_handler;
3831         struct net_device *orig_dev;
3832         bool deliver_exact = false;
3833         int ret = NET_RX_DROP;
3834         __be16 type;
3835
3836         net_timestamp_check(!netdev_tstamp_prequeue, skb);
3837
3838         trace_netif_receive_skb(skb);
3839
3840         orig_dev = skb->dev;
3841
3842         skb_reset_network_header(skb);
3843         if (!skb_transport_header_was_set(skb))
3844                 skb_reset_transport_header(skb);
3845         skb_reset_mac_len(skb);
3846
3847         pt_prev = NULL;
3848
3849 another_round:
3850         skb->skb_iif = skb->dev->ifindex;
3851
3852         __this_cpu_inc(softnet_data.processed);
3853
3854         if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
3855             skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
3856                 skb = skb_vlan_untag(skb);
3857                 if (unlikely(!skb))
3858                         goto out;
3859         }
3860
3861 #ifdef CONFIG_NET_CLS_ACT
3862         if (skb->tc_verd & TC_NCLS) {
3863                 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3864                 goto ncls;
3865         }
3866 #endif
3867
3868         if (pfmemalloc)
3869                 goto skip_taps;
3870
3871         list_for_each_entry_rcu(ptype, &ptype_all, list) {
3872                 if (pt_prev)
3873                         ret = deliver_skb(skb, pt_prev, orig_dev);
3874                 pt_prev = ptype;
3875         }
3876
3877         list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
3878                 if (pt_prev)
3879                         ret = deliver_skb(skb, pt_prev, orig_dev);
3880                 pt_prev = ptype;
3881         }
3882
3883 skip_taps:
3884 #ifdef CONFIG_NET_INGRESS
3885         if (static_key_false(&ingress_needed)) {
3886                 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3887                 if (!skb)
3888                         goto out;
3889
3890                 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
3891                         goto out;
3892         }
3893 #endif
3894 #ifdef CONFIG_NET_CLS_ACT
3895         skb->tc_verd = 0;
3896 ncls:
3897 #endif
3898         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
3899                 goto drop;
3900
3901         if (skb_vlan_tag_present(skb)) {
3902                 if (pt_prev) {
3903                         ret = deliver_skb(skb, pt_prev, orig_dev);
3904                         pt_prev = NULL;
3905                 }
3906                 if (vlan_do_receive(&skb))
3907                         goto another_round;
3908                 else if (unlikely(!skb))
3909                         goto out;
3910         }
3911
3912         rx_handler = rcu_dereference(skb->dev->rx_handler);
3913         if (rx_handler) {
3914                 if (pt_prev) {
3915                         ret = deliver_skb(skb, pt_prev, orig_dev);
3916                         pt_prev = NULL;
3917                 }
3918                 switch (rx_handler(&skb)) {
3919                 case RX_HANDLER_CONSUMED:
3920                         ret = NET_RX_SUCCESS;
3921                         goto out;
3922                 case RX_HANDLER_ANOTHER:
3923                         goto another_round;
3924                 case RX_HANDLER_EXACT:
3925                         deliver_exact = true;
3926                 case RX_HANDLER_PASS:
3927                         break;
3928                 default:
3929                         BUG();
3930                 }
3931         }
3932
3933         if (unlikely(skb_vlan_tag_present(skb))) {
3934                 if (skb_vlan_tag_get_id(skb))
3935                         skb->pkt_type = PACKET_OTHERHOST;
3936                 /* Note: we might in the future use prio bits
3937                  * and set skb->priority like in vlan_do_receive()
3938                  * For the time being, just ignore Priority Code Point
3939                  */
3940                 skb->vlan_tci = 0;
3941         }
3942
3943         type = skb->protocol;
3944
3945         /* deliver only exact match when indicated */
3946         if (likely(!deliver_exact)) {
3947                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3948                                        &ptype_base[ntohs(type) &
3949                                                    PTYPE_HASH_MASK]);
3950         }
3951
3952         deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3953                                &orig_dev->ptype_specific);
3954
3955         if (unlikely(skb->dev != orig_dev)) {
3956                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3957                                        &skb->dev->ptype_specific);
3958         }
3959
3960         if (pt_prev) {
3961                 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3962                         goto drop;
3963                 else
3964                         ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3965         } else {
3966 drop:
3967                 atomic_long_inc(&skb->dev->rx_dropped);
3968                 kfree_skb(skb);
3969                 /* Jamal, now you will not able to escape explaining
3970                  * me how you were going to use this. :-)
3971                  */
3972                 ret = NET_RX_DROP;
3973         }
3974
3975 out:
3976         return ret;
3977 }
3978
3979 static int __netif_receive_skb(struct sk_buff *skb)
3980 {
3981         int ret;
3982
3983         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
3984                 unsigned long pflags = current->flags;
3985
3986                 /*
3987                  * PFMEMALLOC skbs are special, they should
3988                  * - be delivered to SOCK_MEMALLOC sockets only
3989                  * - stay away from userspace
3990                  * - have bounded memory usage
3991                  *
3992                  * Use PF_MEMALLOC as this saves us from propagating the allocation
3993                  * context down to all allocation sites.
3994                  */
3995                 current->flags |= PF_MEMALLOC;
3996                 ret = __netif_receive_skb_core(skb, true);
3997                 tsk_restore_flags(current, pflags, PF_MEMALLOC);
3998         } else
3999                 ret = __netif_receive_skb_core(skb, false);
4000
4001         return ret;
4002 }
4003
4004 static int netif_receive_skb_internal(struct sk_buff *skb)
4005 {
4006         int ret;
4007
4008         net_timestamp_check(netdev_tstamp_prequeue, skb);
4009
4010         if (skb_defer_rx_timestamp(skb))
4011                 return NET_RX_SUCCESS;
4012
4013         rcu_read_lock();
4014
4015 #ifdef CONFIG_RPS
4016         if (static_key_false(&rps_needed)) {
4017                 struct rps_dev_flow voidflow, *rflow = &voidflow;
4018                 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
4019
4020                 if (cpu >= 0) {
4021                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4022                         rcu_read_unlock();
4023                         return ret;
4024                 }
4025         }
4026 #endif
4027         ret = __netif_receive_skb(skb);
4028         rcu_read_unlock();
4029         return ret;
4030 }
4031
4032 /**
4033  *      netif_receive_skb - process receive buffer from network
4034  *      @skb: buffer to process
4035  *
4036  *      netif_receive_skb() is the main receive data processing function.
4037  *      It always succeeds. The buffer may be dropped during processing
4038  *      for congestion control or by the protocol layers.
4039  *
4040  *      This function may only be called from softirq context and interrupts
4041  *      should be enabled.
4042  *
4043  *      Return values (usually ignored):
4044  *      NET_RX_SUCCESS: no congestion
4045  *      NET_RX_DROP: packet was dropped
4046  */
4047 int netif_receive_skb(struct sk_buff *skb)
4048 {
4049         trace_netif_receive_skb_entry(skb);
4050
4051         return netif_receive_skb_internal(skb);
4052 }
4053 EXPORT_SYMBOL(netif_receive_skb);
4054
4055 /* Network device is going away, flush any packets still pending
4056  * Called with irqs disabled.
4057  */
4058 static void flush_backlog(void *arg)
4059 {
4060         struct net_device *dev = arg;
4061         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4062         struct sk_buff *skb, *tmp;
4063
4064         rps_lock(sd);
4065         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4066                 if (skb->dev == dev) {
4067                         __skb_unlink(skb, &sd->input_pkt_queue);
4068                         kfree_skb(skb);
4069                         input_queue_head_incr(sd);
4070                 }
4071         }
4072         rps_unlock(sd);
4073
4074         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4075                 if (skb->dev == dev) {
4076                         __skb_unlink(skb, &sd->process_queue);
4077                         kfree_skb(skb);
4078                         input_queue_head_incr(sd);
4079                 }
4080         }
4081 }
4082
4083 static int napi_gro_complete(struct sk_buff *skb)
4084 {
4085         struct packet_offload *ptype;
4086         __be16 type = skb->protocol;
4087         struct list_head *head = &offload_base;
4088         int err = -ENOENT;
4089
4090         BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4091
4092         if (NAPI_GRO_CB(skb)->count == 1) {
4093                 skb_shinfo(skb)->gso_size = 0;
4094                 goto out;
4095         }
4096
4097         rcu_read_lock();
4098         list_for_each_entry_rcu(ptype, head, list) {
4099                 if (ptype->type != type || !ptype->callbacks.gro_complete)
4100                         continue;
4101
4102                 err = ptype->callbacks.gro_complete(skb, 0);
4103                 break;
4104         }
4105         rcu_read_unlock();
4106
4107         if (err) {
4108                 WARN_ON(&ptype->list == head);
4109                 kfree_skb(skb);
4110                 return NET_RX_SUCCESS;
4111         }
4112
4113 out:
4114         return netif_receive_skb_internal(skb);
4115 }
4116
4117 /* napi->gro_list contains packets ordered by age.
4118  * youngest packets at the head of it.
4119  * Complete skbs in reverse order to reduce latencies.
4120  */
4121 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4122 {
4123         struct sk_buff *skb, *prev = NULL;
4124
4125         /* scan list and build reverse chain */
4126         for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4127                 skb->prev = prev;
4128                 prev = skb;
4129         }
4130
4131         for (skb = prev; skb; skb = prev) {
4132                 skb->next = NULL;
4133
4134                 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4135                         return;
4136
4137                 prev = skb->prev;
4138                 napi_gro_complete(skb);
4139                 napi->gro_count--;
4140         }
4141
4142         napi->gro_list = NULL;
4143 }
4144 EXPORT_SYMBOL(napi_gro_flush);
4145
4146 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4147 {
4148         struct sk_buff *p;
4149         unsigned int maclen = skb->dev->hard_header_len;
4150         u32 hash = skb_get_hash_raw(skb);
4151
4152         for (p = napi->gro_list; p; p = p->next) {
4153                 unsigned long diffs;
4154
4155                 NAPI_GRO_CB(p)->flush = 0;
4156
4157                 if (hash != skb_get_hash_raw(p)) {
4158                         NAPI_GRO_CB(p)->same_flow = 0;
4159                         continue;
4160                 }
4161
4162                 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4163                 diffs |= p->vlan_tci ^ skb->vlan_tci;
4164                 diffs |= skb_metadata_dst_cmp(p, skb);
4165                 if (maclen == ETH_HLEN)
4166                         diffs |= compare_ether_header(skb_mac_header(p),
4167                                                       skb_mac_header(skb));
4168                 else if (!diffs)
4169                         diffs = memcmp(skb_mac_header(p),
4170                                        skb_mac_header(skb),
4171                                        maclen);
4172                 NAPI_GRO_CB(p)->same_flow = !diffs;
4173         }
4174 }
4175
4176 static void skb_gro_reset_offset(struct sk_buff *skb)
4177 {
4178         const struct skb_shared_info *pinfo = skb_shinfo(skb);
4179         const skb_frag_t *frag0 = &pinfo->frags[0];
4180
4181         NAPI_GRO_CB(skb)->data_offset = 0;
4182         NAPI_GRO_CB(skb)->frag0 = NULL;
4183         NAPI_GRO_CB(skb)->frag0_len = 0;
4184
4185         if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4186             pinfo->nr_frags &&
4187             !PageHighMem(skb_frag_page(frag0))) {
4188                 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4189                 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
4190         }
4191 }
4192
4193 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4194 {
4195         struct skb_shared_info *pinfo = skb_shinfo(skb);
4196
4197         BUG_ON(skb->end - skb->tail < grow);
4198
4199         memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4200
4201         skb->data_len -= grow;
4202         skb->tail += grow;
4203
4204         pinfo->frags[0].page_offset += grow;
4205         skb_frag_size_sub(&pinfo->frags[0], grow);
4206
4207         if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4208                 skb_frag_unref(skb, 0);
4209                 memmove(pinfo->frags, pinfo->frags + 1,
4210                         --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4211         }
4212 }
4213
4214 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4215 {
4216         struct sk_buff **pp = NULL;
4217         struct packet_offload *ptype;
4218         __be16 type = skb->protocol;
4219         struct list_head *head = &offload_base;
4220         int same_flow;
4221         enum gro_result ret;
4222         int grow;
4223
4224         if (!(skb->dev->features & NETIF_F_GRO))
4225                 goto normal;
4226
4227         if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad)
4228                 goto normal;
4229
4230         gro_list_prepare(napi, skb);
4231
4232         rcu_read_lock();
4233         list_for_each_entry_rcu(ptype, head, list) {
4234                 if (ptype->type != type || !ptype->callbacks.gro_receive)
4235                         continue;
4236
4237                 skb_set_network_header(skb, skb_gro_offset(skb));
4238                 skb_reset_mac_len(skb);
4239                 NAPI_GRO_CB(skb)->same_flow = 0;
4240                 NAPI_GRO_CB(skb)->flush = 0;
4241                 NAPI_GRO_CB(skb)->free = 0;
4242                 NAPI_GRO_CB(skb)->encap_mark = 0;
4243                 NAPI_GRO_CB(skb)->recursion_counter = 0;
4244                 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4245
4246                 /* Setup for GRO checksum validation */
4247                 switch (skb->ip_summed) {
4248                 case CHECKSUM_COMPLETE:
4249                         NAPI_GRO_CB(skb)->csum = skb->csum;
4250                         NAPI_GRO_CB(skb)->csum_valid = 1;
4251                         NAPI_GRO_CB(skb)->csum_cnt = 0;
4252                         break;
4253                 case CHECKSUM_UNNECESSARY:
4254                         NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4255                         NAPI_GRO_CB(skb)->csum_valid = 0;
4256                         break;
4257                 default:
4258                         NAPI_GRO_CB(skb)->csum_cnt = 0;
4259                         NAPI_GRO_CB(skb)->csum_valid = 0;
4260                 }
4261
4262                 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4263                 break;
4264         }
4265         rcu_read_unlock();
4266
4267         if (&ptype->list == head)
4268                 goto normal;
4269
4270         same_flow = NAPI_GRO_CB(skb)->same_flow;
4271         ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4272
4273         if (pp) {
4274                 struct sk_buff *nskb = *pp;
4275
4276                 *pp = nskb->next;
4277                 nskb->next = NULL;
4278                 napi_gro_complete(nskb);
4279                 napi->gro_count--;
4280         }
4281
4282         if (same_flow)
4283                 goto ok;
4284
4285         if (NAPI_GRO_CB(skb)->flush)
4286                 goto normal;
4287
4288         if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4289                 struct sk_buff *nskb = napi->gro_list;
4290
4291                 /* locate the end of the list to select the 'oldest' flow */
4292                 while (nskb->next) {
4293                         pp = &nskb->next;
4294                         nskb = *pp;
4295                 }
4296                 *pp = NULL;
4297                 nskb->next = NULL;
4298                 napi_gro_complete(nskb);
4299         } else {
4300                 napi->gro_count++;
4301         }
4302         NAPI_GRO_CB(skb)->count = 1;
4303         NAPI_GRO_CB(skb)->age = jiffies;
4304         NAPI_GRO_CB(skb)->last = skb;
4305         skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4306         skb->next = napi->gro_list;
4307         napi->gro_list = skb;
4308         ret = GRO_HELD;
4309
4310 pull:
4311         grow = skb_gro_offset(skb) - skb_headlen(skb);
4312         if (grow > 0)
4313                 gro_pull_from_frag0(skb, grow);
4314 ok:
4315         return ret;
4316
4317 normal:
4318         ret = GRO_NORMAL;
4319         goto pull;
4320 }
4321
4322 struct packet_offload *gro_find_receive_by_type(__be16 type)
4323 {
4324         struct list_head *offload_head = &offload_base;
4325         struct packet_offload *ptype;
4326
4327         list_for_each_entry_rcu(ptype, offload_head, list) {
4328                 if (ptype->type != type || !ptype->callbacks.gro_receive)
4329                         continue;
4330                 return ptype;
4331         }
4332         return NULL;
4333 }
4334 EXPORT_SYMBOL(gro_find_receive_by_type);
4335
4336 struct packet_offload *gro_find_complete_by_type(__be16 type)
4337 {
4338         struct list_head *offload_head = &offload_base;
4339         struct packet_offload *ptype;
4340
4341         list_for_each_entry_rcu(ptype, offload_head, list) {
4342                 if (ptype->type != type || !ptype->callbacks.gro_complete)
4343                         continue;
4344                 return ptype;
4345         }
4346         return NULL;
4347 }
4348 EXPORT_SYMBOL(gro_find_complete_by_type);
4349
4350 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4351 {
4352         switch (ret) {
4353         case GRO_NORMAL:
4354                 if (netif_receive_skb_internal(skb))
4355                         ret = GRO_DROP;
4356                 break;
4357
4358         case GRO_DROP:
4359                 kfree_skb(skb);
4360                 break;
4361
4362         case GRO_MERGED_FREE:
4363                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) {
4364                         skb_dst_drop(skb);
4365                         kmem_cache_free(skbuff_head_cache, skb);
4366                 } else {
4367                         __kfree_skb(skb);
4368                 }
4369                 break;
4370
4371         case GRO_HELD:
4372         case GRO_MERGED:
4373                 break;
4374         }
4375
4376         return ret;
4377 }
4378
4379 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4380 {
4381         trace_napi_gro_receive_entry(skb);
4382
4383         skb_gro_reset_offset(skb);
4384
4385         return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4386 }
4387 EXPORT_SYMBOL(napi_gro_receive);
4388
4389 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4390 {
4391         if (unlikely(skb->pfmemalloc)) {
4392                 consume_skb(skb);
4393                 return;
4394         }
4395         __skb_pull(skb, skb_headlen(skb));
4396         /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4397         skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4398         skb->vlan_tci = 0;
4399         skb->dev = napi->dev;
4400         skb->skb_iif = 0;
4401         skb->encapsulation = 0;
4402         skb_shinfo(skb)->gso_type = 0;
4403         skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4404
4405         napi->skb = skb;
4406 }
4407
4408 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4409 {
4410         struct sk_buff *skb = napi->skb;
4411
4412         if (!skb) {
4413                 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
4414                 napi->skb = skb;
4415         }
4416         return skb;
4417 }
4418 EXPORT_SYMBOL(napi_get_frags);
4419
4420 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4421                                       struct sk_buff *skb,
4422                                       gro_result_t ret)
4423 {
4424         switch (ret) {
4425         case GRO_NORMAL:
4426         case GRO_HELD:
4427                 __skb_push(skb, ETH_HLEN);
4428                 skb->protocol = eth_type_trans(skb, skb->dev);
4429                 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4430                         ret = GRO_DROP;
4431                 break;
4432
4433         case GRO_DROP:
4434         case GRO_MERGED_FREE:
4435                 napi_reuse_skb(napi, skb);
4436                 break;
4437
4438         case GRO_MERGED:
4439                 break;
4440         }
4441
4442         return ret;
4443 }
4444
4445 /* Upper GRO stack assumes network header starts at gro_offset=0
4446  * Drivers could call both napi_gro_frags() and napi_gro_receive()
4447  * We copy ethernet header into skb->data to have a common layout.
