bd2d24d1ff216529f57872f5871228cc9ad77e28
[firefly-linux-kernel-4.4.55.git] / net / bridge / br_netfilter.c
1 /*
2  *      Handle firewalling
3  *      Linux ethernet bridge
4  *
5  *      Authors:
6  *      Lennert Buytenhek               <buytenh@gnu.org>
7  *      Bart De Schuymer                <bdschuym@pandora.be>
8  *
9  *      This program is free software; you can redistribute it and/or
10  *      modify it under the terms of the GNU General Public License
11  *      as published by the Free Software Foundation; either version
12  *      2 of the License, or (at your option) any later version.
13  *
14  *      Lennert dedicates this file to Kerstin Wurdinger.
15  */
16
17 #include <linux/module.h>
18 #include <linux/kernel.h>
19 #include <linux/slab.h>
20 #include <linux/ip.h>
21 #include <linux/netdevice.h>
22 #include <linux/skbuff.h>
23 #include <linux/if_arp.h>
24 #include <linux/if_ether.h>
25 #include <linux/if_vlan.h>
26 #include <linux/if_pppox.h>
27 #include <linux/ppp_defs.h>
28 #include <linux/netfilter_bridge.h>
29 #include <linux/netfilter_ipv4.h>
30 #include <linux/netfilter_ipv6.h>
31 #include <linux/netfilter_arp.h>
32 #include <linux/in_route.h>
33 #include <linux/inetdevice.h>
34
35 #include <net/ip.h>
36 #include <net/ipv6.h>
37 #include <net/route.h>
38 #include <net/netfilter/br_netfilter.h>
39
40 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
41 #include <net/netfilter/nf_conntrack.h>
42 #endif
43
44 #include <asm/uaccess.h>
45 #include "br_private.h"
46 #ifdef CONFIG_SYSCTL
47 #include <linux/sysctl.h>
48 #endif
49
50 #ifdef CONFIG_SYSCTL
51 static struct ctl_table_header *brnf_sysctl_header;
52 static int brnf_call_iptables __read_mostly = 1;
53 static int brnf_call_ip6tables __read_mostly = 1;
54 static int brnf_call_arptables __read_mostly = 1;
55 static int brnf_filter_vlan_tagged __read_mostly = 0;
56 static int brnf_filter_pppoe_tagged __read_mostly = 0;
57 static int brnf_pass_vlan_indev __read_mostly = 0;
58 #else
59 #define brnf_call_iptables 1
60 #define brnf_call_ip6tables 1
61 #define brnf_call_arptables 1
62 #define brnf_filter_vlan_tagged 0
63 #define brnf_filter_pppoe_tagged 0
64 #define brnf_pass_vlan_indev 0
65 #endif
66
67 #define IS_IP(skb) \
68         (!skb_vlan_tag_present(skb) && skb->protocol == htons(ETH_P_IP))
69
70 #define IS_IPV6(skb) \
71         (!skb_vlan_tag_present(skb) && skb->protocol == htons(ETH_P_IPV6))
72
73 #define IS_ARP(skb) \
74         (!skb_vlan_tag_present(skb) && skb->protocol == htons(ETH_P_ARP))
75
76 static inline __be16 vlan_proto(const struct sk_buff *skb)
77 {
78         if (skb_vlan_tag_present(skb))
79                 return skb->protocol;
80         else if (skb->protocol == htons(ETH_P_8021Q))
81                 return vlan_eth_hdr(skb)->h_vlan_encapsulated_proto;
82         else
83                 return 0;
84 }
85
86 #define IS_VLAN_IP(skb) \
87         (vlan_proto(skb) == htons(ETH_P_IP) && \
88          brnf_filter_vlan_tagged)
89
90 #define IS_VLAN_IPV6(skb) \
91         (vlan_proto(skb) == htons(ETH_P_IPV6) && \
92          brnf_filter_vlan_tagged)
93
94 #define IS_VLAN_ARP(skb) \
95         (vlan_proto(skb) == htons(ETH_P_ARP) && \
96          brnf_filter_vlan_tagged)
97
98 static inline __be16 pppoe_proto(const struct sk_buff *skb)
99 {
100         return *((__be16 *)(skb_mac_header(skb) + ETH_HLEN +
101                             sizeof(struct pppoe_hdr)));
102 }
103
104 #define IS_PPPOE_IP(skb) \
105         (skb->protocol == htons(ETH_P_PPP_SES) && \
106          pppoe_proto(skb) == htons(PPP_IP) && \
107          brnf_filter_pppoe_tagged)
108
109 #define IS_PPPOE_IPV6(skb) \
110         (skb->protocol == htons(ETH_P_PPP_SES) && \
111          pppoe_proto(skb) == htons(PPP_IPV6) && \
112          brnf_filter_pppoe_tagged)
113
114 static inline struct rtable *bridge_parent_rtable(const struct net_device *dev)
115 {
116         struct net_bridge_port *port;
117
118         port = br_port_get_rcu(dev);
119         return port ? &port->br->fake_rtable : NULL;
120 }
121
122 static inline struct net_device *bridge_parent(const struct net_device *dev)
123 {
124         struct net_bridge_port *port;
125
126         port = br_port_get_rcu(dev);
127         return port ? port->br->dev : NULL;
128 }
129
130 static inline struct nf_bridge_info *nf_bridge_alloc(struct sk_buff *skb)
131 {
132         skb->nf_bridge = kzalloc(sizeof(struct nf_bridge_info), GFP_ATOMIC);
133         if (likely(skb->nf_bridge))
134                 atomic_set(&(skb->nf_bridge->use), 1);
135
136         return skb->nf_bridge;
137 }
138
139 static inline struct nf_bridge_info *nf_bridge_unshare(struct sk_buff *skb)
140 {
141         struct nf_bridge_info *nf_bridge = skb->nf_bridge;
142
143         if (atomic_read(&nf_bridge->use) > 1) {
