USB: fix potential qtd use-after-free case in interrupt handler
[firefly-linux-kernel-4.4.55.git] / mm / vmscan.c
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h>  /* for try_to_release_page(),
27                                         buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/pagevec.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/compaction.h>
36 #include <linux/notifier.h>
37 #include <linux/rwsem.h>
38 #include <linux/delay.h>
39 #include <linux/kthread.h>
40 #include <linux/freezer.h>
41 #include <linux/memcontrol.h>
42 #include <linux/delayacct.h>
43 #include <linux/sysctl.h>
44 #include <linux/oom.h>
45 #include <linux/prefetch.h>
46
47 #include <asm/tlbflush.h>
48 #include <asm/div64.h>
49
50 #include <linux/swapops.h>
51
52 #include "internal.h"
53
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/vmscan.h>
56
57 /*
58  * reclaim_mode determines how the inactive list is shrunk
59  * RECLAIM_MODE_SINGLE: Reclaim only order-0 pages
60  * RECLAIM_MODE_ASYNC:  Do not block
61  * RECLAIM_MODE_SYNC:   Allow blocking e.g. call wait_on_page_writeback
62  * RECLAIM_MODE_LUMPYRECLAIM: For high-order allocations, take a reference
63  *                      page from the LRU and reclaim all pages within a
64  *                      naturally aligned range
65  * RECLAIM_MODE_COMPACTION: For high-order allocations, reclaim a number of
66  *                      order-0 pages and then compact the zone
67  */
68 typedef unsigned __bitwise__ reclaim_mode_t;
69 #define RECLAIM_MODE_SINGLE             ((__force reclaim_mode_t)0x01u)
70 #define RECLAIM_MODE_ASYNC              ((__force reclaim_mode_t)0x02u)
71 #define RECLAIM_MODE_SYNC               ((__force reclaim_mode_t)0x04u)
72 #define RECLAIM_MODE_LUMPYRECLAIM       ((__force reclaim_mode_t)0x08u)
73 #define RECLAIM_MODE_COMPACTION         ((__force reclaim_mode_t)0x10u)
74
75 struct scan_control {
76         /* Incremented by the number of inactive pages that were scanned */
77         unsigned long nr_scanned;
78
79         /* Number of pages freed so far during a call to shrink_zones() */
80         unsigned long nr_reclaimed;
81
82         /* How many pages shrink_list() should reclaim */
83         unsigned long nr_to_reclaim;
84
85         unsigned long hibernation_mode;
86
87         /* This context's GFP mask */
88         gfp_t gfp_mask;
89
90         int may_writepage;
91
92         /* Can mapped pages be reclaimed? */
93         int may_unmap;
94
95         /* Can pages be swapped as part of reclaim? */
96         int may_swap;
97
98         int swappiness;
99
100         int order;
101
102         /*
103          * Intend to reclaim enough continuous memory rather than reclaim
104          * enough amount of memory. i.e, mode for high order allocation.
105          */
106         reclaim_mode_t reclaim_mode;
107
108         /* Which cgroup do we reclaim from */
109         struct mem_cgroup *mem_cgroup;
110
111         /*
112          * Nodemask of nodes allowed by the caller. If NULL, all nodes
113          * are scanned.
114          */
115         nodemask_t      *nodemask;
116 };
117
118 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
119
120 #ifdef ARCH_HAS_PREFETCH
121 #define prefetch_prev_lru_page(_page, _base, _field)                    \
122         do {                                                            \
123                 if ((_page)->lru.prev != _base) {                       \
124                         struct page *prev;                              \
125                                                                         \
126                         prev = lru_to_page(&(_page->lru));              \
127                         prefetch(&prev->_field);                        \
128                 }                                                       \
129         } while (0)
130 #else
131 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
132 #endif
133
134 #ifdef ARCH_HAS_PREFETCHW
135 #define prefetchw_prev_lru_page(_page, _base, _field)                   \
136         do {                                                            \
137                 if ((_page)->lru.prev != _base) {                       \
138                         struct page *prev;                              \
139                                                                         \
140                         prev = lru_to_page(&(_page->lru));              \
141                         prefetchw(&prev->_field);                       \
142                 }                                                       \
143         } while (0)
144 #else
145 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
146 #endif
147
148 /*
149  * From 0 .. 100.  Higher means more swappy.
150  */
151 int vm_swappiness = 60;
152 long vm_total_pages;    /* The total number of pages which the VM controls */
153
154 static LIST_HEAD(shrinker_list);
155 static DECLARE_RWSEM(shrinker_rwsem);
156
157 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
158 #define scanning_global_lru(sc) (!(sc)->mem_cgroup)
159 #else
160 #define scanning_global_lru(sc) (1)
161 #endif
162
163 static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
164                                                   struct scan_control *sc)
165 {
166         if (!scanning_global_lru(sc))
167                 return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);
168
169         return &zone->reclaim_stat;
170 }
171
172 static unsigned long zone_nr_lru_pages(struct zone *zone,
173                                 struct scan_control *sc, enum lru_list lru)
174 {
175         if (!scanning_global_lru(sc))
176                 return mem_cgroup_zone_nr_lru_pages(sc->mem_cgroup, zone, lru);
177
178         return zone_page_state(zone, NR_LRU_BASE + lru);
179 }
180
181
182 /*
183  * Add a shrinker callback to be called from the vm
184  */
185 void register_shrinker(struct shrinker *shrinker)
186 {
187         shrinker->nr = 0;
188         down_write(&shrinker_rwsem);
189         list_add_tail(&shrinker->list, &shrinker_list);
190         up_write(&shrinker_rwsem);
191 }
192 EXPORT_SYMBOL(register_shrinker);
193
194 /*
195  * Remove one
196  */
197 void unregister_shrinker(struct shrinker *shrinker)
198 {
199         down_write(&shrinker_rwsem);
200         list_del(&shrinker->list);
201         up_write(&shrinker_rwsem);
202 }
203 EXPORT_SYMBOL(unregister_shrinker);
204
205 static inline int do_shrinker_shrink(struct shrinker *shrinker,
206                                      struct shrink_control *sc,
207                                      unsigned long nr_to_scan)
208 {
209         sc->nr_to_scan = nr_to_scan;
210         return (*shrinker->shrink)(shrinker, sc);
211 }
212
213 #define SHRINK_BATCH 128
214 /*
215  * Call the shrink functions to age shrinkable caches
216  *
217  * Here we assume it costs one seek to replace a lru page and that it also
218  * takes a seek to recreate a cache object.  With this in mind we age equal
219  * percentages of the lru and ageable caches.  This should balance the seeks
220  * generated by these structures.
221  *
222  * If the vm encountered mapped pages on the LRU it increase the pressure on
223  * slab to avoid swapping.
224  *
225  * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
226  *
227  * `lru_pages' represents the number of on-LRU pages in all the zones which
228  * are eligible for the caller's allocation attempt.  It is used for balancing
229  * slab reclaim versus page reclaim.
230  *
231  * Returns the number of slab objects which we shrunk.
232  */
233 unsigned long shrink_slab(struct shrink_control *shrink,
234                           unsigned long nr_pages_scanned,
235                           unsigned long lru_pages)
236 {
237         struct shrinker *shrinker;
238         unsigned long ret = 0;
239
240         if (nr_pages_scanned == 0)
241                 nr_pages_scanned = SWAP_CLUSTER_MAX;
242
243         if (!down_read_trylock(&shrinker_rwsem)) {
244                 /* Assume we'll be able to shrink next time */
245                 ret = 1;
246                 goto out;
247         }
248
249         list_for_each_entry(shrinker, &shrinker_list, list) {
250                 unsigned long long delta;
251                 long total_scan;
252                 long max_pass;
253                 int shrink_ret = 0;
254                 long nr;
255                 long new_nr;
256
257                 max_pass = do_shrinker_shrink(shrinker, shrink, 0);
258                 if (max_pass <= 0)
259                         continue;
260
261                 /*
262                  * copy the current shrinker scan count into a local variable
263                  * and zero it so that other concurrent shrinker invocations
264                  * don't also do this scanning work.
265                  */
266                 do {
267                         nr = shrinker->nr;
268                 } while (cmpxchg(&shrinker->nr, nr, 0) != nr);
269
270                 total_scan = nr;
271                 delta = (4 * nr_pages_scanned) / shrinker->seeks;
272                 delta *= max_pass;
273                 do_div(delta, lru_pages + 1);
274                 total_scan += delta;
275                 if (total_scan < 0) {
276                         printk(KERN_ERR "shrink_slab: %pF negative objects to "
277                                "delete nr=%ld\n",
278                                shrinker->shrink, total_scan);
279                         total_scan = max_pass;
280                 }
281
282                 /*
283                  * We need to avoid excessive windup on filesystem shrinkers
284                  * due to large numbers of GFP_NOFS allocations causing the
285                  * shrinkers to return -1 all the time. This results in a large
286                  * nr being built up so when a shrink that can do some work
287                  * comes along it empties the entire cache due to nr >>>
288                  * max_pass.  This is bad for sustaining a working set in
289                  * memory.
290                  *
291                  * Hence only allow the shrinker to scan the entire cache when
292                  * a large delta change is calculated directly.
293                  */
294                 if (delta < max_pass / 4)
295                         total_scan = min(total_scan, max_pass / 2);
296
297                 /*
298                  * Avoid risking looping forever due to too large nr value:
299                  * never try to free more than twice the estimate number of
300                  * freeable entries.
301                  */
302                 if (total_scan > max_pass * 2)
303                         total_scan = max_pass * 2;
304
305                 trace_mm_shrink_slab_start(shrinker, shrink, nr,
306                                         nr_pages_scanned, lru_pages,
307                                         max_pass, delta, total_scan);
308
309                 while (total_scan >= SHRINK_BATCH) {
310                         long this_scan = SHRINK_BATCH;
311                         int nr_before;
312
313                         nr_before = do_shrinker_shrink(shrinker, shrink, 0);
314                         shrink_ret = do_shrinker_shrink(shrinker, shrink,
315                                                         this_scan);
316                         if (shrink_ret == -1)
317                                 break;
318                         if (shrink_ret < nr_before)
319                                 ret += nr_before - shrink_ret;
320                         count_vm_events(SLABS_SCANNED, this_scan);
321                         total_scan -= this_scan;
322
323                         cond_resched();
324                 }
325
326                 /*
327                  * move the unused scan count back into the shrinker in a
328                  * manner that handles concurrent updates. If we exhausted the
329                  * scan, there is no need to do an update.
330                  */
331                 do {
332                         nr = shrinker->nr;
333                         new_nr = total_scan + nr;
334                         if (total_scan <= 0)
335                                 break;
336                 } while (cmpxchg(&shrinker->nr, nr, new_nr) != nr);
337
338                 trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
339         }
340         up_read(&shrinker_rwsem);
341 out:
342         cond_resched();
343         return ret;
344 }
345
346 static void set_reclaim_mode(int priority, struct scan_control *sc,
347                                    bool sync)
348 {
349         reclaim_mode_t syncmode = sync ? RECLAIM_MODE_SYNC : RECLAIM_MODE_ASYNC;
350
351         /*
352          * Initially assume we are entering either lumpy reclaim or
353          * reclaim/compaction.Depending on the order, we will either set the
354          * sync mode or just reclaim order-0 pages later.
355          */
356         if (COMPACTION_BUILD)
357                 sc->reclaim_mode = RECLAIM_MODE_COMPACTION;
358         else
359                 sc->reclaim_mode = RECLAIM_MODE_LUMPYRECLAIM;
360
361         /*
362          * Avoid using lumpy reclaim or reclaim/compaction if possible by
363          * restricting when its set to either costly allocations or when
364          * under memory pressure
365          */
366         if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
367                 sc->reclaim_mode |= syncmode;
368         else if (sc->order && priority < DEF_PRIORITY - 2)
369                 sc->reclaim_mode |= syncmode;
370         else
371                 sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
372 }
373
374 static void reset_reclaim_mode(struct scan_control *sc)
375 {
376         sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
377 }
378
379 static inline int is_page_cache_freeable(struct page *page)
380 {
381         /*
382          * A freeable page cache page is referenced only by the caller
383          * that isolated the page, the page cache radix tree and
384          * optional buffer heads at page->private.
385          */
386         return page_count(page) - page_has_private(page) == 2;
387 }
388
389 static int may_write_to_queue(struct backing_dev_info *bdi,
390                               struct scan_control *sc)
391 {
392         if (current->flags & PF_SWAPWRITE)
393                 return 1;
394         if (!bdi_write_congested(bdi))
395                 return 1;
396         if (bdi == current->backing_dev_info)
397                 return 1;
398
399         /* lumpy reclaim for hugepage often need a lot of write */
400         if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
401                 return 1;
402         return 0;
403 }
404
405 /*
406  * We detected a synchronous write error writing a page out.  Probably
407  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
408  * fsync(), msync() or close().
409  *
410  * The tricky part is that after writepage we cannot touch the mapping: nothing
411  * prevents it from being freed up.  But we have a ref on the page and once
412  * that page is locked, the mapping is pinned.
413  *
414  * We're allowed to run sleeping lock_page() here because we know the caller has
415  * __GFP_FS.
416  */
417 static void handle_write_error(struct address_space *mapping,
418                                 struct page *page, int error)
419 {
420         lock_page(page);
421         if (page_mapping(page) == mapping)
422                 mapping_set_error(mapping, error);
423         unlock_page(page);
424 }
425
426 /* possible outcome of pageout() */
427 typedef enum {
428         /* failed to write page out, page is locked */
429         PAGE_KEEP,
430         /* move page to the active list, page is locked */
431         PAGE_ACTIVATE,
432         /* page has been sent to the disk successfully, page is unlocked */
433         PAGE_SUCCESS,
434         /* page is clean and locked */
435         PAGE_CLEAN,
436 } pageout_t;
437
438 /*
439  * pageout is called by shrink_page_list() for each dirty page.
440  * Calls ->writepage().
441  */
442 static pageout_t pageout(struct page *page, struct address_space *mapping,
443                          struct scan_control *sc)
444 {
445         /*
446          * If the page is dirty, only perform writeback if that write
447          * will be non-blocking.  To prevent this allocation from being
448          * stalled by pagecache activity.  But note that there may be
449          * stalls if we need to run get_block().  We could test
450          * PagePrivate for that.
451          *
452          * If this process is currently in __generic_file_aio_write() against
453          * this page's queue, we can perform writeback even if that
454          * will block.
455          *
456          * If the page is swapcache, write it back even if that would
457          * block, for some throttling. This happens by accident, because
458          * swap_backing_dev_info is bust: it doesn't reflect the
459          * congestion state of the swapdevs.  Easy to fix, if needed.
460          */
461         if (!is_page_cache_freeable(page))
462                 return PAGE_KEEP;
463         if (!mapping) {
464                 /*
465                  * Some data journaling orphaned pages can have
466                  * page->mapping == NULL while being dirty with clean buffers.
