Merge branch 'x86-platform-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[firefly-linux-kernel-4.4.55.git] / net / core / dev.c
1 /*
2  *      NET3    Protocol independent device support routines.
3  *
4  *              This program is free software; you can redistribute it and/or
5  *              modify it under the terms of the GNU General Public License
6  *              as published by the Free Software Foundation; either version
7  *              2 of the License, or (at your option) any later version.
8  *
9  *      Derived from the non IP parts of dev.c 1.0.19
10  *              Authors:        Ross Biro
11  *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *      Additional Authors:
15  *              Florian la Roche <rzsfl@rz.uni-sb.de>
16  *              Alan Cox <gw4pts@gw4pts.ampr.org>
17  *              David Hinds <dahinds@users.sourceforge.net>
18  *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *              Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *      Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *                                      to 2 if register_netdev gets called
25  *                                      before net_dev_init & also removed a
26  *                                      few lines of code in the process.
27  *              Alan Cox        :       device private ioctl copies fields back.
28  *              Alan Cox        :       Transmit queue code does relevant
29  *                                      stunts to keep the queue safe.
30  *              Alan Cox        :       Fixed double lock.
31  *              Alan Cox        :       Fixed promisc NULL pointer trap
32  *              ????????        :       Support the full private ioctl range
33  *              Alan Cox        :       Moved ioctl permission check into
34  *                                      drivers
35  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
36  *              Alan Cox        :       100 backlog just doesn't cut it when
37  *                                      you start doing multicast video 8)
38  *              Alan Cox        :       Rewrote net_bh and list manager.
39  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
40  *              Alan Cox        :       Took out transmit every packet pass
41  *                                      Saved a few bytes in the ioctl handler
42  *              Alan Cox        :       Network driver sets packet type before
43  *                                      calling netif_rx. Saves a function
44  *                                      call a packet.
45  *              Alan Cox        :       Hashed net_bh()
46  *              Richard Kooijman:       Timestamp fixes.
47  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
48  *              Alan Cox        :       Device lock protection.
49  *              Alan Cox        :       Fixed nasty side effect of device close
50  *                                      changes.
51  *              Rudi Cilibrasi  :       Pass the right thing to
52  *                                      set_mac_address()
53  *              Dave Miller     :       32bit quantity for the device lock to
54  *                                      make it work out on a Sparc.
55  *              Bjorn Ekwall    :       Added KERNELD hack.
56  *              Alan Cox        :       Cleaned up the backlog initialise.
57  *              Craig Metz      :       SIOCGIFCONF fix if space for under
58  *                                      1 device.
59  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
60  *                                      is no device open function.
61  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
62  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
63  *              Cyrus Durgin    :       Cleaned for KMOD
64  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
65  *                                      A network device unload needs to purge
66  *                                      the backlog queue.
67  *      Paul Rusty Russell      :       SIOCSIFNAME
68  *              Pekka Riikonen  :       Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *                                      indefinitely on dev->refcnt
71  *              J Hadi Salim    :       - Backlog queue sampling
72  *                                      - netif_rx() feedback
73  */
74
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/stat.h>
101 #include <net/dst.h>
102 #include <net/pkt_sched.h>
103 #include <net/checksum.h>
104 #include <net/xfrm.h>
105 #include <linux/highmem.h>
106 #include <linux/init.h>
107 #include <linux/module.h>
108 #include <linux/netpoll.h>
109 #include <linux/rcupdate.h>
110 #include <linux/delay.h>
111 #include <net/iw_handler.h>
112 #include <asm/current.h>
113 #include <linux/audit.h>
114 #include <linux/dmaengine.h>
115 #include <linux/err.h>
116 #include <linux/ctype.h>
117 #include <linux/if_arp.h>
118 #include <linux/if_vlan.h>
119 #include <linux/ip.h>
120 #include <net/ip.h>
121 #include <net/mpls.h>
122 #include <linux/ipv6.h>
123 #include <linux/in.h>
124 #include <linux/jhash.h>
125 #include <linux/random.h>
126 #include <trace/events/napi.h>
127 #include <trace/events/net.h>
128 #include <trace/events/skb.h>
129 #include <linux/pci.h>
130 #include <linux/inetdevice.h>
131 #include <linux/cpu_rmap.h>
132 #include <linux/static_key.h>
133 #include <linux/hashtable.h>
134 #include <linux/vmalloc.h>
135 #include <linux/if_macvlan.h>
136 #include <linux/errqueue.h>
137 #include <linux/hrtimer.h>
138
139 #include "net-sysfs.h"
140
141 /* Instead of increasing this, you should create a hash table. */
142 #define MAX_GRO_SKBS 8
143
144 /* This should be increased if a protocol with a bigger head is added. */
145 #define GRO_MAX_HEAD (MAX_HEADER + 128)
146
147 static DEFINE_SPINLOCK(ptype_lock);
148 static DEFINE_SPINLOCK(offload_lock);
149 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
150 struct list_head ptype_all __read_mostly;       /* Taps */
151 static struct list_head offload_base __read_mostly;
152
153 static int netif_rx_internal(struct sk_buff *skb);
154 static int call_netdevice_notifiers_info(unsigned long val,
155                                          struct net_device *dev,
156                                          struct netdev_notifier_info *info);
157
158 /*
159  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
160  * semaphore.
161  *
162  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
163  *
164  * Writers must hold the rtnl semaphore while they loop through the
165  * dev_base_head list, and hold dev_base_lock for writing when they do the
166  * actual updates.  This allows pure readers to access the list even
167  * while a writer is preparing to update it.
168  *
169  * To put it another way, dev_base_lock is held for writing only to
170  * protect against pure readers; the rtnl semaphore provides the
171  * protection against other writers.
172  *
173  * See, for example usages, register_netdevice() and
174  * unregister_netdevice(), which must be called with the rtnl
175  * semaphore held.
176  */
177 DEFINE_RWLOCK(dev_base_lock);
178 EXPORT_SYMBOL(dev_base_lock);
179
180 /* protects napi_hash addition/deletion and napi_gen_id */
181 static DEFINE_SPINLOCK(napi_hash_lock);
182
183 static unsigned int napi_gen_id;
184 static DEFINE_HASHTABLE(napi_hash, 8);
185
186 static seqcount_t devnet_rename_seq;
187
188 static inline void dev_base_seq_inc(struct net *net)
189 {
190         while (++net->dev_base_seq == 0);
191 }
192
193 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
194 {
195         unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
196
197         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
198 }
199
200 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
201 {
202         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
203 }
204
205 static inline void rps_lock(struct softnet_data *sd)
206 {
207 #ifdef CONFIG_RPS
208         spin_lock(&sd->input_pkt_queue.lock);
209 #endif
210 }
211
212 static inline void rps_unlock(struct softnet_data *sd)
213 {
214 #ifdef CONFIG_RPS
215         spin_unlock(&sd->input_pkt_queue.lock);
216 #endif
217 }
218
219 /* Device list insertion */
220 static void list_netdevice(struct net_device *dev)
221 {
222         struct net *net = dev_net(dev);
223
224         ASSERT_RTNL();
225
226         write_lock_bh(&dev_base_lock);
227         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
228         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
229         hlist_add_head_rcu(&dev->index_hlist,
230                            dev_index_hash(net, dev->ifindex));
231         write_unlock_bh(&dev_base_lock);
232
233         dev_base_seq_inc(net);
234 }
235
236 /* Device list removal
237  * caller must respect a RCU grace period before freeing/reusing dev
238  */
239 static void unlist_netdevice(struct net_device *dev)
240 {
241         ASSERT_RTNL();
242
243         /* Unlink dev from the device chain */
244         write_lock_bh(&dev_base_lock);
245         list_del_rcu(&dev->dev_list);
246         hlist_del_rcu(&dev->name_hlist);
247         hlist_del_rcu(&dev->index_hlist);
248         write_unlock_bh(&dev_base_lock);
249
250         dev_base_seq_inc(dev_net(dev));
251 }
252
253 /*
254  *      Our notifier list
255  */
256
257 static RAW_NOTIFIER_HEAD(netdev_chain);
258
259 /*
260  *      Device drivers call our routines to queue packets here. We empty the
261  *      queue in the local softnet handler.
262  */
263
264 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
265 EXPORT_PER_CPU_SYMBOL(softnet_data);
266
267 #ifdef CONFIG_LOCKDEP
268 /*
269  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
270  * according to dev->type
271  */
272 static const unsigned short netdev_lock_type[] =
273         {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
274          ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
275          ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
276          ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
277          ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
278          ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
279          ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
280          ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
281          ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
282          ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
283          ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
284          ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
285          ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
286          ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
287          ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
288
289 static const char *const netdev_lock_name[] =
290         {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
291          "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
292          "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
293          "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
294          "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
295          "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
296          "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
297          "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
298          "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
299          "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
300          "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
301          "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
302          "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
303          "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
304          "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
305
306 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
307 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
308
309 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
310 {
311         int i;
312
313         for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
314                 if (netdev_lock_type[i] == dev_type)
315                         return i;
316         /* the last key is used by default */
317         return ARRAY_SIZE(netdev_lock_type) - 1;
318 }
319
320 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
321                                                  unsigned short dev_type)
322 {
323         int i;
324
325         i = netdev_lock_pos(dev_type);
326         lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
327                                    netdev_lock_name[i]);
328 }
329
330 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
331 {
332         int i;
333
334         i = netdev_lock_pos(dev->type);
335         lockdep_set_class_and_name(&dev->addr_list_lock,
336                                    &netdev_addr_lock_key[i],
337                                    netdev_lock_name[i]);
338 }
339 #else
340 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
341                                                  unsigned short dev_type)
342 {
343 }
344 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
345 {
346 }
347 #endif
348
349 /*******************************************************************************
350
351                 Protocol management and registration routines
352
353 *******************************************************************************/
354
355 /*
356  *      Add a protocol ID to the list. Now that the input handler is
357  *      smarter we can dispense with all the messy stuff that used to be
358  *      here.
359  *
360  *      BEWARE!!! Protocol handlers, mangling input packets,
361  *      MUST BE last in hash buckets and checking protocol handlers
362  *      MUST start from promiscuous ptype_all chain in net_bh.
363  *      It is true now, do not change it.
364  *      Explanation follows: if protocol handler, mangling packet, will
365  *      be the first on list, it is not able to sense, that packet
366  *      is cloned and should be copied-on-write, so that it will
367  *      change it and subsequent readers will get broken packet.
368  *                                                      --ANK (980803)
369  */
370
371 static inline struct list_head *ptype_head(const struct packet_type *pt)
372 {
373         if (pt->type == htons(ETH_P_ALL))
374                 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
375         else
376                 return pt->dev ? &pt->dev->ptype_specific :
377                                  &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
378 }
379
380 /**
381  *      dev_add_pack - add packet handler
382  *      @pt: packet type declaration
383  *
384  *      Add a protocol handler to the networking stack. The passed &packet_type
385  *      is linked into kernel lists and may not be freed until it has been
386  *      removed from the kernel lists.
387  *
388  *      This call does not sleep therefore it can not
389  *      guarantee all CPU's that are in middle of receiving packets
390  *      will see the new packet type (until the next received packet).
391  */
392
393 void dev_add_pack(struct packet_type *pt)
394 {
395         struct list_head *head = ptype_head(pt);
396
397         spin_lock(&ptype_lock);
398         list_add_rcu(&pt->list, head);
399         spin_unlock(&ptype_lock);
400 }
401 EXPORT_SYMBOL(dev_add_pack);
402
403 /**
404  *      __dev_remove_pack        - remove packet handler
405  *      @pt: packet type declaration
406  *
407  *      Remove a protocol handler that was previously added to the kernel
408  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
409  *      from the kernel lists and can be freed or reused once this function
410  *      returns.
411  *
412  *      The packet type might still be in use by receivers
413  *      and must not be freed until after all the CPU's have gone
414  *      through a quiescent state.
415  */
416 void __dev_remove_pack(struct packet_type *pt)
417 {
418         struct list_head *head = ptype_head(pt);
419         struct packet_type *pt1;
420
421         spin_lock(&ptype_lock);
422
423         list_for_each_entry(pt1, head, list) {
424                 if (pt == pt1) {
425                         list_del_rcu(&pt->list);
426                         goto out;
427                 }
428         }
429
430         pr_warn("dev_remove_pack: %p not found\n", pt);
431 out:
432         spin_unlock(&ptype_lock);
433 }
434 EXPORT_SYMBOL(__dev_remove_pack);
435
436 /**
437  *      dev_remove_pack  - remove packet handler
438  *      @pt: packet type declaration
439  *
440  *      Remove a protocol handler that was previously added to the kernel
441  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
442  *      from the kernel lists and can be freed or reused once this function
443  *      returns.
444  *
445  *      This call sleeps to guarantee that no CPU is looking at the packet
446  *      type after return.
447  */
448 void dev_remove_pack(struct packet_type *pt)
449 {
450         __dev_remove_pack(pt);
451
452         synchronize_net();
453 }
454 EXPORT_SYMBOL(dev_remove_pack);
455
456
457 /**
458  *      dev_add_offload - register offload handlers
459  *      @po: protocol offload declaration
460  *
461  *      Add protocol offload handlers to the networking stack. The passed
462  *      &proto_offload is linked into kernel lists and may not be freed until
463  *      it has been removed from the kernel lists.
464  *
465  *      This call does not sleep therefore it can not
466  *      guarantee all CPU's that are in middle of receiving packets
467  *      will see the new offload handlers (until the next received packet).
468  */
469 void dev_add_offload(struct packet_offload *po)
470 {
471         struct list_head *head = &offload_base;
472
473         spin_lock(&offload_lock);
474         list_add_rcu(&po->list, head);
475         spin_unlock(&offload_lock);
476 }
477 EXPORT_SYMBOL(dev_add_offload);
478
479 /**
480  *      __dev_remove_offload     - remove offload handler
481  *      @po: packet offload declaration
482  *
483  *      Remove a protocol offload handler that was previously added to the
484  *      kernel offload handlers by dev_add_offload(). The passed &offload_type
485  *      is removed from the kernel lists and can be freed or reused once this
486  *      function returns.
487  *
488  *      The packet type might still be in use by receivers
489  *      and must not be freed until after all the CPU's have gone
490  *      through a quiescent state.
491  */
492 static void __dev_remove_offload(struct packet_offload *po)
493 {
494         struct list_head *head = &offload_base;
495         struct packet_offload *po1;
496
497         spin_lock(&offload_lock);
498
499         list_for_each_entry(po1, head, list) {
500                 if (po == po1) {
501                         list_del_rcu(&po->list);
502                         goto out;
503                 }
504         }
505
506         pr_warn("dev_remove_offload: %p not found\n", po);
507 out:
508         spin_unlock(&offload_lock);
509 }
510
511 /**
512  *      dev_remove_offload       - remove packet offload handler
513  *      @po: packet offload declaration
514  *
515  *      Remove a packet offload handler that was previously added to the kernel
516  *      offload handlers by dev_add_offload(). The passed &offload_type is
517  *      removed from the kernel lists and can be freed or reused once this
518  *      function returns.
519  *
520  *      This call sleeps to guarantee that no CPU is looking at the packet
521  *      type after return.
522  */
523 void dev_remove_offload(struct packet_offload *po)
524 {
525         __dev_remove_offload(po);
526
527         synchronize_net();
528 }
529 EXPORT_SYMBOL(dev_remove_offload);
530
531 /******************************************************************************
532
533                       Device Boot-time Settings Routines
534
535 *******************************************************************************/
536
537 /* Boot time configuration table */
538 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
539
540 /**
541  *      netdev_boot_setup_add   - add new setup entry
542  *      @name: name of the device
543  *      @map: configured settings for the device
544  *
545  *      Adds new setup entry to the dev_boot_setup list.  The function
546  *      returns 0 on error and 1 on success.  This is a generic routine to
547  *      all netdevices.
548  */
549 static int netdev_boot_setup_add(char *name, struct ifmap *map)
550 {
551         struct netdev_boot_setup *s;
552         int i;
553
554         s = dev_boot_setup;
555         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
556                 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
557                         memset(s[i].name, 0, sizeof(s[i].name));
558                         strlcpy(s[i].name, name, IFNAMSIZ);
559                         memcpy(&s[i].map, map, sizeof(s[i].map));
560                         break;
561                 }
562         }
563
564         return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
565 }
566
567 /**
568  *      netdev_boot_setup_check - check boot time settings
569  *      @dev: the netdevice
570  *
571  *      Check boot time settings for the device.
572  *      The found settings are set for the device to be used
573  *      later in the device probing.
574  *      Returns 0 if no settings found, 1 if they are.
575  */
576 int netdev_boot_setup_check(struct net_device *dev)
577 {
578         struct netdev_boot_setup *s = dev_boot_setup;
579         int i;
580
581         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
582                 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
583                     !strcmp(dev->name, s[i].name)) {
584                         dev->irq        = s[i].map.irq;
585                         dev->base_addr  = s[i].map.base_addr;
586                         dev->mem_start  = s[i].map.mem_start;
587                         dev->mem_end    = s[i].map.mem_end;
588                         return 1;
589                 }
590         }
591         return 0;
592 }
593 EXPORT_SYMBOL(netdev_boot_setup_check);
594
595
596 /**
597  *      netdev_boot_base        - get address from boot time settings
598  *      @prefix: prefix for network device
599  *      @unit: id for network device
600  *
601  *      Check boot time settings for the base address of device.
602  *      The found settings are set for the device to be used
603  *      later in the device probing.
604  *      Returns 0 if no settings found.
605  */
606 unsigned long netdev_boot_base(const char *prefix, int unit)
607 {
608         const struct netdev_boot_setup *s = dev_boot_setup;
609         char name[IFNAMSIZ];
610         int i;
611
612         sprintf(name, "%s%d", prefix, unit);
613
614         /*
615          * If device already registered then return base of 1
616          * to indicate not to probe for this interface
617          */
618         if (__dev_get_by_name(&init_net, name))
619                 return 1;
620
621         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
622                 if (!strcmp(name, s[i].name))
623                         return s[i].map.base_addr;
624         return 0;
625 }
626
627 /*
628  * Saves at boot time configured settings for any netdevice.
629  */
630 int __init netdev_boot_setup(char *str)
631 {
632         int ints[5];
633         struct ifmap map;
634
635         str = get_options(str, ARRAY_SIZE(ints), ints);
636         if (!str || !*str)
637                 return 0;
638
639         /* Save settings */
640         memset(&map, 0, sizeof(map));
641         if (ints[0] > 0)
642                 map.irq = ints[1];
643         if (ints[0] > 1)
644                 map.base_addr = ints[2];
645         if (ints[0] > 2)
646                 map.mem_start = ints[3];
647         if (ints[0] > 3)
648                 map.mem_end = ints[4];
649
650         /* Add new entry to the list */
651         return netdev_boot_setup_add(str, &map);
652 }
653
654 __setup("netdev=", netdev_boot_setup);
655
656 /*******************************************************************************
657
658                             Device Interface Subroutines
659
660 *******************************************************************************/
661
662 /**
663  *      __dev_get_by_name       - find a device by its name
664  *      @net: the applicable net namespace
665  *      @name: name to find
666  *
667  *      Find an interface by name. Must be called under RTNL semaphore
668  *      or @dev_base_lock. If the name is found a pointer to the device
669  *      is returned. If the name is not found then %NULL is returned. The
670  *      reference counters are not incremented so the caller must be
671  *      careful with locks.
672  */
673
674 struct net_device *__dev_get_by_name(struct net *net, const char *name)
675 {
676         struct net_device *dev;
677         struct hlist_head *head = dev_name_hash(net, name);
678
679         hlist_for_each_entry(dev, head, name_hlist)
680                 if (!strncmp(dev->name, name, IFNAMSIZ))
681                         return dev;
682
683         return NULL;
684 }
685 EXPORT_SYMBOL(__dev_get_by_name);
686
687 /**
688  *      dev_get_by_name_rcu     - find a device by its name
689  *      @net: the applicable net namespace
690  *      @name: name to find
691  *
692  *      Find an interface by name.
693  *      If the name is found a pointer to the device is returned.
694  *      If the name is not found then %NULL is returned.
695  *      The reference counters are not incremented so the caller must be
696  *      careful with locks. The caller must hold RCU lock.
697  */
698
699 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
700 {
701         struct net_device *dev;
702         struct hlist_head *head = dev_name_hash(net, name);
703
704         hlist_for_each_entry_rcu(dev, head, name_hlist)
705                 if (!strncmp(dev->name, name, IFNAMSIZ))
706                         return dev;
707
708         return NULL;
709 }
710 EXPORT_SYMBOL(dev_get_by_name_rcu);
711
712 /**
713  *      dev_get_by_name         - find a device by its name
714  *      @net: the applicable net namespace
715  *      @name: name to find
716  *
717  *      Find an interface by name. This can be called from any
718  *      context and does its own locking. The returned handle has
719  *      the usage count incremented and the caller must use dev_put() to
720  *      release it when it is no longer needed. %NULL is returned if no
721  *      matching device is found.
722  */
723
724 struct net_device *dev_get_by_name(struct net *net, const char *name)
725 {
726         struct net_device *dev;
727
728         rcu_read_lock();
729         dev = dev_get_by_name_rcu(net, name);
730         if (dev)
731                 dev_hold(dev);
732         rcu_read_unlock();
733         return dev;
734 }
735 EXPORT_SYMBOL(dev_get_by_name);
736
737 /**
738  *      __dev_get_by_index - find a device by its ifindex
739  *      @net: the applicable net namespace
740  *      @ifindex: index of device
741  *
742  *      Search for an interface by index. Returns %NULL if the device
743  *      is not found or a pointer to the device. The device has not
744  *      had its reference counter increased so the caller must be careful
745  *      about locking. The caller must hold either the RTNL semaphore
746  *      or @dev_base_lock.
747  */
748
749 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
750 {
751         struct net_device *dev;
752         struct hlist_head *head = dev_index_hash(net, ifindex);
753
754         hlist_for_each_entry(dev, head, index_hlist)
755                 if (dev->ifindex == ifindex)
756                         return dev;
757
758         return NULL;
759 }
760 EXPORT_SYMBOL(__dev_get_by_index);
761
762 /**
763  *      dev_get_by_index_rcu - find a device by its ifindex
764  *      @net: the applicable net namespace
765  *      @ifindex: index of device
766  *
767  *      Search for an interface by index. Returns %NULL if the device
768  *      is not found or a pointer to the device. The device has not
769  *      had its reference counter increased so the caller must be careful
770  *      about locking. The caller must hold RCU lock.
771  */
772
773 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
774 {
775         struct net_device *dev;
776         struct hlist_head *head = dev_index_hash(net, ifindex);
777
778         hlist_for_each_entry_rcu(dev, head, index_hlist)
779                 if (dev->ifindex == ifindex)
780                         return dev;
781
782         return NULL;
783 }
784 EXPORT_SYMBOL(dev_get_by_index_rcu);
785
786
787 /**
788  *      dev_get_by_index - find a device by its ifindex
789  *      @net: the applicable net namespace
790  *      @ifindex: index of device
791  *
792  *      Search for an interface by index. Returns NULL if the device
793  *      is not found or a pointer to the device. The device returned has
794  *      had a reference added and the pointer is safe until the user calls
795  *      dev_put to indicate they have finished with it.
796  */
797
798 struct net_device *dev_get_by_index(struct net *net, int ifindex)
799 {
800         struct net_device *dev;
801
802         rcu_read_lock();
803         dev = dev_get_by_index_rcu(net, ifindex);
804         if (dev)
805                 dev_hold(dev);
806         rcu_read_unlock();
807         return dev;
808 }
809 EXPORT_SYMBOL(dev_get_by_index);
810
811 /**
812  *      netdev_get_name - get a netdevice name, knowing its ifindex.
813  *      @net: network namespace
814  *      @name: a pointer to the buffer where the name will be stored.
815  *      @ifindex: the ifindex of the interface to get the name from.
816  *
817  *      The use of raw_seqcount_begin() and cond_resched() before
818  *      retrying is required as we want to give the writers a chance
819  *      to complete when CONFIG_PREEMPT is not set.
820  */
821 int netdev_get_name(struct net *net, char *name, int ifindex)
822 {
823         struct net_device *dev;
824         unsigned int seq;
825
826 retry:
827         seq = raw_seqcount_begin(&devnet_rename_seq);
828         rcu_read_lock();
829         dev = dev_get_by_index_rcu(net, ifindex);
830         if (!dev) {
831                 rcu_read_unlock();
832                 return -ENODEV;
833         }
834
835         strcpy(name, dev->name);
836         rcu_read_unlock();
837         if (read_seqcount_retry(&devnet_rename_seq, seq)) {
838                 cond_resched();
839                 goto retry;
840         }
841
842         return 0;
843 }
844
845 /**
846  *      dev_getbyhwaddr_rcu - find a device by its hardware address
847  *      @net: the applicable net namespace
848  *      @type: media type of device
849  *      @ha: hardware address
850  *
851  *      Search for an interface by MAC address. Returns NULL if the device
852  *      is not found or a pointer to the device.
853  *      The caller must hold RCU or RTNL.
854  *      The returned device has not had its ref count increased
855  *      and the caller must therefore be careful about locking
856  *
857  */
858
859 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
860                                        const char *ha)
861 {
862         struct net_device *dev;
863
864         for_each_netdev_rcu(net, dev)
865                 if (dev->type == type &&
866                     !memcmp(dev->dev_addr, ha, dev->addr_len))
867                         return dev;
868
869         return NULL;
870 }
871 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
872
873 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
874 {
875         struct net_device *dev;
876
877         ASSERT_RTNL();
878         for_each_netdev(net, dev)
879                 if (dev->type == type)
880                         return dev;
881
882         return NULL;
883 }
884 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
885
886 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
887 {
888         struct net_device *dev, *ret = NULL;
889
890         rcu_read_lock();
891         for_each_netdev_rcu(net, dev)
892                 if (dev->type == type) {
893                         dev_hold(dev);
894                         ret = dev;
895                         break;
896                 }
897         rcu_read_unlock();
898         return ret;
899 }
900 EXPORT_SYMBOL(dev_getfirstbyhwtype);
901
902 /**
903  *      __dev_get_by_flags - find any device with given flags
904  *      @net: the applicable net namespace
905  *      @if_flags: IFF_* values
906  *      @mask: bitmask of bits in if_flags to check
907  *
908  *      Search for any interface with the given flags. Returns NULL if a device
909  *      is not found or a pointer to the device. Must be called inside
910  *      rtnl_lock(), and result refcount is unchanged.
911  */
912
913 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
914                                       unsigned short mask)
915 {
916         struct net_device *dev, *ret;
917
918         ASSERT_RTNL();
919
920         ret = NULL;
921         for_each_netdev(net, dev) {
922                 if (((dev->flags ^ if_flags) & mask) == 0) {
923                         ret = dev;
924                         break;
925                 }
926         }
927         return ret;
928 }
929 EXPORT_SYMBOL(__dev_get_by_flags);
930
931 /**
932  *      dev_valid_name - check if name is okay for network device
933  *      @name: name string
934  *
935  *      Network device names need to be valid file names to
936  *      to allow sysfs to work.  We also disallow any kind of
937  *      whitespace.
938  */
939 bool dev_valid_name(const char *name)
940 {
941         if (*name == '\0')
942                 return false;
943         if (strlen(name) >= IFNAMSIZ)
944                 return false;
945         if (!strcmp(name, ".") || !strcmp(name, ".."))
946                 return false;
947
948         while (*name) {
949                 if (*name == '/' || *name == ':' || isspace(*name))
950                         return false;
951                 name++;
952         }
953         return true;
954 }
955 EXPORT_SYMBOL(dev_valid_name);
956
957 /**
958  *      __dev_alloc_name - allocate a name for a device
959  *      @net: network namespace to allocate the device name in
960  *      @name: name format string
961  *      @buf:  scratch buffer and result name string
962  *
963  *      Passed a format string - eg "lt%d" it will try and find a suitable
964  *      id. It scans list of devices to build up a free map, then chooses
965  *      the first empty slot. The caller must hold the dev_base or rtnl lock
966  *      while allocating the name and adding the device in order to avoid
967  *      duplicates.
968  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
969  *      Returns the number of the unit assigned or a negative errno code.
970  */
971
972 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
973 {
974         int i = 0;
975         const char *p;
976         const int max_netdevices = 8*PAGE_SIZE;
977         unsigned long *inuse;
978         struct net_device *d;
979
980         p = strnchr(name, IFNAMSIZ-1, '%');
981         if (p) {
982                 /*
983                  * Verify the string as this thing may have come from
984                  * the user.  There must be either one "%d" and no other "%"
985                  * characters.
