libceph: fix mutex coverage for ceph_con_close
[firefly-linux-kernel-4.4.55.git] / net / ceph / messenger.c
1 #include <linux/ceph/ceph_debug.h>
2
3 #include <linux/crc32c.h>
4 #include <linux/ctype.h>
5 #include <linux/highmem.h>
6 #include <linux/inet.h>
7 #include <linux/kthread.h>
8 #include <linux/net.h>
9 #include <linux/slab.h>
10 #include <linux/socket.h>
11 #include <linux/string.h>
12 #include <linux/bio.h>
13 #include <linux/blkdev.h>
14 #include <linux/dns_resolver.h>
15 #include <net/tcp.h>
16
17 #include <linux/ceph/libceph.h>
18 #include <linux/ceph/messenger.h>
19 #include <linux/ceph/decode.h>
20 #include <linux/ceph/pagelist.h>
21 #include <linux/export.h>
22
23 /*
24  * Ceph uses the messenger to exchange ceph_msg messages with other
25  * hosts in the system.  The messenger provides ordered and reliable
26  * delivery.  We tolerate TCP disconnects by reconnecting (with
27  * exponential backoff) in the case of a fault (disconnection, bad
28  * crc, protocol error).  Acks allow sent messages to be discarded by
29  * the sender.
30  */
31
32 /*
33  * We track the state of the socket on a given connection using
34  * values defined below.  The transition to a new socket state is
35  * handled by a function which verifies we aren't coming from an
36  * unexpected state.
37  *
38  *      --------
39  *      | NEW* |  transient initial state
40  *      --------
41  *          | con_sock_state_init()
42  *          v
43  *      ----------
44  *      | CLOSED |  initialized, but no socket (and no
45  *      ----------  TCP connection)
46  *       ^      \
47  *       |       \ con_sock_state_connecting()
48  *       |        ----------------------
49  *       |                              \
50  *       + con_sock_state_closed()       \
51  *       |+---------------------------    \
52  *       | \                          \    \
53  *       |  -----------                \    \
54  *       |  | CLOSING |  socket event;  \    \
55  *       |  -----------  await close     \    \
56  *       |       ^                        \   |
57  *       |       |                         \  |
58  *       |       + con_sock_state_closing() \ |
59  *       |      / \                         | |
60  *       |     /   ---------------          | |
61  *       |    /                   \         v v
62  *       |   /                    --------------
63  *       |  /    -----------------| CONNECTING |  socket created, TCP
64  *       |  |   /                 --------------  connect initiated
65  *       |  |   | con_sock_state_connected()
66  *       |  |   v
67  *      -------------
68  *      | CONNECTED |  TCP connection established
69  *      -------------
70  *
71  * State values for ceph_connection->sock_state; NEW is assumed to be 0.
72  */
73
74 #define CON_SOCK_STATE_NEW              0       /* -> CLOSED */
75 #define CON_SOCK_STATE_CLOSED           1       /* -> CONNECTING */
76 #define CON_SOCK_STATE_CONNECTING       2       /* -> CONNECTED or -> CLOSING */
77 #define CON_SOCK_STATE_CONNECTED        3       /* -> CLOSING or -> CLOSED */
78 #define CON_SOCK_STATE_CLOSING          4       /* -> CLOSED */
79
80 /* static tag bytes (protocol control messages) */
81 static char tag_msg = CEPH_MSGR_TAG_MSG;
82 static char tag_ack = CEPH_MSGR_TAG_ACK;
83 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
84
85 #ifdef CONFIG_LOCKDEP
86 static struct lock_class_key socket_class;
87 #endif
88
89 /*
90  * When skipping (ignoring) a block of input we read it into a "skip
91  * buffer," which is this many bytes in size.
92  */
93 #define SKIP_BUF_SIZE   1024
94
95 static void queue_con(struct ceph_connection *con);
96 static void con_work(struct work_struct *);
97 static void ceph_fault(struct ceph_connection *con);
98
99 /*
100  * Nicely render a sockaddr as a string.  An array of formatted
101  * strings is used, to approximate reentrancy.
102  */
103 #define ADDR_STR_COUNT_LOG      5       /* log2(# address strings in array) */
104 #define ADDR_STR_COUNT          (1 << ADDR_STR_COUNT_LOG)
105 #define ADDR_STR_COUNT_MASK     (ADDR_STR_COUNT - 1)
106 #define MAX_ADDR_STR_LEN        64      /* 54 is enough */
107
108 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
109 static atomic_t addr_str_seq = ATOMIC_INIT(0);
110
111 static struct page *zero_page;          /* used in certain error cases */
112
113 const char *ceph_pr_addr(const struct sockaddr_storage *ss)
114 {
115         int i;
116         char *s;
117         struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
118         struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
119
120         i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
121         s = addr_str[i];
122
123         switch (ss->ss_family) {
124         case AF_INET:
125                 snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr,
126                          ntohs(in4->sin_port));
127                 break;
128
129         case AF_INET6:
130                 snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr,
131                          ntohs(in6->sin6_port));
132                 break;
133
134         default:
135                 snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
136                          ss->ss_family);
137         }
138
139         return s;
140 }
141 EXPORT_SYMBOL(ceph_pr_addr);
142
143 static void encode_my_addr(struct ceph_messenger *msgr)
144 {
145         memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
146         ceph_encode_addr(&msgr->my_enc_addr);
147 }
148
149 /*
150  * work queue for all reading and writing to/from the socket.
151  */
152 static struct workqueue_struct *ceph_msgr_wq;
153
154 void _ceph_msgr_exit(void)
155 {
156         if (ceph_msgr_wq) {
157                 destroy_workqueue(ceph_msgr_wq);
158                 ceph_msgr_wq = NULL;
159         }
160
161         BUG_ON(zero_page == NULL);
162         kunmap(zero_page);
163         page_cache_release(zero_page);
164         zero_page = NULL;
165 }
166
167 int ceph_msgr_init(void)
168 {
169         BUG_ON(zero_page != NULL);
170         zero_page = ZERO_PAGE(0);
171         page_cache_get(zero_page);
172
173         ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_NON_REENTRANT, 0);
174         if (ceph_msgr_wq)
175                 return 0;
176
177         pr_err("msgr_init failed to create workqueue\n");
178         _ceph_msgr_exit();
179
180         return -ENOMEM;
181 }
182 EXPORT_SYMBOL(ceph_msgr_init);
183
184 void ceph_msgr_exit(void)
185 {
186         BUG_ON(ceph_msgr_wq == NULL);
187
188         _ceph_msgr_exit();
189 }
190 EXPORT_SYMBOL(ceph_msgr_exit);
191
192 void ceph_msgr_flush(void)
193 {
194         flush_workqueue(ceph_msgr_wq);
195 }
196 EXPORT_SYMBOL(ceph_msgr_flush);
197
198 /* Connection socket state transition functions */
199
200 static void con_sock_state_init(struct ceph_connection *con)
201 {
202         int old_state;
203
204         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
205         if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
206                 printk("%s: unexpected old state %d\n", __func__, old_state);
207 }
208
209 static void con_sock_state_connecting(struct ceph_connection *con)
210 {
211         int old_state;
212
213         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
214         if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
215                 printk("%s: unexpected old state %d\n", __func__, old_state);
216 }
217
218 static void con_sock_state_connected(struct ceph_connection *con)
219 {
220         int old_state;
221
222         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
223         if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
224                 printk("%s: unexpected old state %d\n", __func__, old_state);
225 }
226
227 static void con_sock_state_closing(struct ceph_connection *con)
228 {
229         int old_state;
230
231         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
232         if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
233                         old_state != CON_SOCK_STATE_CONNECTED &&
234                         old_state != CON_SOCK_STATE_CLOSING))
235                 printk("%s: unexpected old state %d\n", __func__, old_state);
236 }
237
238 static void con_sock_state_closed(struct ceph_connection *con)
239 {
240         int old_state;
241
242         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
243         if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
244                     old_state != CON_SOCK_STATE_CLOSING &&
245                     old_state != CON_SOCK_STATE_CONNECTING))
246                 printk("%s: unexpected old state %d\n", __func__, old_state);
247 }
248
249 /*
250  * socket callback functions
251  */
252
253 /* data available on socket, or listen socket received a connect */
254 static void ceph_sock_data_ready(struct sock *sk, int count_unused)
255 {
256         struct ceph_connection *con = sk->sk_user_data;
257         if (atomic_read(&con->msgr->stopping)) {
258                 return;
259         }
260
261         if (sk->sk_state != TCP_CLOSE_WAIT) {
262                 dout("%s on %p state = %lu, queueing work\n", __func__,
263                      con, con->state);
264                 queue_con(con);
265         }
266 }
267
268 /* socket has buffer space for writing */
269 static void ceph_sock_write_space(struct sock *sk)
270 {
271         struct ceph_connection *con = sk->sk_user_data;
272
273         /* only queue to workqueue if there is data we want to write,
274          * and there is sufficient space in the socket buffer to accept
275          * more data.  clear SOCK_NOSPACE so that ceph_sock_write_space()
276          * doesn't get called again until try_write() fills the socket
277          * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
278          * and net/core/stream.c:sk_stream_write_space().
279          */
280         if (test_bit(WRITE_PENDING, &con->flags)) {
281                 if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
282                         dout("%s %p queueing write work\n", __func__, con);
283                         clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
284                         queue_con(con);
285                 }
286         } else {
287                 dout("%s %p nothing to write\n", __func__, con);
288         }
289 }
290
291 /* socket's state has changed */
292 static void ceph_sock_state_change(struct sock *sk)
293 {
294         struct ceph_connection *con = sk->sk_user_data;
295
296         dout("%s %p state = %lu sk_state = %u\n", __func__,
297              con, con->state, sk->sk_state);
298
299         if (test_bit(CLOSED, &con->state))
300                 return;
301
302         switch (sk->sk_state) {
303         case TCP_CLOSE:
304                 dout("%s TCP_CLOSE\n", __func__);
305         case TCP_CLOSE_WAIT:
306                 dout("%s TCP_CLOSE_WAIT\n", __func__);
307                 con_sock_state_closing(con);
308                 set_bit(SOCK_CLOSED, &con->flags);
309                 queue_con(con);
310                 break;
311         case TCP_ESTABLISHED:
312                 dout("%s TCP_ESTABLISHED\n", __func__);
313                 con_sock_state_connected(con);
314                 queue_con(con);
315                 break;
316         default:        /* Everything else is uninteresting */
317                 break;
318         }
319 }
320
321 /*
322  * set up socket callbacks
323  */
324 static void set_sock_callbacks(struct socket *sock,
325                                struct ceph_connection *con)
326 {
327         struct sock *sk = sock->sk;
328         sk->sk_user_data = con;
329         sk->sk_data_ready = ceph_sock_data_ready;
330         sk->sk_write_space = ceph_sock_write_space;
331         sk->sk_state_change = ceph_sock_state_change;
332 }
333
334
335 /*
336  * socket helpers
337  */
338
339 /*
340  * initiate connection to a remote socket.