467                  */
468                 if (page_has_private(page)) {
469                         if (try_to_free_buffers(page)) {
470                                 ClearPageDirty(page);
471                                 printk("%s: orphaned page\n", __func__);
472                                 return PAGE_CLEAN;
473                         }
474                 }
475                 return PAGE_KEEP;
476         }
477         if (mapping->a_ops->writepage == NULL)
478                 return PAGE_ACTIVATE;
479         if (!may_write_to_queue(mapping->backing_dev_info, sc))
480                 return PAGE_KEEP;
481
482         if (clear_page_dirty_for_io(page)) {
483                 int res;
484                 struct writeback_control wbc = {
485                         .sync_mode = WB_SYNC_NONE,
486                         .nr_to_write = SWAP_CLUSTER_MAX,
487                         .range_start = 0,
488                         .range_end = LLONG_MAX,
489                         .for_reclaim = 1,
490                 };
491
492                 SetPageReclaim(page);
493                 res = mapping->a_ops->writepage(page, &wbc);
494                 if (res < 0)
495                         handle_write_error(mapping, page, res);
496                 if (res == AOP_WRITEPAGE_ACTIVATE) {
497                         ClearPageReclaim(page);
498                         return PAGE_ACTIVATE;
499                 }
500
501                 /*
502                  * Wait on writeback if requested to. This happens when
503                  * direct reclaiming a large contiguous area and the
504                  * first attempt to free a range of pages fails.
505                  */
506                 if (PageWriteback(page) &&
507                     (sc->reclaim_mode & RECLAIM_MODE_SYNC))
508                         wait_on_page_writeback(page);
509
510                 if (!PageWriteback(page)) {
511                         /* synchronous write or broken a_ops? */
512                         ClearPageReclaim(page);
513                 }
514                 trace_mm_vmscan_writepage(page,
515                         trace_reclaim_flags(page, sc->reclaim_mode));
516                 inc_zone_page_state(page, NR_VMSCAN_WRITE);
517                 return PAGE_SUCCESS;
518         }
519
520         return PAGE_CLEAN;
521 }
522
523 /*
524  * Same as remove_mapping, but if the page is removed from the mapping, it
525  * gets returned with a refcount of 0.
526  */
527 static int __remove_mapping(struct address_space *mapping, struct page *page)
528 {
529         BUG_ON(!PageLocked(page));
530         BUG_ON(mapping != page_mapping(page));
531
532         spin_lock_irq(&mapping->tree_lock);
533         /*
534          * The non racy check for a busy page.
535          *
536          * Must be careful with the order of the tests. When someone has
537          * a ref to the page, it may be possible that they dirty it then
538          * drop the reference. So if PageDirty is tested before page_count
539          * here, then the following race may occur:
540          *
541          * get_user_pages(&page);
542          * [user mapping goes away]
543          * write_to(page);
544          *                              !PageDirty(page)    [good]
545          * SetPageDirty(page);
546          * put_page(page);
547          *                              !page_count(page)   [good, discard it]
548          *
549          * [oops, our write_to data is lost]
550          *
551          * Reversing the order of the tests ensures such a situation cannot
552          * escape unnoticed. The smp_rmb is needed to ensure the page->flags
553          * load is not satisfied before that of page->_count.
554          *
555          * Note that if SetPageDirty is always performed via set_page_dirty,
556          * and thus under tree_lock, then this ordering is not required.
557          */
558         if (!page_freeze_refs(page, 2))
559                 goto cannot_free;
560         /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
561         if (unlikely(PageDirty(page))) {
562                 page_unfreeze_refs(page, 2);
563                 goto cannot_free;
564         }
565
566         if (PageSwapCache(page)) {
567                 swp_entry_t swap = { .val = page_private(page) };
568                 __delete_from_swap_cache(page);
569                 spin_unlock_irq(&mapping->tree_lock);
570                 swapcache_free(swap, page);
571         } else {
572                 void (*freepage)(struct page *);
573
574                 freepage = mapping->a_ops->freepage;
575
576                 __delete_from_page_cache(page);
577                 spin_unlock_irq(&mapping->tree_lock);
578                 mem_cgroup_uncharge_cache_page(page);
579
580                 if (freepage != NULL)
581                         freepage(page);
582         }
583
584         return 1;
585
586 cannot_free:
587         spin_unlock_irq(&mapping->tree_lock);
588         return 0;
589 }
590
591 /*
592  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
593  * someone else has a ref on the page, abort and return 0.  If it was
594  * successfully detached, return 1.  Assumes the caller has a single ref on
595  * this page.
596  */
597 int remove_mapping(struct address_space *mapping, struct page *page)
598 {
599         if (__remove_mapping(mapping, page)) {
600                 /*
601                  * Unfreezing the refcount with 1 rather than 2 effectively
602                  * drops the pagecache ref for us without requiring another
603                  * atomic operation.
604                  */
605                 page_unfreeze_refs(page, 1);
606                 return 1;
607         }
608         return 0;
609 }
610
611 /**
612  * putback_lru_page - put previously isolated page onto appropriate LRU list
613  * @page: page to be put back to appropriate lru list
614  *
615  * Add previously isolated @page to appropriate LRU list.
616  * Page may still be unevictable for other reasons.
617  *
618  * lru_lock must not be held, interrupts must be enabled.
619  */
620 void putback_lru_page(struct page *page)
621 {
622         int lru;
623         int active = !!TestClearPageActive(page);
624         int was_unevictable = PageUnevictable(page);
625
626         VM_BUG_ON(PageLRU(page));
627
628 redo:
629         ClearPageUnevictable(page);
630
631         if (page_evictable(page, NULL)) {
632                 /*
633                  * For evictable pages, we can use the cache.
634                  * In event of a race, worst case is we end up with an
635                  * unevictable page on [in]active list.
636                  * We know how to handle that.
637                  */
638                 lru = active + page_lru_base_type(page);
639                 lru_cache_add_lru(page, lru);
640         } else {
641                 /*
642                  * Put unevictable pages directly on zone's unevictable
643                  * list.
644                  */
645                 lru = LRU_UNEVICTABLE;
646                 add_page_to_unevictable_list(page);
647                 /*
648                  * When racing with an mlock clearing (page is
649                  * unlocked), make sure that if the other thread does
650                  * not observe our setting of PG_lru and fails
651                  * isolation, we see PG_mlocked cleared below and move
652                  * the page back to the evictable list.
653                  *
654                  * The other side is TestClearPageMlocked().
655                  */
656                 smp_mb();
657         }
658
659         /*
660          * page's status can change while we move it among lru. If an evictable
661          * page is on unevictable list, it never be freed. To avoid that,
662          * check after we added it to the list, again.
663          */
664         if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
665                 if (!isolate_lru_page(page)) {
666                         put_page(page);
667                         goto redo;
668                 }
669                 /* This means someone else dropped this page from LRU
670                  * So, it will be freed or putback to LRU again. There is
671                  * nothing to do here.
672                  */
673         }
674
675         if (was_unevictable && lru != LRU_UNEVICTABLE)
676                 count_vm_event(UNEVICTABLE_PGRESCUED);
677         else if (!was_unevictable && lru == LRU_UNEVICTABLE)
678                 count_vm_event(UNEVICTABLE_PGCULLED);
679
680         put_page(page);         /* drop ref from isolate */
681 }
682
683 enum page_references {
684         PAGEREF_RECLAIM,
685         PAGEREF_RECLAIM_CLEAN,
686         PAGEREF_KEEP,
687         PAGEREF_ACTIVATE,
688 };
689
690 static enum page_references page_check_references(struct page *page,
691                                                   struct scan_control *sc)
692 {
693         int referenced_ptes, referenced_page;
694         unsigned long vm_flags;
695
696         referenced_ptes = page_referenced(page, 1, sc->mem_cgroup, &vm_flags);
697         referenced_page = TestClearPageReferenced(page);
698
699         /* Lumpy reclaim - ignore references */
700         if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
701                 return PAGEREF_RECLAIM;
702
703         /*
704          * Mlock lost the isolation race with us.  Let try_to_unmap()
705          * move the page to the unevictable list.
706          */
707         if (vm_flags & VM_LOCKED)
708                 return PAGEREF_RECLAIM;
709
710         if (referenced_ptes) {
711                 if (PageSwapBacked(page))
712                         return PAGEREF_ACTIVATE;
713                 /*
714                  * All mapped pages start out with page table
715                  * references from the instantiating fault, so we need
716                  * to look twice if a mapped file page is used more
717                  * than once.
718                  *
719                  * Mark it and spare it for another trip around the
720                  * inactive list.  Another page table reference will
721                  * lead to its activation.
722                  *
723                  * Note: the mark is set for activated pages as well
724                  * so that recently deactivated but used pages are
725                  * quickly recovered.
726                  */
727                 SetPageReferenced(page);
728
729                 if (referenced_page || referenced_ptes > 1)
730                         return PAGEREF_ACTIVATE;
731
732                 /*
733                  * Activate file-backed executable pages after first usage.
734                  */
735                 if (vm_flags & VM_EXEC)
736                         return PAGEREF_ACTIVATE;
737
738                 return PAGEREF_KEEP;
739         }
740
741         /* Reclaim if clean, defer dirty pages to writeback */
742         if (referenced_page && !PageSwapBacked(page))
743                 return PAGEREF_RECLAIM_CLEAN;
744
745         return PAGEREF_RECLAIM;
746 }
747
748 static noinline_for_stack void free_page_list(struct list_head *free_pages)
749 {
750         struct pagevec freed_pvec;
751         struct page *page, *tmp;
752
753         pagevec_init(&freed_pvec, 1);
754
755         list_for_each_entry_safe(page, tmp, free_pages, lru) {
756                 list_del(&page->lru);
757                 if (!pagevec_add(&freed_pvec, page)) {
758                         __pagevec_free(&freed_pvec);
759                         pagevec_reinit(&freed_pvec);
760                 }
761         }
762
763         pagevec_free(&freed_pvec);
764 }
765
766 /*
767  * shrink_page_list() returns the number of reclaimed pages
768  */
769 static unsigned long shrink_page_list(struct list_head *page_list,
770                                       struct zone *zone,
771                                       struct scan_control *sc)
772 {
773         LIST_HEAD(ret_pages);
774         LIST_HEAD(free_pages);
775         int pgactivate = 0;
776         unsigned long nr_dirty = 0;
777         unsigned long nr_congested = 0;
778         unsigned long nr_reclaimed = 0;
779
780         cond_resched();
781
782         while (!list_empty(page_list)) {
783                 enum page_references references;
784                 struct address_space *mapping;
785                 struct page *page;
786                 int may_enter_fs;
787
788                 cond_resched();
789
790                 page = lru_to_page(page_list);
791                 list_del(&page->lru);
792
793                 if (!trylock_page(page))
794                         goto keep;
795
796                 VM_BUG_ON(PageActive(page));
797                 VM_BUG_ON(page_zone(page) != zone);
798
799                 sc->nr_scanned++;
800
801                 if (unlikely(!page_evictable(page, NULL)))
802                         goto cull_mlocked;
803
804                 if (!sc->may_unmap && page_mapped(page))
805                         goto keep_locked;
806
807                 /* Double the slab pressure for mapped and swapcache pages */
808                 if (page_mapped(page) || PageSwapCache(page))
809                         sc->nr_scanned++;
810
811                 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
812                         (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
813
814                 if (PageWriteback(page)) {
815                         /*
816                          * Synchronous reclaim is performed in two passes,
817                          * first an asynchronous pass over the list to
818                          * start parallel writeback, and a second synchronous
819                          * pass to wait for the IO to complete.  Wait here
820                          * for any page for which writeback has already
821                          * started.
822                          */
823                         if ((sc->reclaim_mode & RECLAIM_MODE_SYNC) &&
824                             may_enter_fs)
825                                 wait_on_page_writeback(page);
826                         else {
827                                 unlock_page(page);
828                                 goto keep_lumpy;
829                         }
830                 }
831
832                 references = page_check_references(page, sc);
833                 switch (references) {
834                 case PAGEREF_ACTIVATE:
835                         goto activate_locked;
836                 case PAGEREF_KEEP:
837                         goto keep_locked;
838                 case PAGEREF_RECLAIM:
839                 case PAGEREF_RECLAIM_CLEAN:
840                         ; /* try to reclaim the page below */
841                 }
842
843                 /*
844                  * Anonymous process memory has backing store?
845                  * Try to allocate it some swap space here.
846                  */
847                 if (PageAnon(page) && !PageSwapCache(page)) {
848                         if (!(sc->gfp_mask & __GFP_IO))
849                                 goto keep_locked;
850                         if (!add_to_swap(page))
851                                 goto activate_locked;
852                         may_enter_fs = 1;
853                 }
854
855                 mapping = page_mapping(page);
856
857                 /*
858                  * The page is mapped into the page tables of one or more
859                  * processes. Try to unmap it here.
860                  */
861                 if (page_mapped(page) && mapping) {
862                         switch (try_to_unmap(page, TTU_UNMAP)) {
863                         case SWAP_FAIL:
864                                 goto activate_locked;
865                         case SWAP_AGAIN:
866                                 goto keep_locked;
867                         case SWAP_MLOCK:
868                                 goto cull_mlocked;
869                         case SWAP_SUCCESS:
870                                 ; /* try to free the page below */
871                         }
872                 }
873
874                 if (PageDirty(page)) {
875                         nr_dirty++;
876
877                         if (references == PAGEREF_RECLAIM_CLEAN)
878                                 goto keep_locked;
879                         if (!may_enter_fs)
880                                 goto keep_locked;
881                         if (!sc->may_writepage)
882                                 goto keep_locked;
883
884                         /* Page is dirty, try to write it out here */
885                         switch (pageout(page, mapping, sc)) {
886                         case PAGE_KEEP:
887                                 nr_congested++;
888                                 goto keep_locked;
889                         case PAGE_ACTIVATE:
890                                 goto activate_locked;
891                         case PAGE_SUCCESS:
892                                 if (PageWriteback(page))
893                                         goto keep_lumpy;
894                                 if (PageDirty(page))
895                                         goto keep;
896
897                                 /*
898                                  * A synchronous write - probably a ramdisk.  Go
899                                  * ahead and try to reclaim the page.
900                                  */
901                                 if (!trylock_page(page))
902                                         goto keep;
903                                 if (PageDirty(page) || PageWriteback(page))
904                                         goto keep_locked;
905                                 mapping = page_mapping(page);
906                         case PAGE_CLEAN:
907                                 ; /* try to free the page below */
908                         }
909                 }
910
911                 /*
912                  * If the page has buffers, try to free the buffer mappings
913                  * associated with this page. If we succeed we try to free
914                  * the page as well.
915                  *
916                  * We do this even if the page is PageDirty().
917                  * try_to_release_page() does not perform I/O, but it is
918                  * possible for a page to have PageDirty set, but it is actually
919                  * clean (all its buffers are clean).  This happens if the
920                  * buffers were written out directly, with submit_bh(). ext3
921                  * will do this, as well as the blockdev mapping.
922                  * try_to_release_page() will discover that cleanness and will
923                  * drop the buffers and mark the page clean - it can be freed.
924                  *
925                  * Rarely, pages can have buffers and no ->mapping.  These are
926                  * the pages which were not successfully invalidated in
927                  * truncate_complete_page().  We try to drop those buffers here
928                  * and if that worked, and the page is no longer mapped into
929                  * process address space (page_count == 1) it can be freed.
930                  * Otherwise, leave the page on the LRU so it is swappable.
931                  */
932                 if (page_has_private(page)) {
933                         if (!try_to_release_page(page, sc->gfp_mask))
934                                 goto activate_locked;
935                         if (!mapping && page_count(page) == 1) {
936                                 unlock_page(page);
937                                 if (put_page_testzero(page))
938                                         goto free_it;
939                                 else {
940                                         /*
941                                          * rare race with speculative reference.