986                  */
987                 if (p[1] != 'd' || strchr(p + 2, '%'))
988                         return -EINVAL;
989
990                 /* Use one page as a bit array of possible slots */
991                 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
992                 if (!inuse)
993                         return -ENOMEM;
994
995                 for_each_netdev(net, d) {
996                         if (!sscanf(d->name, name, &i))
997                                 continue;
998                         if (i < 0 || i >= max_netdevices)
999                                 continue;
1000
1001                         /*  avoid cases where sscanf is not exact inverse of printf */
1002                         snprintf(buf, IFNAMSIZ, name, i);
1003                         if (!strncmp(buf, d->name, IFNAMSIZ))
1004                                 set_bit(i, inuse);
1005                 }
1006
1007                 i = find_first_zero_bit(inuse, max_netdevices);
1008                 free_page((unsigned long) inuse);
1009         }
1010
1011         if (buf != name)
1012                 snprintf(buf, IFNAMSIZ, name, i);
1013         if (!__dev_get_by_name(net, buf))
1014                 return i;
1015
1016         /* It is possible to run out of possible slots
1017          * when the name is long and there isn't enough space left
1018          * for the digits, or if all bits are used.
1019          */
1020         return -ENFILE;
1021 }
1022
1023 /**
1024  *      dev_alloc_name - allocate a name for a device
1025  *      @dev: device
1026  *      @name: name format string
1027  *
1028  *      Passed a format string - eg "lt%d" it will try and find a suitable
1029  *      id. It scans list of devices to build up a free map, then chooses
1030  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1031  *      while allocating the name and adding the device in order to avoid
1032  *      duplicates.
1033  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1034  *      Returns the number of the unit assigned or a negative errno code.
1035  */
1036
1037 int dev_alloc_name(struct net_device *dev, const char *name)
1038 {
1039         char buf[IFNAMSIZ];
1040         struct net *net;
1041         int ret;
1042
1043         BUG_ON(!dev_net(dev));
1044         net = dev_net(dev);
1045         ret = __dev_alloc_name(net, name, buf);
1046         if (ret >= 0)
1047                 strlcpy(dev->name, buf, IFNAMSIZ);
1048         return ret;
1049 }
1050 EXPORT_SYMBOL(dev_alloc_name);
1051
1052 static int dev_alloc_name_ns(struct net *net,
1053                              struct net_device *dev,
1054                              const char *name)
1055 {
1056         char buf[IFNAMSIZ];
1057         int ret;
1058
1059         ret = __dev_alloc_name(net, name, buf);
1060         if (ret >= 0)
1061                 strlcpy(dev->name, buf, IFNAMSIZ);
1062         return ret;
1063 }
1064
1065 static int dev_get_valid_name(struct net *net,
1066                               struct net_device *dev,
1067                               const char *name)
1068 {
1069         BUG_ON(!net);
1070
1071         if (!dev_valid_name(name))
1072                 return -EINVAL;
1073
1074         if (strchr(name, '%'))
1075                 return dev_alloc_name_ns(net, dev, name);
1076         else if (__dev_get_by_name(net, name))
1077                 return -EEXIST;
1078         else if (dev->name != name)
1079                 strlcpy(dev->name, name, IFNAMSIZ);
1080
1081         return 0;
1082 }
1083
1084 /**
1085  *      dev_change_name - change name of a device
1086  *      @dev: device
1087  *      @newname: name (or format string) must be at least IFNAMSIZ
1088  *
1089  *      Change name of a device, can pass format strings "eth%d".
1090  *      for wildcarding.
1091  */
1092 int dev_change_name(struct net_device *dev, const char *newname)
1093 {
1094         unsigned char old_assign_type;
1095         char oldname[IFNAMSIZ];
1096         int err = 0;
1097         int ret;
1098         struct net *net;
1099
1100         ASSERT_RTNL();
1101         BUG_ON(!dev_net(dev));
1102
1103         net = dev_net(dev);
1104         if (dev->flags & IFF_UP)
1105                 return -EBUSY;
1106
1107         write_seqcount_begin(&devnet_rename_seq);
1108
1109         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1110                 write_seqcount_end(&devnet_rename_seq);
1111                 return 0;
1112         }
1113
1114         memcpy(oldname, dev->name, IFNAMSIZ);
1115
1116         err = dev_get_valid_name(net, dev, newname);
1117         if (err < 0) {
1118                 write_seqcount_end(&devnet_rename_seq);
1119                 return err;
1120         }
1121
1122         if (oldname[0] && !strchr(oldname, '%'))
1123                 netdev_info(dev, "renamed from %s\n", oldname);
1124
1125         old_assign_type = dev->name_assign_type;
1126         dev->name_assign_type = NET_NAME_RENAMED;
1127
1128 rollback:
1129         ret = device_rename(&dev->dev, dev->name);
1130         if (ret) {
1131                 memcpy(dev->name, oldname, IFNAMSIZ);
1132                 dev->name_assign_type = old_assign_type;
1133                 write_seqcount_end(&devnet_rename_seq);
1134                 return ret;
1135         }
1136
1137         write_seqcount_end(&devnet_rename_seq);
1138
1139         netdev_adjacent_rename_links(dev, oldname);
1140
1141         write_lock_bh(&dev_base_lock);
1142         hlist_del_rcu(&dev->name_hlist);
1143         write_unlock_bh(&dev_base_lock);
1144
1145         synchronize_rcu();
1146
1147         write_lock_bh(&dev_base_lock);
1148         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1149         write_unlock_bh(&dev_base_lock);
1150
1151         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1152         ret = notifier_to_errno(ret);
1153
1154         if (ret) {
1155                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1156                 if (err >= 0) {
1157                         err = ret;
1158                         write_seqcount_begin(&devnet_rename_seq);
1159                         memcpy(dev->name, oldname, IFNAMSIZ);
1160                         memcpy(oldname, newname, IFNAMSIZ);
1161                         dev->name_assign_type = old_assign_type;
1162                         old_assign_type = NET_NAME_RENAMED;
1163                         goto rollback;
1164                 } else {
1165                         pr_err("%s: name change rollback failed: %d\n",
1166                                dev->name, ret);
1167                 }
1168         }
1169
1170         return err;
1171 }
1172
1173 /**
1174  *      dev_set_alias - change ifalias of a device
1175  *      @dev: device
1176  *      @alias: name up to IFALIASZ
1177  *      @len: limit of bytes to copy from info
1178  *
1179  *      Set ifalias for a device,
1180  */
1181 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1182 {
1183         char *new_ifalias;
1184
1185         ASSERT_RTNL();
1186
1187         if (len >= IFALIASZ)
1188                 return -EINVAL;
1189
1190         if (!len) {
1191                 kfree(dev->ifalias);
1192                 dev->ifalias = NULL;
1193                 return 0;
1194         }
1195
1196         new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1197         if (!new_ifalias)
1198                 return -ENOMEM;
1199         dev->ifalias = new_ifalias;
1200
1201         strlcpy(dev->ifalias, alias, len+1);
1202         return len;
1203 }
1204
1205
1206 /**
1207  *      netdev_features_change - device changes features
1208  *      @dev: device to cause notification
1209  *
1210  *      Called to indicate a device has changed features.
1211  */
1212 void netdev_features_change(struct net_device *dev)
1213 {
1214         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1215 }
1216 EXPORT_SYMBOL(netdev_features_change);
1217
1218 /**
1219  *      netdev_state_change - device changes state
1220  *      @dev: device to cause notification
1221  *
1222  *      Called to indicate a device has changed state. This function calls
1223  *      the notifier chains for netdev_chain and sends a NEWLINK message
1224  *      to the routing socket.
1225  */
1226 void netdev_state_change(struct net_device *dev)
1227 {
1228         if (dev->flags & IFF_UP) {
1229                 struct netdev_notifier_change_info change_info;
1230
1231                 change_info.flags_changed = 0;
1232                 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1233                                               &change_info.info);
1234                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1235         }
1236 }
1237 EXPORT_SYMBOL(netdev_state_change);
1238
1239 /**
1240  *      netdev_notify_peers - notify network peers about existence of @dev
1241  *      @dev: network device
1242  *
1243  * Generate traffic such that interested network peers are aware of
1244  * @dev, such as by generating a gratuitous ARP. This may be used when
1245  * a device wants to inform the rest of the network about some sort of
1246  * reconfiguration such as a failover event or virtual machine
1247  * migration.
1248  */
1249 void netdev_notify_peers(struct net_device *dev)
1250 {
1251         rtnl_lock();
1252         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1253         rtnl_unlock();
1254 }
1255 EXPORT_SYMBOL(netdev_notify_peers);
1256
1257 static int __dev_open(struct net_device *dev)
1258 {
1259         const struct net_device_ops *ops = dev->netdev_ops;
1260         int ret;
1261
1262         ASSERT_RTNL();
1263
1264         if (!netif_device_present(dev))
1265                 return -ENODEV;
1266
1267         /* Block netpoll from trying to do any rx path servicing.
1268          * If we don't do this there is a chance ndo_poll_controller
1269          * or ndo_poll may be running while we open the device
1270          */
1271         netpoll_poll_disable(dev);
1272
1273         ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1274         ret = notifier_to_errno(ret);
1275         if (ret)
1276                 return ret;
1277
1278         set_bit(__LINK_STATE_START, &dev->state);
1279
1280         if (ops->ndo_validate_addr)
1281                 ret = ops->ndo_validate_addr(dev);
1282
1283         if (!ret && ops->ndo_open)
1284                 ret = ops->ndo_open(dev);
1285
1286         netpoll_poll_enable(dev);
1287
1288         if (ret)
1289                 clear_bit(__LINK_STATE_START, &dev->state);
1290         else {
1291                 dev->flags |= IFF_UP;
1292                 dev_set_rx_mode(dev);
1293                 dev_activate(dev);
1294                 add_device_randomness(dev->dev_addr, dev->addr_len);
1295         }
1296
1297         return ret;
1298 }
1299
1300 /**
1301  *      dev_open        - prepare an interface for use.
1302  *      @dev:   device to open
1303  *
1304  *      Takes a device from down to up state. The device's private open
1305  *      function is invoked and then the multicast lists are loaded. Finally
1306  *      the device is moved into the up state and a %NETDEV_UP message is
1307  *      sent to the netdev notifier chain.
1308  *
1309  *      Calling this function on an active interface is a nop. On a failure
1310  *      a negative errno code is returned.
1311  */
1312 int dev_open(struct net_device *dev)
1313 {
1314         int ret;
1315
1316         if (dev->flags & IFF_UP)
1317                 return 0;
1318
1319         ret = __dev_open(dev);
1320         if (ret < 0)
1321                 return ret;
1322
1323         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1324         call_netdevice_notifiers(NETDEV_UP, dev);
1325
1326         return ret;
1327 }
1328 EXPORT_SYMBOL(dev_open);
1329
1330 static int __dev_close_many(struct list_head *head)
1331 {
1332         struct net_device *dev;
1333
1334         ASSERT_RTNL();
1335         might_sleep();
1336
1337         list_for_each_entry(dev, head, close_list) {
1338                 /* Temporarily disable netpoll until the interface is down */
1339                 netpoll_poll_disable(dev);
1340
1341                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1342
1343                 clear_bit(__LINK_STATE_START, &dev->state);
1344
1345                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1346                  * can be even on different cpu. So just clear netif_running().
1347                  *
1348                  * dev->stop() will invoke napi_disable() on all of it's
1349                  * napi_struct instances on this device.
1350                  */
1351                 smp_mb__after_atomic(); /* Commit netif_running(). */
1352         }
1353
1354         dev_deactivate_many(head);
1355
1356         list_for_each_entry(dev, head, close_list) {
1357                 const struct net_device_ops *ops = dev->netdev_ops;
1358
1359                 /*
1360                  *      Call the device specific close. This cannot fail.
1361                  *      Only if device is UP
1362                  *
1363                  *      We allow it to be called even after a DETACH hot-plug
1364                  *      event.
1365                  */
1366                 if (ops->ndo_stop)
1367                         ops->ndo_stop(dev);
1368
1369                 dev->flags &= ~IFF_UP;
1370                 netpoll_poll_enable(dev);
1371         }
1372
1373         return 0;
1374 }
1375
1376 static int __dev_close(struct net_device *dev)
1377 {
1378         int retval;
1379         LIST_HEAD(single);
1380
1381         list_add(&dev->close_list, &single);
1382         retval = __dev_close_many(&single);
1383         list_del(&single);
1384
1385         return retval;
1386 }
1387
1388 static int dev_close_many(struct list_head *head)
1389 {
1390         struct net_device *dev, *tmp;
1391
1392         /* Remove the devices that don't need to be closed */
1393         list_for_each_entry_safe(dev, tmp, head, close_list)
1394                 if (!(dev->flags & IFF_UP))
1395                         list_del_init(&dev->close_list);
1396
1397         __dev_close_many(head);
1398
1399         list_for_each_entry_safe(dev, tmp, head, close_list) {
1400                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1401                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1402                 list_del_init(&dev->close_list);
1403         }
1404
1405         return 0;
1406 }
1407
1408 /**
1409  *      dev_close - shutdown an interface.
1410  *      @dev: device to shutdown
1411  *
1412  *      This function moves an active device into down state. A
1413  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1414  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1415  *      chain.
1416  */
1417 int dev_close(struct net_device *dev)
1418 {
1419         if (dev->flags & IFF_UP) {
1420                 LIST_HEAD(single);
1421
1422                 list_add(&dev->close_list, &single);
1423                 dev_close_many(&single);
1424                 list_del(&single);
1425         }
1426         return 0;
1427 }
1428 EXPORT_SYMBOL(dev_close);
1429
1430
1431 /**
1432  *      dev_disable_lro - disable Large Receive Offload on a device
1433  *      @dev: device
1434  *
1435  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1436  *      called under RTNL.  This is needed if received packets may be
1437  *      forwarded to another interface.
1438  */
1439 void dev_disable_lro(struct net_device *dev)
1440 {
1441         struct net_device *lower_dev;
1442         struct list_head *iter;
1443
1444         dev->wanted_features &= ~NETIF_F_LRO;
1445         netdev_update_features(dev);
1446
1447         if (unlikely(dev->features & NETIF_F_LRO))
1448                 netdev_WARN(dev, "failed to disable LRO!\n");
1449
1450         netdev_for_each_lower_dev(dev, lower_dev, iter)
1451                 dev_disable_lro(lower_dev);
1452 }
1453 EXPORT_SYMBOL(dev_disable_lro);
1454
1455 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1456                                    struct net_device *dev)
1457 {
1458         struct netdev_notifier_info info;
1459
1460         netdev_notifier_info_init(&info, dev);
1461         return nb->notifier_call(nb, val, &info);
1462 }
1463
1464 static int dev_boot_phase = 1;
1465
1466 /**
1467  *      register_netdevice_notifier - register a network notifier block
1468  *      @nb: notifier
1469  *
1470  *      Register a notifier to be called when network device events occur.
1471  *      The notifier passed is linked into the kernel structures and must
1472  *      not be reused until it has been unregistered. A negative errno code
1473  *      is returned on a failure.
1474  *
1475  *      When registered all registration and up events are replayed
1476  *      to the new notifier to allow device to have a race free
1477  *      view of the network device list.
1478  */
1479
1480 int register_netdevice_notifier(struct notifier_block *nb)
1481 {
1482         struct net_device *dev;
1483         struct net_device *last;
1484         struct net *net;
1485         int err;
1486
1487         rtnl_lock();
1488         err = raw_notifier_chain_register(&netdev_chain, nb);
1489         if (err)
1490                 goto unlock;
1491         if (dev_boot_phase)
1492                 goto unlock;
1493         for_each_net(net) {
1494                 for_each_netdev(net, dev) {
1495                         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1496                         err = notifier_to_errno(err);
1497                         if (err)
1498                                 goto rollback;
1499
1500                         if (!(dev->flags & IFF_UP))
1501                                 continue;
1502
1503                         call_netdevice_notifier(nb, NETDEV_UP, dev);
1504                 }
1505         }
1506
1507 unlock:
1508         rtnl_unlock();
1509         return err;
1510
1511 rollback:
1512         last = dev;
1513         for_each_net(net) {
1514                 for_each_netdev(net, dev) {
1515                         if (dev == last)
1516                                 goto outroll;
1517
1518                         if (dev->flags & IFF_UP) {
1519                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1520                                                         dev);
1521                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1522                         }
1523                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1524                 }
1525         }
1526
1527 outroll:
1528         raw_notifier_chain_unregister(&netdev_chain, nb);
1529         goto unlock;
1530 }
1531 EXPORT_SYMBOL(register_netdevice_notifier);
1532
1533 /**
1534  *      unregister_netdevice_notifier - unregister a network notifier block
1535  *      @nb: notifier
1536  *
1537  *      Unregister a notifier previously registered by
1538  *      register_netdevice_notifier(). The notifier is unlinked into the
1539  *      kernel structures and may then be reused. A negative errno code
1540  *      is returned on a failure.
1541  *
1542  *      After unregistering unregister and down device events are synthesized
1543  *      for all devices on the device list to the removed notifier to remove
1544  *      the need for special case cleanup code.
1545  */
1546
1547 int unregister_netdevice_notifier(struct notifier_block *nb)
1548 {
1549         struct net_device *dev;
1550         struct net *net;
1551         int err;
1552
1553         rtnl_lock();
1554         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1555         if (err)
1556                 goto unlock;
1557
1558         for_each_net(net) {
1559                 for_each_netdev(net, dev) {
1560                         if (dev->flags & IFF_UP) {
1561                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1562                                                         dev);
1563                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1564                         }
1565                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1566                 }
1567         }
1568 unlock:
1569         rtnl_unlock();
1570         return err;
1571 }
1572 EXPORT_SYMBOL(unregister_netdevice_notifier);
1573
1574 /**
1575  *      call_netdevice_notifiers_info - call all network notifier blocks
1576  *      @val: value passed unmodified to notifier function
1577  *      @dev: net_device pointer passed unmodified to notifier function
1578  *      @info: notifier information data
1579  *
1580  *      Call all network notifier blocks.  Parameters and return value
1581  *      are as for raw_notifier_call_chain().
1582  */
1583
1584 static int call_netdevice_notifiers_info(unsigned long val,
1585                                          struct net_device *dev,
1586                                          struct netdev_notifier_info *info)
1587 {
1588         ASSERT_RTNL();
1589         netdev_notifier_info_init(info, dev);
1590         return raw_notifier_call_chain(&netdev_chain, val, info);
1591 }
1592
1593 /**
1594  *      call_netdevice_notifiers - call all network notifier blocks
1595  *      @val: value passed unmodified to notifier function
1596  *      @dev: net_device pointer passed unmodified to notifier function
1597  *
1598  *      Call all network notifier blocks.  Parameters and return value
1599  *      are as for raw_notifier_call_chain().
1600  */
1601
1602 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1603 {
1604         struct netdev_notifier_info info;
1605
1606         return call_netdevice_notifiers_info(val, dev, &info);
1607 }
1608 EXPORT_SYMBOL(call_netdevice_notifiers);
1609
1610 static struct static_key netstamp_needed __read_mostly;
1611 #ifdef HAVE_JUMP_LABEL
1612 /* We are not allowed to call static_key_slow_dec() from irq context
1613  * If net_disable_timestamp() is called from irq context, defer the
1614  * static_key_slow_dec() calls.
1615  */
1616 static atomic_t netstamp_needed_deferred;
1617 #endif
1618
1619 void net_enable_timestamp(void)
1620 {
1621 #ifdef HAVE_JUMP_LABEL
1622         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1623
1624         if (deferred) {
1625                 while (--deferred)
1626                         static_key_slow_dec(&netstamp_needed);
1627                 return;
1628         }
1629 #endif
1630         static_key_slow_inc(&netstamp_needed);
1631 }
1632 EXPORT_SYMBOL(net_enable_timestamp);
1633
1634 void net_disable_timestamp(void)
1635 {
1636 #ifdef HAVE_JUMP_LABEL
1637         if (in_interrupt()) {
1638                 atomic_inc(&netstamp_needed_deferred);
1639                 return;
1640         }
1641 #endif
1642         static_key_slow_dec(&netstamp_needed);
1643 }
1644 EXPORT_SYMBOL(net_disable_timestamp);
1645
1646 static inline void net_timestamp_set(struct sk_buff *skb)
1647 {
1648         skb->tstamp.tv64 = 0;
1649         if (static_key_false(&netstamp_needed))
1650                 __net_timestamp(skb);
1651 }
1652
1653 #define net_timestamp_check(COND, SKB)                  \
1654         if (static_key_false(&netstamp_needed)) {               \
1655                 if ((COND) && !(SKB)->tstamp.tv64)      \
1656                         __net_timestamp(SKB);           \
1657         }                                               \
1658
1659 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb)
1660 {
1661         unsigned int len;
1662
1663         if (!(dev->flags & IFF_UP))
1664                 return false;
1665
1666         len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1667         if (skb->len <= len)
1668                 return true;
1669
1670         /* if TSO is enabled, we don't care about the length as the packet
1671          * could be forwarded without being segmented before
1672          */
1673         if (skb_is_gso(skb))
1674                 return true;
1675
1676         return false;
1677 }
1678 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1679
1680 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1681 {
1682         if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1683                 if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1684                         atomic_long_inc(&dev->rx_dropped);
1685                         kfree_skb(skb);
1686                         return NET_RX_DROP;
1687                 }
1688         }
1689
1690         if (unlikely(!is_skb_forwardable(dev, skb))) {
1691                 atomic_long_inc(&dev->rx_dropped);
1692                 kfree_skb(skb);
1693                 return NET_RX_DROP;
1694         }
1695
1696         skb_scrub_packet(skb, true);
1697         skb->protocol = eth_type_trans(skb, dev);
1698         skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1699
1700         return 0;
1701 }
1702 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1703
1704 /**
1705  * dev_forward_skb - loopback an skb to another netif
1706  *
1707  * @dev: destination network device
1708  * @skb: buffer to forward
1709  *
1710  * return values:
1711  *      NET_RX_SUCCESS  (no congestion)
1712  *      NET_RX_DROP     (packet was dropped, but freed)
1713  *
1714  * dev_forward_skb can be used for injecting an skb from the
1715  * start_xmit function of one device into the receive queue
1716  * of another device.
1717  *
1718  * The receiving device may be in another namespace, so
1719  * we have to clear all information in the skb that could
1720  * impact namespace isolation.
1721  */
1722 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1723 {
1724         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1725 }
1726 EXPORT_SYMBOL_GPL(dev_forward_skb);
1727
1728 static inline int deliver_skb(struct sk_buff *skb,
1729                               struct packet_type *pt_prev,
1730                               struct net_device *orig_dev)
1731 {
1732         if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1733                 return -ENOMEM;
1734         atomic_inc(&skb->users);
1735         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1736 }
1737
1738 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1739                                           struct packet_type **pt,
1740                                           struct net_device *dev, __be16 type,
1741                                           struct list_head *ptype_list)
1742 {
1743         struct packet_type *ptype, *pt_prev = *pt;
1744
1745         list_for_each_entry_rcu(ptype, ptype_list, list) {
1746                 if (ptype->type != type)
1747                         continue;
1748                 if (pt_prev)
1749                         deliver_skb(skb, pt_prev, dev);
1750                 pt_prev = ptype;
1751         }
1752         *pt = pt_prev;
1753 }
1754
1755 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1756 {
1757         if (!ptype->af_packet_priv || !skb->sk)
1758                 return false;
1759
1760         if (ptype->id_match)
1761                 return ptype->id_match(ptype, skb->sk);
1762         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1763                 return true;
1764
1765         return false;
1766 }
1767
1768 /*
1769  *      Support routine. Sends outgoing frames to any network
1770  *      taps currently in use.
1771  */
1772
1773 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1774 {
1775         struct packet_type *ptype;
1776         struct sk_buff *skb2 = NULL;
1777         struct packet_type *pt_prev = NULL;
1778         struct list_head *ptype_list = &ptype_all;
1779
1780         rcu_read_lock();
1781 again:
1782         list_for_each_entry_rcu(ptype, ptype_list, list) {
1783                 /* Never send packets back to the socket
1784                  * they originated from - MvS (miquels@drinkel.ow.org)
1785                  */
1786                 if (skb_loop_sk(ptype, skb))
1787                         continue;
1788
1789                 if (pt_prev) {
1790                         deliver_skb(skb2, pt_prev, skb->dev);
1791                         pt_prev = ptype;
1792                         continue;
1793                 }
1794
1795                 /* need to clone skb, done only once */
1796                 skb2 = skb_clone(skb, GFP_ATOMIC);
1797                 if (!skb2)
1798                         goto out_unlock;
1799
1800                 net_timestamp_set(skb2);
1801
1802                 /* skb->nh should be correctly
1803                  * set by sender, so that the second statement is
1804                  * just protection against buggy protocols.
1805                  */
1806                 skb_reset_mac_header(skb2);
1807
1808                 if (skb_network_header(skb2) < skb2->data ||
1809                     skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1810                         net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1811                                              ntohs(skb2->protocol),
1812                                              dev->name);
1813                         skb_reset_network_header(skb2);
1814                 }
1815
1816                 skb2->transport_header = skb2->network_header;
1817                 skb2->pkt_type = PACKET_OUTGOING;
1818                 pt_prev = ptype;
1819         }
1820
1821         if (ptype_list == &ptype_all) {
1822                 ptype_list = &dev->ptype_all;
1823                 goto again;
1824         }
1825 out_unlock:
1826         if (pt_prev)
1827                 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1828         rcu_read_unlock();
1829 }
1830
1831 /**
1832  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1833  * @dev: Network device
1834  * @txq: number of queues available
1835  *
1836  * If real_num_tx_queues is changed the tc mappings may no longer be
1837  * valid. To resolve this verify the tc mapping remains valid and if
1838  * not NULL the mapping. With no priorities mapping to this
1839  * offset/count pair it will no longer be used. In the worst case TC0
1840  * is invalid nothing can be done so disable priority mappings. If is
1841  * expected that drivers will fix this mapping if they can before
1842  * calling netif_set_real_num_tx_queues.