144                 struct nf_bridge_info *tmp = nf_bridge_alloc(skb);
145
146                 if (tmp) {
147                         memcpy(tmp, nf_bridge, sizeof(struct nf_bridge_info));
148                         atomic_set(&tmp->use, 1);
149                 }
150                 nf_bridge_put(nf_bridge);
151                 nf_bridge = tmp;
152         }
153         return nf_bridge;
154 }
155
156 static inline void nf_bridge_push_encap_header(struct sk_buff *skb)
157 {
158         unsigned int len = nf_bridge_encap_header_len(skb);
159
160         skb_push(skb, len);
161         skb->network_header -= len;
162 }
163
164 static inline void nf_bridge_pull_encap_header(struct sk_buff *skb)
165 {
166         unsigned int len = nf_bridge_encap_header_len(skb);
167
168         skb_pull(skb, len);
169         skb->network_header += len;
170 }
171
172 static inline void nf_bridge_pull_encap_header_rcsum(struct sk_buff *skb)
173 {
174         unsigned int len = nf_bridge_encap_header_len(skb);
175
176         skb_pull_rcsum(skb, len);
177         skb->network_header += len;
178 }
179
180 static inline void nf_bridge_save_header(struct sk_buff *skb)
181 {
182         int header_size = ETH_HLEN + nf_bridge_encap_header_len(skb);
183
184         skb_copy_from_linear_data_offset(skb, -header_size,
185                                          skb->nf_bridge->data, header_size);
186 }
187
188 /* When handing a packet over to the IP layer
189  * check whether we have a skb that is in the
190  * expected format
191  */
192
193 static int br_parse_ip_options(struct sk_buff *skb)
194 {
195         const struct iphdr *iph;
196         struct net_device *dev = skb->dev;
197         u32 len;
198
199         if (!pskb_may_pull(skb, sizeof(struct iphdr)))
200                 goto inhdr_error;
201
202         iph = ip_hdr(skb);
203
204         /* Basic sanity checks */
205         if (iph->ihl < 5 || iph->version != 4)
206                 goto inhdr_error;
207
208         if (!pskb_may_pull(skb, iph->ihl*4))
209                 goto inhdr_error;
210
211         iph = ip_hdr(skb);
212         if (unlikely(ip_fast_csum((u8 *)iph, iph->ihl)))
213                 goto inhdr_error;
214
215         len = ntohs(iph->tot_len);
216         if (skb->len < len) {
217                 IP_INC_STATS_BH(dev_net(dev), IPSTATS_MIB_INTRUNCATEDPKTS);
218                 goto drop;
219         } else if (len < (iph->ihl*4))
220                 goto inhdr_error;
221
222         if (pskb_trim_rcsum(skb, len)) {
223                 IP_INC_STATS_BH(dev_net(dev), IPSTATS_MIB_INDISCARDS);
224                 goto drop;
225         }
226
227         memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
228         /* We should really parse IP options here but until
229          * somebody who actually uses IP options complains to
230          * us we'll just silently ignore the options because
231          * we're lazy!
232          */
233         return 0;
234
235 inhdr_error:
236         IP_INC_STATS_BH(dev_net(dev), IPSTATS_MIB_INHDRERRORS);
237 drop:
238         return -1;
239 }
240
241 static void nf_bridge_update_protocol(struct sk_buff *skb)
242 {
243         if (skb->nf_bridge->mask & BRNF_8021Q)
244                 skb->protocol = htons(ETH_P_8021Q);
245         else if (skb->nf_bridge->mask & BRNF_PPPoE)
246                 skb->protocol = htons(ETH_P_PPP_SES);
247 }
248
249 /* PF_BRIDGE/PRE_ROUTING *********************************************/
250 /* Undo the changes made for ip6tables PREROUTING and continue the
251  * bridge PRE_ROUTING hook. */
252 static int br_nf_pre_routing_finish_ipv6(struct sk_buff *skb)
253 {
254         struct nf_bridge_info *nf_bridge = skb->nf_bridge;
255         struct rtable *rt;
256
257         if (nf_bridge->mask & BRNF_PKT_TYPE) {
258                 skb->pkt_type = PACKET_OTHERHOST;
259                 nf_bridge->mask ^= BRNF_PKT_TYPE;
260         }
261         nf_bridge->mask ^= BRNF_NF_BRIDGE_PREROUTING;
262
263         rt = bridge_parent_rtable(nf_bridge->physindev);
264         if (!rt) {
265                 kfree_skb(skb);
266                 return 0;
267         }
268         skb_dst_set_noref(skb, &rt->dst);
269
270         skb->dev = nf_bridge->physindev;
271         nf_bridge_update_protocol(skb);
272         nf_bridge_push_encap_header(skb);
273         NF_HOOK_THRESH(NFPROTO_BRIDGE, NF_BR_PRE_ROUTING, skb, skb->dev, NULL,
274                        br_handle_frame_finish, 1);
275
276         return 0;
277 }
278
279 /* Obtain the correct destination MAC address, while preserving the original
280  * source MAC address. If we already know this address, we just copy it. If we
281  * don't, we use the neighbour framework to find out. In both cases, we make
282  * sure that br_handle_frame_finish() is called afterwards.
