mm: compaction: allow compaction to isolate dirty pages
[firefly-linux-kernel-4.4.55.git] / mm / vmscan.c
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h>  /* for try_to_release_page(),
27                                         buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/pagevec.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/compaction.h>
36 #include <linux/notifier.h>
37 #include <linux/rwsem.h>
38 #include <linux/delay.h>
39 #include <linux/kthread.h>
40 #include <linux/freezer.h>
41 #include <linux/memcontrol.h>
42 #include <linux/delayacct.h>
43 #include <linux/sysctl.h>
44 #include <linux/oom.h>
45 #include <linux/prefetch.h>
46
47 #include <asm/tlbflush.h>
48 #include <asm/div64.h>
49
50 #include <linux/swapops.h>
51
52 #include "internal.h"
53
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/vmscan.h>
56
57 /*
58  * reclaim_mode determines how the inactive list is shrunk
59  * RECLAIM_MODE_SINGLE: Reclaim only order-0 pages
60  * RECLAIM_MODE_ASYNC:  Do not block
61  * RECLAIM_MODE_SYNC:   Allow blocking e.g. call wait_on_page_writeback
62  * RECLAIM_MODE_LUMPYRECLAIM: For high-order allocations, take a reference
63  *                      page from the LRU and reclaim all pages within a
64  *                      naturally aligned range
65  * RECLAIM_MODE_COMPACTION: For high-order allocations, reclaim a number of
66  *                      order-0 pages and then compact the zone
67  */
68 typedef unsigned __bitwise__ reclaim_mode_t;
69 #define RECLAIM_MODE_SINGLE             ((__force reclaim_mode_t)0x01u)
70 #define RECLAIM_MODE_ASYNC              ((__force reclaim_mode_t)0x02u)
71 #define RECLAIM_MODE_SYNC               ((__force reclaim_mode_t)0x04u)
72 #define RECLAIM_MODE_LUMPYRECLAIM       ((__force reclaim_mode_t)0x08u)
73 #define RECLAIM_MODE_COMPACTION         ((__force reclaim_mode_t)0x10u)
74
75 struct scan_control {
76         /* Incremented by the number of inactive pages that were scanned */
77         unsigned long nr_scanned;
78
79         /* Number of pages freed so far during a call to shrink_zones() */
80         unsigned long nr_reclaimed;
81
82         /* How many pages shrink_list() should reclaim */
83         unsigned long nr_to_reclaim;
84
85         unsigned long hibernation_mode;
86
87         /* This context's GFP mask */
88         gfp_t gfp_mask;
89
90         int may_writepage;
91
92         /* Can mapped pages be reclaimed? */
93         int may_unmap;
94
95         /* Can pages be swapped as part of reclaim? */
96         int may_swap;
97
98         int swappiness;
99
100         int order;
101
102         /*
103          * Intend to reclaim enough continuous memory rather than reclaim
104          * enough amount of memory. i.e, mode for high order allocation.
105          */
106         reclaim_mode_t reclaim_mode;
107
108         /* Which cgroup do we reclaim from */
109         struct mem_cgroup *mem_cgroup;
110
111         /*
112          * Nodemask of nodes allowed by the caller. If NULL, all nodes
113          * are scanned.
114          */
115         nodemask_t      *nodemask;
116 };
117
118 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
119
120 #ifdef ARCH_HAS_PREFETCH
121 #define prefetch_prev_lru_page(_page, _base, _field)                    \
122         do {                                                            \
123                 if ((_page)->lru.prev != _base) {                       \
124                         struct page *prev;                              \
125                                                                         \
126                         prev = lru_to_page(&(_page->lru));              \
127                         prefetch(&prev->_field);                        \
128                 }                                                       \
129         } while (0)
130 #else
131 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
132 #endif
133
134 #ifdef ARCH_HAS_PREFETCHW
135 #define prefetchw_prev_lru_page(_page, _base, _field)                   \
136         do {                                                            \
137                 if ((_page)->lru.prev != _base) {                       \
138                         struct page *prev;                              \
139                                                                         \
140                         prev = lru_to_page(&(_page->lru));              \
141                         prefetchw(&prev->_field);                       \
142                 }                                                       \
143         } while (0)
144 #else
145 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
146 #endif
147
148 /*
149  * From 0 .. 100.  Higher means more swappy.
150  */
151 int vm_swappiness = 60;
152 long vm_total_pages;    /* The total number of pages which the VM controls */
153
154 static LIST_HEAD(shrinker_list);
155 static DECLARE_RWSEM(shrinker_rwsem);
156
157 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
158 #define scanning_global_lru(sc) (!(sc)->mem_cgroup)
159 #else
160 #define scanning_global_lru(sc) (1)
161 #endif
162
163 static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
164                                                   struct scan_control *sc)
165 {
166         if (!scanning_global_lru(sc))
167                 return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);
168
169         return &zone->reclaim_stat;
170 }
171
172 static unsigned long zone_nr_lru_pages(struct zone *zone,
173                                 struct scan_control *sc, enum lru_list lru)
174 {
175         if (!scanning_global_lru(sc))
176                 return mem_cgroup_zone_nr_lru_pages(sc->mem_cgroup, zone, lru);
177
178         return zone_page_state(zone, NR_LRU_BASE + lru);
179 }
180
181
182 /*
183  * Add a shrinker callback to be called from the vm
184  */
185 void register_shrinker(struct shrinker *shrinker)
186 {
187         shrinker->nr = 0;
188         down_write(&shrinker_rwsem);
189         list_add_tail(&shrinker->list, &shrinker_list);
190         up_write(&shrinker_rwsem);
191 }
192 EXPORT_SYMBOL(register_shrinker);
193
194 /*
195  * Remove one
196  */
197 void unregister_shrinker(struct shrinker *shrinker)
198 {
199         down_write(&shrinker_rwsem);
200         list_del(&shrinker->list);
201         up_write(&shrinker_rwsem);
202 }
203 EXPORT_SYMBOL(unregister_shrinker);
204
205 static inline int do_shrinker_shrink(struct shrinker *shrinker,
206                                      struct shrink_control *sc,
207                                      unsigned long nr_to_scan)
208 {
209         sc->nr_to_scan = nr_to_scan;
210         return (*shrinker->shrink)(shrinker, sc);
211 }
212
213 #define SHRINK_BATCH 128
214 /*
215  * Call the shrink functions to age shrinkable caches
216  *
217  * Here we assume it costs one seek to replace a lru page and that it also
218  * takes a seek to recreate a cache object.  With this in mind we age equal
219  * percentages of the lru and ageable caches.  This should balance the seeks
220  * generated by these structures.
221  *
222  * If the vm encountered mapped pages on the LRU it increase the pressure on
223  * slab to avoid swapping.
224  *
225  * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
226  *
227  * `lru_pages' represents the number of on-LRU pages in all the zones which
228  * are eligible for the caller's allocation attempt.  It is used for balancing
229  * slab reclaim versus page reclaim.
230  *
231  * Returns the number of slab objects which we shrunk.
232  */
233 unsigned long shrink_slab(struct shrink_control *shrink,
234                           unsigned long nr_pages_scanned,
235                           unsigned long lru_pages)
236 {
237         struct shrinker *shrinker;
238         unsigned long ret = 0;
239
240         if (nr_pages_scanned == 0)
241                 nr_pages_scanned = SWAP_CLUSTER_MAX;
242
243         if (!down_read_trylock(&shrinker_rwsem)) {
244                 /* Assume we'll be able to shrink next time */
245                 ret = 1;
246                 goto out;
247         }
248
249         list_for_each_entry(shrinker, &shrinker_list, list) {
250                 unsigned long long delta;
251                 unsigned long total_scan;
252                 unsigned long max_pass;
253                 int shrink_ret = 0;
254                 long nr;
255                 long new_nr;
256
257                 /*
258                  * copy the current shrinker scan count into a local variable
259                  * and zero it so that other concurrent shrinker invocations
260                  * don't also do this scanning work.
261                  */
262                 do {
263                         nr = shrinker->nr;
264                 } while (cmpxchg(&shrinker->nr, nr, 0) != nr);
265
266                 total_scan = nr;
267                 max_pass = do_shrinker_shrink(shrinker, shrink, 0);
268                 delta = (4 * nr_pages_scanned) / shrinker->seeks;
269                 delta *= max_pass;
270                 do_div(delta, lru_pages + 1);
271                 total_scan += delta;
272                 if (total_scan < 0) {
273                         printk(KERN_ERR "shrink_slab: %pF negative objects to "
274                                "delete nr=%ld\n",
275                                shrinker->shrink, total_scan);
276                         total_scan = max_pass;
277                 }
278
279                 /*
280                  * We need to avoid excessive windup on filesystem shrinkers
281                  * due to large numbers of GFP_NOFS allocations causing the
282                  * shrinkers to return -1 all the time. This results in a large
283                  * nr being built up so when a shrink that can do some work
284                  * comes along it empties the entire cache due to nr >>>
285                  * max_pass.  This is bad for sustaining a working set in
286                  * memory.
287                  *
288                  * Hence only allow the shrinker to scan the entire cache when
289                  * a large delta change is calculated directly.
290                  */
291                 if (delta < max_pass / 4)
292                         total_scan = min(total_scan, max_pass / 2);
293
294                 /*
295                  * Avoid risking looping forever due to too large nr value:
296                  * never try to free more than twice the estimate number of
297                  * freeable entries.
298                  */
299                 if (total_scan > max_pass * 2)
300                         total_scan = max_pass * 2;
301
302                 trace_mm_shrink_slab_start(shrinker, shrink, nr,
303                                         nr_pages_scanned, lru_pages,
304                                         max_pass, delta, total_scan);
305
306                 while (total_scan >= SHRINK_BATCH) {
307                         long this_scan = SHRINK_BATCH;
308                         int nr_before;
309
310                         nr_before = do_shrinker_shrink(shrinker, shrink, 0);
311                         shrink_ret = do_shrinker_shrink(shrinker, shrink,
312                                                         this_scan);
313                         if (shrink_ret == -1)
314                                 break;
315                         if (shrink_ret < nr_before)
316                                 ret += nr_before - shrink_ret;
317                         count_vm_events(SLABS_SCANNED, this_scan);
318                         total_scan -= this_scan;
319
320                         cond_resched();
321                 }
322
323                 /*
324                  * move the unused scan count back into the shrinker in a
325                  * manner that handles concurrent updates. If we exhausted the
326                  * scan, there is no need to do an update.
327                  */
328                 do {
329                         nr = shrinker->nr;
330                         new_nr = total_scan + nr;
331                         if (total_scan <= 0)
332                                 break;
333                 } while (cmpxchg(&shrinker->nr, nr, new_nr) != nr);
334
335                 trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
336         }
337         up_read(&shrinker_rwsem);
338 out:
339         cond_resched();
340         return ret;
341 }
342
343 static void set_reclaim_mode(int priority, struct scan_control *sc,
344                                    bool sync)
345 {
346         reclaim_mode_t syncmode = sync ? RECLAIM_MODE_SYNC : RECLAIM_MODE_ASYNC;
347
348         /*
349          * Initially assume we are entering either lumpy reclaim or
350          * reclaim/compaction.Depending on the order, we will either set the
351          * sync mode or just reclaim order-0 pages later.
352          */
353         if (COMPACTION_BUILD)
354                 sc->reclaim_mode = RECLAIM_MODE_COMPACTION;
355         else
356                 sc->reclaim_mode = RECLAIM_MODE_LUMPYRECLAIM;
357
358         /*
359          * Avoid using lumpy reclaim or reclaim/compaction if possible by
360          * restricting when its set to either costly allocations or when
361          * under memory pressure
362          */
363         if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
364                 sc->reclaim_mode |= syncmode;
365         else if (sc->order && priority < DEF_PRIORITY - 2)
366                 sc->reclaim_mode |= syncmode;
367         else
368                 sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
369 }
370
371 static void reset_reclaim_mode(struct scan_control *sc)
372 {
373         sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
374 }
375
376 static inline int is_page_cache_freeable(struct page *page)
377 {
378         /*
379          * A freeable page cache page is referenced only by the caller
380          * that isolated the page, the page cache radix tree and
381          * optional buffer heads at page->private.
382          */
383         return page_count(page) - page_has_private(page) == 2;
384 }
385
386 static int may_write_to_queue(struct backing_dev_info *bdi,
387                               struct scan_control *sc)
388 {
389         if (current->flags & PF_SWAPWRITE)
390                 return 1;
391         if (!bdi_write_congested(bdi))
392                 return 1;
393         if (bdi == current->backing_dev_info)
394                 return 1;
395
396         /* lumpy reclaim for hugepage often need a lot of write */
397         if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
398                 return 1;
399         return 0;
400 }
401
402 /*
403  * We detected a synchronous write error writing a page out.  Probably
404  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
405  * fsync(), msync() or close().
406  *
407  * The tricky part is that after writepage we cannot touch the mapping: nothing
408  * prevents it from being freed up.  But we have a ref on the page and once
409  * that page is locked, the mapping is pinned.
410  *
411  * We're allowed to run sleeping lock_page() here because we know the caller has
412  * __GFP_FS.
413  */
414 static void handle_write_error(struct address_space *mapping,
415                                 struct page *page, int error)
416 {
417         lock_page(page);
418         if (page_mapping(page) == mapping)
419                 mapping_set_error(mapping, error);
420         unlock_page(page);
421 }
422
423 /* possible outcome of pageout() */
424 typedef enum {
425         /* failed to write page out, page is locked */
426         PAGE_KEEP,
427         /* move page to the active list, page is locked */
428         PAGE_ACTIVATE,
429         /* page has been sent to the disk successfully, page is unlocked */
430         PAGE_SUCCESS,
431         /* page is clean and locked */
432         PAGE_CLEAN,
433 } pageout_t;
434
435 /*
436  * pageout is called by shrink_page_list() for each dirty page.
437  * Calls ->writepage().
438  */
439 static pageout_t pageout(struct page *page, struct address_space *mapping,
440                          struct scan_control *sc)
441 {
442         /*
443          * If the page is dirty, only perform writeback if that write
444          * will be non-blocking.  To prevent this allocation from being
445          * stalled by pagecache activity.  But note that there may be
446          * stalls if we need to run get_block().  We could test
447          * PagePrivate for that.
448          *
449          * If this process is currently in __generic_file_aio_write() against
450          * this page's queue, we can perform writeback even if that
451          * will block.
452          *
453          * If the page is swapcache, write it back even if that would
454          * block, for some throttling. This happens by accident, because
455          * swap_backing_dev_info is bust: it doesn't reflect the
456          * congestion state of the swapdevs.  Easy to fix, if needed.
457          */
458         if (!is_page_cache_freeable(page))
459                 return PAGE_KEEP;
460         if (!mapping) {
461                 /*
462                  * Some data journaling orphaned pages can have
463                  * page->mapping == NULL while being dirty with clean buffers.