942                                          * the speculative reference will free
943                                          * this page shortly, so we may
944                                          * increment nr_reclaimed here (and
945                                          * leave it off the LRU).
946                                          */
947                                         nr_reclaimed++;
948                                         continue;
949                                 }
950                         }
951                 }
952
953                 if (!mapping || !__remove_mapping(mapping, page))
954                         goto keep_locked;
955
956                 /*
957                  * At this point, we have no other references and there is
958                  * no way to pick any more up (removed from LRU, removed
959                  * from pagecache). Can use non-atomic bitops now (and
960                  * we obviously don't have to worry about waking up a process
961                  * waiting on the page lock, because there are no references.
962                  */
963                 __clear_page_locked(page);
964 free_it:
965                 nr_reclaimed++;
966
967                 /*
968                  * Is there need to periodically free_page_list? It would
969                  * appear not as the counts should be low
970                  */
971                 list_add(&page->lru, &free_pages);
972                 continue;
973
974 cull_mlocked:
975                 if (PageSwapCache(page))
976                         try_to_free_swap(page);
977                 unlock_page(page);
978                 putback_lru_page(page);
979                 reset_reclaim_mode(sc);
980                 continue;
981
982 activate_locked:
983                 /* Not a candidate for swapping, so reclaim swap space. */
984                 if (PageSwapCache(page) && vm_swap_full())
985                         try_to_free_swap(page);
986                 VM_BUG_ON(PageActive(page));
987                 SetPageActive(page);
988                 pgactivate++;
989 keep_locked:
990                 unlock_page(page);
991 keep:
992                 reset_reclaim_mode(sc);
993 keep_lumpy:
994                 list_add(&page->lru, &ret_pages);
995                 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
996         }
997
998         /*
999          * Tag a zone as congested if all the dirty pages encountered were
1000          * backed by a congested BDI. In this case, reclaimers should just
1001          * back off and wait for congestion to clear because further reclaim
1002          * will encounter the same problem
1003          */
1004         if (nr_dirty && nr_dirty == nr_congested && scanning_global_lru(sc))
1005                 zone_set_flag(zone, ZONE_CONGESTED);
1006
1007         free_page_list(&free_pages);
1008
1009         list_splice(&ret_pages, page_list);
1010         count_vm_events(PGACTIVATE, pgactivate);
1011         return nr_reclaimed;
1012 }
1013
1014 /*
1015  * Attempt to remove the specified page from its LRU.  Only take this page
1016  * if it is of the appropriate PageActive status.  Pages which are being
1017  * freed elsewhere are also ignored.
1018  *
1019  * page:        page to consider
1020  * mode:        one of the LRU isolation modes defined above
1021  *
1022  * returns 0 on success, -ve errno on failure.
1023  */
1024 int __isolate_lru_page(struct page *page, isolate_mode_t mode, int file)
1025 {
1026         bool all_lru_mode;
1027         int ret = -EINVAL;
1028
1029         /* Only take pages on the LRU. */
1030         if (!PageLRU(page))
1031                 return ret;
1032
1033         all_lru_mode = (mode & (ISOLATE_ACTIVE|ISOLATE_INACTIVE)) ==
1034                 (ISOLATE_ACTIVE|ISOLATE_INACTIVE);
1035
1036         /*
1037          * When checking the active state, we need to be sure we are
1038          * dealing with comparible boolean values.  Take the logical not
1039          * of each.
1040          */
1041         if (!all_lru_mode && !PageActive(page) != !(mode & ISOLATE_ACTIVE))
1042                 return ret;
1043
1044         if (!all_lru_mode && !!page_is_file_cache(page) != file)
1045                 return ret;
1046
1047         /*
1048          * When this function is being called for lumpy reclaim, we
1049          * initially look into all LRU pages, active, inactive and
1050          * unevictable; only give shrink_page_list evictable pages.
1051          */
1052         if (PageUnevictable(page))
1053                 return ret;
1054
1055         ret = -EBUSY;
1056
1057         /*
1058          * To minimise LRU disruption, the caller can indicate that it only
1059          * wants to isolate pages it will be able to operate on without
1060          * blocking - clean pages for the most part.
1061          *
1062          * ISOLATE_CLEAN means that only clean pages should be isolated. This
1063          * is used by reclaim when it is cannot write to backing storage
1064          *
1065          * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1066          * that it is possible to migrate without blocking
1067          */
1068         if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1069                 /* All the caller can do on PageWriteback is block */
1070                 if (PageWriteback(page))
1071                         return ret;
1072
1073                 if (PageDirty(page)) {
1074                         struct address_space *mapping;
1075
1076                         /* ISOLATE_CLEAN means only clean pages */
1077                         if (mode & ISOLATE_CLEAN)
1078                                 return ret;
1079
1080                         /*
1081                          * Only pages without mappings or that have a
1082                          * ->migratepage callback are possible to migrate
1083                          * without blocking
1084                          */
1085                         mapping = page_mapping(page);
1086                         if (mapping && !mapping->a_ops->migratepage)
1087                                 return ret;
1088                 }
1089         }
1090
1091         if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1092                 return ret;
1093
1094         if (likely(get_page_unless_zero(page))) {
1095                 /*
1096                  * Be careful not to clear PageLRU until after we're
1097                  * sure the page is not being freed elsewhere -- the
1098                  * page release code relies on it.
1099                  */
1100                 ClearPageLRU(page);
1101                 ret = 0;
1102         }
1103
1104         return ret;
1105 }
1106
1107 /*
1108  * zone->lru_lock is heavily contended.  Some of the functions that
1109  * shrink the lists perform better by taking out a batch of pages
1110  * and working on them outside the LRU lock.
1111  *
1112  * For pagecache intensive workloads, this function is the hottest
1113  * spot in the kernel (apart from copy_*_user functions).
1114  *
1115  * Appropriate locks must be held before calling this function.
1116  *
1117  * @nr_to_scan: The number of pages to look through on the list.
1118  * @src:        The LRU list to pull pages off.
1119  * @dst:        The temp list to put pages on to.
1120  * @scanned:    The number of pages that were scanned.
1121  * @order:      The caller's attempted allocation order
1122  * @mode:       One of the LRU isolation modes
1123  * @file:       True [1] if isolating file [!anon] pages
1124  *
1125  * returns how many pages were moved onto *@dst.
1126  */
1127 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1128                 struct list_head *src, struct list_head *dst,
1129                 unsigned long *scanned, int order, isolate_mode_t mode,
1130                 int file)
1131 {
1132         unsigned long nr_taken = 0;
1133         unsigned long nr_lumpy_taken = 0;
1134         unsigned long nr_lumpy_dirty = 0;
1135         unsigned long nr_lumpy_failed = 0;
1136         unsigned long scan;
1137
1138         for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1139                 struct page *page;
1140                 unsigned long pfn;
1141                 unsigned long end_pfn;
1142                 unsigned long page_pfn;
1143                 int zone_id;
1144
1145                 page = lru_to_page(src);
1146                 prefetchw_prev_lru_page(page, src, flags);
1147
1148                 VM_BUG_ON(!PageLRU(page));
1149
1150                 switch (__isolate_lru_page(page, mode, file)) {
1151                 case 0:
1152                         list_move(&page->lru, dst);
1153                         mem_cgroup_del_lru(page);
1154                         nr_taken += hpage_nr_pages(page);
1155                         break;
1156
1157                 case -EBUSY:
1158                         /* else it is being freed elsewhere */
1159                         list_move(&page->lru, src);
1160                         mem_cgroup_rotate_lru_list(page, page_lru(page));
1161                         continue;
1162
1163                 default:
1164                         BUG();
1165                 }
1166
1167                 if (!order)
1168                         continue;
1169
1170                 /*
1171                  * Attempt to take all pages in the order aligned region
1172                  * surrounding the tag page.  Only take those pages of
1173                  * the same active state as that tag page.  We may safely
1174                  * round the target page pfn down to the requested order
1175                  * as the mem_map is guaranteed valid out to MAX_ORDER,
1176                  * where that page is in a different zone we will detect
1177                  * it from its zone id and abort this block scan.
1178                  */
1179                 zone_id = page_zone_id(page);
1180                 page_pfn = page_to_pfn(page);
1181                 pfn = page_pfn & ~((1 << order) - 1);
1182                 end_pfn = pfn + (1 << order);
1183                 for (; pfn < end_pfn; pfn++) {
1184                         struct page *cursor_page;
1185
1186                         /* The target page is in the block, ignore it. */
1187                         if (unlikely(pfn == page_pfn))
1188                                 continue;
1189
1190                         /* Avoid holes within the zone. */
1191                         if (unlikely(!pfn_valid_within(pfn)))
1192                                 break;
1193
1194                         cursor_page = pfn_to_page(pfn);
1195
1196                         /* Check that we have not crossed a zone boundary. */
1197                         if (unlikely(page_zone_id(cursor_page) != zone_id))
1198                                 break;
1199
1200                         /*
1201                          * If we don't have enough swap space, reclaiming of
1202                          * anon page which don't already have a swap slot is
1203                          * pointless.
1204                          */
1205                         if (nr_swap_pages <= 0 && PageSwapBacked(cursor_page) &&
1206                             !PageSwapCache(cursor_page))
1207                                 break;
1208
1209                         if (__isolate_lru_page(cursor_page, mode, file) == 0) {
1210                                 list_move(&cursor_page->lru, dst);
1211                                 mem_cgroup_del_lru(cursor_page);
1212                                 nr_taken += hpage_nr_pages(page);
1213                                 nr_lumpy_taken++;
1214                                 if (PageDirty(cursor_page))
1215                                         nr_lumpy_dirty++;
1216                                 scan++;
1217                         } else {
1218                                 /*
1219                                  * Check if the page is freed already.
1220                                  *
1221                                  * We can't use page_count() as that
1222                                  * requires compound_head and we don't
1223                                  * have a pin on the page here. If a
1224                                  * page is tail, we may or may not
1225                                  * have isolated the head, so assume
1226                                  * it's not free, it'd be tricky to
1227                                  * track the head status without a
1228                                  * page pin.
1229                                  */
1230                                 if (!PageTail(cursor_page) &&
1231                                     !atomic_read(&cursor_page->_count))
1232                                         continue;
1233                                 break;
1234                         }
1235                 }
1236
1237                 /* If we break out of the loop above, lumpy reclaim failed */
1238                 if (pfn < end_pfn)
1239                         nr_lumpy_failed++;
1240         }
1241
1242         *scanned = scan;
1243
1244         trace_mm_vmscan_lru_isolate(order,
1245                         nr_to_scan, scan,
1246                         nr_taken,
1247                         nr_lumpy_taken, nr_lumpy_dirty, nr_lumpy_failed,
1248                         mode);
1249         return nr_taken;
1250 }
1251
1252 static unsigned long isolate_pages_global(unsigned long nr,
1253                                         struct list_head *dst,
1254                                         unsigned long *scanned, int order,
1255                                         isolate_mode_t mode,
1256                                         struct zone *z, int active, int file)
1257 {
1258         int lru = LRU_BASE;
1259         if (active)
1260                 lru += LRU_ACTIVE;
1261         if (file)
1262                 lru += LRU_FILE;
1263         return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
1264                                                                 mode, file);
1265 }
1266
1267 /*
1268  * clear_active_flags() is a helper for shrink_active_list(), clearing
1269  * any active bits from the pages in the list.
1270  */
1271 static unsigned long clear_active_flags(struct list_head *page_list,
1272                                         unsigned int *count)
1273 {
1274         int nr_active = 0;
1275         int lru;
1276         struct page *page;
1277
1278         list_for_each_entry(page, page_list, lru) {
1279                 int numpages = hpage_nr_pages(page);
1280                 lru = page_lru_base_type(page);
1281                 if (PageActive(page)) {
1282                         lru += LRU_ACTIVE;
1283                         ClearPageActive(page);
1284                         nr_active += numpages;
1285                 }
1286                 if (count)
1287                         count[lru] += numpages;
1288         }
1289
1290         return nr_active;
1291 }
1292
1293 /**
1294  * isolate_lru_page - tries to isolate a page from its LRU list
1295  * @page: page to isolate from its LRU list
1296  *
1297  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1298  * vmstat statistic corresponding to whatever LRU list the page was on.
1299  *
1300  * Returns 0 if the page was removed from an LRU list.
1301  * Returns -EBUSY if the page was not on an LRU list.
1302  *
1303  * The returned page will have PageLRU() cleared.  If it was found on
1304  * the active list, it will have PageActive set.  If it was found on
1305  * the unevictable list, it will have the PageUnevictable bit set. That flag
1306  * may need to be cleared by the caller before letting the page go.
1307  *
1308  * The vmstat statistic corresponding to the list on which the page was
1309  * found will be decremented.
1310  *
1311  * Restrictions:
1312  * (1) Must be called with an elevated refcount on the page. This is a
1313  *     fundamentnal difference from isolate_lru_pages (which is called
1314  *     without a stable reference).
1315  * (2) the lru_lock must not be held.
1316  * (3) interrupts must be enabled.
1317  */
1318 int isolate_lru_page(struct page *page)
1319 {
1320         int ret = -EBUSY;
1321
1322         VM_BUG_ON(!page_count(page));
1323
1324         if (PageLRU(page)) {
1325                 struct zone *zone = page_zone(page);
1326
1327                 spin_lock_irq(&zone->lru_lock);
1328                 if (PageLRU(page)) {
1329                         int lru = page_lru(page);
1330                         ret = 0;
1331                         get_page(page);
1332                         ClearPageLRU(page);
1333
1334                         del_page_from_lru_list(zone, page, lru);
1335                 }
1336                 spin_unlock_irq(&zone->lru_lock);
1337         }
1338         return ret;
1339 }
1340
1341 /*
1342  * Are there way too many processes in the direct reclaim path already?
1343  */
1344 static int too_many_isolated(struct zone *zone, int file,
1345                 struct scan_control *sc)
1346 {
1347         unsigned long inactive, isolated;
1348
1349         if (current_is_kswapd())
1350                 return 0;
1351
1352         if (!scanning_global_lru(sc))
1353                 return 0;
1354
1355         if (file) {
1356                 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1357                 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1358         } else {
1359                 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1360                 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1361         }
1362
1363         return isolated > inactive;
1364 }
1365
1366 /*
1367  * TODO: Try merging with migrations version of putback_lru_pages
1368  */
1369 static noinline_for_stack void
1370 putback_lru_pages(struct zone *zone, struct scan_control *sc,
1371                                 unsigned long nr_anon, unsigned long nr_file,
1372                                 struct list_head *page_list)
1373 {
1374         struct page *page;
1375         struct pagevec pvec;
1376         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1377
1378         pagevec_init(&pvec, 1);
1379
1380         /*
1381          * Put back any unfreeable pages.