1843  */
1844 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1845 {
1846         int i;
1847         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1848
1849         /* If TC0 is invalidated disable TC mapping */
1850         if (tc->offset + tc->count > txq) {
1851                 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1852                 dev->num_tc = 0;
1853                 return;
1854         }
1855
1856         /* Invalidated prio to tc mappings set to TC0 */
1857         for (i = 1; i < TC_BITMASK + 1; i++) {
1858                 int q = netdev_get_prio_tc_map(dev, i);
1859
1860                 tc = &dev->tc_to_txq[q];
1861                 if (tc->offset + tc->count > txq) {
1862                         pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1863                                 i, q);
1864                         netdev_set_prio_tc_map(dev, i, 0);
1865                 }
1866         }
1867 }
1868
1869 #ifdef CONFIG_XPS
1870 static DEFINE_MUTEX(xps_map_mutex);
1871 #define xmap_dereference(P)             \
1872         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1873
1874 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1875                                         int cpu, u16 index)
1876 {
1877         struct xps_map *map = NULL;
1878         int pos;
1879
1880         if (dev_maps)
1881                 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1882
1883         for (pos = 0; map && pos < map->len; pos++) {
1884                 if (map->queues[pos] == index) {
1885                         if (map->len > 1) {
1886                                 map->queues[pos] = map->queues[--map->len];
1887                         } else {
1888                                 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1889                                 kfree_rcu(map, rcu);
1890                                 map = NULL;
1891                         }
1892                         break;
1893                 }
1894         }
1895
1896         return map;
1897 }
1898
1899 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1900 {
1901         struct xps_dev_maps *dev_maps;
1902         int cpu, i;
1903         bool active = false;
1904
1905         mutex_lock(&xps_map_mutex);
1906         dev_maps = xmap_dereference(dev->xps_maps);
1907
1908         if (!dev_maps)
1909                 goto out_no_maps;
1910
1911         for_each_possible_cpu(cpu) {
1912                 for (i = index; i < dev->num_tx_queues; i++) {
1913                         if (!remove_xps_queue(dev_maps, cpu, i))
1914                                 break;
1915                 }
1916                 if (i == dev->num_tx_queues)
1917                         active = true;
1918         }
1919
1920         if (!active) {
1921                 RCU_INIT_POINTER(dev->xps_maps, NULL);
1922                 kfree_rcu(dev_maps, rcu);
1923         }
1924
1925         for (i = index; i < dev->num_tx_queues; i++)
1926                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
1927                                              NUMA_NO_NODE);
1928
1929 out_no_maps:
1930         mutex_unlock(&xps_map_mutex);
1931 }
1932
1933 static struct xps_map *expand_xps_map(struct xps_map *map,
1934                                       int cpu, u16 index)
1935 {
1936         struct xps_map *new_map;
1937         int alloc_len = XPS_MIN_MAP_ALLOC;
1938         int i, pos;
1939
1940         for (pos = 0; map && pos < map->len; pos++) {
1941                 if (map->queues[pos] != index)
1942                         continue;
1943                 return map;
1944         }
1945
1946         /* Need to add queue to this CPU's existing map */
1947         if (map) {
1948                 if (pos < map->alloc_len)
1949                         return map;
1950
1951                 alloc_len = map->alloc_len * 2;
1952         }
1953
1954         /* Need to allocate new map to store queue on this CPU's map */
1955         new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
1956                                cpu_to_node(cpu));
1957         if (!new_map)
1958                 return NULL;
1959
1960         for (i = 0; i < pos; i++)
1961                 new_map->queues[i] = map->queues[i];
1962         new_map->alloc_len = alloc_len;
1963         new_map->len = pos;
1964
1965         return new_map;
1966 }
1967
1968 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
1969                         u16 index)
1970 {
1971         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
1972         struct xps_map *map, *new_map;
1973         int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
1974         int cpu, numa_node_id = -2;
1975         bool active = false;
1976
1977         mutex_lock(&xps_map_mutex);
1978
1979         dev_maps = xmap_dereference(dev->xps_maps);
1980
1981         /* allocate memory for queue storage */
1982         for_each_online_cpu(cpu) {
1983                 if (!cpumask_test_cpu(cpu, mask))
1984                         continue;
1985
1986                 if (!new_dev_maps)
1987                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
1988                 if (!new_dev_maps) {
1989                         mutex_unlock(&xps_map_mutex);
1990                         return -ENOMEM;
1991                 }
1992
1993                 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
1994                                  NULL;
1995
1996                 map = expand_xps_map(map, cpu, index);
1997                 if (!map)
1998                         goto error;
1999
2000                 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2001         }
2002
2003         if (!new_dev_maps)
2004                 goto out_no_new_maps;
2005
2006         for_each_possible_cpu(cpu) {
2007                 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2008                         /* add queue to CPU maps */
2009                         int pos = 0;
2010
2011                         map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2012                         while ((pos < map->len) && (map->queues[pos] != index))
2013                                 pos++;
2014
2015                         if (pos == map->len)
2016                                 map->queues[map->len++] = index;
2017 #ifdef CONFIG_NUMA
2018                         if (numa_node_id == -2)
2019                                 numa_node_id = cpu_to_node(cpu);
2020                         else if (numa_node_id != cpu_to_node(cpu))
2021                                 numa_node_id = -1;
2022 #endif
2023                 } else if (dev_maps) {
2024                         /* fill in the new device map from the old device map */
2025                         map = xmap_dereference(dev_maps->cpu_map[cpu]);
2026                         RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2027                 }
2028
2029         }
2030
2031         rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2032
2033         /* Cleanup old maps */
2034         if (dev_maps) {
2035                 for_each_possible_cpu(cpu) {
2036                         new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2037                         map = xmap_dereference(dev_maps->cpu_map[cpu]);
2038                         if (map && map != new_map)
2039                                 kfree_rcu(map, rcu);
2040                 }
2041
2042                 kfree_rcu(dev_maps, rcu);
2043         }
2044
2045         dev_maps = new_dev_maps;
2046         active = true;
2047
2048 out_no_new_maps:
2049         /* update Tx queue numa node */
2050         netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2051                                      (numa_node_id >= 0) ? numa_node_id :
2052                                      NUMA_NO_NODE);
2053
2054         if (!dev_maps)
2055                 goto out_no_maps;
2056
2057         /* removes queue from unused CPUs */
2058         for_each_possible_cpu(cpu) {
2059                 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2060                         continue;
2061
2062                 if (remove_xps_queue(dev_maps, cpu, index))
2063                         active = true;
2064         }
2065
2066         /* free map if not active */
2067         if (!active) {
2068                 RCU_INIT_POINTER(dev->xps_maps, NULL);
2069                 kfree_rcu(dev_maps, rcu);
2070         }
2071
2072 out_no_maps:
2073         mutex_unlock(&xps_map_mutex);
2074
2075         return 0;
2076 error:
2077         /* remove any maps that we added */
2078         for_each_possible_cpu(cpu) {
2079                 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2080                 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2081                                  NULL;
2082                 if (new_map && new_map != map)
2083                         kfree(new_map);
2084         }
2085
2086         mutex_unlock(&xps_map_mutex);
2087
2088         kfree(new_dev_maps);
2089         return -ENOMEM;
2090 }
2091 EXPORT_SYMBOL(netif_set_xps_queue);
2092
2093 #endif
2094 /*
2095  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2096  * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2097  */
2098 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2099 {
2100         int rc;
2101
2102         if (txq < 1 || txq > dev->num_tx_queues)
2103                 return -EINVAL;
2104
2105         if (dev->reg_state == NETREG_REGISTERED ||
2106             dev->reg_state == NETREG_UNREGISTERING) {
2107                 ASSERT_RTNL();
2108
2109                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2110                                                   txq);
2111                 if (rc)
2112                         return rc;
2113
2114                 if (dev->num_tc)
2115                         netif_setup_tc(dev, txq);
2116
2117                 if (txq < dev->real_num_tx_queues) {
2118                         qdisc_reset_all_tx_gt(dev, txq);
2119 #ifdef CONFIG_XPS
2120                         netif_reset_xps_queues_gt(dev, txq);
2121 #endif
2122                 }
2123         }
2124
2125         dev->real_num_tx_queues = txq;
2126         return 0;
2127 }
2128 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2129
2130 #ifdef CONFIG_SYSFS
2131 /**
2132  *      netif_set_real_num_rx_queues - set actual number of RX queues used
2133  *      @dev: Network device
2134  *      @rxq: Actual number of RX queues
2135  *
2136  *      This must be called either with the rtnl_lock held or before
2137  *      registration of the net device.  Returns 0 on success, or a
2138  *      negative error code.  If called before registration, it always
2139  *      succeeds.
2140  */
2141 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2142 {
2143         int rc;
2144
2145         if (rxq < 1 || rxq > dev->num_rx_queues)
2146                 return -EINVAL;
2147
2148         if (dev->reg_state == NETREG_REGISTERED) {
2149                 ASSERT_RTNL();
2150
2151                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2152                                                   rxq);
2153                 if (rc)
2154                         return rc;
2155         }
2156
2157         dev->real_num_rx_queues = rxq;
2158         return 0;
2159 }
2160 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2161 #endif
2162
2163 /**
2164  * netif_get_num_default_rss_queues - default number of RSS queues
2165  *
2166  * This routine should set an upper limit on the number of RSS queues
2167  * used by default by multiqueue devices.
2168  */
2169 int netif_get_num_default_rss_queues(void)
2170 {
2171         return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2172 }
2173 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2174
2175 static inline void __netif_reschedule(struct Qdisc *q)
2176 {
2177         struct softnet_data *sd;
2178         unsigned long flags;
2179
2180         local_irq_save(flags);
2181         sd = this_cpu_ptr(&softnet_data);
2182         q->next_sched = NULL;
2183         *sd->output_queue_tailp = q;
2184         sd->output_queue_tailp = &q->next_sched;
2185         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2186         local_irq_restore(flags);
2187 }
2188
2189 void __netif_schedule(struct Qdisc *q)
2190 {
2191         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2192                 __netif_reschedule(q);
2193 }
2194 EXPORT_SYMBOL(__netif_schedule);
2195
2196 struct dev_kfree_skb_cb {
2197         enum skb_free_reason reason;
2198 };
2199
2200 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2201 {
2202         return (struct dev_kfree_skb_cb *)skb->cb;
2203 }
2204
2205 void netif_schedule_queue(struct netdev_queue *txq)
2206 {
2207         rcu_read_lock();
2208         if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2209                 struct Qdisc *q = rcu_dereference(txq->qdisc);
2210
2211                 __netif_schedule(q);
2212         }
2213         rcu_read_unlock();
2214 }
2215 EXPORT_SYMBOL(netif_schedule_queue);
2216
2217 /**
2218  *      netif_wake_subqueue - allow sending packets on subqueue
2219  *      @dev: network device
2220  *      @queue_index: sub queue index
2221  *
2222  * Resume individual transmit queue of a device with multiple transmit queues.
2223  */
2224 void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2225 {
2226         struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2227
2228         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2229                 struct Qdisc *q;
2230
2231                 rcu_read_lock();
2232                 q = rcu_dereference(txq->qdisc);
2233                 __netif_schedule(q);
2234                 rcu_read_unlock();
2235         }
2236 }
2237 EXPORT_SYMBOL(netif_wake_subqueue);
2238
2239 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2240 {
2241         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2242                 struct Qdisc *q;
2243
2244                 rcu_read_lock();
2245                 q = rcu_dereference(dev_queue->qdisc);
2246                 __netif_schedule(q);
2247                 rcu_read_unlock();
2248         }
2249 }
2250 EXPORT_SYMBOL(netif_tx_wake_queue);
2251
2252 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2253 {
2254         unsigned long flags;
2255
2256         if (likely(atomic_read(&skb->users) == 1)) {
2257                 smp_rmb();
2258                 atomic_set(&skb->users, 0);
2259         } else if (likely(!atomic_dec_and_test(&skb->users))) {
2260                 return;
2261         }
2262         get_kfree_skb_cb(skb)->reason = reason;
2263         local_irq_save(flags);
2264         skb->next = __this_cpu_read(softnet_data.completion_queue);
2265         __this_cpu_write(softnet_data.completion_queue, skb);
2266         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2267         local_irq_restore(flags);
2268 }
2269 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2270
2271 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2272 {
2273         if (in_irq() || irqs_disabled())
2274                 __dev_kfree_skb_irq(skb, reason);
2275         else
2276                 dev_kfree_skb(skb);
2277 }
2278 EXPORT_SYMBOL(__dev_kfree_skb_any);
2279
2280
2281 /**
2282  * netif_device_detach - mark device as removed
2283  * @dev: network device
2284  *
2285  * Mark device as removed from system and therefore no longer available.
2286  */
2287 void netif_device_detach(struct net_device *dev)
2288 {
2289         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2290             netif_running(dev)) {
2291                 netif_tx_stop_all_queues(dev);
2292         }
2293 }
2294 EXPORT_SYMBOL(netif_device_detach);
2295
2296 /**
2297  * netif_device_attach - mark device as attached
2298  * @dev: network device
2299  *
2300  * Mark device as attached from system and restart if needed.
2301  */
2302 void netif_device_attach(struct net_device *dev)
2303 {
2304         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2305             netif_running(dev)) {
2306                 netif_tx_wake_all_queues(dev);
2307                 __netdev_watchdog_up(dev);
2308         }
2309 }
2310 EXPORT_SYMBOL(netif_device_attach);
2311
2312 static void skb_warn_bad_offload(const struct sk_buff *skb)
2313 {
2314         static const netdev_features_t null_features = 0;
2315         struct net_device *dev = skb->dev;
2316         const char *driver = "";
2317
2318         if (!net_ratelimit())
2319                 return;
2320
2321         if (dev && dev->dev.parent)
2322                 driver = dev_driver_string(dev->dev.parent);
2323
2324         WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2325              "gso_type=%d ip_summed=%d\n",
2326              driver, dev ? &dev->features : &null_features,
2327              skb->sk ? &skb->sk->sk_route_caps : &null_features,
2328              skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2329              skb_shinfo(skb)->gso_type, skb->ip_summed);
2330 }
2331
2332 /*
2333  * Invalidate hardware checksum when packet is to be mangled, and
2334  * complete checksum manually on outgoing path.
2335  */
2336 int skb_checksum_help(struct sk_buff *skb)
2337 {
2338         __wsum csum;
2339         int ret = 0, offset;
2340
2341         if (skb->ip_summed == CHECKSUM_COMPLETE)
2342                 goto out_set_summed;
2343
2344         if (unlikely(skb_shinfo(skb)->gso_size)) {
2345                 skb_warn_bad_offload(skb);
2346                 return -EINVAL;
2347         }
2348
2349         /* Before computing a checksum, we should make sure no frag could
2350          * be modified by an external entity : checksum could be wrong.
2351          */
2352         if (skb_has_shared_frag(skb)) {
2353                 ret = __skb_linearize(skb);
2354                 if (ret)
2355                         goto out;
2356         }
2357
2358         offset = skb_checksum_start_offset(skb);
2359         BUG_ON(offset >= skb_headlen(skb));
2360         csum = skb_checksum(skb, offset, skb->len - offset, 0);
2361
2362         offset += skb->csum_offset;
2363         BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2364
2365         if (skb_cloned(skb) &&
2366             !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2367                 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2368                 if (ret)
2369                         goto out;
2370         }
2371
2372         *(__sum16 *)(skb->data + offset) = csum_fold(csum);
2373 out_set_summed:
2374         skb->ip_summed = CHECKSUM_NONE;
2375 out:
2376         return ret;
2377 }
2378 EXPORT_SYMBOL(skb_checksum_help);
2379
2380 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2381 {
2382         __be16 type = skb->protocol;
2383
2384         /* Tunnel gso handlers can set protocol to ethernet. */
2385         if (type == htons(ETH_P_TEB)) {
2386                 struct ethhdr *eth;
2387
2388                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2389                         return 0;
2390
2391                 eth = (struct ethhdr *)skb_mac_header(skb);
2392                 type = eth->h_proto;
2393         }
2394
2395         return __vlan_get_protocol(skb, type, depth);
2396 }
2397
2398 /**
2399  *      skb_mac_gso_segment - mac layer segmentation handler.
2400  *      @skb: buffer to segment
2401  *      @features: features for the output path (see dev->features)
2402  */
2403 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2404                                     netdev_features_t features)
2405 {
2406         struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2407         struct packet_offload *ptype;
2408         int vlan_depth = skb->mac_len;
2409         __be16 type = skb_network_protocol(skb, &vlan_depth);
2410
2411         if (unlikely(!type))
2412                 return ERR_PTR(-EINVAL);
2413
2414         __skb_pull(skb, vlan_depth);
2415
2416         rcu_read_lock();
2417         list_for_each_entry_rcu(ptype, &offload_base, list) {
2418                 if (ptype->type == type && ptype->callbacks.gso_segment) {
2419                         segs = ptype->callbacks.gso_segment(skb, features);
2420                         break;
2421                 }
2422         }
2423         rcu_read_unlock();
2424
2425         __skb_push(skb, skb->data - skb_mac_header(skb));
2426
2427         return segs;
2428 }
2429 EXPORT_SYMBOL(skb_mac_gso_segment);
2430
2431
2432 /* openvswitch calls this on rx path, so we need a different check.
2433  */
2434 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2435 {
2436         if (tx_path)
2437                 return skb->ip_summed != CHECKSUM_PARTIAL;
2438         else
2439                 return skb->ip_summed == CHECKSUM_NONE;
2440 }
2441
2442 /**
2443  *      __skb_gso_segment - Perform segmentation on skb.
2444  *      @skb: buffer to segment
2445  *      @features: features for the output path (see dev->features)
2446  *      @tx_path: whether it is called in TX path
2447  *
2448  *      This function segments the given skb and returns a list of segments.
2449  *
2450  *      It may return NULL if the skb requires no segmentation.  This is
2451  *      only possible when GSO is used for verifying header integrity.
2452  */
2453 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2454                                   netdev_features_t features, bool tx_path)
2455 {
2456         if (unlikely(skb_needs_check(skb, tx_path))) {
2457                 int err;
2458
2459                 skb_warn_bad_offload(skb);
2460
2461                 err = skb_cow_head(skb, 0);
2462                 if (err < 0)
2463                         return ERR_PTR(err);
2464         }
2465
2466         SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2467         SKB_GSO_CB(skb)->encap_level = 0;
2468
2469         skb_reset_mac_header(skb);
2470         skb_reset_mac_len(skb);
2471
2472         return skb_mac_gso_segment(skb, features);
2473 }
2474 EXPORT_SYMBOL(__skb_gso_segment);
2475
2476 /* Take action when hardware reception checksum errors are detected. */
2477 #ifdef CONFIG_BUG
2478 void netdev_rx_csum_fault(struct net_device *dev)
2479 {
2480         if (net_ratelimit()) {
2481                 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2482                 dump_stack();
2483         }
2484 }
2485 EXPORT_SYMBOL(netdev_rx_csum_fault);
2486 #endif
2487
2488 /* Actually, we should eliminate this check as soon as we know, that:
2489  * 1. IOMMU is present and allows to map all the memory.
2490  * 2. No high memory really exists on this machine.
2491  */
2492
2493 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2494 {
2495 #ifdef CONFIG_HIGHMEM
2496         int i;
2497         if (!(dev->features & NETIF_F_HIGHDMA)) {
2498                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2499                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2500                         if (PageHighMem(skb_frag_page(frag)))
2501                                 return 1;
2502                 }
2503         }
2504
2505         if (PCI_DMA_BUS_IS_PHYS) {
2506                 struct device *pdev = dev->dev.parent;
2507
2508                 if (!pdev)
2509                         return 0;
2510                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2511                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2512                         dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2513                         if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2514                                 return 1;
2515                 }
2516         }
2517 #endif
2518         return 0;
2519 }
2520
2521 /* If MPLS offload request, verify we are testing hardware MPLS features
2522  * instead of standard features for the netdev.
2523  */
2524 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2525 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2526                                            netdev_features_t features,
2527                                            __be16 type)
2528 {
2529         if (eth_p_mpls(type))
2530                 features &= skb->dev->mpls_features;
2531
2532         return features;
2533 }
2534 #else
2535 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2536                                            netdev_features_t features,
2537                                            __be16 type)
2538 {
2539         return features;
2540 }
2541 #endif
2542
2543 static netdev_features_t harmonize_features(struct sk_buff *skb,
2544         netdev_features_t features)
2545 {
2546         int tmp;
2547         __be16 type;
2548
2549         type = skb_network_protocol(skb, &tmp);
2550         features = net_mpls_features(skb, features, type);
2551
2552         if (skb->ip_summed != CHECKSUM_NONE &&
2553             !can_checksum_protocol(features, type)) {
2554                 features &= ~NETIF_F_ALL_CSUM;
2555         } else if (illegal_highdma(skb->dev, skb)) {
2556                 features &= ~NETIF_F_SG;
2557         }
2558
2559         return features;
2560 }
2561
2562 netdev_features_t netif_skb_features(struct sk_buff *skb)
2563 {
2564         struct net_device *dev = skb->dev;
2565         netdev_features_t features = dev->features;
2566         u16 gso_segs = skb_shinfo(skb)->gso_segs;
2567         __be16 protocol = skb->protocol;
2568
2569         if (gso_segs > dev->gso_max_segs || gso_segs < dev->gso_min_segs)
2570                 features &= ~NETIF_F_GSO_MASK;
2571
2572         /* If encapsulation offload request, verify we are testing
2573          * hardware encapsulation features instead of standard
2574          * features for the netdev
2575          */
2576         if (skb->encapsulation)
2577                 features &= dev->hw_enc_features;
2578
2579         if (!skb_vlan_tag_present(skb)) {
2580                 if (unlikely(protocol == htons(ETH_P_8021Q) ||
2581                              protocol == htons(ETH_P_8021AD))) {
2582                         struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2583                         protocol = veh->h_vlan_encapsulated_proto;
2584                 } else {
2585                         goto finalize;
2586                 }
2587         }
2588
2589         features = netdev_intersect_features(features,
2590                                              dev->vlan_features |
2591                                              NETIF_F_HW_VLAN_CTAG_TX |
2592                                              NETIF_F_HW_VLAN_STAG_TX);
2593
2594         if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD))
2595                 features = netdev_intersect_features(features,
2596                                                      NETIF_F_SG |
2597                                                      NETIF_F_HIGHDMA |
2598                                                      NETIF_F_FRAGLIST |
2599                                                      NETIF_F_GEN_CSUM |
2600                                                      NETIF_F_HW_VLAN_CTAG_TX |
2601                                                      NETIF_F_HW_VLAN_STAG_TX);
2602
2603 finalize:
2604         if (dev->netdev_ops->ndo_features_check)
2605                 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2606                                                                 features);
2607
2608         return harmonize_features(skb, features);
2609 }
2610 EXPORT_SYMBOL(netif_skb_features);
2611
2612 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2613                     struct netdev_queue *txq, bool more)
2614 {
2615         unsigned int len;
2616         int rc;
2617
2618         if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2619                 dev_queue_xmit_nit(skb, dev);
2620
2621         len = skb->len;
2622         trace_net_dev_start_xmit(skb, dev);
2623         rc = netdev_start_xmit(skb, dev, txq, more);
2624         trace_net_dev_xmit(skb, rc, dev, len);
2625
2626         return rc;
2627 }
2628
2629 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2630                                     struct netdev_queue *txq, int *ret)
2631 {
2632         struct sk_buff *skb = first;
2633         int rc = NETDEV_TX_OK;
2634
2635         while (skb) {
2636                 struct sk_buff *next = skb->next;
2637
2638                 skb->next = NULL;
2639                 rc = xmit_one(skb, dev, txq, next != NULL);
2640                 if (unlikely(!dev_xmit_complete(rc))) {
2641                         skb->next = next;
2642                         goto out;
2643                 }
2644
2645                 skb = next;
2646                 if (netif_xmit_stopped(txq) && skb) {
2647                         rc = NETDEV_TX_BUSY;
2648                         break;
2649                 }
2650         }
2651
2652 out:
2653         *ret = rc;
2654         return skb;
2655 }
2656
2657 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2658                                           netdev_features_t features)
2659 {
2660         if (skb_vlan_tag_present(skb) &&
2661             !vlan_hw_offload_capable(features, skb->vlan_proto))
2662                 skb = __vlan_hwaccel_push_inside(skb);
2663         return skb;
2664 }
2665
2666 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
2667 {
2668         netdev_features_t features;
2669
2670         if (skb->next)
2671                 return skb;
2672
2673         features = netif_skb_features(skb);
2674         skb = validate_xmit_vlan(skb, features);
2675         if (unlikely(!skb))
2676                 goto out_null;
2677
2678         if (netif_needs_gso(dev, skb, features)) {
2679                 struct sk_buff *segs;
2680
2681                 segs = skb_gso_segment(skb, features);
2682                 if (IS_ERR(segs)) {
2683                         goto out_kfree_skb;
2684                 } else if (segs) {
2685                         consume_skb(skb);
2686                         skb = segs;
2687                 }
2688         } else {
2689                 if (skb_needs_linearize(skb, features) &&
2690                     __skb_linearize(skb))
2691                         goto out_kfree_skb;
2692
2693                 /* If packet is not checksummed and device does not
2694                  * support checksumming for this protocol, complete
2695                  * checksumming here.
2696                  */
2697                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2698                         if (skb->encapsulation)
2699                                 skb_set_inner_transport_header(skb,
2700                                                                skb_checksum_start_offset(skb));
2701                         else
2702                                 skb_set_transport_header(skb,
2703                                                          skb_checksum_start_offset(skb));
2704                         if (!(features & NETIF_F_ALL_CSUM) &&
2705                             skb_checksum_help(skb))
2706                                 goto out_kfree_skb;
2707                 }
2708         }
2709
2710         return skb;
2711
2712 out_kfree_skb:
2713         kfree_skb(skb);
2714 out_null:
2715         return NULL;
2716 }
2717
2718 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
2719 {
2720         struct sk_buff *next, *head = NULL, *tail;
2721
2722         for (; skb != NULL; skb = next) {
2723                 next = skb->next;
2724                 skb->next = NULL;
2725
2726                 /* in case skb wont be segmented, point to itself */
2727                 skb->prev = skb;
2728
2729                 skb = validate_xmit_skb(skb, dev);
2730                 if (!skb)
2731                         continue;
2732
2733                 if (!head)
2734                         head = skb;
2735                 else
2736                         tail->next = skb;
2737                 /* If skb was segmented, skb->prev points to
2738                  * the last segment. If not, it still contains skb.
2739                  */
2740                 tail = skb->prev;
2741         }
2742         return head;
2743 }
2744
2745 static void qdisc_pkt_len_init(struct sk_buff *skb)
2746 {
2747         const struct skb_shared_info *shinfo = skb_shinfo(skb);
2748
2749         qdisc_skb_cb(skb)->pkt_len = skb->len;
2750
2751         /* To get more precise estimation of bytes sent on wire,
2752          * we add to pkt_len the headers size of all segments
2753          */
2754         if (shinfo->gso_size)  {
2755                 unsigned int hdr_len;
2756                 u16 gso_segs = shinfo->gso_segs;
2757
2758                 /* mac layer + network layer */
2759                 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2760
2761                 /* + transport layer */
2762                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
2763                         hdr_len += tcp_hdrlen(skb);
2764                 else
2765                         hdr_len += sizeof(struct udphdr);
2766
2767                 if (shinfo->gso_type & SKB_GSO_DODGY)
2768                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
2769                                                 shinfo->gso_size);
2770
2771                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
2772         }
2773 }
2774
2775 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2776                                  struct net_device *dev,
2777                                  struct netdev_queue *txq)
2778 {
2779         spinlock_t *root_lock = qdisc_lock(q);
2780         bool contended;
2781         int rc;
2782
2783         qdisc_pkt_len_init(skb);
2784         qdisc_calculate_pkt_len(skb, q);
2785         /*
2786          * Heuristic to force contended enqueues to serialize on a
2787          * separate lock before trying to get qdisc main lock.
2788          * This permits __QDISC___STATE_RUNNING owner to get the lock more
2789          * often and dequeue packets faster.
2790          */
2791         contended = qdisc_is_running(q);
2792         if (unlikely(contended))
2793                 spin_lock(&q->busylock);
2794
2795         spin_lock(root_lock);
2796         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2797                 kfree_skb(skb);
2798                 rc = NET_XMIT_DROP;
2799         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2800                    qdisc_run_begin(q)) {
2801                 /*
2802                  * This is a work-conserving queue; there are no old skbs
2803                  * waiting to be sent out; and the qdisc is not running -
2804                  * xmit the skb directly.
2805                  */
2806
2807                 qdisc_bstats_update(q, skb);
2808
2809                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
2810                         if (unlikely(contended)) {
2811                                 spin_unlock(&q->busylock);
2812                                 contended = false;
2813                         }
2814                         __qdisc_run(q);
2815                 } else
2816                         qdisc_run_end(q);
2817
2818                 rc = NET_XMIT_SUCCESS;
2819         } else {
2820                 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2821                 if (qdisc_run_begin(q)) {
2822                         if (unlikely(contended)) {
2823                                 spin_unlock(&q->busylock);
2824                                 contended = false;
2825                         }
2826                         __qdisc_run(q);
2827                 }
2828         }
2829         spin_unlock(root_lock);
2830         if (unlikely(contended))
2831                 spin_unlock(&q->busylock);
2832         return rc;
2833 }
2834
2835 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2836 static void skb_update_prio(struct sk_buff *skb)
2837 {
2838         struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2839
2840         if (!skb->priority && skb->sk && map) {
2841                 unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2842
2843                 if (prioidx < map->priomap_len)
2844                         skb->priority = map->priomap[prioidx];
2845         }
2846 }
2847 #else
2848 #define skb_update_prio(skb)
2849 #endif
2850
2851 DEFINE_PER_CPU(int, xmit_recursion);
2852 EXPORT_SYMBOL(xmit_recursion);
2853
2854 #define RECURSION_LIMIT 10
2855
2856 /**
2857  *      dev_loopback_xmit - loop back @skb
2858  *      @skb: buffer to transmit
2859  */
2860 int dev_loopback_xmit(struct sk_buff *skb)
2861 {
2862         skb_reset_mac_header(skb);
2863         __skb_pull(skb, skb_network_offset(skb));
2864         skb->pkt_type = PACKET_LOOPBACK;
2865         skb->ip_summed = CHECKSUM_UNNECESSARY;
2866         WARN_ON(!skb_dst(skb));
2867         skb_dst_force(skb);
2868         netif_rx_ni(skb);
2869         return 0;
2870 }
2871 EXPORT_SYMBOL(dev_loopback_xmit);
2872
2873 /**
2874  *      __dev_queue_xmit - transmit a buffer
2875  *      @skb: buffer to transmit
2876  *      @accel_priv: private data used for L2 forwarding offload
2877  *
2878  *      Queue a buffer for transmission to a network device. The caller must
2879  *      have set the device and priority and built the buffer before calling
2880  *      this function. The function can be called from an interrupt.
2881  *
2882  *      A negative errno code is returned on a failure. A success does not
2883  *      guarantee the frame will be transmitted as it may be dropped due
2884  *      to congestion or traffic shaping.
2885  *
2886  * -----------------------------------------------------------------------------------
2887  *      I notice this method can also return errors from the queue disciplines,
2888  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
2889  *      be positive.
2890  *
2891  *      Regardless of the return value, the skb is consumed, so it is currently
2892  *      difficult to retry a send to this method.  (You can bump the ref count
2893  *      before sending to hold a reference for retry if you are careful.)
