Merge branch 'linus' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6
[firefly-linux-kernel-4.4.55.git] / mm / slab.c
1 /*
2  * linux/mm/slab.c
3  * Written by Mark Hemment, 1996/97.
4  * (markhe@nextd.demon.co.uk)
5  *
6  * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7  *
8  * Major cleanup, different bufctl logic, per-cpu arrays
9  *      (c) 2000 Manfred Spraul
10  *
11  * Cleanup, make the head arrays unconditional, preparation for NUMA
12  *      (c) 2002 Manfred Spraul
13  *
14  * An implementation of the Slab Allocator as described in outline in;
15  *      UNIX Internals: The New Frontiers by Uresh Vahalia
16  *      Pub: Prentice Hall      ISBN 0-13-101908-2
17  * or with a little more detail in;
18  *      The Slab Allocator: An Object-Caching Kernel Memory Allocator
19  *      Jeff Bonwick (Sun Microsystems).
20  *      Presented at: USENIX Summer 1994 Technical Conference
21  *
22  * The memory is organized in caches, one cache for each object type.
23  * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24  * Each cache consists out of many slabs (they are small (usually one
25  * page long) and always contiguous), and each slab contains multiple
26  * initialized objects.
27  *
28  * This means, that your constructor is used only for newly allocated
29  * slabs and you must pass objects with the same initializations to
30  * kmem_cache_free.
31  *
32  * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33  * normal). If you need a special memory type, then must create a new
34  * cache for that memory type.
35  *
36  * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37  *   full slabs with 0 free objects
38  *   partial slabs
39  *   empty slabs with no allocated objects
40  *
41  * If partial slabs exist, then new allocations come from these slabs,
42  * otherwise from empty slabs or new slabs are allocated.
43  *
44  * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45  * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46  *
47  * Each cache has a short per-cpu head array, most allocs
48  * and frees go into that array, and if that array overflows, then 1/2
49  * of the entries in the array are given back into the global cache.
50  * The head array is strictly LIFO and should improve the cache hit rates.
51  * On SMP, it additionally reduces the spinlock operations.
52  *
53  * The c_cpuarray may not be read with enabled local interrupts -
54  * it's changed with a smp_call_function().
55  *
56  * SMP synchronization:
57  *  constructors and destructors are called without any locking.
58  *  Several members in struct kmem_cache and struct slab never change, they
59  *      are accessed without any locking.
60  *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
61  *      and local interrupts are disabled so slab code is preempt-safe.
62  *  The non-constant members are protected with a per-cache irq spinlock.
63  *
64  * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65  * in 2000 - many ideas in the current implementation are derived from
66  * his patch.
67  *
68  * Further notes from the original documentation:
69  *
70  * 11 April '97.  Started multi-threading - markhe
71  *      The global cache-chain is protected by the mutex 'slab_mutex'.
72  *      The sem is only needed when accessing/extending the cache-chain, which
73  *      can never happen inside an interrupt (kmem_cache_create(),
74  *      kmem_cache_shrink() and kmem_cache_reap()).
75  *
76  *      At present, each engine can be growing a cache.  This should be blocked.
77  *
78  * 15 March 2005. NUMA slab allocator.
79  *      Shai Fultheim <shai@scalex86.org>.
80  *      Shobhit Dayal <shobhit@calsoftinc.com>
81  *      Alok N Kataria <alokk@calsoftinc.com>
82  *      Christoph Lameter <christoph@lameter.com>
83  *
84  *      Modified the slab allocator to be node aware on NUMA systems.
85  *      Each node has its own list of partial, free and full slabs.
86  *      All object allocations for a node occur from node specific slab lists.