283  */
284 static int br_nf_pre_routing_finish_bridge(struct sk_buff *skb)
285 {
286         struct nf_bridge_info *nf_bridge = skb->nf_bridge;
287         struct neighbour *neigh;
288         struct dst_entry *dst;
289
290         skb->dev = bridge_parent(skb->dev);
291         if (!skb->dev)
292                 goto free_skb;
293         dst = skb_dst(skb);
294         neigh = dst_neigh_lookup_skb(dst, skb);
295         if (neigh) {
296                 int ret;
297
298                 if (neigh->hh.hh_len) {
299                         neigh_hh_bridge(&neigh->hh, skb);
300                         skb->dev = nf_bridge->physindev;
301                         ret = br_handle_frame_finish(skb);
302                 } else {
303                         /* the neighbour function below overwrites the complete
304                          * MAC header, so we save the Ethernet source address and
305                          * protocol number.
306                          */
307                         skb_copy_from_linear_data_offset(skb,
308                                                          -(ETH_HLEN-ETH_ALEN),
309                                                          skb->nf_bridge->data,
310                                                          ETH_HLEN-ETH_ALEN);
311                         /* tell br_dev_xmit to continue with forwarding */
312                         nf_bridge->mask |= BRNF_BRIDGED_DNAT;
313                         /* FIXME Need to refragment */
314                         ret = neigh->output(neigh, skb);
315                 }
316                 neigh_release(neigh);
317                 return ret;
318         }
319 free_skb:
320         kfree_skb(skb);
321         return 0;
322 }
323
324 static bool dnat_took_place(const struct sk_buff *skb)
325 {
326 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
327         enum ip_conntrack_info ctinfo;
328         struct nf_conn *ct;
329
330         ct = nf_ct_get(skb, &ctinfo);
331         if (!ct || nf_ct_is_untracked(ct))
332                 return false;
333
334         return test_bit(IPS_DST_NAT_BIT, &ct->status);
335 #else
336         return false;
337 #endif
338 }
339
340 /* This requires some explaining. If DNAT has taken place,
341  * we will need to fix up the destination Ethernet address.
342  *
343  * There are two cases to consider:
344  * 1. The packet was DNAT'ed to a device in the same bridge
345  *    port group as it was received on. We can still bridge
346  *    the packet.
347  * 2. The packet was DNAT'ed to a different device, either
348  *    a non-bridged device or another bridge port group.
349  *    The packet will need to be routed.
350  *
351  * The correct way of distinguishing between these two cases is to
352  * call ip_route_input() and to look at skb->dst->dev, which is
353  * changed to the destination device if ip_route_input() succeeds.
354  *
355  * Let's first consider the case that ip_route_input() succeeds:
356  *
357  * If the output device equals the logical bridge device the packet
358  * came in on, we can consider this bridging. The corresponding MAC
359  * address will be obtained in br_nf_pre_routing_finish_bridge.
360  * Otherwise, the packet is considered to be routed and we just
361  * change the destination MAC address so that the packet will
362  * later be passed up to the IP stack to be routed. For a redirected
363  * packet, ip_route_input() will give back the localhost as output device,
364  * which differs from the bridge device.
365  *
366  * Let's now consider the case that ip_route_input() fails:
367  *
368  * This can be because the destination address is martian, in which case
369  * the packet will be dropped.
370  * If IP forwarding is disabled, ip_route_input() will fail, while
371  * ip_route_output_key() can return success. The source
372  * address for ip_route_output_key() is set to zero, so ip_route_output_key()
373  * thinks we're handling a locally generated packet and won't care
374  * if IP forwarding is enabled. If the output device equals the logical bridge
375  * device, we proceed as if ip_route_input() succeeded. If it differs from the
376  * logical bridge port or if ip_route_output_key() fails we drop the packet.
377  */
378 static int br_nf_pre_routing_finish(struct sk_buff *skb)
379 {
380         struct net_device *dev = skb->dev;
381         struct iphdr *iph = ip_hdr(skb);
382         struct nf_bridge_info *nf_bridge = skb->nf_bridge;
383         struct rtable *rt;
384         int err;
385         int frag_max_size;
386
387         frag_max_size = IPCB(skb)->frag_max_size;
388         BR_INPUT_SKB_CB(skb)->frag_max_size = frag_max_size;
389
390         if (nf_bridge->mask & BRNF_PKT_TYPE) {
391                 skb->pkt_type = PACKET_OTHERHOST;
392                 nf_bridge->mask ^= BRNF_PKT_TYPE;
393         }
394         nf_bridge->mask ^= BRNF_NF_BRIDGE_PREROUTING;
395         if (dnat_took_place(skb)) {
396                 if ((err = ip_route_input(skb, iph->daddr, iph->saddr, iph->tos, dev))) {
397                         struct in_device *in_dev = __in_dev_get_rcu(dev);
398
399                         /* If err equals -EHOSTUNREACH the error is due to a
400                          * martian destination or due to the fact that
401                          * forwarding is disabled. For most martian packets,
402                          * ip_route_output_key() will fail. It won't fail for 2 types of
403                          * martian destinations: loopback destinations and destination
404                          * 0.0.0.0. In both cases the packet will be dropped because the
405                          * destination is the loopback device and not the bridge. */
406                         if (err != -EHOSTUNREACH || !in_dev || IN_DEV_FORWARD(in_dev))
407                                 goto free_skb;
408
409                         rt = ip_route_output(dev_net(dev), iph->daddr, 0,
410                                              RT_TOS(iph->tos), 0);
411                         if (!IS_ERR(rt)) {
412                                 /* - Bridged-and-DNAT'ed traffic doesn't
413                                  *   require ip_forwarding. */
414                                 if (rt->dst.dev == dev) {
415                                         skb_dst_set(skb, &rt->dst);
416                                         goto bridged_dnat;
417                                 }
418                                 ip_rt_put(rt);
419                         }
420 free_skb:
421                         kfree_skb(skb);
422                         return 0;
423                 } else {