2894  *
2895  *      When calling this method, interrupts MUST be enabled.  This is because
2896  *      the BH enable code must have IRQs enabled so that it will not deadlock.
2897  *          --BLG
2898  */
2899 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
2900 {
2901         struct net_device *dev = skb->dev;
2902         struct netdev_queue *txq;
2903         struct Qdisc *q;
2904         int rc = -ENOMEM;
2905
2906         skb_reset_mac_header(skb);
2907
2908         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
2909                 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
2910
2911         /* Disable soft irqs for various locks below. Also
2912          * stops preemption for RCU.
2913          */
2914         rcu_read_lock_bh();
2915
2916         skb_update_prio(skb);
2917
2918         /* If device/qdisc don't need skb->dst, release it right now while
2919          * its hot in this cpu cache.
2920          */
2921         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2922                 skb_dst_drop(skb);
2923         else
2924                 skb_dst_force(skb);
2925
2926         txq = netdev_pick_tx(dev, skb, accel_priv);
2927         q = rcu_dereference_bh(txq->qdisc);
2928
2929 #ifdef CONFIG_NET_CLS_ACT
2930         skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2931 #endif
2932         trace_net_dev_queue(skb);
2933         if (q->enqueue) {
2934                 rc = __dev_xmit_skb(skb, q, dev, txq);
2935                 goto out;
2936         }
2937
2938         /* The device has no queue. Common case for software devices:
2939            loopback, all the sorts of tunnels...
2940
2941            Really, it is unlikely that netif_tx_lock protection is necessary
2942            here.  (f.e. loopback and IP tunnels are clean ignoring statistics
2943            counters.)
2944            However, it is possible, that they rely on protection
2945            made by us here.
2946
2947            Check this and shot the lock. It is not prone from deadlocks.
2948            Either shot noqueue qdisc, it is even simpler 8)
2949          */
2950         if (dev->flags & IFF_UP) {
2951                 int cpu = smp_processor_id(); /* ok because BHs are off */
2952
2953                 if (txq->xmit_lock_owner != cpu) {
2954
2955                         if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2956                                 goto recursion_alert;
2957
2958                         skb = validate_xmit_skb(skb, dev);
2959                         if (!skb)
2960                                 goto drop;
2961
2962                         HARD_TX_LOCK(dev, txq, cpu);
2963
2964                         if (!netif_xmit_stopped(txq)) {
2965                                 __this_cpu_inc(xmit_recursion);
2966                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
2967                                 __this_cpu_dec(xmit_recursion);
2968                                 if (dev_xmit_complete(rc)) {
2969                                         HARD_TX_UNLOCK(dev, txq);
2970                                         goto out;
2971                                 }
2972                         }
2973                         HARD_TX_UNLOCK(dev, txq);
2974                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
2975                                              dev->name);
2976                 } else {
2977                         /* Recursion is detected! It is possible,
2978                          * unfortunately
2979                          */
2980 recursion_alert:
2981                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
2982                                              dev->name);
2983                 }
2984         }
2985
2986         rc = -ENETDOWN;
2987 drop:
2988         rcu_read_unlock_bh();
2989
2990         atomic_long_inc(&dev->tx_dropped);
2991         kfree_skb_list(skb);
2992         return rc;
2993 out:
2994         rcu_read_unlock_bh();
2995         return rc;
2996 }
2997
2998 int dev_queue_xmit(struct sk_buff *skb)
2999 {
3000         return __dev_queue_xmit(skb, NULL);
3001 }
3002 EXPORT_SYMBOL(dev_queue_xmit);
3003
3004 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3005 {
3006         return __dev_queue_xmit(skb, accel_priv);
3007 }
3008 EXPORT_SYMBOL(dev_queue_xmit_accel);
3009
3010
3011 /*=======================================================================
3012                         Receiver routines
3013   =======================================================================*/
3014
3015 int netdev_max_backlog __read_mostly = 1000;
3016 EXPORT_SYMBOL(netdev_max_backlog);
3017
3018 int netdev_tstamp_prequeue __read_mostly = 1;
3019 int netdev_budget __read_mostly = 300;
3020 int weight_p __read_mostly = 64;            /* old backlog weight */
3021
3022 /* Called with irq disabled */
3023 static inline void ____napi_schedule(struct softnet_data *sd,
3024                                      struct napi_struct *napi)
3025 {
3026         list_add_tail(&napi->poll_list, &sd->poll_list);
3027         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3028 }
3029
3030 #ifdef CONFIG_RPS
3031
3032 /* One global table that all flow-based protocols share. */
3033 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3034 EXPORT_SYMBOL(rps_sock_flow_table);
3035 u32 rps_cpu_mask __read_mostly;
3036 EXPORT_SYMBOL(rps_cpu_mask);
3037
3038 struct static_key rps_needed __read_mostly;
3039
3040 static struct rps_dev_flow *
3041 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3042             struct rps_dev_flow *rflow, u16 next_cpu)
3043 {
3044         if (next_cpu != RPS_NO_CPU) {
3045 #ifdef CONFIG_RFS_ACCEL
3046                 struct netdev_rx_queue *rxqueue;
3047                 struct rps_dev_flow_table *flow_table;
3048                 struct rps_dev_flow *old_rflow;
3049                 u32 flow_id;
3050                 u16 rxq_index;
3051                 int rc;
3052
3053                 /* Should we steer this flow to a different hardware queue? */
3054                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3055                     !(dev->features & NETIF_F_NTUPLE))
3056                         goto out;
3057                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3058                 if (rxq_index == skb_get_rx_queue(skb))
3059                         goto out;
3060
3061                 rxqueue = dev->_rx + rxq_index;
3062                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3063                 if (!flow_table)
3064                         goto out;
3065                 flow_id = skb_get_hash(skb) & flow_table->mask;
3066                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3067                                                         rxq_index, flow_id);
3068                 if (rc < 0)
3069                         goto out;
3070                 old_rflow = rflow;
3071                 rflow = &flow_table->flows[flow_id];
3072                 rflow->filter = rc;
3073                 if (old_rflow->filter == rflow->filter)
3074                         old_rflow->filter = RPS_NO_FILTER;
3075         out:
3076 #endif
3077                 rflow->last_qtail =
3078                         per_cpu(softnet_data, next_cpu).input_queue_head;
3079         }
3080
3081         rflow->cpu = next_cpu;
3082         return rflow;
3083 }
3084
3085 /*
3086  * get_rps_cpu is called from netif_receive_skb and returns the target
3087  * CPU from the RPS map of the receiving queue for a given skb.
3088  * rcu_read_lock must be held on entry.
3089  */
3090 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3091                        struct rps_dev_flow **rflowp)
3092 {
3093         const struct rps_sock_flow_table *sock_flow_table;
3094         struct netdev_rx_queue *rxqueue = dev->_rx;
3095         struct rps_dev_flow_table *flow_table;
3096         struct rps_map *map;
3097         int cpu = -1;
3098         u32 tcpu;
3099         u32 hash;
3100
3101         if (skb_rx_queue_recorded(skb)) {
3102                 u16 index = skb_get_rx_queue(skb);
3103
3104                 if (unlikely(index >= dev->real_num_rx_queues)) {
3105                         WARN_ONCE(dev->real_num_rx_queues > 1,
3106                                   "%s received packet on queue %u, but number "
3107                                   "of RX queues is %u\n",
3108                                   dev->name, index, dev->real_num_rx_queues);
3109                         goto done;
3110                 }
3111                 rxqueue += index;
3112         }
3113
3114         /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3115
3116         flow_table = rcu_dereference(rxqueue->rps_flow_table);
3117         map = rcu_dereference(rxqueue->rps_map);
3118         if (!flow_table && !map)
3119                 goto done;
3120
3121         skb_reset_network_header(skb);
3122         hash = skb_get_hash(skb);
3123         if (!hash)
3124                 goto done;
3125
3126         sock_flow_table = rcu_dereference(rps_sock_flow_table);
3127         if (flow_table && sock_flow_table) {
3128                 struct rps_dev_flow *rflow;
3129                 u32 next_cpu;
3130                 u32 ident;
3131
3132                 /* First check into global flow table if there is a match */
3133                 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3134                 if ((ident ^ hash) & ~rps_cpu_mask)
3135                         goto try_rps;
3136
3137                 next_cpu = ident & rps_cpu_mask;
3138
3139                 /* OK, now we know there is a match,
3140                  * we can look at the local (per receive queue) flow table
3141                  */
3142                 rflow = &flow_table->flows[hash & flow_table->mask];
3143                 tcpu = rflow->cpu;
3144
3145                 /*
3146                  * If the desired CPU (where last recvmsg was done) is
3147                  * different from current CPU (one in the rx-queue flow
3148                  * table entry), switch if one of the following holds:
3149                  *   - Current CPU is unset (equal to RPS_NO_CPU).
3150                  *   - Current CPU is offline.
3151                  *   - The current CPU's queue tail has advanced beyond the
3152                  *     last packet that was enqueued using this table entry.
3153                  *     This guarantees that all previous packets for the flow
3154                  *     have been dequeued, thus preserving in order delivery.
3155                  */
3156                 if (unlikely(tcpu != next_cpu) &&
3157                     (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
3158                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3159                       rflow->last_qtail)) >= 0)) {
3160                         tcpu = next_cpu;
3161                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3162                 }
3163
3164                 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
3165                         *rflowp = rflow;
3166                         cpu = tcpu;
3167                         goto done;
3168                 }
3169         }
3170
3171 try_rps:
3172
3173         if (map) {
3174                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3175                 if (cpu_online(tcpu)) {
3176                         cpu = tcpu;
3177                         goto done;
3178                 }
3179         }
3180
3181 done:
3182         return cpu;
3183 }
3184
3185 #ifdef CONFIG_RFS_ACCEL
3186
3187 /**
3188  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3189  * @dev: Device on which the filter was set
3190  * @rxq_index: RX queue index
3191  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3192  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3193  *
3194  * Drivers that implement ndo_rx_flow_steer() should periodically call
3195  * this function for each installed filter and remove the filters for
3196  * which it returns %true.
3197  */
3198 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3199                          u32 flow_id, u16 filter_id)
3200 {
3201         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3202         struct rps_dev_flow_table *flow_table;
3203         struct rps_dev_flow *rflow;
3204         bool expire = true;
3205         int cpu;
3206
3207         rcu_read_lock();
3208         flow_table = rcu_dereference(rxqueue->rps_flow_table);
3209         if (flow_table && flow_id <= flow_table->mask) {
3210                 rflow = &flow_table->flows[flow_id];
3211                 cpu = ACCESS_ONCE(rflow->cpu);
3212                 if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
3213                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3214                            rflow->last_qtail) <
3215                      (int)(10 * flow_table->mask)))
3216                         expire = false;
3217         }
3218         rcu_read_unlock();
3219         return expire;
3220 }
3221 EXPORT_SYMBOL(rps_may_expire_flow);
3222
3223 #endif /* CONFIG_RFS_ACCEL */
3224
3225 /* Called from hardirq (IPI) context */
3226 static void rps_trigger_softirq(void *data)
3227 {
3228         struct softnet_data *sd = data;
3229
3230         ____napi_schedule(sd, &sd->backlog);
3231         sd->received_rps++;
3232 }
3233
3234 #endif /* CONFIG_RPS */
3235
3236 /*
3237  * Check if this softnet_data structure is another cpu one
3238  * If yes, queue it to our IPI list and return 1
3239  * If no, return 0
3240  */
3241 static int rps_ipi_queued(struct softnet_data *sd)
3242 {
3243 #ifdef CONFIG_RPS
3244         struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3245
3246         if (sd != mysd) {
3247                 sd->rps_ipi_next = mysd->rps_ipi_list;
3248                 mysd->rps_ipi_list = sd;
3249
3250                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3251                 return 1;
3252         }
3253 #endif /* CONFIG_RPS */
3254         return 0;
3255 }
3256
3257 #ifdef CONFIG_NET_FLOW_LIMIT
3258 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3259 #endif
3260
3261 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3262 {
3263 #ifdef CONFIG_NET_FLOW_LIMIT
3264         struct sd_flow_limit *fl;
3265         struct softnet_data *sd;
3266         unsigned int old_flow, new_flow;
3267
3268         if (qlen < (netdev_max_backlog >> 1))
3269                 return false;
3270
3271         sd = this_cpu_ptr(&softnet_data);
3272
3273         rcu_read_lock();
3274         fl = rcu_dereference(sd->flow_limit);
3275         if (fl) {
3276                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3277                 old_flow = fl->history[fl->history_head];
3278                 fl->history[fl->history_head] = new_flow;
3279
3280                 fl->history_head++;
3281                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3282
3283                 if (likely(fl->buckets[old_flow]))
3284                         fl->buckets[old_flow]--;
3285
3286                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3287                         fl->count++;
3288                         rcu_read_unlock();
3289                         return true;
3290                 }
3291         }
3292         rcu_read_unlock();
3293 #endif
3294         return false;
3295 }
3296
3297 /*
3298  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3299  * queue (may be a remote CPU queue).
3300  */
3301 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3302                               unsigned int *qtail)
3303 {
3304         struct softnet_data *sd;
3305         unsigned long flags;
3306         unsigned int qlen;
3307
3308         sd = &per_cpu(softnet_data, cpu);
3309
3310         local_irq_save(flags);
3311
3312         rps_lock(sd);
3313         qlen = skb_queue_len(&sd->input_pkt_queue);
3314         if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3315                 if (qlen) {
3316 enqueue:
3317                         __skb_queue_tail(&sd->input_pkt_queue, skb);
3318                         input_queue_tail_incr_save(sd, qtail);
3319                         rps_unlock(sd);
3320                         local_irq_restore(flags);
3321                         return NET_RX_SUCCESS;
3322                 }
3323
3324                 /* Schedule NAPI for backlog device
3325                  * We can use non atomic operation since we own the queue lock
3326                  */
3327                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3328                         if (!rps_ipi_queued(sd))
3329                                 ____napi_schedule(sd, &sd->backlog);
3330                 }
3331                 goto enqueue;
3332         }
3333
3334         sd->dropped++;
3335         rps_unlock(sd);
3336
3337         local_irq_restore(flags);
3338
3339         atomic_long_inc(&skb->dev->rx_dropped);
3340         kfree_skb(skb);
3341         return NET_RX_DROP;
3342 }
3343
3344 static int netif_rx_internal(struct sk_buff *skb)
3345 {
3346         int ret;
3347
3348         net_timestamp_check(netdev_tstamp_prequeue, skb);
3349
3350         trace_netif_rx(skb);
3351 #ifdef CONFIG_RPS
3352         if (static_key_false(&rps_needed)) {
3353                 struct rps_dev_flow voidflow, *rflow = &voidflow;
3354                 int cpu;
3355
3356                 preempt_disable();
3357                 rcu_read_lock();
3358
3359                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3360                 if (cpu < 0)
3361                         cpu = smp_processor_id();
3362
3363                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3364
3365                 rcu_read_unlock();
3366                 preempt_enable();
3367         } else
3368 #endif
3369         {
3370                 unsigned int qtail;
3371                 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3372                 put_cpu();
3373         }
3374         return ret;
3375 }
3376
3377 /**
3378  *      netif_rx        -       post buffer to the network code
3379  *      @skb: buffer to post
3380  *
3381  *      This function receives a packet from a device driver and queues it for
3382  *      the upper (protocol) levels to process.  It always succeeds. The buffer
3383  *      may be dropped during processing for congestion control or by the
3384  *      protocol layers.
3385  *
3386  *      return values:
3387  *      NET_RX_SUCCESS  (no congestion)
3388  *      NET_RX_DROP     (packet was dropped)
3389  *
3390  */
3391
3392 int netif_rx(struct sk_buff *skb)
3393 {
3394         trace_netif_rx_entry(skb);
3395
3396         return netif_rx_internal(skb);
3397 }
3398 EXPORT_SYMBOL(netif_rx);
3399
3400 int netif_rx_ni(struct sk_buff *skb)
3401 {
3402         int err;
3403
3404         trace_netif_rx_ni_entry(skb);
3405
3406         preempt_disable();
3407         err = netif_rx_internal(skb);
3408         if (local_softirq_pending())
3409                 do_softirq();
3410         preempt_enable();
3411
3412         return err;
3413 }
3414 EXPORT_SYMBOL(netif_rx_ni);
3415
3416 static void net_tx_action(struct softirq_action *h)
3417 {
3418         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3419
3420         if (sd->completion_queue) {
3421                 struct sk_buff *clist;
3422
3423                 local_irq_disable();
3424                 clist = sd->completion_queue;
3425                 sd->completion_queue = NULL;
3426                 local_irq_enable();
3427
3428                 while (clist) {
3429                         struct sk_buff *skb = clist;
3430                         clist = clist->next;
3431
3432                         WARN_ON(atomic_read(&skb->users));
3433                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3434                                 trace_consume_skb(skb);
3435                         else
3436                                 trace_kfree_skb(skb, net_tx_action);
3437                         __kfree_skb(skb);
3438                 }
3439         }
3440
3441         if (sd->output_queue) {
3442                 struct Qdisc *head;
3443
3444                 local_irq_disable();
3445                 head = sd->output_queue;
3446                 sd->output_queue = NULL;
3447                 sd->output_queue_tailp = &sd->output_queue;
3448                 local_irq_enable();
3449
3450                 while (head) {
3451                         struct Qdisc *q = head;
3452                         spinlock_t *root_lock;
3453
3454                         head = head->next_sched;
3455
3456                         root_lock = qdisc_lock(q);
3457                         if (spin_trylock(root_lock)) {
3458                                 smp_mb__before_atomic();
3459                                 clear_bit(__QDISC_STATE_SCHED,
3460                                           &q->state);
3461                                 qdisc_run(q);
3462                                 spin_unlock(root_lock);
3463                         } else {
3464                                 if (!test_bit(__QDISC_STATE_DEACTIVATED,
3465                                               &q->state)) {
3466                                         __netif_reschedule(q);
3467                                 } else {
3468                                         smp_mb__before_atomic();
3469                                         clear_bit(__QDISC_STATE_SCHED,
3470                                                   &q->state);
3471                                 }
3472                         }
3473                 }
3474         }
3475 }
3476
3477 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3478     (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3479 /* This hook is defined here for ATM LANE */
3480 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3481                              unsigned char *addr) __read_mostly;
3482 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3483 #endif
3484
3485 #ifdef CONFIG_NET_CLS_ACT
3486 /* TODO: Maybe we should just force sch_ingress to be compiled in
3487  * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3488  * a compare and 2 stores extra right now if we dont have it on
3489  * but have CONFIG_NET_CLS_ACT
3490  * NOTE: This doesn't stop any functionality; if you dont have
3491  * the ingress scheduler, you just can't add policies on ingress.
3492  *
3493  */
3494 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3495 {
3496         struct net_device *dev = skb->dev;
3497         u32 ttl = G_TC_RTTL(skb->tc_verd);
3498         int result = TC_ACT_OK;
3499         struct Qdisc *q;
3500
3501         if (unlikely(MAX_RED_LOOP < ttl++)) {
3502                 net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n",
3503                                      skb->skb_iif, dev->ifindex);
3504                 return TC_ACT_SHOT;
3505         }
3506
3507         skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3508         skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3509
3510         q = rcu_dereference(rxq->qdisc);
3511         if (q != &noop_qdisc) {
3512                 spin_lock(qdisc_lock(q));
3513                 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3514                         result = qdisc_enqueue_root(skb, q);
3515                 spin_unlock(qdisc_lock(q));
3516         }
3517
3518         return result;
3519 }
3520
3521 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3522                                          struct packet_type **pt_prev,
3523                                          int *ret, struct net_device *orig_dev)
3524 {
3525         struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3526
3527         if (!rxq || rcu_access_pointer(rxq->qdisc) == &noop_qdisc)
3528                 goto out;
3529
3530         if (*pt_prev) {
3531                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3532                 *pt_prev = NULL;
3533         }
3534
3535         switch (ing_filter(skb, rxq)) {
3536         case TC_ACT_SHOT:
3537         case TC_ACT_STOLEN:
3538                 kfree_skb(skb);
3539                 return NULL;
3540         }
3541
3542 out:
3543         skb->tc_verd = 0;
3544         return skb;
3545 }
3546 #endif
3547
3548 /**
3549  *      netdev_rx_handler_register - register receive handler
3550  *      @dev: device to register a handler for
3551  *      @rx_handler: receive handler to register
3552  *      @rx_handler_data: data pointer that is used by rx handler
3553  *
3554  *      Register a receive handler for a device. This handler will then be
3555  *      called from __netif_receive_skb. A negative errno code is returned
3556  *      on a failure.
3557  *
3558  *      The caller must hold the rtnl_mutex.
3559  *
3560  *      For a general description of rx_handler, see enum rx_handler_result.
3561  */
3562 int netdev_rx_handler_register(struct net_device *dev,
3563                                rx_handler_func_t *rx_handler,
3564                                void *rx_handler_data)
3565 {
3566         ASSERT_RTNL();
3567
3568         if (dev->rx_handler)
3569                 return -EBUSY;
3570
3571         /* Note: rx_handler_data must be set before rx_handler */
3572         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3573         rcu_assign_pointer(dev->rx_handler, rx_handler);
3574
3575         return 0;
3576 }
3577 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3578
3579 /**
3580  *      netdev_rx_handler_unregister - unregister receive handler
3581  *      @dev: device to unregister a handler from
3582  *
3583  *      Unregister a receive handler from a device.
3584  *
3585  *      The caller must hold the rtnl_mutex.
3586  */
3587 void netdev_rx_handler_unregister(struct net_device *dev)
3588 {
3589
3590         ASSERT_RTNL();
3591         RCU_INIT_POINTER(dev->rx_handler, NULL);
3592         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3593          * section has a guarantee to see a non NULL rx_handler_data
3594          * as well.
3595          */
3596         synchronize_net();
3597         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3598 }
3599 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3600
3601 /*
3602  * Limit the use of PFMEMALLOC reserves to those protocols that implement
3603  * the special handling of PFMEMALLOC skbs.
3604  */
3605 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3606 {
3607         switch (skb->protocol) {
3608         case htons(ETH_P_ARP):
3609         case htons(ETH_P_IP):
3610         case htons(ETH_P_IPV6):
3611         case htons(ETH_P_8021Q):
3612         case htons(ETH_P_8021AD):
3613                 return true;
3614         default:
3615                 return false;
3616         }
3617 }
3618
3619 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
3620 {
3621         struct packet_type *ptype, *pt_prev;
3622         rx_handler_func_t *rx_handler;
3623         struct net_device *orig_dev;
3624         bool deliver_exact = false;
3625         int ret = NET_RX_DROP;
3626         __be16 type;
3627
3628         net_timestamp_check(!netdev_tstamp_prequeue, skb);
3629
3630         trace_netif_receive_skb(skb);
3631
3632         orig_dev = skb->dev;
3633
3634         skb_reset_network_header(skb);
3635         if (!skb_transport_header_was_set(skb))
3636                 skb_reset_transport_header(skb);
3637         skb_reset_mac_len(skb);
3638
3639         pt_prev = NULL;
3640
3641         rcu_read_lock();
3642
3643 another_round:
3644         skb->skb_iif = skb->dev->ifindex;
3645
3646         __this_cpu_inc(softnet_data.processed);
3647
3648         if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
3649             skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
3650                 skb = skb_vlan_untag(skb);
3651                 if (unlikely(!skb))
3652                         goto unlock;
3653         }
3654
3655 #ifdef CONFIG_NET_CLS_ACT
3656         if (skb->tc_verd & TC_NCLS) {
3657                 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3658                 goto ncls;
3659         }
3660 #endif
3661
3662         if (pfmemalloc)
3663                 goto skip_taps;
3664
3665         list_for_each_entry_rcu(ptype, &ptype_all, list) {
3666                 if (pt_prev)
3667                         ret = deliver_skb(skb, pt_prev, orig_dev);
3668                 pt_prev = ptype;
3669         }
3670
3671         list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
3672                 if (pt_prev)
3673                         ret = deliver_skb(skb, pt_prev, orig_dev);
3674                 pt_prev = ptype;
3675         }
3676
3677 skip_taps:
3678 #ifdef CONFIG_NET_CLS_ACT
3679         skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3680         if (!skb)
3681                 goto unlock;
3682 ncls:
3683 #endif
3684
3685         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
3686                 goto drop;
3687
3688         if (skb_vlan_tag_present(skb)) {
3689                 if (pt_prev) {
3690                         ret = deliver_skb(skb, pt_prev, orig_dev);
3691                         pt_prev = NULL;
3692                 }
3693                 if (vlan_do_receive(&skb))
3694                         goto another_round;
3695                 else if (unlikely(!skb))
3696                         goto unlock;
3697         }
3698
3699         rx_handler = rcu_dereference(skb->dev->rx_handler);
3700         if (rx_handler) {
3701                 if (pt_prev) {
3702                         ret = deliver_skb(skb, pt_prev, orig_dev);
3703                         pt_prev = NULL;
3704                 }
3705                 switch (rx_handler(&skb)) {
3706                 case RX_HANDLER_CONSUMED:
3707                         ret = NET_RX_SUCCESS;
3708                         goto unlock;
3709                 case RX_HANDLER_ANOTHER:
3710                         goto another_round;
3711                 case RX_HANDLER_EXACT:
3712                         deliver_exact = true;
3713                 case RX_HANDLER_PASS:
3714                         break;
3715                 default:
3716                         BUG();
3717                 }
3718         }
3719
3720         if (unlikely(skb_vlan_tag_present(skb))) {
3721                 if (skb_vlan_tag_get_id(skb))
3722                         skb->pkt_type = PACKET_OTHERHOST;
3723                 /* Note: we might in the future use prio bits
3724                  * and set skb->priority like in vlan_do_receive()
3725                  * For the time being, just ignore Priority Code Point
3726                  */
3727                 skb->vlan_tci = 0;
3728         }
3729
3730         type = skb->protocol;
3731
3732         /* deliver only exact match when indicated */
3733         if (likely(!deliver_exact)) {
3734                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3735                                        &ptype_base[ntohs(type) &
3736                                                    PTYPE_HASH_MASK]);
3737         }
3738
3739         deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3740                                &orig_dev->ptype_specific);
3741
3742         if (unlikely(skb->dev != orig_dev)) {
3743                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3744                                        &skb->dev->ptype_specific);
3745         }
3746
3747         if (pt_prev) {
3748                 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3749                         goto drop;
3750                 else
3751                         ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3752         } else {
3753 drop:
3754                 atomic_long_inc(&skb->dev->rx_dropped);
3755                 kfree_skb(skb);
3756                 /* Jamal, now you will not able to escape explaining
3757                  * me how you were going to use this. :-)
3758                  */
3759                 ret = NET_RX_DROP;
3760         }
3761
3762 unlock:
3763         rcu_read_unlock();
3764         return ret;
3765 }
3766
3767 static int __netif_receive_skb(struct sk_buff *skb)
3768 {
3769         int ret;
3770
3771         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
3772                 unsigned long pflags = current->flags;
3773
3774                 /*
3775                  * PFMEMALLOC skbs are special, they should
3776                  * - be delivered to SOCK_MEMALLOC sockets only
3777                  * - stay away from userspace
3778                  * - have bounded memory usage
3779                  *
3780                  * Use PF_MEMALLOC as this saves us from propagating the allocation
3781                  * context down to all allocation sites.
3782                  */
3783                 current->flags |= PF_MEMALLOC;
3784                 ret = __netif_receive_skb_core(skb, true);
3785                 tsk_restore_flags(current, pflags, PF_MEMALLOC);
3786         } else
3787                 ret = __netif_receive_skb_core(skb, false);
3788
3789         return ret;
3790 }
3791
3792 static int netif_receive_skb_internal(struct sk_buff *skb)
3793 {
3794         net_timestamp_check(netdev_tstamp_prequeue, skb);
3795
3796         if (skb_defer_rx_timestamp(skb))
3797                 return NET_RX_SUCCESS;
3798
3799 #ifdef CONFIG_RPS
3800         if (static_key_false(&rps_needed)) {
3801                 struct rps_dev_flow voidflow, *rflow = &voidflow;
3802                 int cpu, ret;
3803
3804                 rcu_read_lock();
3805
3806                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3807
3808                 if (cpu >= 0) {
3809                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3810                         rcu_read_unlock();
3811                         return ret;
3812                 }
3813                 rcu_read_unlock();
3814         }
3815 #endif
3816         return __netif_receive_skb(skb);
3817 }
3818
3819 /**
3820  *      netif_receive_skb - process receive buffer from network
3821  *      @skb: buffer to process
3822  *
3823  *      netif_receive_skb() is the main receive data processing function.
3824  *      It always succeeds. The buffer may be dropped during processing
3825  *      for congestion control or by the protocol layers.
3826  *
3827  *      This function may only be called from softirq context and interrupts
3828  *      should be enabled.