464                  */
465                 if (page_has_private(page)) {
466                         if (try_to_free_buffers(page)) {
467                                 ClearPageDirty(page);
468                                 printk("%s: orphaned page\n", __func__);
469                                 return PAGE_CLEAN;
470                         }
471                 }
472                 return PAGE_KEEP;
473         }
474         if (mapping->a_ops->writepage == NULL)
475                 return PAGE_ACTIVATE;
476         if (!may_write_to_queue(mapping->backing_dev_info, sc))
477                 return PAGE_KEEP;
478
479         if (clear_page_dirty_for_io(page)) {
480                 int res;
481                 struct writeback_control wbc = {
482                         .sync_mode = WB_SYNC_NONE,
483                         .nr_to_write = SWAP_CLUSTER_MAX,
484                         .range_start = 0,
485                         .range_end = LLONG_MAX,
486                         .for_reclaim = 1,
487                 };
488
489                 SetPageReclaim(page);
490                 res = mapping->a_ops->writepage(page, &wbc);
491                 if (res < 0)
492                         handle_write_error(mapping, page, res);
493                 if (res == AOP_WRITEPAGE_ACTIVATE) {
494                         ClearPageReclaim(page);
495                         return PAGE_ACTIVATE;
496                 }
497
498                 /*
499                  * Wait on writeback if requested to. This happens when
500                  * direct reclaiming a large contiguous area and the
501                  * first attempt to free a range of pages fails.
502                  */
503                 if (PageWriteback(page) &&
504                     (sc->reclaim_mode & RECLAIM_MODE_SYNC))
505                         wait_on_page_writeback(page);
506
507                 if (!PageWriteback(page)) {
508                         /* synchronous write or broken a_ops? */
509                         ClearPageReclaim(page);
510                 }
511                 trace_mm_vmscan_writepage(page,
512                         trace_reclaim_flags(page, sc->reclaim_mode));
513                 inc_zone_page_state(page, NR_VMSCAN_WRITE);
514                 return PAGE_SUCCESS;
515         }
516
517         return PAGE_CLEAN;
518 }
519
520 /*
521  * Same as remove_mapping, but if the page is removed from the mapping, it
522  * gets returned with a refcount of 0.
523  */
524 static int __remove_mapping(struct address_space *mapping, struct page *page)
525 {
526         BUG_ON(!PageLocked(page));
527         BUG_ON(mapping != page_mapping(page));
528
529         spin_lock_irq(&mapping->tree_lock);
530         /*
531          * The non racy check for a busy page.
532          *
533          * Must be careful with the order of the tests. When someone has
534          * a ref to the page, it may be possible that they dirty it then
535          * drop the reference. So if PageDirty is tested before page_count
536          * here, then the following race may occur:
537          *
538          * get_user_pages(&page);
539          * [user mapping goes away]
540          * write_to(page);
541          *                              !PageDirty(page)    [good]
542          * SetPageDirty(page);
543          * put_page(page);
544          *                              !page_count(page)   [good, discard it]
545          *
546          * [oops, our write_to data is lost]
547          *
548          * Reversing the order of the tests ensures such a situation cannot
549          * escape unnoticed. The smp_rmb is needed to ensure the page->flags
550          * load is not satisfied before that of page->_count.
551          *
552          * Note that if SetPageDirty is always performed via set_page_dirty,
553          * and thus under tree_lock, then this ordering is not required.
554          */
555         if (!page_freeze_refs(page, 2))
556                 goto cannot_free;
557         /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
558         if (unlikely(PageDirty(page))) {
559                 page_unfreeze_refs(page, 2);
560                 goto cannot_free;
561         }
562
563         if (PageSwapCache(page)) {
564                 swp_entry_t swap = { .val = page_private(page) };
565                 __delete_from_swap_cache(page);
566                 spin_unlock_irq(&mapping->tree_lock);
567                 swapcache_free(swap, page);
568         } else {
569                 void (*freepage)(struct page *);
570
571                 freepage = mapping->a_ops->freepage;
572
573                 __delete_from_page_cache(page);
574                 spin_unlock_irq(&mapping->tree_lock);
575                 mem_cgroup_uncharge_cache_page(page);
576
577                 if (freepage != NULL)
578                         freepage(page);
579         }
580
581         return 1;
582
583 cannot_free:
584         spin_unlock_irq(&mapping->tree_lock);
585         return 0;
586 }
587
588 /*
589  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
590  * someone else has a ref on the page, abort and return 0.  If it was
591  * successfully detached, return 1.  Assumes the caller has a single ref on
592  * this page.
593  */
594 int remove_mapping(struct address_space *mapping, struct page *page)
595 {
596         if (__remove_mapping(mapping, page)) {
597                 /*
598                  * Unfreezing the refcount with 1 rather than 2 effectively
599                  * drops the pagecache ref for us without requiring another
600                  * atomic operation.
601                  */
602                 page_unfreeze_refs(page, 1);
603                 return 1;
604         }
605         return 0;
606 }
607
608 /**
609  * putback_lru_page - put previously isolated page onto appropriate LRU list
610  * @page: page to be put back to appropriate lru list
611  *
612  * Add previously isolated @page to appropriate LRU list.
613  * Page may still be unevictable for other reasons.
614  *
615  * lru_lock must not be held, interrupts must be enabled.
616  */
617 void putback_lru_page(struct page *page)
618 {
619         int lru;
620         int active = !!TestClearPageActive(page);
621         int was_unevictable = PageUnevictable(page);
622
623         VM_BUG_ON(PageLRU(page));
624
625 redo:
626         ClearPageUnevictable(page);
627
628         if (page_evictable(page, NULL)) {
629                 /*
630                  * For evictable pages, we can use the cache.
631                  * In event of a race, worst case is we end up with an
632                  * unevictable page on [in]active list.
633                  * We know how to handle that.
634                  */
635                 lru = active + page_lru_base_type(page);
636                 lru_cache_add_lru(page, lru);
637         } else {
638                 /*
639                  * Put unevictable pages directly on zone's unevictable
640                  * list.
641                  */
642                 lru = LRU_UNEVICTABLE;
643                 add_page_to_unevictable_list(page);
644                 /*
645                  * When racing with an mlock clearing (page is
646                  * unlocked), make sure that if the other thread does
647                  * not observe our setting of PG_lru and fails
648                  * isolation, we see PG_mlocked cleared below and move
649                  * the page back to the evictable list.
650                  *
651                  * The other side is TestClearPageMlocked().
652                  */
653                 smp_mb();
654         }
655
656         /*
657          * page's status can change while we move it among lru. If an evictable
658          * page is on unevictable list, it never be freed. To avoid that,
659          * check after we added it to the list, again.
660          */
661         if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
662                 if (!isolate_lru_page(page)) {
663                         put_page(page);
664                         goto redo;
665                 }
666                 /* This means someone else dropped this page from LRU
667                  * So, it will be freed or putback to LRU again. There is
668                  * nothing to do here.
669                  */
670         }
671
672         if (was_unevictable && lru != LRU_UNEVICTABLE)
673                 count_vm_event(UNEVICTABLE_PGRESCUED);
674         else if (!was_unevictable && lru == LRU_UNEVICTABLE)
675                 count_vm_event(UNEVICTABLE_PGCULLED);
676
677         put_page(page);         /* drop ref from isolate */
678 }
679
680 enum page_references {
681         PAGEREF_RECLAIM,
682         PAGEREF_RECLAIM_CLEAN,
683         PAGEREF_KEEP,
684         PAGEREF_ACTIVATE,
685 };
686
687 static enum page_references page_check_references(struct page *page,
688                                                   struct scan_control *sc)
689 {
690         int referenced_ptes, referenced_page;
691         unsigned long vm_flags;
692
693         referenced_ptes = page_referenced(page, 1, sc->mem_cgroup, &vm_flags);
694         referenced_page = TestClearPageReferenced(page);
695
696         /* Lumpy reclaim - ignore references */
697         if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
698                 return PAGEREF_RECLAIM;
699
700         /*
701          * Mlock lost the isolation race with us.  Let try_to_unmap()
702          * move the page to the unevictable list.
703          */
704         if (vm_flags & VM_LOCKED)
705                 return PAGEREF_RECLAIM;
706
707         if (referenced_ptes) {
708                 if (PageSwapBacked(page))
709                         return PAGEREF_ACTIVATE;
710                 /*
711                  * All mapped pages start out with page table
712                  * references from the instantiating fault, so we need
713                  * to look twice if a mapped file page is used more
714                  * than once.
715                  *
716                  * Mark it and spare it for another trip around the
717                  * inactive list.  Another page table reference will
718                  * lead to its activation.
719                  *
720                  * Note: the mark is set for activated pages as well
721                  * so that recently deactivated but used pages are
722                  * quickly recovered.
723                  */
724                 SetPageReferenced(page);
725
726                 if (referenced_page)
727                         return PAGEREF_ACTIVATE;
728
729                 return PAGEREF_KEEP;
730         }
731
732         /* Reclaim if clean, defer dirty pages to writeback */
733         if (referenced_page && !PageSwapBacked(page))
734                 return PAGEREF_RECLAIM_CLEAN;
735
736         return PAGEREF_RECLAIM;
737 }
738
739 static noinline_for_stack void free_page_list(struct list_head *free_pages)
740 {
741         struct pagevec freed_pvec;
742         struct page *page, *tmp;
743
744         pagevec_init(&freed_pvec, 1);
745
746         list_for_each_entry_safe(page, tmp, free_pages, lru) {
747                 list_del(&page->lru);
748                 if (!pagevec_add(&freed_pvec, page)) {
749                         __pagevec_free(&freed_pvec);
750                         pagevec_reinit(&freed_pvec);
751                 }
752         }
753
754         pagevec_free(&freed_pvec);
755 }
756
757 /*
758  * shrink_page_list() returns the number of reclaimed pages
759  */
760 static unsigned long shrink_page_list(struct list_head *page_list,
761                                       struct zone *zone,
762                                       struct scan_control *sc)
763 {
764         LIST_HEAD(ret_pages);
765         LIST_HEAD(free_pages);
766         int pgactivate = 0;
767         unsigned long nr_dirty = 0;
768         unsigned long nr_congested = 0;
769         unsigned long nr_reclaimed = 0;
770
771         cond_resched();
772
773         while (!list_empty(page_list)) {
774                 enum page_references references;
775                 struct address_space *mapping;
776                 struct page *page;
777                 int may_enter_fs;
778
779                 cond_resched();
780
781                 page = lru_to_page(page_list);
782                 list_del(&page->lru);
783
784                 if (!trylock_page(page))
785                         goto keep;
786
787                 VM_BUG_ON(PageActive(page));
788                 VM_BUG_ON(page_zone(page) != zone);
789
790                 sc->nr_scanned++;
791
792                 if (unlikely(!page_evictable(page, NULL)))
793                         goto cull_mlocked;
794
795                 if (!sc->may_unmap && page_mapped(page))
796                         goto keep_locked;
797
798                 /* Double the slab pressure for mapped and swapcache pages */
799                 if (page_mapped(page) || PageSwapCache(page))
800                         sc->nr_scanned++;
801
802                 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
803                         (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
804
805                 if (PageWriteback(page)) {
806                         /*
807                          * Synchronous reclaim is performed in two passes,
808                          * first an asynchronous pass over the list to
809                          * start parallel writeback, and a second synchronous
810                          * pass to wait for the IO to complete.  Wait here
811                          * for any page for which writeback has already
812                          * started.
813                          */
814                         if ((sc->reclaim_mode & RECLAIM_MODE_SYNC) &&
815                             may_enter_fs)
816                                 wait_on_page_writeback(page);
817                         else {
818                                 unlock_page(page);
819                                 goto keep_lumpy;
820                         }
821                 }
822
823                 references = page_check_references(page, sc);
824                 switch (references) {
825                 case PAGEREF_ACTIVATE:
826                         goto activate_locked;
827                 case PAGEREF_KEEP:
828                         goto keep_locked;
829                 case PAGEREF_RECLAIM:
830                 case PAGEREF_RECLAIM_CLEAN:
831                         ; /* try to reclaim the page below */
832                 }
833
834                 /*
835                  * Anonymous process memory has backing store?
836                  * Try to allocate it some swap space here.
837                  */
838                 if (PageAnon(page) && !PageSwapCache(page)) {
839                         if (!(sc->gfp_mask & __GFP_IO))
840                                 goto keep_locked;
841                         if (!add_to_swap(page))
842                                 goto activate_locked;
843                         may_enter_fs = 1;
844                 }
845
846                 mapping = page_mapping(page);
847
848                 /*
849                  * The page is mapped into the page tables of one or more
850                  * processes. Try to unmap it here.
851                  */
852                 if (page_mapped(page) && mapping) {
853                         switch (try_to_unmap(page, TTU_UNMAP)) {
854                         case SWAP_FAIL:
855                                 goto activate_locked;
856                         case SWAP_AGAIN:
857                                 goto keep_locked;
858                         case SWAP_MLOCK:
859                                 goto cull_mlocked;
860                         case SWAP_SUCCESS:
861                                 ; /* try to free the page below */
862                         }
863                 }
864
865                 if (PageDirty(page)) {
866                         nr_dirty++;
867
868                         if (references == PAGEREF_RECLAIM_CLEAN)
869                                 goto keep_locked;
870                         if (!may_enter_fs)
871                                 goto keep_locked;
872                         if (!sc->may_writepage)
873                                 goto keep_locked;
874
875                         /* Page is dirty, try to write it out here */
876                         switch (pageout(page, mapping, sc)) {
877                         case PAGE_KEEP:
878                                 nr_congested++;
879                                 goto keep_locked;
880                         case PAGE_ACTIVATE:
881                                 goto activate_locked;
882                         case PAGE_SUCCESS:
883                                 if (PageWriteback(page))
884                                         goto keep_lumpy;
885                                 if (PageDirty(page))
886                                         goto keep;
887
888                                 /*
889                                  * A synchronous write - probably a ramdisk.  Go
890                                  * ahead and try to reclaim the page.
891                                  */
892                                 if (!trylock_page(page))
893                                         goto keep;
894                                 if (PageDirty(page) || PageWriteback(page))
895                                         goto keep_locked;
896                                 mapping = page_mapping(page);
897                         case PAGE_CLEAN:
898                                 ; /* try to free the page below */
899                         }
900                 }
901
902                 /*
903                  * If the page has buffers, try to free the buffer mappings
904                  * associated with this page. If we succeed we try to free
905                  * the page as well.
906                  *
907                  * We do this even if the page is PageDirty().
908                  * try_to_release_page() does not perform I/O, but it is
909                  * possible for a page to have PageDirty set, but it is actually
910                  * clean (all its buffers are clean).  This happens if the
911                  * buffers were written out directly, with submit_bh(). ext3
912                  * will do this, as well as the blockdev mapping.
913                  * try_to_release_page() will discover that cleanness and will
914                  * drop the buffers and mark the page clean - it can be freed.
915                  *
916                  * Rarely, pages can have buffers and no ->mapping.  These are
917                  * the pages which were not successfully invalidated in
918                  * truncate_complete_page().  We try to drop those buffers here
919                  * and if that worked, and the page is no longer mapped into
920                  * process address space (page_count == 1) it can be freed.