424                         if (skb_dst(skb)->dev == dev) {
425 bridged_dnat:
426                                 skb->dev = nf_bridge->physindev;
427                                 nf_bridge_update_protocol(skb);
428                                 nf_bridge_push_encap_header(skb);
429                                 NF_HOOK_THRESH(NFPROTO_BRIDGE,
430                                                NF_BR_PRE_ROUTING,
431                                                skb, skb->dev, NULL,
432                                                br_nf_pre_routing_finish_bridge,
433                                                1);
434                                 return 0;
435                         }
436                         ether_addr_copy(eth_hdr(skb)->h_dest, dev->dev_addr);
437                         skb->pkt_type = PACKET_HOST;
438                 }
439         } else {
440                 rt = bridge_parent_rtable(nf_bridge->physindev);
441                 if (!rt) {
442                         kfree_skb(skb);
443                         return 0;
444                 }
445                 skb_dst_set_noref(skb, &rt->dst);
446         }
447
448         skb->dev = nf_bridge->physindev;
449         nf_bridge_update_protocol(skb);
450         nf_bridge_push_encap_header(skb);
451         NF_HOOK_THRESH(NFPROTO_BRIDGE, NF_BR_PRE_ROUTING, skb, skb->dev, NULL,
452                        br_handle_frame_finish, 1);
453
454         return 0;
455 }
456
457 static struct net_device *brnf_get_logical_dev(struct sk_buff *skb, const struct net_device *dev)
458 {
459         struct net_device *vlan, *br;
460
461         br = bridge_parent(dev);
462         if (brnf_pass_vlan_indev == 0 || !skb_vlan_tag_present(skb))
463                 return br;
464
465         vlan = __vlan_find_dev_deep_rcu(br, skb->vlan_proto,
466                                     skb_vlan_tag_get(skb) & VLAN_VID_MASK);
467
468         return vlan ? vlan : br;
469 }
470
471 /* Some common code for IPv4/IPv6 */
472 static struct net_device *setup_pre_routing(struct sk_buff *skb)
473 {
474         struct nf_bridge_info *nf_bridge = skb->nf_bridge;
475
476         if (skb->pkt_type == PACKET_OTHERHOST) {
477                 skb->pkt_type = PACKET_HOST;
478                 nf_bridge->mask |= BRNF_PKT_TYPE;
479         }
480
481         nf_bridge->mask |= BRNF_NF_BRIDGE_PREROUTING;
482         nf_bridge->physindev = skb->dev;
483         skb->dev = brnf_get_logical_dev(skb, skb->dev);
484         if (skb->protocol == htons(ETH_P_8021Q))
485                 nf_bridge->mask |= BRNF_8021Q;
486         else if (skb->protocol == htons(ETH_P_PPP_SES))
487                 nf_bridge->mask |= BRNF_PPPoE;
488
489         /* Must drop socket now because of tproxy. */
490         skb_orphan(skb);
491         return skb->dev;
492 }
493
494 /* We only check the length. A bridge shouldn't do any hop-by-hop stuff anyway */
495 static int check_hbh_len(struct sk_buff *skb)
496 {
497         unsigned char *raw = (u8 *)(ipv6_hdr(skb) + 1);
498         u32 pkt_len;
499         const unsigned char *nh = skb_network_header(skb);
500         int off = raw - nh;
501         int len = (raw[1] + 1) << 3;
502
503         if ((raw + len) - skb->data > skb_headlen(skb))
504                 goto bad;
505
506         off += 2;
507         len -= 2;
508
509         while (len > 0) {
510                 int optlen = nh[off + 1] + 2;
511
512                 switch (nh[off]) {
513                 case IPV6_TLV_PAD1:
514                         optlen = 1;
515                         break;
516
517                 case IPV6_TLV_PADN:
518                         break;
519
520                 case IPV6_TLV_JUMBO:
521                         if (nh[off + 1] != 4 || (off & 3) != 2)
522                                 goto bad;
523                         pkt_len = ntohl(*(__be32 *) (nh + off + 2));
524                         if (pkt_len <= IPV6_MAXPLEN ||
525                             ipv6_hdr(skb)->payload_len)
526                                 goto bad;
527                         if (pkt_len > skb->len - sizeof(struct ipv6hdr))
528                                 goto bad;
529                         if (pskb_trim_rcsum(skb,
530                                             pkt_len + sizeof(struct ipv6hdr)))
531                                 goto bad;
532                         nh = skb_network_header(skb);
533                         break;
534                 default:
535                         if (optlen > len)
536                                 goto bad;
537                         break;
538                 }
539                 off += optlen;
540                 len -= optlen;
541         }
542         if (len == 0)
543                 return 0;
544 bad:
545         return -1;
546
547 }
548
549 /* Replicate the checks that IPv6 does on packet reception and pass the packet
550  * to ip6tables, which doesn't support NAT, so things are fairly simple. */
551 static unsigned int br_nf_pre_routing_ipv6(const struct nf_hook_ops *ops,
552                                            struct sk_buff *skb,
553                                            const struct net_device *in,
554                                            const struct net_device *out,
555                                            int (*okfn)(struct sk_buff *))
556 {
557         const struct ipv6hdr *hdr;
558         u32 pkt_len;
559
560         if (skb->len < sizeof(struct ipv6hdr))
561                 return NF_DROP;
562
563         if (!pskb_may_pull(skb, sizeof(struct ipv6hdr)))
564                 return NF_DROP;
565
566         hdr = ipv6_hdr(skb);
567
568         if (hdr->version != 6)
569                 return NF_DROP;
570
571         pkt_len = ntohs(hdr->payload_len);
572
573         if (pkt_len || hdr->nexthdr != NEXTHDR_HOP) {
574                 if (pkt_len + sizeof(struct ipv6hdr) > skb->len)
575                         return NF_DROP;
576                 if (pskb_trim_rcsum(skb, pkt_len + sizeof(struct ipv6hdr)))
577                         return NF_DROP;
578         }
579         if (hdr->nexthdr == NEXTHDR_HOP && check_hbh_len(skb))
580                 return NF_DROP;
581
582         nf_bridge_put(skb->nf_bridge);
583         if (!nf_bridge_alloc(skb))
584                 return NF_DROP;
585         if (!setup_pre_routing(skb))
586                 return NF_DROP;
587
588         skb->protocol = htons(ETH_P_IPV6);
589         NF_HOOK(NFPROTO_IPV6, NF_INET_PRE_ROUTING, skb, skb->dev, NULL,
590                 br_nf_pre_routing_finish_ipv6);
591
592         return NF_STOLEN;
593 }
594
595 /* Direct IPv6 traffic to br_nf_pre_routing_ipv6.