1382          */
1383         spin_lock(&zone->lru_lock);
1384         while (!list_empty(page_list)) {
1385                 int lru;
1386                 page = lru_to_page(page_list);
1387                 VM_BUG_ON(PageLRU(page));
1388                 list_del(&page->lru);
1389                 if (unlikely(!page_evictable(page, NULL))) {
1390                         spin_unlock_irq(&zone->lru_lock);
1391                         putback_lru_page(page);
1392                         spin_lock_irq(&zone->lru_lock);
1393                         continue;
1394                 }
1395                 SetPageLRU(page);
1396                 lru = page_lru(page);
1397                 add_page_to_lru_list(zone, page, lru);
1398                 if (is_active_lru(lru)) {
1399                         int file = is_file_lru(lru);
1400                         int numpages = hpage_nr_pages(page);
1401                         reclaim_stat->recent_rotated[file] += numpages;
1402                 }
1403                 if (!pagevec_add(&pvec, page)) {
1404                         spin_unlock_irq(&zone->lru_lock);
1405                         __pagevec_release(&pvec);
1406                         spin_lock_irq(&zone->lru_lock);
1407                 }
1408         }
1409         __mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
1410         __mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
1411
1412         spin_unlock_irq(&zone->lru_lock);
1413         pagevec_release(&pvec);
1414 }
1415
1416 static noinline_for_stack void update_isolated_counts(struct zone *zone,
1417                                         struct scan_control *sc,
1418                                         unsigned long *nr_anon,
1419                                         unsigned long *nr_file,
1420                                         struct list_head *isolated_list)
1421 {
1422         unsigned long nr_active;
1423         unsigned int count[NR_LRU_LISTS] = { 0, };
1424         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1425
1426         nr_active = clear_active_flags(isolated_list, count);
1427         __count_vm_events(PGDEACTIVATE, nr_active);
1428
1429         __mod_zone_page_state(zone, NR_ACTIVE_FILE,
1430                               -count[LRU_ACTIVE_FILE]);
1431         __mod_zone_page_state(zone, NR_INACTIVE_FILE,
1432                               -count[LRU_INACTIVE_FILE]);
1433         __mod_zone_page_state(zone, NR_ACTIVE_ANON,
1434                               -count[LRU_ACTIVE_ANON]);
1435         __mod_zone_page_state(zone, NR_INACTIVE_ANON,
1436                               -count[LRU_INACTIVE_ANON]);
1437
1438         *nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
1439         *nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
1440         __mod_zone_page_state(zone, NR_ISOLATED_ANON, *nr_anon);
1441         __mod_zone_page_state(zone, NR_ISOLATED_FILE, *nr_file);
1442
1443         reclaim_stat->recent_scanned[0] += *nr_anon;
1444         reclaim_stat->recent_scanned[1] += *nr_file;
1445 }
1446
1447 /*
1448  * Returns true if the caller should wait to clean dirty/writeback pages.
1449  *
1450  * If we are direct reclaiming for contiguous pages and we do not reclaim
1451  * everything in the list, try again and wait for writeback IO to complete.
1452  * This will stall high-order allocations noticeably. Only do that when really
1453  * need to free the pages under high memory pressure.
1454  */
1455 static inline bool should_reclaim_stall(unsigned long nr_taken,
1456                                         unsigned long nr_freed,
1457                                         int priority,
1458                                         struct scan_control *sc)
1459 {
1460         int lumpy_stall_priority;
1461
1462         /* kswapd should not stall on sync IO */
1463         if (current_is_kswapd())
1464                 return false;
1465
1466         /* Only stall on lumpy reclaim */
1467         if (sc->reclaim_mode & RECLAIM_MODE_SINGLE)
1468                 return false;
1469
1470         /* If we have relaimed everything on the isolated list, no stall */
1471         if (nr_freed == nr_taken)
1472                 return false;
1473
1474         /*
1475          * For high-order allocations, there are two stall thresholds.
1476          * High-cost allocations stall immediately where as lower
1477          * order allocations such as stacks require the scanning
1478          * priority to be much higher before stalling.
1479          */
1480         if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1481                 lumpy_stall_priority = DEF_PRIORITY;
1482         else
1483                 lumpy_stall_priority = DEF_PRIORITY / 3;
1484
1485         return priority <= lumpy_stall_priority;
1486 }
1487
1488 /*
1489  * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1490  * of reclaimed pages
1491  */
1492 static noinline_for_stack unsigned long
1493 shrink_inactive_list(unsigned long nr_to_scan, struct zone *zone,
1494                         struct scan_control *sc, int priority, int file)
1495 {
1496         LIST_HEAD(page_list);
1497         unsigned long nr_scanned;
1498         unsigned long nr_reclaimed = 0;
1499         unsigned long nr_taken;
1500         unsigned long nr_anon;
1501         unsigned long nr_file;
1502         isolate_mode_t reclaim_mode = ISOLATE_INACTIVE;
1503
1504         while (unlikely(too_many_isolated(zone, file, sc))) {
1505                 congestion_wait(BLK_RW_ASYNC, HZ/10);
1506
1507                 /* We are about to die and free our memory. Return now. */
1508                 if (fatal_signal_pending(current))
1509                         return SWAP_CLUSTER_MAX;
1510         }
1511
1512         set_reclaim_mode(priority, sc, false);
1513         if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
1514                 reclaim_mode |= ISOLATE_ACTIVE;
1515
1516         lru_add_drain();
1517
1518         if (!sc->may_unmap)
1519                 reclaim_mode |= ISOLATE_UNMAPPED;
1520         if (!sc->may_writepage)
1521                 reclaim_mode |= ISOLATE_CLEAN;
1522
1523         spin_lock_irq(&zone->lru_lock);
1524
1525         if (scanning_global_lru(sc)) {
1526                 nr_taken = isolate_pages_global(nr_to_scan, &page_list,
1527                         &nr_scanned, sc->order, reclaim_mode, zone, 0, file);
1528                 zone->pages_scanned += nr_scanned;
1529                 if (current_is_kswapd())
1530                         __count_zone_vm_events(PGSCAN_KSWAPD, zone,
1531                                                nr_scanned);
1532                 else
1533                         __count_zone_vm_events(PGSCAN_DIRECT, zone,
1534                                                nr_scanned);
1535         } else {
1536                 nr_taken = mem_cgroup_isolate_pages(nr_to_scan, &page_list,
1537                         &nr_scanned, sc->order, reclaim_mode, zone,
1538                         sc->mem_cgroup, 0, file);
1539                 /*
1540                  * mem_cgroup_isolate_pages() keeps track of
1541                  * scanned pages on its own.
1542                  */
1543         }
1544
1545         if (nr_taken == 0) {
1546                 spin_unlock_irq(&zone->lru_lock);
1547                 return 0;
1548         }
1549
1550         update_isolated_counts(zone, sc, &nr_anon, &nr_file, &page_list);
1551
1552         spin_unlock_irq(&zone->lru_lock);
1553
1554         nr_reclaimed = shrink_page_list(&page_list, zone, sc);
1555
1556         /* Check if we should syncronously wait for writeback */
1557         if (should_reclaim_stall(nr_taken, nr_reclaimed, priority, sc)) {
1558                 set_reclaim_mode(priority, sc, true);
1559                 nr_reclaimed += shrink_page_list(&page_list, zone, sc);
1560         }
1561
1562         local_irq_disable();
1563         if (current_is_kswapd())
1564                 __count_vm_events(KSWAPD_STEAL, nr_reclaimed);
1565         __count_zone_vm_events(PGSTEAL, zone, nr_reclaimed);
1566
1567         putback_lru_pages(zone, sc, nr_anon, nr_file, &page_list);
1568
1569         trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1570                 zone_idx(zone),
1571                 nr_scanned, nr_reclaimed,
1572                 priority,
1573                 trace_shrink_flags(file, sc->reclaim_mode));
1574         return nr_reclaimed;
1575 }
1576
1577 /*
1578  * This moves pages from the active list to the inactive list.
1579  *
1580  * We move them the other way if the page is referenced by one or more
1581  * processes, from rmap.
1582  *
1583  * If the pages are mostly unmapped, the processing is fast and it is
1584  * appropriate to hold zone->lru_lock across the whole operation.  But if
1585  * the pages are mapped, the processing is slow (page_referenced()) so we
1586  * should drop zone->lru_lock around each page.  It's impossible to balance
1587  * this, so instead we remove the pages from the LRU while processing them.
1588  * It is safe to rely on PG_active against the non-LRU pages in here because
1589  * nobody will play with that bit on a non-LRU page.
1590  *
1591  * The downside is that we have to touch page->_count against each page.
1592  * But we had to alter page->flags anyway.
1593  */
1594
1595 static void move_active_pages_to_lru(struct zone *zone,
1596                                      struct list_head *list,
1597                                      enum lru_list lru)
1598 {
1599         unsigned long pgmoved = 0;
1600         struct pagevec pvec;
1601         struct page *page;
1602
1603         pagevec_init(&pvec, 1);
1604
1605         while (!list_empty(list)) {
1606                 page = lru_to_page(list);
1607
1608                 VM_BUG_ON(PageLRU(page));
1609                 SetPageLRU(page);
1610
1611                 list_move(&page->lru, &zone->lru[lru].list);
1612                 mem_cgroup_add_lru_list(page, lru);
1613                 pgmoved += hpage_nr_pages(page);
1614
1615                 if (!pagevec_add(&pvec, page) || list_empty(list)) {
1616                         spin_unlock_irq(&zone->lru_lock);
1617                         if (buffer_heads_over_limit)
1618                                 pagevec_strip(&pvec);
1619                         __pagevec_release(&pvec);
1620                         spin_lock_irq(&zone->lru_lock);
1621                 }
1622         }
1623         __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1624         if (!is_active_lru(lru))
1625                 __count_vm_events(PGDEACTIVATE, pgmoved);
1626 }
1627
1628 static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1629                         struct scan_control *sc, int priority, int file)
1630 {
1631         unsigned long nr_taken;
1632         unsigned long pgscanned;
1633         unsigned long vm_flags;
1634         LIST_HEAD(l_hold);      /* The pages which were snipped off */
1635         LIST_HEAD(l_active);
1636         LIST_HEAD(l_inactive);
1637         struct page *page;
1638         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1639         unsigned long nr_rotated = 0;
1640         isolate_mode_t reclaim_mode = ISOLATE_ACTIVE;
1641
1642         lru_add_drain();
1643
1644         if (!sc->may_unmap)
1645                 reclaim_mode |= ISOLATE_UNMAPPED;
1646         if (!sc->may_writepage)
1647                 reclaim_mode |= ISOLATE_CLEAN;
1648
1649         spin_lock_irq(&zone->lru_lock);
1650         if (scanning_global_lru(sc)) {
1651                 nr_taken = isolate_pages_global(nr_pages, &l_hold,
1652                                                 &pgscanned, sc->order,
1653                                                 reclaim_mode, zone,
1654                                                 1, file);
1655                 zone->pages_scanned += pgscanned;
1656         } else {
1657                 nr_taken = mem_cgroup_isolate_pages(nr_pages, &l_hold,
1658                                                 &pgscanned, sc->order,
1659                                                 reclaim_mode, zone,
1660                                                 sc->mem_cgroup, 1, file);
1661                 /*
1662                  * mem_cgroup_isolate_pages() keeps track of
1663                  * scanned pages on its own.
1664                  */
1665         }
1666
1667         reclaim_stat->recent_scanned[file] += nr_taken;
1668
1669         __count_zone_vm_events(PGREFILL, zone, pgscanned);
1670         if (file)
1671                 __mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
1672         else
1673                 __mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
1674         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1675         spin_unlock_irq(&zone->lru_lock);
1676
1677         while (!list_empty(&l_hold)) {
1678                 cond_resched();
1679                 page = lru_to_page(&l_hold);
1680                 list_del(&page->lru);
1681
1682                 if (unlikely(!page_evictable(page, NULL))) {
1683                         putback_lru_page(page);
1684                         continue;
1685                 }
1686
1687                 if (page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) {
1688                         nr_rotated += hpage_nr_pages(page);
1689                         /*
1690                          * Identify referenced, file-backed active pages and
1691                          * give them one more trip around the active list. So
1692                          * that executable code get better chances to stay in
1693                          * memory under moderate memory pressure.  Anon pages
1694                          * are not likely to be evicted by use-once streaming
1695                          * IO, plus JVM can create lots of anon VM_EXEC pages,
1696                          * so we ignore them here.
1697                          */
1698                         if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1699                                 list_add(&page->lru, &l_active);
1700                                 continue;
1701                         }
1702                 }
1703
1704                 ClearPageActive(page);  /* we are de-activating */
1705                 list_add(&page->lru, &l_inactive);
1706         }
1707
1708         /*
1709          * Move pages back to the lru list.
1710          */
1711         spin_lock_irq(&zone->lru_lock);
1712         /*
1713          * Count referenced pages from currently used mappings as rotated,
1714          * even though only some of them are actually re-activated.  This
1715          * helps balance scan pressure between file and anonymous pages in
1716          * get_scan_ratio.
1717          */
1718         reclaim_stat->recent_rotated[file] += nr_rotated;
1719
1720         move_active_pages_to_lru(zone, &l_active,
1721                                                 LRU_ACTIVE + file * LRU_FILE);
1722         move_active_pages_to_lru(zone, &l_inactive,
1723                                                 LRU_BASE   + file * LRU_FILE);
1724         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1725         spin_unlock_irq(&zone->lru_lock);
1726 }
1727
1728 #ifdef CONFIG_SWAP
1729 static int inactive_anon_is_low_global(struct zone *zone)
1730 {
1731         unsigned long active, inactive;
1732
1733         active = zone_page_state(zone, NR_ACTIVE_ANON);
1734         inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1735
1736         if (inactive * zone->inactive_ratio < active)
1737                 return 1;
1738
1739         return 0;
1740 }
1741
1742 /**
1743  * inactive_anon_is_low - check if anonymous pages need to be deactivated
1744  * @zone: zone to check
1745  * @sc:   scan control of this context
1746  *
1747  * Returns true if the zone does not have enough inactive anon pages,
1748  * meaning some active anon pages need to be deactivated.
1749  */
1750 static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
1751 {
1752         int low;
1753
1754         /*
1755          * If we don't have swap space, anonymous page deactivation
1756          * is pointless.
1757          */
1758         if (!total_swap_pages)
1759                 return 0;
1760
1761         if (scanning_global_lru(sc))
1762                 low = inactive_anon_is_low_global(zone);
1763         else
1764                 low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup);
1765         return low;
1766 }
1767 #else
1768 static inline int inactive_anon_is_low(struct zone *zone,
1769                                         struct scan_control *sc)
1770 {
1771         return 0;
1772 }
1773 #endif
1774
1775 static int inactive_file_is_low_global(struct zone *zone)
1776 {
1777         unsigned long active, inactive;
1778
1779         active = zone_page_state(zone, NR_ACTIVE_FILE);
1780         inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1781
1782         return (active > inactive);
1783 }
1784
1785 /**
1786  * inactive_file_is_low - check if file pages need to be deactivated
1787  * @zone: zone to check
1788  * @sc:   scan control of this context
1789  *
1790  * When the system is doing streaming IO, memory pressure here
1791  * ensures that active file pages get deactivated, until more
1792  * than half of the file pages are on the inactive list.
1793  *
1794  * Once we get to that situation, protect the system's working
1795  * set from being evicted by disabling active file page aging.
1796  *
1797  * This uses a different ratio than the anonymous pages, because
1798  * the page cache uses a use-once replacement algorithm.