4448  */
4449 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4450 {
4451         struct sk_buff *skb = napi->skb;
4452         const struct ethhdr *eth;
4453         unsigned int hlen = sizeof(*eth);
4454
4455         napi->skb = NULL;
4456
4457         skb_reset_mac_header(skb);
4458         skb_gro_reset_offset(skb);
4459
4460         eth = skb_gro_header_fast(skb, 0);
4461         if (unlikely(skb_gro_header_hard(skb, hlen))) {
4462                 eth = skb_gro_header_slow(skb, hlen, 0);
4463                 if (unlikely(!eth)) {
4464                         napi_reuse_skb(napi, skb);
4465                         return NULL;
4466                 }
4467         } else {
4468                 gro_pull_from_frag0(skb, hlen);
4469                 NAPI_GRO_CB(skb)->frag0 += hlen;
4470                 NAPI_GRO_CB(skb)->frag0_len -= hlen;
4471         }
4472         __skb_pull(skb, hlen);
4473
4474         /*
4475          * This works because the only protocols we care about don't require
4476          * special handling.
4477          * We'll fix it up properly in napi_frags_finish()
4478          */
4479         skb->protocol = eth->h_proto;
4480
4481         return skb;
4482 }
4483
4484 gro_result_t napi_gro_frags(struct napi_struct *napi)
4485 {
4486         struct sk_buff *skb = napi_frags_skb(napi);
4487
4488         if (!skb)
4489                 return GRO_DROP;
4490
4491         trace_napi_gro_frags_entry(skb);
4492
4493         return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4494 }
4495 EXPORT_SYMBOL(napi_gro_frags);
4496
4497 /* Compute the checksum from gro_offset and return the folded value
4498  * after adding in any pseudo checksum.
4499  */
4500 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4501 {
4502         __wsum wsum;
4503         __sum16 sum;
4504
4505         wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4506
4507         /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4508         sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4509         if (likely(!sum)) {
4510                 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4511                     !skb->csum_complete_sw)
4512                         netdev_rx_csum_fault(skb->dev);
4513         }
4514
4515         NAPI_GRO_CB(skb)->csum = wsum;
4516         NAPI_GRO_CB(skb)->csum_valid = 1;
4517
4518         return sum;
4519 }
4520 EXPORT_SYMBOL(__skb_gro_checksum_complete);
4521
4522 /*
4523  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4524  * Note: called with local irq disabled, but exits with local irq enabled.
4525  */
4526 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4527 {
4528 #ifdef CONFIG_RPS
4529         struct softnet_data *remsd = sd->rps_ipi_list;
4530
4531         if (remsd) {
4532                 sd->rps_ipi_list = NULL;
4533
4534                 local_irq_enable();
4535
4536                 /* Send pending IPI's to kick RPS processing on remote cpus. */
4537                 while (remsd) {
4538                         struct softnet_data *next = remsd->rps_ipi_next;
4539
4540                         if (cpu_online(remsd->cpu))
4541                                 smp_call_function_single_async(remsd->cpu,
4542                                                            &remsd->csd);
4543                         remsd = next;
4544                 }
4545         } else
4546 #endif
4547                 local_irq_enable();
4548 }
4549
4550 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4551 {
4552 #ifdef CONFIG_RPS
4553         return sd->rps_ipi_list != NULL;
4554 #else
4555         return false;
4556 #endif
4557 }
4558
4559 static int process_backlog(struct napi_struct *napi, int quota)
4560 {
4561         int work = 0;
4562         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4563
4564         /* Check if we have pending ipi, its better to send them now,
4565          * not waiting net_rx_action() end.
4566          */
4567         if (sd_has_rps_ipi_waiting(sd)) {
4568                 local_irq_disable();
4569                 net_rps_action_and_irq_enable(sd);
4570         }
4571
4572         napi->weight = weight_p;
4573         local_irq_disable();
4574         while (1) {
4575                 struct sk_buff *skb;
4576
4577                 while ((skb = __skb_dequeue(&sd->process_queue))) {
4578                         rcu_read_lock();
4579                         local_irq_enable();
4580                         __netif_receive_skb(skb);
4581                         rcu_read_unlock();
4582                         local_irq_disable();
4583                         input_queue_head_incr(sd);
4584                         if (++work >= quota) {
4585                                 local_irq_enable();
4586                                 return work;
4587                         }
4588                 }
4589
4590                 rps_lock(sd);
4591                 if (skb_queue_empty(&sd->input_pkt_queue)) {
4592                         /*
4593                          * Inline a custom version of __napi_complete().
4594                          * only current cpu owns and manipulates this napi,
4595                          * and NAPI_STATE_SCHED is the only possible flag set
4596                          * on backlog.
4597                          * We can use a plain write instead of clear_bit(),
4598                          * and we dont need an smp_mb() memory barrier.
4599                          */
4600                         napi->state = 0;
4601                         rps_unlock(sd);
4602
4603                         break;
4604                 }
4605
4606                 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4607                                            &sd->process_queue);
4608                 rps_unlock(sd);
4609         }
4610         local_irq_enable();
4611
4612         return work;
4613 }
4614
4615 /**
4616  * __napi_schedule - schedule for receive
4617  * @n: entry to schedule
4618  *
4619  * The entry's receive function will be scheduled to run.
4620  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
4621  */
4622 void __napi_schedule(struct napi_struct *n)
4623 {
4624         unsigned long flags;
4625
4626         local_irq_save(flags);
4627         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4628         local_irq_restore(flags);
4629 }
4630 EXPORT_SYMBOL(__napi_schedule);
4631
4632 /**
4633  * __napi_schedule_irqoff - schedule for receive
4634  * @n: entry to schedule
4635  *
4636  * Variant of __napi_schedule() assuming hard irqs are masked
4637  */
4638 void __napi_schedule_irqoff(struct napi_struct *n)
4639 {
4640         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4641 }
4642 EXPORT_SYMBOL(__napi_schedule_irqoff);
4643
4644 void __napi_complete(struct napi_struct *n)
4645 {
4646         BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4647
4648         list_del_init(&n->poll_list);
4649         smp_mb__before_atomic();
4650         clear_bit(NAPI_STATE_SCHED, &n->state);
4651 }
4652 EXPORT_SYMBOL(__napi_complete);
4653
4654 void napi_complete_done(struct napi_struct *n, int work_done)
4655 {
4656         unsigned long flags;
4657
4658         /*
4659          * don't let napi dequeue from the cpu poll list
4660          * just in case its running on a different cpu
4661          */
4662         if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4663                 return;
4664
4665         if (n->gro_list) {
4666                 unsigned long timeout = 0;
4667
4668                 if (work_done)
4669                         timeout = n->dev->gro_flush_timeout;
4670
4671                 if (timeout)
4672                         hrtimer_start(&n->timer, ns_to_ktime(timeout),
4673                                       HRTIMER_MODE_REL_PINNED);
4674                 else
4675                         napi_gro_flush(n, false);
4676         }
4677         if (likely(list_empty(&n->poll_list))) {
4678                 WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state));
4679         } else {
4680                 /* If n->poll_list is not empty, we need to mask irqs */
4681                 local_irq_save(flags);
4682                 __napi_complete(n);
4683                 local_irq_restore(flags);
4684         }
4685 }
4686 EXPORT_SYMBOL(napi_complete_done);
4687
4688 /* must be called under rcu_read_lock(), as we dont take a reference */
4689 struct napi_struct *napi_by_id(unsigned int napi_id)
4690 {
4691         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4692         struct napi_struct *napi;
4693
4694         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4695                 if (napi->napi_id == napi_id)
4696                         return napi;
4697
4698         return NULL;
4699 }
4700 EXPORT_SYMBOL_GPL(napi_by_id);
4701
4702 void napi_hash_add(struct napi_struct *napi)
4703 {
4704         if (!test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) {
4705
4706                 spin_lock(&napi_hash_lock);
4707
4708                 /* 0 is not a valid id, we also skip an id that is taken
4709                  * we expect both events to be extremely rare
4710                  */
4711                 napi->napi_id = 0;
4712                 while (!napi->napi_id) {
4713                         napi->napi_id = ++napi_gen_id;
4714                         if (napi_by_id(napi->napi_id))
4715                                 napi->napi_id = 0;
4716                 }
4717
4718                 hlist_add_head_rcu(&napi->napi_hash_node,
4719                         &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
4720
4721                 spin_unlock(&napi_hash_lock);
4722         }
4723 }
4724 EXPORT_SYMBOL_GPL(napi_hash_add);
4725
4726 /* Warning : caller is responsible to make sure rcu grace period
4727  * is respected before freeing memory containing @napi
4728  */
4729 void napi_hash_del(struct napi_struct *napi)
4730 {
4731         spin_lock(&napi_hash_lock);
4732
4733         if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state))
4734                 hlist_del_rcu(&napi->napi_hash_node);
4735
4736         spin_unlock(&napi_hash_lock);
4737 }
4738 EXPORT_SYMBOL_GPL(napi_hash_del);
4739
4740 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
4741 {
4742         struct napi_struct *napi;
4743
4744         napi = container_of(timer, struct napi_struct, timer);
4745         if (napi->gro_list)
4746                 napi_schedule(napi);
4747
4748         return HRTIMER_NORESTART;
4749 }
4750
4751 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4752                     int (*poll)(struct napi_struct *, int), int weight)
4753 {
4754         INIT_LIST_HEAD(&napi->poll_list);
4755         hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
4756         napi->timer.function = napi_watchdog;
4757         napi->gro_count = 0;
4758         napi->gro_list = NULL;
4759         napi->skb = NULL;
4760         napi->poll = poll;
4761         if (weight > NAPI_POLL_WEIGHT)
4762                 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
4763                             weight, dev->name);
4764         napi->weight = weight;
4765         list_add(&napi->dev_list, &dev->napi_list);
4766         napi->dev = dev;
4767 #ifdef CONFIG_NETPOLL
4768         spin_lock_init(&napi->poll_lock);
4769         napi->poll_owner = -1;
4770 #endif
4771         set_bit(NAPI_STATE_SCHED, &napi->state);
4772 }
4773 EXPORT_SYMBOL(netif_napi_add);
4774
4775 void napi_disable(struct napi_struct *n)
4776 {
4777         might_sleep();
4778         set_bit(NAPI_STATE_DISABLE, &n->state);
4779
4780         while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
4781                 msleep(1);
4782         while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
4783                 msleep(1);
4784
4785         hrtimer_cancel(&n->timer);
4786
4787         clear_bit(NAPI_STATE_DISABLE, &n->state);
4788 }
4789 EXPORT_SYMBOL(napi_disable);
4790
4791 void netif_napi_del(struct napi_struct *napi)
4792 {
4793         list_del_init(&napi->dev_list);
4794         napi_free_frags(napi);
4795
4796         kfree_skb_list(napi->gro_list);
4797         napi->gro_list = NULL;
4798         napi->gro_count = 0;
4799 }
4800 EXPORT_SYMBOL(netif_napi_del);
4801
4802 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
4803 {
4804         void *have;
4805         int work, weight;
4806
4807         list_del_init(&n->poll_list);
4808
4809         have = netpoll_poll_lock(n);
4810
4811         weight = n->weight;
4812
4813         /* This NAPI_STATE_SCHED test is for avoiding a race
4814          * with netpoll's poll_napi().  Only the entity which
4815          * obtains the lock and sees NAPI_STATE_SCHED set will
4816          * actually make the ->poll() call.  Therefore we avoid
4817          * accidentally calling ->poll() when NAPI is not scheduled.
4818          */
4819         work = 0;
4820         if (test_bit(NAPI_STATE_SCHED, &n->state)) {
4821                 work = n->poll(n, weight);
4822                 trace_napi_poll(n);
4823         }
4824
4825         WARN_ON_ONCE(work > weight);
4826
4827         if (likely(work < weight))
4828                 goto out_unlock;
4829
4830         /* Drivers must not modify the NAPI state if they
4831          * consume the entire weight.  In such cases this code
4832          * still "owns" the NAPI instance and therefore can
4833          * move the instance around on the list at-will.
4834          */
4835         if (unlikely(napi_disable_pending(n))) {
4836                 napi_complete(n);
4837                 goto out_unlock;
4838         }
4839
4840         if (n->gro_list) {
4841                 /* flush too old packets
4842                  * If HZ < 1000, flush all packets.
4843                  */
4844                 napi_gro_flush(n, HZ >= 1000);
4845         }
4846
4847         /* Some drivers may have called napi_schedule
4848          * prior to exhausting their budget.