341  */
342 static int ceph_tcp_connect(struct ceph_connection *con)
343 {
344         struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
345         struct socket *sock;
346         int ret;
347
348         BUG_ON(con->sock);
349         ret = sock_create_kern(con->peer_addr.in_addr.ss_family, SOCK_STREAM,
350                                IPPROTO_TCP, &sock);
351         if (ret)
352                 return ret;
353         sock->sk->sk_allocation = GFP_NOFS;
354
355 #ifdef CONFIG_LOCKDEP
356         lockdep_set_class(&sock->sk->sk_lock, &socket_class);
357 #endif
358
359         set_sock_callbacks(sock, con);
360
361         dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
362
363         con_sock_state_connecting(con);
364         ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
365                                  O_NONBLOCK);
366         if (ret == -EINPROGRESS) {
367                 dout("connect %s EINPROGRESS sk_state = %u\n",
368                      ceph_pr_addr(&con->peer_addr.in_addr),
369                      sock->sk->sk_state);
370         } else if (ret < 0) {
371                 pr_err("connect %s error %d\n",
372                        ceph_pr_addr(&con->peer_addr.in_addr), ret);
373                 sock_release(sock);
374                 con->error_msg = "connect error";
375
376                 return ret;
377         }
378         con->sock = sock;
379         return 0;
380 }
381
382 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
383 {
384         struct kvec iov = {buf, len};
385         struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
386         int r;
387
388         r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
389         if (r == -EAGAIN)
390                 r = 0;
391         return r;
392 }
393
394 /*
395  * write something.  @more is true if caller will be sending more data
396  * shortly.
397  */
398 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
399                      size_t kvlen, size_t len, int more)
400 {
401         struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
402         int r;
403
404         if (more)
405                 msg.msg_flags |= MSG_MORE;
406         else
407                 msg.msg_flags |= MSG_EOR;  /* superfluous, but what the hell */
408
409         r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
410         if (r == -EAGAIN)
411                 r = 0;
412         return r;
413 }
414
415 static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
416                      int offset, size_t size, int more)
417 {
418         int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR);
419         int ret;
420
421         ret = kernel_sendpage(sock, page, offset, size, flags);
422         if (ret == -EAGAIN)
423                 ret = 0;
424
425         return ret;
426 }
427
428
429 /*
430  * Shutdown/close the socket for the given connection.
431  */
432 static int con_close_socket(struct ceph_connection *con)
433 {
434         int rc;
435
436         dout("con_close_socket on %p sock %p\n", con, con->sock);
437         if (!con->sock)
438                 return 0;
439         rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
440         sock_release(con->sock);
441         con->sock = NULL;
442
443         /*
444          * Forcibly clear the SOCK_CLOSE flag.  It gets set
445          * independent of the connection mutex, and we could have
446          * received a socket close event before we had the chance to
447          * shut the socket down.
448          */
449         clear_bit(SOCK_CLOSED, &con->flags);
450         con_sock_state_closed(con);
451         return rc;
452 }
453
454 /*
455  * Reset a connection.  Discard all incoming and outgoing messages
456  * and clear *_seq state.
457  */
458 static void ceph_msg_remove(struct ceph_msg *msg)
459 {
460         list_del_init(&msg->list_head);
461         BUG_ON(msg->con == NULL);
462         msg->con->ops->put(msg->con);
463         msg->con = NULL;
464
465         ceph_msg_put(msg);
466 }
467 static void ceph_msg_remove_list(struct list_head *head)
468 {
469         while (!list_empty(head)) {
470                 struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
471                                                         list_head);
472                 ceph_msg_remove(msg);
473         }
474 }
475
476 static void reset_connection(struct ceph_connection *con)
477 {
478         /* reset connection, out_queue, msg_ and connect_seq */
479         /* discard existing out_queue and msg_seq */
480         ceph_msg_remove_list(&con->out_queue);
481         ceph_msg_remove_list(&con->out_sent);
482
483         if (con->in_msg) {
484                 BUG_ON(con->in_msg->con != con);
485                 con->in_msg->con = NULL;
486                 ceph_msg_put(con->in_msg);
487                 con->in_msg = NULL;
488                 con->ops->put(con);
489         }
490
491         con->connect_seq = 0;
492         con->out_seq = 0;
493         if (con->out_msg) {
494                 ceph_msg_put(con->out_msg);
495                 con->out_msg = NULL;
496         }
497         con->in_seq = 0;
498         con->in_seq_acked = 0;
499 }
500
501 /*
502  * mark a peer down.  drop any open connections.
503  */
504 void ceph_con_close(struct ceph_connection *con)
505 {
506         mutex_lock(&con->mutex);
507         dout("con_close %p peer %s\n", con,
508              ceph_pr_addr(&con->peer_addr.in_addr));
509         clear_bit(NEGOTIATING, &con->state);
510         clear_bit(CONNECTING, &con->state);
511         clear_bit(CONNECTED, &con->state);
512         clear_bit(STANDBY, &con->state);  /* avoid connect_seq bump */
513         set_bit(CLOSED, &con->state);
514
515         clear_bit(LOSSYTX, &con->flags);  /* so we retry next connect */
516         clear_bit(KEEPALIVE_PENDING, &con->flags);
517         clear_bit(WRITE_PENDING, &con->flags);
518
519         reset_connection(con);
520         con->peer_global_seq = 0;
521         cancel_delayed_work(&con->work);
522         mutex_unlock(&con->mutex);
523
524         /*
525          * We cannot close the socket directly from here because the
526          * work threads use it without holding the mutex.  Instead, let
527          * con_work() do it.
528          */
529         queue_con(con);
530 }
531 EXPORT_SYMBOL(ceph_con_close);
532
533 /*
534  * Reopen a closed connection, with a new peer address.
535  */
536 void ceph_con_open(struct ceph_connection *con,
537                    __u8 entity_type, __u64 entity_num,
538                    struct ceph_entity_addr *addr)
539 {
540         dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
541         set_bit(OPENING, &con->state);
542         WARN_ON(!test_and_clear_bit(CLOSED, &con->state));
543
544         con->peer_name.type = (__u8) entity_type;
545         con->peer_name.num = cpu_to_le64(entity_num);
546
547         memcpy(&con->peer_addr, addr, sizeof(*addr));
548         con->delay = 0;      /* reset backoff memory */
549         queue_con(con);
550 }
551 EXPORT_SYMBOL(ceph_con_open);
552
553 /*
554  * return true if this connection ever successfully opened
555  */
556 bool ceph_con_opened(struct ceph_connection *con)
557 {
558         return con->connect_seq > 0;
559 }
560
561 /*
562  * initialize a new connection.
563  */
564 void ceph_con_init(struct ceph_connection *con, void *private,
565         const struct ceph_connection_operations *ops,
566         struct ceph_messenger *msgr)
567 {
568         dout("con_init %p\n", con);
569         memset(con, 0, sizeof(*con));
570         con->private = private;
571         con->ops = ops;
572         con->msgr = msgr;
573
574         con_sock_state_init(con);
575
576         mutex_init(&con->mutex);
577         INIT_LIST_HEAD(&con->out_queue);
578         INIT_LIST_HEAD(&con->out_sent);
579         INIT_DELAYED_WORK(&con->work, con_work);
580
581         set_bit(CLOSED, &con->state);
582 }
583 EXPORT_SYMBOL(ceph_con_init);
584
585
586 /*
587  * We maintain a global counter to order connection attempts.  Get
588  * a unique seq greater than @gt.
589  */
590 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
591 {
592         u32 ret;
593
594         spin_lock(&msgr->global_seq_lock);
595         if (msgr->global_seq < gt)
596                 msgr->global_seq = gt;
597         ret = ++msgr->global_seq;
598         spin_unlock(&msgr->global_seq_lock);
599         return ret;
600 }
601
602 static void con_out_kvec_reset(struct ceph_connection *con)
603 {
604         con->out_kvec_left = 0;
605         con->out_kvec_bytes = 0;
606         con->out_kvec_cur = &con->out_kvec[0];
607 }
608
609 static void con_out_kvec_add(struct ceph_connection *con,
610                                 size_t size, void *data)
611 {
612         int index;
613
614         index = con->out_kvec_left;
615         BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
616
617         con->out_kvec[index].iov_len = size;
618         con->out_kvec[index].iov_base = data;
619         con->out_kvec_left++;
620         con->out_kvec_bytes += size;
621 }
622
623 #ifdef CONFIG_BLOCK
624 static void init_bio_iter(struct bio *bio, struct bio **iter, int *seg)
625 {
626         if (!bio) {
627                 *iter = NULL;
628                 *seg = 0;
629                 return;
630         }
631         *iter = bio;
632         *seg = bio->bi_idx;
633 }
634
635 static void iter_bio_next(struct bio **bio_iter, int *seg)
636 {
637         if (*bio_iter == NULL)
638                 return;
639
640         BUG_ON(*seg >= (*bio_iter)->bi_vcnt);
641
642         (*seg)++;
643         if (*seg == (*bio_iter)->bi_vcnt)
644                 init_bio_iter((*bio_iter)->bi_next, bio_iter, seg);
645 }
646 #endif
647
648 static void prepare_write_message_data(struct ceph_connection *con)
649 {
650         struct ceph_msg *msg = con->out_msg;
651
652         BUG_ON(!msg);
653         BUG_ON(!msg->hdr.data_len);
654
655         /* initialize page iterator */
656         con->out_msg_pos.page = 0;
657         if (msg->pages)
658                 con->out_msg_pos.page_pos = msg->page_alignment;
659         else
660                 con->out_msg_pos.page_pos = 0;
661 #ifdef CONFIG_BLOCK
662         if (msg->bio)
663                 init_bio_iter(msg->bio, &msg->bio_iter, &msg->bio_seg);
664 #endif
665         con->out_msg_pos.data_pos = 0;
666         con->out_msg_pos.did_page_crc = false;
667         con->out_more = 1;  /* data + footer will follow */
668 }
669
670 /*
671  * Prepare footer for currently outgoing message, and finish things
672  * off.  Assumes out_kvec* are already valid.. we just add on to the end.
673  */
674 static void prepare_write_message_footer(struct ceph_connection *con)
675 {
676         struct ceph_msg *m = con->out_msg;
677         int v = con->out_kvec_left;
678
679         m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE;
680
681         dout("prepare_write_message_footer %p\n", con);
682         con->out_kvec_is_msg = true;
683         con->out_kvec[v].iov_base = &m->footer;
684         con->out_kvec[v].iov_len = sizeof(m->footer);
685         con->out_kvec_bytes += sizeof(m->footer);
686         con->out_kvec_left++;
687         con->out_more = m->more_to_follow;
688         con->out_msg_done = true;
689 }
690
691 /*
692  * Prepare headers for the next outgoing message.
693  */
694 static void prepare_write_message(struct ceph_connection *con)
695 {
696         struct ceph_msg *m;
697         u32 crc;
698
699         con_out_kvec_reset(con);
700         con->out_kvec_is_msg = true;
701         con->out_msg_done = false;
702
703         /* Sneak an ack in there first?  If we can get it into the same
704          * TCP packet that's a good thing. */
705         if (con->in_seq > con->in_seq_acked) {
706                 con->in_seq_acked = con->in_seq;
707                 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
708                 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
709                 con_out_kvec_add(con, sizeof (con->out_temp_ack),
710                         &con->out_temp_ack);
711         }
712
713         BUG_ON(list_empty(&con->out_queue));
714         m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
715         con->out_msg = m;
716         BUG_ON(m->con != con);
717
718         /* put message on sent list */
719         ceph_msg_get(m);
720         list_move_tail(&m->list_head, &con->out_sent);
721
722         /*
723          * only assign outgoing seq # if we haven't sent this message
724          * yet.  if it is requeued, resend with it's original seq.