921                  * Otherwise, leave the page on the LRU so it is swappable.
922                  */
923                 if (page_has_private(page)) {
924                         if (!try_to_release_page(page, sc->gfp_mask))
925                                 goto activate_locked;
926                         if (!mapping && page_count(page) == 1) {
927                                 unlock_page(page);
928                                 if (put_page_testzero(page))
929                                         goto free_it;
930                                 else {
931                                         /*
932                                          * rare race with speculative reference.
933                                          * the speculative reference will free
934                                          * this page shortly, so we may
935                                          * increment nr_reclaimed here (and
936                                          * leave it off the LRU).
937                                          */
938                                         nr_reclaimed++;
939                                         continue;
940                                 }
941                         }
942                 }
943
944                 if (!mapping || !__remove_mapping(mapping, page))
945                         goto keep_locked;
946
947                 /*
948                  * At this point, we have no other references and there is
949                  * no way to pick any more up (removed from LRU, removed
950                  * from pagecache). Can use non-atomic bitops now (and
951                  * we obviously don't have to worry about waking up a process
952                  * waiting on the page lock, because there are no references.
953                  */
954                 __clear_page_locked(page);
955 free_it:
956                 nr_reclaimed++;
957
958                 /*
959                  * Is there need to periodically free_page_list? It would
960                  * appear not as the counts should be low
961                  */
962                 list_add(&page->lru, &free_pages);
963                 continue;
964
965 cull_mlocked:
966                 if (PageSwapCache(page))
967                         try_to_free_swap(page);
968                 unlock_page(page);
969                 putback_lru_page(page);
970                 reset_reclaim_mode(sc);
971                 continue;
972
973 activate_locked:
974                 /* Not a candidate for swapping, so reclaim swap space. */
975                 if (PageSwapCache(page) && vm_swap_full())
976                         try_to_free_swap(page);
977                 VM_BUG_ON(PageActive(page));
978                 SetPageActive(page);
979                 pgactivate++;
980 keep_locked:
981                 unlock_page(page);
982 keep:
983                 reset_reclaim_mode(sc);
984 keep_lumpy:
985                 list_add(&page->lru, &ret_pages);
986                 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
987         }
988
989         /*
990          * Tag a zone as congested if all the dirty pages encountered were
991          * backed by a congested BDI. In this case, reclaimers should just
992          * back off and wait for congestion to clear because further reclaim
993          * will encounter the same problem
994          */
995         if (nr_dirty && nr_dirty == nr_congested && scanning_global_lru(sc))
996                 zone_set_flag(zone, ZONE_CONGESTED);
997
998         free_page_list(&free_pages);
999
1000         list_splice(&ret_pages, page_list);
1001         count_vm_events(PGACTIVATE, pgactivate);
1002         return nr_reclaimed;
1003 }
1004
1005 /*
1006  * Attempt to remove the specified page from its LRU.  Only take this page
1007  * if it is of the appropriate PageActive status.  Pages which are being
1008  * freed elsewhere are also ignored.
1009  *
1010  * page:        page to consider
1011  * mode:        one of the LRU isolation modes defined above
1012  *
1013  * returns 0 on success, -ve errno on failure.
1014  */
1015 int __isolate_lru_page(struct page *page, isolate_mode_t mode, int file)
1016 {
1017         bool all_lru_mode;
1018         int ret = -EINVAL;
1019
1020         /* Only take pages on the LRU. */
1021         if (!PageLRU(page))
1022                 return ret;
1023
1024         all_lru_mode = (mode & (ISOLATE_ACTIVE|ISOLATE_INACTIVE)) ==
1025                 (ISOLATE_ACTIVE|ISOLATE_INACTIVE);
1026
1027         /*
1028          * When checking the active state, we need to be sure we are
1029          * dealing with comparible boolean values.  Take the logical not
1030          * of each.
1031          */
1032         if (!all_lru_mode && !PageActive(page) != !(mode & ISOLATE_ACTIVE))
1033                 return ret;
1034
1035         if (!all_lru_mode && !!page_is_file_cache(page) != file)
1036                 return ret;
1037
1038         /*
1039          * When this function is being called for lumpy reclaim, we
1040          * initially look into all LRU pages, active, inactive and
1041          * unevictable; only give shrink_page_list evictable pages.
1042          */
1043         if (PageUnevictable(page))
1044                 return ret;
1045
1046         ret = -EBUSY;
1047
1048         if ((mode & ISOLATE_CLEAN) && (PageDirty(page) || PageWriteback(page)))
1049                 return ret;
1050
1051         if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1052                 return ret;
1053
1054         if (likely(get_page_unless_zero(page))) {
1055                 /*
1056                  * Be careful not to clear PageLRU until after we're
1057                  * sure the page is not being freed elsewhere -- the
1058                  * page release code relies on it.
1059                  */
1060                 ClearPageLRU(page);
1061                 ret = 0;
1062         }
1063
1064         return ret;
1065 }
1066
1067 /*
1068  * zone->lru_lock is heavily contended.  Some of the functions that
1069  * shrink the lists perform better by taking out a batch of pages
1070  * and working on them outside the LRU lock.
1071  *
1072  * For pagecache intensive workloads, this function is the hottest
1073  * spot in the kernel (apart from copy_*_user functions).
1074  *
1075  * Appropriate locks must be held before calling this function.
1076  *
1077  * @nr_to_scan: The number of pages to look through on the list.
1078  * @src:        The LRU list to pull pages off.
1079  * @dst:        The temp list to put pages on to.
1080  * @scanned:    The number of pages that were scanned.
1081  * @order:      The caller's attempted allocation order
1082  * @mode:       One of the LRU isolation modes
1083  * @file:       True [1] if isolating file [!anon] pages
1084  *
1085  * returns how many pages were moved onto *@dst.
1086  */
1087 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1088                 struct list_head *src, struct list_head *dst,
1089                 unsigned long *scanned, int order, isolate_mode_t mode,
1090                 int file)
1091 {
1092         unsigned long nr_taken = 0;
1093         unsigned long nr_lumpy_taken = 0;
1094         unsigned long nr_lumpy_dirty = 0;
1095         unsigned long nr_lumpy_failed = 0;
1096         unsigned long scan;
1097
1098         for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1099                 struct page *page;
1100                 unsigned long pfn;
1101                 unsigned long end_pfn;
1102                 unsigned long page_pfn;
1103                 int zone_id;
1104
1105                 page = lru_to_page(src);
1106                 prefetchw_prev_lru_page(page, src, flags);
1107
1108                 VM_BUG_ON(!PageLRU(page));
1109
1110                 switch (__isolate_lru_page(page, mode, file)) {
1111                 case 0:
1112                         list_move(&page->lru, dst);
1113                         mem_cgroup_del_lru(page);
1114                         nr_taken += hpage_nr_pages(page);
1115                         break;
1116
1117                 case -EBUSY:
1118                         /* else it is being freed elsewhere */
1119                         list_move(&page->lru, src);
1120                         mem_cgroup_rotate_lru_list(page, page_lru(page));
1121                         continue;
1122
1123                 default:
1124                         BUG();
1125                 }
1126
1127                 if (!order)
1128                         continue;
1129
1130                 /*
1131                  * Attempt to take all pages in the order aligned region
1132                  * surrounding the tag page.  Only take those pages of
1133                  * the same active state as that tag page.  We may safely
1134                  * round the target page pfn down to the requested order
1135                  * as the mem_map is guaranteed valid out to MAX_ORDER,
1136                  * where that page is in a different zone we will detect
1137                  * it from its zone id and abort this block scan.
1138                  */
1139                 zone_id = page_zone_id(page);
1140                 page_pfn = page_to_pfn(page);
1141                 pfn = page_pfn & ~((1 << order) - 1);
1142                 end_pfn = pfn + (1 << order);
1143                 for (; pfn < end_pfn; pfn++) {
1144                         struct page *cursor_page;
1145
1146                         /* The target page is in the block, ignore it. */
1147                         if (unlikely(pfn == page_pfn))
1148                                 continue;
1149
1150                         /* Avoid holes within the zone. */
1151                         if (unlikely(!pfn_valid_within(pfn)))
1152                                 break;
1153
1154                         cursor_page = pfn_to_page(pfn);
1155
1156                         /* Check that we have not crossed a zone boundary. */
1157                         if (unlikely(page_zone_id(cursor_page) != zone_id))
1158                                 break;
1159
1160                         /*
1161                          * If we don't have enough swap space, reclaiming of
1162                          * anon page which don't already have a swap slot is
1163                          * pointless.
1164                          */
1165                         if (nr_swap_pages <= 0 && PageAnon(cursor_page) &&
1166                             !PageSwapCache(cursor_page))
1167                                 break;
1168
1169                         if (__isolate_lru_page(cursor_page, mode, file) == 0) {
1170                                 list_move(&cursor_page->lru, dst);
1171                                 mem_cgroup_del_lru(cursor_page);
1172                                 nr_taken += hpage_nr_pages(page);
1173                                 nr_lumpy_taken++;
1174                                 if (PageDirty(cursor_page))
1175                                         nr_lumpy_dirty++;
1176                                 scan++;
1177                         } else {
1178                                 /*
1179                                  * Check if the page is freed already.
1180                                  *
1181                                  * We can't use page_count() as that
1182                                  * requires compound_head and we don't
1183                                  * have a pin on the page here. If a
1184                                  * page is tail, we may or may not
1185                                  * have isolated the head, so assume
1186                                  * it's not free, it'd be tricky to
1187                                  * track the head status without a
1188                                  * page pin.
1189                                  */
1190                                 if (!PageTail(cursor_page) &&
1191                                     !atomic_read(&cursor_page->_count))
1192                                         continue;
1193                                 break;
1194                         }
1195                 }
1196
1197                 /* If we break out of the loop above, lumpy reclaim failed */
1198                 if (pfn < end_pfn)
1199                         nr_lumpy_failed++;
1200         }
1201
1202         *scanned = scan;
1203
1204         trace_mm_vmscan_lru_isolate(order,
1205                         nr_to_scan, scan,
1206                         nr_taken,
1207                         nr_lumpy_taken, nr_lumpy_dirty, nr_lumpy_failed,
1208                         mode);
1209         return nr_taken;
1210 }
1211
1212 static unsigned long isolate_pages_global(unsigned long nr,
1213                                         struct list_head *dst,
1214                                         unsigned long *scanned, int order,
1215                                         isolate_mode_t mode,
1216                                         struct zone *z, int active, int file)
1217 {
1218         int lru = LRU_BASE;
1219         if (active)
1220                 lru += LRU_ACTIVE;
1221         if (file)
1222                 lru += LRU_FILE;
1223         return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
1224                                                                 mode, file);
1225 }
1226
1227 /*
1228  * clear_active_flags() is a helper for shrink_active_list(), clearing
1229  * any active bits from the pages in the list.
1230  */
1231 static unsigned long clear_active_flags(struct list_head *page_list,
1232                                         unsigned int *count)
1233 {
1234         int nr_active = 0;
1235         int lru;
1236         struct page *page;
1237
1238         list_for_each_entry(page, page_list, lru) {
1239                 int numpages = hpage_nr_pages(page);
1240                 lru = page_lru_base_type(page);
1241                 if (PageActive(page)) {
1242                         lru += LRU_ACTIVE;
1243                         ClearPageActive(page);
1244                         nr_active += numpages;
1245                 }
1246                 if (count)
1247                         count[lru] += numpages;
1248         }
1249
1250         return nr_active;
1251 }
1252
1253 /**
1254  * isolate_lru_page - tries to isolate a page from its LRU list
1255  * @page: page to isolate from its LRU list
1256  *
1257  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1258  * vmstat statistic corresponding to whatever LRU list the page was on.
1259  *
1260  * Returns 0 if the page was removed from an LRU list.
1261  * Returns -EBUSY if the page was not on an LRU list.
1262  *
1263  * The returned page will have PageLRU() cleared.  If it was found on
1264  * the active list, it will have PageActive set.  If it was found on
1265  * the unevictable list, it will have the PageUnevictable bit set. That flag
1266  * may need to be cleared by the caller before letting the page go.
1267  *
1268  * The vmstat statistic corresponding to the list on which the page was
1269  * found will be decremented.
1270  *
1271  * Restrictions:
1272  * (1) Must be called with an elevated refcount on the page. This is a
1273  *     fundamentnal difference from isolate_lru_pages (which is called
1274  *     without a stable reference).
1275  * (2) the lru_lock must not be held.
1276  * (3) interrupts must be enabled.
1277  */
1278 int isolate_lru_page(struct page *page)
1279 {
1280         int ret = -EBUSY;
1281
1282         VM_BUG_ON(!page_count(page));
1283
1284         if (PageLRU(page)) {
1285                 struct zone *zone = page_zone(page);
1286
1287                 spin_lock_irq(&zone->lru_lock);
1288                 if (PageLRU(page)) {
1289                         int lru = page_lru(page);
1290                         ret = 0;
1291                         get_page(page);
1292                         ClearPageLRU(page);
1293
1294                         del_page_from_lru_list(zone, page, lru);
1295                 }
1296                 spin_unlock_irq(&zone->lru_lock);
1297         }
1298         return ret;
1299 }
1300
1301 /*
1302  * Are there way too many processes in the direct reclaim path already?
1303  */
1304 static int too_many_isolated(struct zone *zone, int file,
1305                 struct scan_control *sc)
1306 {
1307         unsigned long inactive, isolated;
1308
1309         if (current_is_kswapd())
1310                 return 0;
1311
1312         if (!scanning_global_lru(sc))
1313                 return 0;
1314
1315         if (file) {
1316                 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1317                 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1318         } else {
1319                 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1320                 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1321         }
1322
1323         return isolated > inactive;
1324 }
1325
1326 /*
1327  * TODO: Try merging with migrations version of putback_lru_pages
1328  */
1329 static noinline_for_stack void
1330 putback_lru_pages(struct zone *zone, struct scan_control *sc,
1331                                 unsigned long nr_anon, unsigned long nr_file,
1332                                 struct list_head *page_list)
1333 {
1334         struct page *page;
1335         struct pagevec pvec;
1336         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1337
1338         pagevec_init(&pvec, 1);
1339
1340         /*
1341          * Put back any unfreeable pages.