4849          */
4850         if (unlikely(!list_empty(&n->poll_list))) {
4851                 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
4852                              n->dev ? n->dev->name : "backlog");
4853                 goto out_unlock;
4854         }
4855
4856         list_add_tail(&n->poll_list, repoll);
4857
4858 out_unlock:
4859         netpoll_poll_unlock(have);
4860
4861         return work;
4862 }
4863
4864 static void net_rx_action(struct softirq_action *h)
4865 {
4866         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4867         unsigned long time_limit = jiffies + 2;
4868         int budget = netdev_budget;
4869         LIST_HEAD(list);
4870         LIST_HEAD(repoll);
4871
4872         local_irq_disable();
4873         list_splice_init(&sd->poll_list, &list);
4874         local_irq_enable();
4875
4876         for (;;) {
4877                 struct napi_struct *n;
4878
4879                 if (list_empty(&list)) {
4880                         if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
4881                                 return;
4882                         break;
4883                 }
4884
4885                 n = list_first_entry(&list, struct napi_struct, poll_list);
4886                 budget -= napi_poll(n, &repoll);
4887
4888                 /* If softirq window is exhausted then punt.
4889                  * Allow this to run for 2 jiffies since which will allow
4890                  * an average latency of 1.5/HZ.
4891                  */
4892                 if (unlikely(budget <= 0 ||
4893                              time_after_eq(jiffies, time_limit))) {
4894                         sd->time_squeeze++;
4895                         break;
4896                 }
4897         }
4898
4899         local_irq_disable();
4900
4901         list_splice_tail_init(&sd->poll_list, &list);
4902         list_splice_tail(&repoll, &list);
4903         list_splice(&list, &sd->poll_list);
4904         if (!list_empty(&sd->poll_list))
4905                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4906
4907         net_rps_action_and_irq_enable(sd);
4908 }
4909
4910 struct netdev_adjacent {
4911         struct net_device *dev;
4912
4913         /* upper master flag, there can only be one master device per list */
4914         bool master;
4915
4916         /* counter for the number of times this device was added to us */
4917         u16 ref_nr;
4918
4919         /* private field for the users */
4920         void *private;
4921
4922         struct list_head list;
4923         struct rcu_head rcu;
4924 };
4925
4926 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
4927                                                  struct list_head *adj_list)
4928 {
4929         struct netdev_adjacent *adj;
4930
4931         list_for_each_entry(adj, adj_list, list) {
4932                 if (adj->dev == adj_dev)
4933                         return adj;
4934         }
4935         return NULL;
4936 }
4937
4938 /**
4939  * netdev_has_upper_dev - Check if device is linked to an upper device
4940  * @dev: device
4941  * @upper_dev: upper device to check
4942  *
4943  * Find out if a device is linked to specified upper device and return true
4944  * in case it is. Note that this checks only immediate upper device,
4945  * not through a complete stack of devices. The caller must hold the RTNL lock.
4946  */
4947 bool netdev_has_upper_dev(struct net_device *dev,
4948                           struct net_device *upper_dev)
4949 {
4950         ASSERT_RTNL();
4951
4952         return __netdev_find_adj(upper_dev, &dev->all_adj_list.upper);
4953 }
4954 EXPORT_SYMBOL(netdev_has_upper_dev);
4955
4956 /**
4957  * netdev_has_any_upper_dev - Check if device is linked to some device
4958  * @dev: device
4959  *
4960  * Find out if a device is linked to an upper device and return true in case
4961  * it is. The caller must hold the RTNL lock.
4962  */
4963 static bool netdev_has_any_upper_dev(struct net_device *dev)
4964 {
4965         ASSERT_RTNL();
4966
4967         return !list_empty(&dev->all_adj_list.upper);
4968 }
4969
4970 /**
4971  * netdev_master_upper_dev_get - Get master upper device
4972  * @dev: device
4973  *
4974  * Find a master upper device and return pointer to it or NULL in case
4975  * it's not there. The caller must hold the RTNL lock.
4976  */
4977 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
4978 {
4979         struct netdev_adjacent *upper;
4980
4981         ASSERT_RTNL();
4982
4983         if (list_empty(&dev->adj_list.upper))
4984                 return NULL;
4985
4986         upper = list_first_entry(&dev->adj_list.upper,
4987                                  struct netdev_adjacent, list);
4988         if (likely(upper->master))
4989                 return upper->dev;
4990         return NULL;
4991 }
4992 EXPORT_SYMBOL(netdev_master_upper_dev_get);
4993
4994 void *netdev_adjacent_get_private(struct list_head *adj_list)
4995 {
4996         struct netdev_adjacent *adj;
4997
4998         adj = list_entry(adj_list, struct netdev_adjacent, list);
4999
5000         return adj->private;
5001 }
5002 EXPORT_SYMBOL(netdev_adjacent_get_private);
5003
5004 /**
5005  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5006  * @dev: device
5007  * @iter: list_head ** of the current position
5008  *
5009  * Gets the next device from the dev's upper list, starting from iter
5010  * position. The caller must hold RCU read lock.
5011  */
5012 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5013                                                  struct list_head **iter)
5014 {
5015         struct netdev_adjacent *upper;
5016
5017         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5018
5019         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5020
5021         if (&upper->list == &dev->adj_list.upper)
5022                 return NULL;
5023
5024         *iter = &upper->list;
5025
5026         return upper->dev;
5027 }
5028 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5029
5030 /**
5031  * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
5032  * @dev: device
5033  * @iter: list_head ** of the current position
5034  *
5035  * Gets the next device from the dev's upper list, starting from iter
5036  * position. The caller must hold RCU read lock.
5037  */
5038 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
5039                                                      struct list_head **iter)
5040 {
5041         struct netdev_adjacent *upper;
5042
5043         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5044
5045         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5046
5047         if (&upper->list == &dev->all_adj_list.upper)
5048                 return NULL;
5049
5050         *iter = &upper->list;
5051
5052         return upper->dev;
5053 }
5054 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
5055
5056 /**
5057  * netdev_lower_get_next_private - Get the next ->private from the
5058  *                                 lower neighbour list
5059  * @dev: device
5060  * @iter: list_head ** of the current position
5061  *
5062  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5063  * list, starting from iter position. The caller must hold either hold the
5064  * RTNL lock or its own locking that guarantees that the neighbour lower
5065  * list will remain unchanged.
5066  */
5067 void *netdev_lower_get_next_private(struct net_device *dev,
5068                                     struct list_head **iter)
5069 {
5070         struct netdev_adjacent *lower;
5071
5072         lower = list_entry(*iter, struct netdev_adjacent, list);
5073
5074         if (&lower->list == &dev->adj_list.lower)
5075                 return NULL;
5076
5077         *iter = lower->list.next;
5078
5079         return lower->private;
5080 }
5081 EXPORT_SYMBOL(netdev_lower_get_next_private);
5082
5083 /**
5084  * netdev_lower_get_next_private_rcu - Get the next ->private from the
5085  *                                     lower neighbour list, RCU
5086  *                                     variant
5087  * @dev: device
5088  * @iter: list_head ** of the current position
5089  *
5090  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5091  * list, starting from iter position. The caller must hold RCU read lock.
5092  */
5093 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5094                                         struct list_head **iter)
5095 {
5096         struct netdev_adjacent *lower;
5097
5098         WARN_ON_ONCE(!rcu_read_lock_held());
5099
5100         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5101
5102         if (&lower->list == &dev->adj_list.lower)
5103                 return NULL;
5104
5105         *iter = &lower->list;
5106
5107         return lower->private;
5108 }
5109 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5110
5111 /**
5112  * netdev_lower_get_next - Get the next device from the lower neighbour
5113  *                         list
5114  * @dev: device
5115  * @iter: list_head ** of the current position
5116  *
5117  * Gets the next netdev_adjacent from the dev's lower neighbour
5118  * list, starting from iter position. The caller must hold RTNL lock or
5119  * its own locking that guarantees that the neighbour lower
5120  * list will remain unchanged.
5121  */
5122 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5123 {
5124         struct netdev_adjacent *lower;
5125
5126         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
5127
5128         if (&lower->list == &dev->adj_list.lower)
5129                 return NULL;
5130
5131         *iter = &lower->list;
5132
5133         return lower->dev;
5134 }
5135 EXPORT_SYMBOL(netdev_lower_get_next);
5136
5137 /**
5138  * netdev_lower_get_first_private_rcu - Get the first ->private from the
5139  *                                     lower neighbour list, RCU
5140  *                                     variant
5141  * @dev: device
5142  *
5143  * Gets the first netdev_adjacent->private from the dev's lower neighbour
5144  * list. The caller must hold RCU read lock.
5145  */
5146 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
5147 {
5148         struct netdev_adjacent *lower;
5149
5150         lower = list_first_or_null_rcu(&dev->adj_list.lower,
5151                         struct netdev_adjacent, list);
5152         if (lower)
5153                 return lower->private;
5154         return NULL;
5155 }
5156 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
5157
5158 /**
5159  * netdev_master_upper_dev_get_rcu - Get master upper device
5160  * @dev: device
5161  *
5162  * Find a master upper device and return pointer to it or NULL in case
5163  * it's not there. The caller must hold the RCU read lock.
5164  */
5165 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
5166 {
5167         struct netdev_adjacent *upper;
5168
5169         upper = list_first_or_null_rcu(&dev->adj_list.upper,
5170                                        struct netdev_adjacent, list);
5171         if (upper && likely(upper->master))
5172                 return upper->dev;
5173         return NULL;
5174 }
5175 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
5176
5177 static int netdev_adjacent_sysfs_add(struct net_device *dev,
5178                               struct net_device *adj_dev,
5179                               struct list_head *dev_list)
5180 {
5181         char linkname[IFNAMSIZ+7];
5182         sprintf(linkname, dev_list == &dev->adj_list.upper ?
5183                 "upper_%s" : "lower_%s", adj_dev->name);
5184         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
5185                                  linkname);
5186 }
5187 static void netdev_adjacent_sysfs_del(struct net_device *dev,
5188                                char *name,
5189                                struct list_head *dev_list)
5190 {
5191         char linkname[IFNAMSIZ+7];
5192         sprintf(linkname, dev_list == &dev->adj_list.upper ?
5193                 "upper_%s" : "lower_%s", name);
5194         sysfs_remove_link(&(dev->dev.kobj), linkname);
5195 }
5196
5197 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
5198                                                  struct net_device *adj_dev,
5199                                                  struct list_head *dev_list)
5200 {
5201         return (dev_list == &dev->adj_list.upper ||
5202                 dev_list == &dev->adj_list.lower) &&
5203                 net_eq(dev_net(dev), dev_net(adj_dev));
5204 }
5205
5206 static int __netdev_adjacent_dev_insert(struct net_device *dev,
5207                                         struct net_device *adj_dev,
5208                                         u16 ref_nr,
5209                                         struct list_head *dev_list,
5210                                         void *private, bool master)
5211 {
5212         struct netdev_adjacent *adj;
5213         int ret;
5214
5215         adj = __netdev_find_adj(adj_dev, dev_list);
5216
5217         if (adj) {
5218                 adj->ref_nr += ref_nr;
5219                 return 0;
5220         }
5221
5222         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5223         if (!adj)
5224                 return -ENOMEM;
5225
5226         adj->dev = adj_dev;
5227         adj->master = master;
5228         adj->ref_nr = ref_nr;
5229         adj->private = private;
5230         dev_hold(adj_dev);
5231
5232         pr_debug("dev_hold for %s, because of link added from %s to %s\n",
5233                  adj_dev->name, dev->name, adj_dev->name);
5234
5235         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
5236                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5237                 if (ret)
5238                         goto free_adj;
5239         }
5240
5241         /* Ensure that master link is always the first item in list. */
5242         if (master) {
5243                 ret = sysfs_create_link(&(dev->dev.kobj),
5244                                         &(adj_dev->dev.kobj), "master");
5245                 if (ret)
5246                         goto remove_symlinks;
5247
5248                 list_add_rcu(&adj->list, dev_list);
5249         } else {
5250                 list_add_tail_rcu(&adj->list, dev_list);
5251         }
5252
5253         return 0;
5254
5255 remove_symlinks:
5256         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5257                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5258 free_adj:
5259         kfree(adj);
5260         dev_put(adj_dev);
5261
5262         return ret;
5263 }
5264
5265 static void __netdev_adjacent_dev_remove(struct net_device *dev,
5266                                          struct net_device *adj_dev,
5267                                          u16 ref_nr,
5268                                          struct list_head *dev_list)
5269 {
5270         struct netdev_adjacent *adj;
5271
5272         adj = __netdev_find_adj(adj_dev, dev_list);
5273
5274         if (!adj) {
5275                 pr_err("tried to remove device %s from %s\n",
5276                        dev->name, adj_dev->name);
5277                 BUG();
5278         }
5279
5280         if (adj->ref_nr > ref_nr) {
5281                 pr_debug("%s to %s ref_nr-%d = %d\n", dev->name, adj_dev->name,
5282                          ref_nr, adj->ref_nr-ref_nr);
5283                 adj->ref_nr -= ref_nr;
5284                 return;
5285         }
5286
5287         if (adj->master)
5288                 sysfs_remove_link(&(dev->dev.kobj), "master");
5289
5290         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5291                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5292
5293         list_del_rcu(&adj->list);
5294         pr_debug("dev_put for %s, because link removed from %s to %s\n",
5295                  adj_dev->name, dev->name, adj_dev->name);
5296         dev_put(adj_dev);
5297         kfree_rcu(adj, rcu);
5298 }
5299
5300 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5301                                             struct net_device *upper_dev,
5302                                             u16 ref_nr,
5303                                             struct list_head *up_list,
5304                                             struct list_head *down_list,
5305                                             void *private, bool master)
5306 {
5307         int ret;
5308
5309         ret = __netdev_adjacent_dev_insert(dev, upper_dev, ref_nr, up_list,
5310                                            private, master);
5311         if (ret)
5312                 return ret;
5313
5314         ret = __netdev_adjacent_dev_insert(upper_dev, dev, ref_nr, down_list,
5315                                            private, false);
5316         if (ret) {
5317                 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
5318                 return ret;
5319         }
5320
5321         return 0;
5322 }
5323
5324 static int __netdev_adjacent_dev_link(struct net_device *dev,
5325                                       struct net_device *upper_dev,
5326                                       u16 ref_nr)
5327 {
5328         return __netdev_adjacent_dev_link_lists(dev, upper_dev, ref_nr,
5329                                                 &dev->all_adj_list.upper,
5330                                                 &upper_dev->all_adj_list.lower,
5331                                                 NULL, false);
5332 }
5333
5334 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5335                                                struct net_device *upper_dev,
5336                                                u16 ref_nr,
5337                                                struct list_head *up_list,
5338                                                struct list_head *down_list)
5339 {
5340         __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
5341         __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
5342 }
5343
5344 static void __netdev_adjacent_dev_unlink(struct net_device *dev,
5345                                          struct net_device *upper_dev,
5346                                          u16 ref_nr)
5347 {
5348         __netdev_adjacent_dev_unlink_lists(dev, upper_dev, ref_nr,
5349                                            &dev->all_adj_list.upper,
5350                                            &upper_dev->all_adj_list.lower);
5351 }
5352
5353 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5354                                                 struct net_device *upper_dev,
5355                                                 void *private, bool master)
5356 {
5357         int ret = __netdev_adjacent_dev_link(dev, upper_dev, 1);
5358
5359         if (ret)
5360                 return ret;
5361
5362         ret = __netdev_adjacent_dev_link_lists(dev, upper_dev, 1,
5363                                                &dev->adj_list.upper,
5364                                                &upper_dev->adj_list.lower,
5365                                                private, master);
5366         if (ret) {
5367                 __netdev_adjacent_dev_unlink(dev, upper_dev, 1);
5368                 return ret;
5369         }
5370
5371         return 0;
5372 }
5373
5374 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5375                                                    struct net_device *upper_dev)
5376 {
5377         __netdev_adjacent_dev_unlink(dev, upper_dev, 1);
5378         __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
5379                                            &dev->adj_list.upper,
5380                                            &upper_dev->adj_list.lower);
5381 }
5382
5383 static int __netdev_upper_dev_link(struct net_device *dev,
5384                                    struct net_device *upper_dev, bool master,
5385                                    void *private)
5386 {
5387         struct netdev_notifier_changeupper_info changeupper_info;
5388         struct netdev_adjacent *i, *j, *to_i, *to_j;
5389         int ret = 0;
5390
5391         ASSERT_RTNL();
5392
5393         if (dev == upper_dev)
5394                 return -EBUSY;
5395
5396         /* To prevent loops, check if dev is not upper device to upper_dev. */
5397         if (__netdev_find_adj(dev, &upper_dev->all_adj_list.upper))
5398                 return -EBUSY;
5399
5400         if (__netdev_find_adj(upper_dev, &dev->adj_list.upper))
5401                 return -EEXIST;
5402
5403         if (master && netdev_master_upper_dev_get(dev))
5404                 return -EBUSY;
5405
5406         changeupper_info.upper_dev = upper_dev;
5407         changeupper_info.master = master;
5408         changeupper_info.linking = true;
5409
5410         ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5411                                             &changeupper_info.info);
5412         ret = notifier_to_errno(ret);
5413         if (ret)
5414                 return ret;
5415
5416         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, private,
5417                                                    master);
5418         if (ret)
5419                 return ret;
5420
5421         /* Now that we linked these devs, make all the upper_dev's
5422          * all_adj_list.upper visible to every dev's all_adj_list.lower an
5423          * versa, and don't forget the devices itself. All of these
5424          * links are non-neighbours.