725          */
726         if (m->needs_out_seq) {
727                 m->hdr.seq = cpu_to_le64(++con->out_seq);
728                 m->needs_out_seq = false;
729         }
730
731         dout("prepare_write_message %p seq %lld type %d len %d+%d+%d %d pgs\n",
732              m, con->out_seq, le16_to_cpu(m->hdr.type),
733              le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
734              le32_to_cpu(m->hdr.data_len),
735              m->nr_pages);
736         BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
737
738         /* tag + hdr + front + middle */
739         con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
740         con_out_kvec_add(con, sizeof (m->hdr), &m->hdr);
741         con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
742
743         if (m->middle)
744                 con_out_kvec_add(con, m->middle->vec.iov_len,
745                         m->middle->vec.iov_base);
746
747         /* fill in crc (except data pages), footer */
748         crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
749         con->out_msg->hdr.crc = cpu_to_le32(crc);
750         con->out_msg->footer.flags = 0;
751
752         crc = crc32c(0, m->front.iov_base, m->front.iov_len);
753         con->out_msg->footer.front_crc = cpu_to_le32(crc);
754         if (m->middle) {
755                 crc = crc32c(0, m->middle->vec.iov_base,
756                                 m->middle->vec.iov_len);
757                 con->out_msg->footer.middle_crc = cpu_to_le32(crc);
758         } else
759                 con->out_msg->footer.middle_crc = 0;
760         dout("%s front_crc %u middle_crc %u\n", __func__,
761              le32_to_cpu(con->out_msg->footer.front_crc),
762              le32_to_cpu(con->out_msg->footer.middle_crc));
763
764         /* is there a data payload? */
765         con->out_msg->footer.data_crc = 0;
766         if (m->hdr.data_len)
767                 prepare_write_message_data(con);
768         else
769                 /* no, queue up footer too and be done */
770                 prepare_write_message_footer(con);
771
772         set_bit(WRITE_PENDING, &con->flags);
773 }
774
775 /*
776  * Prepare an ack.
777  */
778 static void prepare_write_ack(struct ceph_connection *con)
779 {
780         dout("prepare_write_ack %p %llu -> %llu\n", con,
781              con->in_seq_acked, con->in_seq);
782         con->in_seq_acked = con->in_seq;
783
784         con_out_kvec_reset(con);
785
786         con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
787
788         con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
789         con_out_kvec_add(con, sizeof (con->out_temp_ack),
790                                 &con->out_temp_ack);
791
792         con->out_more = 1;  /* more will follow.. eventually.. */
793         set_bit(WRITE_PENDING, &con->flags);
794 }
795
796 /*
797  * Prepare to write keepalive byte.
798  */
799 static void prepare_write_keepalive(struct ceph_connection *con)
800 {
801         dout("prepare_write_keepalive %p\n", con);
802         con_out_kvec_reset(con);
803         con_out_kvec_add(con, sizeof (tag_keepalive), &tag_keepalive);
804         set_bit(WRITE_PENDING, &con->flags);
805 }
806
807 /*
808  * Connection negotiation.
809  */
810
811 static struct ceph_auth_handshake *get_connect_authorizer(struct ceph_connection *con,
812                                                 int *auth_proto)
813 {
814         struct ceph_auth_handshake *auth;
815
816         if (!con->ops->get_authorizer) {
817                 con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN;
818                 con->out_connect.authorizer_len = 0;
819
820                 return NULL;
821         }
822
823         /* Can't hold the mutex while getting authorizer */
824
825         mutex_unlock(&con->mutex);
826
827         auth = con->ops->get_authorizer(con, auth_proto, con->auth_retry);
828
829         mutex_lock(&con->mutex);
830
831         if (IS_ERR(auth))
832                 return auth;
833         if (test_bit(CLOSED, &con->state) || test_bit(OPENING, &con->flags))
834                 return ERR_PTR(-EAGAIN);
835
836         con->auth_reply_buf = auth->authorizer_reply_buf;
837         con->auth_reply_buf_len = auth->authorizer_reply_buf_len;
838
839
840         return auth;
841 }
842
843 /*
844  * We connected to a peer and are saying hello.
845  */
846 static void prepare_write_banner(struct ceph_connection *con)
847 {
848         con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
849         con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr),
850                                         &con->msgr->my_enc_addr);
851
852         con->out_more = 0;
853         set_bit(WRITE_PENDING, &con->flags);
854 }
855
856 static int prepare_write_connect(struct ceph_connection *con)
857 {
858         unsigned int global_seq = get_global_seq(con->msgr, 0);
859         int proto;
860         int auth_proto;
861         struct ceph_auth_handshake *auth;
862
863         switch (con->peer_name.type) {
864         case CEPH_ENTITY_TYPE_MON:
865                 proto = CEPH_MONC_PROTOCOL;
866                 break;
867         case CEPH_ENTITY_TYPE_OSD:
868                 proto = CEPH_OSDC_PROTOCOL;
869                 break;
870         case CEPH_ENTITY_TYPE_MDS:
871                 proto = CEPH_MDSC_PROTOCOL;
872                 break;
873         default:
874                 BUG();
875         }
876
877         dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
878              con->connect_seq, global_seq, proto);
879
880         con->out_connect.features = cpu_to_le64(con->msgr->supported_features);
881         con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
882         con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
883         con->out_connect.global_seq = cpu_to_le32(global_seq);
884         con->out_connect.protocol_version = cpu_to_le32(proto);
885         con->out_connect.flags = 0;
886
887         auth_proto = CEPH_AUTH_UNKNOWN;
888         auth = get_connect_authorizer(con, &auth_proto);
889         if (IS_ERR(auth))
890                 return PTR_ERR(auth);
891
892         con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto);
893         con->out_connect.authorizer_len = auth ?
894                 cpu_to_le32(auth->authorizer_buf_len) : 0;
895
896         con_out_kvec_reset(con);
897         con_out_kvec_add(con, sizeof (con->out_connect),
898                                         &con->out_connect);
899         if (auth && auth->authorizer_buf_len)
900                 con_out_kvec_add(con, auth->authorizer_buf_len,
901                                         auth->authorizer_buf);
902
903         con->out_more = 0;
904         set_bit(WRITE_PENDING, &con->flags);
905
906         return 0;
907 }
908
909 /*
910  * write as much of pending kvecs to the socket as we can.
911  *  1 -> done
912  *  0 -> socket full, but more to do
913  * <0 -> error
914  */
915 static int write_partial_kvec(struct ceph_connection *con)
916 {
917         int ret;
918
919         dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
920         while (con->out_kvec_bytes > 0) {
921                 ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
922                                        con->out_kvec_left, con->out_kvec_bytes,
923                                        con->out_more);
924                 if (ret <= 0)
925                         goto out;
926                 con->out_kvec_bytes -= ret;
927                 if (con->out_kvec_bytes == 0)
928                         break;            /* done */
929
930                 /* account for full iov entries consumed */
931                 while (ret >= con->out_kvec_cur->iov_len) {
932                         BUG_ON(!con->out_kvec_left);
933                         ret -= con->out_kvec_cur->iov_len;
934                         con->out_kvec_cur++;
935                         con->out_kvec_left--;
936                 }
937                 /* and for a partially-consumed entry */
938                 if (ret) {
939                         con->out_kvec_cur->iov_len -= ret;
940                         con->out_kvec_cur->iov_base += ret;
941                 }
942         }
943         con->out_kvec_left = 0;
944         con->out_kvec_is_msg = false;
945         ret = 1;
946 out:
947         dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
948              con->out_kvec_bytes, con->out_kvec_left, ret);
949         return ret;  /* done! */
950 }
951
952 static void out_msg_pos_next(struct ceph_connection *con, struct page *page,
953                         size_t len, size_t sent, bool in_trail)
954 {
955         struct ceph_msg *msg = con->out_msg;
956
957         BUG_ON(!msg);
958         BUG_ON(!sent);
959
960         con->out_msg_pos.data_pos += sent;
961         con->out_msg_pos.page_pos += sent;
962         if (sent < len)
963                 return;
964
965         BUG_ON(sent != len);
966         con->out_msg_pos.page_pos = 0;
967         con->out_msg_pos.page++;
968         con->out_msg_pos.did_page_crc = false;
969         if (in_trail)
970                 list_move_tail(&page->lru,
971                                &msg->trail->head);
972         else if (msg->pagelist)
973                 list_move_tail(&page->lru,
974                                &msg->pagelist->head);
975 #ifdef CONFIG_BLOCK
976         else if (msg->bio)
977                 iter_bio_next(&msg->bio_iter, &msg->bio_seg);
978 #endif
979 }
980
981 /*
982  * Write as much message data payload as we can.  If we finish, queue
983  * up the footer.
984  *  1 -> done, footer is now queued in out_kvec[].
985  *  0 -> socket full, but more to do
986  * <0 -> error
987  */
988 static int write_partial_msg_pages(struct ceph_connection *con)
989 {
990         struct ceph_msg *msg = con->out_msg;
991         unsigned int data_len = le32_to_cpu(msg->hdr.data_len);
992         size_t len;
993         bool do_datacrc = !con->msgr->nocrc;
994         int ret;
995         int total_max_write;
996         bool in_trail = false;
997         const size_t trail_len = (msg->trail ? msg->trail->length : 0);
998         const size_t trail_off = data_len - trail_len;
999
1000         dout("write_partial_msg_pages %p msg %p page %d/%d offset %d\n",
1001              con, msg, con->out_msg_pos.page, msg->nr_pages,
1002              con->out_msg_pos.page_pos);
1003
1004         /*
1005          * Iterate through each page that contains data to be
1006          * written, and send as much as possible for each.
1007          *
1008          * If we are calculating the data crc (the default), we will
1009          * need to map the page.  If we have no pages, they have
1010          * been revoked, so use the zero page.
1011          */
1012         while (data_len > con->out_msg_pos.data_pos) {
1013                 struct page *page = NULL;
1014                 int max_write = PAGE_SIZE;
1015                 int bio_offset = 0;
1016
1017                 in_trail = in_trail || con->out_msg_pos.data_pos >= trail_off;
1018                 if (!in_trail)
1019                         total_max_write = trail_off - con->out_msg_pos.data_pos;
1020
1021                 if (in_trail) {
1022                         total_max_write = data_len - con->out_msg_pos.data_pos;
1023
1024                         page = list_first_entry(&msg->trail->head,
1025                                                 struct page, lru);
1026                 } else if (msg->pages) {
1027                         page = msg->pages[con->out_msg_pos.page];
1028                 } else if (msg->pagelist) {
1029                         page = list_first_entry(&msg->pagelist->head,
1030                                                 struct page, lru);
1031 #ifdef CONFIG_BLOCK
1032                 } else if (msg->bio) {
1033                         struct bio_vec *bv;
1034
1035                         bv = bio_iovec_idx(msg->bio_iter, msg->bio_seg);
1036                         page = bv->bv_page;
1037                         bio_offset = bv->bv_offset;
1038                         max_write = bv->bv_len;
1039 #endif
1040                 } else {
1041                         page = zero_page;
1042                 }
1043                 len = min_t(int, max_write - con->out_msg_pos.page_pos,
1044                             total_max_write);
1045
1046                 if (do_datacrc && !con->out_msg_pos.did_page_crc) {
1047                         void *base;
1048                         u32 crc = le32_to_cpu(msg->footer.data_crc);
1049                         char *kaddr;
1050
1051                         kaddr = kmap(page);
1052                         BUG_ON(kaddr == NULL);
1053                         base = kaddr + con->out_msg_pos.page_pos + bio_offset;
1054                         crc = crc32c(crc, base, len);
1055                         msg->footer.data_crc = cpu_to_le32(crc);
1056                         con->out_msg_pos.did_page_crc = true;
1057                 }
1058                 ret = ceph_tcp_sendpage(con->sock, page,
1059                                       con->out_msg_pos.page_pos + bio_offset,
1060                                       len, 1);
1061
1062                 if (do_datacrc)
1063                         kunmap(page);
1064
1065                 if (ret <= 0)
1066                         goto out;
1067
1068                 out_msg_pos_next(con, page, len, (size_t) ret, in_trail);
1069         }
1070
1071         dout("write_partial_msg_pages %p msg %p done\n", con, msg);
1072
1073         /* prepare and queue up footer, too */
1074         if (!do_datacrc)
1075                 msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
1076         con_out_kvec_reset(con);
1077         prepare_write_message_footer(con);
1078         ret = 1;
1079 out:
1080         return ret;
1081 }
1082
1083 /*
1084  * write some zeros
1085  */
1086 static int write_partial_skip(struct ceph_connection *con)
1087 {
1088         int ret;
1089
1090         while (con->out_skip > 0) {
1091                 size_t size = min(con->out_skip, (int) PAGE_CACHE_SIZE);
1092
1093                 ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, 1);
1094                 if (ret <= 0)
1095                         goto out;
1096                 con->out_skip -= ret;
1097         }
1098         ret = 1;
1099 out:
1100         return ret;
1101 }
1102
1103 /*
1104  * Prepare to read connection handshake, or an ack.