1799  */
1800 static int inactive_file_is_low(struct zone *zone, struct scan_control *sc)
1801 {
1802         int low;
1803
1804         if (scanning_global_lru(sc))
1805                 low = inactive_file_is_low_global(zone);
1806         else
1807                 low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup);
1808         return low;
1809 }
1810
1811 static int inactive_list_is_low(struct zone *zone, struct scan_control *sc,
1812                                 int file)
1813 {
1814         if (file)
1815                 return inactive_file_is_low(zone, sc);
1816         else
1817                 return inactive_anon_is_low(zone, sc);
1818 }
1819
1820 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1821         struct zone *zone, struct scan_control *sc, int priority)
1822 {
1823         int file = is_file_lru(lru);
1824
1825         if (is_active_lru(lru)) {
1826                 if (inactive_list_is_low(zone, sc, file))
1827                     shrink_active_list(nr_to_scan, zone, sc, priority, file);
1828                 return 0;
1829         }
1830
1831         return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
1832 }
1833
1834 /*
1835  * Determine how aggressively the anon and file LRU lists should be
1836  * scanned.  The relative value of each set of LRU lists is determined
1837  * by looking at the fraction of the pages scanned we did rotate back
1838  * onto the active list instead of evict.
1839  *
1840  * nr[0] = anon pages to scan; nr[1] = file pages to scan
1841  */
1842 static void get_scan_count(struct zone *zone, struct scan_control *sc,
1843                                         unsigned long *nr, int priority)
1844 {
1845         unsigned long anon, file, free;
1846         unsigned long anon_prio, file_prio;
1847         unsigned long ap, fp;
1848         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1849         u64 fraction[2], denominator;
1850         enum lru_list l;
1851         int noswap = 0;
1852         bool force_scan = false;
1853         unsigned long nr_force_scan[2];
1854
1855         /* kswapd does zone balancing and needs to scan this zone */
1856         if (scanning_global_lru(sc) && current_is_kswapd() &&
1857             zone->all_unreclaimable)
1858                 force_scan = true;
1859         /* memcg may have small limit and need to avoid priority drop */
1860         if (!scanning_global_lru(sc))
1861                 force_scan = true;
1862
1863         /* If we have no swap space, do not bother scanning anon pages. */
1864         if (!sc->may_swap || (nr_swap_pages <= 0)) {
1865                 noswap = 1;
1866                 fraction[0] = 0;
1867                 fraction[1] = 1;
1868                 denominator = 1;
1869                 nr_force_scan[0] = 0;
1870                 nr_force_scan[1] = SWAP_CLUSTER_MAX;
1871                 goto out;
1872         }
1873
1874         anon  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_ANON) +
1875                 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON);
1876         file  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_FILE) +
1877                 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1878
1879         if (scanning_global_lru(sc)) {
1880                 free  = zone_page_state(zone, NR_FREE_PAGES);
1881                 /* If we have very few page cache pages,
1882                    force-scan anon pages. */
1883                 if (unlikely(file + free <= high_wmark_pages(zone))) {
1884                         fraction[0] = 1;
1885                         fraction[1] = 0;
1886                         denominator = 1;
1887                         nr_force_scan[0] = SWAP_CLUSTER_MAX;
1888                         nr_force_scan[1] = 0;
1889                         goto out;
1890                 }
1891         }
1892
1893         /*
1894          * With swappiness at 100, anonymous and file have the same priority.
1895          * This scanning priority is essentially the inverse of IO cost.
1896          */
1897         anon_prio = sc->swappiness;
1898         file_prio = 200 - sc->swappiness;
1899
1900         /*
1901          * OK, so we have swap space and a fair amount of page cache
1902          * pages.  We use the recently rotated / recently scanned
1903          * ratios to determine how valuable each cache is.
1904          *
1905          * Because workloads change over time (and to avoid overflow)
1906          * we keep these statistics as a floating average, which ends
1907          * up weighing recent references more than old ones.
1908          *
1909          * anon in [0], file in [1]
1910          */
1911         spin_lock_irq(&zone->lru_lock);
1912         if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1913                 reclaim_stat->recent_scanned[0] /= 2;
1914                 reclaim_stat->recent_rotated[0] /= 2;
1915         }
1916
1917         if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1918                 reclaim_stat->recent_scanned[1] /= 2;
1919                 reclaim_stat->recent_rotated[1] /= 2;
1920         }
1921
1922         /*
1923          * The amount of pressure on anon vs file pages is inversely
1924          * proportional to the fraction of recently scanned pages on
1925          * each list that were recently referenced and in active use.
1926          */
1927         ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1928         ap /= reclaim_stat->recent_rotated[0] + 1;
1929
1930         fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1931         fp /= reclaim_stat->recent_rotated[1] + 1;
1932         spin_unlock_irq(&zone->lru_lock);
1933
1934         fraction[0] = ap;
1935         fraction[1] = fp;
1936         denominator = ap + fp + 1;
1937         if (force_scan) {
1938                 unsigned long scan = SWAP_CLUSTER_MAX;
1939                 nr_force_scan[0] = div64_u64(scan * ap, denominator);
1940                 nr_force_scan[1] = div64_u64(scan * fp, denominator);
1941         }
1942 out:
1943         for_each_evictable_lru(l) {
1944                 int file = is_file_lru(l);
1945                 unsigned long scan;
1946
1947                 scan = zone_nr_lru_pages(zone, sc, l);
1948                 if (priority || noswap) {
1949                         scan >>= priority;
1950                         scan = div64_u64(scan * fraction[file], denominator);
1951                 }
1952
1953                 /*
1954                  * If zone is small or memcg is small, nr[l] can be 0.
1955                  * This results no-scan on this priority and priority drop down.
1956                  * For global direct reclaim, it can visit next zone and tend
1957                  * not to have problems. For global kswapd, it's for zone
1958                  * balancing and it need to scan a small amounts. When using
1959                  * memcg, priority drop can cause big latency. So, it's better
1960                  * to scan small amount. See may_noscan above.
1961                  */
1962                 if (!scan && force_scan)
1963                         scan = nr_force_scan[file];
1964                 nr[l] = scan;
1965         }
1966 }
1967
1968 /*
1969  * Reclaim/compaction depends on a number of pages being freed. To avoid
1970  * disruption to the system, a small number of order-0 pages continue to be
1971  * rotated and reclaimed in the normal fashion. However, by the time we get
1972  * back to the allocator and call try_to_compact_zone(), we ensure that
1973  * there are enough free pages for it to be likely successful
1974  */
1975 static inline bool should_continue_reclaim(struct zone *zone,
1976                                         unsigned long nr_reclaimed,
1977                                         unsigned long nr_scanned,
1978                                         struct scan_control *sc)
1979 {
1980         unsigned long pages_for_compaction;
1981         unsigned long inactive_lru_pages;
1982
1983         /* If not in reclaim/compaction mode, stop */
1984         if (!(sc->reclaim_mode & RECLAIM_MODE_COMPACTION))
1985                 return false;
1986
1987         /* Consider stopping depending on scan and reclaim activity */
1988         if (sc->gfp_mask & __GFP_REPEAT) {
1989                 /*
1990                  * For __GFP_REPEAT allocations, stop reclaiming if the
1991                  * full LRU list has been scanned and we are still failing
1992                  * to reclaim pages. This full LRU scan is potentially
1993                  * expensive but a __GFP_REPEAT caller really wants to succeed
1994                  */
1995                 if (!nr_reclaimed && !nr_scanned)
1996                         return false;
1997         } else {
1998                 /*
1999                  * For non-__GFP_REPEAT allocations which can presumably
2000                  * fail without consequence, stop if we failed to reclaim
2001                  * any pages from the last SWAP_CLUSTER_MAX number of
2002                  * pages that were scanned. This will return to the
2003                  * caller faster at the risk reclaim/compaction and
2004                  * the resulting allocation attempt fails
2005                  */
2006                 if (!nr_reclaimed)
2007                         return false;
2008         }
2009
2010         /*
2011          * If we have not reclaimed enough pages for compaction and the
2012          * inactive lists are large enough, continue reclaiming
2013          */
2014         pages_for_compaction = (2UL << sc->order);
2015         inactive_lru_pages = zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
2016         if (nr_swap_pages > 0)
2017                 inactive_lru_pages += zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON);
2018         if (sc->nr_reclaimed < pages_for_compaction &&
2019                         inactive_lru_pages > pages_for_compaction)
2020                 return true;
2021
2022         /* If compaction would go ahead or the allocation would succeed, stop */
2023         switch (compaction_suitable(zone, sc->order)) {
2024         case COMPACT_PARTIAL:
2025         case COMPACT_CONTINUE:
2026                 return false;
2027         default:
2028                 return true;
2029         }
2030 }
2031
2032 /*
2033  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
2034  */
2035 static void shrink_zone(int priority, struct zone *zone,
2036                                 struct scan_control *sc)
2037 {
2038         unsigned long nr[NR_LRU_LISTS];
2039         unsigned long nr_to_scan;
2040         enum lru_list l;
2041         unsigned long nr_reclaimed, nr_scanned;
2042         unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2043
2044 restart:
2045         nr_reclaimed = 0;
2046         nr_scanned = sc->nr_scanned;
2047         get_scan_count(zone, sc, nr, priority);
2048
2049         while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2050                                         nr[LRU_INACTIVE_FILE]) {
2051                 for_each_evictable_lru(l) {
2052                         if (nr[l]) {
2053                                 nr_to_scan = min_t(unsigned long,
2054                                                    nr[l], SWAP_CLUSTER_MAX);
2055                                 nr[l] -= nr_to_scan;
2056
2057                                 nr_reclaimed += shrink_list(l, nr_to_scan,
2058                                                             zone, sc, priority);
2059                         }
2060                 }
2061                 /*
2062                  * On large memory systems, scan >> priority can become
2063                  * really large. This is fine for the starting priority;
2064                  * we want to put equal scanning pressure on each zone.
2065                  * However, if the VM has a harder time of freeing pages,
2066                  * with multiple processes reclaiming pages, the total
2067                  * freeing target can get unreasonably large.
2068                  */
2069                 if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
2070                         break;
2071         }
2072         sc->nr_reclaimed += nr_reclaimed;
2073
2074         /*
2075          * Even if we did not try to evict anon pages at all, we want to
2076          * rebalance the anon lru active/inactive ratio.
2077          */
2078         if (inactive_anon_is_low(zone, sc))
2079                 shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
2080
2081         /* reclaim/compaction might need reclaim to continue */
2082         if (should_continue_reclaim(zone, nr_reclaimed,
2083                                         sc->nr_scanned - nr_scanned, sc))
2084                 goto restart;
2085
2086         throttle_vm_writeout(sc->gfp_mask);
2087 }
2088
2089 /* Returns true if compaction should go ahead for a high-order request */
2090 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2091 {
2092         unsigned long balance_gap, watermark;
2093         bool watermark_ok;
2094
2095         /* Do not consider compaction for orders reclaim is meant to satisfy */
2096         if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
2097                 return false;
2098
2099         /*
2100          * Compaction takes time to run and there are potentially other
2101          * callers using the pages just freed. Continue reclaiming until
2102          * there is a buffer of free pages available to give compaction
2103          * a reasonable chance of completing and allocating the page
2104          */
2105         balance_gap = min(low_wmark_pages(zone),
2106                 (zone->present_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2107                         KSWAPD_ZONE_BALANCE_GAP_RATIO);
2108         watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
2109         watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
2110
2111         /*
2112          * If compaction is deferred, reclaim up to a point where
2113          * compaction will have a chance of success when re-enabled
2114          */
2115         if (compaction_deferred(zone))
2116                 return watermark_ok;
2117
2118         /* If compaction is not ready to start, keep reclaiming */
2119         if (!compaction_suitable(zone, sc->order))
2120                 return false;
2121
2122         return watermark_ok;
2123 }
2124
2125 /*
2126  * This is the direct reclaim path, for page-allocating processes.  We only
2127  * try to reclaim pages from zones which will satisfy the caller's allocation
2128  * request.
2129  *
2130  * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2131  * Because:
2132  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2133  *    allocation or
2134  * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2135  *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2136  *    zone defense algorithm.
2137  *
2138  * If a zone is deemed to be full of pinned pages then just give it a light
2139  * scan then give up on it.
2140  *
2141  * This function returns true if a zone is being reclaimed for a costly
2142  * high-order allocation and compaction is ready to begin. This indicates to
2143  * the caller that it should consider retrying the allocation instead of
2144  * further reclaim.
2145  */
2146 static bool shrink_zones(int priority, struct zonelist *zonelist,
2147                                         struct scan_control *sc)
2148 {
2149         struct zoneref *z;
2150         struct zone *zone;
2151         unsigned long nr_soft_reclaimed;
2152         unsigned long nr_soft_scanned;
2153         bool aborted_reclaim = false;
2154
2155         for_each_zone_zonelist_nodemask(zone, z, zonelist,
2156                                         gfp_zone(sc->gfp_mask), sc->nodemask) {
2157                 if (!populated_zone(zone))
2158                         continue;
2159                 /*
2160                  * Take care memory controller reclaiming has small influence
2161                  * to global LRU.
2162                  */
2163                 if (scanning_global_lru(sc)) {
2164                         if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2165                                 continue;
2166                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2167                                 continue;       /* Let kswapd poll it */
2168                         if (COMPACTION_BUILD) {
2169                                 /*
2170                                  * If we already have plenty of memory free for
2171                                  * compaction in this zone, don't free any more.
2172                                  * Even though compaction is invoked for any
2173                                  * non-zero order, only frequent costly order
2174                                  * reclamation is disruptive enough to become a
2175                                  * noticable problem, like transparent huge page
2176                                  * allocations.
2177                                  */
2178                                 if (compaction_ready(zone, sc)) {
2179                                         aborted_reclaim = true;
2180                                         continue;
2181                                 }
2182                         }
2183                         /*
2184                          * This steals pages from memory cgroups over softlimit
2185                          * and returns the number of reclaimed pages and
2186                          * scanned pages. This works for global memory pressure
2187                          * and balancing, not for a memcg's limit.
2188                          */
2189                         nr_soft_scanned = 0;
2190                         nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2191                                                 sc->order, sc->gfp_mask,
2192                                                 &nr_soft_scanned);
2193                         sc->nr_reclaimed += nr_soft_reclaimed;
2194                         sc->nr_scanned += nr_soft_scanned;
2195                         /* need some check for avoid more shrink_zone() */
2196                 }
2197
2198                 shrink_zone(priority, zone, sc);
2199         }
2200
2201         return aborted_reclaim;
2202 }
2203
2204 static bool zone_reclaimable(struct zone *zone)
2205 {
2206         return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
2207 }
2208
2209 /* All zones in zonelist are unreclaimable? */
2210 static bool all_unreclaimable(struct zonelist *zonelist,
2211                 struct scan_control *sc)
2212 {
2213         struct zoneref *z;
2214         struct zone *zone;
2215
2216         for_each_zone_zonelist_nodemask(zone, z, zonelist,
2217                         gfp_zone(sc->gfp_mask), sc->nodemask) {
2218                 if (!populated_zone(zone))
2219                         continue;
2220                 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2221                         continue;
2222                 if (!zone->all_unreclaimable)
2223                         return false;
2224         }
2225
2226         return true;
2227 }
2228
2229 /*
2230  * This is the main entry point to direct page reclaim.
2231  *
2232  * If a full scan of the inactive list fails to free enough memory then we
2233  * are "out of memory" and something needs to be killed.