5425          */
5426         list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5427                 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5428                         pr_debug("Interlinking %s with %s, non-neighbour\n",
5429                                  i->dev->name, j->dev->name);
5430                         ret = __netdev_adjacent_dev_link(i->dev, j->dev, i->ref_nr);
5431                         if (ret)
5432                                 goto rollback_mesh;
5433                 }
5434         }
5435
5436         /* add dev to every upper_dev's upper device */
5437         list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5438                 pr_debug("linking %s's upper device %s with %s\n",
5439                          upper_dev->name, i->dev->name, dev->name);
5440                 ret = __netdev_adjacent_dev_link(dev, i->dev, i->ref_nr);
5441                 if (ret)
5442                         goto rollback_upper_mesh;
5443         }
5444
5445         /* add upper_dev to every dev's lower device */
5446         list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5447                 pr_debug("linking %s's lower device %s with %s\n", dev->name,
5448                          i->dev->name, upper_dev->name);
5449                 ret = __netdev_adjacent_dev_link(i->dev, upper_dev, i->ref_nr);
5450                 if (ret)
5451                         goto rollback_lower_mesh;
5452         }
5453
5454         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5455                                       &changeupper_info.info);
5456         return 0;
5457
5458 rollback_lower_mesh:
5459         to_i = i;
5460         list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5461                 if (i == to_i)
5462                         break;
5463                 __netdev_adjacent_dev_unlink(i->dev, upper_dev, i->ref_nr);
5464         }
5465
5466         i = NULL;
5467
5468 rollback_upper_mesh:
5469         to_i = i;
5470         list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5471                 if (i == to_i)
5472                         break;
5473                 __netdev_adjacent_dev_unlink(dev, i->dev, i->ref_nr);
5474         }
5475
5476         i = j = NULL;
5477
5478 rollback_mesh:
5479         to_i = i;
5480         to_j = j;
5481         list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5482                 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5483                         if (i == to_i && j == to_j)
5484                                 break;
5485                         __netdev_adjacent_dev_unlink(i->dev, j->dev, i->ref_nr);
5486                 }
5487                 if (i == to_i)
5488                         break;
5489         }
5490
5491         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5492
5493         return ret;
5494 }
5495
5496 /**
5497  * netdev_upper_dev_link - Add a link to the upper device
5498  * @dev: device
5499  * @upper_dev: new upper device
5500  *
5501  * Adds a link to device which is upper to this one. The caller must hold
5502  * the RTNL lock. On a failure a negative errno code is returned.
5503  * On success the reference counts are adjusted and the function
5504  * returns zero.
5505  */
5506 int netdev_upper_dev_link(struct net_device *dev,
5507                           struct net_device *upper_dev)
5508 {
5509         return __netdev_upper_dev_link(dev, upper_dev, false, NULL);
5510 }
5511 EXPORT_SYMBOL(netdev_upper_dev_link);
5512
5513 /**
5514  * netdev_master_upper_dev_link - Add a master link to the upper device
5515  * @dev: device
5516  * @upper_dev: new upper device
5517  *
5518  * Adds a link to device which is upper to this one. In this case, only
5519  * one master upper device can be linked, although other non-master devices
5520  * might be linked as well. The caller must hold the RTNL lock.
5521  * On a failure a negative errno code is returned. On success the reference
5522  * counts are adjusted and the function returns zero.
5523  */
5524 int netdev_master_upper_dev_link(struct net_device *dev,
5525                                  struct net_device *upper_dev)
5526 {
5527         return __netdev_upper_dev_link(dev, upper_dev, true, NULL);
5528 }
5529 EXPORT_SYMBOL(netdev_master_upper_dev_link);
5530
5531 int netdev_master_upper_dev_link_private(struct net_device *dev,
5532                                          struct net_device *upper_dev,
5533                                          void *private)
5534 {
5535         return __netdev_upper_dev_link(dev, upper_dev, true, private);
5536 }
5537 EXPORT_SYMBOL(netdev_master_upper_dev_link_private);
5538
5539 /**
5540  * netdev_upper_dev_unlink - Removes a link to upper device
5541  * @dev: device
5542  * @upper_dev: new upper device
5543  *
5544  * Removes a link to device which is upper to this one. The caller must hold
5545  * the RTNL lock.
5546  */
5547 void netdev_upper_dev_unlink(struct net_device *dev,
5548                              struct net_device *upper_dev)
5549 {
5550         struct netdev_notifier_changeupper_info changeupper_info;
5551         struct netdev_adjacent *i, *j;
5552         ASSERT_RTNL();
5553
5554         changeupper_info.upper_dev = upper_dev;
5555         changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
5556         changeupper_info.linking = false;
5557
5558         call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5559                                       &changeupper_info.info);
5560
5561         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5562
5563         /* Here is the tricky part. We must remove all dev's lower
5564          * devices from all upper_dev's upper devices and vice
5565          * versa, to maintain the graph relationship.
5566          */
5567         list_for_each_entry(i, &dev->all_adj_list.lower, list)
5568                 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5569                         __netdev_adjacent_dev_unlink(i->dev, j->dev, i->ref_nr);
5570
5571         /* remove also the devices itself from lower/upper device
5572          * list
5573          */
5574         list_for_each_entry(i, &dev->all_adj_list.lower, list)
5575                 __netdev_adjacent_dev_unlink(i->dev, upper_dev, i->ref_nr);
5576
5577         list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5578                 __netdev_adjacent_dev_unlink(dev, i->dev, i->ref_nr);
5579
5580         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5581                                       &changeupper_info.info);
5582 }
5583 EXPORT_SYMBOL(netdev_upper_dev_unlink);
5584
5585 /**
5586  * netdev_bonding_info_change - Dispatch event about slave change
5587  * @dev: device
5588  * @bonding_info: info to dispatch
5589  *
5590  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
5591  * The caller must hold the RTNL lock.
5592  */
5593 void netdev_bonding_info_change(struct net_device *dev,
5594                                 struct netdev_bonding_info *bonding_info)
5595 {
5596         struct netdev_notifier_bonding_info     info;
5597
5598         memcpy(&info.bonding_info, bonding_info,
5599                sizeof(struct netdev_bonding_info));
5600         call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
5601                                       &info.info);
5602 }
5603 EXPORT_SYMBOL(netdev_bonding_info_change);
5604
5605 static void netdev_adjacent_add_links(struct net_device *dev)
5606 {
5607         struct netdev_adjacent *iter;
5608
5609         struct net *net = dev_net(dev);
5610
5611         list_for_each_entry(iter, &dev->adj_list.upper, list) {
5612                 if (!net_eq(net,dev_net(iter->dev)))
5613                         continue;
5614                 netdev_adjacent_sysfs_add(iter->dev, dev,
5615                                           &iter->dev->adj_list.lower);
5616                 netdev_adjacent_sysfs_add(dev, iter->dev,
5617                                           &dev->adj_list.upper);
5618         }
5619
5620         list_for_each_entry(iter, &dev->adj_list.lower, list) {
5621                 if (!net_eq(net,dev_net(iter->dev)))
5622                         continue;
5623                 netdev_adjacent_sysfs_add(iter->dev, dev,
5624                                           &iter->dev->adj_list.upper);
5625                 netdev_adjacent_sysfs_add(dev, iter->dev,
5626                                           &dev->adj_list.lower);
5627         }
5628 }
5629
5630 static void netdev_adjacent_del_links(struct net_device *dev)
5631 {
5632         struct netdev_adjacent *iter;
5633
5634         struct net *net = dev_net(dev);
5635
5636         list_for_each_entry(iter, &dev->adj_list.upper, list) {
5637                 if (!net_eq(net,dev_net(iter->dev)))
5638                         continue;
5639                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5640                                           &iter->dev->adj_list.lower);
5641                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5642                                           &dev->adj_list.upper);
5643         }
5644
5645         list_for_each_entry(iter, &dev->adj_list.lower, list) {
5646                 if (!net_eq(net,dev_net(iter->dev)))
5647                         continue;
5648                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5649                                           &iter->dev->adj_list.upper);
5650                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5651                                           &dev->adj_list.lower);
5652         }
5653 }
5654
5655 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
5656 {
5657         struct netdev_adjacent *iter;
5658
5659         struct net *net = dev_net(dev);
5660
5661         list_for_each_entry(iter, &dev->adj_list.upper, list) {
5662                 if (!net_eq(net,dev_net(iter->dev)))
5663                         continue;
5664                 netdev_adjacent_sysfs_del(iter->dev, oldname,
5665                                           &iter->dev->adj_list.lower);
5666                 netdev_adjacent_sysfs_add(iter->dev, dev,
5667                                           &iter->dev->adj_list.lower);
5668         }
5669
5670         list_for_each_entry(iter, &dev->adj_list.lower, list) {
5671                 if (!net_eq(net,dev_net(iter->dev)))
5672                         continue;
5673                 netdev_adjacent_sysfs_del(iter->dev, oldname,
5674                                           &iter->dev->adj_list.upper);
5675                 netdev_adjacent_sysfs_add(iter->dev, dev,
5676                                           &iter->dev->adj_list.upper);
5677         }
5678 }
5679
5680 void *netdev_lower_dev_get_private(struct net_device *dev,
5681                                    struct net_device *lower_dev)
5682 {
5683         struct netdev_adjacent *lower;
5684
5685         if (!lower_dev)
5686                 return NULL;
5687         lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
5688         if (!lower)
5689                 return NULL;
5690
5691         return lower->private;
5692 }
5693 EXPORT_SYMBOL(netdev_lower_dev_get_private);
5694
5695
5696 int dev_get_nest_level(struct net_device *dev,
5697                        bool (*type_check)(struct net_device *dev))
5698 {
5699         struct net_device *lower = NULL;
5700         struct list_head *iter;
5701         int max_nest = -1;
5702         int nest;
5703
5704         ASSERT_RTNL();
5705
5706         netdev_for_each_lower_dev(dev, lower, iter) {
5707                 nest = dev_get_nest_level(lower, type_check);
5708                 if (max_nest < nest)
5709                         max_nest = nest;
5710         }
5711
5712         if (type_check(dev))
5713                 max_nest++;
5714
5715         return max_nest;
5716 }
5717 EXPORT_SYMBOL(dev_get_nest_level);
5718
5719 static void dev_change_rx_flags(struct net_device *dev, int flags)
5720 {
5721         const struct net_device_ops *ops = dev->netdev_ops;
5722
5723         if (ops->ndo_change_rx_flags)
5724                 ops->ndo_change_rx_flags(dev, flags);
5725 }
5726
5727 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
5728 {
5729         unsigned int old_flags = dev->flags;
5730         kuid_t uid;
5731         kgid_t gid;
5732
5733         ASSERT_RTNL();
5734
5735         dev->flags |= IFF_PROMISC;
5736         dev->promiscuity += inc;
5737         if (dev->promiscuity == 0) {
5738                 /*
5739                  * Avoid overflow.
5740                  * If inc causes overflow, untouch promisc and return error.
5741                  */
5742                 if (inc < 0)
5743                         dev->flags &= ~IFF_PROMISC;
5744                 else {
5745                         dev->promiscuity -= inc;
5746                         pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
5747                                 dev->name);
5748                         return -EOVERFLOW;
5749                 }
5750         }
5751         if (dev->flags != old_flags) {
5752                 pr_info("device %s %s promiscuous mode\n",
5753                         dev->name,
5754                         dev->flags & IFF_PROMISC ? "entered" : "left");
5755                 if (audit_enabled) {
5756                         current_uid_gid(&uid, &gid);
5757                         audit_log(current->audit_context, GFP_ATOMIC,
5758                                 AUDIT_ANOM_PROMISCUOUS,
5759                                 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
5760                                 dev->name, (dev->flags & IFF_PROMISC),
5761                                 (old_flags & IFF_PROMISC),
5762                                 from_kuid(&init_user_ns, audit_get_loginuid(current)),
5763                                 from_kuid(&init_user_ns, uid),
5764                                 from_kgid(&init_user_ns, gid),
5765                                 audit_get_sessionid(current));
5766                 }
5767
5768                 dev_change_rx_flags(dev, IFF_PROMISC);
5769         }
5770         if (notify)
5771                 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
5772         return 0;
5773 }
5774
5775 /**
5776  *      dev_set_promiscuity     - update promiscuity count on a device
5777  *      @dev: device
5778  *      @inc: modifier
5779  *
5780  *      Add or remove promiscuity from a device. While the count in the device
5781  *      remains above zero the interface remains promiscuous. Once it hits zero
5782  *      the device reverts back to normal filtering operation. A negative inc
5783  *      value is used to drop promiscuity on the device.
5784  *      Return 0 if successful or a negative errno code on error.
5785  */
5786 int dev_set_promiscuity(struct net_device *dev, int inc)
5787 {
5788         unsigned int old_flags = dev->flags;
5789         int err;
5790
5791         err = __dev_set_promiscuity(dev, inc, true);
5792         if (err < 0)
5793                 return err;
5794         if (dev->flags != old_flags)
5795                 dev_set_rx_mode(dev);
5796         return err;
5797 }
5798 EXPORT_SYMBOL(dev_set_promiscuity);
5799
5800 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
5801 {
5802         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
5803
5804         ASSERT_RTNL();
5805
5806         dev->flags |= IFF_ALLMULTI;
5807         dev->allmulti += inc;
5808         if (dev->allmulti == 0) {
5809                 /*
5810                  * Avoid overflow.
5811                  * If inc causes overflow, untouch allmulti and return error.
5812                  */
5813                 if (inc < 0)
5814                         dev->flags &= ~IFF_ALLMULTI;
5815                 else {
5816                         dev->allmulti -= inc;
5817                         pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
5818                                 dev->name);
5819                         return -EOVERFLOW;
5820                 }
5821         }
5822         if (dev->flags ^ old_flags) {
5823                 dev_change_rx_flags(dev, IFF_ALLMULTI);
5824                 dev_set_rx_mode(dev);
5825                 if (notify)
5826                         __dev_notify_flags(dev, old_flags,
5827                                            dev->gflags ^ old_gflags);
5828         }
5829         return 0;
5830 }
5831
5832 /**
5833  *      dev_set_allmulti        - update allmulti count on a device
5834  *      @dev: device
5835  *      @inc: modifier
5836  *
5837  *      Add or remove reception of all multicast frames to a device. While the
5838  *      count in the device remains above zero the interface remains listening
5839  *      to all interfaces. Once it hits zero the device reverts back to normal
5840  *      filtering operation. A negative @inc value is used to drop the counter
5841  *      when releasing a resource needing all multicasts.
5842  *      Return 0 if successful or a negative errno code on error.