1105  */
1106 static void prepare_read_banner(struct ceph_connection *con)
1107 {
1108         dout("prepare_read_banner %p\n", con);
1109         con->in_base_pos = 0;
1110 }
1111
1112 static void prepare_read_connect(struct ceph_connection *con)
1113 {
1114         dout("prepare_read_connect %p\n", con);
1115         con->in_base_pos = 0;
1116 }
1117
1118 static void prepare_read_ack(struct ceph_connection *con)
1119 {
1120         dout("prepare_read_ack %p\n", con);
1121         con->in_base_pos = 0;
1122 }
1123
1124 static void prepare_read_tag(struct ceph_connection *con)
1125 {
1126         dout("prepare_read_tag %p\n", con);
1127         con->in_base_pos = 0;
1128         con->in_tag = CEPH_MSGR_TAG_READY;
1129 }
1130
1131 /*
1132  * Prepare to read a message.
1133  */
1134 static int prepare_read_message(struct ceph_connection *con)
1135 {
1136         dout("prepare_read_message %p\n", con);
1137         BUG_ON(con->in_msg != NULL);
1138         con->in_base_pos = 0;
1139         con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
1140         return 0;
1141 }
1142
1143
1144 static int read_partial(struct ceph_connection *con,
1145                         int end, int size, void *object)
1146 {
1147         while (con->in_base_pos < end) {
1148                 int left = end - con->in_base_pos;
1149                 int have = size - left;
1150                 int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
1151                 if (ret <= 0)
1152                         return ret;
1153                 con->in_base_pos += ret;
1154         }
1155         return 1;
1156 }
1157
1158
1159 /*
1160  * Read all or part of the connect-side handshake on a new connection
1161  */
1162 static int read_partial_banner(struct ceph_connection *con)
1163 {
1164         int size;
1165         int end;
1166         int ret;
1167
1168         dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
1169
1170         /* peer's banner */
1171         size = strlen(CEPH_BANNER);
1172         end = size;
1173         ret = read_partial(con, end, size, con->in_banner);
1174         if (ret <= 0)
1175                 goto out;
1176
1177         size = sizeof (con->actual_peer_addr);
1178         end += size;
1179         ret = read_partial(con, end, size, &con->actual_peer_addr);
1180         if (ret <= 0)
1181                 goto out;
1182
1183         size = sizeof (con->peer_addr_for_me);
1184         end += size;
1185         ret = read_partial(con, end, size, &con->peer_addr_for_me);
1186         if (ret <= 0)
1187                 goto out;
1188
1189 out:
1190         return ret;
1191 }
1192
1193 static int read_partial_connect(struct ceph_connection *con)
1194 {
1195         int size;
1196         int end;
1197         int ret;
1198
1199         dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1200
1201         size = sizeof (con->in_reply);
1202         end = size;
1203         ret = read_partial(con, end, size, &con->in_reply);
1204         if (ret <= 0)
1205                 goto out;
1206
1207         size = le32_to_cpu(con->in_reply.authorizer_len);
1208         end += size;
1209         ret = read_partial(con, end, size, con->auth_reply_buf);
1210         if (ret <= 0)
1211                 goto out;
1212
1213         dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1214              con, (int)con->in_reply.tag,
1215              le32_to_cpu(con->in_reply.connect_seq),
1216              le32_to_cpu(con->in_reply.global_seq));
1217 out:
1218         return ret;
1219
1220 }
1221
1222 /*
1223  * Verify the hello banner looks okay.
1224  */
1225 static int verify_hello(struct ceph_connection *con)
1226 {
1227         if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1228                 pr_err("connect to %s got bad banner\n",
1229                        ceph_pr_addr(&con->peer_addr.in_addr));
1230                 con->error_msg = "protocol error, bad banner";
1231                 return -1;
1232         }
1233         return 0;
1234 }
1235
1236 static bool addr_is_blank(struct sockaddr_storage *ss)
1237 {
1238         switch (ss->ss_family) {
1239         case AF_INET:
1240                 return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0;
1241         case AF_INET6:
1242                 return
1243                      ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 &&
1244                      ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 &&
1245                      ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 &&
1246                      ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0;
1247         }
1248         return false;
1249 }
1250
1251 static int addr_port(struct sockaddr_storage *ss)
1252 {
1253         switch (ss->ss_family) {
1254         case AF_INET:
1255                 return ntohs(((struct sockaddr_in *)ss)->sin_port);
1256         case AF_INET6:
1257                 return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1258         }
1259         return 0;
1260 }
1261
1262 static void addr_set_port(struct sockaddr_storage *ss, int p)
1263 {
1264         switch (ss->ss_family) {
1265         case AF_INET:
1266                 ((struct sockaddr_in *)ss)->sin_port = htons(p);
1267                 break;
1268         case AF_INET6:
1269                 ((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1270                 break;
1271         }
1272 }
1273
1274 /*
1275  * Unlike other *_pton function semantics, zero indicates success.
1276  */
1277 static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
1278                 char delim, const char **ipend)
1279 {
1280         struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
1281         struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
1282
1283         memset(ss, 0, sizeof(*ss));
1284
1285         if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
1286                 ss->ss_family = AF_INET;
1287                 return 0;
1288         }
1289
1290         if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
1291                 ss->ss_family = AF_INET6;
1292                 return 0;
1293         }
1294
1295         return -EINVAL;
1296 }
1297
1298 /*
1299  * Extract hostname string and resolve using kernel DNS facility.
1300  */
1301 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1302 static int ceph_dns_resolve_name(const char *name, size_t namelen,
1303                 struct sockaddr_storage *ss, char delim, const char **ipend)
1304 {
1305         const char *end, *delim_p;
1306         char *colon_p, *ip_addr = NULL;
1307         int ip_len, ret;
1308
1309         /*
1310          * The end of the hostname occurs immediately preceding the delimiter or
1311          * the port marker (':') where the delimiter takes precedence.
1312          */
1313         delim_p = memchr(name, delim, namelen);
1314         colon_p = memchr(name, ':', namelen);
1315
1316         if (delim_p && colon_p)
1317                 end = delim_p < colon_p ? delim_p : colon_p;
1318         else if (!delim_p && colon_p)
1319                 end = colon_p;
1320         else {
1321                 end = delim_p;
1322                 if (!end) /* case: hostname:/ */
1323                         end = name + namelen;
1324         }
1325
1326         if (end <= name)
1327                 return -EINVAL;
1328
1329         /* do dns_resolve upcall */
1330         ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
1331         if (ip_len > 0)
1332                 ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
1333         else
1334                 ret = -ESRCH;
1335
1336         kfree(ip_addr);
1337
1338         *ipend = end;
1339
1340         pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1341                         ret, ret ? "failed" : ceph_pr_addr(ss));
1342
1343         return ret;
1344 }
1345 #else
1346 static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1347                 struct sockaddr_storage *ss, char delim, const char **ipend)
1348 {
1349         return -EINVAL;
1350 }
1351 #endif
1352
1353 /*
1354  * Parse a server name (IP or hostname). If a valid IP address is not found
1355  * then try to extract a hostname to resolve using userspace DNS upcall.
1356  */
1357 static int ceph_parse_server_name(const char *name, size_t namelen,
1358                         struct sockaddr_storage *ss, char delim, const char **ipend)
1359 {
1360         int ret;
1361
1362         ret = ceph_pton(name, namelen, ss, delim, ipend);
1363         if (ret)
1364                 ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
1365
1366         return ret;
1367 }
1368
1369 /*
1370  * Parse an ip[:port] list into an addr array.  Use the default
1371  * monitor port if a port isn't specified.
1372  */
1373 int ceph_parse_ips(const char *c, const char *end,
1374                    struct ceph_entity_addr *addr,
1375                    int max_count, int *count)
1376 {
1377         int i, ret = -EINVAL;
1378         const char *p = c;
1379
1380         dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1381         for (i = 0; i < max_count; i++) {
1382                 const char *ipend;
1383                 struct sockaddr_storage *ss = &addr[i].in_addr;
1384                 int port;
1385                 char delim = ',';
1386
1387                 if (*p == '[') {
1388                         delim = ']';
1389                         p++;
1390                 }
1391
1392                 ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
1393                 if (ret)
1394                         goto bad;
1395                 ret = -EINVAL;
1396
1397                 p = ipend;
1398
1399                 if (delim == ']') {
1400                         if (*p != ']') {
1401                                 dout("missing matching ']'\n");
1402                                 goto bad;
1403                         }
1404                         p++;
1405                 }
1406
1407                 /* port? */
1408                 if (p < end && *p == ':') {
1409                         port = 0;
1410                         p++;
1411                         while (p < end && *p >= '0' && *p <= '9') {
1412                                 port = (port * 10) + (*p - '0');
1413                                 p++;
1414                         }
1415                         if (port > 65535 || port == 0)
1416                                 goto bad;
1417                 } else {
1418                         port = CEPH_MON_PORT;
1419                 }
1420
1421                 addr_set_port(ss, port);
1422
1423                 dout("parse_ips got %s\n", ceph_pr_addr(ss));
1424
1425                 if (p == end)
1426                         break;
1427                 if (*p != ',')
1428                         goto bad;
1429                 p++;
1430         }
1431
1432         if (p != end)
1433                 goto bad;
1434
1435         if (count)
1436                 *count = i + 1;
1437         return 0;
1438
1439 bad:
1440         pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
1441         return ret;
1442 }
1443 EXPORT_SYMBOL(ceph_parse_ips);
1444
1445 static int process_banner(struct ceph_connection *con)
1446 {
1447         dout("process_banner on %p\n", con);
1448
1449         if (verify_hello(con) < 0)
1450                 return -1;
1451
1452         ceph_decode_addr(&con->actual_peer_addr);
1453         ceph_decode_addr(&con->peer_addr_for_me);
1454
1455         /*
1456          * Make sure the other end is who we wanted.  note that the other
1457          * end may not yet know their ip address, so if it's 0.0.0.0, give
1458          * them the benefit of the doubt.
1459          */
1460         if (memcmp(&con->peer_addr, &con->actual_peer_addr,
1461                    sizeof(con->peer_addr)) != 0 &&
1462             !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
1463               con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
1464                 pr_warning("wrong peer, want %s/%d, got %s/%d\n",
1465                            ceph_pr_addr(&con->peer_addr.in_addr),
1466                            (int)le32_to_cpu(con->peer_addr.nonce),
1467                            ceph_pr_addr(&con->actual_peer_addr.in_addr),
1468                            (int)le32_to_cpu(con->actual_peer_addr.nonce));
1469                 con->error_msg = "wrong peer at address";
1470                 return -1;
1471         }
1472
1473         /*
1474          * did we learn our address?