1342          */
1343         spin_lock(&zone->lru_lock);
1344         while (!list_empty(page_list)) {
1345                 int lru;
1346                 page = lru_to_page(page_list);
1347                 VM_BUG_ON(PageLRU(page));
1348                 list_del(&page->lru);
1349                 if (unlikely(!page_evictable(page, NULL))) {
1350                         spin_unlock_irq(&zone->lru_lock);
1351                         putback_lru_page(page);
1352                         spin_lock_irq(&zone->lru_lock);
1353                         continue;
1354                 }
1355                 SetPageLRU(page);
1356                 lru = page_lru(page);
1357                 add_page_to_lru_list(zone, page, lru);
1358                 if (is_active_lru(lru)) {
1359                         int file = is_file_lru(lru);
1360                         int numpages = hpage_nr_pages(page);
1361                         reclaim_stat->recent_rotated[file] += numpages;
1362                 }
1363                 if (!pagevec_add(&pvec, page)) {
1364                         spin_unlock_irq(&zone->lru_lock);
1365                         __pagevec_release(&pvec);
1366                         spin_lock_irq(&zone->lru_lock);
1367                 }
1368         }
1369         __mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
1370         __mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
1371
1372         spin_unlock_irq(&zone->lru_lock);
1373         pagevec_release(&pvec);
1374 }
1375
1376 static noinline_for_stack void update_isolated_counts(struct zone *zone,
1377                                         struct scan_control *sc,
1378                                         unsigned long *nr_anon,
1379                                         unsigned long *nr_file,
1380                                         struct list_head *isolated_list)
1381 {
1382         unsigned long nr_active;
1383         unsigned int count[NR_LRU_LISTS] = { 0, };
1384         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1385
1386         nr_active = clear_active_flags(isolated_list, count);
1387         __count_vm_events(PGDEACTIVATE, nr_active);
1388
1389         __mod_zone_page_state(zone, NR_ACTIVE_FILE,
1390                               -count[LRU_ACTIVE_FILE]);
1391         __mod_zone_page_state(zone, NR_INACTIVE_FILE,
1392                               -count[LRU_INACTIVE_FILE]);
1393         __mod_zone_page_state(zone, NR_ACTIVE_ANON,
1394                               -count[LRU_ACTIVE_ANON]);
1395         __mod_zone_page_state(zone, NR_INACTIVE_ANON,
1396                               -count[LRU_INACTIVE_ANON]);
1397
1398         *nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
1399         *nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
1400         __mod_zone_page_state(zone, NR_ISOLATED_ANON, *nr_anon);
1401         __mod_zone_page_state(zone, NR_ISOLATED_FILE, *nr_file);
1402
1403         reclaim_stat->recent_scanned[0] += *nr_anon;
1404         reclaim_stat->recent_scanned[1] += *nr_file;
1405 }
1406
1407 /*
1408  * Returns true if the caller should wait to clean dirty/writeback pages.
1409  *
1410  * If we are direct reclaiming for contiguous pages and we do not reclaim
1411  * everything in the list, try again and wait for writeback IO to complete.
1412  * This will stall high-order allocations noticeably. Only do that when really
1413  * need to free the pages under high memory pressure.
1414  */
1415 static inline bool should_reclaim_stall(unsigned long nr_taken,
1416                                         unsigned long nr_freed,
1417                                         int priority,
1418                                         struct scan_control *sc)
1419 {
1420         int lumpy_stall_priority;
1421
1422         /* kswapd should not stall on sync IO */
1423         if (current_is_kswapd())
1424                 return false;
1425
1426         /* Only stall on lumpy reclaim */
1427         if (sc->reclaim_mode & RECLAIM_MODE_SINGLE)
1428                 return false;
1429
1430         /* If we have relaimed everything on the isolated list, no stall */
1431         if (nr_freed == nr_taken)
1432                 return false;
1433
1434         /*
1435          * For high-order allocations, there are two stall thresholds.
1436          * High-cost allocations stall immediately where as lower
1437          * order allocations such as stacks require the scanning
1438          * priority to be much higher before stalling.
1439          */
1440         if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1441                 lumpy_stall_priority = DEF_PRIORITY;
1442         else
1443                 lumpy_stall_priority = DEF_PRIORITY / 3;
1444
1445         return priority <= lumpy_stall_priority;
1446 }
1447
1448 /*
1449  * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1450  * of reclaimed pages
1451  */
1452 static noinline_for_stack unsigned long
1453 shrink_inactive_list(unsigned long nr_to_scan, struct zone *zone,
1454                         struct scan_control *sc, int priority, int file)
1455 {
1456         LIST_HEAD(page_list);
1457         unsigned long nr_scanned;
1458         unsigned long nr_reclaimed = 0;
1459         unsigned long nr_taken;
1460         unsigned long nr_anon;
1461         unsigned long nr_file;
1462         isolate_mode_t reclaim_mode = ISOLATE_INACTIVE;
1463
1464         while (unlikely(too_many_isolated(zone, file, sc))) {
1465                 congestion_wait(BLK_RW_ASYNC, HZ/10);
1466
1467                 /* We are about to die and free our memory. Return now. */
1468                 if (fatal_signal_pending(current))
1469                         return SWAP_CLUSTER_MAX;
1470         }
1471
1472         set_reclaim_mode(priority, sc, false);
1473         if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
1474                 reclaim_mode |= ISOLATE_ACTIVE;
1475
1476         lru_add_drain();
1477
1478         if (!sc->may_unmap)
1479                 reclaim_mode |= ISOLATE_UNMAPPED;
1480         if (!sc->may_writepage)
1481                 reclaim_mode |= ISOLATE_CLEAN;
1482
1483         spin_lock_irq(&zone->lru_lock);
1484
1485         if (scanning_global_lru(sc)) {
1486                 nr_taken = isolate_pages_global(nr_to_scan, &page_list,
1487                         &nr_scanned, sc->order, reclaim_mode, zone, 0, file);
1488                 zone->pages_scanned += nr_scanned;
1489                 if (current_is_kswapd())
1490                         __count_zone_vm_events(PGSCAN_KSWAPD, zone,
1491                                                nr_scanned);
1492                 else
1493                         __count_zone_vm_events(PGSCAN_DIRECT, zone,
1494                                                nr_scanned);
1495         } else {
1496                 nr_taken = mem_cgroup_isolate_pages(nr_to_scan, &page_list,
1497                         &nr_scanned, sc->order, reclaim_mode, zone,
1498                         sc->mem_cgroup, 0, file);
1499                 /*
1500                  * mem_cgroup_isolate_pages() keeps track of
1501                  * scanned pages on its own.
1502                  */
1503         }
1504
1505         if (nr_taken == 0) {
1506                 spin_unlock_irq(&zone->lru_lock);
1507                 return 0;
1508         }
1509
1510         update_isolated_counts(zone, sc, &nr_anon, &nr_file, &page_list);
1511
1512         spin_unlock_irq(&zone->lru_lock);
1513
1514         nr_reclaimed = shrink_page_list(&page_list, zone, sc);
1515
1516         /* Check if we should syncronously wait for writeback */
1517         if (should_reclaim_stall(nr_taken, nr_reclaimed, priority, sc)) {
1518                 set_reclaim_mode(priority, sc, true);
1519                 nr_reclaimed += shrink_page_list(&page_list, zone, sc);
1520         }
1521
1522         local_irq_disable();
1523         if (current_is_kswapd())
1524                 __count_vm_events(KSWAPD_STEAL, nr_reclaimed);
1525         __count_zone_vm_events(PGSTEAL, zone, nr_reclaimed);
1526
1527         putback_lru_pages(zone, sc, nr_anon, nr_file, &page_list);
1528
1529         trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1530                 zone_idx(zone),
1531                 nr_scanned, nr_reclaimed,
1532                 priority,
1533                 trace_shrink_flags(file, sc->reclaim_mode));
1534         return nr_reclaimed;
1535 }
1536
1537 /*
1538  * This moves pages from the active list to the inactive list.
1539  *
1540  * We move them the other way if the page is referenced by one or more
1541  * processes, from rmap.
1542  *
1543  * If the pages are mostly unmapped, the processing is fast and it is
1544  * appropriate to hold zone->lru_lock across the whole operation.  But if
1545  * the pages are mapped, the processing is slow (page_referenced()) so we
1546  * should drop zone->lru_lock around each page.  It's impossible to balance
1547  * this, so instead we remove the pages from the LRU while processing them.
1548  * It is safe to rely on PG_active against the non-LRU pages in here because
1549  * nobody will play with that bit on a non-LRU page.
1550  *
1551  * The downside is that we have to touch page->_count against each page.
1552  * But we had to alter page->flags anyway.
1553  */
1554
1555 static void move_active_pages_to_lru(struct zone *zone,
1556                                      struct list_head *list,
1557                                      enum lru_list lru)
1558 {
1559         unsigned long pgmoved = 0;
1560         struct pagevec pvec;
1561         struct page *page;
1562
1563         pagevec_init(&pvec, 1);
1564
1565         while (!list_empty(list)) {
1566                 page = lru_to_page(list);
1567
1568                 VM_BUG_ON(PageLRU(page));
1569                 SetPageLRU(page);
1570
1571                 list_move(&page->lru, &zone->lru[lru].list);
1572                 mem_cgroup_add_lru_list(page, lru);
1573                 pgmoved += hpage_nr_pages(page);
1574
1575                 if (!pagevec_add(&pvec, page) || list_empty(list)) {
1576                         spin_unlock_irq(&zone->lru_lock);
1577                         if (buffer_heads_over_limit)
1578                                 pagevec_strip(&pvec);
1579                         __pagevec_release(&pvec);
1580                         spin_lock_irq(&zone->lru_lock);
1581                 }
1582         }
1583         __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1584         if (!is_active_lru(lru))
1585                 __count_vm_events(PGDEACTIVATE, pgmoved);
1586 }
1587
1588 static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1589                         struct scan_control *sc, int priority, int file)
1590 {
1591         unsigned long nr_taken;
1592         unsigned long pgscanned;
1593         unsigned long vm_flags;
1594         LIST_HEAD(l_hold);      /* The pages which were snipped off */
1595         LIST_HEAD(l_active);
1596         LIST_HEAD(l_inactive);
1597         struct page *page;
1598         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1599         unsigned long nr_rotated = 0;
1600         isolate_mode_t reclaim_mode = ISOLATE_ACTIVE;
1601
1602         lru_add_drain();
1603
1604         if (!sc->may_unmap)
1605                 reclaim_mode |= ISOLATE_UNMAPPED;
1606         if (!sc->may_writepage)
1607                 reclaim_mode |= ISOLATE_CLEAN;
1608
1609         spin_lock_irq(&zone->lru_lock);
1610         if (scanning_global_lru(sc)) {
1611                 nr_taken = isolate_pages_global(nr_pages, &l_hold,
1612                                                 &pgscanned, sc->order,
1613                                                 reclaim_mode, zone,
1614                                                 1, file);
1615                 zone->pages_scanned += pgscanned;
1616         } else {
1617                 nr_taken = mem_cgroup_isolate_pages(nr_pages, &l_hold,
1618                                                 &pgscanned, sc->order,
1619                                                 reclaim_mode, zone,
1620                                                 sc->mem_cgroup, 1, file);
1621                 /*
1622                  * mem_cgroup_isolate_pages() keeps track of
1623                  * scanned pages on its own.
1624                  */
1625         }
1626
1627         reclaim_stat->recent_scanned[file] += nr_taken;
1628
1629         __count_zone_vm_events(PGREFILL, zone, pgscanned);
1630         if (file)
1631                 __mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
1632         else
1633                 __mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
1634         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1635         spin_unlock_irq(&zone->lru_lock);
1636
1637         while (!list_empty(&l_hold)) {
1638                 cond_resched();
1639                 page = lru_to_page(&l_hold);
1640                 list_del(&page->lru);
1641
1642                 if (unlikely(!page_evictable(page, NULL))) {
1643                         putback_lru_page(page);
1644                         continue;
1645                 }
1646
1647                 if (page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) {
1648                         nr_rotated += hpage_nr_pages(page);
1649                         /*
1650                          * Identify referenced, file-backed active pages and
1651                          * give them one more trip around the active list. So
1652                          * that executable code get better chances to stay in
1653                          * memory under moderate memory pressure.  Anon pages
1654                          * are not likely to be evicted by use-once streaming
1655                          * IO, plus JVM can create lots of anon VM_EXEC pages,
1656                          * so we ignore them here.
1657                          */
1658                         if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1659                                 list_add(&page->lru, &l_active);
1660                                 continue;
1661                         }
1662                 }
1663
1664                 ClearPageActive(page);  /* we are de-activating */
1665                 list_add(&page->lru, &l_inactive);
1666         }
1667
1668         /*
1669          * Move pages back to the lru list.
1670          */
1671         spin_lock_irq(&zone->lru_lock);
1672         /*
1673          * Count referenced pages from currently used mappings as rotated,
1674          * even though only some of them are actually re-activated.  This
1675          * helps balance scan pressure between file and anonymous pages in
1676          * get_scan_ratio.
1677          */
1678         reclaim_stat->recent_rotated[file] += nr_rotated;
1679
1680         move_active_pages_to_lru(zone, &l_active,
1681                                                 LRU_ACTIVE + file * LRU_FILE);
1682         move_active_pages_to_lru(zone, &l_inactive,
1683                                                 LRU_BASE   + file * LRU_FILE);
1684         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1685         spin_unlock_irq(&zone->lru_lock);
1686 }
1687
1688 #ifdef CONFIG_SWAP
1689 static int inactive_anon_is_low_global(struct zone *zone)
1690 {
1691         unsigned long active, inactive;
1692
1693         active = zone_page_state(zone, NR_ACTIVE_ANON);
1694         inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1695
1696         if (inactive * zone->inactive_ratio < active)
1697                 return 1;
1698
1699         return 0;
1700 }
1701
1702 /**
1703  * inactive_anon_is_low - check if anonymous pages need to be deactivated
1704  * @zone: zone to check
1705  * @sc:   scan control of this context
1706  *
1707  * Returns true if the zone does not have enough inactive anon pages,
1708  * meaning some active anon pages need to be deactivated.
1709  */
1710 static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
1711 {
1712         int low;
1713
1714         /*
1715          * If we don't have swap space, anonymous page deactivation
1716          * is pointless.
1717          */
1718         if (!total_swap_pages)
1719                 return 0;
1720
1721         if (scanning_global_lru(sc))
1722                 low = inactive_anon_is_low_global(zone);
1723         else
1724                 low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup);
1725         return low;
1726 }
1727 #else
1728 static inline int inactive_anon_is_low(struct zone *zone,
1729                                         struct scan_control *sc)
1730 {
1731         return 0;
1732 }
1733 #endif
1734
1735 static int inactive_file_is_low_global(struct zone *zone)
1736 {
1737         unsigned long active, inactive;
1738
1739         active = zone_page_state(zone, NR_ACTIVE_FILE);
1740         inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1741
1742         return (active > inactive);
1743 }
1744
1745 /**
1746  * inactive_file_is_low - check if file pages need to be deactivated
1747  * @zone: zone to check
1748  * @sc:   scan control of this context
1749  *
1750  * When the system is doing streaming IO, memory pressure here
1751  * ensures that active file pages get deactivated, until more
1752  * than half of the file pages are on the inactive list.
1753  *
1754  * Once we get to that situation, protect the system's working
1755  * set from being evicted by disabling active file page aging.
1756  *
1757  * This uses a different ratio than the anonymous pages, because
1758  * the page cache uses a use-once replacement algorithm.