596  * Replicate the checks that IPv4 does on packet reception.
597  * Set skb->dev to the bridge device (i.e. parent of the
598  * receiving device) to make netfilter happy, the REDIRECT
599  * target in particular.  Save the original destination IP
600  * address to be able to detect DNAT afterwards. */
601 static unsigned int br_nf_pre_routing(const struct nf_hook_ops *ops,
602                                       struct sk_buff *skb,
603                                       const struct net_device *in,
604                                       const struct net_device *out,
605                                       int (*okfn)(struct sk_buff *))
606 {
607         struct net_bridge_port *p;
608         struct net_bridge *br;
609         __u32 len = nf_bridge_encap_header_len(skb);
610
611         if (unlikely(!pskb_may_pull(skb, len)))
612                 return NF_DROP;
613
614         p = br_port_get_rcu(in);
615         if (p == NULL)
616                 return NF_DROP;
617         br = p->br;
618
619         if (IS_IPV6(skb) || IS_VLAN_IPV6(skb) || IS_PPPOE_IPV6(skb)) {
620                 if (!brnf_call_ip6tables && !br->nf_call_ip6tables)
621                         return NF_ACCEPT;
622
623                 nf_bridge_pull_encap_header_rcsum(skb);
624                 return br_nf_pre_routing_ipv6(ops, skb, in, out, okfn);
625         }
626
627         if (!brnf_call_iptables && !br->nf_call_iptables)
628                 return NF_ACCEPT;
629
630         if (!IS_IP(skb) && !IS_VLAN_IP(skb) && !IS_PPPOE_IP(skb))
631                 return NF_ACCEPT;
632
633         nf_bridge_pull_encap_header_rcsum(skb);
634
635         if (br_parse_ip_options(skb))
636                 return NF_DROP;
637
638         nf_bridge_put(skb->nf_bridge);
639         if (!nf_bridge_alloc(skb))
640                 return NF_DROP;
641         if (!setup_pre_routing(skb))
642                 return NF_DROP;
643
644         skb->protocol = htons(ETH_P_IP);
645
646         NF_HOOK(NFPROTO_IPV4, NF_INET_PRE_ROUTING, skb, skb->dev, NULL,
647                 br_nf_pre_routing_finish);
648
649         return NF_STOLEN;
650 }
651
652
653 /* PF_BRIDGE/LOCAL_IN ************************************************/
654 /* The packet is locally destined, which requires a real
655  * dst_entry, so detach the fake one.  On the way up, the
656  * packet would pass through PRE_ROUTING again (which already
657  * took place when the packet entered the bridge), but we
658  * register an IPv4 PRE_ROUTING 'sabotage' hook that will
659  * prevent this from happening. */
660 static unsigned int br_nf_local_in(const struct nf_hook_ops *ops,
661                                    struct sk_buff *skb,
662                                    const struct net_device *in,
663                                    const struct net_device *out,
664                                    int (*okfn)(struct sk_buff *))
665 {
666         br_drop_fake_rtable(skb);
667         return NF_ACCEPT;
668 }
669
670 /* PF_BRIDGE/FORWARD *************************************************/
671 static int br_nf_forward_finish(struct sk_buff *skb)
672 {
673         struct nf_bridge_info *nf_bridge = skb->nf_bridge;
674         struct net_device *in;
675
676         if (!IS_ARP(skb) && !IS_VLAN_ARP(skb)) {
677                 in = nf_bridge->physindev;
678                 if (nf_bridge->mask & BRNF_PKT_TYPE) {
679                         skb->pkt_type = PACKET_OTHERHOST;
680                         nf_bridge->mask ^= BRNF_PKT_TYPE;
681                 }
682                 nf_bridge_update_protocol(skb);
683         } else {
684                 in = *((struct net_device **)(skb->cb));
685         }
686         nf_bridge_push_encap_header(skb);
687
688         NF_HOOK_THRESH(NFPROTO_BRIDGE, NF_BR_FORWARD, skb, in,
689                        skb->dev, br_forward_finish, 1);
690         return 0;
691 }
692
693
694 /* This is the 'purely bridged' case.  For IP, we pass the packet to
695  * netfilter with indev and outdev set to the bridge device,
696  * but we are still able to filter on the 'real' indev/outdev
697  * because of the physdev module. For ARP, indev and outdev are the
698  * bridge ports. */
699 static unsigned int br_nf_forward_ip(const struct nf_hook_ops *ops,
700                                      struct sk_buff *skb,
701                                      const struct net_device *in,