1475          */
1476         if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
1477                 int port = addr_port(&con->msgr->inst.addr.in_addr);
1478
1479                 memcpy(&con->msgr->inst.addr.in_addr,
1480                        &con->peer_addr_for_me.in_addr,
1481                        sizeof(con->peer_addr_for_me.in_addr));
1482                 addr_set_port(&con->msgr->inst.addr.in_addr, port);
1483                 encode_my_addr(con->msgr);
1484                 dout("process_banner learned my addr is %s\n",
1485                      ceph_pr_addr(&con->msgr->inst.addr.in_addr));
1486         }
1487
1488         return 0;
1489 }
1490
1491 static void fail_protocol(struct ceph_connection *con)
1492 {
1493         reset_connection(con);
1494         set_bit(CLOSED, &con->state);  /* in case there's queued work */
1495 }
1496
1497 static int process_connect(struct ceph_connection *con)
1498 {
1499         u64 sup_feat = con->msgr->supported_features;
1500         u64 req_feat = con->msgr->required_features;
1501         u64 server_feat = le64_to_cpu(con->in_reply.features);
1502         int ret;
1503
1504         dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
1505
1506         switch (con->in_reply.tag) {
1507         case CEPH_MSGR_TAG_FEATURES:
1508                 pr_err("%s%lld %s feature set mismatch,"
1509                        " my %llx < server's %llx, missing %llx\n",
1510                        ENTITY_NAME(con->peer_name),
1511                        ceph_pr_addr(&con->peer_addr.in_addr),
1512                        sup_feat, server_feat, server_feat & ~sup_feat);
1513                 con->error_msg = "missing required protocol features";
1514                 fail_protocol(con);
1515                 return -1;
1516
1517         case CEPH_MSGR_TAG_BADPROTOVER:
1518                 pr_err("%s%lld %s protocol version mismatch,"
1519                        " my %d != server's %d\n",
1520                        ENTITY_NAME(con->peer_name),
1521                        ceph_pr_addr(&con->peer_addr.in_addr),
1522                        le32_to_cpu(con->out_connect.protocol_version),
1523                        le32_to_cpu(con->in_reply.protocol_version));
1524                 con->error_msg = "protocol version mismatch";
1525                 fail_protocol(con);
1526                 return -1;
1527
1528         case CEPH_MSGR_TAG_BADAUTHORIZER:
1529                 con->auth_retry++;
1530                 dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
1531                      con->auth_retry);
1532                 if (con->auth_retry == 2) {
1533                         con->error_msg = "connect authorization failure";
1534                         return -1;
1535                 }
1536                 con->auth_retry = 1;
1537                 ret = prepare_write_connect(con);
1538                 if (ret < 0)
1539                         return ret;
1540                 prepare_read_connect(con);
1541                 break;
1542
1543         case CEPH_MSGR_TAG_RESETSESSION:
1544                 /*
1545                  * If we connected with a large connect_seq but the peer
1546                  * has no record of a session with us (no connection, or
1547                  * connect_seq == 0), they will send RESETSESION to indicate
1548                  * that they must have reset their session, and may have
1549                  * dropped messages.
1550                  */
1551                 dout("process_connect got RESET peer seq %u\n",
1552                      le32_to_cpu(con->in_reply.connect_seq));
1553                 pr_err("%s%lld %s connection reset\n",
1554                        ENTITY_NAME(con->peer_name),
1555                        ceph_pr_addr(&con->peer_addr.in_addr));
1556                 reset_connection(con);
1557                 ret = prepare_write_connect(con);
1558                 if (ret < 0)
1559                         return ret;
1560                 prepare_read_connect(con);
1561
1562                 /* Tell ceph about it. */
1563                 mutex_unlock(&con->mutex);
1564                 pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
1565                 if (con->ops->peer_reset)
1566                         con->ops->peer_reset(con);
1567                 mutex_lock(&con->mutex);
1568                 if (test_bit(CLOSED, &con->state) ||
1569                     test_bit(OPENING, &con->state))
1570                         return -EAGAIN;
1571                 break;
1572
1573         case CEPH_MSGR_TAG_RETRY_SESSION:
1574                 /*
1575                  * If we sent a smaller connect_seq than the peer has, try
1576                  * again with a larger value.
1577                  */
1578                 dout("process_connect got RETRY_SESSION my seq %u, peer %u\n",
1579                      le32_to_cpu(con->out_connect.connect_seq),
1580                      le32_to_cpu(con->in_reply.connect_seq));
1581                 con->connect_seq = le32_to_cpu(con->in_reply.connect_seq);
1582                 ret = prepare_write_connect(con);
1583                 if (ret < 0)
1584                         return ret;
1585                 prepare_read_connect(con);
1586                 break;
1587
1588         case CEPH_MSGR_TAG_RETRY_GLOBAL:
1589                 /*
1590                  * If we sent a smaller global_seq than the peer has, try
1591                  * again with a larger value.
1592                  */
1593                 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
1594                      con->peer_global_seq,
1595                      le32_to_cpu(con->in_reply.global_seq));
1596                 get_global_seq(con->msgr,
1597                                le32_to_cpu(con->in_reply.global_seq));
1598                 ret = prepare_write_connect(con);
1599                 if (ret < 0)
1600                         return ret;
1601                 prepare_read_connect(con);
1602                 break;
1603
1604         case CEPH_MSGR_TAG_READY:
1605                 if (req_feat & ~server_feat) {
1606                         pr_err("%s%lld %s protocol feature mismatch,"
1607                                " my required %llx > server's %llx, need %llx\n",
1608                                ENTITY_NAME(con->peer_name),
1609                                ceph_pr_addr(&con->peer_addr.in_addr),
1610                                req_feat, server_feat, req_feat & ~server_feat);
1611                         con->error_msg = "missing required protocol features";
1612                         fail_protocol(con);
1613                         return -1;
1614                 }
1615                 clear_bit(NEGOTIATING, &con->state);
1616                 set_bit(CONNECTED, &con->state);
1617                 con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
1618                 con->connect_seq++;
1619                 con->peer_features = server_feat;
1620                 dout("process_connect got READY gseq %d cseq %d (%d)\n",
1621                      con->peer_global_seq,
1622                      le32_to_cpu(con->in_reply.connect_seq),
1623                      con->connect_seq);
1624                 WARN_ON(con->connect_seq !=
1625                         le32_to_cpu(con->in_reply.connect_seq));
1626
1627                 if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
1628                         set_bit(LOSSYTX, &con->flags);
1629
1630                 prepare_read_tag(con);
1631                 break;
1632
1633         case CEPH_MSGR_TAG_WAIT:
1634                 /*
1635                  * If there is a connection race (we are opening
1636                  * connections to each other), one of us may just have
1637                  * to WAIT.  This shouldn't happen if we are the
1638                  * client.
1639                  */
1640                 pr_err("process_connect got WAIT as client\n");
1641                 con->error_msg = "protocol error, got WAIT as client";
1642                 return -1;
1643
1644         default:
1645                 pr_err("connect protocol error, will retry\n");
1646                 con->error_msg = "protocol error, garbage tag during connect";
1647                 return -1;
1648         }
1649         return 0;
1650 }
1651
1652
1653 /*
1654  * read (part of) an ack
1655  */
1656 static int read_partial_ack(struct ceph_connection *con)
1657 {
1658         int size = sizeof (con->in_temp_ack);
1659         int end = size;
1660
1661         return read_partial(con, end, size, &con->in_temp_ack);
1662 }
1663
1664
1665 /*
1666  * We can finally discard anything that's been acked.
1667  */
1668 static void process_ack(struct ceph_connection *con)
1669 {
1670         struct ceph_msg *m;
1671         u64 ack = le64_to_cpu(con->in_temp_ack);
1672         u64 seq;
1673
1674         while (!list_empty(&con->out_sent)) {
1675                 m = list_first_entry(&con->out_sent, struct ceph_msg,
1676                                      list_head);
1677                 seq = le64_to_cpu(m->hdr.seq);
1678                 if (seq > ack)
1679                         break;
1680                 dout("got ack for seq %llu type %d at %p\n", seq,
1681                      le16_to_cpu(m->hdr.type), m);
1682                 m->ack_stamp = jiffies;
1683                 ceph_msg_remove(m);
1684         }
1685         prepare_read_tag(con);
1686 }
1687
1688
1689
1690
1691 static int read_partial_message_section(struct ceph_connection *con,
1692                                         struct kvec *section,
1693                                         unsigned int sec_len, u32 *crc)
1694 {
1695         int ret, left;
1696
1697         BUG_ON(!section);
1698
1699         while (section->iov_len < sec_len) {
1700                 BUG_ON(section->iov_base == NULL);
1701                 left = sec_len - section->iov_len;
1702                 ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
1703                                        section->iov_len, left);
1704                 if (ret <= 0)
1705                         return ret;
1706                 section->iov_len += ret;
1707         }
1708         if (section->iov_len == sec_len)
1709                 *crc = crc32c(0, section->iov_base, section->iov_len);
1710
1711         return 1;
1712 }
1713
1714 static bool ceph_con_in_msg_alloc(struct ceph_connection *con,
1715                                 struct ceph_msg_header *hdr);
1716
1717
1718 static int read_partial_message_pages(struct ceph_connection *con,
1719                                       struct page **pages,
1720                                       unsigned int data_len, bool do_datacrc)
1721 {
1722         void *p;
1723         int ret;
1724         int left;
1725
1726         left = min((int)(data_len - con->in_msg_pos.data_pos),
1727                    (int)(PAGE_SIZE - con->in_msg_pos.page_pos));
1728         /* (page) data */
1729         BUG_ON(pages == NULL);
1730         p = kmap(pages[con->in_msg_pos.page]);
1731         ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
1732                                left);
1733         if (ret > 0 && do_datacrc)
1734                 con->in_data_crc =
1735                         crc32c(con->in_data_crc,
1736                                   p + con->in_msg_pos.page_pos, ret);
1737         kunmap(pages[con->in_msg_pos.page]);
1738         if (ret <= 0)
1739                 return ret;
1740         con->in_msg_pos.data_pos += ret;
1741         con->in_msg_pos.page_pos += ret;
1742         if (con->in_msg_pos.page_pos == PAGE_SIZE) {
1743                 con->in_msg_pos.page_pos = 0;
1744                 con->in_msg_pos.page++;
1745         }
1746
1747         return ret;
1748 }
1749
1750 #ifdef CONFIG_BLOCK
1751 static int read_partial_message_bio(struct ceph_connection *con,
1752                                     struct bio **bio_iter, int *bio_seg,
1753                                     unsigned int data_len, bool do_datacrc)
1754 {
1755         struct bio_vec *bv = bio_iovec_idx(*bio_iter, *bio_seg);
1756         void *p;
1757         int ret, left;
1758
1759         left = min((int)(data_len - con->in_msg_pos.data_pos),
1760                    (int)(bv->bv_len - con->in_msg_pos.page_pos));
1761
1762         p = kmap(bv->bv_page) + bv->bv_offset;
1763
1764         ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
1765                                left);
1766         if (ret > 0 && do_datacrc)
1767                 con->in_data_crc =
1768                         crc32c(con->in_data_crc,
1769                                   p + con->in_msg_pos.page_pos, ret);
1770         kunmap(bv->bv_page);
1771         if (ret <= 0)
1772                 return ret;
1773         con->in_msg_pos.data_pos += ret;
1774         con->in_msg_pos.page_pos += ret;
1775         if (con->in_msg_pos.page_pos == bv->bv_len) {
1776                 con->in_msg_pos.page_pos = 0;
1777                 iter_bio_next(bio_iter, bio_seg);
1778         }
1779
1780         return ret;
1781 }
1782 #endif
1783
1784 /*
1785  * read (part of) a message.