1759  */
1760 static int inactive_file_is_low(struct zone *zone, struct scan_control *sc)
1761 {
1762         int low;
1763
1764         if (scanning_global_lru(sc))
1765                 low = inactive_file_is_low_global(zone);
1766         else
1767                 low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup);
1768         return low;
1769 }
1770
1771 static int inactive_list_is_low(struct zone *zone, struct scan_control *sc,
1772                                 int file)
1773 {
1774         if (file)
1775                 return inactive_file_is_low(zone, sc);
1776         else
1777                 return inactive_anon_is_low(zone, sc);
1778 }
1779
1780 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1781         struct zone *zone, struct scan_control *sc, int priority)
1782 {
1783         int file = is_file_lru(lru);
1784
1785         if (is_active_lru(lru)) {
1786                 if (inactive_list_is_low(zone, sc, file))
1787                     shrink_active_list(nr_to_scan, zone, sc, priority, file);
1788                 return 0;
1789         }
1790
1791         return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
1792 }
1793
1794 /*
1795  * Determine how aggressively the anon and file LRU lists should be
1796  * scanned.  The relative value of each set of LRU lists is determined
1797  * by looking at the fraction of the pages scanned we did rotate back
1798  * onto the active list instead of evict.
1799  *
1800  * nr[0] = anon pages to scan; nr[1] = file pages to scan
1801  */
1802 static void get_scan_count(struct zone *zone, struct scan_control *sc,
1803                                         unsigned long *nr, int priority)
1804 {
1805         unsigned long anon, file, free;
1806         unsigned long anon_prio, file_prio;
1807         unsigned long ap, fp;
1808         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1809         u64 fraction[2], denominator;
1810         enum lru_list l;
1811         int noswap = 0;
1812         bool force_scan = false;
1813         unsigned long nr_force_scan[2];
1814
1815         /* kswapd does zone balancing and needs to scan this zone */
1816         if (scanning_global_lru(sc) && current_is_kswapd())
1817                 force_scan = true;
1818         /* memcg may have small limit and need to avoid priority drop */
1819         if (!scanning_global_lru(sc))
1820                 force_scan = true;
1821
1822         /* If we have no swap space, do not bother scanning anon pages. */
1823         if (!sc->may_swap || (nr_swap_pages <= 0)) {
1824                 noswap = 1;
1825                 fraction[0] = 0;
1826                 fraction[1] = 1;
1827                 denominator = 1;
1828                 nr_force_scan[0] = 0;
1829                 nr_force_scan[1] = SWAP_CLUSTER_MAX;
1830                 goto out;
1831         }
1832
1833         anon  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_ANON) +
1834                 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON);
1835         file  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_FILE) +
1836                 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1837
1838         if (scanning_global_lru(sc)) {
1839                 free  = zone_page_state(zone, NR_FREE_PAGES);
1840                 /* If we have very few page cache pages,
1841                    force-scan anon pages. */
1842                 if (unlikely(file + free <= high_wmark_pages(zone))) {
1843                         fraction[0] = 1;
1844                         fraction[1] = 0;
1845                         denominator = 1;
1846                         nr_force_scan[0] = SWAP_CLUSTER_MAX;
1847                         nr_force_scan[1] = 0;
1848                         goto out;
1849                 }
1850         }
1851
1852         /*
1853          * With swappiness at 100, anonymous and file have the same priority.
1854          * This scanning priority is essentially the inverse of IO cost.
1855          */
1856         anon_prio = sc->swappiness;
1857         file_prio = 200 - sc->swappiness;
1858
1859         /*
1860          * OK, so we have swap space and a fair amount of page cache
1861          * pages.  We use the recently rotated / recently scanned
1862          * ratios to determine how valuable each cache is.
1863          *
1864          * Because workloads change over time (and to avoid overflow)
1865          * we keep these statistics as a floating average, which ends
1866          * up weighing recent references more than old ones.
1867          *
1868          * anon in [0], file in [1]
1869          */
1870         spin_lock_irq(&zone->lru_lock);
1871         if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1872                 reclaim_stat->recent_scanned[0] /= 2;
1873                 reclaim_stat->recent_rotated[0] /= 2;
1874         }
1875
1876         if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1877                 reclaim_stat->recent_scanned[1] /= 2;
1878                 reclaim_stat->recent_rotated[1] /= 2;
1879         }
1880
1881         /*
1882          * The amount of pressure on anon vs file pages is inversely
1883          * proportional to the fraction of recently scanned pages on
1884          * each list that were recently referenced and in active use.
1885          */
1886         ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1887         ap /= reclaim_stat->recent_rotated[0] + 1;
1888
1889         fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1890         fp /= reclaim_stat->recent_rotated[1] + 1;
1891         spin_unlock_irq(&zone->lru_lock);
1892
1893         fraction[0] = ap;
1894         fraction[1] = fp;
1895         denominator = ap + fp + 1;
1896         if (force_scan) {
1897                 unsigned long scan = SWAP_CLUSTER_MAX;
1898                 nr_force_scan[0] = div64_u64(scan * ap, denominator);
1899                 nr_force_scan[1] = div64_u64(scan * fp, denominator);
1900         }
1901 out:
1902         for_each_evictable_lru(l) {
1903                 int file = is_file_lru(l);
1904                 unsigned long scan;
1905
1906                 scan = zone_nr_lru_pages(zone, sc, l);
1907                 if (priority || noswap) {
1908                         scan >>= priority;
1909                         scan = div64_u64(scan * fraction[file], denominator);
1910                 }
1911
1912                 /*
1913                  * If zone is small or memcg is small, nr[l] can be 0.
1914                  * This results no-scan on this priority and priority drop down.
1915                  * For global direct reclaim, it can visit next zone and tend
1916                  * not to have problems. For global kswapd, it's for zone
1917                  * balancing and it need to scan a small amounts. When using
1918                  * memcg, priority drop can cause big latency. So, it's better
1919                  * to scan small amount. See may_noscan above.
1920                  */
1921                 if (!scan && force_scan)
1922                         scan = nr_force_scan[file];
1923                 nr[l] = scan;
1924         }
1925 }
1926
1927 /*
1928  * Reclaim/compaction depends on a number of pages being freed. To avoid
1929  * disruption to the system, a small number of order-0 pages continue to be
1930  * rotated and reclaimed in the normal fashion. However, by the time we get
1931  * back to the allocator and call try_to_compact_zone(), we ensure that
1932  * there are enough free pages for it to be likely successful
1933  */
1934 static inline bool should_continue_reclaim(struct zone *zone,
1935                                         unsigned long nr_reclaimed,
1936                                         unsigned long nr_scanned,
1937                                         struct scan_control *sc)
1938 {
1939         unsigned long pages_for_compaction;
1940         unsigned long inactive_lru_pages;
1941
1942         /* If not in reclaim/compaction mode, stop */
1943         if (!(sc->reclaim_mode & RECLAIM_MODE_COMPACTION))
1944                 return false;
1945
1946         /* Consider stopping depending on scan and reclaim activity */
1947         if (sc->gfp_mask & __GFP_REPEAT) {
1948                 /*
1949                  * For __GFP_REPEAT allocations, stop reclaiming if the
1950                  * full LRU list has been scanned and we are still failing
1951                  * to reclaim pages. This full LRU scan is potentially
1952                  * expensive but a __GFP_REPEAT caller really wants to succeed
1953                  */
1954                 if (!nr_reclaimed && !nr_scanned)
1955                         return false;
1956         } else {
1957                 /*
1958                  * For non-__GFP_REPEAT allocations which can presumably
1959                  * fail without consequence, stop if we failed to reclaim
1960                  * any pages from the last SWAP_CLUSTER_MAX number of
1961                  * pages that were scanned. This will return to the
1962                  * caller faster at the risk reclaim/compaction and
1963                  * the resulting allocation attempt fails
1964                  */
1965                 if (!nr_reclaimed)
1966                         return false;
1967         }
1968
1969         /*
1970          * If we have not reclaimed enough pages for compaction and the
1971          * inactive lists are large enough, continue reclaiming
1972          */
1973         pages_for_compaction = (2UL << sc->order);
1974         inactive_lru_pages = zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON) +
1975                                 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1976         if (sc->nr_reclaimed < pages_for_compaction &&
1977                         inactive_lru_pages > pages_for_compaction)
1978                 return true;
1979
1980         /* If compaction would go ahead or the allocation would succeed, stop */
1981         switch (compaction_suitable(zone, sc->order)) {
1982         case COMPACT_PARTIAL:
1983         case COMPACT_CONTINUE:
1984                 return false;
1985         default:
1986                 return true;
1987         }
1988 }
1989
1990 /*
1991  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
1992  */
1993 static void shrink_zone(int priority, struct zone *zone,
1994                                 struct scan_control *sc)
1995 {
1996         unsigned long nr[NR_LRU_LISTS];
1997         unsigned long nr_to_scan;
1998         enum lru_list l;
1999         unsigned long nr_reclaimed, nr_scanned;
2000         unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2001
2002 restart:
2003         nr_reclaimed = 0;
2004         nr_scanned = sc->nr_scanned;
2005         get_scan_count(zone, sc, nr, priority);
2006
2007         while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2008                                         nr[LRU_INACTIVE_FILE]) {
2009                 for_each_evictable_lru(l) {
2010                         if (nr[l]) {
2011                                 nr_to_scan = min_t(unsigned long,
2012                                                    nr[l], SWAP_CLUSTER_MAX);
2013                                 nr[l] -= nr_to_scan;
2014
2015                                 nr_reclaimed += shrink_list(l, nr_to_scan,
2016                                                             zone, sc, priority);
2017                         }
2018                 }
2019                 /*
2020                  * On large memory systems, scan >> priority can become
2021                  * really large. This is fine for the starting priority;
2022                  * we want to put equal scanning pressure on each zone.
2023                  * However, if the VM has a harder time of freeing pages,
2024                  * with multiple processes reclaiming pages, the total
2025                  * freeing target can get unreasonably large.
2026                  */
2027                 if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
2028                         break;
2029         }
2030         sc->nr_reclaimed += nr_reclaimed;
2031
2032         /*
2033          * Even if we did not try to evict anon pages at all, we want to
2034          * rebalance the anon lru active/inactive ratio.
2035          */
2036         if (inactive_anon_is_low(zone, sc))
2037                 shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
2038
2039         /* reclaim/compaction might need reclaim to continue */
2040         if (should_continue_reclaim(zone, nr_reclaimed,
2041                                         sc->nr_scanned - nr_scanned, sc))
2042                 goto restart;
2043
2044         throttle_vm_writeout(sc->gfp_mask);
2045 }
2046
2047 /*
2048  * This is the direct reclaim path, for page-allocating processes.  We only
2049  * try to reclaim pages from zones which will satisfy the caller's allocation
2050  * request.
2051  *
2052  * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2053  * Because:
2054  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2055  *    allocation or
2056  * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2057  *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2058  *    zone defense algorithm.
2059  *
2060  * If a zone is deemed to be full of pinned pages then just give it a light
2061  * scan then give up on it.
2062  *
2063  * This function returns true if a zone is being reclaimed for a costly
2064  * high-order allocation and compaction is either ready to begin or deferred.
2065  * This indicates to the caller that it should retry the allocation or fail.
2066  */
2067 static bool shrink_zones(int priority, struct zonelist *zonelist,
2068                                         struct scan_control *sc)
2069 {
2070         struct zoneref *z;
2071         struct zone *zone;
2072         unsigned long nr_soft_reclaimed;
2073         unsigned long nr_soft_scanned;
2074         bool should_abort_reclaim = false;
2075
2076         for_each_zone_zonelist_nodemask(zone, z, zonelist,
2077                                         gfp_zone(sc->gfp_mask), sc->nodemask) {
2078                 if (!populated_zone(zone))
2079                         continue;
2080                 /*
2081                  * Take care memory controller reclaiming has small influence
2082                  * to global LRU.
2083                  */
2084                 if (scanning_global_lru(sc)) {
2085                         if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2086                                 continue;
2087                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2088                                 continue;       /* Let kswapd poll it */
2089                         if (COMPACTION_BUILD) {
2090                                 /*
2091                                  * If we already have plenty of memory free for
2092                                  * compaction in this zone, don't free any more.
2093                                  * Even though compaction is invoked for any
2094                                  * non-zero order, only frequent costly order
2095                                  * reclamation is disruptive enough to become a
2096                                  * noticable problem, like transparent huge page
2097                                  * allocations.
2098                                  */
2099                                 if (sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2100                                         (compaction_suitable(zone, sc->order) ||
2101                                          compaction_deferred(zone))) {
2102                                         should_abort_reclaim = true;
2103                                         continue;
2104                                 }
2105                         }
2106                         /*
2107                          * This steals pages from memory cgroups over softlimit
2108                          * and returns the number of reclaimed pages and
2109                          * scanned pages. This works for global memory pressure
2110                          * and balancing, not for a memcg's limit.
2111                          */
2112                         nr_soft_scanned = 0;
2113                         nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2114                                                 sc->order, sc->gfp_mask,
2115                                                 &nr_soft_scanned);
2116                         sc->nr_reclaimed += nr_soft_reclaimed;
2117                         sc->nr_scanned += nr_soft_scanned;
2118                         /* need some check for avoid more shrink_zone() */
2119                 }
2120
2121                 shrink_zone(priority, zone, sc);
2122         }
2123
2124         return should_abort_reclaim;
2125 }
2126
2127 static bool zone_reclaimable(struct zone *zone)
2128 {
2129         return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
2130 }
2131
2132 /* All zones in zonelist are unreclaimable? */
2133 static bool all_unreclaimable(struct zonelist *zonelist,
2134                 struct scan_control *sc)
2135 {
2136         struct zoneref *z;
2137         struct zone *zone;
2138
2139         for_each_zone_zonelist_nodemask(zone, z, zonelist,
2140                         gfp_zone(sc->gfp_mask), sc->nodemask) {
2141                 if (!populated_zone(zone))
2142                         continue;
2143                 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2144                         continue;
2145                 if (!zone->all_unreclaimable)
2146                         return false;
2147         }
2148
2149         return true;
2150 }
2151
2152 /*
2153  * This is the main entry point to direct page reclaim.
2154  *
2155  * If a full scan of the inactive list fails to free enough memory then we
2156  * are "out of memory" and something needs to be killed.
2157  *
2158  * If the caller is !__GFP_FS then the probability of a failure is reasonably
2159  * high - the zone may be full of dirty or under-writeback pages, which this
2160  * caller can't do much about.  We kick the writeback threads and take explicit
2161  * naps in the hope that some of these pages can be written.  But if the
2162  * allocating task holds filesystem locks which prevent writeout this might not
2163  * work, and the allocation attempt will fail.