87  */
88
89 #include        <linux/slab.h>
90 #include        <linux/mm.h>
91 #include        <linux/poison.h>
92 #include        <linux/swap.h>
93 #include        <linux/cache.h>
94 #include        <linux/interrupt.h>
95 #include        <linux/init.h>
96 #include        <linux/compiler.h>
97 #include        <linux/cpuset.h>
98 #include        <linux/proc_fs.h>
99 #include        <linux/seq_file.h>
100 #include        <linux/notifier.h>
101 #include        <linux/kallsyms.h>
102 #include        <linux/cpu.h>
103 #include        <linux/sysctl.h>
104 #include        <linux/module.h>
105 #include        <linux/rcupdate.h>
106 #include        <linux/string.h>
107 #include        <linux/uaccess.h>
108 #include        <linux/nodemask.h>
109 #include        <linux/kmemleak.h>
110 #include        <linux/mempolicy.h>
111 #include        <linux/mutex.h>
112 #include        <linux/fault-inject.h>
113 #include        <linux/rtmutex.h>
114 #include        <linux/reciprocal_div.h>
115 #include        <linux/debugobjects.h>
116 #include        <linux/kmemcheck.h>
117 #include        <linux/memory.h>
118 #include        <linux/prefetch.h>
119
120 #include        <net/sock.h>
121
122 #include        <asm/cacheflush.h>
123 #include        <asm/tlbflush.h>
124 #include        <asm/page.h>
125
126 #include <trace/events/kmem.h>
127
128 #include        "internal.h"
129
130 #include        "slab.h"
131
132 /*
133  * DEBUG        - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
134  *                0 for faster, smaller code (especially in the critical paths).
135  *
136  * STATS        - 1 to collect stats for /proc/slabinfo.
137  *                0 for faster, smaller code (especially in the critical paths).
138  *
139  * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
140  */
141
142 #ifdef CONFIG_DEBUG_SLAB
143 #define DEBUG           1
144 #define STATS           1
145 #define FORCED_DEBUG    1
146 #else
147 #define DEBUG           0
148 #define STATS           0
149 #define FORCED_DEBUG    0
150 #endif
151
152 /* Shouldn't this be in a header file somewhere? */
153 #define BYTES_PER_WORD          sizeof(void *)
154 #define REDZONE_ALIGN           max(BYTES_PER_WORD, __alignof__(unsigned long long))
155
156 #ifndef ARCH_KMALLOC_FLAGS
157 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
158 #endif
159
160 #define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
161                                 <= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
162
163 #if FREELIST_BYTE_INDEX
164 typedef unsigned char freelist_idx_t;
165 #else
166 typedef unsigned short freelist_idx_t;
167 #endif
168
169 #define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
170
171 /*
172  * true if a page was allocated from pfmemalloc reserves for network-based
173  * swap
174  */
175 static bool pfmemalloc_active __read_mostly;
176
177 /*
178  * struct array_cache
179  *
180  * Purpose:
181  * - LIFO ordering, to hand out cache-warm objects from _alloc
182  * - reduce the number of linked list operations
183  * - reduce spinlock operations
184  *
185  * The limit is stored in the per-cpu structure to reduce the data cache
186  * footprint.
187  *
188  */
189 struct array_cache {
190         unsigned int avail;
191         unsigned int limit;
192         unsigned int batchcount;
193         unsigned int touched;
194         void *entry[];  /*
195                          * Must have this definition in here for the proper
196                          * alignment of array_cache. Also simplifies accessing
197                          * the entries.
198                          *
199                          * Entries should not be directly dereferenced as
200                          * entries belonging to slabs marked pfmemalloc will
201                          * have the lower bits set SLAB_OBJ_PFMEMALLOC
202                          */
203 };
204
205 struct alien_cache {
206         spinlock_t lock;
207         struct array_cache ac;
208 };
209
210 #define SLAB_OBJ_PFMEMALLOC     1
211 static inline bool is_obj_pfmemalloc(void *objp)
212 {
213         return (unsigned long)objp & SLAB_OBJ_PFMEMALLOC;
214 }
215
216 static inline void set_obj_pfmemalloc(void **objp)
217 {
218         *objp = (void *)((unsigned long)*objp | SLAB_OBJ_PFMEMALLOC);
219         return;
220 }
221
222 static inline void clear_obj_pfmemalloc(void **objp)
223 {
224         *objp = (void *)((unsigned long)*objp & ~SLAB_OBJ_PFMEMALLOC);
225 }
226
227 /*
228  * bootstrap: The caches do not work without cpuarrays anymore, but the
229  * cpuarrays are allocated from the generic caches...
230  */
231 #define BOOT_CPUCACHE_ENTRIES   1
232 struct arraycache_init {
233         struct array_cache cache;
234         void *entries[BOOT_CPUCACHE_ENTRIES];
235 };
236
237 /*
238  * Need this for bootstrapping a per node allocator.