702                                      const struct net_device *out,
703                                      int (*okfn)(struct sk_buff *))
704 {
705         struct nf_bridge_info *nf_bridge;
706         struct net_device *parent;
707         u_int8_t pf;
708
709         if (!skb->nf_bridge)
710                 return NF_ACCEPT;
711
712         /* Need exclusive nf_bridge_info since we might have multiple
713          * different physoutdevs. */
714         if (!nf_bridge_unshare(skb))
715                 return NF_DROP;
716
717         parent = bridge_parent(out);
718         if (!parent)
719                 return NF_DROP;
720
721         if (IS_IP(skb) || IS_VLAN_IP(skb) || IS_PPPOE_IP(skb))
722                 pf = NFPROTO_IPV4;
723         else if (IS_IPV6(skb) || IS_VLAN_IPV6(skb) || IS_PPPOE_IPV6(skb))
724                 pf = NFPROTO_IPV6;
725         else
726                 return NF_ACCEPT;
727
728         nf_bridge_pull_encap_header(skb);
729
730         nf_bridge = skb->nf_bridge;
731         if (skb->pkt_type == PACKET_OTHERHOST) {
732                 skb->pkt_type = PACKET_HOST;
733                 nf_bridge->mask |= BRNF_PKT_TYPE;
734         }
735
736         if (pf == NFPROTO_IPV4 && br_parse_ip_options(skb))
737                 return NF_DROP;
738
739         nf_bridge->physoutdev = skb->dev;
740         if (pf == NFPROTO_IPV4)
741                 skb->protocol = htons(ETH_P_IP);
742         else
743                 skb->protocol = htons(ETH_P_IPV6);
744
745         NF_HOOK(pf, NF_INET_FORWARD, skb, brnf_get_logical_dev(skb, in), parent,
746                 br_nf_forward_finish);
747
748         return NF_STOLEN;
749 }
750
751 static unsigned int br_nf_forward_arp(const struct nf_hook_ops *ops,
752                                       struct sk_buff *skb,
753                                       const struct net_device *in,
754                                       const struct net_device *out,
755                                       int (*okfn)(struct sk_buff *))
756 {
757         struct net_bridge_port *p;
758         struct net_bridge *br;
759         struct net_device **d = (struct net_device **)(skb->cb);
760
761         p = br_port_get_rcu(out);
762         if (p == NULL)
763                 return NF_ACCEPT;
764         br = p->br;
765
766         if (!brnf_call_arptables && !br->nf_call_arptables)
767                 return NF_ACCEPT;
768
769         if (!IS_ARP(skb)) {
770                 if (!IS_VLAN_ARP(skb))
771                         return NF_ACCEPT;
772                 nf_bridge_pull_encap_header(skb);
773         }
774
775         if (arp_hdr(skb)->ar_pln != 4) {
776                 if (IS_VLAN_ARP(skb))
777                         nf_bridge_push_encap_header(skb);
778                 return NF_ACCEPT;
779         }
780         *d = (struct net_device *)in;
781         NF_HOOK(NFPROTO_ARP, NF_ARP_FORWARD, skb, (struct net_device *)in,
782                 (struct net_device *)out, br_nf_forward_finish);
783
784         return NF_STOLEN;
785 }
786
787 #if IS_ENABLED(CONFIG_NF_DEFRAG_IPV4)
788 static bool nf_bridge_copy_header(struct sk_buff *skb)
789 {
790         int err;
791         unsigned int header_size;
792
793         nf_bridge_update_protocol(skb);
794         header_size = ETH_HLEN + nf_bridge_encap_header_len(skb);
795         err = skb_cow_head(skb, header_size);
796         if (err)
797                 return false;
798
799         skb_copy_to_linear_data_offset(skb, -header_size,
800                                        skb->nf_bridge->data, header_size);
801         __skb_push(skb, nf_bridge_encap_header_len(skb));
802         return true;
803 }
804
805 static int br_nf_push_frag_xmit(struct sk_buff *skb)
806 {
807         if (!nf_bridge_copy_header(skb)) {
808                 kfree_skb(skb);
809                 return 0;
810         }
811
812         return br_dev_queue_push_xmit(skb);
813 }
814
815 static int br_nf_dev_queue_xmit(struct sk_buff *skb)
816 {
817         int ret;
818         int frag_max_size;
819         unsigned int mtu_reserved;
820
821         if (skb_is_gso(skb) || skb->protocol != htons(ETH_P_IP))
822                 return br_dev_queue_push_xmit(skb);
823
824         mtu_reserved = nf_bridge_mtu_reduction(skb);
825         /* This is wrong! We should preserve the original fragment
826          * boundaries by preserving frag_list rather than refragmenting.