5843  */
5844
5845 int dev_set_allmulti(struct net_device *dev, int inc)
5846 {
5847         return __dev_set_allmulti(dev, inc, true);
5848 }
5849 EXPORT_SYMBOL(dev_set_allmulti);
5850
5851 /*
5852  *      Upload unicast and multicast address lists to device and
5853  *      configure RX filtering. When the device doesn't support unicast
5854  *      filtering it is put in promiscuous mode while unicast addresses
5855  *      are present.
5856  */
5857 void __dev_set_rx_mode(struct net_device *dev)
5858 {
5859         const struct net_device_ops *ops = dev->netdev_ops;
5860
5861         /* dev_open will call this function so the list will stay sane. */
5862         if (!(dev->flags&IFF_UP))
5863                 return;
5864
5865         if (!netif_device_present(dev))
5866                 return;
5867
5868         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
5869                 /* Unicast addresses changes may only happen under the rtnl,
5870                  * therefore calling __dev_set_promiscuity here is safe.
5871                  */
5872                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
5873                         __dev_set_promiscuity(dev, 1, false);
5874                         dev->uc_promisc = true;
5875                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
5876                         __dev_set_promiscuity(dev, -1, false);
5877                         dev->uc_promisc = false;
5878                 }
5879         }
5880
5881         if (ops->ndo_set_rx_mode)
5882                 ops->ndo_set_rx_mode(dev);
5883 }
5884
5885 void dev_set_rx_mode(struct net_device *dev)
5886 {
5887         netif_addr_lock_bh(dev);
5888         __dev_set_rx_mode(dev);
5889         netif_addr_unlock_bh(dev);
5890 }
5891
5892 /**
5893  *      dev_get_flags - get flags reported to userspace
5894  *      @dev: device
5895  *
5896  *      Get the combination of flag bits exported through APIs to userspace.
5897  */
5898 unsigned int dev_get_flags(const struct net_device *dev)
5899 {
5900         unsigned int flags;
5901
5902         flags = (dev->flags & ~(IFF_PROMISC |
5903                                 IFF_ALLMULTI |
5904                                 IFF_RUNNING |
5905                                 IFF_LOWER_UP |
5906                                 IFF_DORMANT)) |
5907                 (dev->gflags & (IFF_PROMISC |
5908                                 IFF_ALLMULTI));
5909
5910         if (netif_running(dev)) {
5911                 if (netif_oper_up(dev))
5912                         flags |= IFF_RUNNING;
5913                 if (netif_carrier_ok(dev))
5914                         flags |= IFF_LOWER_UP;
5915                 if (netif_dormant(dev))
5916                         flags |= IFF_DORMANT;
5917         }
5918
5919         return flags;
5920 }
5921 EXPORT_SYMBOL(dev_get_flags);
5922
5923 int __dev_change_flags(struct net_device *dev, unsigned int flags)
5924 {
5925         unsigned int old_flags = dev->flags;
5926         int ret;
5927
5928         ASSERT_RTNL();
5929
5930         /*
5931          *      Set the flags on our device.
5932          */
5933
5934         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
5935                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
5936                                IFF_AUTOMEDIA)) |
5937                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
5938                                     IFF_ALLMULTI));
5939
5940         /*
5941          *      Load in the correct multicast list now the flags have changed.
5942          */
5943
5944         if ((old_flags ^ flags) & IFF_MULTICAST)
5945                 dev_change_rx_flags(dev, IFF_MULTICAST);
5946
5947         dev_set_rx_mode(dev);
5948
5949         /*
5950          *      Have we downed the interface. We handle IFF_UP ourselves
5951          *      according to user attempts to set it, rather than blindly
5952          *      setting it.
5953          */
5954
5955         ret = 0;
5956         if ((old_flags ^ flags) & IFF_UP)
5957                 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
5958
5959         if ((flags ^ dev->gflags) & IFF_PROMISC) {
5960                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
5961                 unsigned int old_flags = dev->flags;
5962
5963                 dev->gflags ^= IFF_PROMISC;
5964
5965                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
5966                         if (dev->flags != old_flags)
5967                                 dev_set_rx_mode(dev);
5968         }
5969
5970         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
5971            is important. Some (broken) drivers set IFF_PROMISC, when
5972            IFF_ALLMULTI is requested not asking us and not reporting.
5973          */
5974         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
5975                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
5976
5977                 dev->gflags ^= IFF_ALLMULTI;
5978                 __dev_set_allmulti(dev, inc, false);
5979         }
5980
5981         return ret;
5982 }
5983
5984 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
5985                         unsigned int gchanges)
5986 {
5987         unsigned int changes = dev->flags ^ old_flags;
5988
5989         if (gchanges)
5990                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
5991
5992         if (changes & IFF_UP) {
5993                 if (dev->flags & IFF_UP)
5994                         call_netdevice_notifiers(NETDEV_UP, dev);
5995                 else
5996                         call_netdevice_notifiers(NETDEV_DOWN, dev);
5997         }
5998
5999         if (dev->flags & IFF_UP &&
6000             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6001                 struct netdev_notifier_change_info change_info;
6002
6003                 change_info.flags_changed = changes;
6004                 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
6005                                               &change_info.info);
6006         }
6007 }
6008
6009 /**
6010  *      dev_change_flags - change device settings
6011  *      @dev: device
6012  *      @flags: device state flags
6013  *
6014  *      Change settings on device based state flags. The flags are
6015  *      in the userspace exported format.
6016  */
6017 int dev_change_flags(struct net_device *dev, unsigned int flags)
6018 {
6019         int ret;
6020         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
6021
6022         ret = __dev_change_flags(dev, flags);
6023         if (ret < 0)
6024                 return ret;
6025
6026         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
6027         __dev_notify_flags(dev, old_flags, changes);
6028         return ret;
6029 }
6030 EXPORT_SYMBOL(dev_change_flags);
6031
6032 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
6033 {
6034         const struct net_device_ops *ops = dev->netdev_ops;
6035
6036         if (ops->ndo_change_mtu)
6037                 return ops->ndo_change_mtu(dev, new_mtu);
6038
6039         dev->mtu = new_mtu;
6040         return 0;
6041 }
6042
6043 /**
6044  *      dev_set_mtu - Change maximum transfer unit
6045  *      @dev: device
6046  *      @new_mtu: new transfer unit
6047  *
6048  *      Change the maximum transfer size of the network device.
6049  */
6050 int dev_set_mtu(struct net_device *dev, int new_mtu)
6051 {
6052         int err, orig_mtu;
6053
6054         if (new_mtu == dev->mtu)
6055                 return 0;
6056
6057         /*      MTU must be positive.    */
6058         if (new_mtu < 0)
6059                 return -EINVAL;
6060
6061         if (!netif_device_present(dev))
6062                 return -ENODEV;
6063
6064         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6065         err = notifier_to_errno(err);
6066         if (err)
6067                 return err;
6068
6069         orig_mtu = dev->mtu;
6070         err = __dev_set_mtu(dev, new_mtu);
6071
6072         if (!err) {
6073                 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6074                 err = notifier_to_errno(err);
6075                 if (err) {
6076                         /* setting mtu back and notifying everyone again,
6077                          * so that they have a chance to revert changes.
6078                          */
6079                         __dev_set_mtu(dev, orig_mtu);
6080                         call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6081                 }
6082         }
6083         return err;
6084 }
6085 EXPORT_SYMBOL(dev_set_mtu);
6086
6087 /**
6088  *      dev_set_group - Change group this device belongs to
6089  *      @dev: device
6090  *      @new_group: group this device should belong to
6091  */
6092 void dev_set_group(struct net_device *dev, int new_group)
6093 {
6094         dev->group = new_group;
6095 }
6096 EXPORT_SYMBOL(dev_set_group);
6097
6098 /**
6099  *      dev_set_mac_address - Change Media Access Control Address
6100  *      @dev: device
6101  *      @sa: new address
6102  *
6103  *      Change the hardware (MAC) address of the device
6104  */
6105 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6106 {
6107         const struct net_device_ops *ops = dev->netdev_ops;
6108         int err;
6109
6110         if (!ops->ndo_set_mac_address)
6111                 return -EOPNOTSUPP;
6112         if (sa->sa_family != dev->type)
6113                 return -EINVAL;
6114         if (!netif_device_present(dev))
6115                 return -ENODEV;
6116         err = ops->ndo_set_mac_address(dev, sa);
6117         if (err)
6118                 return err;
6119         dev->addr_assign_type = NET_ADDR_SET;
6120         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
6121         add_device_randomness(dev->dev_addr, dev->addr_len);
6122         return 0;
6123 }
6124 EXPORT_SYMBOL(dev_set_mac_address);
6125
6126 /**
6127  *      dev_change_carrier - Change device carrier
6128  *      @dev: device
6129  *      @new_carrier: new value
6130  *
6131  *      Change device carrier
6132  */
6133 int dev_change_carrier(struct net_device *dev, bool new_carrier)
6134 {
6135         const struct net_device_ops *ops = dev->netdev_ops;
6136
6137         if (!ops->ndo_change_carrier)
6138                 return -EOPNOTSUPP;
6139         if (!netif_device_present(dev))
6140                 return -ENODEV;
6141         return ops->ndo_change_carrier(dev, new_carrier);
6142 }
6143 EXPORT_SYMBOL(dev_change_carrier);
6144
6145 /**
6146  *      dev_get_phys_port_id - Get device physical port ID
6147  *      @dev: device
6148  *      @ppid: port ID
6149  *
6150  *      Get device physical port ID
6151  */
6152 int dev_get_phys_port_id(struct net_device *dev,
6153                          struct netdev_phys_item_id *ppid)
6154 {
6155         const struct net_device_ops *ops = dev->netdev_ops;
6156
6157         if (!ops->ndo_get_phys_port_id)
6158                 return -EOPNOTSUPP;
6159         return ops->ndo_get_phys_port_id(dev, ppid);
6160 }
6161 EXPORT_SYMBOL(dev_get_phys_port_id);
6162
6163 /**
6164  *      dev_get_phys_port_name - Get device physical port name
6165  *      @dev: device
6166  *      @name: port name
6167  *
6168  *      Get device physical port name
6169  */
6170 int dev_get_phys_port_name(struct net_device *dev,
6171                            char *name, size_t len)
6172 {
6173         const struct net_device_ops *ops = dev->netdev_ops;
6174
6175         if (!ops->ndo_get_phys_port_name)
6176                 return -EOPNOTSUPP;
6177         return ops->ndo_get_phys_port_name(dev, name, len);
6178 }
6179 EXPORT_SYMBOL(dev_get_phys_port_name);
6180
6181 /**
6182  *      dev_change_proto_down - update protocol port state information
6183  *      @dev: device
6184  *      @proto_down: new value
6185  *
6186  *      This info can be used by switch drivers to set the phys state of the
6187  *      port.
6188  */
6189 int dev_change_proto_down(struct net_device *dev, bool proto_down)
6190 {
6191         const struct net_device_ops *ops = dev->netdev_ops;
6192
6193         if (!ops->ndo_change_proto_down)
6194                 return -EOPNOTSUPP;
6195         if (!netif_device_present(dev))
6196                 return -ENODEV;
6197         return ops->ndo_change_proto_down(dev, proto_down);
6198 }
6199 EXPORT_SYMBOL(dev_change_proto_down);
6200
6201 /**
6202  *      dev_new_index   -       allocate an ifindex
6203  *      @net: the applicable net namespace
6204  *
6205  *      Returns a suitable unique value for a new device interface
6206  *      number.  The caller must hold the rtnl semaphore or the
6207  *      dev_base_lock to be sure it remains unique.
6208  */
6209 static int dev_new_index(struct net *net)
6210 {
6211         int ifindex = net->ifindex;
6212         for (;;) {
6213                 if (++ifindex <= 0)
6214                         ifindex = 1;
6215                 if (!__dev_get_by_index(net, ifindex))
6216                         return net->ifindex = ifindex;
6217         }
6218 }
6219
6220 /* Delayed registration/unregisteration */
6221 static LIST_HEAD(net_todo_list);
6222 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
6223
6224 static void net_set_todo(struct net_device *dev)
6225 {
6226         list_add_tail(&dev->todo_list, &net_todo_list);
6227         dev_net(dev)->dev_unreg_count++;
6228 }
6229
6230 static void rollback_registered_many(struct list_head *head)
6231 {
6232         struct net_device *dev, *tmp;
6233         LIST_HEAD(close_head);
6234
6235         BUG_ON(dev_boot_phase);
6236         ASSERT_RTNL();
6237
6238         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
6239                 /* Some devices call without registering
6240                  * for initialization unwind. Remove those
6241                  * devices and proceed with the remaining.
6242                  */
6243                 if (dev->reg_state == NETREG_UNINITIALIZED) {
6244                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
6245                                  dev->name, dev);
6246
6247                         WARN_ON(1);
6248                         list_del(&dev->unreg_list);
6249                         continue;
6250                 }
6251                 dev->dismantle = true;
6252                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
6253         }
6254
6255         /* If device is running, close it first. */
6256         list_for_each_entry(dev, head, unreg_list)
6257                 list_add_tail(&dev->close_list, &close_head);
6258         dev_close_many(&close_head, true);
6259
6260         list_for_each_entry(dev, head, unreg_list) {
6261                 /* And unlink it from device chain. */
6262                 unlist_netdevice(dev);
6263
6264                 dev->reg_state = NETREG_UNREGISTERING;
6265                 on_each_cpu(flush_backlog, dev, 1);
6266         }
6267
6268         synchronize_net();
6269
6270         list_for_each_entry(dev, head, unreg_list) {
6271                 struct sk_buff *skb = NULL;
6272
6273                 /* Shutdown queueing discipline. */
6274                 dev_shutdown(dev);
6275
6276
6277                 /* Notify protocols, that we are about to destroy
6278                    this device. They should clean all the things.