239  */
240 #define NUM_INIT_LISTS (2 * MAX_NUMNODES)
241 static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
242 #define CACHE_CACHE 0
243 #define SIZE_NODE (MAX_NUMNODES)
244
245 static int drain_freelist(struct kmem_cache *cache,
246                         struct kmem_cache_node *n, int tofree);
247 static void free_block(struct kmem_cache *cachep, void **objpp, int len,
248                         int node, struct list_head *list);
249 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
250 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
251 static void cache_reap(struct work_struct *unused);
252
253 static int slab_early_init = 1;
254
255 #define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
256
257 static void kmem_cache_node_init(struct kmem_cache_node *parent)
258 {
259         INIT_LIST_HEAD(&parent->slabs_full);
260         INIT_LIST_HEAD(&parent->slabs_partial);
261         INIT_LIST_HEAD(&parent->slabs_free);
262         parent->shared = NULL;
263         parent->alien = NULL;
264         parent->colour_next = 0;
265         spin_lock_init(&parent->list_lock);
266         parent->free_objects = 0;
267         parent->free_touched = 0;
268 }
269
270 #define MAKE_LIST(cachep, listp, slab, nodeid)                          \
271         do {                                                            \
272                 INIT_LIST_HEAD(listp);                                  \
273                 list_splice(&get_node(cachep, nodeid)->slab, listp);    \
274         } while (0)
275
276 #define MAKE_ALL_LISTS(cachep, ptr, nodeid)                             \
277         do {                                                            \
278         MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);  \
279         MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
280         MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);  \
281         } while (0)
282
283 #define CFLGS_OFF_SLAB          (0x80000000UL)
284 #define OFF_SLAB(x)     ((x)->flags & CFLGS_OFF_SLAB)
285 #define OFF_SLAB_MIN_SIZE (max_t(size_t, PAGE_SIZE >> 5, KMALLOC_MIN_SIZE + 1))
286
287 #define BATCHREFILL_LIMIT       16
288 /*
289  * Optimization question: fewer reaps means less probability for unnessary
290  * cpucache drain/refill cycles.
291  *
292  * OTOH the cpuarrays can contain lots of objects,
293  * which could lock up otherwise freeable slabs.
294  */
295 #define REAPTIMEOUT_AC          (2*HZ)
296 #define REAPTIMEOUT_NODE        (4*HZ)
297
298 #if STATS
299 #define STATS_INC_ACTIVE(x)     ((x)->num_active++)
300 #define STATS_DEC_ACTIVE(x)     ((x)->num_active--)
301 #define STATS_INC_ALLOCED(x)    ((x)->num_allocations++)
302 #define STATS_INC_GROWN(x)      ((x)->grown++)
303 #define STATS_ADD_REAPED(x,y)   ((x)->reaped += (y))
304 #define STATS_SET_HIGH(x)                                               \
305         do {                                                            \
306                 if ((x)->num_active > (x)->high_mark)                   \
307                         (x)->high_mark = (x)->num_active;               \
308         } while (0)
309 #define STATS_INC_ERR(x)        ((x)->errors++)
310 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
311 #define STATS_INC_NODEFREES(x)  ((x)->node_frees++)
312 #define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
313 #define STATS_SET_FREEABLE(x, i)                                        \
314         do {                                                            \
315                 if ((x)->max_freeable < i)                              \
316                         (x)->max_freeable = i;                          \
317         } while (0)
318 #define STATS_INC_ALLOCHIT(x)   atomic_inc(&(x)->allochit)
319 #define STATS_INC_ALLOCMISS(x)  atomic_inc(&(x)->allocmiss)
320 #define STATS_INC_FREEHIT(x)    atomic_inc(&(x)->freehit)
321 #define STATS_INC_FREEMISS(x)   atomic_inc(&(x)->freemiss)
322 #else
323 #define STATS_INC_ACTIVE(x)     do { } while (0)
324 #define STATS_DEC_ACTIVE(x)     do { } while (0)
325 #define STATS_INC_ALLOCED(x)    do { } while (0)
326 #define STATS_INC_GROWN(x)      do { } while (0)
327 #define STATS_ADD_REAPED(x,y)   do { (void)(y); } while (0)
328 #define STATS_SET_HIGH(x)       do { } while (0)
329 #define STATS_INC_ERR(x)        do { } while (0)
330 #define STATS_INC_NODEALLOCS(x) do { } while (0)
331 #define STATS_INC_NODEFREES(x)  do { } while (0)
332 #define STATS_INC_ACOVERFLOW(x)   do { } while (0)
333 #define STATS_SET_FREEABLE(x, i) do { } while (0)
334 #define STATS_INC_ALLOCHIT(x)   do { } while (0)
335 #define STATS_INC_ALLOCMISS(x)  do { } while (0)
336 #define STATS_INC_FREEHIT(x)    do { } while (0)
337 #define STATS_INC_FREEMISS(x)   do { } while (0)
338 #endif
339
340 #if DEBUG
341
342 /*
343  * memory layout of objects:
344  * 0            : objp
345  * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
346  *              the end of an object is aligned with the end of the real
347  *              allocation. Catches writes behind the end of the allocation.