2164  *
2165  * returns:     0, if no pages reclaimed
2166  *              else, the number of pages reclaimed
2167  */
2168 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2169                                         struct scan_control *sc,
2170                                         struct shrink_control *shrink)
2171 {
2172         int priority;
2173         unsigned long total_scanned = 0;
2174         struct reclaim_state *reclaim_state = current->reclaim_state;
2175         struct zoneref *z;
2176         struct zone *zone;
2177         unsigned long writeback_threshold;
2178
2179         get_mems_allowed();
2180         delayacct_freepages_start();
2181
2182         if (scanning_global_lru(sc))
2183                 count_vm_event(ALLOCSTALL);
2184
2185         for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2186                 sc->nr_scanned = 0;
2187                 if (!priority)
2188                         disable_swap_token(sc->mem_cgroup);
2189                 if (shrink_zones(priority, zonelist, sc))
2190                         break;
2191
2192                 /*
2193                  * Don't shrink slabs when reclaiming memory from
2194                  * over limit cgroups
2195                  */
2196                 if (scanning_global_lru(sc)) {
2197                         unsigned long lru_pages = 0;
2198                         for_each_zone_zonelist(zone, z, zonelist,
2199                                         gfp_zone(sc->gfp_mask)) {
2200                                 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2201                                         continue;
2202
2203                                 lru_pages += zone_reclaimable_pages(zone);
2204                         }
2205
2206                         shrink_slab(shrink, sc->nr_scanned, lru_pages);
2207                         if (reclaim_state) {
2208                                 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2209                                 reclaim_state->reclaimed_slab = 0;
2210                         }
2211                 }
2212                 total_scanned += sc->nr_scanned;
2213                 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2214                         goto out;
2215
2216                 /*
2217                  * Try to write back as many pages as we just scanned.  This
2218                  * tends to cause slow streaming writers to write data to the
2219                  * disk smoothly, at the dirtying rate, which is nice.   But
2220                  * that's undesirable in laptop mode, where we *want* lumpy
2221                  * writeout.  So in laptop mode, write out the whole world.
2222                  */
2223                 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2224                 if (total_scanned > writeback_threshold) {
2225                         wakeup_flusher_threads(laptop_mode ? 0 : total_scanned);
2226                         sc->may_writepage = 1;
2227                 }
2228
2229                 /* Take a nap, wait for some writeback to complete */
2230                 if (!sc->hibernation_mode && sc->nr_scanned &&
2231                     priority < DEF_PRIORITY - 2) {
2232                         struct zone *preferred_zone;
2233
2234                         first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2235                                                 &cpuset_current_mems_allowed,
2236                                                 &preferred_zone);
2237                         wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2238                 }
2239         }
2240
2241 out:
2242         delayacct_freepages_end();
2243         put_mems_allowed();
2244
2245         if (sc->nr_reclaimed)
2246                 return sc->nr_reclaimed;
2247
2248         /*
2249          * As hibernation is going on, kswapd is freezed so that it can't mark
2250          * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2251          * check.
2252          */
2253         if (oom_killer_disabled)
2254                 return 0;
2255
2256         /* top priority shrink_zones still had more to do? don't OOM, then */
2257         if (scanning_global_lru(sc) && !all_unreclaimable(zonelist, sc))
2258                 return 1;
2259
2260         return 0;
2261 }
2262
2263 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2264                                 gfp_t gfp_mask, nodemask_t *nodemask)
2265 {
2266         unsigned long nr_reclaimed;
2267         struct scan_control sc = {
2268                 .gfp_mask = gfp_mask,
2269                 .may_writepage = !laptop_mode,
2270                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2271                 .may_unmap = 1,
2272                 .may_swap = 1,
2273                 .swappiness = vm_swappiness,
2274                 .order = order,
2275                 .mem_cgroup = NULL,
2276                 .nodemask = nodemask,
2277         };
2278         struct shrink_control shrink = {
2279                 .gfp_mask = sc.gfp_mask,
2280         };
2281
2282         trace_mm_vmscan_direct_reclaim_begin(order,
2283                                 sc.may_writepage,
2284                                 gfp_mask);
2285
2286         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2287
2288         trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2289
2290         return nr_reclaimed;
2291 }
2292
2293 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
2294
2295 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem,
2296                                                 gfp_t gfp_mask, bool noswap,
2297                                                 unsigned int swappiness,
2298                                                 struct zone *zone,
2299                                                 unsigned long *nr_scanned)
2300 {
2301         struct scan_control sc = {
2302                 .nr_scanned = 0,
2303                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2304                 .may_writepage = !laptop_mode,
2305                 .may_unmap = 1,
2306                 .may_swap = !noswap,
2307                 .swappiness = swappiness,
2308                 .order = 0,
2309                 .mem_cgroup = mem,
2310         };
2311
2312         sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2313                         (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2314
2315         trace_mm_vmscan_memcg_softlimit_reclaim_begin(0,
2316                                                       sc.may_writepage,
2317                                                       sc.gfp_mask);
2318
2319         /*
2320          * NOTE: Although we can get the priority field, using it
2321          * here is not a good idea, since it limits the pages we can scan.
2322          * if we don't reclaim here, the shrink_zone from balance_pgdat
2323          * will pick up pages from other mem cgroup's as well. We hack
2324          * the priority and make it zero.
2325          */
2326         shrink_zone(0, zone, &sc);
2327
2328         trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2329
2330         *nr_scanned = sc.nr_scanned;
2331         return sc.nr_reclaimed;
2332 }
2333
2334 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
2335                                            gfp_t gfp_mask,
2336                                            bool noswap,
2337                                            unsigned int swappiness)
2338 {
2339         struct zonelist *zonelist;
2340         unsigned long nr_reclaimed;
2341         int nid;
2342         struct scan_control sc = {
2343                 .may_writepage = !laptop_mode,
2344                 .may_unmap = 1,
2345                 .may_swap = !noswap,
2346                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2347                 .swappiness = swappiness,
2348                 .order = 0,
2349                 .mem_cgroup = mem_cont,
2350                 .nodemask = NULL, /* we don't care the placement */
2351                 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2352                                 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2353         };
2354         struct shrink_control shrink = {
2355                 .gfp_mask = sc.gfp_mask,
2356         };
2357
2358         /*
2359          * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2360          * take care of from where we get pages. So the node where we start the
2361          * scan does not need to be the current node.
2362          */
2363         nid = mem_cgroup_select_victim_node(mem_cont);
2364
2365         zonelist = NODE_DATA(nid)->node_zonelists;
2366
2367         trace_mm_vmscan_memcg_reclaim_begin(0,
2368                                             sc.may_writepage,
2369                                             sc.gfp_mask);
2370
2371         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2372
2373         trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2374
2375         return nr_reclaimed;
2376 }
2377 #endif
2378
2379 /*
2380  * pgdat_balanced is used when checking if a node is balanced for high-order
2381  * allocations. Only zones that meet watermarks and are in a zone allowed
2382  * by the callers classzone_idx are added to balanced_pages. The total of
2383  * balanced pages must be at least 25% of the zones allowed by classzone_idx
2384  * for the node to be considered balanced. Forcing all zones to be balanced
2385  * for high orders can cause excessive reclaim when there are imbalanced zones.
2386  * The choice of 25% is due to
2387  *   o a 16M DMA zone that is balanced will not balance a zone on any
2388  *     reasonable sized machine
2389  *   o On all other machines, the top zone must be at least a reasonable
2390  *     percentage of the middle zones. For example, on 32-bit x86, highmem
2391  *     would need to be at least 256M for it to be balance a whole node.
2392  *     Similarly, on x86-64 the Normal zone would need to be at least 1G
2393  *     to balance a node on its own. These seemed like reasonable ratios.
2394  */
2395 static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
2396                                                 int classzone_idx)
2397 {
2398         unsigned long present_pages = 0;
2399         int i;
2400
2401         for (i = 0; i <= classzone_idx; i++)
2402                 present_pages += pgdat->node_zones[i].present_pages;
2403
2404         /* A special case here: if zone has no page, we think it's balanced */
2405         return balanced_pages >= (present_pages >> 2);
2406 }
2407
2408 /* is kswapd sleeping prematurely? */
2409 static bool sleeping_prematurely(pg_data_t *pgdat, int order, long remaining,
2410                                         int classzone_idx)
2411 {
2412         int i;
2413         unsigned long balanced = 0;
2414         bool all_zones_ok = true;
2415
2416         /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2417         if (remaining)
2418                 return true;
2419
2420         /* Check the watermark levels */
2421         for (i = 0; i <= classzone_idx; i++) {
2422                 struct zone *zone = pgdat->node_zones + i;
2423
2424                 if (!populated_zone(zone))
2425                         continue;
2426
2427                 /*
2428                  * balance_pgdat() skips over all_unreclaimable after
2429                  * DEF_PRIORITY. Effectively, it considers them balanced so
2430                  * they must be considered balanced here as well if kswapd
2431                  * is to sleep
2432                  */
2433                 if (zone->all_unreclaimable) {
2434                         balanced += zone->present_pages;
2435                         continue;
2436                 }
2437
2438                 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
2439                                                         i, 0))
2440                         all_zones_ok = false;
2441                 else
2442                         balanced += zone->present_pages;
2443         }
2444
2445         /*
2446          * For high-order requests, the balanced zones must contain at least
2447          * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
2448          * must be balanced
2449          */
2450         if (order)
2451                 return !pgdat_balanced(pgdat, balanced, classzone_idx);
2452         else
2453                 return !all_zones_ok;
2454 }
2455
2456 /*
2457  * For kswapd, balance_pgdat() will work across all this node's zones until
2458  * they are all at high_wmark_pages(zone).
2459  *
2460  * Returns the final order kswapd was reclaiming at
2461  *
2462  * There is special handling here for zones which are full of pinned pages.
2463  * This can happen if the pages are all mlocked, or if they are all used by
2464  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
2465  * What we do is to detect the case where all pages in the zone have been
2466  * scanned twice and there has been zero successful reclaim.  Mark the zone as
2467  * dead and from now on, only perform a short scan.  Basically we're polling
2468  * the zone for when the problem goes away.
2469  *
2470  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2471  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2472  * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2473  * lower zones regardless of the number of free pages in the lower zones. This
2474  * interoperates with the page allocator fallback scheme to ensure that aging
2475  * of pages is balanced across the zones.
2476  */
2477 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2478                                                         int *classzone_idx)
2479 {
2480         int all_zones_ok;
2481         unsigned long balanced;
2482         int priority;
2483         int i;
2484         int end_zone = 0;       /* Inclusive.  0 = ZONE_DMA */
2485         unsigned long total_scanned;
2486         struct reclaim_state *reclaim_state = current->reclaim_state;
2487         unsigned long nr_soft_reclaimed;
2488         unsigned long nr_soft_scanned;
2489         struct scan_control sc = {
2490                 .gfp_mask = GFP_KERNEL,
2491                 .may_unmap = 1,
2492                 .may_swap = 1,
2493                 /*
2494                  * kswapd doesn't want to be bailed out while reclaim. because
2495                  * we want to put equal scanning pressure on each zone.
2496                  */
2497                 .nr_to_reclaim = ULONG_MAX,
2498                 .swappiness = vm_swappiness,
2499                 .order = order,
2500                 .mem_cgroup = NULL,
2501         };
2502         struct shrink_control shrink = {
2503                 .gfp_mask = sc.gfp_mask,
2504         };
2505 loop_again:
2506         total_scanned = 0;
2507         sc.nr_reclaimed = 0;
2508         sc.may_writepage = !laptop_mode;
2509         count_vm_event(PAGEOUTRUN);
2510
2511         for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2512                 unsigned long lru_pages = 0;
2513                 int has_under_min_watermark_zone = 0;
2514
2515                 /* The swap token gets in the way of swapout... */
2516                 if (!priority)
2517                         disable_swap_token(NULL);
2518
2519                 all_zones_ok = 1;
2520                 balanced = 0;
2521
2522                 /*
2523                  * Scan in the highmem->dma direction for the highest
2524                  * zone which needs scanning
2525                  */
2526                 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2527                         struct zone *zone = pgdat->node_zones + i;
2528
2529                         if (!populated_zone(zone))
2530                                 continue;
2531
2532                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2533                                 continue;
2534
2535                         /*
2536                          * Do some background aging of the anon list, to give
2537                          * pages a chance to be referenced before reclaiming.
2538                          */
2539                         if (inactive_anon_is_low(zone, &sc))
2540                                 shrink_active_list(SWAP_CLUSTER_MAX, zone,
2541                                                         &sc, priority, 0);
2542
2543                         if (!zone_watermark_ok_safe(zone, order,
2544                                         high_wmark_pages(zone), 0, 0)) {
2545                                 end_zone = i;
2546                                 break;
2547                         } else {
2548                                 /* If balanced, clear the congested flag */
2549                                 zone_clear_flag(zone, ZONE_CONGESTED);
2550                         }
2551                 }
2552                 if (i < 0)
2553                         goto out;
2554
2555                 for (i = 0; i <= end_zone; i++) {
2556                         struct zone *zone = pgdat->node_zones + i;
2557
2558                         lru_pages += zone_reclaimable_pages(zone);
2559                 }
2560
2561                 /*
2562                  * Now scan the zone in the dma->highmem direction, stopping
2563                  * at the last zone which needs scanning.
2564                  *
2565                  * We do this because the page allocator works in the opposite
2566                  * direction.  This prevents the page allocator from allocating
2567                  * pages behind kswapd's direction of progress, which would
2568                  * cause too much scanning of the lower zones.
2569                  */
2570                 for (i = 0; i <= end_zone; i++) {
2571                         struct zone *zone = pgdat->node_zones + i;
2572                         int nr_slab;
2573                         unsigned long balance_gap;
2574
2575                         if (!populated_zone(zone))
2576                                 continue;
2577
2578                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2579                                 continue;
2580
2581                         sc.nr_scanned = 0;
2582
2583                         nr_soft_scanned = 0;
2584                         /*
2585                          * Call soft limit reclaim before calling shrink_zone.
2586                          */
2587                         nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2588                                                         order, sc.gfp_mask,
2589                                                         &nr_soft_scanned);
2590                         sc.nr_reclaimed += nr_soft_reclaimed;
2591                         total_scanned += nr_soft_scanned;
2592
2593                         /*
2594                          * We put equal pressure on every zone, unless
2595                          * one zone has way too many pages free
2596                          * already. The "too many pages" is defined
2597                          * as the high wmark plus a "gap" where the
2598                          * gap is either the low watermark or 1%
2599                          * of the zone, whichever is smaller.