1786  */
1787 static int read_partial_message(struct ceph_connection *con)
1788 {
1789         struct ceph_msg *m = con->in_msg;
1790         int size;
1791         int end;
1792         int ret;
1793         unsigned int front_len, middle_len, data_len;
1794         bool do_datacrc = !con->msgr->nocrc;
1795         u64 seq;
1796         u32 crc;
1797
1798         dout("read_partial_message con %p msg %p\n", con, m);
1799
1800         /* header */
1801         size = sizeof (con->in_hdr);
1802         end = size;
1803         ret = read_partial(con, end, size, &con->in_hdr);
1804         if (ret <= 0)
1805                 return ret;
1806
1807         crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
1808         if (cpu_to_le32(crc) != con->in_hdr.crc) {
1809                 pr_err("read_partial_message bad hdr "
1810                        " crc %u != expected %u\n",
1811                        crc, con->in_hdr.crc);
1812                 return -EBADMSG;
1813         }
1814
1815         front_len = le32_to_cpu(con->in_hdr.front_len);
1816         if (front_len > CEPH_MSG_MAX_FRONT_LEN)
1817                 return -EIO;
1818         middle_len = le32_to_cpu(con->in_hdr.middle_len);
1819         if (middle_len > CEPH_MSG_MAX_DATA_LEN)
1820                 return -EIO;
1821         data_len = le32_to_cpu(con->in_hdr.data_len);
1822         if (data_len > CEPH_MSG_MAX_DATA_LEN)
1823                 return -EIO;
1824
1825         /* verify seq# */
1826         seq = le64_to_cpu(con->in_hdr.seq);
1827         if ((s64)seq - (s64)con->in_seq < 1) {
1828                 pr_info("skipping %s%lld %s seq %lld expected %lld\n",
1829                         ENTITY_NAME(con->peer_name),
1830                         ceph_pr_addr(&con->peer_addr.in_addr),
1831                         seq, con->in_seq + 1);
1832                 con->in_base_pos = -front_len - middle_len - data_len -
1833                         sizeof(m->footer);
1834                 con->in_tag = CEPH_MSGR_TAG_READY;
1835                 return 0;
1836         } else if ((s64)seq - (s64)con->in_seq > 1) {
1837                 pr_err("read_partial_message bad seq %lld expected %lld\n",
1838                        seq, con->in_seq + 1);
1839                 con->error_msg = "bad message sequence # for incoming message";
1840                 return -EBADMSG;
1841         }
1842
1843         /* allocate message? */
1844         if (!con->in_msg) {
1845                 dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
1846                      con->in_hdr.front_len, con->in_hdr.data_len);
1847                 if (ceph_con_in_msg_alloc(con, &con->in_hdr)) {
1848                         /* skip this message */
1849                         dout("alloc_msg said skip message\n");
1850                         BUG_ON(con->in_msg);
1851                         con->in_base_pos = -front_len - middle_len - data_len -
1852                                 sizeof(m->footer);
1853                         con->in_tag = CEPH_MSGR_TAG_READY;
1854                         con->in_seq++;
1855                         return 0;
1856                 }
1857                 if (!con->in_msg) {
1858                         con->error_msg =
1859                                 "error allocating memory for incoming message";
1860                         return -ENOMEM;
1861                 }
1862
1863                 BUG_ON(con->in_msg->con != con);
1864                 m = con->in_msg;
1865                 m->front.iov_len = 0;    /* haven't read it yet */
1866                 if (m->middle)
1867                         m->middle->vec.iov_len = 0;
1868
1869                 con->in_msg_pos.page = 0;
1870                 if (m->pages)
1871                         con->in_msg_pos.page_pos = m->page_alignment;
1872                 else
1873                         con->in_msg_pos.page_pos = 0;
1874                 con->in_msg_pos.data_pos = 0;
1875         }
1876
1877         /* front */
1878         ret = read_partial_message_section(con, &m->front, front_len,
1879                                            &con->in_front_crc);
1880         if (ret <= 0)
1881                 return ret;
1882
1883         /* middle */
1884         if (m->middle) {
1885                 ret = read_partial_message_section(con, &m->middle->vec,
1886                                                    middle_len,
1887                                                    &con->in_middle_crc);
1888                 if (ret <= 0)
1889                         return ret;
1890         }
1891 #ifdef CONFIG_BLOCK
1892         if (m->bio && !m->bio_iter)
1893                 init_bio_iter(m->bio, &m->bio_iter, &m->bio_seg);
1894 #endif
1895
1896         /* (page) data */
1897         while (con->in_msg_pos.data_pos < data_len) {
1898                 if (m->pages) {
1899                         ret = read_partial_message_pages(con, m->pages,
1900                                                  data_len, do_datacrc);
1901                         if (ret <= 0)
1902                                 return ret;
1903 #ifdef CONFIG_BLOCK
1904                 } else if (m->bio) {
1905
1906                         ret = read_partial_message_bio(con,
1907                                                  &m->bio_iter, &m->bio_seg,
1908                                                  data_len, do_datacrc);
1909                         if (ret <= 0)
1910                                 return ret;
1911 #endif
1912                 } else {
1913                         BUG_ON(1);
1914                 }
1915         }
1916
1917         /* footer */
1918         size = sizeof (m->footer);
1919         end += size;
1920         ret = read_partial(con, end, size, &m->footer);
1921         if (ret <= 0)
1922                 return ret;
1923
1924         dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
1925              m, front_len, m->footer.front_crc, middle_len,
1926              m->footer.middle_crc, data_len, m->footer.data_crc);
1927
1928         /* crc ok? */
1929         if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
1930                 pr_err("read_partial_message %p front crc %u != exp. %u\n",
1931                        m, con->in_front_crc, m->footer.front_crc);
1932                 return -EBADMSG;
1933         }
1934         if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
1935                 pr_err("read_partial_message %p middle crc %u != exp %u\n",
1936                        m, con->in_middle_crc, m->footer.middle_crc);
1937                 return -EBADMSG;
1938         }
1939         if (do_datacrc &&
1940             (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
1941             con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
1942                 pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
1943                        con->in_data_crc, le32_to_cpu(m->footer.data_crc));
1944                 return -EBADMSG;
1945         }
1946
1947         return 1; /* done! */
1948 }
1949
1950 /*
1951  * Process message.  This happens in the worker thread.  The callback should
1952  * be careful not to do anything that waits on other incoming messages or it
1953  * may deadlock.
1954  */
1955 static void process_message(struct ceph_connection *con)
1956 {
1957         struct ceph_msg *msg;
1958
1959         BUG_ON(con->in_msg->con != con);
1960         con->in_msg->con = NULL;
1961         msg = con->in_msg;
1962         con->in_msg = NULL;
1963         con->ops->put(con);
1964
1965         /* if first message, set peer_name */
1966         if (con->peer_name.type == 0)
1967                 con->peer_name = msg->hdr.src;
1968
1969         con->in_seq++;
1970         mutex_unlock(&con->mutex);
1971
1972         dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
1973              msg, le64_to_cpu(msg->hdr.seq),
1974              ENTITY_NAME(msg->hdr.src),
1975              le16_to_cpu(msg->hdr.type),
1976              ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
1977              le32_to_cpu(msg->hdr.front_len),
1978              le32_to_cpu(msg->hdr.data_len),
1979              con->in_front_crc, con->in_middle_crc, con->in_data_crc);
1980         con->ops->dispatch(con, msg);
1981
1982         mutex_lock(&con->mutex);
1983         prepare_read_tag(con);
1984 }
1985
1986
1987 /*
1988  * Write something to the socket.  Called in a worker thread when the
1989  * socket appears to be writeable and we have something ready to send.
1990  */
1991 static int try_write(struct ceph_connection *con)
1992 {
1993         int ret = 1;
1994
1995         dout("try_write start %p state %lu\n", con, con->state);
1996
1997 more:
1998         dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
1999
2000         /* open the socket first? */
2001         if (con->sock == NULL) {
2002                 set_bit(CONNECTING, &con->state);
2003
2004                 con_out_kvec_reset(con);
2005                 prepare_write_banner(con);
2006                 prepare_read_banner(con);
2007
2008                 BUG_ON(con->in_msg);
2009                 con->in_tag = CEPH_MSGR_TAG_READY;
2010                 dout("try_write initiating connect on %p new state %lu\n",
2011                      con, con->state);
2012                 ret = ceph_tcp_connect(con);
2013                 if (ret < 0) {
2014                         con->error_msg = "connect error";
2015                         goto out;
2016                 }
2017         }
2018
2019 more_kvec:
2020         /* kvec data queued? */
2021         if (con->out_skip) {
2022                 ret = write_partial_skip(con);
2023                 if (ret <= 0)
2024                         goto out;
2025         }
2026         if (con->out_kvec_left) {
2027                 ret = write_partial_kvec(con);
2028                 if (ret <= 0)
2029                         goto out;
2030         }
2031
2032         /* msg pages? */
2033         if (con->out_msg) {
2034                 if (con->out_msg_done) {
2035                         ceph_msg_put(con->out_msg);
2036                         con->out_msg = NULL;   /* we're done with this one */
2037                         goto do_next;
2038                 }
2039
2040                 ret = write_partial_msg_pages(con);
2041                 if (ret == 1)
2042                         goto more_kvec;  /* we need to send the footer, too! */
2043                 if (ret == 0)
2044                         goto out;
2045                 if (ret < 0) {
2046                         dout("try_write write_partial_msg_pages err %d\n",
2047                              ret);
2048                         goto out;
2049                 }
2050         }
2051
2052 do_next:
2053         if (!test_bit(CONNECTING, &con->state) &&
2054                         !test_bit(NEGOTIATING, &con->state)) {
2055                 /* is anything else pending? */
2056                 if (!list_empty(&con->out_queue)) {
2057                         prepare_write_message(con);
2058                         goto more;
2059                 }
2060                 if (con->in_seq > con->in_seq_acked) {
2061                         prepare_write_ack(con);
2062                         goto more;
2063                 }
2064                 if (test_and_clear_bit(KEEPALIVE_PENDING, &con->flags)) {
2065                         prepare_write_keepalive(con);
2066                         goto more;
2067                 }
2068         }
2069
2070         /* Nothing to do! */
2071         clear_bit(WRITE_PENDING, &con->flags);
2072         dout("try_write nothing else to write.\n");
2073         ret = 0;
2074 out:
2075         dout("try_write done on %p ret %d\n", con, ret);
2076         return ret;
2077 }
2078
2079
2080
2081 /*
2082  * Read what we can from the socket.
2083  */
2084 static int try_read(struct ceph_connection *con)
2085 {
2086         int ret = -1;
2087
2088         if (!con->sock)
2089                 return 0;
2090
2091         if (test_bit(STANDBY, &con->state))
2092                 return 0;
2093
2094         dout("try_read start on %p\n", con);
2095
2096 more:
2097         dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
2098              con->in_base_pos);
2099
2100         /*
2101          * process_connect and process_message drop and re-take
2102          * con->mutex.  make sure we handle a racing close or reopen.
2103          */
2104         if (test_bit(CLOSED, &con->state) ||
2105             test_bit(OPENING, &con->state)) {
2106                 ret = -EAGAIN;
2107                 goto out;
2108         }
2109
2110         if (test_bit(CONNECTING, &con->state)) {
2111                 dout("try_read connecting\n");
2112                 ret = read_partial_banner(con);
2113                 if (ret <= 0)
2114                         goto out;
2115                 ret = process_banner(con);
2116                 if (ret < 0)
2117                         goto out;
2118
2119                 clear_bit(CONNECTING, &con->state);
2120                 set_bit(NEGOTIATING, &con->state);
2121
2122                 /* Banner is good, exchange connection info */
2123                 ret = prepare_write_connect(con);
2124                 if (ret < 0)
2125                         goto out;
2126                 prepare_read_connect(con);
2127
2128                 /* Send connection info before awaiting response */
2129                 goto out;
2130         }
2131
2132         if (test_bit(NEGOTIATING, &con->state)) {
2133                 dout("try_read negotiating\n");
2134                 ret = read_partial_connect(con);
2135                 if (ret <= 0)
2136                         goto out;
2137                 ret = process_connect(con);
2138                 if (ret < 0)
2139                         goto out;
2140                 goto more;
2141         }
2142
2143         if (con->in_base_pos < 0) {
2144                 /*
2145                  * skipping + discarding content.
2146                  *
2147                  * FIXME: there must be a better way to do this!