2234  *
2235  * If the caller is !__GFP_FS then the probability of a failure is reasonably
2236  * high - the zone may be full of dirty or under-writeback pages, which this
2237  * caller can't do much about.  We kick the writeback threads and take explicit
2238  * naps in the hope that some of these pages can be written.  But if the
2239  * allocating task holds filesystem locks which prevent writeout this might not
2240  * work, and the allocation attempt will fail.
2241  *
2242  * returns:     0, if no pages reclaimed
2243  *              else, the number of pages reclaimed
2244  */
2245 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2246                                         struct scan_control *sc,
2247                                         struct shrink_control *shrink)
2248 {
2249         int priority;
2250         unsigned long total_scanned = 0;
2251         struct reclaim_state *reclaim_state = current->reclaim_state;
2252         struct zoneref *z;
2253         struct zone *zone;
2254         unsigned long writeback_threshold;
2255         bool aborted_reclaim;
2256
2257         delayacct_freepages_start();
2258
2259         if (scanning_global_lru(sc))
2260                 count_vm_event(ALLOCSTALL);
2261
2262         for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2263                 sc->nr_scanned = 0;
2264                 if (!priority)
2265                         disable_swap_token(sc->mem_cgroup);
2266                 aborted_reclaim = shrink_zones(priority, zonelist, sc);
2267
2268                 /*
2269                  * Don't shrink slabs when reclaiming memory from
2270                  * over limit cgroups
2271                  */
2272                 if (scanning_global_lru(sc)) {
2273                         unsigned long lru_pages = 0;
2274                         for_each_zone_zonelist(zone, z, zonelist,
2275                                         gfp_zone(sc->gfp_mask)) {
2276                                 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2277                                         continue;
2278
2279                                 lru_pages += zone_reclaimable_pages(zone);
2280                         }
2281
2282                         shrink_slab(shrink, sc->nr_scanned, lru_pages);
2283                         if (reclaim_state) {
2284                                 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2285                                 reclaim_state->reclaimed_slab = 0;
2286                         }
2287                 }
2288                 total_scanned += sc->nr_scanned;
2289                 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2290                         goto out;
2291
2292                 /*
2293                  * Try to write back as many pages as we just scanned.  This
2294                  * tends to cause slow streaming writers to write data to the
2295                  * disk smoothly, at the dirtying rate, which is nice.   But
2296                  * that's undesirable in laptop mode, where we *want* lumpy
2297                  * writeout.  So in laptop mode, write out the whole world.
2298                  */
2299                 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2300                 if (total_scanned > writeback_threshold) {
2301                         wakeup_flusher_threads(laptop_mode ? 0 : total_scanned);
2302                         sc->may_writepage = 1;
2303                 }
2304
2305                 /* Take a nap, wait for some writeback to complete */
2306                 if (!sc->hibernation_mode && sc->nr_scanned &&
2307                     priority < DEF_PRIORITY - 2) {
2308                         struct zone *preferred_zone;
2309
2310                         first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2311                                                 &cpuset_current_mems_allowed,
2312                                                 &preferred_zone);
2313                         wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2314                 }
2315         }
2316
2317 out:
2318         delayacct_freepages_end();
2319
2320         if (sc->nr_reclaimed)
2321                 return sc->nr_reclaimed;
2322
2323         /*
2324          * As hibernation is going on, kswapd is freezed so that it can't mark
2325          * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2326          * check.
2327          */
2328         if (oom_killer_disabled)
2329                 return 0;
2330
2331         /* Aborted reclaim to try compaction? don't OOM, then */
2332         if (aborted_reclaim)
2333                 return 1;
2334
2335         /* top priority shrink_zones still had more to do? don't OOM, then */
2336         if (scanning_global_lru(sc) && !all_unreclaimable(zonelist, sc))
2337                 return 1;
2338
2339         return 0;
2340 }
2341
2342 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2343                                 gfp_t gfp_mask, nodemask_t *nodemask)
2344 {
2345         unsigned long nr_reclaimed;
2346         struct scan_control sc = {
2347                 .gfp_mask = gfp_mask,
2348                 .may_writepage = !laptop_mode,
2349                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2350                 .may_unmap = 1,
2351                 .may_swap = 1,
2352                 .swappiness = vm_swappiness,
2353                 .order = order,
2354                 .mem_cgroup = NULL,
2355                 .nodemask = nodemask,
2356         };
2357         struct shrink_control shrink = {
2358                 .gfp_mask = sc.gfp_mask,
2359         };
2360
2361         trace_mm_vmscan_direct_reclaim_begin(order,
2362                                 sc.may_writepage,
2363                                 gfp_mask);
2364
2365         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2366
2367         trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2368
2369         return nr_reclaimed;
2370 }
2371
2372 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
2373
2374 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem,
2375                                                 gfp_t gfp_mask, bool noswap,
2376                                                 unsigned int swappiness,
2377                                                 struct zone *zone,
2378                                                 unsigned long *nr_scanned)
2379 {
2380         struct scan_control sc = {
2381                 .nr_scanned = 0,
2382                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2383                 .may_writepage = !laptop_mode,
2384                 .may_unmap = 1,
2385                 .may_swap = !noswap,
2386                 .swappiness = swappiness,
2387                 .order = 0,
2388                 .mem_cgroup = mem,
2389         };
2390
2391         sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2392                         (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2393
2394         trace_mm_vmscan_memcg_softlimit_reclaim_begin(0,
2395                                                       sc.may_writepage,
2396                                                       sc.gfp_mask);
2397
2398         /*
2399          * NOTE: Although we can get the priority field, using it
2400          * here is not a good idea, since it limits the pages we can scan.
2401          * if we don't reclaim here, the shrink_zone from balance_pgdat
2402          * will pick up pages from other mem cgroup's as well. We hack
2403          * the priority and make it zero.
2404          */
2405         shrink_zone(0, zone, &sc);
2406
2407         trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2408
2409         *nr_scanned = sc.nr_scanned;
2410         return sc.nr_reclaimed;
2411 }
2412
2413 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
2414                                            gfp_t gfp_mask,
2415                                            bool noswap,
2416                                            unsigned int swappiness)
2417 {
2418         struct zonelist *zonelist;
2419         unsigned long nr_reclaimed;
2420         int nid;
2421         struct scan_control sc = {
2422                 .may_writepage = !laptop_mode,
2423                 .may_unmap = 1,
2424                 .may_swap = !noswap,
2425                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2426                 .swappiness = swappiness,
2427                 .order = 0,
2428                 .mem_cgroup = mem_cont,
2429                 .nodemask = NULL, /* we don't care the placement */
2430                 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2431                                 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2432         };
2433         struct shrink_control shrink = {
2434                 .gfp_mask = sc.gfp_mask,
2435         };
2436
2437         /*
2438          * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2439          * take care of from where we get pages. So the node where we start the
2440          * scan does not need to be the current node.
2441          */
2442         nid = mem_cgroup_select_victim_node(mem_cont);
2443
2444         zonelist = NODE_DATA(nid)->node_zonelists;
2445
2446         trace_mm_vmscan_memcg_reclaim_begin(0,
2447                                             sc.may_writepage,
2448                                             sc.gfp_mask);
2449
2450         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2451
2452         trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2453
2454         return nr_reclaimed;
2455 }
2456 #endif
2457
2458 /*
2459  * pgdat_balanced is used when checking if a node is balanced for high-order
2460  * allocations. Only zones that meet watermarks and are in a zone allowed
2461  * by the callers classzone_idx are added to balanced_pages. The total of
2462  * balanced pages must be at least 25% of the zones allowed by classzone_idx
2463  * for the node to be considered balanced. Forcing all zones to be balanced
2464  * for high orders can cause excessive reclaim when there are imbalanced zones.
2465  * The choice of 25% is due to
2466  *   o a 16M DMA zone that is balanced will not balance a zone on any
2467  *     reasonable sized machine
2468  *   o On all other machines, the top zone must be at least a reasonable
2469  *     percentage of the middle zones. For example, on 32-bit x86, highmem
2470  *     would need to be at least 256M for it to be balance a whole node.
2471  *     Similarly, on x86-64 the Normal zone would need to be at least 1G
2472  *     to balance a node on its own. These seemed like reasonable ratios.
2473  */
2474 static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
2475                                                 int classzone_idx)
2476 {
2477         unsigned long present_pages = 0;
2478         int i;
2479
2480         for (i = 0; i <= classzone_idx; i++)
2481                 present_pages += pgdat->node_zones[i].present_pages;
2482
2483         /* A special case here: if zone has no page, we think it's balanced */
2484         return balanced_pages >= (present_pages >> 2);
2485 }
2486
2487 /* is kswapd sleeping prematurely? */
2488 static bool sleeping_prematurely(pg_data_t *pgdat, int order, long remaining,
2489                                         int classzone_idx)
2490 {
2491         int i;
2492         unsigned long balanced = 0;
2493         bool all_zones_ok = true;
2494
2495         /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2496         if (remaining)
2497                 return true;
2498
2499         /* Check the watermark levels */
2500         for (i = 0; i <= classzone_idx; i++) {
2501                 struct zone *zone = pgdat->node_zones + i;
2502
2503                 if (!populated_zone(zone))
2504                         continue;
2505
2506                 /*
2507                  * balance_pgdat() skips over all_unreclaimable after
2508                  * DEF_PRIORITY. Effectively, it considers them balanced so
2509                  * they must be considered balanced here as well if kswapd
2510                  * is to sleep
2511                  */
2512                 if (zone->all_unreclaimable) {
2513                         balanced += zone->present_pages;
2514                         continue;
2515                 }
2516
2517                 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
2518                                                         i, 0))
2519                         all_zones_ok = false;
2520                 else
2521                         balanced += zone->present_pages;
2522         }
2523
2524         /*
2525          * For high-order requests, the balanced zones must contain at least
2526          * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
2527          * must be balanced
2528          */
2529         if (order)
2530                 return !pgdat_balanced(pgdat, balanced, classzone_idx);
2531         else
2532                 return !all_zones_ok;
2533 }
2534
2535 /*
2536  * For kswapd, balance_pgdat() will work across all this node's zones until
2537  * they are all at high_wmark_pages(zone).
2538  *
2539  * Returns the final order kswapd was reclaiming at
2540  *
2541  * There is special handling here for zones which are full of pinned pages.
2542  * This can happen if the pages are all mlocked, or if they are all used by
2543  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
2544  * What we do is to detect the case where all pages in the zone have been
2545  * scanned twice and there has been zero successful reclaim.  Mark the zone as
2546  * dead and from now on, only perform a short scan.  Basically we're polling
2547  * the zone for when the problem goes away.
2548  *
2549  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2550  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2551  * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2552  * lower zones regardless of the number of free pages in the lower zones. This
2553  * interoperates with the page allocator fallback scheme to ensure that aging
2554  * of pages is balanced across the zones.
2555  */
2556 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2557                                                         int *classzone_idx)
2558 {
2559         int all_zones_ok;
2560         unsigned long balanced;
2561         int priority;
2562         int i;
2563         int end_zone = 0;       /* Inclusive.  0 = ZONE_DMA */
2564         unsigned long total_scanned;
2565         struct reclaim_state *reclaim_state = current->reclaim_state;
2566         unsigned long nr_soft_reclaimed;
2567         unsigned long nr_soft_scanned;
2568         struct scan_control sc = {
2569                 .gfp_mask = GFP_KERNEL,
2570                 .may_unmap = 1,
2571                 .may_swap = 1,
2572                 /*
2573                  * kswapd doesn't want to be bailed out while reclaim. because
2574                  * we want to put equal scanning pressure on each zone.
2575                  */
2576                 .nr_to_reclaim = ULONG_MAX,
2577                 .swappiness = vm_swappiness,
2578                 .order = order,
2579                 .mem_cgroup = NULL,
2580         };
2581         struct shrink_control shrink = {
2582                 .gfp_mask = sc.gfp_mask,
2583         };
2584 loop_again:
2585         total_scanned = 0;
2586         sc.nr_reclaimed = 0;
2587         sc.may_writepage = !laptop_mode;
2588         count_vm_event(PAGEOUTRUN);
2589
2590         for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2591                 unsigned long lru_pages = 0;
2592                 int has_under_min_watermark_zone = 0;
2593
2594                 /* The swap token gets in the way of swapout... */
2595                 if (!priority)
2596                         disable_swap_token(NULL);
2597
2598                 all_zones_ok = 1;
2599                 balanced = 0;
2600
2601                 /*
2602                  * Scan in the highmem->dma direction for the highest
2603                  * zone which needs scanning
2604                  */
2605                 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2606                         struct zone *zone = pgdat->node_zones + i;
2607
2608                         if (!populated_zone(zone))
2609                                 continue;
2610
2611                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2612                                 continue;
2613
2614                         /*
2615                          * Do some background aging of the anon list, to give
2616                          * pages a chance to be referenced before reclaiming.
2617                          */
2618                         if (inactive_anon_is_low(zone, &sc))
2619                                 shrink_active_list(SWAP_CLUSTER_MAX, zone,
2620                                                         &sc, priority, 0);
2621
2622                         if (!zone_watermark_ok_safe(zone, order,
2623                                         high_wmark_pages(zone), 0, 0)) {
2624                                 end_zone = i;
2625                                 break;
2626                         } else {
2627                                 /* If balanced, clear the congested flag */
2628                                 zone_clear_flag(zone, ZONE_CONGESTED);
2629                         }
2630                 }
2631                 if (i < 0)
2632                         goto out;
2633
2634                 for (i = 0; i <= end_zone; i++) {
2635                         struct zone *zone = pgdat->node_zones + i;
2636
2637                         lru_pages += zone_reclaimable_pages(zone);
2638                 }
2639
2640                 /*
2641                  * Now scan the zone in the dma->highmem direction, stopping
2642                  * at the last zone which needs scanning.
2643                  *
2644                  * We do this because the page allocator works in the opposite
2645                  * direction.  This prevents the page allocator from allocating
2646                  * pages behind kswapd's direction of progress, which would
2647                  * cause too much scanning of the lower zones.
2648                  */
2649                 for (i = 0; i <= end_zone; i++) {
2650                         struct zone *zone = pgdat->node_zones + i;
2651                         int nr_slab;
2652                         unsigned long balance_gap;
2653
2654                         if (!populated_zone(zone))
2655                                 continue;
2656
2657                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2658                                 continue;
2659
2660                         sc.nr_scanned = 0;
2661
2662                         nr_soft_scanned = 0;
2663                         /*
2664                          * Call soft limit reclaim before calling shrink_zone.
2665                          */
2666                         nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2667                                                         order, sc.gfp_mask,
2668                                                         &nr_soft_scanned);
2669                         sc.nr_reclaimed += nr_soft_reclaimed;
2670                         total_scanned += nr_soft_scanned;
2671
2672                         /*
2673                          * We put equal pressure on every zone, unless
2674                          * one zone has way too many pages free
2675                          * already. The "too many pages" is defined
2676                          * as the high wmark plus a "gap" where the
2677                          * gap is either the low watermark or 1%
2678                          * of the zone, whichever is smaller.