6279                 */
6280                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6281
6282                 if (!dev->rtnl_link_ops ||
6283                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6284                         skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
6285                                                      GFP_KERNEL);
6286
6287                 /*
6288                  *      Flush the unicast and multicast chains
6289                  */
6290                 dev_uc_flush(dev);
6291                 dev_mc_flush(dev);
6292
6293                 if (dev->netdev_ops->ndo_uninit)
6294                         dev->netdev_ops->ndo_uninit(dev);
6295
6296                 if (skb)
6297                         rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
6298
6299                 /* Notifier chain MUST detach us all upper devices. */
6300                 WARN_ON(netdev_has_any_upper_dev(dev));
6301
6302                 /* Remove entries from kobject tree */
6303                 netdev_unregister_kobject(dev);
6304 #ifdef CONFIG_XPS
6305                 /* Remove XPS queueing entries */
6306                 netif_reset_xps_queues_gt(dev, 0);
6307 #endif
6308         }
6309
6310         synchronize_net();
6311
6312         list_for_each_entry(dev, head, unreg_list)
6313                 dev_put(dev);
6314 }
6315
6316 static void rollback_registered(struct net_device *dev)
6317 {
6318         LIST_HEAD(single);
6319
6320         list_add(&dev->unreg_list, &single);
6321         rollback_registered_many(&single);
6322         list_del(&single);
6323 }
6324
6325 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
6326         struct net_device *upper, netdev_features_t features)
6327 {
6328         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6329         netdev_features_t feature;
6330         int feature_bit;
6331
6332         for_each_netdev_feature(&upper_disables, feature_bit) {
6333                 feature = __NETIF_F_BIT(feature_bit);
6334                 if (!(upper->wanted_features & feature)
6335                     && (features & feature)) {
6336                         netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
6337                                    &feature, upper->name);
6338                         features &= ~feature;
6339                 }
6340         }
6341
6342         return features;
6343 }
6344
6345 static void netdev_sync_lower_features(struct net_device *upper,
6346         struct net_device *lower, netdev_features_t features)
6347 {
6348         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6349         netdev_features_t feature;
6350         int feature_bit;
6351
6352         for_each_netdev_feature(&upper_disables, feature_bit) {
6353                 feature = __NETIF_F_BIT(feature_bit);
6354                 if (!(features & feature) && (lower->features & feature)) {
6355                         netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
6356                                    &feature, lower->name);
6357                         lower->wanted_features &= ~feature;
6358                         netdev_update_features(lower);
6359
6360                         if (unlikely(lower->features & feature))
6361                                 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
6362                                             &feature, lower->name);
6363                 }
6364         }
6365 }
6366
6367 static netdev_features_t netdev_fix_features(struct net_device *dev,
6368         netdev_features_t features)
6369 {
6370         /* Fix illegal checksum combinations */
6371         if ((features & NETIF_F_HW_CSUM) &&
6372             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6373                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
6374                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6375         }
6376
6377         /* TSO requires that SG is present as well. */
6378         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6379                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
6380                 features &= ~NETIF_F_ALL_TSO;
6381         }
6382
6383         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6384                                         !(features & NETIF_F_IP_CSUM)) {
6385                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6386                 features &= ~NETIF_F_TSO;
6387                 features &= ~NETIF_F_TSO_ECN;
6388         }
6389
6390         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6391                                          !(features & NETIF_F_IPV6_CSUM)) {
6392                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6393                 features &= ~NETIF_F_TSO6;
6394         }
6395
6396         /* TSO ECN requires that TSO is present as well. */
6397         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6398                 features &= ~NETIF_F_TSO_ECN;
6399
6400         /* Software GSO depends on SG. */
6401         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6402                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
6403                 features &= ~NETIF_F_GSO;
6404         }
6405
6406         /* UFO needs SG and checksumming */
6407         if (features & NETIF_F_UFO) {
6408                 /* maybe split UFO into V4 and V6? */
6409                 if (!((features & NETIF_F_GEN_CSUM) ||
6410                     (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
6411                             == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6412                         netdev_dbg(dev,
6413                                 "Dropping NETIF_F_UFO since no checksum offload features.\n");
6414                         features &= ~NETIF_F_UFO;
6415                 }
6416
6417                 if (!(features & NETIF_F_SG)) {
6418                         netdev_dbg(dev,
6419                                 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
6420                         features &= ~NETIF_F_UFO;
6421                 }
6422         }
6423
6424 #ifdef CONFIG_NET_RX_BUSY_POLL
6425         if (dev->netdev_ops->ndo_busy_poll)
6426                 features |= NETIF_F_BUSY_POLL;
6427         else
6428 #endif
6429                 features &= ~NETIF_F_BUSY_POLL;
6430
6431         return features;
6432 }
6433
6434 int __netdev_update_features(struct net_device *dev)
6435 {
6436         struct net_device *upper, *lower;
6437         netdev_features_t features;
6438         struct list_head *iter;
6439         int err = -1;
6440
6441         ASSERT_RTNL();
6442
6443         features = netdev_get_wanted_features(dev);
6444
6445         if (dev->netdev_ops->ndo_fix_features)
6446                 features = dev->netdev_ops->ndo_fix_features(dev, features);
6447
6448         /* driver might be less strict about feature dependencies */
6449         features = netdev_fix_features(dev, features);
6450
6451         /* some features can't be enabled if they're off an an upper device */
6452         netdev_for_each_upper_dev_rcu(dev, upper, iter)
6453                 features = netdev_sync_upper_features(dev, upper, features);
6454
6455         if (dev->features == features)
6456                 goto sync_lower;
6457
6458         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
6459                 &dev->features, &features);
6460
6461         if (dev->netdev_ops->ndo_set_features)
6462                 err = dev->netdev_ops->ndo_set_features(dev, features);
6463         else
6464                 err = 0;
6465
6466         if (unlikely(err < 0)) {
6467                 netdev_err(dev,
6468                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
6469                         err, &features, &dev->features);
6470                 /* return non-0 since some features might have changed and
6471                  * it's better to fire a spurious notification than miss it
6472                  */
6473                 return -1;
6474         }
6475
6476 sync_lower:
6477         /* some features must be disabled on lower devices when disabled
6478          * on an upper device (think: bonding master or bridge)
6479          */
6480         netdev_for_each_lower_dev(dev, lower, iter)
6481                 netdev_sync_lower_features(dev, lower, features);
6482
6483         if (!err)
6484                 dev->features = features;
6485
6486         return err < 0 ? 0 : 1;
6487 }
6488
6489 /**
6490  *      netdev_update_features - recalculate device features
6491  *      @dev: the device to check
6492  *
6493  *      Recalculate dev->features set and send notifications if it
6494  *      has changed. Should be called after driver or hardware dependent
6495  *      conditions might have changed that influence the features.
6496  */
6497 void netdev_update_features(struct net_device *dev)
6498 {
6499         if (__netdev_update_features(dev))
6500                 netdev_features_change(dev);
6501 }
6502 EXPORT_SYMBOL(netdev_update_features);
6503
6504 /**
6505  *      netdev_change_features - recalculate device features
6506  *      @dev: the device to check
6507  *
6508  *      Recalculate dev->features set and send notifications even
6509  *      if they have not changed. Should be called instead of
6510  *      netdev_update_features() if also dev->vlan_features might
6511  *      have changed to allow the changes to be propagated to stacked
6512  *      VLAN devices.
6513  */
6514 void netdev_change_features(struct net_device *dev)
6515 {
6516         __netdev_update_features(dev);
6517         netdev_features_change(dev);
6518 }
6519 EXPORT_SYMBOL(netdev_change_features);
6520
6521 /**
6522  *      netif_stacked_transfer_operstate -      transfer operstate
6523  *      @rootdev: the root or lower level device to transfer state from
6524  *      @dev: the device to transfer operstate to
6525  *
6526  *      Transfer operational state from root to device. This is normally
6527  *      called when a stacking relationship exists between the root
6528  *      device and the device(a leaf device).
6529  */
6530 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
6531                                         struct net_device *dev)
6532 {
6533         if (rootdev->operstate == IF_OPER_DORMANT)
6534                 netif_dormant_on(dev);
6535         else
6536                 netif_dormant_off(dev);
6537
6538         if (netif_carrier_ok(rootdev)) {
6539                 if (!netif_carrier_ok(dev))
6540                         netif_carrier_on(dev);
6541         } else {
6542                 if (netif_carrier_ok(dev))
6543                         netif_carrier_off(dev);
6544         }
6545 }
6546 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
6547
6548 #ifdef CONFIG_SYSFS
6549 static int netif_alloc_rx_queues(struct net_device *dev)
6550 {
6551         unsigned int i, count = dev->num_rx_queues;
6552         struct netdev_rx_queue *rx;
6553         size_t sz = count * sizeof(*rx);
6554
6555         BUG_ON(count < 1);
6556
6557         rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6558         if (!rx) {
6559                 rx = vzalloc(sz);
6560                 if (!rx)
6561                         return -ENOMEM;
6562         }
6563         dev->_rx = rx;
6564
6565         for (i = 0; i < count; i++)
6566                 rx[i].dev = dev;
6567         return 0;
6568 }
6569 #endif
6570
6571 static void netdev_init_one_queue(struct net_device *dev,
6572                                   struct netdev_queue *queue, void *_unused)
6573 {
6574         /* Initialize queue lock */
6575         spin_lock_init(&queue->_xmit_lock);
6576         netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
6577         queue->xmit_lock_owner = -1;
6578         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
6579         queue->dev = dev;
6580 #ifdef CONFIG_BQL
6581         dql_init(&queue->dql, HZ);
6582 #endif
6583 }
6584
6585 static void netif_free_tx_queues(struct net_device *dev)
6586 {
6587         kvfree(dev->_tx);
6588 }
6589
6590 static int netif_alloc_netdev_queues(struct net_device *dev)
6591 {
6592         unsigned int count = dev->num_tx_queues;
6593         struct netdev_queue *tx;
6594         size_t sz = count * sizeof(*tx);
6595
6596         if (count < 1 || count > 0xffff)
6597                 return -EINVAL;
6598
6599         tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6600         if (!tx) {
6601                 tx = vzalloc(sz);
6602                 if (!tx)
6603                         return -ENOMEM;
6604         }
6605         dev->_tx = tx;
6606
6607         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
6608         spin_lock_init(&dev->tx_global_lock);
6609
6610         return 0;
6611 }
6612
6613 void netif_tx_stop_all_queues(struct net_device *dev)
6614 {
6615         unsigned int i;
6616
6617         for (i = 0; i < dev->num_tx_queues; i++) {
6618                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
6619                 netif_tx_stop_queue(txq);
6620         }
6621 }
6622 EXPORT_SYMBOL(netif_tx_stop_all_queues);
6623
6624 /**
6625  *      register_netdevice      - register a network device
6626  *      @dev: device to register
6627  *
6628  *      Take a completed network device structure and add it to the kernel
6629  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6630  *      chain. 0 is returned on success. A negative errno code is returned
6631  *      on a failure to set up the device, or if the name is a duplicate.
6632  *
6633  *      Callers must hold the rtnl semaphore. You may want
6634  *      register_netdev() instead of this.
6635  *
6636  *      BUGS:
6637  *      The locking appears insufficient to guarantee two parallel registers
6638  *      will not get the same name.
6639  */
6640
6641 int register_netdevice(struct net_device *dev)
6642 {
6643         int ret;
6644         struct net *net = dev_net(dev);
6645
6646         BUG_ON(dev_boot_phase);
6647         ASSERT_RTNL();
6648
6649         might_sleep();
6650
6651         /* When net_device's are persistent, this will be fatal. */
6652         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
6653         BUG_ON(!net);
6654
6655         spin_lock_init(&dev->addr_list_lock);
6656         netdev_set_addr_lockdep_class(dev);
6657
6658         ret = dev_get_valid_name(net, dev, dev->name);
6659         if (ret < 0)
6660                 goto out;
6661
6662         /* Init, if this function is available */
6663         if (dev->netdev_ops->ndo_init) {
6664                 ret = dev->netdev_ops->ndo_init(dev);
6665                 if (ret) {
6666                         if (ret > 0)
6667                                 ret = -EIO;
6668                         goto out;
6669                 }
6670         }
6671
6672         if (((dev->hw_features | dev->features) &
6673              NETIF_F_HW_VLAN_CTAG_FILTER) &&
6674             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
6675              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
6676                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
6677                 ret = -EINVAL;
6678                 goto err_uninit;
6679         }
6680
6681         ret = -EBUSY;
6682         if (!dev->ifindex)
6683                 dev->ifindex = dev_new_index(net);
6684         else if (__dev_get_by_index(net, dev->ifindex))
6685                 goto err_uninit;
6686
6687         /* Transfer changeable features to wanted_features and enable
6688          * software offloads (GSO and GRO).
6689          */
6690         dev->hw_features |= NETIF_F_SOFT_FEATURES;
6691         dev->features |= NETIF_F_SOFT_FEATURES;
6692         dev->wanted_features = dev->features & dev->hw_features;
6693
6694         if (!(dev->flags & IFF_LOOPBACK)) {
6695                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
6696         }
6697
6698         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
6699          */
6700         dev->vlan_features |= NETIF_F_HIGHDMA;
6701
6702         /* Make NETIF_F_SG inheritable to tunnel devices.
6703          */
6704         dev->hw_enc_features |= NETIF_F_SG;
6705
6706         /* Make NETIF_F_SG inheritable to MPLS.
6707          */
6708         dev->mpls_features |= NETIF_F_SG;
6709
6710         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
6711         ret = notifier_to_errno(ret);
6712         if (ret)
6713                 goto err_uninit;
6714
6715         ret = netdev_register_kobject(dev);
6716         if (ret)
6717                 goto err_uninit;
6718         dev->reg_state = NETREG_REGISTERED;
6719
6720         __netdev_update_features(dev);
6721
6722         /*
6723          *      Default initial state at registry is that the
6724          *      device is present.
6725          */
6726
6727         set_bit(__LINK_STATE_PRESENT, &dev->state);
6728
6729         linkwatch_init_dev(dev);
6730
6731         dev_init_scheduler(dev);
6732         dev_hold(dev);
6733         list_netdevice(dev);
6734         add_device_randomness(dev->dev_addr, dev->addr_len);
6735
6736         /* If the device has permanent device address, driver should
6737          * set dev_addr and also addr_assign_type should be set to
6738          * NET_ADDR_PERM (default value).
6739          */
6740         if (dev->addr_assign_type == NET_ADDR_PERM)
6741                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
6742
6743         /* Notify protocols, that a new device appeared. */
6744         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
6745         ret = notifier_to_errno(ret);
6746         if (ret) {
6747                 rollback_registered(dev);
6748                 dev->reg_state = NETREG_UNREGISTERED;
6749         }
6750         /*
6751          *      Prevent userspace races by waiting until the network
6752          *      device is fully setup before sending notifications.
6753          */
6754         if (!dev->rtnl_link_ops ||
6755             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6756                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
6757
6758 out:
6759         return ret;
6760
6761 err_uninit:
6762         if (dev->netdev_ops->ndo_uninit)
6763                 dev->netdev_ops->ndo_uninit(dev);
6764         goto out;
6765 }
6766 EXPORT_SYMBOL(register_netdevice);
6767
6768 /**
6769  *      init_dummy_netdev       - init a dummy network device for NAPI
6770  *      @dev: device to init
6771  *
6772  *      This takes a network device structure and initialize the minimum
6773  *      amount of fields so it can be used to schedule NAPI polls without
6774  *      registering a full blown interface. This is to be used by drivers
6775  *      that need to tie several hardware interfaces to a single NAPI
6776  *      poll scheduler due to HW limitations.
6777  */
6778 int init_dummy_netdev(struct net_device *dev)
6779 {
6780         /* Clear everything. Note we don't initialize spinlocks
6781          * are they aren't supposed to be taken by any of the
6782          * NAPI code and this dummy netdev is supposed to be
6783          * only ever used for NAPI polls
6784          */
6785         memset(dev, 0, sizeof(struct net_device));
6786
6787         /* make sure we BUG if trying to hit standard
6788          * register/unregister code path
6789          */
6790         dev->reg_state = NETREG_DUMMY;
6791
6792         /* NAPI wants this */
6793         INIT_LIST_HEAD(&dev->napi_list);
6794
6795         /* a dummy interface is started by default */
6796         set_bit(__LINK_STATE_PRESENT, &dev->state);
6797         set_bit(__LINK_STATE_START, &dev->state);
6798
6799         /* Note : We dont allocate pcpu_refcnt for dummy devices,
6800          * because users of this 'device' dont need to change
6801          * its refcount.
6802          */
6803
6804         return 0;
6805 }
6806 EXPORT_SYMBOL_GPL(init_dummy_netdev);
6807
6808
6809 /**
6810  *      register_netdev - register a network device
6811  *      @dev: device to register
6812  *
6813  *      Take a completed network device structure and add it to the kernel
6814  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6815  *      chain. 0 is returned on success. A negative errno code is returned
6816  *      on a failure to set up the device, or if the name is a duplicate.
6817  *
6818  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
6819  *      and expands the device name if you passed a format string to
6820  *      alloc_netdev.
6821  */
6822 int register_netdev(struct net_device *dev)
6823 {
6824         int err;
6825
6826         rtnl_lock();
6827         err = register_netdevice(dev);
6828         rtnl_unlock();
6829         return err;
6830 }
6831 EXPORT_SYMBOL(register_netdev);
6832
6833 int netdev_refcnt_read(const struct net_device *dev)
6834 {
6835         int i, refcnt = 0;
6836
6837         for_each_possible_cpu(i)
6838                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
6839         return refcnt;
6840 }
6841 EXPORT_SYMBOL(netdev_refcnt_read);
6842
6843 /**
6844  * netdev_wait_allrefs - wait until all references are gone.
6845  * @dev: target net_device
6846  *
6847  * This is called when unregistering network devices.
6848  *
6849  * Any protocol or device that holds a reference should register
6850  * for netdevice notification, and cleanup and put back the
6851  * reference if they receive an UNREGISTER event.
6852  * We can get stuck here if buggy protocols don't correctly
6853  * call dev_put.