2148                  */
2149                 static char buf[SKIP_BUF_SIZE];
2150                 int skip = min((int) sizeof (buf), -con->in_base_pos);
2151
2152                 dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
2153                 ret = ceph_tcp_recvmsg(con->sock, buf, skip);
2154                 if (ret <= 0)
2155                         goto out;
2156                 con->in_base_pos += ret;
2157                 if (con->in_base_pos)
2158                         goto more;
2159         }
2160         if (con->in_tag == CEPH_MSGR_TAG_READY) {
2161                 /*
2162                  * what's next?
2163                  */
2164                 ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
2165                 if (ret <= 0)
2166                         goto out;
2167                 dout("try_read got tag %d\n", (int)con->in_tag);
2168                 switch (con->in_tag) {
2169                 case CEPH_MSGR_TAG_MSG:
2170                         prepare_read_message(con);
2171                         break;
2172                 case CEPH_MSGR_TAG_ACK:
2173                         prepare_read_ack(con);
2174                         break;
2175                 case CEPH_MSGR_TAG_CLOSE:
2176                         clear_bit(CONNECTED, &con->state);
2177                         set_bit(CLOSED, &con->state);   /* fixme */
2178                         goto out;
2179                 default:
2180                         goto bad_tag;
2181                 }
2182         }
2183         if (con->in_tag == CEPH_MSGR_TAG_MSG) {
2184                 ret = read_partial_message(con);
2185                 if (ret <= 0) {
2186                         switch (ret) {
2187                         case -EBADMSG:
2188                                 con->error_msg = "bad crc";
2189                                 ret = -EIO;
2190                                 break;
2191                         case -EIO:
2192                                 con->error_msg = "io error";
2193                                 break;
2194                         }
2195                         goto out;
2196                 }
2197                 if (con->in_tag == CEPH_MSGR_TAG_READY)
2198                         goto more;
2199                 process_message(con);
2200                 goto more;
2201         }
2202         if (con->in_tag == CEPH_MSGR_TAG_ACK) {
2203                 ret = read_partial_ack(con);
2204                 if (ret <= 0)
2205                         goto out;
2206                 process_ack(con);
2207                 goto more;
2208         }
2209
2210 out:
2211         dout("try_read done on %p ret %d\n", con, ret);
2212         return ret;
2213
2214 bad_tag:
2215         pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
2216         con->error_msg = "protocol error, garbage tag";
2217         ret = -1;
2218         goto out;
2219 }
2220
2221
2222 /*
2223  * Atomically queue work on a connection.  Bump @con reference to
2224  * avoid races with connection teardown.
2225  */
2226 static void queue_con(struct ceph_connection *con)
2227 {
2228         if (!con->ops->get(con)) {
2229                 dout("queue_con %p ref count 0\n", con);
2230                 return;
2231         }
2232
2233         if (!queue_delayed_work(ceph_msgr_wq, &con->work, 0)) {
2234                 dout("queue_con %p - already queued\n", con);
2235                 con->ops->put(con);
2236         } else {
2237                 dout("queue_con %p\n", con);
2238         }
2239 }
2240
2241 /*
2242  * Do some work on a connection.  Drop a connection ref when we're done.
2243  */
2244 static void con_work(struct work_struct *work)
2245 {
2246         struct ceph_connection *con = container_of(work, struct ceph_connection,
2247                                                    work.work);
2248         int ret;
2249
2250         mutex_lock(&con->mutex);
2251 restart:
2252         if (test_and_clear_bit(SOCK_CLOSED, &con->flags)) {
2253                 if (test_and_clear_bit(CONNECTED, &con->state))
2254                         con->error_msg = "socket closed";
2255                 else if (test_and_clear_bit(NEGOTIATING, &con->state))
2256                         con->error_msg = "negotiation failed";
2257                 else if (test_and_clear_bit(CONNECTING, &con->state))
2258                         con->error_msg = "connection failed";
2259                 else
2260                         con->error_msg = "unrecognized con state";
2261                 goto fault;
2262         }
2263
2264         if (test_and_clear_bit(BACKOFF, &con->flags)) {
2265                 dout("con_work %p backing off\n", con);
2266                 if (queue_delayed_work(ceph_msgr_wq, &con->work,
2267                                        round_jiffies_relative(con->delay))) {
2268                         dout("con_work %p backoff %lu\n", con, con->delay);
2269                         mutex_unlock(&con->mutex);
2270                         return;
2271                 } else {
2272                         con->ops->put(con);
2273                         dout("con_work %p FAILED to back off %lu\n", con,
2274                              con->delay);
2275                 }
2276         }
2277
2278         if (test_bit(STANDBY, &con->state)) {
2279                 dout("con_work %p STANDBY\n", con);
2280                 goto done;
2281         }
2282         if (test_bit(CLOSED, &con->state)) { /* e.g. if we are replaced */
2283                 dout("con_work CLOSED\n");
2284                 con_close_socket(con);
2285                 goto done;
2286         }
2287         if (test_and_clear_bit(OPENING, &con->state)) {
2288                 /* reopen w/ new peer */
2289                 dout("con_work OPENING\n");
2290                 con_close_socket(con);
2291         }
2292
2293         ret = try_read(con);
2294         if (ret == -EAGAIN)
2295                 goto restart;
2296         if (ret < 0) {
2297                 con->error_msg = "socket error on read";
2298                 goto fault;
2299         }
2300
2301         ret = try_write(con);
2302         if (ret == -EAGAIN)
2303                 goto restart;
2304         if (ret < 0) {
2305                 con->error_msg = "socket error on write";
2306                 goto fault;
2307         }
2308
2309 done:
2310         mutex_unlock(&con->mutex);
2311 done_unlocked:
2312         con->ops->put(con);
2313         return;
2314
2315 fault:
2316         mutex_unlock(&con->mutex);
2317         ceph_fault(con);     /* error/fault path */
2318         goto done_unlocked;
2319 }
2320
2321
2322 /*
2323  * Generic error/fault handler.  A retry mechanism is used with
2324  * exponential backoff
2325  */
2326 static void ceph_fault(struct ceph_connection *con)
2327 {
2328         pr_err("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2329                ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
2330         dout("fault %p state %lu to peer %s\n",
2331              con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
2332
2333         if (test_bit(LOSSYTX, &con->flags)) {
2334                 dout("fault on LOSSYTX channel\n");
2335                 goto out;
2336         }
2337
2338         mutex_lock(&con->mutex);
2339         if (test_bit(CLOSED, &con->state))
2340                 goto out_unlock;
2341
2342         con_close_socket(con);
2343
2344         if (con->in_msg) {
2345                 BUG_ON(con->in_msg->con != con);
2346                 con->in_msg->con = NULL;
2347                 ceph_msg_put(con->in_msg);
2348                 con->in_msg = NULL;
2349                 con->ops->put(con);
2350         }
2351
2352         /* Requeue anything that hasn't been acked */
2353         list_splice_init(&con->out_sent, &con->out_queue);
2354
2355         /* If there are no messages queued or keepalive pending, place
2356          * the connection in a STANDBY state */
2357         if (list_empty(&con->out_queue) &&
2358             !test_bit(KEEPALIVE_PENDING, &con->flags)) {
2359                 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
2360                 clear_bit(WRITE_PENDING, &con->flags);
2361                 set_bit(STANDBY, &con->state);
2362         } else {
2363                 /* retry after a delay. */
2364                 if (con->delay == 0)
2365                         con->delay = BASE_DELAY_INTERVAL;
2366                 else if (con->delay < MAX_DELAY_INTERVAL)
2367                         con->delay *= 2;
2368                 con->ops->get(con);
2369                 if (queue_delayed_work(ceph_msgr_wq, &con->work,
2370                                        round_jiffies_relative(con->delay))) {
2371                         dout("fault queued %p delay %lu\n", con, con->delay);
2372                 } else {
2373                         con->ops->put(con);
2374                         dout("fault failed to queue %p delay %lu, backoff\n",
2375                              con, con->delay);
2376                         /*
2377                          * In many cases we see a socket state change
2378                          * while con_work is running and end up
2379                          * queuing (non-delayed) work, such that we
2380                          * can't backoff with a delay.  Set a flag so
2381                          * that when con_work restarts we schedule the
2382                          * delay then.
2383                          */
2384                         set_bit(BACKOFF, &con->flags);
2385                 }
2386         }
2387
2388 out_unlock:
2389         mutex_unlock(&con->mutex);
2390 out:
2391         /*
2392          * in case we faulted due to authentication, invalidate our
2393          * current tickets so that we can get new ones.
2394          */
2395         if (con->auth_retry && con->ops->invalidate_authorizer) {
2396                 dout("calling invalidate_authorizer()\n");
2397                 con->ops->invalidate_authorizer(con);
2398         }
2399
2400         if (con->ops->fault)
2401                 con->ops->fault(con);
2402 }
2403
2404
2405
2406 /*
2407  * initialize a new messenger instance
2408  */
2409 void ceph_messenger_init(struct ceph_messenger *msgr,
2410                         struct ceph_entity_addr *myaddr,
2411                         u32 supported_features,
2412                         u32 required_features,
2413                         bool nocrc)
2414 {
2415         msgr->supported_features = supported_features;
2416         msgr->required_features = required_features;
2417
2418         spin_lock_init(&msgr->global_seq_lock);
2419
2420         if (myaddr)
2421                 msgr->inst.addr = *myaddr;
2422
2423         /* select a random nonce */
2424         msgr->inst.addr.type = 0;
2425         get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
2426         encode_my_addr(msgr);
2427         msgr->nocrc = nocrc;
2428
2429         atomic_set(&msgr->stopping, 0);
2430
2431         dout("%s %p\n", __func__, msgr);
2432 }
2433 EXPORT_SYMBOL(ceph_messenger_init);
2434
2435 static void clear_standby(struct ceph_connection *con)
2436 {
2437         /* come back from STANDBY? */
2438         if (test_and_clear_bit(STANDBY, &con->state)) {
2439                 mutex_lock(&con->mutex);
2440                 dout("clear_standby %p and ++connect_seq\n", con);
2441                 con->connect_seq++;
2442                 WARN_ON(test_bit(WRITE_PENDING, &con->flags));
2443                 WARN_ON(test_bit(KEEPALIVE_PENDING, &con->flags));
2444                 mutex_unlock(&con->mutex);
2445         }
2446 }
2447
2448 /*
2449  * Queue up an outgoing message on the given connection.