2679                          */
2680                         balance_gap = min(low_wmark_pages(zone),
2681                                 (zone->present_pages +
2682                                         KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2683                                 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2684                         if (!zone_watermark_ok_safe(zone, order,
2685                                         high_wmark_pages(zone) + balance_gap,
2686                                         end_zone, 0)) {
2687                                 shrink_zone(priority, zone, &sc);
2688
2689                                 reclaim_state->reclaimed_slab = 0;
2690                                 nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
2691                                 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2692                                 total_scanned += sc.nr_scanned;
2693
2694                                 if (nr_slab == 0 && !zone_reclaimable(zone))
2695                                         zone->all_unreclaimable = 1;
2696                         }
2697
2698                         /*
2699                          * If we've done a decent amount of scanning and
2700                          * the reclaim ratio is low, start doing writepage
2701                          * even in laptop mode
2702                          */
2703                         if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2704                             total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
2705                                 sc.may_writepage = 1;
2706
2707                         if (zone->all_unreclaimable) {
2708                                 if (end_zone && end_zone == i)
2709                                         end_zone--;
2710                                 continue;
2711                         }
2712
2713                         if (!zone_watermark_ok_safe(zone, order,
2714                                         high_wmark_pages(zone), end_zone, 0)) {
2715                                 all_zones_ok = 0;
2716                                 /*
2717                                  * We are still under min water mark.  This
2718                                  * means that we have a GFP_ATOMIC allocation
2719                                  * failure risk. Hurry up!
2720                                  */
2721                                 if (!zone_watermark_ok_safe(zone, order,
2722                                             min_wmark_pages(zone), end_zone, 0))
2723                                         has_under_min_watermark_zone = 1;
2724                         } else {
2725                                 /*
2726                                  * If a zone reaches its high watermark,
2727                                  * consider it to be no longer congested. It's
2728                                  * possible there are dirty pages backed by
2729                                  * congested BDIs but as pressure is relieved,
2730                                  * spectulatively avoid congestion waits
2731                                  */
2732                                 zone_clear_flag(zone, ZONE_CONGESTED);
2733                                 if (i <= *classzone_idx)
2734                                         balanced += zone->present_pages;
2735                         }
2736
2737                 }
2738                 if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
2739                         break;          /* kswapd: all done */
2740                 /*
2741                  * OK, kswapd is getting into trouble.  Take a nap, then take
2742                  * another pass across the zones.
2743                  */
2744                 if (total_scanned && (priority < DEF_PRIORITY - 2)) {
2745                         if (has_under_min_watermark_zone)
2746                                 count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2747                         else
2748                                 congestion_wait(BLK_RW_ASYNC, HZ/10);
2749                 }
2750
2751                 /*
2752                  * We do this so kswapd doesn't build up large priorities for
2753                  * example when it is freeing in parallel with allocators. It
2754                  * matches the direct reclaim path behaviour in terms of impact
2755                  * on zone->*_priority.
2756                  */
2757                 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
2758                         break;
2759         }
2760 out:
2761
2762         /*
2763          * order-0: All zones must meet high watermark for a balanced node
2764          * high-order: Balanced zones must make up at least 25% of the node
2765          *             for the node to be balanced
2766          */
2767         if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
2768                 cond_resched();
2769
2770                 try_to_freeze();
2771
2772                 /*
2773                  * Fragmentation may mean that the system cannot be
2774                  * rebalanced for high-order allocations in all zones.
2775                  * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2776                  * it means the zones have been fully scanned and are still
2777                  * not balanced. For high-order allocations, there is
2778                  * little point trying all over again as kswapd may
2779                  * infinite loop.
2780                  *
2781                  * Instead, recheck all watermarks at order-0 as they
2782                  * are the most important. If watermarks are ok, kswapd will go
2783                  * back to sleep. High-order users can still perform direct
2784                  * reclaim if they wish.
2785                  */
2786                 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2787                         order = sc.order = 0;
2788
2789                 goto loop_again;
2790         }
2791
2792         /*
2793          * If kswapd was reclaiming at a higher order, it has the option of
2794          * sleeping without all zones being balanced. Before it does, it must
2795          * ensure that the watermarks for order-0 on *all* zones are met and
2796          * that the congestion flags are cleared. The congestion flag must
2797          * be cleared as kswapd is the only mechanism that clears the flag
2798          * and it is potentially going to sleep here.
2799          */
2800         if (order) {
2801                 for (i = 0; i <= end_zone; i++) {
2802                         struct zone *zone = pgdat->node_zones + i;
2803
2804                         if (!populated_zone(zone))
2805                                 continue;
2806
2807                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2808                                 continue;
2809
2810                         /* Confirm the zone is balanced for order-0 */
2811                         if (!zone_watermark_ok(zone, 0,
2812                                         high_wmark_pages(zone), 0, 0)) {
2813                                 order = sc.order = 0;
2814                                 goto loop_again;
2815                         }
2816
2817                         /* If balanced, clear the congested flag */
2818                         zone_clear_flag(zone, ZONE_CONGESTED);
2819                 }
2820         }
2821
2822         /*
2823          * Return the order we were reclaiming at so sleeping_prematurely()
2824          * makes a decision on the order we were last reclaiming at. However,
2825          * if another caller entered the allocator slow path while kswapd
2826          * was awake, order will remain at the higher level
2827          */
2828         *classzone_idx = end_zone;
2829         return order;
2830 }
2831
2832 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
2833 {
2834         long remaining = 0;
2835         DEFINE_WAIT(wait);
2836
2837         if (freezing(current) || kthread_should_stop())
2838                 return;
2839
2840         prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2841
2842         /* Try to sleep for a short interval */
2843         if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2844                 remaining = schedule_timeout(HZ/10);
2845                 finish_wait(&pgdat->kswapd_wait, &wait);
2846                 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2847         }
2848
2849         /*
2850          * After a short sleep, check if it was a premature sleep. If not, then
2851          * go fully to sleep until explicitly woken up.
2852          */
2853         if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2854                 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2855
2856                 /*
2857                  * vmstat counters are not perfectly accurate and the estimated
2858                  * value for counters such as NR_FREE_PAGES can deviate from the
2859                  * true value by nr_online_cpus * threshold. To avoid the zone
2860                  * watermarks being breached while under pressure, we reduce the
2861                  * per-cpu vmstat threshold while kswapd is awake and restore
2862                  * them before going back to sleep.
2863                  */
2864                 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
2865
2866                 if (!kthread_should_stop())
2867                         schedule();
2868
2869                 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
2870         } else {
2871                 if (remaining)
2872                         count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2873                 else
2874                         count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2875         }
2876         finish_wait(&pgdat->kswapd_wait, &wait);
2877 }
2878
2879 /*
2880  * The background pageout daemon, started as a kernel thread
2881  * from the init process.
2882  *
2883  * This basically trickles out pages so that we have _some_
2884  * free memory available even if there is no other activity
2885  * that frees anything up. This is needed for things like routing
2886  * etc, where we otherwise might have all activity going on in
2887  * asynchronous contexts that cannot page things out.
2888  *
2889  * If there are applications that are active memory-allocators
2890  * (most normal use), this basically shouldn't matter.
2891  */
2892 static int kswapd(void *p)
2893 {
2894         unsigned long order, new_order;
2895         unsigned balanced_order;
2896         int classzone_idx, new_classzone_idx;
2897         int balanced_classzone_idx;
2898         pg_data_t *pgdat = (pg_data_t*)p;
2899         struct task_struct *tsk = current;
2900
2901         struct reclaim_state reclaim_state = {
2902                 .reclaimed_slab = 0,
2903         };
2904         const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2905
2906         lockdep_set_current_reclaim_state(GFP_KERNEL);
2907
2908         if (!cpumask_empty(cpumask))
2909                 set_cpus_allowed_ptr(tsk, cpumask);
2910         current->reclaim_state = &reclaim_state;
2911
2912         /*
2913          * Tell the memory management that we're a "memory allocator",
2914          * and that if we need more memory we should get access to it
2915          * regardless (see "__alloc_pages()"). "kswapd" should
2916          * never get caught in the normal page freeing logic.
2917          *
2918          * (Kswapd normally doesn't need memory anyway, but sometimes
2919          * you need a small amount of memory in order to be able to
2920          * page out something else, and this flag essentially protects
2921          * us from recursively trying to free more memory as we're
2922          * trying to free the first piece of memory in the first place).
2923          */
2924         tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2925         set_freezable();
2926
2927         order = new_order = 0;
2928         balanced_order = 0;
2929         classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
2930         balanced_classzone_idx = classzone_idx;
2931         for ( ; ; ) {
2932                 int ret;
2933
2934                 /*
2935                  * If the last balance_pgdat was unsuccessful it's unlikely a
2936                  * new request of a similar or harder type will succeed soon
2937                  * so consider going to sleep on the basis we reclaimed at
2938                  */
2939                 if (balanced_classzone_idx >= new_classzone_idx &&
2940                                         balanced_order == new_order) {
2941                         new_order = pgdat->kswapd_max_order;
2942                         new_classzone_idx = pgdat->classzone_idx;
2943                         pgdat->kswapd_max_order =  0;
2944                         pgdat->classzone_idx = pgdat->nr_zones - 1;
2945                 }
2946
2947                 if (order < new_order || classzone_idx > new_classzone_idx) {
2948                         /*
2949                          * Don't sleep if someone wants a larger 'order'
2950                          * allocation or has tigher zone constraints
2951                          */
2952                         order = new_order;
2953                         classzone_idx = new_classzone_idx;
2954                 } else {
2955                         kswapd_try_to_sleep(pgdat, balanced_order,
2956                                                 balanced_classzone_idx);
2957                         order = pgdat->kswapd_max_order;
2958                         classzone_idx = pgdat->classzone_idx;
2959                         new_order = order;
2960                         new_classzone_idx = classzone_idx;
2961                         pgdat->kswapd_max_order = 0;
2962                         pgdat->classzone_idx = pgdat->nr_zones - 1;
2963                 }
2964
2965                 ret = try_to_freeze();
2966                 if (kthread_should_stop())
2967                         break;
2968
2969                 /*
2970                  * We can speed up thawing tasks if we don't call balance_pgdat
2971                  * after returning from the refrigerator
2972                  */
2973                 if (!ret) {
2974                         trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
2975                         balanced_classzone_idx = classzone_idx;
2976                         balanced_order = balance_pgdat(pgdat, order,
2977                                                 &balanced_classzone_idx);
2978                 }
2979         }
2980
2981         current->reclaim_state = NULL;
2982         return 0;
2983 }
2984
2985 /*
2986  * A zone is low on free memory, so wake its kswapd task to service it.
2987  */
2988 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
2989 {
2990         pg_data_t *pgdat;
2991
2992         if (!populated_zone(zone))
2993                 return;
2994
2995         if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2996                 return;
2997         pgdat = zone->zone_pgdat;
2998         if (pgdat->kswapd_max_order < order) {
2999                 pgdat->kswapd_max_order = order;
3000                 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3001         }
3002         if (!waitqueue_active(&pgdat->kswapd_wait))
3003                 return;
3004         if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
3005                 return;
3006
3007         trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3008         wake_up_interruptible(&pgdat->kswapd_wait);
3009 }
3010
3011 /*
3012  * The reclaimable count would be mostly accurate.
3013  * The less reclaimable pages may be
3014  * - mlocked pages, which will be moved to unevictable list when encountered
3015  * - mapped pages, which may require several travels to be reclaimed
3016  * - dirty pages, which is not "instantly" reclaimable
3017  */
3018 unsigned long global_reclaimable_pages(void)
3019 {
3020         int nr;
3021
3022         nr = global_page_state(NR_ACTIVE_FILE) +
3023              global_page_state(NR_INACTIVE_FILE);
3024
3025         if (nr_swap_pages > 0)
3026                 nr += global_page_state(NR_ACTIVE_ANON) +
3027                       global_page_state(NR_INACTIVE_ANON);
3028
3029         return nr;
3030 }
3031
3032 unsigned long zone_reclaimable_pages(struct zone *zone)
3033 {
3034         int nr;
3035
3036         nr = zone_page_state(zone, NR_ACTIVE_FILE) +
3037              zone_page_state(zone, NR_INACTIVE_FILE);
3038
3039         if (nr_swap_pages > 0)
3040                 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
3041                       zone_page_state(zone, NR_INACTIVE_ANON);
3042
3043         return nr;
3044 }
3045
3046 #ifdef CONFIG_HIBERNATION
3047 /*
3048  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3049  * freed pages.
3050  *
3051  * Rather than trying to age LRUs the aim is to preserve the overall
3052  * LRU order by reclaiming preferentially
3053  * inactive > active > active referenced > active mapped
3054  */
3055 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3056 {
3057         struct reclaim_state reclaim_state;
3058         struct scan_control sc = {
3059                 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3060                 .may_swap = 1,
3061                 .may_unmap = 1,
3062                 .may_writepage = 1,
3063                 .nr_to_reclaim = nr_to_reclaim,
3064                 .hibernation_mode = 1,
3065                 .swappiness = vm_swappiness,
3066                 .order = 0,
3067         };
3068         struct shrink_control shrink = {
3069                 .gfp_mask = sc.gfp_mask,
3070         };
3071         struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3072         struct task_struct *p = current;
3073         unsigned long nr_reclaimed;
3074
3075         p->flags |= PF_MEMALLOC;
3076         lockdep_set_current_reclaim_state(sc.gfp_mask);
3077         reclaim_state.reclaimed_slab = 0;
3078         p->reclaim_state = &reclaim_state;
3079
3080         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
3081
3082         p->reclaim_state = NULL;
3083         lockdep_clear_current_reclaim_state();
3084         p->flags &= ~PF_MEMALLOC;
3085
3086         return nr_reclaimed;
3087 }
3088 #endif /* CONFIG_HIBERNATION */
3089
3090 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3091    not required for correctness.  So if the last cpu in a node goes
3092    away, we get changed to run anywhere: as the first one comes back,
3093    restore their cpu bindings. */
3094 static int __devinit cpu_callback(struct notifier_block *nfb,
3095                                   unsigned long action, void *hcpu)
3096 {
3097         int nid;
3098
3099         if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3100                 for_each_node_state(nid, N_HIGH_MEMORY) {
3101                         pg_data_t *pgdat = NODE_DATA(nid);
3102                         const struct cpumask *mask;
3103
3104                         mask = cpumask_of_node(pgdat->node_id);
3105
3106                         if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3107                                 /* One of our CPUs online: restore mask */
3108                                 set_cpus_allowed_ptr(pgdat->kswapd, mask);
3109                 }
3110         }
3111         return NOTIFY_OK;
3112 }
3113
3114 /*
3115  * This kswapd start function will be called by init and node-hot-add.
3116  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3117  */
3118 int kswapd_run(int nid)
3119 {
3120         pg_data_t *pgdat = NODE_DATA(nid);
3121         int ret = 0;
3122
3123         if (pgdat->kswapd)
3124                 return 0;
3125
3126         pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3127         if (IS_ERR(pgdat->kswapd)) {
3128                 /* failure at boot is fatal */
3129                 BUG_ON(system_state == SYSTEM_BOOTING);
3130                 printk("Failed to start kswapd on node %d\n",nid);
3131                 ret = -1;
3132         }
3133         return ret;
3134 }
3135
3136 /*
3137  * Called by memory hotplug when all memory in a node is offlined.  Caller must
3138  * hold lock_memory_hotplug().