2600                          */
2601                         balance_gap = min(low_wmark_pages(zone),
2602                                 (zone->present_pages +
2603                                         KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2604                                 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2605                         if (!zone_watermark_ok_safe(zone, order,
2606                                         high_wmark_pages(zone) + balance_gap,
2607                                         end_zone, 0)) {
2608                                 shrink_zone(priority, zone, &sc);
2609
2610                                 reclaim_state->reclaimed_slab = 0;
2611                                 nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
2612                                 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2613                                 total_scanned += sc.nr_scanned;
2614
2615                                 if (nr_slab == 0 && !zone_reclaimable(zone))
2616                                         zone->all_unreclaimable = 1;
2617                         }
2618
2619                         /*
2620                          * If we've done a decent amount of scanning and
2621                          * the reclaim ratio is low, start doing writepage
2622                          * even in laptop mode
2623                          */
2624                         if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2625                             total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
2626                                 sc.may_writepage = 1;
2627
2628                         if (zone->all_unreclaimable) {
2629                                 if (end_zone && end_zone == i)
2630                                         end_zone--;
2631                                 continue;
2632                         }
2633
2634                         if (!zone_watermark_ok_safe(zone, order,
2635                                         high_wmark_pages(zone), end_zone, 0)) {
2636                                 all_zones_ok = 0;
2637                                 /*
2638                                  * We are still under min water mark.  This
2639                                  * means that we have a GFP_ATOMIC allocation
2640                                  * failure risk. Hurry up!
2641                                  */
2642                                 if (!zone_watermark_ok_safe(zone, order,
2643                                             min_wmark_pages(zone), end_zone, 0))
2644                                         has_under_min_watermark_zone = 1;
2645                         } else {
2646                                 /*
2647                                  * If a zone reaches its high watermark,
2648                                  * consider it to be no longer congested. It's
2649                                  * possible there are dirty pages backed by
2650                                  * congested BDIs but as pressure is relieved,
2651                                  * spectulatively avoid congestion waits
2652                                  */
2653                                 zone_clear_flag(zone, ZONE_CONGESTED);
2654                                 if (i <= *classzone_idx)
2655                                         balanced += zone->present_pages;
2656                         }
2657
2658                 }
2659                 if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
2660                         break;          /* kswapd: all done */
2661                 /*
2662                  * OK, kswapd is getting into trouble.  Take a nap, then take
2663                  * another pass across the zones.
2664                  */
2665                 if (total_scanned && (priority < DEF_PRIORITY - 2)) {
2666                         if (has_under_min_watermark_zone)
2667                                 count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2668                         else
2669                                 congestion_wait(BLK_RW_ASYNC, HZ/10);
2670                 }
2671
2672                 /*
2673                  * We do this so kswapd doesn't build up large priorities for
2674                  * example when it is freeing in parallel with allocators. It
2675                  * matches the direct reclaim path behaviour in terms of impact
2676                  * on zone->*_priority.
2677                  */
2678                 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
2679                         break;
2680         }
2681 out:
2682
2683         /*
2684          * order-0: All zones must meet high watermark for a balanced node
2685          * high-order: Balanced zones must make up at least 25% of the node
2686          *             for the node to be balanced
2687          */
2688         if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
2689                 cond_resched();
2690
2691                 try_to_freeze();
2692
2693                 /*
2694                  * Fragmentation may mean that the system cannot be
2695                  * rebalanced for high-order allocations in all zones.
2696                  * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2697                  * it means the zones have been fully scanned and are still
2698                  * not balanced. For high-order allocations, there is
2699                  * little point trying all over again as kswapd may
2700                  * infinite loop.
2701                  *
2702                  * Instead, recheck all watermarks at order-0 as they
2703                  * are the most important. If watermarks are ok, kswapd will go
2704                  * back to sleep. High-order users can still perform direct
2705                  * reclaim if they wish.
2706                  */
2707                 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2708                         order = sc.order = 0;
2709
2710                 goto loop_again;
2711         }
2712
2713         /*
2714          * If kswapd was reclaiming at a higher order, it has the option of
2715          * sleeping without all zones being balanced. Before it does, it must
2716          * ensure that the watermarks for order-0 on *all* zones are met and
2717          * that the congestion flags are cleared. The congestion flag must
2718          * be cleared as kswapd is the only mechanism that clears the flag
2719          * and it is potentially going to sleep here.
2720          */
2721         if (order) {
2722                 for (i = 0; i <= end_zone; i++) {
2723                         struct zone *zone = pgdat->node_zones + i;
2724
2725                         if (!populated_zone(zone))
2726                                 continue;
2727
2728                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2729                                 continue;
2730
2731                         /* Confirm the zone is balanced for order-0 */
2732                         if (!zone_watermark_ok(zone, 0,
2733                                         high_wmark_pages(zone), 0, 0)) {
2734                                 order = sc.order = 0;
2735                                 goto loop_again;
2736                         }
2737
2738                         /* If balanced, clear the congested flag */
2739                         zone_clear_flag(zone, ZONE_CONGESTED);
2740                 }
2741         }
2742
2743         /*
2744          * Return the order we were reclaiming at so sleeping_prematurely()
2745          * makes a decision on the order we were last reclaiming at. However,
2746          * if another caller entered the allocator slow path while kswapd
2747          * was awake, order will remain at the higher level
2748          */
2749         *classzone_idx = end_zone;
2750         return order;
2751 }
2752
2753 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
2754 {
2755         long remaining = 0;
2756         DEFINE_WAIT(wait);
2757
2758         if (freezing(current) || kthread_should_stop())
2759                 return;
2760
2761         prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2762
2763         /* Try to sleep for a short interval */
2764         if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2765                 remaining = schedule_timeout(HZ/10);
2766                 finish_wait(&pgdat->kswapd_wait, &wait);
2767                 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2768         }
2769
2770         /*
2771          * After a short sleep, check if it was a premature sleep. If not, then
2772          * go fully to sleep until explicitly woken up.
2773          */
2774         if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2775                 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2776
2777                 /*
2778                  * vmstat counters are not perfectly accurate and the estimated
2779                  * value for counters such as NR_FREE_PAGES can deviate from the
2780                  * true value by nr_online_cpus * threshold. To avoid the zone
2781                  * watermarks being breached while under pressure, we reduce the
2782                  * per-cpu vmstat threshold while kswapd is awake and restore
2783                  * them before going back to sleep.
2784                  */
2785                 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
2786
2787                 if (!kthread_should_stop())
2788                         schedule();
2789
2790                 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
2791         } else {
2792                 if (remaining)
2793                         count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2794                 else
2795                         count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2796         }
2797         finish_wait(&pgdat->kswapd_wait, &wait);
2798 }
2799
2800 /*
2801  * The background pageout daemon, started as a kernel thread
2802  * from the init process.
2803  *
2804  * This basically trickles out pages so that we have _some_
2805  * free memory available even if there is no other activity
2806  * that frees anything up. This is needed for things like routing
2807  * etc, where we otherwise might have all activity going on in
2808  * asynchronous contexts that cannot page things out.
2809  *
2810  * If there are applications that are active memory-allocators
2811  * (most normal use), this basically shouldn't matter.
2812  */
2813 static int kswapd(void *p)
2814 {
2815         unsigned long order, new_order;
2816         int classzone_idx, new_classzone_idx;
2817         pg_data_t *pgdat = (pg_data_t*)p;
2818         struct task_struct *tsk = current;
2819
2820         struct reclaim_state reclaim_state = {
2821                 .reclaimed_slab = 0,
2822         };
2823         const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2824
2825         lockdep_set_current_reclaim_state(GFP_KERNEL);
2826
2827         if (!cpumask_empty(cpumask))
2828                 set_cpus_allowed_ptr(tsk, cpumask);
2829         current->reclaim_state = &reclaim_state;
2830
2831         /*
2832          * Tell the memory management that we're a "memory allocator",
2833          * and that if we need more memory we should get access to it
2834          * regardless (see "__alloc_pages()"). "kswapd" should
2835          * never get caught in the normal page freeing logic.
2836          *
2837          * (Kswapd normally doesn't need memory anyway, but sometimes
2838          * you need a small amount of memory in order to be able to
2839          * page out something else, and this flag essentially protects
2840          * us from recursively trying to free more memory as we're
2841          * trying to free the first piece of memory in the first place).
2842          */
2843         tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2844         set_freezable();
2845
2846         order = new_order = 0;
2847         classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
2848         for ( ; ; ) {
2849                 int ret;
2850
2851                 /*
2852                  * If the last balance_pgdat was unsuccessful it's unlikely a
2853                  * new request of a similar or harder type will succeed soon
2854                  * so consider going to sleep on the basis we reclaimed at
2855                  */
2856                 if (classzone_idx >= new_classzone_idx && order == new_order) {
2857                         new_order = pgdat->kswapd_max_order;
2858                         new_classzone_idx = pgdat->classzone_idx;
2859                         pgdat->kswapd_max_order =  0;
2860                         pgdat->classzone_idx = pgdat->nr_zones - 1;
2861                 }
2862
2863                 if (order < new_order || classzone_idx > new_classzone_idx) {
2864                         /*
2865                          * Don't sleep if someone wants a larger 'order'
2866                          * allocation or has tigher zone constraints
2867                          */
2868                         order = new_order;
2869                         classzone_idx = new_classzone_idx;
2870                 } else {
2871                         kswapd_try_to_sleep(pgdat, order, classzone_idx);
2872                         order = pgdat->kswapd_max_order;
2873                         classzone_idx = pgdat->classzone_idx;
2874                         pgdat->kswapd_max_order = 0;
2875                         pgdat->classzone_idx = pgdat->nr_zones - 1;
2876                 }
2877
2878                 ret = try_to_freeze();
2879                 if (kthread_should_stop())
2880                         break;
2881
2882                 /*
2883                  * We can speed up thawing tasks if we don't call balance_pgdat
2884                  * after returning from the refrigerator
2885                  */
2886                 if (!ret) {
2887                         trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
2888                         order = balance_pgdat(pgdat, order, &classzone_idx);
2889                 }
2890         }
2891         return 0;
2892 }
2893
2894 /*
2895  * A zone is low on free memory, so wake its kswapd task to service it.
2896  */
2897 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
2898 {
2899         pg_data_t *pgdat;
2900
2901         if (!populated_zone(zone))
2902                 return;
2903
2904         if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2905                 return;
2906         pgdat = zone->zone_pgdat;
2907         if (pgdat->kswapd_max_order < order) {
2908                 pgdat->kswapd_max_order = order;
2909                 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
2910         }
2911         if (!waitqueue_active(&pgdat->kswapd_wait))
2912                 return;
2913         if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
2914                 return;
2915
2916         trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
2917         wake_up_interruptible(&pgdat->kswapd_wait);
2918 }
2919
2920 /*
2921  * The reclaimable count would be mostly accurate.
2922  * The less reclaimable pages may be
2923  * - mlocked pages, which will be moved to unevictable list when encountered
2924  * - mapped pages, which may require several travels to be reclaimed
2925  * - dirty pages, which is not "instantly" reclaimable
2926  */
2927 unsigned long global_reclaimable_pages(void)
2928 {
2929         int nr;
2930
2931         nr = global_page_state(NR_ACTIVE_FILE) +
2932              global_page_state(NR_INACTIVE_FILE);
2933
2934         if (nr_swap_pages > 0)
2935                 nr += global_page_state(NR_ACTIVE_ANON) +
2936                       global_page_state(NR_INACTIVE_ANON);
2937
2938         return nr;
2939 }
2940
2941 unsigned long zone_reclaimable_pages(struct zone *zone)
2942 {
2943         int nr;
2944
2945         nr = zone_page_state(zone, NR_ACTIVE_FILE) +
2946              zone_page_state(zone, NR_INACTIVE_FILE);
2947
2948         if (nr_swap_pages > 0)
2949                 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
2950                       zone_page_state(zone, NR_INACTIVE_ANON);
2951
2952         return nr;
2953 }
2954
2955 #ifdef CONFIG_HIBERNATION
2956 /*
2957  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
2958  * freed pages.
2959  *
2960  * Rather than trying to age LRUs the aim is to preserve the overall
2961  * LRU order by reclaiming preferentially
2962  * inactive > active > active referenced > active mapped
2963  */
2964 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
2965 {
2966         struct reclaim_state reclaim_state;
2967         struct scan_control sc = {
2968                 .gfp_mask = GFP_HIGHUSER_MOVABLE,
2969                 .may_swap = 1,
2970                 .may_unmap = 1,
2971                 .may_writepage = 1,
2972                 .nr_to_reclaim = nr_to_reclaim,
2973                 .hibernation_mode = 1,
2974                 .swappiness = vm_swappiness,
2975                 .order = 0,
2976         };
2977         struct shrink_control shrink = {
2978                 .gfp_mask = sc.gfp_mask,
2979         };
2980         struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
2981         struct task_struct *p = current;
2982         unsigned long nr_reclaimed;
2983
2984         p->flags |= PF_MEMALLOC;
2985         lockdep_set_current_reclaim_state(sc.gfp_mask);
2986         reclaim_state.reclaimed_slab = 0;
2987         p->reclaim_state = &reclaim_state;
2988
2989         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2990
2991         p->reclaim_state = NULL;
2992         lockdep_clear_current_reclaim_state();
2993         p->flags &= ~PF_MEMALLOC;
2994
2995         return nr_reclaimed;
2996 }
2997 #endif /* CONFIG_HIBERNATION */
2998
2999 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3000    not required for correctness.  So if the last cpu in a node goes
3001    away, we get changed to run anywhere: as the first one comes back,
3002    restore their cpu bindings. */
3003 static int __devinit cpu_callback(struct notifier_block *nfb,
3004                                   unsigned long action, void *hcpu)
3005 {
3006         int nid;
3007
3008         if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3009                 for_each_node_state(nid, N_HIGH_MEMORY) {
3010                         pg_data_t *pgdat = NODE_DATA(nid);
3011                         const struct cpumask *mask;
3012
3013                         mask = cpumask_of_node(pgdat->node_id);
3014
3015                         if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3016                                 /* One of our CPUs online: restore mask */
3017                                 set_cpus_allowed_ptr(pgdat->kswapd, mask);
3018                 }
3019         }
3020         return NOTIFY_OK;
3021 }
3022
3023 /*
3024  * This kswapd start function will be called by init and node-hot-add.
3025  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3026  */
3027 int kswapd_run(int nid)
3028 {
3029         pg_data_t *pgdat = NODE_DATA(nid);
3030         int ret = 0;
3031
3032         if (pgdat->kswapd)
3033                 return 0;
3034
3035         pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3036         if (IS_ERR(pgdat->kswapd)) {
3037                 /* failure at boot is fatal */
3038                 BUG_ON(system_state == SYSTEM_BOOTING);
3039                 printk("Failed to start kswapd on node %d\n",nid);
3040                 ret = -1;
3041         }
3042         return ret;
3043 }
3044
3045 /*
3046  * Called by memory hotplug when all memory in a node is offlined.  Caller must
3047  * hold lock_memory_hotplug().
3048  */
3049 void kswapd_stop(int nid)
3050 {
3051         struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3052
3053         if (kswapd) {
3054                 kthread_stop(kswapd);
3055                 NODE_DATA(nid)->kswapd = NULL;
3056         }
3057 }
3058
3059 static int __init kswapd_init(void)
3060 {
3061         int nid;
3062
3063         swap_setup();
3064         for_each_node_state(nid, N_HIGH_MEMORY)
3065                 kswapd_run(nid);
3066         hotcpu_notifier(cpu_callback, 0);
3067         return 0;
3068 }
3069
3070 module_init(kswapd_init)
3071
3072 #ifdef CONFIG_NUMA
3073 /*
3074  * Zone reclaim mode
3075  *
3076  * If non-zero call zone_reclaim when the number of free pages falls below
3077  * the watermarks.