3829  *
3830  *      Return values (usually ignored):
3831  *      NET_RX_SUCCESS: no congestion
3832  *      NET_RX_DROP: packet was dropped
3833  */
3834 int netif_receive_skb(struct sk_buff *skb)
3835 {
3836         trace_netif_receive_skb_entry(skb);
3837
3838         return netif_receive_skb_internal(skb);
3839 }
3840 EXPORT_SYMBOL(netif_receive_skb);
3841
3842 /* Network device is going away, flush any packets still pending
3843  * Called with irqs disabled.
3844  */
3845 static void flush_backlog(void *arg)
3846 {
3847         struct net_device *dev = arg;
3848         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3849         struct sk_buff *skb, *tmp;
3850
3851         rps_lock(sd);
3852         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3853                 if (skb->dev == dev) {
3854                         __skb_unlink(skb, &sd->input_pkt_queue);
3855                         kfree_skb(skb);
3856                         input_queue_head_incr(sd);
3857                 }
3858         }
3859         rps_unlock(sd);
3860
3861         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3862                 if (skb->dev == dev) {
3863                         __skb_unlink(skb, &sd->process_queue);
3864                         kfree_skb(skb);
3865                         input_queue_head_incr(sd);
3866                 }
3867         }
3868 }
3869
3870 static int napi_gro_complete(struct sk_buff *skb)
3871 {
3872         struct packet_offload *ptype;
3873         __be16 type = skb->protocol;
3874         struct list_head *head = &offload_base;
3875         int err = -ENOENT;
3876
3877         BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
3878
3879         if (NAPI_GRO_CB(skb)->count == 1) {
3880                 skb_shinfo(skb)->gso_size = 0;
3881                 goto out;
3882         }
3883
3884         rcu_read_lock();
3885         list_for_each_entry_rcu(ptype, head, list) {
3886                 if (ptype->type != type || !ptype->callbacks.gro_complete)
3887                         continue;
3888
3889                 err = ptype->callbacks.gro_complete(skb, 0);
3890                 break;
3891         }
3892         rcu_read_unlock();
3893
3894         if (err) {
3895                 WARN_ON(&ptype->list == head);
3896                 kfree_skb(skb);
3897                 return NET_RX_SUCCESS;
3898         }
3899
3900 out:
3901         return netif_receive_skb_internal(skb);
3902 }
3903
3904 /* napi->gro_list contains packets ordered by age.
3905  * youngest packets at the head of it.
3906  * Complete skbs in reverse order to reduce latencies.
3907  */
3908 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
3909 {
3910         struct sk_buff *skb, *prev = NULL;
3911
3912         /* scan list and build reverse chain */
3913         for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
3914                 skb->prev = prev;
3915                 prev = skb;
3916         }
3917
3918         for (skb = prev; skb; skb = prev) {
3919                 skb->next = NULL;
3920
3921                 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
3922                         return;
3923
3924                 prev = skb->prev;
3925                 napi_gro_complete(skb);
3926                 napi->gro_count--;
3927         }
3928
3929         napi->gro_list = NULL;
3930 }
3931 EXPORT_SYMBOL(napi_gro_flush);
3932
3933 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
3934 {
3935         struct sk_buff *p;
3936         unsigned int maclen = skb->dev->hard_header_len;
3937         u32 hash = skb_get_hash_raw(skb);
3938
3939         for (p = napi->gro_list; p; p = p->next) {
3940                 unsigned long diffs;
3941
3942                 NAPI_GRO_CB(p)->flush = 0;
3943
3944                 if (hash != skb_get_hash_raw(p)) {
3945                         NAPI_GRO_CB(p)->same_flow = 0;
3946                         continue;
3947                 }
3948
3949                 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3950                 diffs |= p->vlan_tci ^ skb->vlan_tci;
3951                 if (maclen == ETH_HLEN)
3952                         diffs |= compare_ether_header(skb_mac_header(p),
3953                                                       skb_mac_header(skb));
3954                 else if (!diffs)
3955                         diffs = memcmp(skb_mac_header(p),
3956                                        skb_mac_header(skb),
3957                                        maclen);
3958                 NAPI_GRO_CB(p)->same_flow = !diffs;
3959         }
3960 }
3961
3962 static void skb_gro_reset_offset(struct sk_buff *skb)
3963 {
3964         const struct skb_shared_info *pinfo = skb_shinfo(skb);
3965         const skb_frag_t *frag0 = &pinfo->frags[0];
3966
3967         NAPI_GRO_CB(skb)->data_offset = 0;
3968         NAPI_GRO_CB(skb)->frag0 = NULL;
3969         NAPI_GRO_CB(skb)->frag0_len = 0;
3970
3971         if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
3972             pinfo->nr_frags &&
3973             !PageHighMem(skb_frag_page(frag0))) {
3974                 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
3975                 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
3976         }
3977 }
3978
3979 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
3980 {
3981         struct skb_shared_info *pinfo = skb_shinfo(skb);
3982
3983         BUG_ON(skb->end - skb->tail < grow);
3984
3985         memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3986
3987         skb->data_len -= grow;
3988         skb->tail += grow;
3989
3990         pinfo->frags[0].page_offset += grow;
3991         skb_frag_size_sub(&pinfo->frags[0], grow);
3992
3993         if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
3994                 skb_frag_unref(skb, 0);
3995                 memmove(pinfo->frags, pinfo->frags + 1,
3996                         --pinfo->nr_frags * sizeof(pinfo->frags[0]));
3997         }
3998 }
3999
4000 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4001 {
4002         struct sk_buff **pp = NULL;
4003         struct packet_offload *ptype;
4004         __be16 type = skb->protocol;
4005         struct list_head *head = &offload_base;
4006         int same_flow;
4007         enum gro_result ret;
4008         int grow;
4009
4010         if (!(skb->dev->features & NETIF_F_GRO))
4011                 goto normal;
4012
4013         if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad)
4014                 goto normal;
4015
4016         gro_list_prepare(napi, skb);
4017
4018         rcu_read_lock();
4019         list_for_each_entry_rcu(ptype, head, list) {
4020                 if (ptype->type != type || !ptype->callbacks.gro_receive)
4021                         continue;
4022
4023                 skb_set_network_header(skb, skb_gro_offset(skb));
4024                 skb_reset_mac_len(skb);
4025                 NAPI_GRO_CB(skb)->same_flow = 0;
4026                 NAPI_GRO_CB(skb)->flush = 0;
4027                 NAPI_GRO_CB(skb)->free = 0;
4028                 NAPI_GRO_CB(skb)->udp_mark = 0;
4029                 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4030
4031                 /* Setup for GRO checksum validation */
4032                 switch (skb->ip_summed) {
4033                 case CHECKSUM_COMPLETE:
4034                         NAPI_GRO_CB(skb)->csum = skb->csum;
4035                         NAPI_GRO_CB(skb)->csum_valid = 1;
4036                         NAPI_GRO_CB(skb)->csum_cnt = 0;
4037                         break;
4038                 case CHECKSUM_UNNECESSARY:
4039                         NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4040                         NAPI_GRO_CB(skb)->csum_valid = 0;
4041                         break;
4042                 default:
4043                         NAPI_GRO_CB(skb)->csum_cnt = 0;
4044                         NAPI_GRO_CB(skb)->csum_valid = 0;
4045                 }
4046
4047                 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4048                 break;
4049         }
4050         rcu_read_unlock();
4051
4052         if (&ptype->list == head)
4053                 goto normal;
4054
4055         same_flow = NAPI_GRO_CB(skb)->same_flow;
4056         ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4057
4058         if (pp) {
4059                 struct sk_buff *nskb = *pp;
4060
4061                 *pp = nskb->next;
4062                 nskb->next = NULL;
4063                 napi_gro_complete(nskb);
4064                 napi->gro_count--;
4065         }
4066
4067         if (same_flow)
4068                 goto ok;
4069
4070         if (NAPI_GRO_CB(skb)->flush)
4071                 goto normal;
4072
4073         if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4074                 struct sk_buff *nskb = napi->gro_list;
4075
4076                 /* locate the end of the list to select the 'oldest' flow */
4077                 while (nskb->next) {
4078                         pp = &nskb->next;
4079                         nskb = *pp;
4080                 }
4081                 *pp = NULL;
4082                 nskb->next = NULL;
4083                 napi_gro_complete(nskb);
4084         } else {
4085                 napi->gro_count++;
4086         }
4087         NAPI_GRO_CB(skb)->count = 1;
4088         NAPI_GRO_CB(skb)->age = jiffies;
4089         NAPI_GRO_CB(skb)->last = skb;
4090         skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4091         skb->next = napi->gro_list;
4092         napi->gro_list = skb;
4093         ret = GRO_HELD;
4094
4095 pull:
4096         grow = skb_gro_offset(skb) - skb_headlen(skb);
4097         if (grow > 0)
4098                 gro_pull_from_frag0(skb, grow);
4099 ok:
4100         return ret;
4101
4102 normal:
4103         ret = GRO_NORMAL;
4104         goto pull;
4105 }
4106
4107 struct packet_offload *gro_find_receive_by_type(__be16 type)
4108 {
4109         struct list_head *offload_head = &offload_base;
4110         struct packet_offload *ptype;
4111
4112         list_for_each_entry_rcu(ptype, offload_head, list) {
4113                 if (ptype->type != type || !ptype->callbacks.gro_receive)
4114                         continue;
4115                 return ptype;
4116         }
4117         return NULL;
4118 }
4119 EXPORT_SYMBOL(gro_find_receive_by_type);
4120
4121 struct packet_offload *gro_find_complete_by_type(__be16 type)
4122 {
4123         struct list_head *offload_head = &offload_base;
4124         struct packet_offload *ptype;
4125
4126         list_for_each_entry_rcu(ptype, offload_head, list) {
4127                 if (ptype->type != type || !ptype->callbacks.gro_complete)
4128                         continue;
4129                 return ptype;
4130         }
4131         return NULL;
4132 }
4133 EXPORT_SYMBOL(gro_find_complete_by_type);
4134
4135 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4136 {
4137         switch (ret) {
4138         case GRO_NORMAL:
4139                 if (netif_receive_skb_internal(skb))
4140                         ret = GRO_DROP;
4141                 break;
4142
4143         case GRO_DROP:
4144                 kfree_skb(skb);
4145                 break;
4146
4147         case GRO_MERGED_FREE:
4148                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4149                         kmem_cache_free(skbuff_head_cache, skb);
4150                 else
4151                         __kfree_skb(skb);
4152                 break;
4153
4154         case GRO_HELD:
4155         case GRO_MERGED:
4156                 break;
4157         }
4158
4159         return ret;
4160 }
4161
4162 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4163 {
4164         trace_napi_gro_receive_entry(skb);
4165
4166         skb_gro_reset_offset(skb);
4167
4168         return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4169 }
4170 EXPORT_SYMBOL(napi_gro_receive);
4171
4172 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4173 {
4174         if (unlikely(skb->pfmemalloc)) {
4175                 consume_skb(skb);
4176                 return;
4177         }
4178         __skb_pull(skb, skb_headlen(skb));
4179         /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4180         skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4181         skb->vlan_tci = 0;
4182         skb->dev = napi->dev;
4183         skb->skb_iif = 0;
4184         skb->encapsulation = 0;
4185         skb_shinfo(skb)->gso_type = 0;
4186         skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4187
4188         napi->skb = skb;
4189 }
4190
4191 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4192 {
4193         struct sk_buff *skb = napi->skb;
4194
4195         if (!skb) {
4196                 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
4197                 napi->skb = skb;
4198         }
4199         return skb;
4200 }
4201 EXPORT_SYMBOL(napi_get_frags);
4202
4203 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4204                                       struct sk_buff *skb,
4205                                       gro_result_t ret)
4206 {
4207         switch (ret) {
4208         case GRO_NORMAL:
4209         case GRO_HELD:
4210                 __skb_push(skb, ETH_HLEN);
4211                 skb->protocol = eth_type_trans(skb, skb->dev);
4212                 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4213                         ret = GRO_DROP;
4214                 break;
4215
4216         case GRO_DROP:
4217         case GRO_MERGED_FREE:
4218                 napi_reuse_skb(napi, skb);
4219                 break;
4220
4221         case GRO_MERGED:
4222                 break;
4223         }
4224
4225         return ret;
4226 }
4227
4228 /* Upper GRO stack assumes network header starts at gro_offset=0
4229  * Drivers could call both napi_gro_frags() and napi_gro_receive()
4230  * We copy ethernet header into skb->data to have a common layout.
4231  */
4232 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4233 {
4234         struct sk_buff *skb = napi->skb;
4235         const struct ethhdr *eth;
4236         unsigned int hlen = sizeof(*eth);
4237
4238         napi->skb = NULL;
4239
4240         skb_reset_mac_header(skb);
4241         skb_gro_reset_offset(skb);
4242
4243         eth = skb_gro_header_fast(skb, 0);
4244         if (unlikely(skb_gro_header_hard(skb, hlen))) {
4245                 eth = skb_gro_header_slow(skb, hlen, 0);
4246                 if (unlikely(!eth)) {
4247                         napi_reuse_skb(napi, skb);
4248                         return NULL;
4249                 }
4250         } else {
4251                 gro_pull_from_frag0(skb, hlen);
4252                 NAPI_GRO_CB(skb)->frag0 += hlen;
4253                 NAPI_GRO_CB(skb)->frag0_len -= hlen;
4254         }
4255         __skb_pull(skb, hlen);
4256
4257         /*
4258          * This works because the only protocols we care about don't require
4259          * special handling.
4260          * We'll fix it up properly in napi_frags_finish()
4261          */
4262         skb->protocol = eth->h_proto;
4263
4264         return skb;
4265 }
4266
4267 gro_result_t napi_gro_frags(struct napi_struct *napi)
4268 {
4269         struct sk_buff *skb = napi_frags_skb(napi);
4270
4271         if (!skb)
4272                 return GRO_DROP;
4273
4274         trace_napi_gro_frags_entry(skb);
4275
4276         return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4277 }
4278 EXPORT_SYMBOL(napi_gro_frags);
4279
4280 /* Compute the checksum from gro_offset and return the folded value
4281  * after adding in any pseudo checksum.
4282  */
4283 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4284 {
4285         __wsum wsum;
4286         __sum16 sum;
4287
4288         wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4289
4290         /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4291         sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4292         if (likely(!sum)) {
4293                 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4294                     !skb->csum_complete_sw)
4295                         netdev_rx_csum_fault(skb->dev);
4296         }
4297
4298         NAPI_GRO_CB(skb)->csum = wsum;
4299         NAPI_GRO_CB(skb)->csum_valid = 1;
4300
4301         return sum;
4302 }
4303 EXPORT_SYMBOL(__skb_gro_checksum_complete);
4304
4305 /*
4306  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4307  * Note: called with local irq disabled, but exits with local irq enabled.
4308  */
4309 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4310 {
4311 #ifdef CONFIG_RPS
4312         struct softnet_data *remsd = sd->rps_ipi_list;
4313
4314         if (remsd) {
4315                 sd->rps_ipi_list = NULL;
4316
4317                 local_irq_enable();
4318
4319                 /* Send pending IPI's to kick RPS processing on remote cpus. */
4320                 while (remsd) {
4321                         struct softnet_data *next = remsd->rps_ipi_next;
4322
4323                         if (cpu_online(remsd->cpu))
4324                                 smp_call_function_single_async(remsd->cpu,
4325                                                            &remsd->csd);
4326                         remsd = next;
4327                 }
4328         } else
4329 #endif
4330                 local_irq_enable();
4331 }
4332
4333 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4334 {
4335 #ifdef CONFIG_RPS
4336         return sd->rps_ipi_list != NULL;
4337 #else
4338         return false;
4339 #endif
4340 }
4341
4342 static int process_backlog(struct napi_struct *napi, int quota)
4343 {
4344         int work = 0;
4345         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4346
4347         /* Check if we have pending ipi, its better to send them now,
4348          * not waiting net_rx_action() end.
4349          */
4350         if (sd_has_rps_ipi_waiting(sd)) {
4351                 local_irq_disable();
4352                 net_rps_action_and_irq_enable(sd);
4353         }
4354
4355         napi->weight = weight_p;
4356         local_irq_disable();
4357         while (1) {
4358                 struct sk_buff *skb;
4359
4360                 while ((skb = __skb_dequeue(&sd->process_queue))) {
4361                         local_irq_enable();
4362                         __netif_receive_skb(skb);
4363                         local_irq_disable();
4364                         input_queue_head_incr(sd);
4365                         if (++work >= quota) {
4366                                 local_irq_enable();
4367                                 return work;
4368                         }
4369                 }
4370
4371                 rps_lock(sd);
4372                 if (skb_queue_empty(&sd->input_pkt_queue)) {
4373                         /*
4374                          * Inline a custom version of __napi_complete().
4375                          * only current cpu owns and manipulates this napi,
4376                          * and NAPI_STATE_SCHED is the only possible flag set
4377                          * on backlog.
4378                          * We can use a plain write instead of clear_bit(),
4379                          * and we dont need an smp_mb() memory barrier.
4380                          */
4381                         napi->state = 0;
4382                         rps_unlock(sd);
4383
4384                         break;
4385                 }
4386
4387                 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4388                                            &sd->process_queue);
4389                 rps_unlock(sd);
4390         }
4391         local_irq_enable();
4392
4393         return work;
4394 }
4395
4396 /**
4397  * __napi_schedule - schedule for receive
4398  * @n: entry to schedule
4399  *
4400  * The entry's receive function will be scheduled to run.
4401  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
4402  */
4403 void __napi_schedule(struct napi_struct *n)
4404 {
4405         unsigned long flags;
4406
4407         local_irq_save(flags);
4408         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4409         local_irq_restore(flags);
4410 }
4411 EXPORT_SYMBOL(__napi_schedule);
4412
4413 /**
4414  * __napi_schedule_irqoff - schedule for receive
4415  * @n: entry to schedule
4416  *
4417  * Variant of __napi_schedule() assuming hard irqs are masked
4418  */
4419 void __napi_schedule_irqoff(struct napi_struct *n)
4420 {
4421         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4422 }
4423 EXPORT_SYMBOL(__napi_schedule_irqoff);
4424
4425 void __napi_complete(struct napi_struct *n)
4426 {
4427         BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4428
4429         list_del_init(&n->poll_list);
4430         smp_mb__before_atomic();
4431         clear_bit(NAPI_STATE_SCHED, &n->state);
4432 }
4433 EXPORT_SYMBOL(__napi_complete);
4434
4435 void napi_complete_done(struct napi_struct *n, int work_done)
4436 {
4437         unsigned long flags;
4438
4439         /*
4440          * don't let napi dequeue from the cpu poll list
4441          * just in case its running on a different cpu
4442          */
4443         if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4444                 return;
4445
4446         if (n->gro_list) {
4447                 unsigned long timeout = 0;
4448
4449                 if (work_done)
4450                         timeout = n->dev->gro_flush_timeout;
4451
4452                 if (timeout)
4453                         hrtimer_start(&n->timer, ns_to_ktime(timeout),
4454                                       HRTIMER_MODE_REL_PINNED);
4455                 else
4456                         napi_gro_flush(n, false);
4457         }
4458         if (likely(list_empty(&n->poll_list))) {
4459                 WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state));
4460         } else {
4461                 /* If n->poll_list is not empty, we need to mask irqs */
4462                 local_irq_save(flags);
4463                 __napi_complete(n);
4464                 local_irq_restore(flags);
4465         }
4466 }
4467 EXPORT_SYMBOL(napi_complete_done);
4468
4469 /* must be called under rcu_read_lock(), as we dont take a reference */
4470 struct napi_struct *napi_by_id(unsigned int napi_id)
4471 {
4472         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4473         struct napi_struct *napi;
4474
4475         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4476                 if (napi->napi_id == napi_id)
4477                         return napi;
4478
4479         return NULL;
4480 }
4481 EXPORT_SYMBOL_GPL(napi_by_id);
4482
4483 void napi_hash_add(struct napi_struct *napi)
4484 {
4485         if (!test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) {
4486
4487                 spin_lock(&napi_hash_lock);
4488
4489                 /* 0 is not a valid id, we also skip an id that is taken
4490                  * we expect both events to be extremely rare
4491                  */
4492                 napi->napi_id = 0;
4493                 while (!napi->napi_id) {
4494                         napi->napi_id = ++napi_gen_id;
4495                         if (napi_by_id(napi->napi_id))
4496                                 napi->napi_id = 0;
4497                 }
4498
4499                 hlist_add_head_rcu(&napi->napi_hash_node,
4500                         &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
4501
4502                 spin_unlock(&napi_hash_lock);
4503         }
4504 }
4505 EXPORT_SYMBOL_GPL(napi_hash_add);
4506
4507 /* Warning : caller is responsible to make sure rcu grace period
4508  * is respected before freeing memory containing @napi
4509  */
4510 void napi_hash_del(struct napi_struct *napi)
4511 {
4512         spin_lock(&napi_hash_lock);
4513
4514         if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state))
4515                 hlist_del_rcu(&napi->napi_hash_node);
4516
4517         spin_unlock(&napi_hash_lock);
4518 }
4519 EXPORT_SYMBOL_GPL(napi_hash_del);
4520
4521 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
4522 {
4523         struct napi_struct *napi;
4524
4525         napi = container_of(timer, struct napi_struct, timer);
4526         if (napi->gro_list)
4527                 napi_schedule(napi);
4528
4529         return HRTIMER_NORESTART;
4530 }
4531
4532 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4533                     int (*poll)(struct napi_struct *, int), int weight)
4534 {
4535         INIT_LIST_HEAD(&napi->poll_list);
4536         hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
4537         napi->timer.function = napi_watchdog;
4538         napi->gro_count = 0;
4539         napi->gro_list = NULL;
4540         napi->skb = NULL;
4541         napi->poll = poll;
4542         if (weight > NAPI_POLL_WEIGHT)
4543                 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
4544                             weight, dev->name);
4545         napi->weight = weight;
4546         list_add(&napi->dev_list, &dev->napi_list);
4547         napi->dev = dev;
4548 #ifdef CONFIG_NETPOLL
4549         spin_lock_init(&napi->poll_lock);
4550         napi->poll_owner = -1;
4551 #endif
4552         set_bit(NAPI_STATE_SCHED, &napi->state);
4553 }
4554 EXPORT_SYMBOL(netif_napi_add);
4555
4556 void napi_disable(struct napi_struct *n)
4557 {
4558         might_sleep();
4559         set_bit(NAPI_STATE_DISABLE, &n->state);
4560
4561         while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
4562                 msleep(1);
4563
4564         hrtimer_cancel(&n->timer);
4565
4566         clear_bit(NAPI_STATE_DISABLE, &n->state);
4567 }
4568 EXPORT_SYMBOL(napi_disable);
4569
4570 void netif_napi_del(struct napi_struct *napi)
4571 {
4572         list_del_init(&napi->dev_list);
4573         napi_free_frags(napi);
4574
4575         kfree_skb_list(napi->gro_list);
4576         napi->gro_list = NULL;
4577         napi->gro_count = 0;
4578 }
4579 EXPORT_SYMBOL(netif_napi_del);
4580
4581 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
4582 {
4583         void *have;
4584         int work, weight;
4585
4586         list_del_init(&n->poll_list);
4587
4588         have = netpoll_poll_lock(n);
4589
4590         weight = n->weight;
4591
4592         /* This NAPI_STATE_SCHED test is for avoiding a race
4593          * with netpoll's poll_napi().  Only the entity which
4594          * obtains the lock and sees NAPI_STATE_SCHED set will
4595          * actually make the ->poll() call.  Therefore we avoid
4596          * accidentally calling ->poll() when NAPI is not scheduled.
4597          */
4598         work = 0;
4599         if (test_bit(NAPI_STATE_SCHED, &n->state)) {
4600                 work = n->poll(n, weight);
4601                 trace_napi_poll(n);
4602         }
4603
4604         WARN_ON_ONCE(work > weight);
4605
4606         if (likely(work < weight))
4607                 goto out_unlock;
4608
4609         /* Drivers must not modify the NAPI state if they
4610          * consume the entire weight.  In such cases this code
4611          * still "owns" the NAPI instance and therefore can
4612          * move the instance around on the list at-will.
4613          */
4614         if (unlikely(napi_disable_pending(n))) {
4615                 napi_complete(n);
4616                 goto out_unlock;
4617         }
4618
4619         if (n->gro_list) {
4620                 /* flush too old packets
4621                  * If HZ < 1000, flush all packets.
4622                  */
4623                 napi_gro_flush(n, HZ >= 1000);
4624         }
4625
4626         /* Some drivers may have called napi_schedule
4627          * prior to exhausting their budget.
4628          */
4629         if (unlikely(!list_empty(&n->poll_list))) {
4630                 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
4631                              n->dev ? n->dev->name : "backlog");
4632                 goto out_unlock;
4633         }
4634
4635         list_add_tail(&n->poll_list, repoll);
4636
4637 out_unlock:
4638         netpoll_poll_unlock(have);
4639
4640         return work;
4641 }
4642
4643 static void net_rx_action(struct softirq_action *h)
4644 {
4645         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4646         unsigned long time_limit = jiffies + 2;
4647         int budget = netdev_budget;
4648         LIST_HEAD(list);
4649         LIST_HEAD(repoll);
4650
4651         local_irq_disable();
4652         list_splice_init(&sd->poll_list, &list);
4653         local_irq_enable();
4654
4655         for (;;) {
4656                 struct napi_struct *n;
4657
4658                 if (list_empty(&list)) {
4659                         if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
4660                                 return;
4661                         break;
4662                 }
4663
4664                 n = list_first_entry(&list, struct napi_struct, poll_list);
4665                 budget -= napi_poll(n, &repoll);
4666
4667                 /* If softirq window is exhausted then punt.
4668                  * Allow this to run for 2 jiffies since which will allow
4669                  * an average latency of 1.5/HZ.
4670                  */
4671                 if (unlikely(budget <= 0 ||
4672                              time_after_eq(jiffies, time_limit))) {
4673                         sd->time_squeeze++;
4674                         break;
4675                 }
4676         }
4677
4678         local_irq_disable();
4679
4680         list_splice_tail_init(&sd->poll_list, &list);
4681         list_splice_tail(&repoll, &list);
4682         list_splice(&list, &sd->poll_list);
4683         if (!list_empty(&sd->poll_list))
4684                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4685
4686         net_rps_action_and_irq_enable(sd);
4687 }
4688
4689 struct netdev_adjacent {
4690         struct net_device *dev;
4691
4692         /* upper master flag, there can only be one master device per list */
4693         bool master;
4694
4695         /* counter for the number of times this device was added to us */
4696         u16 ref_nr;
4697
4698         /* private field for the users */
4699         void *private;
4700
4701         struct list_head list;
4702         struct rcu_head rcu;
4703 };
4704
4705 static struct netdev_adjacent *__netdev_find_adj(struct net_device *dev,
4706                                                  struct net_device *adj_dev,
4707                                                  struct list_head *adj_list)
4708 {
4709         struct netdev_adjacent *adj;
4710
4711         list_for_each_entry(adj, adj_list, list) {
4712                 if (adj->dev == adj_dev)
4713                         return adj;
4714         }
4715         return NULL;
4716 }
4717
4718 /**
4719  * netdev_has_upper_dev - Check if device is linked to an upper device
4720  * @dev: device
4721  * @upper_dev: upper device to check
4722  *
4723  * Find out if a device is linked to specified upper device and return true
4724  * in case it is. Note that this checks only immediate upper device,
4725  * not through a complete stack of devices. The caller must hold the RTNL lock.
4726  */
4727 bool netdev_has_upper_dev(struct net_device *dev,
4728                           struct net_device *upper_dev)
4729 {
4730         ASSERT_RTNL();
4731
4732         return __netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper);
4733 }
4734 EXPORT_SYMBOL(netdev_has_upper_dev);
4735
4736 /**
4737  * netdev_has_any_upper_dev - Check if device is linked to some device
4738  * @dev: device
4739  *
4740  * Find out if a device is linked to an upper device and return true in case
4741  * it is. The caller must hold the RTNL lock.
4742  */
4743 static bool netdev_has_any_upper_dev(struct net_device *dev)
4744 {
4745         ASSERT_RTNL();
4746
4747         return !list_empty(&dev->all_adj_list.upper);
4748 }
4749
4750 /**
4751  * netdev_master_upper_dev_get - Get master upper device
4752  * @dev: device
4753  *
4754  * Find a master upper device and return pointer to it or NULL in case
4755  * it's not there. The caller must hold the RTNL lock.