6854  */
6855 static void netdev_wait_allrefs(struct net_device *dev)
6856 {
6857         unsigned long rebroadcast_time, warning_time;
6858         int refcnt;
6859
6860         linkwatch_forget_dev(dev);
6861
6862         rebroadcast_time = warning_time = jiffies;
6863         refcnt = netdev_refcnt_read(dev);
6864
6865         while (refcnt != 0) {
6866                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6867                         rtnl_lock();
6868
6869                         /* Rebroadcast unregister notification */
6870                         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6871
6872                         __rtnl_unlock();
6873                         rcu_barrier();
6874                         rtnl_lock();
6875
6876                         call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6877                         if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
6878                                      &dev->state)) {
6879                                 /* We must not have linkwatch events
6880                                  * pending on unregister. If this
6881                                  * happens, we simply run the queue
6882                                  * unscheduled, resulting in a noop
6883                                  * for this device.
6884                                  */
6885                                 linkwatch_run_queue();
6886                         }
6887
6888                         __rtnl_unlock();
6889
6890                         rebroadcast_time = jiffies;
6891                 }
6892
6893                 msleep(250);
6894
6895                 refcnt = netdev_refcnt_read(dev);
6896
6897                 if (time_after(jiffies, warning_time + 10 * HZ)) {
6898                         pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
6899                                  dev->name, refcnt);
6900                         warning_time = jiffies;
6901                 }
6902         }
6903 }
6904
6905 /* The sequence is:
6906  *
6907  *      rtnl_lock();
6908  *      ...
6909  *      register_netdevice(x1);
6910  *      register_netdevice(x2);
6911  *      ...
6912  *      unregister_netdevice(y1);
6913  *      unregister_netdevice(y2);
6914  *      ...
6915  *      rtnl_unlock();
6916  *      free_netdev(y1);
6917  *      free_netdev(y2);
6918  *
6919  * We are invoked by rtnl_unlock().
6920  * This allows us to deal with problems:
6921  * 1) We can delete sysfs objects which invoke hotplug
6922  *    without deadlocking with linkwatch via keventd.
6923  * 2) Since we run with the RTNL semaphore not held, we can sleep
6924  *    safely in order to wait for the netdev refcnt to drop to zero.
6925  *
6926  * We must not return until all unregister events added during
6927  * the interval the lock was held have been completed.
6928  */
6929 void netdev_run_todo(void)
6930 {
6931         struct list_head list;
6932
6933         /* Snapshot list, allow later requests */
6934         list_replace_init(&net_todo_list, &list);
6935
6936         __rtnl_unlock();
6937
6938
6939         /* Wait for rcu callbacks to finish before next phase */
6940         if (!list_empty(&list))
6941                 rcu_barrier();
6942
6943         while (!list_empty(&list)) {
6944                 struct net_device *dev
6945                         = list_first_entry(&list, struct net_device, todo_list);
6946                 list_del(&dev->todo_list);
6947
6948                 rtnl_lock();
6949                 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6950                 __rtnl_unlock();
6951
6952                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
6953                         pr_err("network todo '%s' but state %d\n",
6954                                dev->name, dev->reg_state);
6955                         dump_stack();
6956                         continue;
6957                 }
6958
6959                 dev->reg_state = NETREG_UNREGISTERED;
6960
6961                 netdev_wait_allrefs(dev);
6962
6963                 /* paranoia */
6964                 BUG_ON(netdev_refcnt_read(dev));
6965                 BUG_ON(!list_empty(&dev->ptype_all));
6966                 BUG_ON(!list_empty(&dev->ptype_specific));
6967                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
6968                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
6969                 WARN_ON(dev->dn_ptr);
6970
6971                 if (dev->destructor)
6972                         dev->destructor(dev);
6973
6974                 /* Report a network device has been unregistered */
6975                 rtnl_lock();
6976                 dev_net(dev)->dev_unreg_count--;
6977                 __rtnl_unlock();
6978                 wake_up(&netdev_unregistering_wq);
6979
6980                 /* Free network device */
6981                 kobject_put(&dev->dev.kobj);
6982         }
6983 }
6984
6985 /* Convert net_device_stats to rtnl_link_stats64.  They have the same
6986  * fields in the same order, with only the type differing.
6987  */
6988 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
6989                              const struct net_device_stats *netdev_stats)
6990 {
6991 #if BITS_PER_LONG == 64
6992         BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
6993         memcpy(stats64, netdev_stats, sizeof(*stats64));
6994 #else
6995         size_t i, n = sizeof(*stats64) / sizeof(u64);
6996         const unsigned long *src = (const unsigned long *)netdev_stats;
6997         u64 *dst = (u64 *)stats64;
6998
6999         BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
7000                      sizeof(*stats64) / sizeof(u64));
7001         for (i = 0; i < n; i++)
7002                 dst[i] = src[i];
7003 #endif
7004 }
7005 EXPORT_SYMBOL(netdev_stats_to_stats64);
7006
7007 /**
7008  *      dev_get_stats   - get network device statistics
7009  *      @dev: device to get statistics from
7010  *      @storage: place to store stats
7011  *
7012  *      Get network statistics from device. Return @storage.
7013  *      The device driver may provide its own method by setting
7014  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
7015  *      otherwise the internal statistics structure is used.
7016  */
7017 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
7018                                         struct rtnl_link_stats64 *storage)
7019 {
7020         const struct net_device_ops *ops = dev->netdev_ops;
7021
7022         if (ops->ndo_get_stats64) {
7023                 memset(storage, 0, sizeof(*storage));
7024                 ops->ndo_get_stats64(dev, storage);
7025         } else if (ops->ndo_get_stats) {
7026                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
7027         } else {
7028                 netdev_stats_to_stats64(storage, &dev->stats);
7029         }
7030         storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
7031         storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
7032         return storage;
7033 }
7034 EXPORT_SYMBOL(dev_get_stats);
7035
7036 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
7037 {
7038         struct netdev_queue *queue = dev_ingress_queue(dev);
7039
7040 #ifdef CONFIG_NET_CLS_ACT
7041         if (queue)
7042                 return queue;
7043         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
7044         if (!queue)
7045                 return NULL;
7046         netdev_init_one_queue(dev, queue, NULL);
7047         RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
7048         queue->qdisc_sleeping = &noop_qdisc;
7049         rcu_assign_pointer(dev->ingress_queue, queue);
7050 #endif
7051         return queue;
7052 }
7053
7054 static const struct ethtool_ops default_ethtool_ops;
7055
7056 void netdev_set_default_ethtool_ops(struct net_device *dev,
7057                                     const struct ethtool_ops *ops)
7058 {
7059         if (dev->ethtool_ops == &default_ethtool_ops)
7060                 dev->ethtool_ops = ops;
7061 }
7062 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
7063
7064 void netdev_freemem(struct net_device *dev)
7065 {
7066         char *addr = (char *)dev - dev->padded;
7067
7068         kvfree(addr);
7069 }
7070
7071 /**
7072  *      alloc_netdev_mqs - allocate network device
7073  *      @sizeof_priv:           size of private data to allocate space for
7074  *      @name:                  device name format string
7075  *      @name_assign_type:      origin of device name
7076  *      @setup:                 callback to initialize device
7077  *      @txqs:                  the number of TX subqueues to allocate
7078  *      @rxqs:                  the number of RX subqueues to allocate
7079  *
7080  *      Allocates a struct net_device with private data area for driver use
7081  *      and performs basic initialization.  Also allocates subqueue structs
7082  *      for each queue on the device.
7083  */
7084 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
7085                 unsigned char name_assign_type,
7086                 void (*setup)(struct net_device *),
7087                 unsigned int txqs, unsigned int rxqs)
7088 {
7089         struct net_device *dev;
7090         size_t alloc_size;
7091         struct net_device *p;
7092
7093         BUG_ON(strlen(name) >= sizeof(dev->name));
7094
7095         if (txqs < 1) {
7096                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
7097                 return NULL;
7098         }
7099
7100 #ifdef CONFIG_SYSFS
7101         if (rxqs < 1) {
7102                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
7103                 return NULL;
7104         }
7105 #endif
7106
7107         alloc_size = sizeof(struct net_device);
7108         if (sizeof_priv) {
7109                 /* ensure 32-byte alignment of private area */
7110                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
7111                 alloc_size += sizeof_priv;
7112         }
7113         /* ensure 32-byte alignment of whole construct */
7114         alloc_size += NETDEV_ALIGN - 1;
7115
7116         p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7117         if (!p)
7118                 p = vzalloc(alloc_size);
7119         if (!p)
7120                 return NULL;
7121
7122         dev = PTR_ALIGN(p, NETDEV_ALIGN);
7123         dev->padded = (char *)dev - (char *)p;
7124
7125         dev->pcpu_refcnt = alloc_percpu(int);
7126         if (!dev->pcpu_refcnt)
7127                 goto free_dev;
7128
7129         if (dev_addr_init(dev))
7130                 goto free_pcpu;
7131
7132         dev_mc_init(dev);
7133         dev_uc_init(dev);
7134
7135         dev_net_set(dev, &init_net);
7136
7137         dev->gso_max_size = GSO_MAX_SIZE;
7138         dev->gso_max_segs = GSO_MAX_SEGS;
7139         dev->gso_min_segs = 0;
7140
7141         INIT_LIST_HEAD(&dev->napi_list);
7142         INIT_LIST_HEAD(&dev->unreg_list);
7143         INIT_LIST_HEAD(&dev->close_list);
7144         INIT_LIST_HEAD(&dev->link_watch_list);
7145         INIT_LIST_HEAD(&dev->adj_list.upper);
7146         INIT_LIST_HEAD(&dev->adj_list.lower);
7147         INIT_LIST_HEAD(&dev->all_adj_list.upper);
7148         INIT_LIST_HEAD(&dev->all_adj_list.lower);
7149         INIT_LIST_HEAD(&dev->ptype_all);
7150         INIT_LIST_HEAD(&dev->ptype_specific);
7151         dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
7152         setup(dev);
7153
7154         if (!dev->tx_queue_len) {
7155                 dev->priv_flags |= IFF_NO_QUEUE;
7156                 dev->tx_queue_len = 1;
7157         }
7158
7159         dev->num_tx_queues = txqs;
7160         dev->real_num_tx_queues = txqs;
7161         if (netif_alloc_netdev_queues(dev))
7162                 goto free_all;
7163
7164 #ifdef CONFIG_SYSFS
7165         dev->num_rx_queues = rxqs;
7166         dev->real_num_rx_queues = rxqs;
7167         if (netif_alloc_rx_queues(dev))
7168                 goto free_all;
7169 #endif
7170
7171         strcpy(dev->name, name);
7172         dev->name_assign_type = name_assign_type;
7173         dev->group = INIT_NETDEV_GROUP;
7174         if (!dev->ethtool_ops)
7175                 dev->ethtool_ops = &default_ethtool_ops;
7176
7177         nf_hook_ingress_init(dev);
7178
7179         return dev;
7180
7181 free_all:
7182         free_netdev(dev);
7183         return NULL;
7184
7185 free_pcpu:
7186         free_percpu(dev->pcpu_refcnt);
7187 free_dev:
7188         netdev_freemem(dev);
7189         return NULL;
7190 }
7191 EXPORT_SYMBOL(alloc_netdev_mqs);
7192
7193 /**
7194  *      free_netdev - free network device
7195  *      @dev: device
7196  *
7197  *      This function does the last stage of destroying an allocated device
7198  *      interface. The reference to the device object is released.
7199  *      If this is the last reference then it will be freed.
7200  */
7201 void free_netdev(struct net_device *dev)
7202 {
7203         struct napi_struct *p, *n;
7204
7205         netif_free_tx_queues(dev);
7206 #ifdef CONFIG_SYSFS
7207         kvfree(dev->_rx);
7208 #endif
7209
7210         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
7211
7212         /* Flush device addresses */
7213         dev_addr_flush(dev);
7214
7215         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
7216                 netif_napi_del(p);
7217
7218         free_percpu(dev->pcpu_refcnt);
7219         dev->pcpu_refcnt = NULL;
7220
7221         /*  Compatibility with error handling in drivers */
7222         if (dev->reg_state == NETREG_UNINITIALIZED) {
7223                 netdev_freemem(dev);
7224                 return;
7225         }
7226
7227         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
7228         dev->reg_state = NETREG_RELEASED;
7229
7230         /* will free via device release */
7231         put_device(&dev->dev);
7232 }
7233 EXPORT_SYMBOL(free_netdev);
7234
7235 /**
7236  *      synchronize_net -  Synchronize with packet receive processing
7237  *
7238  *      Wait for packets currently being received to be done.
7239  *      Does not block later packets from starting.
7240  */
7241 void synchronize_net(void)
7242 {
7243         might_sleep();
7244         if (rtnl_is_locked())
7245                 synchronize_rcu_expedited();
7246         else
7247                 synchronize_rcu();
7248 }
7249 EXPORT_SYMBOL(synchronize_net);
7250
7251 /**
7252  *      unregister_netdevice_queue - remove device from the kernel
7253  *      @dev: device
7254  *      @head: list
7255  *
7256  *      This function shuts down a device interface and removes it
7257  *      from the kernel tables.
7258  *      If head not NULL, device is queued to be unregistered later.
7259  *
7260  *      Callers must hold the rtnl semaphore.  You may want
7261  *      unregister_netdev() instead of this.
7262  */
7263
7264 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
7265 {
7266         ASSERT_RTNL();
7267
7268         if (head) {
7269                 list_move_tail(&dev->unreg_list, head);
7270         } else {
7271                 rollback_registered(dev);
7272                 /* Finish processing unregister after unlock */
7273                 net_set_todo(dev);
7274         }
7275 }
7276 EXPORT_SYMBOL(unregister_netdevice_queue);
7277
7278 /**
7279  *      unregister_netdevice_many - unregister many devices
7280  *      @head: list of devices
7281  *
7282  *  Note: As most callers use a stack allocated list_head,
7283  *  we force a list_del() to make sure stack wont be corrupted later.
7284  */
7285 void unregister_netdevice_many(struct list_head *head)
7286 {
7287         struct net_device *dev;
7288
7289         if (!list_empty(head)) {
7290                 rollback_registered_many(head);
7291                 list_for_each_entry(dev, head, unreg_list)
7292                         net_set_todo(dev);
7293                 list_del(head);
7294         }
7295 }
7296 EXPORT_SYMBOL(unregister_netdevice_many);
7297
7298 /**
7299  *      unregister_netdev - remove device from the kernel
7300  *      @dev: device
7301  *
7302  *      This function shuts down a device interface and removes it
7303  *      from the kernel tables.
7304  *
7305  *      This is just a wrapper for unregister_netdevice that takes
7306  *      the rtnl semaphore.  In general you want to use this and not
7307  *      unregister_netdevice.
7308  */
7309 void unregister_netdev(struct net_device *dev)
7310 {
7311         rtnl_lock();
7312         unregister_netdevice(dev);
7313         rtnl_unlock();
7314 }
7315 EXPORT_SYMBOL(unregister_netdev);
7316
7317 /**
7318  *      dev_change_net_namespace - move device to different nethost namespace
7319  *      @dev: device
7320  *      @net: network namespace
7321  *      @pat: If not NULL name pattern to try if the current device name
7322  *            is already taken in the destination network namespace.
7323  *
7324  *      This function shuts down a device interface and moves it
7325  *      to a new network namespace. On success 0 is returned, on
7326  *      a failure a netagive errno code is returned.
7327  *
7328  *      Callers must hold the rtnl semaphore.
7329  */
7330
7331 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
7332 {
7333         int err;
7334
7335         ASSERT_RTNL();
7336
7337         /* Don't allow namespace local devices to be moved. */
7338         err = -EINVAL;
7339         if (dev->features & NETIF_F_NETNS_LOCAL)
7340                 goto out;
7341
7342         /* Ensure the device has been registrered */
7343         if (dev->reg_state != NETREG_REGISTERED)
7344                 goto out;
7345
7346         /* Get out if there is nothing todo */
7347         err = 0;
7348         if (net_eq(dev_net(dev), net))
7349                 goto out;
7350
7351         /* Pick the destination device name, and ensure
7352          * we can use it in the destination network namespace.