827          */
828         if (skb->len + mtu_reserved > skb->dev->mtu) {
829                 frag_max_size = BR_INPUT_SKB_CB(skb)->frag_max_size;
830                 if (br_parse_ip_options(skb))
831                         /* Drop invalid packet */
832                         return NF_DROP;
833                 IPCB(skb)->frag_max_size = frag_max_size;
834                 ret = ip_fragment(skb, br_nf_push_frag_xmit);
835         } else
836                 ret = br_dev_queue_push_xmit(skb);
837
838         return ret;
839 }
840 #else
841 static int br_nf_dev_queue_xmit(struct sk_buff *skb)
842 {
843         return br_dev_queue_push_xmit(skb);
844 }
845 #endif
846
847 /* PF_BRIDGE/POST_ROUTING ********************************************/
848 static unsigned int br_nf_post_routing(const struct nf_hook_ops *ops,
849                                        struct sk_buff *skb,
850                                        const struct net_device *in,
851                                        const struct net_device *out,
852                                        int (*okfn)(struct sk_buff *))
853 {
854         struct nf_bridge_info *nf_bridge = skb->nf_bridge;
855         struct net_device *realoutdev = bridge_parent(skb->dev);
856         u_int8_t pf;
857
858         /* if nf_bridge is set, but ->physoutdev is NULL, this packet came in
859          * on a bridge, but was delivered locally and is now being routed:
860          *
861          * POST_ROUTING was already invoked from the ip stack.
862          */
863         if (!nf_bridge || !nf_bridge->physoutdev)
864                 return NF_ACCEPT;
865
866         if (!realoutdev)
867                 return NF_DROP;
868
869         if (IS_IP(skb) || IS_VLAN_IP(skb) || IS_PPPOE_IP(skb))
870                 pf = NFPROTO_IPV4;
871         else if (IS_IPV6(skb) || IS_VLAN_IPV6(skb) || IS_PPPOE_IPV6(skb))
872                 pf = NFPROTO_IPV6;
873         else
874                 return NF_ACCEPT;
875
876         /* We assume any code from br_dev_queue_push_xmit onwards doesn't care
877          * about the value of skb->pkt_type. */
878         if (skb->pkt_type == PACKET_OTHERHOST) {
879                 skb->pkt_type = PACKET_HOST;
880                 nf_bridge->mask |= BRNF_PKT_TYPE;
881         }
882
883         nf_bridge_pull_encap_header(skb);
884         nf_bridge_save_header(skb);
885         if (pf == NFPROTO_IPV4)
886                 skb->protocol = htons(ETH_P_IP);
887         else
888                 skb->protocol = htons(ETH_P_IPV6);
889
890         NF_HOOK(pf, NF_INET_POST_ROUTING, skb, NULL, realoutdev,
891                 br_nf_dev_queue_xmit);
892
893         return NF_STOLEN;
894 }
895
896 /* IP/SABOTAGE *****************************************************/
897 /* Don't hand locally destined packets to PF_INET(6)/PRE_ROUTING
898  * for the second time. */
899 static unsigned int ip_sabotage_in(const struct nf_hook_ops *ops,
900                                    struct sk_buff *skb,
901                                    const struct net_device *in,
902                                    const struct net_device *out,
903                                    int (*okfn)(struct sk_buff *))
904 {
905         if (skb->nf_bridge &&
906             !(skb->nf_bridge->mask & BRNF_NF_BRIDGE_PREROUTING)) {
907                 return NF_STOP;
908         }
909
910         return NF_ACCEPT;
911 }
912
913 /* This is called when br_netfilter has called into iptables/netfilter,
914  * and DNAT has taken place on a bridge-forwarded packet.
915  *
916  * neigh->output has created a new MAC header, with local br0 MAC
917  * as saddr.
918  *
919  * This restores the original MAC saddr of the bridged packet
920  * before invoking bridge forward logic to transmit the packet.
921  */
922 static void br_nf_pre_routing_finish_bridge_slow(struct sk_buff *skb)
923 {
924         struct nf_bridge_info *nf_bridge = skb->nf_bridge;
925
926         skb_pull(skb, ETH_HLEN);
927         nf_bridge->mask &= ~BRNF_BRIDGED_DNAT;
928
929         skb_copy_to_linear_data_offset(skb, -(ETH_HLEN-ETH_ALEN),
930                                        skb->nf_bridge->data, ETH_HLEN-ETH_ALEN);
931         skb->dev = nf_bridge->physindev;
932         br_handle_frame_finish(skb);
933 }
934
935 static int br_nf_dev_xmit(struct sk_buff *skb)
936 {
937         if (skb->nf_bridge && (skb->nf_bridge->mask & BRNF_BRIDGED_DNAT)) {
938                 br_nf_pre_routing_finish_bridge_slow(skb);
939                 return 1;
940         }
941         return 0;
942 }
943
944 static const struct nf_br_ops br_ops = {
945         .br_dev_xmit_hook =     br_nf_dev_xmit,
946 };
947
948 void br_netfilter_enable(void)
949 {
950 }
951 EXPORT_SYMBOL_GPL(br_netfilter_enable);
952
953 /* For br_nf_post_routing, we need (prio = NF_BR_PRI_LAST), because
954  * br_dev_queue_push_xmit is called afterwards */
955 static struct nf_hook_ops br_nf_ops[] __read_mostly = {
956         {
957                 .hook = br_nf_pre_routing,
958                 .owner = THIS_MODULE,
959                 .pf = NFPROTO_BRIDGE,
960                 .hooknum = NF_BR_PRE_ROUTING,
961                 .priority = NF_BR_PRI_BRNF,
962         },
963         {
964                 .hook = br_nf_local_in,
965                 .owner = THIS_MODULE,