2450  */
2451 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
2452 {
2453         if (test_bit(CLOSED, &con->state)) {
2454                 dout("con_send %p closed, dropping %p\n", con, msg);
2455                 ceph_msg_put(msg);
2456                 return;
2457         }
2458
2459         /* set src+dst */
2460         msg->hdr.src = con->msgr->inst.name;
2461
2462         BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
2463
2464         msg->needs_out_seq = true;
2465
2466         /* queue */
2467         mutex_lock(&con->mutex);
2468
2469         BUG_ON(msg->con != NULL);
2470         msg->con = con->ops->get(con);
2471         BUG_ON(msg->con == NULL);
2472
2473         BUG_ON(!list_empty(&msg->list_head));
2474         list_add_tail(&msg->list_head, &con->out_queue);
2475         dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
2476              ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
2477              ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2478              le32_to_cpu(msg->hdr.front_len),
2479              le32_to_cpu(msg->hdr.middle_len),
2480              le32_to_cpu(msg->hdr.data_len));
2481         mutex_unlock(&con->mutex);
2482
2483         /* if there wasn't anything waiting to send before, queue
2484          * new work */
2485         clear_standby(con);
2486         if (test_and_set_bit(WRITE_PENDING, &con->flags) == 0)
2487                 queue_con(con);
2488 }
2489 EXPORT_SYMBOL(ceph_con_send);
2490
2491 /*
2492  * Revoke a message that was previously queued for send
2493  */
2494 void ceph_msg_revoke(struct ceph_msg *msg)
2495 {
2496         struct ceph_connection *con = msg->con;
2497
2498         if (!con)
2499                 return;         /* Message not in our possession */
2500
2501         mutex_lock(&con->mutex);
2502         if (!list_empty(&msg->list_head)) {
2503                 dout("%s %p msg %p - was on queue\n", __func__, con, msg);
2504                 list_del_init(&msg->list_head);
2505                 BUG_ON(msg->con == NULL);
2506                 msg->con->ops->put(msg->con);
2507                 msg->con = NULL;
2508                 msg->hdr.seq = 0;
2509
2510                 ceph_msg_put(msg);
2511         }
2512         if (con->out_msg == msg) {
2513                 dout("%s %p msg %p - was sending\n", __func__, con, msg);
2514                 con->out_msg = NULL;
2515                 if (con->out_kvec_is_msg) {
2516                         con->out_skip = con->out_kvec_bytes;
2517                         con->out_kvec_is_msg = false;
2518                 }
2519                 msg->hdr.seq = 0;
2520
2521                 ceph_msg_put(msg);
2522         }
2523         mutex_unlock(&con->mutex);
2524 }
2525
2526 /*
2527  * Revoke a message that we may be reading data into
2528  */
2529 void ceph_msg_revoke_incoming(struct ceph_msg *msg)
2530 {
2531         struct ceph_connection *con;
2532
2533         BUG_ON(msg == NULL);
2534         if (!msg->con) {
2535                 dout("%s msg %p null con\n", __func__, msg);
2536
2537                 return;         /* Message not in our possession */
2538         }
2539
2540         con = msg->con;
2541         mutex_lock(&con->mutex);
2542         if (con->in_msg == msg) {
2543                 unsigned int front_len = le32_to_cpu(con->in_hdr.front_len);
2544                 unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len);
2545                 unsigned int data_len = le32_to_cpu(con->in_hdr.data_len);
2546
2547                 /* skip rest of message */
2548                 dout("%s %p msg %p revoked\n", __func__, con, msg);
2549                 con->in_base_pos = con->in_base_pos -
2550                                 sizeof(struct ceph_msg_header) -
2551                                 front_len -
2552                                 middle_len -
2553                                 data_len -
2554                                 sizeof(struct ceph_msg_footer);
2555                 ceph_msg_put(con->in_msg);
2556                 con->in_msg = NULL;
2557                 con->in_tag = CEPH_MSGR_TAG_READY;
2558                 con->in_seq++;
2559         } else {
2560                 dout("%s %p in_msg %p msg %p no-op\n",
2561                      __func__, con, con->in_msg, msg);
2562         }
2563         mutex_unlock(&con->mutex);
2564 }
2565
2566 /*
2567  * Queue a keepalive byte to ensure the tcp connection is alive.
2568  */
2569 void ceph_con_keepalive(struct ceph_connection *con)
2570 {
2571         dout("con_keepalive %p\n", con);
2572         clear_standby(con);
2573         if (test_and_set_bit(KEEPALIVE_PENDING, &con->flags) == 0 &&
2574             test_and_set_bit(WRITE_PENDING, &con->flags) == 0)
2575                 queue_con(con);
2576 }
2577 EXPORT_SYMBOL(ceph_con_keepalive);
2578
2579
2580 /*
2581  * construct a new message with given type, size
2582  * the new msg has a ref count of 1.
2583  */
2584 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
2585                               bool can_fail)
2586 {
2587         struct ceph_msg *m;
2588
2589         m = kmalloc(sizeof(*m), flags);
2590         if (m == NULL)
2591                 goto out;
2592         kref_init(&m->kref);
2593
2594         m->con = NULL;
2595         INIT_LIST_HEAD(&m->list_head);
2596
2597         m->hdr.tid = 0;
2598         m->hdr.type = cpu_to_le16(type);
2599         m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
2600         m->hdr.version = 0;
2601         m->hdr.front_len = cpu_to_le32(front_len);
2602         m->hdr.middle_len = 0;
2603         m->hdr.data_len = 0;
2604         m->hdr.data_off = 0;
2605         m->hdr.reserved = 0;
2606         m->footer.front_crc = 0;
2607         m->footer.middle_crc = 0;
2608         m->footer.data_crc = 0;
2609         m->footer.flags = 0;
2610         m->front_max = front_len;
2611         m->front_is_vmalloc = false;
2612         m->more_to_follow = false;
2613         m->ack_stamp = 0;
2614         m->pool = NULL;
2615
2616         /* middle */
2617         m->middle = NULL;
2618
2619         /* data */
2620         m->nr_pages = 0;
2621         m->page_alignment = 0;
2622         m->pages = NULL;
2623         m->pagelist = NULL;
2624         m->bio = NULL;
2625         m->bio_iter = NULL;
2626         m->bio_seg = 0;
2627         m->trail = NULL;
2628
2629         /* front */
2630         if (front_len) {
2631                 if (front_len > PAGE_CACHE_SIZE) {
2632                         m->front.iov_base = __vmalloc(front_len, flags,
2633                                                       PAGE_KERNEL);
2634                         m->front_is_vmalloc = true;
2635                 } else {
2636                         m->front.iov_base = kmalloc(front_len, flags);
2637                 }
2638                 if (m->front.iov_base == NULL) {
2639                         dout("ceph_msg_new can't allocate %d bytes\n",
2640                              front_len);
2641                         goto out2;
2642                 }
2643         } else {
2644                 m->front.iov_base = NULL;
2645         }
2646         m->front.iov_len = front_len;
2647
2648         dout("ceph_msg_new %p front %d\n", m, front_len);
2649         return m;
2650
2651 out2:
2652         ceph_msg_put(m);
2653 out:
2654         if (!can_fail) {
2655                 pr_err("msg_new can't create type %d front %d\n", type,
2656                        front_len);
2657                 WARN_ON(1);
2658         } else {
2659                 dout("msg_new can't create type %d front %d\n", type,
2660                      front_len);
2661         }
2662         return NULL;
2663 }
2664 EXPORT_SYMBOL(ceph_msg_new);
2665
2666 /*
2667  * Allocate "middle" portion of a message, if it is needed and wasn't
2668  * allocated by alloc_msg.  This allows us to read a small fixed-size
2669  * per-type header in the front and then gracefully fail (i.e.,
2670  * propagate the error to the caller based on info in the front) when
2671  * the middle is too large.
2672  */
2673 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
2674 {
2675         int type = le16_to_cpu(msg->hdr.type);
2676         int middle_len = le32_to_cpu(msg->hdr.middle_len);
2677
2678         dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
2679              ceph_msg_type_name(type), middle_len);
2680         BUG_ON(!middle_len);
2681         BUG_ON(msg->middle);
2682
2683         msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
2684         if (!msg->middle)
2685                 return -ENOMEM;
2686         return 0;
2687 }
2688
2689 /*
2690  * Allocate a message for receiving an incoming message on a
2691  * connection, and save the result in con->in_msg.  Uses the
2692  * connection's private alloc_msg op if available.
2693  *
2694  * Returns true if the message should be skipped, false otherwise.
2695  * If true is returned (skip message), con->in_msg will be NULL.
2696  * If false is returned, con->in_msg will contain a pointer to the
2697  * newly-allocated message, or NULL in case of memory exhaustion.
2698  */
2699 static bool ceph_con_in_msg_alloc(struct ceph_connection *con,
2700                                 struct ceph_msg_header *hdr)
2701 {
2702         int type = le16_to_cpu(hdr->type);
2703         int front_len = le32_to_cpu(hdr->front_len);
2704         int middle_len = le32_to_cpu(hdr->middle_len);
2705         int ret;
2706
2707         BUG_ON(con->in_msg != NULL);
2708
2709         if (con->ops->alloc_msg) {
2710                 int skip = 0;
2711
2712                 mutex_unlock(&con->mutex);
2713                 con->in_msg = con->ops->alloc_msg(con, hdr, &skip);
2714                 mutex_lock(&con->mutex);
2715                 if (con->in_msg) {
2716                         con->in_msg->con = con->ops->get(con);
2717                         BUG_ON(con->in_msg->con == NULL);
2718                 }
2719                 if (skip)
2720                         con->in_msg = NULL;
2721
2722                 if (!con->in_msg)
2723                         return skip != 0;
2724         }
2725         if (!con->in_msg) {
2726                 con->in_msg = ceph_msg_new(type, front_len, GFP_NOFS, false);
2727                 if (!con->in_msg) {
2728                         pr_err("unable to allocate msg type %d len %d\n",
2729                                type, front_len);
2730                         return false;
2731                 }
2732                 con->in_msg->con = con->ops->get(con);
2733                 BUG_ON(con->in_msg->con == NULL);
2734                 con->in_msg->page_alignment = le16_to_cpu(hdr->data_off);
2735         }
2736         memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
2737
2738         if (middle_len && !con->in_msg->middle) {
2739                 ret = ceph_alloc_middle(con, con->in_msg);
2740                 if (ret < 0) {
2741                         ceph_msg_put(con->in_msg);
2742                         con->in_msg = NULL;
2743                 }
2744         }
2745
2746         return false;
2747 }
2748
2749
2750 /*
2751  * Free a generically kmalloc'd message.
2752  */
2753 void ceph_msg_kfree(struct ceph_msg *m)
2754 {
2755         dout("msg_kfree %p\n", m);
2756         if (m->front_is_vmalloc)
2757                 vfree(m->front.iov_base);
2758         else
2759                 kfree(m->front.iov_base);
2760         kfree(m);
2761 }
2762
2763 /*
2764  * Drop a msg ref.  Destroy as needed.
2765  */
2766 void ceph_msg_last_put(struct kref *kref)
2767 {
2768         struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
2769
2770         dout("ceph_msg_put last one on %p\n", m);
2771         WARN_ON(!list_empty(&m->list_head));
2772
2773         /* drop middle, data, if any */
2774         if (m->middle) {
2775                 ceph_buffer_put(m->middle);
2776                 m->middle = NULL;
2777         }
2778         m->nr_pages = 0;
2779         m->pages = NULL;
2780
2781         if (m->pagelist) {
2782                 ceph_pagelist_release(m->pagelist);
2783                 kfree(m->pagelist);
2784                 m->pagelist = NULL;
2785         }
2786
2787         m->trail = NULL;
2788
2789         if (m->pool)
2790                 ceph_msgpool_put(m->pool, m);
2791         else
2792                 ceph_msg_kfree(m);
2793 }
2794 EXPORT_SYMBOL(ceph_msg_last_put);
2795
2796 void ceph_msg_dump(struct ceph_msg *msg)
2797 {
2798         pr_debug("msg_dump %p (front_max %d nr_pages %d)\n", msg,
2799                  msg->front_max, msg->nr_pages);
2800         print_hex_dump(KERN_DEBUG, "header: ",
2801                        DUMP_PREFIX_OFFSET, 16, 1,
2802                        &msg->hdr, sizeof(msg->hdr), true);
2803         print_hex_dump(KERN_DEBUG, " front: ",
2804                        DUMP_PREFIX_OFFSET, 16, 1,
2805                        msg->front.iov_base, msg->front.iov_len, true);
2806         if (msg->middle)
2807                 print_hex_dump(KERN_DEBUG, "middle: ",
2808                                DUMP_PREFIX_OFFSET, 16, 1,
2809                                msg->middle->vec.iov_base,
2810                                msg->middle->vec.iov_len, true);
2811         print_hex_dump(KERN_DEBUG, "footer: ",
2812                        DUMP_PREFIX_OFFSET, 16, 1,
2813                        &msg->footer, sizeof(msg->footer), true);
2814 }
2815 EXPORT_SYMBOL(ceph_msg_dump);