4756  */
4757 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
4758 {
4759         struct netdev_adjacent *upper;
4760
4761         ASSERT_RTNL();
4762
4763         if (list_empty(&dev->adj_list.upper))
4764                 return NULL;
4765
4766         upper = list_first_entry(&dev->adj_list.upper,
4767                                  struct netdev_adjacent, list);
4768         if (likely(upper->master))
4769                 return upper->dev;
4770         return NULL;
4771 }
4772 EXPORT_SYMBOL(netdev_master_upper_dev_get);
4773
4774 void *netdev_adjacent_get_private(struct list_head *adj_list)
4775 {
4776         struct netdev_adjacent *adj;
4777
4778         adj = list_entry(adj_list, struct netdev_adjacent, list);
4779
4780         return adj->private;
4781 }
4782 EXPORT_SYMBOL(netdev_adjacent_get_private);
4783
4784 /**
4785  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
4786  * @dev: device
4787  * @iter: list_head ** of the current position
4788  *
4789  * Gets the next device from the dev's upper list, starting from iter
4790  * position. The caller must hold RCU read lock.
4791  */
4792 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4793                                                  struct list_head **iter)
4794 {
4795         struct netdev_adjacent *upper;
4796
4797         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4798
4799         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4800
4801         if (&upper->list == &dev->adj_list.upper)
4802                 return NULL;
4803
4804         *iter = &upper->list;
4805
4806         return upper->dev;
4807 }
4808 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
4809
4810 /**
4811  * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
4812  * @dev: device
4813  * @iter: list_head ** of the current position
4814  *
4815  * Gets the next device from the dev's upper list, starting from iter
4816  * position. The caller must hold RCU read lock.
4817  */
4818 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4819                                                      struct list_head **iter)
4820 {
4821         struct netdev_adjacent *upper;
4822
4823         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4824
4825         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4826
4827         if (&upper->list == &dev->all_adj_list.upper)
4828                 return NULL;
4829
4830         *iter = &upper->list;
4831
4832         return upper->dev;
4833 }
4834 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
4835
4836 /**
4837  * netdev_lower_get_next_private - Get the next ->private from the
4838  *                                 lower neighbour list
4839  * @dev: device
4840  * @iter: list_head ** of the current position
4841  *
4842  * Gets the next netdev_adjacent->private from the dev's lower neighbour
4843  * list, starting from iter position. The caller must hold either hold the
4844  * RTNL lock or its own locking that guarantees that the neighbour lower
4845  * list will remain unchainged.
4846  */
4847 void *netdev_lower_get_next_private(struct net_device *dev,
4848                                     struct list_head **iter)
4849 {
4850         struct netdev_adjacent *lower;
4851
4852         lower = list_entry(*iter, struct netdev_adjacent, list);
4853
4854         if (&lower->list == &dev->adj_list.lower)
4855                 return NULL;
4856
4857         *iter = lower->list.next;
4858
4859         return lower->private;
4860 }
4861 EXPORT_SYMBOL(netdev_lower_get_next_private);
4862
4863 /**
4864  * netdev_lower_get_next_private_rcu - Get the next ->private from the
4865  *                                     lower neighbour list, RCU
4866  *                                     variant
4867  * @dev: device
4868  * @iter: list_head ** of the current position
4869  *
4870  * Gets the next netdev_adjacent->private from the dev's lower neighbour
4871  * list, starting from iter position. The caller must hold RCU read lock.
4872  */
4873 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4874                                         struct list_head **iter)
4875 {
4876         struct netdev_adjacent *lower;
4877
4878         WARN_ON_ONCE(!rcu_read_lock_held());
4879
4880         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4881
4882         if (&lower->list == &dev->adj_list.lower)
4883                 return NULL;
4884
4885         *iter = &lower->list;
4886
4887         return lower->private;
4888 }
4889 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
4890
4891 /**
4892  * netdev_lower_get_next - Get the next device from the lower neighbour
4893  *                         list
4894  * @dev: device
4895  * @iter: list_head ** of the current position
4896  *
4897  * Gets the next netdev_adjacent from the dev's lower neighbour
4898  * list, starting from iter position. The caller must hold RTNL lock or
4899  * its own locking that guarantees that the neighbour lower
4900  * list will remain unchainged.
4901  */
4902 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
4903 {
4904         struct netdev_adjacent *lower;
4905
4906         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
4907
4908         if (&lower->list == &dev->adj_list.lower)
4909                 return NULL;
4910
4911         *iter = &lower->list;
4912
4913         return lower->dev;
4914 }
4915 EXPORT_SYMBOL(netdev_lower_get_next);
4916
4917 /**
4918  * netdev_lower_get_first_private_rcu - Get the first ->private from the
4919  *                                     lower neighbour list, RCU
4920  *                                     variant
4921  * @dev: device
4922  *
4923  * Gets the first netdev_adjacent->private from the dev's lower neighbour
4924  * list. The caller must hold RCU read lock.
4925  */
4926 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
4927 {
4928         struct netdev_adjacent *lower;
4929
4930         lower = list_first_or_null_rcu(&dev->adj_list.lower,
4931                         struct netdev_adjacent, list);
4932         if (lower)
4933                 return lower->private;
4934         return NULL;
4935 }
4936 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
4937
4938 /**
4939  * netdev_master_upper_dev_get_rcu - Get master upper device
4940  * @dev: device
4941  *
4942  * Find a master upper device and return pointer to it or NULL in case
4943  * it's not there. The caller must hold the RCU read lock.
4944  */
4945 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
4946 {
4947         struct netdev_adjacent *upper;
4948
4949         upper = list_first_or_null_rcu(&dev->adj_list.upper,
4950                                        struct netdev_adjacent, list);
4951         if (upper && likely(upper->master))
4952                 return upper->dev;
4953         return NULL;
4954 }
4955 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
4956
4957 static int netdev_adjacent_sysfs_add(struct net_device *dev,
4958                               struct net_device *adj_dev,
4959                               struct list_head *dev_list)
4960 {
4961         char linkname[IFNAMSIZ+7];
4962         sprintf(linkname, dev_list == &dev->adj_list.upper ?
4963                 "upper_%s" : "lower_%s", adj_dev->name);
4964         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
4965                                  linkname);
4966 }
4967 static void netdev_adjacent_sysfs_del(struct net_device *dev,
4968                                char *name,
4969                                struct list_head *dev_list)
4970 {
4971         char linkname[IFNAMSIZ+7];
4972         sprintf(linkname, dev_list == &dev->adj_list.upper ?
4973                 "upper_%s" : "lower_%s", name);
4974         sysfs_remove_link(&(dev->dev.kobj), linkname);
4975 }
4976
4977 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
4978                                                  struct net_device *adj_dev,
4979                                                  struct list_head *dev_list)
4980 {
4981         return (dev_list == &dev->adj_list.upper ||
4982                 dev_list == &dev->adj_list.lower) &&
4983                 net_eq(dev_net(dev), dev_net(adj_dev));
4984 }
4985
4986 static int __netdev_adjacent_dev_insert(struct net_device *dev,
4987                                         struct net_device *adj_dev,
4988                                         struct list_head *dev_list,
4989                                         void *private, bool master)
4990 {
4991         struct netdev_adjacent *adj;
4992         int ret;
4993
4994         adj = __netdev_find_adj(dev, adj_dev, dev_list);
4995
4996         if (adj) {
4997                 adj->ref_nr++;
4998                 return 0;
4999         }
5000
5001         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5002         if (!adj)
5003                 return -ENOMEM;
5004
5005         adj->dev = adj_dev;
5006         adj->master = master;
5007         adj->ref_nr = 1;
5008         adj->private = private;
5009         dev_hold(adj_dev);
5010
5011         pr_debug("dev_hold for %s, because of link added from %s to %s\n",
5012                  adj_dev->name, dev->name, adj_dev->name);
5013
5014         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
5015                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5016                 if (ret)
5017                         goto free_adj;
5018         }
5019
5020         /* Ensure that master link is always the first item in list. */
5021         if (master) {
5022                 ret = sysfs_create_link(&(dev->dev.kobj),
5023                                         &(adj_dev->dev.kobj), "master");
5024                 if (ret)
5025                         goto remove_symlinks;
5026
5027                 list_add_rcu(&adj->list, dev_list);
5028         } else {
5029                 list_add_tail_rcu(&adj->list, dev_list);
5030         }
5031
5032         return 0;
5033
5034 remove_symlinks:
5035         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5036                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5037 free_adj:
5038         kfree(adj);
5039         dev_put(adj_dev);
5040
5041         return ret;
5042 }
5043
5044 static void __netdev_adjacent_dev_remove(struct net_device *dev,
5045                                          struct net_device *adj_dev,
5046                                          struct list_head *dev_list)
5047 {
5048         struct netdev_adjacent *adj;
5049
5050         adj = __netdev_find_adj(dev, adj_dev, dev_list);
5051
5052         if (!adj) {
5053                 pr_err("tried to remove device %s from %s\n",
5054                        dev->name, adj_dev->name);
5055                 BUG();
5056         }
5057
5058         if (adj->ref_nr > 1) {
5059                 pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
5060                          adj->ref_nr-1);
5061                 adj->ref_nr--;
5062                 return;
5063         }
5064
5065         if (adj->master)
5066                 sysfs_remove_link(&(dev->dev.kobj), "master");
5067
5068         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5069                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5070
5071         list_del_rcu(&adj->list);
5072         pr_debug("dev_put for %s, because link removed from %s to %s\n",
5073                  adj_dev->name, dev->name, adj_dev->name);
5074         dev_put(adj_dev);
5075         kfree_rcu(adj, rcu);
5076 }
5077
5078 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5079                                             struct net_device *upper_dev,
5080                                             struct list_head *up_list,
5081                                             struct list_head *down_list,
5082                                             void *private, bool master)
5083 {
5084         int ret;
5085
5086         ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
5087                                            master);
5088         if (ret)
5089                 return ret;
5090
5091         ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
5092                                            false);
5093         if (ret) {
5094                 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5095                 return ret;
5096         }
5097
5098         return 0;
5099 }
5100
5101 static int __netdev_adjacent_dev_link(struct net_device *dev,
5102                                       struct net_device *upper_dev)
5103 {
5104         return __netdev_adjacent_dev_link_lists(dev, upper_dev,
5105                                                 &dev->all_adj_list.upper,
5106                                                 &upper_dev->all_adj_list.lower,
5107                                                 NULL, false);
5108 }
5109
5110 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5111                                                struct net_device *upper_dev,
5112                                                struct list_head *up_list,
5113                                                struct list_head *down_list)
5114 {
5115         __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5116         __netdev_adjacent_dev_remove(upper_dev, dev, down_list);
5117 }
5118
5119 static void __netdev_adjacent_dev_unlink(struct net_device *dev,
5120                                          struct net_device *upper_dev)
5121 {
5122         __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5123                                            &dev->all_adj_list.upper,
5124                                            &upper_dev->all_adj_list.lower);
5125 }
5126
5127 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5128                                                 struct net_device *upper_dev,
5129                                                 void *private, bool master)
5130 {
5131         int ret = __netdev_adjacent_dev_link(dev, upper_dev);
5132
5133         if (ret)
5134                 return ret;
5135
5136         ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
5137                                                &dev->adj_list.upper,
5138                                                &upper_dev->adj_list.lower,
5139                                                private, master);
5140         if (ret) {
5141                 __netdev_adjacent_dev_unlink(dev, upper_dev);
5142                 return ret;
5143         }
5144
5145         return 0;
5146 }
5147
5148 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5149                                                    struct net_device *upper_dev)
5150 {
5151         __netdev_adjacent_dev_unlink(dev, upper_dev);
5152         __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5153                                            &dev->adj_list.upper,
5154                                            &upper_dev->adj_list.lower);
5155 }
5156
5157 static int __netdev_upper_dev_link(struct net_device *dev,
5158                                    struct net_device *upper_dev, bool master,
5159                                    void *private)
5160 {
5161         struct netdev_adjacent *i, *j, *to_i, *to_j;
5162         int ret = 0;
5163
5164         ASSERT_RTNL();
5165
5166         if (dev == upper_dev)
5167                 return -EBUSY;
5168
5169         /* To prevent loops, check if dev is not upper device to upper_dev. */
5170         if (__netdev_find_adj(upper_dev, dev, &upper_dev->all_adj_list.upper))
5171                 return -EBUSY;
5172
5173         if (__netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper))
5174                 return -EEXIST;
5175
5176         if (master && netdev_master_upper_dev_get(dev))
5177                 return -EBUSY;
5178
5179         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, private,
5180                                                    master);
5181         if (ret)
5182                 return ret;
5183
5184         /* Now that we linked these devs, make all the upper_dev's
5185          * all_adj_list.upper visible to every dev's all_adj_list.lower an
5186          * versa, and don't forget the devices itself. All of these
5187          * links are non-neighbours.
5188          */
5189         list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5190                 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5191                         pr_debug("Interlinking %s with %s, non-neighbour\n",
5192                                  i->dev->name, j->dev->name);
5193                         ret = __netdev_adjacent_dev_link(i->dev, j->dev);
5194                         if (ret)
5195                                 goto rollback_mesh;
5196                 }
5197         }
5198
5199         /* add dev to every upper_dev's upper device */
5200         list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5201                 pr_debug("linking %s's upper device %s with %s\n",
5202                          upper_dev->name, i->dev->name, dev->name);
5203                 ret = __netdev_adjacent_dev_link(dev, i->dev);
5204                 if (ret)
5205                         goto rollback_upper_mesh;
5206         }
5207
5208         /* add upper_dev to every dev's lower device */
5209         list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5210                 pr_debug("linking %s's lower device %s with %s\n", dev->name,
5211                          i->dev->name, upper_dev->name);
5212                 ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
5213                 if (ret)
5214                         goto rollback_lower_mesh;
5215         }
5216
5217         call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
5218         return 0;
5219
5220 rollback_lower_mesh:
5221         to_i = i;
5222         list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5223                 if (i == to_i)
5224                         break;
5225                 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5226         }
5227
5228         i = NULL;
5229
5230 rollback_upper_mesh:
5231         to_i = i;
5232         list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5233                 if (i == to_i)
5234                         break;
5235                 __netdev_adjacent_dev_unlink(dev, i->dev);
5236         }
5237
5238         i = j = NULL;
5239
5240 rollback_mesh:
5241         to_i = i;
5242         to_j = j;
5243         list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5244                 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5245                         if (i == to_i && j == to_j)
5246                                 break;
5247                         __netdev_adjacent_dev_unlink(i->dev, j->dev);
5248                 }
5249                 if (i == to_i)
5250                         break;
5251         }
5252
5253         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5254
5255         return ret;
5256 }
5257
5258 /**
5259  * netdev_upper_dev_link - Add a link to the upper device
5260  * @dev: device
5261  * @upper_dev: new upper device
5262  *
5263  * Adds a link to device which is upper to this one. The caller must hold
5264  * the RTNL lock. On a failure a negative errno code is returned.
5265  * On success the reference counts are adjusted and the function
5266  * returns zero.
5267  */
5268 int netdev_upper_dev_link(struct net_device *dev,
5269                           struct net_device *upper_dev)
5270 {
5271         return __netdev_upper_dev_link(dev, upper_dev, false, NULL);
5272 }
5273 EXPORT_SYMBOL(netdev_upper_dev_link);
5274
5275 /**
5276  * netdev_master_upper_dev_link - Add a master link to the upper device
5277  * @dev: device
5278  * @upper_dev: new upper device
5279  *
5280  * Adds a link to device which is upper to this one. In this case, only
5281  * one master upper device can be linked, although other non-master devices
5282  * might be linked as well. The caller must hold the RTNL lock.
5283  * On a failure a negative errno code is returned. On success the reference
5284  * counts are adjusted and the function returns zero.
5285  */
5286 int netdev_master_upper_dev_link(struct net_device *dev,
5287                                  struct net_device *upper_dev)
5288 {
5289         return __netdev_upper_dev_link(dev, upper_dev, true, NULL);
5290 }
5291 EXPORT_SYMBOL(netdev_master_upper_dev_link);
5292
5293 int netdev_master_upper_dev_link_private(struct net_device *dev,
5294                                          struct net_device *upper_dev,
5295                                          void *private)
5296 {
5297         return __netdev_upper_dev_link(dev, upper_dev, true, private);
5298 }
5299 EXPORT_SYMBOL(netdev_master_upper_dev_link_private);
5300
5301 /**
5302  * netdev_upper_dev_unlink - Removes a link to upper device
5303  * @dev: device
5304  * @upper_dev: new upper device
5305  *
5306  * Removes a link to device which is upper to this one. The caller must hold
5307  * the RTNL lock.
5308  */
5309 void netdev_upper_dev_unlink(struct net_device *dev,
5310                              struct net_device *upper_dev)
5311 {
5312         struct netdev_adjacent *i, *j;
5313         ASSERT_RTNL();
5314
5315         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5316
5317         /* Here is the tricky part. We must remove all dev's lower
5318          * devices from all upper_dev's upper devices and vice
5319          * versa, to maintain the graph relationship.
5320          */
5321         list_for_each_entry(i, &dev->all_adj_list.lower, list)
5322                 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5323                         __netdev_adjacent_dev_unlink(i->dev, j->dev);
5324
5325         /* remove also the devices itself from lower/upper device
5326          * list
5327          */
5328         list_for_each_entry(i, &dev->all_adj_list.lower, list)
5329                 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5330
5331         list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5332                 __netdev_adjacent_dev_unlink(dev, i->dev);
5333
5334         call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
5335 }
5336 EXPORT_SYMBOL(netdev_upper_dev_unlink);
5337
5338 /**
5339  * netdev_bonding_info_change - Dispatch event about slave change
5340  * @dev: device
5341  * @bonding_info: info to dispatch
5342  *
5343  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
5344  * The caller must hold the RTNL lock.
5345  */
5346 void netdev_bonding_info_change(struct net_device *dev,
5347                                 struct netdev_bonding_info *bonding_info)
5348 {
5349         struct netdev_notifier_bonding_info     info;
5350
5351         memcpy(&info.bonding_info, bonding_info,
5352                sizeof(struct netdev_bonding_info));
5353         call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
5354                                       &info.info);
5355 }
5356 EXPORT_SYMBOL(netdev_bonding_info_change);
5357
5358 static void netdev_adjacent_add_links(struct net_device *dev)
5359 {
5360         struct netdev_adjacent *iter;
5361
5362         struct net *net = dev_net(dev);
5363
5364         list_for_each_entry(iter, &dev->adj_list.upper, list) {
5365                 if (!net_eq(net,dev_net(iter->dev)))
5366                         continue;
5367                 netdev_adjacent_sysfs_add(iter->dev, dev,
5368                                           &iter->dev->adj_list.lower);
5369                 netdev_adjacent_sysfs_add(dev, iter->dev,
5370                                           &dev->adj_list.upper);
5371         }
5372
5373         list_for_each_entry(iter, &dev->adj_list.lower, list) {
5374                 if (!net_eq(net,dev_net(iter->dev)))
5375                         continue;
5376                 netdev_adjacent_sysfs_add(iter->dev, dev,
5377                                           &iter->dev->adj_list.upper);
5378                 netdev_adjacent_sysfs_add(dev, iter->dev,
5379                                           &dev->adj_list.lower);
5380         }
5381 }
5382
5383 static void netdev_adjacent_del_links(struct net_device *dev)
5384 {
5385         struct netdev_adjacent *iter;
5386
5387         struct net *net = dev_net(dev);
5388
5389         list_for_each_entry(iter, &dev->adj_list.upper, list) {
5390                 if (!net_eq(net,dev_net(iter->dev)))
5391                         continue;
5392                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5393                                           &iter->dev->adj_list.lower);
5394                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5395                                           &dev->adj_list.upper);
5396         }
5397
5398         list_for_each_entry(iter, &dev->adj_list.lower, list) {
5399                 if (!net_eq(net,dev_net(iter->dev)))
5400                         continue;
5401                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5402                                           &iter->dev->adj_list.upper);
5403                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5404                                           &dev->adj_list.lower);
5405         }
5406 }
5407
5408 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
5409 {
5410         struct netdev_adjacent *iter;
5411
5412         struct net *net = dev_net(dev);
5413
5414         list_for_each_entry(iter, &dev->adj_list.upper, list) {
5415                 if (!net_eq(net,dev_net(iter->dev)))
5416                         continue;
5417                 netdev_adjacent_sysfs_del(iter->dev, oldname,
5418                                           &iter->dev->adj_list.lower);
5419                 netdev_adjacent_sysfs_add(iter->dev, dev,
5420                                           &iter->dev->adj_list.lower);
5421         }
5422
5423         list_for_each_entry(iter, &dev->adj_list.lower, list) {
5424                 if (!net_eq(net,dev_net(iter->dev)))
5425                         continue;
5426                 netdev_adjacent_sysfs_del(iter->dev, oldname,
5427                                           &iter->dev->adj_list.upper);
5428                 netdev_adjacent_sysfs_add(iter->dev, dev,
5429                                           &iter->dev->adj_list.upper);
5430         }
5431 }
5432
5433 void *netdev_lower_dev_get_private(struct net_device *dev,
5434                                    struct net_device *lower_dev)
5435 {
5436         struct netdev_adjacent *lower;
5437
5438         if (!lower_dev)
5439                 return NULL;
5440         lower = __netdev_find_adj(dev, lower_dev, &dev->adj_list.lower);
5441         if (!lower)
5442                 return NULL;
5443
5444         return lower->private;
5445 }
5446 EXPORT_SYMBOL(netdev_lower_dev_get_private);
5447
5448
5449 int dev_get_nest_level(struct net_device *dev,
5450                        bool (*type_check)(struct net_device *dev))
5451 {
5452         struct net_device *lower = NULL;
5453         struct list_head *iter;
5454         int max_nest = -1;
5455         int nest;
5456
5457         ASSERT_RTNL();
5458
5459         netdev_for_each_lower_dev(dev, lower, iter) {
5460                 nest = dev_get_nest_level(lower, type_check);
5461                 if (max_nest < nest)
5462                         max_nest = nest;
5463         }
5464
5465         if (type_check(dev))
5466                 max_nest++;
5467
5468         return max_nest;
5469 }
5470 EXPORT_SYMBOL(dev_get_nest_level);
5471
5472 static void dev_change_rx_flags(struct net_device *dev, int flags)
5473 {
5474         const struct net_device_ops *ops = dev->netdev_ops;
5475
5476         if (ops->ndo_change_rx_flags)
5477                 ops->ndo_change_rx_flags(dev, flags);
5478 }
5479
5480 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
5481 {
5482         unsigned int old_flags = dev->flags;
5483         kuid_t uid;
5484         kgid_t gid;
5485
5486         ASSERT_RTNL();
5487
5488         dev->flags |= IFF_PROMISC;
5489         dev->promiscuity += inc;
5490         if (dev->promiscuity == 0) {
5491                 /*
5492                  * Avoid overflow.
5493                  * If inc causes overflow, untouch promisc and return error.
5494                  */
5495                 if (inc < 0)
5496                         dev->flags &= ~IFF_PROMISC;
5497                 else {
5498                         dev->promiscuity -= inc;
5499                         pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
5500                                 dev->name);
5501                         return -EOVERFLOW;
5502                 }
5503         }
5504         if (dev->flags != old_flags) {
5505                 pr_info("device %s %s promiscuous mode\n",
5506                         dev->name,
5507                         dev->flags & IFF_PROMISC ? "entered" : "left");
5508                 if (audit_enabled) {
5509                         current_uid_gid(&uid, &gid);
5510                         audit_log(current->audit_context, GFP_ATOMIC,
5511                                 AUDIT_ANOM_PROMISCUOUS,
5512                                 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
5513                                 dev->name, (dev->flags & IFF_PROMISC),
5514                                 (old_flags & IFF_PROMISC),
5515                                 from_kuid(&init_user_ns, audit_get_loginuid(current)),
5516                                 from_kuid(&init_user_ns, uid),
5517                                 from_kgid(&init_user_ns, gid),
5518                                 audit_get_sessionid(current));
5519                 }
5520
5521                 dev_change_rx_flags(dev, IFF_PROMISC);
5522         }
5523         if (notify)
5524                 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
5525         return 0;
5526 }
5527
5528 /**
5529  *      dev_set_promiscuity     - update promiscuity count on a device
5530  *      @dev: device
5531  *      @inc: modifier
5532  *
5533  *      Add or remove promiscuity from a device. While the count in the device
5534  *      remains above zero the interface remains promiscuous. Once it hits zero
5535  *      the device reverts back to normal filtering operation. A negative inc
5536  *      value is used to drop promiscuity on the device.
5537  *      Return 0 if successful or a negative errno code on error.
5538  */
5539 int dev_set_promiscuity(struct net_device *dev, int inc)
5540 {
5541         unsigned int old_flags = dev->flags;
5542         int err;
5543
5544         err = __dev_set_promiscuity(dev, inc, true);
5545         if (err < 0)
5546                 return err;
5547         if (dev->flags != old_flags)
5548                 dev_set_rx_mode(dev);
5549         return err;
5550 }
5551 EXPORT_SYMBOL(dev_set_promiscuity);
5552
5553 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
5554 {
5555         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
5556
5557         ASSERT_RTNL();
5558
5559         dev->flags |= IFF_ALLMULTI;
5560         dev->allmulti += inc;
5561         if (dev->allmulti == 0) {
5562                 /*
5563                  * Avoid overflow.
5564                  * If inc causes overflow, untouch allmulti and return error.
5565                  */
5566                 if (inc < 0)
5567                         dev->flags &= ~IFF_ALLMULTI;
5568                 else {
5569                         dev->allmulti -= inc;
5570                         pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
5571                                 dev->name);
5572                         return -EOVERFLOW;
5573                 }
5574         }
5575         if (dev->flags ^ old_flags) {
5576                 dev_change_rx_flags(dev, IFF_ALLMULTI);
5577                 dev_set_rx_mode(dev);
5578                 if (notify)
5579                         __dev_notify_flags(dev, old_flags,
5580                                            dev->gflags ^ old_gflags);
5581         }
5582         return 0;
5583 }
5584
5585 /**
5586  *      dev_set_allmulti        - update allmulti count on a device
5587  *      @dev: device
5588  *      @inc: modifier
5589  *
5590  *      Add or remove reception of all multicast frames to a device. While the
5591  *      count in the device remains above zero the interface remains listening
5592  *      to all interfaces. Once it hits zero the device reverts back to normal
5593  *      filtering operation. A negative @inc value is used to drop the counter
5594  *      when releasing a resource needing all multicasts.
5595  *      Return 0 if successful or a negative errno code on error.
5596  */
5597
5598 int dev_set_allmulti(struct net_device *dev, int inc)
5599 {
5600         return __dev_set_allmulti(dev, inc, true);
5601 }
5602 EXPORT_SYMBOL(dev_set_allmulti);
5603
5604 /*
5605  *      Upload unicast and multicast address lists to device and
5606  *      configure RX filtering. When the device doesn't support unicast
5607  *      filtering it is put in promiscuous mode while unicast addresses
5608  *      are present.
5609  */
5610 void __dev_set_rx_mode(struct net_device *dev)
5611 {
5612         const struct net_device_ops *ops = dev->netdev_ops;
5613
5614         /* dev_open will call this function so the list will stay sane. */
5615         if (!(dev->flags&IFF_UP))
5616                 return;
5617
5618         if (!netif_device_present(dev))
5619                 return;
5620
5621         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
5622                 /* Unicast addresses changes may only happen under the rtnl,
5623                  * therefore calling __dev_set_promiscuity here is safe.
5624                  */
5625                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
5626                         __dev_set_promiscuity(dev, 1, false);
5627                         dev->uc_promisc = true;
5628                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
5629                         __dev_set_promiscuity(dev, -1, false);
5630                         dev->uc_promisc = false;
5631                 }
5632         }
5633
5634         if (ops->ndo_set_rx_mode)
5635                 ops->ndo_set_rx_mode(dev);
5636 }
5637
5638 void dev_set_rx_mode(struct net_device *dev)
5639 {
5640         netif_addr_lock_bh(dev);
5641         __dev_set_rx_mode(dev);
5642         netif_addr_unlock_bh(dev);
5643 }
5644
5645 /**
5646  *      dev_get_flags - get flags reported to userspace
5647  *      @dev: device
5648  *
5649  *      Get the combination of flag bits exported through APIs to userspace.
5650  */
5651 unsigned int dev_get_flags(const struct net_device *dev)
5652 {
5653         unsigned int flags;
5654
5655         flags = (dev->flags & ~(IFF_PROMISC |
5656                                 IFF_ALLMULTI |
5657                                 IFF_RUNNING |
5658                                 IFF_LOWER_UP |
5659                                 IFF_DORMANT)) |
5660                 (dev->gflags & (IFF_PROMISC |
5661                                 IFF_ALLMULTI));
5662
5663         if (netif_running(dev)) {
5664                 if (netif_oper_up(dev))
5665                         flags |= IFF_RUNNING;
5666                 if (netif_carrier_ok(dev))
5667                         flags |= IFF_LOWER_UP;
5668                 if (netif_dormant(dev))
5669                         flags |= IFF_DORMANT;
5670         }
5671
5672         return flags;
5673 }
5674 EXPORT_SYMBOL(dev_get_flags);
5675
5676 int __dev_change_flags(struct net_device *dev, unsigned int flags)
5677 {
5678         unsigned int old_flags = dev->flags;
5679         int ret;
5680
5681         ASSERT_RTNL();
5682
5683         /*
5684          *      Set the flags on our device.