966                 .pf = NFPROTO_BRIDGE,
967                 .hooknum = NF_BR_LOCAL_IN,
968                 .priority = NF_BR_PRI_BRNF,
969         },
970         {
971                 .hook = br_nf_forward_ip,
972                 .owner = THIS_MODULE,
973                 .pf = NFPROTO_BRIDGE,
974                 .hooknum = NF_BR_FORWARD,
975                 .priority = NF_BR_PRI_BRNF - 1,
976         },
977         {
978                 .hook = br_nf_forward_arp,
979                 .owner = THIS_MODULE,
980                 .pf = NFPROTO_BRIDGE,
981                 .hooknum = NF_BR_FORWARD,
982                 .priority = NF_BR_PRI_BRNF,
983         },
984         {
985                 .hook = br_nf_post_routing,
986                 .owner = THIS_MODULE,
987                 .pf = NFPROTO_BRIDGE,
988                 .hooknum = NF_BR_POST_ROUTING,
989                 .priority = NF_BR_PRI_LAST,
990         },
991         {
992                 .hook = ip_sabotage_in,
993                 .owner = THIS_MODULE,
994                 .pf = NFPROTO_IPV4,
995                 .hooknum = NF_INET_PRE_ROUTING,
996                 .priority = NF_IP_PRI_FIRST,
997         },
998         {
999                 .hook = ip_sabotage_in,
1000                 .owner = THIS_MODULE,
1001                 .pf = NFPROTO_IPV6,
1002                 .hooknum = NF_INET_PRE_ROUTING,
1003                 .priority = NF_IP6_PRI_FIRST,
1004         },
1005 };
1006
1007 #ifdef CONFIG_SYSCTL
1008 static
1009 int brnf_sysctl_call_tables(struct ctl_table *ctl, int write,
1010                             void __user *buffer, size_t *lenp, loff_t *ppos)
1011 {
1012         int ret;
1013
1014         ret = proc_dointvec(ctl, write, buffer, lenp, ppos);
1015
1016         if (write && *(int *)(ctl->data))
1017                 *(int *)(ctl->data) = 1;
1018         return ret;
1019 }
1020
1021 static struct ctl_table brnf_table[] = {
1022         {
1023                 .procname       = "bridge-nf-call-arptables",
1024                 .data           = &brnf_call_arptables,
1025                 .maxlen         = sizeof(int),
1026                 .mode           = 0644,
1027                 .proc_handler   = brnf_sysctl_call_tables,
1028         },
1029         {
1030                 .procname       = "bridge-nf-call-iptables",
1031                 .data           = &brnf_call_iptables,
1032                 .maxlen         = sizeof(int),
1033                 .mode           = 0644,
1034                 .proc_handler   = brnf_sysctl_call_tables,
1035         },
1036         {
1037                 .procname       = "bridge-nf-call-ip6tables",
1038                 .data           = &brnf_call_ip6tables,
1039                 .maxlen         = sizeof(int),
1040                 .mode           = 0644,
1041                 .proc_handler   = brnf_sysctl_call_tables,
1042         },
1043         {
1044                 .procname       = "bridge-nf-filter-vlan-tagged",
1045                 .data           = &brnf_filter_vlan_tagged,
1046                 .maxlen         = sizeof(int),
1047                 .mode           = 0644,
1048                 .proc_handler   = brnf_sysctl_call_tables,
1049         },
1050         {
1051                 .procname       = "bridge-nf-filter-pppoe-tagged",
1052                 .data           = &brnf_filter_pppoe_tagged,
1053                 .maxlen         = sizeof(int),
1054                 .mode           = 0644,
1055                 .proc_handler   = brnf_sysctl_call_tables,
1056         },
1057         {
1058                 .procname       = "bridge-nf-pass-vlan-input-dev",
1059                 .data           = &brnf_pass_vlan_indev,
1060                 .maxlen         = sizeof(int),
1061                 .mode           = 0644,
1062                 .proc_handler   = brnf_sysctl_call_tables,
1063         },
1064         { }
1065 };
1066 #endif
1067
1068 static int __init br_netfilter_init(void)
1069 {
1070         int ret;
1071
1072         ret = nf_register_hooks(br_nf_ops, ARRAY_SIZE(br_nf_ops));
1073         if (ret < 0)
1074                 return ret;
1075
1076 #ifdef CONFIG_SYSCTL
1077         brnf_sysctl_header = register_net_sysctl(&init_net, "net/bridge", brnf_table);
1078         if (brnf_sysctl_header == NULL) {
1079                 printk(KERN_WARNING
1080                        "br_netfilter: can't register to sysctl.\n");
1081                 nf_unregister_hooks(br_nf_ops, ARRAY_SIZE(br_nf_ops));
1082                 return -ENOMEM;
1083         }
1084 #endif
1085         RCU_INIT_POINTER(nf_br_ops, &br_ops);
1086         printk(KERN_NOTICE "Bridge firewalling registered\n");
1087         return 0;
1088 }
1089
1090 static void __exit br_netfilter_fini(void)
1091 {
1092         RCU_INIT_POINTER(nf_br_ops, NULL);
1093         nf_unregister_hooks(br_nf_ops, ARRAY_SIZE(br_nf_ops));
1094 #ifdef CONFIG_SYSCTL
1095         unregister_net_sysctl_table(brnf_sysctl_header);
1096 #endif
1097 }
1098
1099 module_init(br_netfilter_init);
1100 module_exit(br_netfilter_fini);
1101
1102 MODULE_LICENSE("GPL");
1103 MODULE_AUTHOR("Lennert Buytenhek <buytenh@gnu.org>");
1104 MODULE_AUTHOR("Bart De Schuymer <bdschuym@pandora.be>");
1105 MODULE_DESCRIPTION("Linux ethernet netfilter firewall bridge");