7353          */
7354         err = -EEXIST;
7355         if (__dev_get_by_name(net, dev->name)) {
7356                 /* We get here if we can't use the current device name */
7357                 if (!pat)
7358                         goto out;
7359                 if (dev_get_valid_name(net, dev, pat) < 0)
7360                         goto out;
7361         }
7362
7363         /*
7364          * And now a mini version of register_netdevice unregister_netdevice.
7365          */
7366
7367         /* If device is running close it first. */
7368         dev_close(dev);
7369
7370         /* And unlink it from device chain */
7371         err = -ENODEV;
7372         unlist_netdevice(dev);
7373
7374         synchronize_net();
7375
7376         /* Shutdown queueing discipline. */
7377         dev_shutdown(dev);
7378
7379         /* Notify protocols, that we are about to destroy
7380            this device. They should clean all the things.
7381
7382            Note that dev->reg_state stays at NETREG_REGISTERED.
7383            This is wanted because this way 8021q and macvlan know
7384            the device is just moving and can keep their slaves up.
7385         */
7386         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7387         rcu_barrier();
7388         call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7389         rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
7390
7391         /*
7392          *      Flush the unicast and multicast chains
7393          */
7394         dev_uc_flush(dev);
7395         dev_mc_flush(dev);
7396
7397         /* Send a netdev-removed uevent to the old namespace */
7398         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
7399         netdev_adjacent_del_links(dev);
7400
7401         /* Actually switch the network namespace */
7402         dev_net_set(dev, net);
7403
7404         /* If there is an ifindex conflict assign a new one */
7405         if (__dev_get_by_index(net, dev->ifindex))
7406                 dev->ifindex = dev_new_index(net);
7407
7408         /* Send a netdev-add uevent to the new namespace */
7409         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
7410         netdev_adjacent_add_links(dev);
7411
7412         /* Fixup kobjects */
7413         err = device_rename(&dev->dev, dev->name);
7414         WARN_ON(err);
7415
7416         /* Add the device back in the hashes */
7417         list_netdevice(dev);
7418
7419         /* Notify protocols, that a new device appeared. */
7420         call_netdevice_notifiers(NETDEV_REGISTER, dev);
7421
7422         /*
7423          *      Prevent userspace races by waiting until the network
7424          *      device is fully setup before sending notifications.
7425          */
7426         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7427
7428         synchronize_net();
7429         err = 0;
7430 out:
7431         return err;
7432 }
7433 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
7434
7435 static int dev_cpu_callback(struct notifier_block *nfb,
7436                             unsigned long action,
7437                             void *ocpu)
7438 {
7439         struct sk_buff **list_skb;
7440         struct sk_buff *skb;
7441         unsigned int cpu, oldcpu = (unsigned long)ocpu;
7442         struct softnet_data *sd, *oldsd;
7443
7444         if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
7445                 return NOTIFY_OK;
7446
7447         local_irq_disable();
7448         cpu = smp_processor_id();
7449         sd = &per_cpu(softnet_data, cpu);
7450         oldsd = &per_cpu(softnet_data, oldcpu);
7451
7452         /* Find end of our completion_queue. */
7453         list_skb = &sd->completion_queue;
7454         while (*list_skb)
7455                 list_skb = &(*list_skb)->next;
7456         /* Append completion queue from offline CPU. */
7457         *list_skb = oldsd->completion_queue;
7458         oldsd->completion_queue = NULL;
7459
7460         /* Append output queue from offline CPU. */
7461         if (oldsd->output_queue) {
7462                 *sd->output_queue_tailp = oldsd->output_queue;
7463                 sd->output_queue_tailp = oldsd->output_queue_tailp;
7464                 oldsd->output_queue = NULL;
7465                 oldsd->output_queue_tailp = &oldsd->output_queue;
7466         }
7467         /* Append NAPI poll list from offline CPU, with one exception :
7468          * process_backlog() must be called by cpu owning percpu backlog.
7469          * We properly handle process_queue & input_pkt_queue later.
7470          */
7471         while (!list_empty(&oldsd->poll_list)) {
7472                 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
7473                                                             struct napi_struct,
7474                                                             poll_list);
7475
7476                 list_del_init(&napi->poll_list);
7477                 if (napi->poll == process_backlog)
7478                         napi->state = 0;
7479                 else
7480                         ____napi_schedule(sd, napi);
7481         }
7482
7483         raise_softirq_irqoff(NET_TX_SOFTIRQ);
7484         local_irq_enable();
7485
7486         /* Process offline CPU's input_pkt_queue */
7487         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
7488                 netif_rx_ni(skb);
7489                 input_queue_head_incr(oldsd);
7490         }
7491         while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
7492                 netif_rx_ni(skb);
7493                 input_queue_head_incr(oldsd);
7494         }
7495
7496         return NOTIFY_OK;
7497 }
7498
7499
7500 /**
7501  *      netdev_increment_features - increment feature set by one
7502  *      @all: current feature set
7503  *      @one: new feature set
7504  *      @mask: mask feature set
7505  *
7506  *      Computes a new feature set after adding a device with feature set
7507  *      @one to the master device with current feature set @all.  Will not
7508  *      enable anything that is off in @mask. Returns the new feature set.
7509  */
7510 netdev_features_t netdev_increment_features(netdev_features_t all,
7511         netdev_features_t one, netdev_features_t mask)
7512 {
7513         if (mask & NETIF_F_GEN_CSUM)
7514                 mask |= NETIF_F_ALL_CSUM;
7515         mask |= NETIF_F_VLAN_CHALLENGED;
7516
7517         all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
7518         all &= one | ~NETIF_F_ALL_FOR_ALL;
7519
7520         /* If one device supports hw checksumming, set for all. */
7521         if (all & NETIF_F_GEN_CSUM)
7522                 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
7523
7524         return all;
7525 }
7526 EXPORT_SYMBOL(netdev_increment_features);
7527
7528 static struct hlist_head * __net_init netdev_create_hash(void)
7529 {
7530         int i;
7531         struct hlist_head *hash;
7532
7533         hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
7534         if (hash != NULL)
7535                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
7536                         INIT_HLIST_HEAD(&hash[i]);
7537
7538         return hash;
7539 }
7540
7541 /* Initialize per network namespace state */
7542 static int __net_init netdev_init(struct net *net)
7543 {
7544         if (net != &init_net)
7545                 INIT_LIST_HEAD(&net->dev_base_head);
7546
7547         net->dev_name_head = netdev_create_hash();
7548         if (net->dev_name_head == NULL)
7549                 goto err_name;
7550
7551         net->dev_index_head = netdev_create_hash();
7552         if (net->dev_index_head == NULL)
7553                 goto err_idx;
7554
7555         return 0;
7556
7557 err_idx:
7558         kfree(net->dev_name_head);
7559 err_name:
7560         return -ENOMEM;
7561 }
7562
7563 /**
7564  *      netdev_drivername - network driver for the device
7565  *      @dev: network device
7566  *
7567  *      Determine network driver for device.
7568  */
7569 const char *netdev_drivername(const struct net_device *dev)
7570 {
7571         const struct device_driver *driver;
7572         const struct device *parent;
7573         const char *empty = "";
7574
7575         parent = dev->dev.parent;
7576         if (!parent)
7577                 return empty;
7578
7579         driver = parent->driver;
7580         if (driver && driver->name)
7581                 return driver->name;
7582         return empty;
7583 }
7584
7585 static void __netdev_printk(const char *level, const struct net_device *dev,
7586                             struct va_format *vaf)
7587 {
7588         if (dev && dev->dev.parent) {
7589                 dev_printk_emit(level[1] - '0',
7590                                 dev->dev.parent,
7591                                 "%s %s %s%s: %pV",
7592                                 dev_driver_string(dev->dev.parent),
7593                                 dev_name(dev->dev.parent),
7594                                 netdev_name(dev), netdev_reg_state(dev),
7595                                 vaf);
7596         } else if (dev) {
7597                 printk("%s%s%s: %pV",
7598                        level, netdev_name(dev), netdev_reg_state(dev), vaf);
7599         } else {
7600                 printk("%s(NULL net_device): %pV", level, vaf);
7601         }
7602 }
7603
7604 void netdev_printk(const char *level, const struct net_device *dev,
7605                    const char *format, ...)
7606 {
7607         struct va_format vaf;
7608         va_list args;
7609
7610         va_start(args, format);
7611
7612         vaf.fmt = format;
7613         vaf.va = &args;
7614
7615         __netdev_printk(level, dev, &vaf);
7616
7617         va_end(args);
7618 }
7619 EXPORT_SYMBOL(netdev_printk);
7620
7621 #define define_netdev_printk_level(func, level)                 \
7622 void func(const struct net_device *dev, const char *fmt, ...)   \
7623 {                                                               \
7624         struct va_format vaf;                                   \
7625         va_list args;                                           \
7626                                                                 \
7627         va_start(args, fmt);                                    \
7628                                                                 \
7629         vaf.fmt = fmt;                                          \
7630         vaf.va = &args;                                         \
7631                                                                 \
7632         __netdev_printk(level, dev, &vaf);                      \
7633                                                                 \
7634         va_end(args);                                           \
7635 }                                                               \
7636 EXPORT_SYMBOL(func);
7637
7638 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
7639 define_netdev_printk_level(netdev_alert, KERN_ALERT);
7640 define_netdev_printk_level(netdev_crit, KERN_CRIT);
7641 define_netdev_printk_level(netdev_err, KERN_ERR);
7642 define_netdev_printk_level(netdev_warn, KERN_WARNING);
7643 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
7644 define_netdev_printk_level(netdev_info, KERN_INFO);
7645
7646 static void __net_exit netdev_exit(struct net *net)
7647 {
7648         kfree(net->dev_name_head);
7649         kfree(net->dev_index_head);
7650 }
7651
7652 static struct pernet_operations __net_initdata netdev_net_ops = {
7653         .init = netdev_init,
7654         .exit = netdev_exit,
7655 };
7656
7657 static void __net_exit default_device_exit(struct net *net)
7658 {
7659         struct net_device *dev, *aux;
7660         /*
7661          * Push all migratable network devices back to the
7662          * initial network namespace
7663          */
7664         rtnl_lock();
7665         for_each_netdev_safe(net, dev, aux) {
7666                 int err;
7667                 char fb_name[IFNAMSIZ];
7668
7669                 /* Ignore unmoveable devices (i.e. loopback) */
7670                 if (dev->features & NETIF_F_NETNS_LOCAL)
7671                         continue;
7672
7673                 /* Leave virtual devices for the generic cleanup */
7674                 if (dev->rtnl_link_ops)
7675                         continue;
7676
7677                 /* Push remaining network devices to init_net */
7678                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
7679                 err = dev_change_net_namespace(dev, &init_net, fb_name);
7680                 if (err) {
7681                         pr_emerg("%s: failed to move %s to init_net: %d\n",
7682                                  __func__, dev->name, err);
7683                         BUG();
7684                 }
7685         }
7686         rtnl_unlock();
7687 }
7688
7689 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
7690 {
7691         /* Return with the rtnl_lock held when there are no network
7692          * devices unregistering in any network namespace in net_list.
7693          */
7694         struct net *net;
7695         bool unregistering;
7696         DEFINE_WAIT_FUNC(wait, woken_wake_function);
7697
7698         add_wait_queue(&netdev_unregistering_wq, &wait);
7699         for (;;) {
7700                 unregistering = false;
7701                 rtnl_lock();
7702                 list_for_each_entry(net, net_list, exit_list) {
7703                         if (net->dev_unreg_count > 0) {
7704                                 unregistering = true;
7705                                 break;
7706                         }
7707                 }
7708                 if (!unregistering)
7709                         break;
7710                 __rtnl_unlock();
7711
7712                 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
7713         }
7714         remove_wait_queue(&netdev_unregistering_wq, &wait);
7715 }
7716
7717 static void __net_exit default_device_exit_batch(struct list_head *net_list)
7718 {
7719         /* At exit all network devices most be removed from a network
7720          * namespace.  Do this in the reverse order of registration.
7721          * Do this across as many network namespaces as possible to
7722          * improve batching efficiency.
7723          */
7724         struct net_device *dev;
7725         struct net *net;
7726         LIST_HEAD(dev_kill_list);
7727
7728         /* To prevent network device cleanup code from dereferencing
7729          * loopback devices or network devices that have been freed
7730          * wait here for all pending unregistrations to complete,
7731          * before unregistring the loopback device and allowing the
7732          * network namespace be freed.
7733          *
7734          * The netdev todo list containing all network devices
7735          * unregistrations that happen in default_device_exit_batch
7736          * will run in the rtnl_unlock() at the end of
7737          * default_device_exit_batch.
7738          */
7739         rtnl_lock_unregistering(net_list);
7740         list_for_each_entry(net, net_list, exit_list) {
7741                 for_each_netdev_reverse(net, dev) {
7742                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
7743                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
7744                         else
7745                                 unregister_netdevice_queue(dev, &dev_kill_list);
7746                 }
7747         }
7748         unregister_netdevice_many(&dev_kill_list);
7749         rtnl_unlock();
7750 }
7751
7752 static struct pernet_operations __net_initdata default_device_ops = {
7753         .exit = default_device_exit,
7754         .exit_batch = default_device_exit_batch,
7755 };
7756
7757 /*
7758  *      Initialize the DEV module. At boot time this walks the device list and
7759  *      unhooks any devices that fail to initialise (normally hardware not
7760  *      present) and leaves us with a valid list of present and active devices.
7761  *
7762  */
7763
7764 /*
7765  *       This is called single threaded during boot, so no need
7766  *       to take the rtnl semaphore.
7767  */
7768 static int __init net_dev_init(void)
7769 {
7770         int i, rc = -ENOMEM;
7771
7772         BUG_ON(!dev_boot_phase);
7773
7774         if (dev_proc_init())
7775                 goto out;
7776
7777         if (netdev_kobject_init())
7778                 goto out;
7779
7780         INIT_LIST_HEAD(&ptype_all);
7781         for (i = 0; i < PTYPE_HASH_SIZE; i++)
7782                 INIT_LIST_HEAD(&ptype_base[i]);
7783
7784         INIT_LIST_HEAD(&offload_base);
7785
7786         if (register_pernet_subsys(&netdev_net_ops))
7787                 goto out;
7788
7789         /*
7790          *      Initialise the packet receive queues.
7791          */
7792
7793         for_each_possible_cpu(i) {
7794                 struct softnet_data *sd = &per_cpu(softnet_data, i);
7795
7796                 skb_queue_head_init(&sd->input_pkt_queue);
7797                 skb_queue_head_init(&sd->process_queue);
7798                 INIT_LIST_HEAD(&sd->poll_list);
7799                 sd->output_queue_tailp = &sd->output_queue;
7800 #ifdef CONFIG_RPS
7801                 sd->csd.func = rps_trigger_softirq;
7802                 sd->csd.info = sd;
7803                 sd->cpu = i;
7804 #endif
7805
7806                 sd->backlog.poll = process_backlog;
7807                 sd->backlog.weight = weight_p;
7808         }
7809
7810         dev_boot_phase = 0;
7811
7812         /* The loopback device is special if any other network devices
7813          * is present in a network namespace the loopback device must
7814          * be present. Since we now dynamically allocate and free the
7815          * loopback device ensure this invariant is maintained by
7816          * keeping the loopback device as the first device on the
7817          * list of network devices.  Ensuring the loopback devices
7818          * is the first device that appears and the last network device
7819          * that disappears.
7820          */
7821         if (register_pernet_device(&loopback_net_ops))
7822                 goto out;
7823
7824         if (register_pernet_device(&default_device_ops))
7825                 goto out;
7826
7827         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
7828         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
7829
7830         hotcpu_notifier(dev_cpu_callback, 0);
7831         dst_subsys_init();
7832         rc = 0;
7833 out:
7834         return rc;
7835 }
7836
7837 subsys_initcall(net_dev_init);