5685          */
5686
5687         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
5688                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
5689                                IFF_AUTOMEDIA)) |
5690                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
5691                                     IFF_ALLMULTI));
5692
5693         /*
5694          *      Load in the correct multicast list now the flags have changed.
5695          */
5696
5697         if ((old_flags ^ flags) & IFF_MULTICAST)
5698                 dev_change_rx_flags(dev, IFF_MULTICAST);
5699
5700         dev_set_rx_mode(dev);
5701
5702         /*
5703          *      Have we downed the interface. We handle IFF_UP ourselves
5704          *      according to user attempts to set it, rather than blindly
5705          *      setting it.
5706          */
5707
5708         ret = 0;
5709         if ((old_flags ^ flags) & IFF_UP)
5710                 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
5711
5712         if ((flags ^ dev->gflags) & IFF_PROMISC) {
5713                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
5714                 unsigned int old_flags = dev->flags;
5715
5716                 dev->gflags ^= IFF_PROMISC;
5717
5718                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
5719                         if (dev->flags != old_flags)
5720                                 dev_set_rx_mode(dev);
5721         }
5722
5723         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
5724            is important. Some (broken) drivers set IFF_PROMISC, when
5725            IFF_ALLMULTI is requested not asking us and not reporting.
5726          */
5727         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
5728                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
5729
5730                 dev->gflags ^= IFF_ALLMULTI;
5731                 __dev_set_allmulti(dev, inc, false);
5732         }
5733
5734         return ret;
5735 }
5736
5737 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
5738                         unsigned int gchanges)
5739 {
5740         unsigned int changes = dev->flags ^ old_flags;
5741
5742         if (gchanges)
5743                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
5744
5745         if (changes & IFF_UP) {
5746                 if (dev->flags & IFF_UP)
5747                         call_netdevice_notifiers(NETDEV_UP, dev);
5748                 else
5749                         call_netdevice_notifiers(NETDEV_DOWN, dev);
5750         }
5751
5752         if (dev->flags & IFF_UP &&
5753             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
5754                 struct netdev_notifier_change_info change_info;
5755
5756                 change_info.flags_changed = changes;
5757                 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
5758                                               &change_info.info);
5759         }
5760 }
5761
5762 /**
5763  *      dev_change_flags - change device settings
5764  *      @dev: device
5765  *      @flags: device state flags
5766  *
5767  *      Change settings on device based state flags. The flags are
5768  *      in the userspace exported format.
5769  */
5770 int dev_change_flags(struct net_device *dev, unsigned int flags)
5771 {
5772         int ret;
5773         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
5774
5775         ret = __dev_change_flags(dev, flags);
5776         if (ret < 0)
5777                 return ret;
5778
5779         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
5780         __dev_notify_flags(dev, old_flags, changes);
5781         return ret;
5782 }
5783 EXPORT_SYMBOL(dev_change_flags);
5784
5785 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
5786 {
5787         const struct net_device_ops *ops = dev->netdev_ops;
5788
5789         if (ops->ndo_change_mtu)
5790                 return ops->ndo_change_mtu(dev, new_mtu);
5791
5792         dev->mtu = new_mtu;
5793         return 0;
5794 }
5795
5796 /**
5797  *      dev_set_mtu - Change maximum transfer unit
5798  *      @dev: device
5799  *      @new_mtu: new transfer unit
5800  *
5801  *      Change the maximum transfer size of the network device.
5802  */
5803 int dev_set_mtu(struct net_device *dev, int new_mtu)
5804 {
5805         int err, orig_mtu;
5806
5807         if (new_mtu == dev->mtu)
5808                 return 0;
5809
5810         /*      MTU must be positive.    */
5811         if (new_mtu < 0)
5812                 return -EINVAL;
5813
5814         if (!netif_device_present(dev))
5815                 return -ENODEV;
5816
5817         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
5818         err = notifier_to_errno(err);
5819         if (err)
5820                 return err;
5821
5822         orig_mtu = dev->mtu;
5823         err = __dev_set_mtu(dev, new_mtu);
5824
5825         if (!err) {
5826                 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5827                 err = notifier_to_errno(err);
5828                 if (err) {
5829                         /* setting mtu back and notifying everyone again,
5830                          * so that they have a chance to revert changes.
5831                          */
5832                         __dev_set_mtu(dev, orig_mtu);
5833                         call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5834                 }
5835         }
5836         return err;
5837 }
5838 EXPORT_SYMBOL(dev_set_mtu);
5839
5840 /**
5841  *      dev_set_group - Change group this device belongs to
5842  *      @dev: device
5843  *      @new_group: group this device should belong to
5844  */
5845 void dev_set_group(struct net_device *dev, int new_group)
5846 {
5847         dev->group = new_group;
5848 }
5849 EXPORT_SYMBOL(dev_set_group);
5850
5851 /**
5852  *      dev_set_mac_address - Change Media Access Control Address
5853  *      @dev: device
5854  *      @sa: new address
5855  *
5856  *      Change the hardware (MAC) address of the device
5857  */
5858 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
5859 {
5860         const struct net_device_ops *ops = dev->netdev_ops;
5861         int err;
5862
5863         if (!ops->ndo_set_mac_address)
5864                 return -EOPNOTSUPP;
5865         if (sa->sa_family != dev->type)
5866                 return -EINVAL;
5867         if (!netif_device_present(dev))
5868                 return -ENODEV;
5869         err = ops->ndo_set_mac_address(dev, sa);
5870         if (err)
5871                 return err;
5872         dev->addr_assign_type = NET_ADDR_SET;
5873         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
5874         add_device_randomness(dev->dev_addr, dev->addr_len);
5875         return 0;
5876 }
5877 EXPORT_SYMBOL(dev_set_mac_address);
5878
5879 /**
5880  *      dev_change_carrier - Change device carrier
5881  *      @dev: device
5882  *      @new_carrier: new value
5883  *
5884  *      Change device carrier
5885  */
5886 int dev_change_carrier(struct net_device *dev, bool new_carrier)
5887 {
5888         const struct net_device_ops *ops = dev->netdev_ops;
5889
5890         if (!ops->ndo_change_carrier)
5891                 return -EOPNOTSUPP;
5892         if (!netif_device_present(dev))
5893                 return -ENODEV;
5894         return ops->ndo_change_carrier(dev, new_carrier);
5895 }
5896 EXPORT_SYMBOL(dev_change_carrier);
5897
5898 /**
5899  *      dev_get_phys_port_id - Get device physical port ID
5900  *      @dev: device
5901  *      @ppid: port ID
5902  *
5903  *      Get device physical port ID
5904  */
5905 int dev_get_phys_port_id(struct net_device *dev,
5906                          struct netdev_phys_item_id *ppid)
5907 {
5908         const struct net_device_ops *ops = dev->netdev_ops;
5909
5910         if (!ops->ndo_get_phys_port_id)
5911                 return -EOPNOTSUPP;
5912         return ops->ndo_get_phys_port_id(dev, ppid);
5913 }
5914 EXPORT_SYMBOL(dev_get_phys_port_id);
5915
5916 /**
5917  *      dev_new_index   -       allocate an ifindex
5918  *      @net: the applicable net namespace
5919  *
5920  *      Returns a suitable unique value for a new device interface
5921  *      number.  The caller must hold the rtnl semaphore or the
5922  *      dev_base_lock to be sure it remains unique.
5923  */
5924 static int dev_new_index(struct net *net)
5925 {
5926         int ifindex = net->ifindex;
5927         for (;;) {
5928                 if (++ifindex <= 0)
5929                         ifindex = 1;
5930                 if (!__dev_get_by_index(net, ifindex))
5931                         return net->ifindex = ifindex;
5932         }
5933 }
5934
5935 /* Delayed registration/unregisteration */
5936 static LIST_HEAD(net_todo_list);
5937 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
5938
5939 static void net_set_todo(struct net_device *dev)
5940 {
5941         list_add_tail(&dev->todo_list, &net_todo_list);
5942         dev_net(dev)->dev_unreg_count++;
5943 }
5944
5945 static void rollback_registered_many(struct list_head *head)
5946 {
5947         struct net_device *dev, *tmp;
5948         LIST_HEAD(close_head);
5949
5950         BUG_ON(dev_boot_phase);
5951         ASSERT_RTNL();
5952
5953         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5954                 /* Some devices call without registering
5955                  * for initialization unwind. Remove those
5956                  * devices and proceed with the remaining.
5957                  */
5958                 if (dev->reg_state == NETREG_UNINITIALIZED) {
5959                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
5960                                  dev->name, dev);
5961
5962                         WARN_ON(1);
5963                         list_del(&dev->unreg_list);
5964                         continue;
5965                 }
5966                 dev->dismantle = true;
5967                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
5968         }
5969
5970         /* If device is running, close it first. */
5971         list_for_each_entry(dev, head, unreg_list)
5972                 list_add_tail(&dev->close_list, &close_head);
5973         dev_close_many(&close_head);
5974
5975         list_for_each_entry(dev, head, unreg_list) {
5976                 /* And unlink it from device chain. */
5977                 unlist_netdevice(dev);
5978
5979                 dev->reg_state = NETREG_UNREGISTERING;
5980         }
5981
5982         synchronize_net();
5983
5984         list_for_each_entry(dev, head, unreg_list) {
5985                 struct sk_buff *skb = NULL;
5986
5987                 /* Shutdown queueing discipline. */
5988                 dev_shutdown(dev);
5989
5990
5991                 /* Notify protocols, that we are about to destroy
5992                    this device. They should clean all the things.
5993                 */
5994                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5995
5996                 if (!dev->rtnl_link_ops ||
5997                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5998                         skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
5999                                                      GFP_KERNEL);
6000
6001                 /*
6002                  *      Flush the unicast and multicast chains
6003                  */
6004                 dev_uc_flush(dev);
6005                 dev_mc_flush(dev);
6006
6007                 if (dev->netdev_ops->ndo_uninit)
6008                         dev->netdev_ops->ndo_uninit(dev);
6009
6010                 if (skb)
6011                         rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
6012
6013                 /* Notifier chain MUST detach us all upper devices. */
6014                 WARN_ON(netdev_has_any_upper_dev(dev));
6015
6016                 /* Remove entries from kobject tree */
6017                 netdev_unregister_kobject(dev);
6018 #ifdef CONFIG_XPS
6019                 /* Remove XPS queueing entries */
6020                 netif_reset_xps_queues_gt(dev, 0);
6021 #endif
6022         }
6023
6024         synchronize_net();
6025
6026         list_for_each_entry(dev, head, unreg_list)
6027                 dev_put(dev);
6028 }
6029
6030 static void rollback_registered(struct net_device *dev)
6031 {
6032         LIST_HEAD(single);
6033
6034         list_add(&dev->unreg_list, &single);
6035         rollback_registered_many(&single);
6036         list_del(&single);
6037 }
6038
6039 static netdev_features_t netdev_fix_features(struct net_device *dev,
6040         netdev_features_t features)
6041 {
6042         /* Fix illegal checksum combinations */
6043         if ((features & NETIF_F_HW_CSUM) &&
6044             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6045                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
6046                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6047         }
6048
6049         /* TSO requires that SG is present as well. */
6050         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6051                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
6052                 features &= ~NETIF_F_ALL_TSO;
6053         }
6054
6055         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6056                                         !(features & NETIF_F_IP_CSUM)) {
6057                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6058                 features &= ~NETIF_F_TSO;
6059                 features &= ~NETIF_F_TSO_ECN;
6060         }
6061
6062         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6063                                          !(features & NETIF_F_IPV6_CSUM)) {
6064                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6065                 features &= ~NETIF_F_TSO6;
6066         }
6067
6068         /* TSO ECN requires that TSO is present as well. */
6069         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6070                 features &= ~NETIF_F_TSO_ECN;
6071
6072         /* Software GSO depends on SG. */
6073         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6074                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
6075                 features &= ~NETIF_F_GSO;
6076         }
6077
6078         /* UFO needs SG and checksumming */
6079         if (features & NETIF_F_UFO) {
6080                 /* maybe split UFO into V4 and V6? */
6081                 if (!((features & NETIF_F_GEN_CSUM) ||
6082                     (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
6083                             == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6084                         netdev_dbg(dev,
6085                                 "Dropping NETIF_F_UFO since no checksum offload features.\n");
6086                         features &= ~NETIF_F_UFO;
6087                 }
6088
6089                 if (!(features & NETIF_F_SG)) {
6090                         netdev_dbg(dev,
6091                                 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
6092                         features &= ~NETIF_F_UFO;
6093                 }
6094         }
6095
6096 #ifdef CONFIG_NET_RX_BUSY_POLL
6097         if (dev->netdev_ops->ndo_busy_poll)
6098                 features |= NETIF_F_BUSY_POLL;
6099         else
6100 #endif
6101                 features &= ~NETIF_F_BUSY_POLL;
6102
6103         return features;
6104 }
6105
6106 int __netdev_update_features(struct net_device *dev)
6107 {
6108         netdev_features_t features;
6109         int err = 0;
6110
6111         ASSERT_RTNL();
6112
6113         features = netdev_get_wanted_features(dev);
6114
6115         if (dev->netdev_ops->ndo_fix_features)
6116                 features = dev->netdev_ops->ndo_fix_features(dev, features);
6117
6118         /* driver might be less strict about feature dependencies */
6119         features = netdev_fix_features(dev, features);
6120
6121         if (dev->features == features)
6122                 return 0;
6123
6124         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
6125                 &dev->features, &features);
6126
6127         if (dev->netdev_ops->ndo_set_features)
6128                 err = dev->netdev_ops->ndo_set_features(dev, features);
6129
6130         if (unlikely(err < 0)) {
6131                 netdev_err(dev,
6132                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
6133                         err, &features, &dev->features);
6134                 return -1;
6135         }
6136
6137         if (!err)
6138                 dev->features = features;
6139
6140         return 1;
6141 }
6142
6143 /**
6144  *      netdev_update_features - recalculate device features
6145  *      @dev: the device to check
6146  *
6147  *      Recalculate dev->features set and send notifications if it
6148  *      has changed. Should be called after driver or hardware dependent
6149  *      conditions might have changed that influence the features.
6150  */
6151 void netdev_update_features(struct net_device *dev)
6152 {
6153         if (__netdev_update_features(dev))
6154                 netdev_features_change(dev);
6155 }
6156 EXPORT_SYMBOL(netdev_update_features);
6157
6158 /**
6159  *      netdev_change_features - recalculate device features
6160  *      @dev: the device to check
6161  *
6162  *      Recalculate dev->features set and send notifications even
6163  *      if they have not changed. Should be called instead of
6164  *      netdev_update_features() if also dev->vlan_features might
6165  *      have changed to allow the changes to be propagated to stacked
6166  *      VLAN devices.
6167  */
6168 void netdev_change_features(struct net_device *dev)
6169 {
6170         __netdev_update_features(dev);
6171         netdev_features_change(dev);
6172 }
6173 EXPORT_SYMBOL(netdev_change_features);
6174
6175 /**
6176  *      netif_stacked_transfer_operstate -      transfer operstate
6177  *      @rootdev: the root or lower level device to transfer state from
6178  *      @dev: the device to transfer operstate to
6179  *
6180  *      Transfer operational state from root to device. This is normally
6181  *      called when a stacking relationship exists between the root
6182  *      device and the device(a leaf device).
6183  */
6184 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
6185                                         struct net_device *dev)
6186 {
6187         if (rootdev->operstate == IF_OPER_DORMANT)
6188                 netif_dormant_on(dev);
6189         else
6190                 netif_dormant_off(dev);
6191
6192         if (netif_carrier_ok(rootdev)) {
6193                 if (!netif_carrier_ok(dev))
6194                         netif_carrier_on(dev);
6195         } else {
6196                 if (netif_carrier_ok(dev))
6197                         netif_carrier_off(dev);
6198         }
6199 }
6200 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
6201
6202 #ifdef CONFIG_SYSFS
6203 static int netif_alloc_rx_queues(struct net_device *dev)
6204 {
6205         unsigned int i, count = dev->num_rx_queues;
6206         struct netdev_rx_queue *rx;
6207         size_t sz = count * sizeof(*rx);
6208
6209         BUG_ON(count < 1);
6210
6211         rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6212         if (!rx) {
6213                 rx = vzalloc(sz);
6214                 if (!rx)
6215                         return -ENOMEM;
6216         }
6217         dev->_rx = rx;
6218
6219         for (i = 0; i < count; i++)
6220                 rx[i].dev = dev;
6221         return 0;
6222 }
6223 #endif
6224
6225 static void netdev_init_one_queue(struct net_device *dev,
6226                                   struct netdev_queue *queue, void *_unused)
6227 {
6228         /* Initialize queue lock */
6229         spin_lock_init(&queue->_xmit_lock);
6230         netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
6231         queue->xmit_lock_owner = -1;
6232         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
6233         queue->dev = dev;
6234 #ifdef CONFIG_BQL
6235         dql_init(&queue->dql, HZ);
6236 #endif
6237 }
6238
6239 static void netif_free_tx_queues(struct net_device *dev)
6240 {
6241         kvfree(dev->_tx);
6242 }
6243
6244 static int netif_alloc_netdev_queues(struct net_device *dev)
6245 {
6246         unsigned int count = dev->num_tx_queues;
6247         struct netdev_queue *tx;
6248         size_t sz = count * sizeof(*tx);
6249
6250         BUG_ON(count < 1 || count > 0xffff);
6251
6252         tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6253         if (!tx) {
6254                 tx = vzalloc(sz);
6255                 if (!tx)
6256                         return -ENOMEM;
6257         }
6258         dev->_tx = tx;
6259
6260         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
6261         spin_lock_init(&dev->tx_global_lock);
6262
6263         return 0;
6264 }
6265
6266 /**
6267  *      register_netdevice      - register a network device
6268  *      @dev: device to register
6269  *
6270  *      Take a completed network device structure and add it to the kernel
6271  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6272  *      chain. 0 is returned on success. A negative errno code is returned
6273  *      on a failure to set up the device, or if the name is a duplicate.
6274  *
6275  *      Callers must hold the rtnl semaphore. You may want
6276  *      register_netdev() instead of this.
6277  *
6278  *      BUGS:
6279  *      The locking appears insufficient to guarantee two parallel registers
6280  *      will not get the same name.
6281  */
6282
6283 int register_netdevice(struct net_device *dev)
6284 {
6285         int ret;
6286         struct net *net = dev_net(dev);
6287
6288         BUG_ON(dev_boot_phase);
6289         ASSERT_RTNL();
6290
6291         might_sleep();
6292
6293         /* When net_device's are persistent, this will be fatal. */
6294         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
6295         BUG_ON(!net);
6296
6297         spin_lock_init(&dev->addr_list_lock);
6298         netdev_set_addr_lockdep_class(dev);
6299
6300         dev->iflink = -1;
6301
6302         ret = dev_get_valid_name(net, dev, dev->name);
6303         if (ret < 0)
6304                 goto out;
6305
6306         /* Init, if this function is available */
6307         if (dev->netdev_ops->ndo_init) {
6308                 ret = dev->netdev_ops->ndo_init(dev);
6309                 if (ret) {
6310                         if (ret > 0)
6311                                 ret = -EIO;
6312                         goto out;
6313                 }
6314         }
6315
6316         if (((dev->hw_features | dev->features) &
6317              NETIF_F_HW_VLAN_CTAG_FILTER) &&
6318             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
6319              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
6320                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
6321                 ret = -EINVAL;
6322                 goto err_uninit;
6323         }
6324
6325         ret = -EBUSY;
6326         if (!dev->ifindex)
6327                 dev->ifindex = dev_new_index(net);
6328         else if (__dev_get_by_index(net, dev->ifindex))
6329                 goto err_uninit;
6330
6331         if (dev->iflink == -1)
6332                 dev->iflink = dev->ifindex;
6333
6334         /* Transfer changeable features to wanted_features and enable
6335          * software offloads (GSO and GRO).
6336          */
6337         dev->hw_features |= NETIF_F_SOFT_FEATURES;
6338         dev->features |= NETIF_F_SOFT_FEATURES;
6339         dev->wanted_features = dev->features & dev->hw_features;
6340
6341         if (!(dev->flags & IFF_LOOPBACK)) {
6342                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
6343         }
6344
6345         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
6346          */
6347         dev->vlan_features |= NETIF_F_HIGHDMA;
6348
6349         /* Make NETIF_F_SG inheritable to tunnel devices.
6350          */
6351         dev->hw_enc_features |= NETIF_F_SG;
6352
6353         /* Make NETIF_F_SG inheritable to MPLS.
6354          */
6355         dev->mpls_features |= NETIF_F_SG;
6356
6357         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
6358         ret = notifier_to_errno(ret);
6359         if (ret)
6360                 goto err_uninit;
6361
6362         ret = netdev_register_kobject(dev);
6363         if (ret)
6364                 goto err_uninit;
6365         dev->reg_state = NETREG_REGISTERED;
6366
6367         __netdev_update_features(dev);
6368
6369         /*
6370          *      Default initial state at registry is that the
6371          *      device is present.
6372          */
6373
6374         set_bit(__LINK_STATE_PRESENT, &dev->state);
6375
6376         linkwatch_init_dev(dev);
6377
6378         dev_init_scheduler(dev);
6379         dev_hold(dev);
6380         list_netdevice(dev);
6381         add_device_randomness(dev->dev_addr, dev->addr_len);
6382
6383         /* If the device has permanent device address, driver should
6384          * set dev_addr and also addr_assign_type should be set to
6385          * NET_ADDR_PERM (default value).
6386          */
6387         if (dev->addr_assign_type == NET_ADDR_PERM)
6388                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
6389
6390         /* Notify protocols, that a new device appeared. */
6391         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
6392         ret = notifier_to_errno(ret);
6393         if (ret) {
6394                 rollback_registered(dev);
6395                 dev->reg_state = NETREG_UNREGISTERED;
6396         }
6397         /*
6398          *      Prevent userspace races by waiting until the network
6399          *      device is fully setup before sending notifications.
6400          */
6401         if (!dev->rtnl_link_ops ||
6402             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6403                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
6404
6405 out:
6406         return ret;
6407
6408 err_uninit:
6409         if (dev->netdev_ops->ndo_uninit)
6410                 dev->netdev_ops->ndo_uninit(dev);
6411         goto out;
6412 }
6413 EXPORT_SYMBOL(register_netdevice);
6414
6415 /**
6416  *      init_dummy_netdev       - init a dummy network device for NAPI
6417  *      @dev: device to init
6418  *
6419  *      This takes a network device structure and initialize the minimum
6420  *      amount of fields so it can be used to schedule NAPI polls without
6421  *      registering a full blown interface. This is to be used by drivers
6422  *      that need to tie several hardware interfaces to a single NAPI
6423  *      poll scheduler due to HW limitations.
6424  */
6425 int init_dummy_netdev(struct net_device *dev)
6426 {
6427         /* Clear everything. Note we don't initialize spinlocks
6428          * are they aren't supposed to be taken by any of the
6429          * NAPI code and this dummy netdev is supposed to be
6430          * only ever used for NAPI polls
6431          */
6432         memset(dev, 0, sizeof(struct net_device));
6433
6434         /* make sure we BUG if trying to hit standard
6435          * register/unregister code path
6436          */
6437         dev->reg_state = NETREG_DUMMY;
6438
6439         /* NAPI wants this */
6440         INIT_LIST_HEAD(&dev->napi_list);
6441
6442         /* a dummy interface is started by default */
6443         set_bit(__LINK_STATE_PRESENT, &dev->state);
6444         set_bit(__LINK_STATE_START, &dev->state);
6445
6446         /* Note : We dont allocate pcpu_refcnt for dummy devices,
6447          * because users of this 'device' dont need to change
6448          * its refcount.
6449          */
6450
6451         return 0;
6452 }
6453 EXPORT_SYMBOL_GPL(init_dummy_netdev);
6454
6455
6456 /**
6457  *      register_netdev - register a network device
6458  *      @dev: device to register
6459  *
6460  *      Take a completed network device structure and add it to the kernel
6461  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6462  *      chain. 0 is returned on success. A negative errno code is returned
6463  *      on a failure to set up the device, or if the name is a duplicate.
6464  *
6465  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
6466  *      and expands the device name if you passed a format string to
6467  *      alloc_netdev.
6468  */
6469 int register_netdev(struct net_device *dev)
6470 {
6471         int err;
6472
6473         rtnl_lock();
6474         err = register_netdevice(dev);
6475         rtnl_unlock();
6476         return err;
6477 }
6478 EXPORT_SYMBOL(register_netdev);
6479
6480 int netdev_refcnt_read(const struct net_device *dev)
6481 {
6482         int i, refcnt = 0;
6483
6484         for_each_possible_cpu(i)
6485                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
6486         return refcnt;
6487 }
6488 EXPORT_SYMBOL(netdev_refcnt_read);
6489
6490 /**
6491  * netdev_wait_allrefs - wait until all references are gone.
6492  * @dev: target net_device
6493  *
6494  * This is called when unregistering network devices.
6495  *
6496  * Any protocol or device that holds a reference should register
6497  * for netdevice notification, and cleanup and put back the
6498  * reference if they receive an UNREGISTER event.
6499  * We can get stuck here if buggy protocols don't correctly
6500  * call dev_put.
6501  */
6502 static void netdev_wait_allrefs(struct net_device *dev)
6503 {
6504         unsigned long rebroadcast_time, warning_time;
6505         int refcnt;
6506
6507         linkwatch_forget_dev(dev);
6508
6509         rebroadcast_time = warning_time = jiffies;
6510         refcnt = netdev_refcnt_read(dev);
6511
6512         while (refcnt != 0) {
6513                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6514                         rtnl_lock();
6515
6516                         /* Rebroadcast unregister notification */
6517                         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6518
6519                         __rtnl_unlock();
6520                         rcu_barrier();
6521                         rtnl_lock();
6522
6523                         call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6524                         if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
6525                                      &dev->state)) {
6526                                 /* We must not have linkwatch events
6527                                  * pending on unregister. If this
6528                                  * happens, we simply run the queue
6529                                  * unscheduled, resulting in a noop
6530                                  * for this device.
6531                                  */
6532                                 linkwatch_run_queue();
6533                         }
6534
6535                         __rtnl_unlock();
6536
6537                         rebroadcast_time = jiffies;
6538                 }
6539
6540                 msleep(250);
6541
6542                 refcnt = netdev_refcnt_read(dev);
6543
6544                 if (time_after(jiffies, warning_time + 10 * HZ)) {
6545                         pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
6546                                  dev->name, refcnt);
6547                         warning_time = jiffies;
6548                 }
6549         }
6550 }
6551
6552 /* The sequence is:
6553  *
6554  *      rtnl_lock();
6555  *      ...
6556  *      register_netdevice(x1);
6557  *      register_netdevice(x2);
6558  *      ...
6559  *      unregister_netdevice(y1);
6560  *      unregister_netdevice(y2);
6561  *      ...
6562  *      rtnl_unlock();
6563  *      free_netdev(y1);
6564  *      free_netdev(y2);
6565  *
6566  * We are invoked by rtnl_unlock().
6567  * This allows us to deal with problems:
6568  * 1) We can delete sysfs objects which invoke hotplug
6569  *    without deadlocking with linkwatch via keventd.
6570  * 2) Since we run with the RTNL semaphore not held, we can sleep
6571  *    safely in order to wait for the netdev refcnt to drop to zero.
6572  *
6573  * We must not return until all unregister events added during
6574  * the interval the lock was held have been completed.