3078  */
3079 int zone_reclaim_mode __read_mostly;
3080
3081 #define RECLAIM_OFF 0
3082 #define RECLAIM_ZONE (1<<0)     /* Run shrink_inactive_list on the zone */
3083 #define RECLAIM_WRITE (1<<1)    /* Writeout pages during reclaim */
3084 #define RECLAIM_SWAP (1<<2)     /* Swap pages out during reclaim */
3085
3086 /*
3087  * Priority for ZONE_RECLAIM. This determines the fraction of pages
3088  * of a node considered for each zone_reclaim. 4 scans 1/16th of
3089  * a zone.
3090  */
3091 #define ZONE_RECLAIM_PRIORITY 4
3092
3093 /*
3094  * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3095  * occur.
3096  */
3097 int sysctl_min_unmapped_ratio = 1;
3098
3099 /*
3100  * If the number of slab pages in a zone grows beyond this percentage then
3101  * slab reclaim needs to occur.
3102  */
3103 int sysctl_min_slab_ratio = 5;
3104
3105 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3106 {
3107         unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3108         unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3109                 zone_page_state(zone, NR_ACTIVE_FILE);
3110
3111         /*
3112          * It's possible for there to be more file mapped pages than
3113          * accounted for by the pages on the file LRU lists because
3114          * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3115          */
3116         return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3117 }
3118
3119 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3120 static long zone_pagecache_reclaimable(struct zone *zone)
3121 {
3122         long nr_pagecache_reclaimable;
3123         long delta = 0;
3124
3125         /*
3126          * If RECLAIM_SWAP is set, then all file pages are considered
3127          * potentially reclaimable. Otherwise, we have to worry about
3128          * pages like swapcache and zone_unmapped_file_pages() provides
3129          * a better estimate
3130          */
3131         if (zone_reclaim_mode & RECLAIM_SWAP)
3132                 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3133         else
3134                 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3135
3136         /* If we can't clean pages, remove dirty pages from consideration */
3137         if (!(zone_reclaim_mode & RECLAIM_WRITE))
3138                 delta += zone_page_state(zone, NR_FILE_DIRTY);
3139
3140         /* Watch for any possible underflows due to delta */
3141         if (unlikely(delta > nr_pagecache_reclaimable))
3142                 delta = nr_pagecache_reclaimable;
3143
3144         return nr_pagecache_reclaimable - delta;
3145 }
3146
3147 /*
3148  * Try to free up some pages from this zone through reclaim.
3149  */
3150 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3151 {
3152         /* Minimum pages needed in order to stay on node */
3153         const unsigned long nr_pages = 1 << order;
3154         struct task_struct *p = current;
3155         struct reclaim_state reclaim_state;
3156         int priority;
3157         struct scan_control sc = {
3158                 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3159                 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3160                 .may_swap = 1,
3161                 .nr_to_reclaim = max_t(unsigned long, nr_pages,
3162                                        SWAP_CLUSTER_MAX),
3163                 .gfp_mask = gfp_mask,
3164                 .swappiness = vm_swappiness,
3165                 .order = order,
3166         };
3167         struct shrink_control shrink = {
3168                 .gfp_mask = sc.gfp_mask,
3169         };
3170         unsigned long nr_slab_pages0, nr_slab_pages1;
3171
3172         cond_resched();
3173         /*
3174          * We need to be able to allocate from the reserves for RECLAIM_SWAP
3175          * and we also need to be able to write out pages for RECLAIM_WRITE
3176          * and RECLAIM_SWAP.
3177          */
3178         p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3179         lockdep_set_current_reclaim_state(gfp_mask);
3180         reclaim_state.reclaimed_slab = 0;
3181         p->reclaim_state = &reclaim_state;
3182
3183         if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3184                 /*
3185                  * Free memory by calling shrink zone with increasing
3186                  * priorities until we have enough memory freed.
3187                  */
3188                 priority = ZONE_RECLAIM_PRIORITY;
3189                 do {
3190                         shrink_zone(priority, zone, &sc);
3191                         priority--;
3192                 } while (priority >= 0 && sc.nr_reclaimed < nr_pages);
3193         }
3194
3195         nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3196         if (nr_slab_pages0 > zone->min_slab_pages) {
3197                 /*
3198                  * shrink_slab() does not currently allow us to determine how
3199                  * many pages were freed in this zone. So we take the current
3200                  * number of slab pages and shake the slab until it is reduced
3201                  * by the same nr_pages that we used for reclaiming unmapped
3202                  * pages.
3203                  *
3204                  * Note that shrink_slab will free memory on all zones and may
3205                  * take a long time.
3206                  */
3207                 for (;;) {
3208                         unsigned long lru_pages = zone_reclaimable_pages(zone);
3209
3210                         /* No reclaimable slab or very low memory pressure */
3211                         if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3212                                 break;
3213
3214                         /* Freed enough memory */
3215                         nr_slab_pages1 = zone_page_state(zone,
3216                                                         NR_SLAB_RECLAIMABLE);
3217                         if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3218                                 break;
3219                 }
3220
3221                 /*
3222                  * Update nr_reclaimed by the number of slab pages we
3223                  * reclaimed from this zone.
3224                  */
3225                 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3226                 if (nr_slab_pages1 < nr_slab_pages0)
3227                         sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3228         }
3229
3230         p->reclaim_state = NULL;
3231         current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3232         lockdep_clear_current_reclaim_state();
3233         return sc.nr_reclaimed >= nr_pages;
3234 }
3235
3236 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3237 {
3238         int node_id;
3239         int ret;
3240
3241         /*
3242          * Zone reclaim reclaims unmapped file backed pages and
3243          * slab pages if we are over the defined limits.
3244          *
3245          * A small portion of unmapped file backed pages is needed for
3246          * file I/O otherwise pages read by file I/O will be immediately
3247          * thrown out if the zone is overallocated. So we do not reclaim
3248          * if less than a specified percentage of the zone is used by
3249          * unmapped file backed pages.
3250          */
3251         if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3252             zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3253                 return ZONE_RECLAIM_FULL;
3254
3255         if (zone->all_unreclaimable)
3256                 return ZONE_RECLAIM_FULL;
3257
3258         /*
3259          * Do not scan if the allocation should not be delayed.
3260          */
3261         if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3262                 return ZONE_RECLAIM_NOSCAN;
3263
3264         /*
3265          * Only run zone reclaim on the local zone or on zones that do not
3266          * have associated processors. This will favor the local processor
3267          * over remote processors and spread off node memory allocations
3268          * as wide as possible.
3269          */
3270         node_id = zone_to_nid(zone);
3271         if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3272                 return ZONE_RECLAIM_NOSCAN;
3273
3274         if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3275                 return ZONE_RECLAIM_NOSCAN;
3276
3277         ret = __zone_reclaim(zone, gfp_mask, order);
3278         zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3279
3280         if (!ret)
3281                 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3282
3283         return ret;
3284 }
3285 #endif
3286
3287 /*
3288  * page_evictable - test whether a page is evictable
3289  * @page: the page to test
3290  * @vma: the VMA in which the page is or will be mapped, may be NULL
3291  *
3292  * Test whether page is evictable--i.e., should be placed on active/inactive
3293  * lists vs unevictable list.  The vma argument is !NULL when called from the
3294  * fault path to determine how to instantate a new page.
3295  *
3296  * Reasons page might not be evictable:
3297  * (1) page's mapping marked unevictable
3298  * (2) page is part of an mlocked VMA
3299  *
3300  */
3301 int page_evictable(struct page *page, struct vm_area_struct *vma)
3302 {
3303
3304         if (mapping_unevictable(page_mapping(page)))
3305                 return 0;
3306
3307         if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
3308                 return 0;
3309
3310         return 1;
3311 }
3312
3313 /**
3314  * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
3315  * @page: page to check evictability and move to appropriate lru list
3316  * @zone: zone page is in
3317  *
3318  * Checks a page for evictability and moves the page to the appropriate
3319  * zone lru list.
3320  *
3321  * Restrictions: zone->lru_lock must be held, page must be on LRU and must
3322  * have PageUnevictable set.
3323  */
3324 static void check_move_unevictable_page(struct page *page, struct zone *zone)
3325 {
3326         VM_BUG_ON(PageActive(page));
3327
3328 retry:
3329         ClearPageUnevictable(page);
3330         if (page_evictable(page, NULL)) {
3331                 enum lru_list l = page_lru_base_type(page);
3332
3333                 __dec_zone_state(zone, NR_UNEVICTABLE);
3334                 list_move(&page->lru, &zone->lru[l].list);
3335                 mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
3336                 __inc_zone_state(zone, NR_INACTIVE_ANON + l);
3337                 __count_vm_event(UNEVICTABLE_PGRESCUED);
3338         } else {
3339                 /*
3340                  * rotate unevictable list
3341                  */
3342                 SetPageUnevictable(page);
3343                 list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
3344                 mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
3345                 if (page_evictable(page, NULL))
3346                         goto retry;
3347         }
3348 }
3349
3350 /**
3351  * scan_mapping_unevictable_pages - scan an address space for evictable pages
3352  * @mapping: struct address_space to scan for evictable pages
3353  *
3354  * Scan all pages in mapping.  Check unevictable pages for
3355  * evictability and move them to the appropriate zone lru list.
3356  */
3357 void scan_mapping_unevictable_pages(struct address_space *mapping)
3358 {
3359         pgoff_t next = 0;
3360         pgoff_t end   = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
3361                          PAGE_CACHE_SHIFT;
3362         struct zone *zone;
3363         struct pagevec pvec;
3364
3365         if (mapping->nrpages == 0)
3366                 return;
3367
3368         pagevec_init(&pvec, 0);
3369         while (next < end &&
3370                 pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
3371                 int i;
3372                 int pg_scanned = 0;
3373
3374                 zone = NULL;
3375
3376                 for (i = 0; i < pagevec_count(&pvec); i++) {
3377                         struct page *page = pvec.pages[i];
3378                         pgoff_t page_index = page->index;
3379                         struct zone *pagezone = page_zone(page);
3380
3381                         pg_scanned++;
3382                         if (page_index > next)
3383                                 next = page_index;
3384                         next++;
3385
3386                         if (pagezone != zone) {
3387                                 if (zone)
3388                                         spin_unlock_irq(&zone->lru_lock);
3389                                 zone = pagezone;
3390                                 spin_lock_irq(&zone->lru_lock);
3391                         }
3392
3393                         if (PageLRU(page) && PageUnevictable(page))
3394                                 check_move_unevictable_page(page, zone);
3395                 }
3396                 if (zone)
3397                         spin_unlock_irq(&zone->lru_lock);
3398                 pagevec_release(&pvec);
3399
3400                 count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
3401         }
3402
3403 }
3404
3405 /**
3406  * scan_zone_unevictable_pages - check unevictable list for evictable pages
3407  * @zone - zone of which to scan the unevictable list
3408  *
3409  * Scan @zone's unevictable LRU lists to check for pages that have become
3410  * evictable.  Move those that have to @zone's inactive list where they
3411  * become candidates for reclaim, unless shrink_inactive_zone() decides
3412  * to reactivate them.  Pages that are still unevictable are rotated
3413  * back onto @zone's unevictable list.
3414  */
3415 #define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
3416 static void scan_zone_unevictable_pages(struct zone *zone)
3417 {
3418         struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
3419         unsigned long scan;
3420         unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);
3421
3422         while (nr_to_scan > 0) {
3423                 unsigned long batch_size = min(nr_to_scan,
3424                                                 SCAN_UNEVICTABLE_BATCH_SIZE);
3425
3426                 spin_lock_irq(&zone->lru_lock);
3427                 for (scan = 0;  scan < batch_size; scan++) {
3428                         struct page *page = lru_to_page(l_unevictable);
3429
3430                         if (!trylock_page(page))
3431                                 continue;
3432
3433                         prefetchw_prev_lru_page(page, l_unevictable, flags);
3434
3435                         if (likely(PageLRU(page) && PageUnevictable(page)))
3436                                 check_move_unevictable_page(page, zone);
3437
3438                         unlock_page(page);
3439                 }
3440                 spin_unlock_irq(&zone->lru_lock);
3441
3442                 nr_to_scan -= batch_size;
3443         }
3444 }
3445
3446
3447 /**
3448  * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
3449  *
3450  * A really big hammer:  scan all zones' unevictable LRU lists to check for
3451  * pages that have become evictable.  Move those back to the zones'
3452  * inactive list where they become candidates for reclaim.
3453  * This occurs when, e.g., we have unswappable pages on the unevictable lists,
3454  * and we add swap to the system.  As such, it runs in the context of a task
3455  * that has possibly/probably made some previously unevictable pages
3456  * evictable.
3457  */
3458 static void scan_all_zones_unevictable_pages(void)
3459 {
3460         struct zone *zone;
3461
3462         for_each_zone(zone) {
3463                 scan_zone_unevictable_pages(zone);
3464         }
3465 }
3466
3467 /*
3468  * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
3469  * all nodes' unevictable lists for evictable pages
3470  */
3471 unsigned long scan_unevictable_pages;
3472
3473 int scan_unevictable_handler(struct ctl_table *table, int write,
3474                            void __user *buffer,
3475                            size_t *length, loff_t *ppos)
3476 {
3477         proc_doulongvec_minmax(table, write, buffer, length, ppos);
3478
3479         if (write && *(unsigned long *)table->data)
3480                 scan_all_zones_unevictable_pages();
3481
3482         scan_unevictable_pages = 0;
3483         return 0;
3484 }
3485
3486 #ifdef CONFIG_NUMA
3487 /*
3488  * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
3489  * a specified node's per zone unevictable lists for evictable pages.
3490  */
3491
3492 static ssize_t read_scan_unevictable_node(struct sys_device *dev,
3493                                           struct sysdev_attribute *attr,
3494                                           char *buf)
3495 {
3496         return sprintf(buf, "0\n");     /* always zero; should fit... */
3497 }
3498
3499 static ssize_t write_scan_unevictable_node(struct sys_device *dev,
3500                                            struct sysdev_attribute *attr,
3501                                         const char *buf, size_t count)
3502 {
3503         struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
3504         struct zone *zone;
3505         unsigned long res;
3506         unsigned long req = strict_strtoul(buf, 10, &res);
3507
3508         if (!req)
3509                 return 1;       /* zero is no-op */
3510
3511         for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
3512                 if (!populated_zone(zone))
3513                         continue;
3514                 scan_zone_unevictable_pages(zone);
3515         }
3516         return 1;
3517 }
3518
3519
3520 static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3521                         read_scan_unevictable_node,
3522                         write_scan_unevictable_node);
3523
3524 int scan_unevictable_register_node(struct node *node)
3525 {
3526         return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
3527 }
3528
3529 void scan_unevictable_unregister_node(struct node *node)
3530 {
3531         sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
3532 }
3533 #endif