3139  */
3140 void kswapd_stop(int nid)
3141 {
3142         struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3143
3144         if (kswapd) {
3145                 kthread_stop(kswapd);
3146                 NODE_DATA(nid)->kswapd = NULL;
3147         }
3148 }
3149
3150 static int __init kswapd_init(void)
3151 {
3152         int nid;
3153
3154         swap_setup();
3155         for_each_node_state(nid, N_HIGH_MEMORY)
3156                 kswapd_run(nid);
3157         hotcpu_notifier(cpu_callback, 0);
3158         return 0;
3159 }
3160
3161 module_init(kswapd_init)
3162
3163 #ifdef CONFIG_NUMA
3164 /*
3165  * Zone reclaim mode
3166  *
3167  * If non-zero call zone_reclaim when the number of free pages falls below
3168  * the watermarks.
3169  */
3170 int zone_reclaim_mode __read_mostly;
3171
3172 #define RECLAIM_OFF 0
3173 #define RECLAIM_ZONE (1<<0)     /* Run shrink_inactive_list on the zone */
3174 #define RECLAIM_WRITE (1<<1)    /* Writeout pages during reclaim */
3175 #define RECLAIM_SWAP (1<<2)     /* Swap pages out during reclaim */
3176
3177 /*
3178  * Priority for ZONE_RECLAIM. This determines the fraction of pages
3179  * of a node considered for each zone_reclaim. 4 scans 1/16th of
3180  * a zone.
3181  */
3182 #define ZONE_RECLAIM_PRIORITY 4
3183
3184 /*
3185  * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3186  * occur.
3187  */
3188 int sysctl_min_unmapped_ratio = 1;
3189
3190 /*
3191  * If the number of slab pages in a zone grows beyond this percentage then
3192  * slab reclaim needs to occur.
3193  */
3194 int sysctl_min_slab_ratio = 5;
3195
3196 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3197 {
3198         unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3199         unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3200                 zone_page_state(zone, NR_ACTIVE_FILE);
3201
3202         /*
3203          * It's possible for there to be more file mapped pages than
3204          * accounted for by the pages on the file LRU lists because
3205          * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3206          */
3207         return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3208 }
3209
3210 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3211 static long zone_pagecache_reclaimable(struct zone *zone)
3212 {
3213         long nr_pagecache_reclaimable;
3214         long delta = 0;
3215
3216         /*
3217          * If RECLAIM_SWAP is set, then all file pages are considered
3218          * potentially reclaimable. Otherwise, we have to worry about
3219          * pages like swapcache and zone_unmapped_file_pages() provides
3220          * a better estimate
3221          */
3222         if (zone_reclaim_mode & RECLAIM_SWAP)
3223                 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3224         else
3225                 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3226
3227         /* If we can't clean pages, remove dirty pages from consideration */
3228         if (!(zone_reclaim_mode & RECLAIM_WRITE))
3229                 delta += zone_page_state(zone, NR_FILE_DIRTY);
3230
3231         /* Watch for any possible underflows due to delta */
3232         if (unlikely(delta > nr_pagecache_reclaimable))
3233                 delta = nr_pagecache_reclaimable;
3234
3235         return nr_pagecache_reclaimable - delta;
3236 }
3237
3238 /*
3239  * Try to free up some pages from this zone through reclaim.
3240  */
3241 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3242 {
3243         /* Minimum pages needed in order to stay on node */
3244         const unsigned long nr_pages = 1 << order;
3245         struct task_struct *p = current;
3246         struct reclaim_state reclaim_state;
3247         int priority;
3248         struct scan_control sc = {
3249                 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3250                 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3251                 .may_swap = 1,
3252                 .nr_to_reclaim = max_t(unsigned long, nr_pages,
3253                                        SWAP_CLUSTER_MAX),
3254                 .gfp_mask = gfp_mask,
3255                 .swappiness = vm_swappiness,
3256                 .order = order,
3257         };
3258         struct shrink_control shrink = {
3259                 .gfp_mask = sc.gfp_mask,
3260         };
3261         unsigned long nr_slab_pages0, nr_slab_pages1;
3262
3263         cond_resched();
3264         /*
3265          * We need to be able to allocate from the reserves for RECLAIM_SWAP
3266          * and we also need to be able to write out pages for RECLAIM_WRITE
3267          * and RECLAIM_SWAP.
3268          */
3269         p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3270         lockdep_set_current_reclaim_state(gfp_mask);
3271         reclaim_state.reclaimed_slab = 0;
3272         p->reclaim_state = &reclaim_state;
3273
3274         if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3275                 /*
3276                  * Free memory by calling shrink zone with increasing
3277                  * priorities until we have enough memory freed.
3278                  */
3279                 priority = ZONE_RECLAIM_PRIORITY;
3280                 do {
3281                         shrink_zone(priority, zone, &sc);
3282                         priority--;
3283                 } while (priority >= 0 && sc.nr_reclaimed < nr_pages);
3284         }
3285
3286         nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3287         if (nr_slab_pages0 > zone->min_slab_pages) {
3288                 /*
3289                  * shrink_slab() does not currently allow us to determine how
3290                  * many pages were freed in this zone. So we take the current
3291                  * number of slab pages and shake the slab until it is reduced
3292                  * by the same nr_pages that we used for reclaiming unmapped
3293                  * pages.
3294                  *
3295                  * Note that shrink_slab will free memory on all zones and may
3296                  * take a long time.
3297                  */
3298                 for (;;) {
3299                         unsigned long lru_pages = zone_reclaimable_pages(zone);
3300
3301                         /* No reclaimable slab or very low memory pressure */
3302                         if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3303                                 break;
3304
3305                         /* Freed enough memory */
3306                         nr_slab_pages1 = zone_page_state(zone,
3307                                                         NR_SLAB_RECLAIMABLE);
3308                         if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3309                                 break;
3310                 }
3311
3312                 /*
3313                  * Update nr_reclaimed by the number of slab pages we
3314                  * reclaimed from this zone.
3315                  */
3316                 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3317                 if (nr_slab_pages1 < nr_slab_pages0)
3318                         sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3319         }
3320
3321         p->reclaim_state = NULL;
3322         current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3323         lockdep_clear_current_reclaim_state();
3324         return sc.nr_reclaimed >= nr_pages;
3325 }
3326
3327 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3328 {
3329         int node_id;
3330         int ret;
3331
3332         /*
3333          * Zone reclaim reclaims unmapped file backed pages and
3334          * slab pages if we are over the defined limits.
3335          *
3336          * A small portion of unmapped file backed pages is needed for
3337          * file I/O otherwise pages read by file I/O will be immediately
3338          * thrown out if the zone is overallocated. So we do not reclaim
3339          * if less than a specified percentage of the zone is used by
3340          * unmapped file backed pages.
3341          */
3342         if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3343             zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3344                 return ZONE_RECLAIM_FULL;
3345
3346         if (zone->all_unreclaimable)
3347                 return ZONE_RECLAIM_FULL;
3348
3349         /*
3350          * Do not scan if the allocation should not be delayed.
3351          */
3352         if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3353                 return ZONE_RECLAIM_NOSCAN;
3354
3355         /*
3356          * Only run zone reclaim on the local zone or on zones that do not
3357          * have associated processors. This will favor the local processor
3358          * over remote processors and spread off node memory allocations
3359          * as wide as possible.
3360          */
3361         node_id = zone_to_nid(zone);
3362         if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3363                 return ZONE_RECLAIM_NOSCAN;
3364
3365         if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3366                 return ZONE_RECLAIM_NOSCAN;
3367
3368         ret = __zone_reclaim(zone, gfp_mask, order);
3369         zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3370
3371         if (!ret)
3372                 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3373
3374         return ret;
3375 }
3376 #endif
3377
3378 /*
3379  * page_evictable - test whether a page is evictable
3380  * @page: the page to test
3381  * @vma: the VMA in which the page is or will be mapped, may be NULL
3382  *
3383  * Test whether page is evictable--i.e., should be placed on active/inactive
3384  * lists vs unevictable list.  The vma argument is !NULL when called from the
3385  * fault path to determine how to instantate a new page.
3386  *
3387  * Reasons page might not be evictable:
3388  * (1) page's mapping marked unevictable
3389  * (2) page is part of an mlocked VMA
3390  *
3391  */
3392 int page_evictable(struct page *page, struct vm_area_struct *vma)
3393 {
3394
3395         if (mapping_unevictable(page_mapping(page)))
3396                 return 0;
3397
3398         if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
3399                 return 0;
3400
3401         return 1;
3402 }
3403
3404 /**
3405  * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
3406  * @page: page to check evictability and move to appropriate lru list
3407  * @zone: zone page is in
3408  *
3409  * Checks a page for evictability and moves the page to the appropriate
3410  * zone lru list.
3411  *
3412  * Restrictions: zone->lru_lock must be held, page must be on LRU and must
3413  * have PageUnevictable set.
3414  */
3415 static void check_move_unevictable_page(struct page *page, struct zone *zone)
3416 {
3417         VM_BUG_ON(PageActive(page));
3418
3419 retry:
3420         ClearPageUnevictable(page);
3421         if (page_evictable(page, NULL)) {
3422                 enum lru_list l = page_lru_base_type(page);
3423
3424                 __dec_zone_state(zone, NR_UNEVICTABLE);
3425                 list_move(&page->lru, &zone->lru[l].list);
3426                 mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
3427                 __inc_zone_state(zone, NR_INACTIVE_ANON + l);
3428                 __count_vm_event(UNEVICTABLE_PGRESCUED);
3429         } else {
3430                 /*
3431                  * rotate unevictable list
3432                  */
3433                 SetPageUnevictable(page);
3434                 list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
3435                 mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
3436                 if (page_evictable(page, NULL))
3437                         goto retry;
3438         }
3439 }
3440
3441 /**
3442  * scan_mapping_unevictable_pages - scan an address space for evictable pages
3443  * @mapping: struct address_space to scan for evictable pages
3444  *
3445  * Scan all pages in mapping.  Check unevictable pages for
3446  * evictability and move them to the appropriate zone lru list.
3447  */
3448 void scan_mapping_unevictable_pages(struct address_space *mapping)
3449 {
3450         pgoff_t next = 0;
3451         pgoff_t end   = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
3452                          PAGE_CACHE_SHIFT;
3453         struct zone *zone;
3454         struct pagevec pvec;
3455
3456         if (mapping->nrpages == 0)
3457                 return;
3458
3459         pagevec_init(&pvec, 0);
3460         while (next < end &&
3461                 pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
3462                 int i;
3463                 int pg_scanned = 0;
3464
3465                 zone = NULL;
3466
3467                 for (i = 0; i < pagevec_count(&pvec); i++) {
3468                         struct page *page = pvec.pages[i];
3469                         pgoff_t page_index = page->index;
3470                         struct zone *pagezone = page_zone(page);
3471
3472                         pg_scanned++;
3473                         if (page_index > next)
3474                                 next = page_index;
3475                         next++;
3476
3477                         if (pagezone != zone) {
3478                                 if (zone)
3479                                         spin_unlock_irq(&zone->lru_lock);
3480                                 zone = pagezone;
3481                                 spin_lock_irq(&zone->lru_lock);
3482                         }
3483
3484                         if (PageLRU(page) && PageUnevictable(page))
3485                                 check_move_unevictable_page(page, zone);
3486                 }
3487                 if (zone)
3488                         spin_unlock_irq(&zone->lru_lock);
3489                 pagevec_release(&pvec);
3490
3491                 count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
3492         }
3493
3494 }
3495
3496 /**
3497  * scan_zone_unevictable_pages - check unevictable list for evictable pages
3498  * @zone - zone of which to scan the unevictable list
3499  *
3500  * Scan @zone's unevictable LRU lists to check for pages that have become
3501  * evictable.  Move those that have to @zone's inactive list where they
3502  * become candidates for reclaim, unless shrink_inactive_zone() decides
3503  * to reactivate them.  Pages that are still unevictable are rotated
3504  * back onto @zone's unevictable list.
3505  */
3506 #define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
3507 static void scan_zone_unevictable_pages(struct zone *zone)
3508 {
3509         struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
3510         unsigned long scan;
3511         unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);
3512
3513         while (nr_to_scan > 0) {
3514                 unsigned long batch_size = min(nr_to_scan,
3515                                                 SCAN_UNEVICTABLE_BATCH_SIZE);
3516
3517                 spin_lock_irq(&zone->lru_lock);
3518                 for (scan = 0;  scan < batch_size; scan++) {
3519                         struct page *page = lru_to_page(l_unevictable);
3520
3521                         if (!trylock_page(page))
3522                                 continue;
3523
3524                         prefetchw_prev_lru_page(page, l_unevictable, flags);
3525
3526                         if (likely(PageLRU(page) && PageUnevictable(page)))
3527                                 check_move_unevictable_page(page, zone);
3528
3529                         unlock_page(page);
3530                 }
3531                 spin_unlock_irq(&zone->lru_lock);
3532
3533                 nr_to_scan -= batch_size;
3534         }
3535 }
3536
3537
3538 /**
3539  * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
3540  *
3541  * A really big hammer:  scan all zones' unevictable LRU lists to check for
3542  * pages that have become evictable.  Move those back to the zones'
3543  * inactive list where they become candidates for reclaim.
3544  * This occurs when, e.g., we have unswappable pages on the unevictable lists,
3545  * and we add swap to the system.  As such, it runs in the context of a task
3546  * that has possibly/probably made some previously unevictable pages
3547  * evictable.
3548  */
3549 static void scan_all_zones_unevictable_pages(void)
3550 {
3551         struct zone *zone;
3552
3553         for_each_zone(zone) {
3554                 scan_zone_unevictable_pages(zone);
3555         }
3556 }
3557
3558 /*
3559  * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
3560  * all nodes' unevictable lists for evictable pages
3561  */
3562 unsigned long scan_unevictable_pages;
3563
3564 int scan_unevictable_handler(struct ctl_table *table, int write,
3565                            void __user *buffer,
3566                            size_t *length, loff_t *ppos)
3567 {
3568         proc_doulongvec_minmax(table, write, buffer, length, ppos);
3569
3570         if (write && *(unsigned long *)table->data)
3571                 scan_all_zones_unevictable_pages();
3572
3573         scan_unevictable_pages = 0;
3574         return 0;
3575 }
3576
3577 #ifdef CONFIG_NUMA
3578 /*
3579  * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
3580  * a specified node's per zone unevictable lists for evictable pages.
3581  */
3582
3583 static ssize_t read_scan_unevictable_node(struct sys_device *dev,
3584                                           struct sysdev_attribute *attr,
3585                                           char *buf)
3586 {
3587         return sprintf(buf, "0\n");     /* always zero; should fit... */
3588 }
3589
3590 static ssize_t write_scan_unevictable_node(struct sys_device *dev,
3591                                            struct sysdev_attribute *attr,
3592                                         const char *buf, size_t count)
3593 {
3594         struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
3595         struct zone *zone;
3596         unsigned long res;
3597         unsigned long req = strict_strtoul(buf, 10, &res);
3598
3599         if (!req)
3600                 return 1;       /* zero is no-op */
3601
3602         for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
3603                 if (!populated_zone(zone))
3604                         continue;
3605                 scan_zone_unevictable_pages(zone);
3606         }
3607         return 1;
3608 }
3609
3610
3611 static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3612                         read_scan_unevictable_node,
3613                         write_scan_unevictable_node);
3614
3615 int scan_unevictable_register_node(struct node *node)
3616 {
3617         return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
3618 }
3619
3620 void scan_unevictable_unregister_node(struct node *node)
3621 {
3622         sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
3623 }
3624 #endif