6575  */
6576 void netdev_run_todo(void)
6577 {
6578         struct list_head list;
6579
6580         /* Snapshot list, allow later requests */
6581         list_replace_init(&net_todo_list, &list);
6582
6583         __rtnl_unlock();
6584
6585
6586         /* Wait for rcu callbacks to finish before next phase */
6587         if (!list_empty(&list))
6588                 rcu_barrier();
6589
6590         while (!list_empty(&list)) {
6591                 struct net_device *dev
6592                         = list_first_entry(&list, struct net_device, todo_list);
6593                 list_del(&dev->todo_list);
6594
6595                 rtnl_lock();
6596                 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6597                 __rtnl_unlock();
6598
6599                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
6600                         pr_err("network todo '%s' but state %d\n",
6601                                dev->name, dev->reg_state);
6602                         dump_stack();
6603                         continue;
6604                 }
6605
6606                 dev->reg_state = NETREG_UNREGISTERED;
6607
6608                 on_each_cpu(flush_backlog, dev, 1);
6609
6610                 netdev_wait_allrefs(dev);
6611
6612                 /* paranoia */
6613                 BUG_ON(netdev_refcnt_read(dev));
6614                 BUG_ON(!list_empty(&dev->ptype_all));
6615                 BUG_ON(!list_empty(&dev->ptype_specific));
6616                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
6617                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
6618                 WARN_ON(dev->dn_ptr);
6619
6620                 if (dev->destructor)
6621                         dev->destructor(dev);
6622
6623                 /* Report a network device has been unregistered */
6624                 rtnl_lock();
6625                 dev_net(dev)->dev_unreg_count--;
6626                 __rtnl_unlock();
6627                 wake_up(&netdev_unregistering_wq);
6628
6629                 /* Free network device */
6630                 kobject_put(&dev->dev.kobj);
6631         }
6632 }
6633
6634 /* Convert net_device_stats to rtnl_link_stats64.  They have the same
6635  * fields in the same order, with only the type differing.
6636  */
6637 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
6638                              const struct net_device_stats *netdev_stats)
6639 {
6640 #if BITS_PER_LONG == 64
6641         BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
6642         memcpy(stats64, netdev_stats, sizeof(*stats64));
6643 #else
6644         size_t i, n = sizeof(*stats64) / sizeof(u64);
6645         const unsigned long *src = (const unsigned long *)netdev_stats;
6646         u64 *dst = (u64 *)stats64;
6647
6648         BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
6649                      sizeof(*stats64) / sizeof(u64));
6650         for (i = 0; i < n; i++)
6651                 dst[i] = src[i];
6652 #endif
6653 }
6654 EXPORT_SYMBOL(netdev_stats_to_stats64);
6655
6656 /**
6657  *      dev_get_stats   - get network device statistics
6658  *      @dev: device to get statistics from
6659  *      @storage: place to store stats
6660  *
6661  *      Get network statistics from device. Return @storage.
6662  *      The device driver may provide its own method by setting
6663  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
6664  *      otherwise the internal statistics structure is used.
6665  */
6666 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
6667                                         struct rtnl_link_stats64 *storage)
6668 {
6669         const struct net_device_ops *ops = dev->netdev_ops;
6670
6671         if (ops->ndo_get_stats64) {
6672                 memset(storage, 0, sizeof(*storage));
6673                 ops->ndo_get_stats64(dev, storage);
6674         } else if (ops->ndo_get_stats) {
6675                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
6676         } else {
6677                 netdev_stats_to_stats64(storage, &dev->stats);
6678         }
6679         storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
6680         storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
6681         return storage;
6682 }
6683 EXPORT_SYMBOL(dev_get_stats);
6684
6685 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
6686 {
6687         struct netdev_queue *queue = dev_ingress_queue(dev);
6688
6689 #ifdef CONFIG_NET_CLS_ACT
6690         if (queue)
6691                 return queue;
6692         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
6693         if (!queue)
6694                 return NULL;
6695         netdev_init_one_queue(dev, queue, NULL);
6696         RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
6697         queue->qdisc_sleeping = &noop_qdisc;
6698         rcu_assign_pointer(dev->ingress_queue, queue);
6699 #endif
6700         return queue;
6701 }
6702
6703 static const struct ethtool_ops default_ethtool_ops;
6704
6705 void netdev_set_default_ethtool_ops(struct net_device *dev,
6706                                     const struct ethtool_ops *ops)
6707 {
6708         if (dev->ethtool_ops == &default_ethtool_ops)
6709                 dev->ethtool_ops = ops;
6710 }
6711 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
6712
6713 void netdev_freemem(struct net_device *dev)
6714 {
6715         char *addr = (char *)dev - dev->padded;
6716
6717         kvfree(addr);
6718 }
6719
6720 /**
6721  *      alloc_netdev_mqs - allocate network device
6722  *      @sizeof_priv:           size of private data to allocate space for
6723  *      @name:                  device name format string
6724  *      @name_assign_type:      origin of device name
6725  *      @setup:                 callback to initialize device
6726  *      @txqs:                  the number of TX subqueues to allocate
6727  *      @rxqs:                  the number of RX subqueues to allocate
6728  *
6729  *      Allocates a struct net_device with private data area for driver use
6730  *      and performs basic initialization.  Also allocates subqueue structs
6731  *      for each queue on the device.
6732  */
6733 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
6734                 unsigned char name_assign_type,
6735                 void (*setup)(struct net_device *),
6736                 unsigned int txqs, unsigned int rxqs)
6737 {
6738         struct net_device *dev;
6739         size_t alloc_size;
6740         struct net_device *p;
6741
6742         BUG_ON(strlen(name) >= sizeof(dev->name));
6743
6744         if (txqs < 1) {
6745                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
6746                 return NULL;
6747         }
6748
6749 #ifdef CONFIG_SYSFS
6750         if (rxqs < 1) {
6751                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
6752                 return NULL;
6753         }
6754 #endif
6755
6756         alloc_size = sizeof(struct net_device);
6757         if (sizeof_priv) {
6758                 /* ensure 32-byte alignment of private area */
6759                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
6760                 alloc_size += sizeof_priv;
6761         }
6762         /* ensure 32-byte alignment of whole construct */
6763         alloc_size += NETDEV_ALIGN - 1;
6764
6765         p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6766         if (!p)
6767                 p = vzalloc(alloc_size);
6768         if (!p)
6769                 return NULL;
6770
6771         dev = PTR_ALIGN(p, NETDEV_ALIGN);
6772         dev->padded = (char *)dev - (char *)p;
6773
6774         dev->pcpu_refcnt = alloc_percpu(int);
6775         if (!dev->pcpu_refcnt)
6776                 goto free_dev;
6777
6778         if (dev_addr_init(dev))
6779                 goto free_pcpu;
6780
6781         dev_mc_init(dev);
6782         dev_uc_init(dev);
6783
6784         dev_net_set(dev, &init_net);
6785
6786         dev->gso_max_size = GSO_MAX_SIZE;
6787         dev->gso_max_segs = GSO_MAX_SEGS;
6788         dev->gso_min_segs = 0;
6789
6790         INIT_LIST_HEAD(&dev->napi_list);
6791         INIT_LIST_HEAD(&dev->unreg_list);
6792         INIT_LIST_HEAD(&dev->close_list);
6793         INIT_LIST_HEAD(&dev->link_watch_list);
6794         INIT_LIST_HEAD(&dev->adj_list.upper);
6795         INIT_LIST_HEAD(&dev->adj_list.lower);
6796         INIT_LIST_HEAD(&dev->all_adj_list.upper);
6797         INIT_LIST_HEAD(&dev->all_adj_list.lower);
6798         INIT_LIST_HEAD(&dev->ptype_all);
6799         INIT_LIST_HEAD(&dev->ptype_specific);
6800         dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
6801         setup(dev);
6802
6803         dev->num_tx_queues = txqs;
6804         dev->real_num_tx_queues = txqs;
6805         if (netif_alloc_netdev_queues(dev))
6806                 goto free_all;
6807
6808 #ifdef CONFIG_SYSFS
6809         dev->num_rx_queues = rxqs;
6810         dev->real_num_rx_queues = rxqs;
6811         if (netif_alloc_rx_queues(dev))
6812                 goto free_all;
6813 #endif
6814
6815         strcpy(dev->name, name);
6816         dev->name_assign_type = name_assign_type;
6817         dev->group = INIT_NETDEV_GROUP;
6818         if (!dev->ethtool_ops)
6819                 dev->ethtool_ops = &default_ethtool_ops;
6820         return dev;
6821
6822 free_all:
6823         free_netdev(dev);
6824         return NULL;
6825
6826 free_pcpu:
6827         free_percpu(dev->pcpu_refcnt);
6828 free_dev:
6829         netdev_freemem(dev);
6830         return NULL;
6831 }
6832 EXPORT_SYMBOL(alloc_netdev_mqs);
6833
6834 /**
6835  *      free_netdev - free network device
6836  *      @dev: device
6837  *
6838  *      This function does the last stage of destroying an allocated device
6839  *      interface. The reference to the device object is released.
6840  *      If this is the last reference then it will be freed.
6841  */
6842 void free_netdev(struct net_device *dev)
6843 {
6844         struct napi_struct *p, *n;
6845
6846         release_net(dev_net(dev));
6847
6848         netif_free_tx_queues(dev);
6849 #ifdef CONFIG_SYSFS
6850         kvfree(dev->_rx);
6851 #endif
6852
6853         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
6854
6855         /* Flush device addresses */
6856         dev_addr_flush(dev);
6857
6858         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
6859                 netif_napi_del(p);
6860
6861         free_percpu(dev->pcpu_refcnt);
6862         dev->pcpu_refcnt = NULL;
6863
6864         /*  Compatibility with error handling in drivers */
6865         if (dev->reg_state == NETREG_UNINITIALIZED) {
6866                 netdev_freemem(dev);
6867                 return;
6868         }
6869
6870         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
6871         dev->reg_state = NETREG_RELEASED;
6872
6873         /* will free via device release */
6874         put_device(&dev->dev);
6875 }
6876 EXPORT_SYMBOL(free_netdev);
6877
6878 /**
6879  *      synchronize_net -  Synchronize with packet receive processing
6880  *
6881  *      Wait for packets currently being received to be done.
6882  *      Does not block later packets from starting.
6883  */
6884 void synchronize_net(void)
6885 {
6886         might_sleep();
6887         if (rtnl_is_locked())
6888                 synchronize_rcu_expedited();
6889         else
6890                 synchronize_rcu();
6891 }
6892 EXPORT_SYMBOL(synchronize_net);
6893
6894 /**
6895  *      unregister_netdevice_queue - remove device from the kernel
6896  *      @dev: device
6897  *      @head: list
6898  *
6899  *      This function shuts down a device interface and removes it
6900  *      from the kernel tables.
6901  *      If head not NULL, device is queued to be unregistered later.
6902  *
6903  *      Callers must hold the rtnl semaphore.  You may want
6904  *      unregister_netdev() instead of this.
6905  */
6906
6907 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
6908 {
6909         ASSERT_RTNL();
6910
6911         if (head) {
6912                 list_move_tail(&dev->unreg_list, head);
6913         } else {
6914                 rollback_registered(dev);
6915                 /* Finish processing unregister after unlock */
6916                 net_set_todo(dev);
6917         }
6918 }
6919 EXPORT_SYMBOL(unregister_netdevice_queue);
6920
6921 /**
6922  *      unregister_netdevice_many - unregister many devices
6923  *      @head: list of devices
6924  *
6925  *  Note: As most callers use a stack allocated list_head,
6926  *  we force a list_del() to make sure stack wont be corrupted later.
6927  */
6928 void unregister_netdevice_many(struct list_head *head)
6929 {
6930         struct net_device *dev;
6931
6932         if (!list_empty(head)) {
6933                 rollback_registered_many(head);
6934                 list_for_each_entry(dev, head, unreg_list)
6935                         net_set_todo(dev);
6936                 list_del(head);
6937         }
6938 }
6939 EXPORT_SYMBOL(unregister_netdevice_many);
6940
6941 /**
6942  *      unregister_netdev - remove device from the kernel
6943  *      @dev: device
6944  *
6945  *      This function shuts down a device interface and removes it
6946  *      from the kernel tables.
6947  *
6948  *      This is just a wrapper for unregister_netdevice that takes
6949  *      the rtnl semaphore.  In general you want to use this and not
6950  *      unregister_netdevice.
6951  */
6952 void unregister_netdev(struct net_device *dev)
6953 {
6954         rtnl_lock();
6955         unregister_netdevice(dev);
6956         rtnl_unlock();
6957 }
6958 EXPORT_SYMBOL(unregister_netdev);
6959
6960 /**
6961  *      dev_change_net_namespace - move device to different nethost namespace
6962  *      @dev: device
6963  *      @net: network namespace
6964  *      @pat: If not NULL name pattern to try if the current device name
6965  *            is already taken in the destination network namespace.
6966  *
6967  *      This function shuts down a device interface and moves it
6968  *      to a new network namespace. On success 0 is returned, on
6969  *      a failure a netagive errno code is returned.
6970  *
6971  *      Callers must hold the rtnl semaphore.
6972  */
6973
6974 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
6975 {
6976         int err;
6977
6978         ASSERT_RTNL();
6979
6980         /* Don't allow namespace local devices to be moved. */
6981         err = -EINVAL;
6982         if (dev->features & NETIF_F_NETNS_LOCAL)
6983                 goto out;
6984
6985         /* Ensure the device has been registrered */
6986         if (dev->reg_state != NETREG_REGISTERED)
6987                 goto out;
6988
6989         /* Get out if there is nothing todo */
6990         err = 0;
6991         if (net_eq(dev_net(dev), net))
6992                 goto out;
6993
6994         /* Pick the destination device name, and ensure
6995          * we can use it in the destination network namespace.
6996          */
6997         err = -EEXIST;
6998         if (__dev_get_by_name(net, dev->name)) {
6999                 /* We get here if we can't use the current device name */
7000                 if (!pat)
7001                         goto out;
7002                 if (dev_get_valid_name(net, dev, pat) < 0)
7003                         goto out;
7004         }
7005
7006         /*
7007          * And now a mini version of register_netdevice unregister_netdevice.
7008          */
7009
7010         /* If device is running close it first. */
7011         dev_close(dev);
7012
7013         /* And unlink it from device chain */
7014         err = -ENODEV;
7015         unlist_netdevice(dev);
7016
7017         synchronize_net();
7018
7019         /* Shutdown queueing discipline. */
7020         dev_shutdown(dev);
7021
7022         /* Notify protocols, that we are about to destroy
7023            this device. They should clean all the things.
7024
7025            Note that dev->reg_state stays at NETREG_REGISTERED.
7026            This is wanted because this way 8021q and macvlan know
7027            the device is just moving and can keep their slaves up.
7028         */
7029         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7030         rcu_barrier();
7031         call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7032         rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
7033
7034         /*
7035          *      Flush the unicast and multicast chains
7036          */
7037         dev_uc_flush(dev);
7038         dev_mc_flush(dev);
7039
7040         /* Send a netdev-removed uevent to the old namespace */
7041         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
7042         netdev_adjacent_del_links(dev);
7043
7044         /* Actually switch the network namespace */
7045         dev_net_set(dev, net);
7046
7047         /* If there is an ifindex conflict assign a new one */
7048         if (__dev_get_by_index(net, dev->ifindex)) {
7049                 int iflink = (dev->iflink == dev->ifindex);
7050                 dev->ifindex = dev_new_index(net);
7051                 if (iflink)
7052                         dev->iflink = dev->ifindex;
7053         }
7054
7055         /* Send a netdev-add uevent to the new namespace */
7056         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
7057         netdev_adjacent_add_links(dev);
7058
7059         /* Fixup kobjects */
7060         err = device_rename(&dev->dev, dev->name);
7061         WARN_ON(err);
7062
7063         /* Add the device back in the hashes */
7064         list_netdevice(dev);
7065
7066         /* Notify protocols, that a new device appeared. */
7067         call_netdevice_notifiers(NETDEV_REGISTER, dev);
7068
7069         /*
7070          *      Prevent userspace races by waiting until the network
7071          *      device is fully setup before sending notifications.
7072          */
7073         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7074
7075         synchronize_net();
7076         err = 0;
7077 out:
7078         return err;
7079 }
7080 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
7081
7082 static int dev_cpu_callback(struct notifier_block *nfb,
7083                             unsigned long action,
7084                             void *ocpu)
7085 {
7086         struct sk_buff **list_skb;
7087         struct sk_buff *skb;
7088         unsigned int cpu, oldcpu = (unsigned long)ocpu;
7089         struct softnet_data *sd, *oldsd;
7090
7091         if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
7092                 return NOTIFY_OK;
7093
7094         local_irq_disable();
7095         cpu = smp_processor_id();
7096         sd = &per_cpu(softnet_data, cpu);
7097         oldsd = &per_cpu(softnet_data, oldcpu);
7098
7099         /* Find end of our completion_queue. */
7100         list_skb = &sd->completion_queue;
7101         while (*list_skb)
7102                 list_skb = &(*list_skb)->next;
7103         /* Append completion queue from offline CPU. */
7104         *list_skb = oldsd->completion_queue;
7105         oldsd->completion_queue = NULL;
7106
7107         /* Append output queue from offline CPU. */
7108         if (oldsd->output_queue) {
7109                 *sd->output_queue_tailp = oldsd->output_queue;
7110                 sd->output_queue_tailp = oldsd->output_queue_tailp;
7111                 oldsd->output_queue = NULL;
7112                 oldsd->output_queue_tailp = &oldsd->output_queue;
7113         }
7114         /* Append NAPI poll list from offline CPU, with one exception :
7115          * process_backlog() must be called by cpu owning percpu backlog.
7116          * We properly handle process_queue & input_pkt_queue later.
7117          */
7118         while (!list_empty(&oldsd->poll_list)) {
7119                 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
7120                                                             struct napi_struct,
7121                                                             poll_list);
7122
7123                 list_del_init(&napi->poll_list);
7124                 if (napi->poll == process_backlog)
7125                         napi->state = 0;
7126                 else
7127                         ____napi_schedule(sd, napi);
7128         }
7129
7130         raise_softirq_irqoff(NET_TX_SOFTIRQ);
7131         local_irq_enable();
7132
7133         /* Process offline CPU's input_pkt_queue */
7134         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
7135                 netif_rx_ni(skb);
7136                 input_queue_head_incr(oldsd);
7137         }
7138         while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
7139                 netif_rx_ni(skb);
7140                 input_queue_head_incr(oldsd);
7141         }
7142
7143         return NOTIFY_OK;
7144 }
7145
7146
7147 /**
7148  *      netdev_increment_features - increment feature set by one
7149  *      @all: current feature set
7150  *      @one: new feature set
7151  *      @mask: mask feature set
7152  *
7153  *      Computes a new feature set after adding a device with feature set
7154  *      @one to the master device with current feature set @all.  Will not
7155  *      enable anything that is off in @mask. Returns the new feature set.
7156  */
7157 netdev_features_t netdev_increment_features(netdev_features_t all,
7158         netdev_features_t one, netdev_features_t mask)
7159 {
7160         if (mask & NETIF_F_GEN_CSUM)
7161                 mask |= NETIF_F_ALL_CSUM;
7162         mask |= NETIF_F_VLAN_CHALLENGED;
7163
7164         all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
7165         all &= one | ~NETIF_F_ALL_FOR_ALL;
7166
7167         /* If one device supports hw checksumming, set for all. */
7168         if (all & NETIF_F_GEN_CSUM)
7169                 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
7170
7171         return all;
7172 }
7173 EXPORT_SYMBOL(netdev_increment_features);
7174
7175 static struct hlist_head * __net_init netdev_create_hash(void)
7176 {
7177         int i;
7178         struct hlist_head *hash;
7179
7180         hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
7181         if (hash != NULL)
7182                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
7183                         INIT_HLIST_HEAD(&hash[i]);
7184
7185         return hash;
7186 }
7187
7188 /* Initialize per network namespace state */
7189 static int __net_init netdev_init(struct net *net)
7190 {
7191         if (net != &init_net)
7192                 INIT_LIST_HEAD(&net->dev_base_head);
7193
7194         net->dev_name_head = netdev_create_hash();
7195         if (net->dev_name_head == NULL)
7196                 goto err_name;
7197
7198         net->dev_index_head = netdev_create_hash();
7199         if (net->dev_index_head == NULL)
7200                 goto err_idx;
7201
7202         return 0;
7203
7204 err_idx:
7205         kfree(net->dev_name_head);
7206 err_name:
7207         return -ENOMEM;
7208 }
7209
7210 /**
7211  *      netdev_drivername - network driver for the device
7212  *      @dev: network device
7213  *
7214  *      Determine network driver for device.
7215  */
7216 const char *netdev_drivername(const struct net_device *dev)
7217 {
7218         const struct device_driver *driver;
7219         const struct device *parent;
7220         const char *empty = "";
7221
7222         parent = dev->dev.parent;
7223         if (!parent)
7224                 return empty;
7225
7226         driver = parent->driver;
7227         if (driver && driver->name)
7228                 return driver->name;
7229         return empty;
7230 }
7231
7232 static void __netdev_printk(const char *level, const struct net_device *dev,
7233                             struct va_format *vaf)
7234 {
7235         if (dev && dev->dev.parent) {
7236                 dev_printk_emit(level[1] - '0',
7237                                 dev->dev.parent,
7238                                 "%s %s %s%s: %pV",
7239                                 dev_driver_string(dev->dev.parent),
7240                                 dev_name(dev->dev.parent),
7241                                 netdev_name(dev), netdev_reg_state(dev),
7242                                 vaf);
7243         } else if (dev) {
7244                 printk("%s%s%s: %pV",
7245                        level, netdev_name(dev), netdev_reg_state(dev), vaf);
7246         } else {
7247                 printk("%s(NULL net_device): %pV", level, vaf);
7248         }
7249 }
7250
7251 void netdev_printk(const char *level, const struct net_device *dev,
7252                    const char *format, ...)
7253 {
7254         struct va_format vaf;
7255         va_list args;
7256
7257         va_start(args, format);
7258
7259         vaf.fmt = format;
7260         vaf.va = &args;
7261
7262         __netdev_printk(level, dev, &vaf);
7263
7264         va_end(args);
7265 }
7266 EXPORT_SYMBOL(netdev_printk);
7267
7268 #define define_netdev_printk_level(func, level)                 \
7269 void func(const struct net_device *dev, const char *fmt, ...)   \
7270 {                                                               \
7271         struct va_format vaf;                                   \
7272         va_list args;                                           \
7273                                                                 \
7274         va_start(args, fmt);                                    \
7275                                                                 \
7276         vaf.fmt = fmt;                                          \
7277         vaf.va = &args;                                         \
7278                                                                 \
7279         __netdev_printk(level, dev, &vaf);                      \
7280                                                                 \
7281         va_end(args);                                           \
7282 }                                                               \
7283 EXPORT_SYMBOL(func);
7284
7285 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
7286 define_netdev_printk_level(netdev_alert, KERN_ALERT);
7287 define_netdev_printk_level(netdev_crit, KERN_CRIT);
7288 define_netdev_printk_level(netdev_err, KERN_ERR);
7289 define_netdev_printk_level(netdev_warn, KERN_WARNING);
7290 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
7291 define_netdev_printk_level(netdev_info, KERN_INFO);
7292
7293 static void __net_exit netdev_exit(struct net *net)
7294 {
7295         kfree(net->dev_name_head);
7296         kfree(net->dev_index_head);
7297 }
7298
7299 static struct pernet_operations __net_initdata netdev_net_ops = {
7300         .init = netdev_init,
7301         .exit = netdev_exit,
7302 };
7303
7304 static void __net_exit default_device_exit(struct net *net)
7305 {
7306         struct net_device *dev, *aux;
7307         /*
7308          * Push all migratable network devices back to the
7309          * initial network namespace
7310          */
7311         rtnl_lock();
7312         for_each_netdev_safe(net, dev, aux) {
7313                 int err;
7314                 char fb_name[IFNAMSIZ];
7315
7316                 /* Ignore unmoveable devices (i.e. loopback) */
7317                 if (dev->features & NETIF_F_NETNS_LOCAL)
7318                         continue;
7319
7320                 /* Leave virtual devices for the generic cleanup */
7321                 if (dev->rtnl_link_ops)
7322                         continue;
7323
7324                 /* Push remaining network devices to init_net */
7325                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
7326                 err = dev_change_net_namespace(dev, &init_net, fb_name);
7327                 if (err) {
7328                         pr_emerg("%s: failed to move %s to init_net: %d\n",
7329                                  __func__, dev->name, err);
7330                         BUG();
7331                 }
7332         }
7333         rtnl_unlock();
7334 }
7335
7336 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
7337 {
7338         /* Return with the rtnl_lock held when there are no network
7339          * devices unregistering in any network namespace in net_list.
7340          */
7341         struct net *net;
7342         bool unregistering;
7343         DEFINE_WAIT_FUNC(wait, woken_wake_function);
7344
7345         add_wait_queue(&netdev_unregistering_wq, &wait);
7346         for (;;) {
7347                 unregistering = false;
7348                 rtnl_lock();
7349                 list_for_each_entry(net, net_list, exit_list) {
7350                         if (net->dev_unreg_count > 0) {
7351                                 unregistering = true;
7352                                 break;
7353                         }
7354                 }
7355                 if (!unregistering)
7356                         break;
7357                 __rtnl_unlock();
7358
7359                 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
7360         }
7361         remove_wait_queue(&netdev_unregistering_wq, &wait);
7362 }
7363
7364 static void __net_exit default_device_exit_batch(struct list_head *net_list)
7365 {
7366         /* At exit all network devices most be removed from a network
7367          * namespace.  Do this in the reverse order of registration.
7368          * Do this across as many network namespaces as possible to
7369          * improve batching efficiency.
7370          */
7371         struct net_device *dev;
7372         struct net *net;
7373         LIST_HEAD(dev_kill_list);
7374
7375         /* To prevent network device cleanup code from dereferencing
7376          * loopback devices or network devices that have been freed
7377          * wait here for all pending unregistrations to complete,
7378          * before unregistring the loopback device and allowing the
7379          * network namespace be freed.
7380          *
7381          * The netdev todo list containing all network devices
7382          * unregistrations that happen in default_device_exit_batch
7383          * will run in the rtnl_unlock() at the end of
7384          * default_device_exit_batch.
7385          */
7386         rtnl_lock_unregistering(net_list);
7387         list_for_each_entry(net, net_list, exit_list) {
7388                 for_each_netdev_reverse(net, dev) {
7389                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
7390                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
7391                         else
7392                                 unregister_netdevice_queue(dev, &dev_kill_list);
7393                 }
7394         }
7395         unregister_netdevice_many(&dev_kill_list);
7396         rtnl_unlock();
7397 }
7398
7399 static struct pernet_operations __net_initdata default_device_ops = {
7400         .exit = default_device_exit,
7401         .exit_batch = default_device_exit_batch,
7402 };
7403
7404 /*
7405  *      Initialize the DEV module. At boot time this walks the device list and
7406  *      unhooks any devices that fail to initialise (normally hardware not
7407  *      present) and leaves us with a valid list of present and active devices.
7408  *
7409  */
7410
7411 /*
7412  *       This is called single threaded during boot, so no need
7413  *       to take the rtnl semaphore.
7414  */
7415 static int __init net_dev_init(void)
7416 {
7417         int i, rc = -ENOMEM;
7418
7419         BUG_ON(!dev_boot_phase);
7420
7421         if (dev_proc_init())
7422                 goto out;
7423
7424         if (netdev_kobject_init())
7425                 goto out;
7426
7427         INIT_LIST_HEAD(&ptype_all);
7428         for (i = 0; i < PTYPE_HASH_SIZE; i++)
7429                 INIT_LIST_HEAD(&ptype_base[i]);
7430
7431         INIT_LIST_HEAD(&offload_base);
7432
7433         if (register_pernet_subsys(&netdev_net_ops))
7434                 goto out;
7435
7436         /*
7437          *      Initialise the packet receive queues.
7438          */
7439
7440         for_each_possible_cpu(i) {
7441                 struct softnet_data *sd = &per_cpu(softnet_data, i);
7442
7443                 skb_queue_head_init(&sd->input_pkt_queue);
7444                 skb_queue_head_init(&sd->process_queue);
7445                 INIT_LIST_HEAD(&sd->poll_list);
7446                 sd->output_queue_tailp = &sd->output_queue;
7447 #ifdef CONFIG_RPS
7448                 sd->csd.func = rps_trigger_softirq;
7449                 sd->csd.info = sd;
7450                 sd->cpu = i;
7451 #endif
7452
7453                 sd->backlog.poll = process_backlog;
7454                 sd->backlog.weight = weight_p;
7455         }
7456
7457         dev_boot_phase = 0;
7458
7459         /* The loopback device is special if any other network devices
7460          * is present in a network namespace the loopback device must
7461          * be present. Since we now dynamically allocate and free the
7462          * loopback device ensure this invariant is maintained by
7463          * keeping the loopback device as the first device on the
7464          * list of network devices.  Ensuring the loopback devices
7465          * is the first device that appears and the last network device
7466          * that disappears.
7467          */
7468         if (register_pernet_device(&loopback_net_ops))
7469                 goto out;
7470
7471         if (register_pernet_device(&default_device_ops))
7472                 goto out;
7473
7474         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
7475         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
7476
7477         hotcpu_notifier(dev_cpu_callback, 0);
7478         dst_init();
7479         rc = 0;
7480 out:
7481         return rc;
7482 }
7483
7484 subsys_initcall(net_dev_init);