348  * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
349  *              redzone word.
350  * cachep->obj_offset: The real object.
351  * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
352  * cachep->size - 1* BYTES_PER_WORD: last caller address
353  *                                      [BYTES_PER_WORD long]
354  */
355 static int obj_offset(struct kmem_cache *cachep)
356 {
357         return cachep->obj_offset;
358 }
359
360 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
361 {
362         BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
363         return (unsigned long long*) (objp + obj_offset(cachep) -
364                                       sizeof(unsigned long long));
365 }
366
367 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
368 {
369         BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
370         if (cachep->flags & SLAB_STORE_USER)
371                 return (unsigned long long *)(objp + cachep->size -
372                                               sizeof(unsigned long long) -
373                                               REDZONE_ALIGN);
374         return (unsigned long long *) (objp + cachep->size -
375                                        sizeof(unsigned long long));
376 }
377
378 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
379 {
380         BUG_ON(!(cachep->flags & SLAB_STORE_USER));
381         return (void **)(objp + cachep->size - BYTES_PER_WORD);
382 }
383
384 #else
385
386 #define obj_offset(x)                   0
387 #define dbg_redzone1(cachep, objp)      ({BUG(); (unsigned long long *)NULL;})
388 #define dbg_redzone2(cachep, objp)      ({BUG(); (unsigned long long *)NULL;})
389 #define dbg_userword(cachep, objp)      ({BUG(); (void **)NULL;})
390
391 #endif
392
393 #define OBJECT_FREE (0)
394 #define OBJECT_ACTIVE (1)
395
396 #ifdef CONFIG_DEBUG_SLAB_LEAK
397
398 static void set_obj_status(struct page *page, int idx, int val)
399 {
400         int freelist_size;
401         char *status;
402         struct kmem_cache *cachep = page->slab_cache;
403
404         freelist_size = cachep->num * sizeof(freelist_idx_t);
405         status = (char *)page->freelist + freelist_size;
406         status[idx] = val;
407 }
408
409 static inline unsigned int get_obj_status(struct page *page, int idx)
410 {
411         int freelist_size;
412         char *status;
413         struct kmem_cache *cachep = page->slab_cache;
414
415         freelist_size = cachep->num * sizeof(freelist_idx_t);
416         status = (char *)page->freelist + freelist_size;
417
418         return status[idx];
419 }
420
421 #else
422 static inline void set_obj_status(struct page *page, int idx, int val) {}
423
424 #endif
425
426 /*
427  * Do not go above this order unless 0 objects fit into the slab or
428  * overridden on the command line.
429  */
430 #define SLAB_MAX_ORDER_HI       1
431 #define SLAB_MAX_ORDER_LO       0
432 static int slab_max_order = SLAB_MAX_ORDER_LO;
433 static bool slab_max_order_set __initdata;
434
435 static inline struct kmem_cache *virt_to_cache(const void *obj)
436 {
437         struct page *page = virt_to_head_page(obj);
438         return page->slab_cache;
439 }
440
441 static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
442                                  unsigned int idx)
443 {
444         return page->s_mem + cache->size * idx;
445 }
446
447 /*
448  * We want to avoid an expensive divide : (offset / cache->size)
449  *   Using the fact that size is a constant for a particular cache,
450  *   we can replace (offset / cache->size) by
451  *   reciprocal_divide(offset, cache->reciprocal_buffer_size)
452  */
453 static inline unsigned int obj_to_index(const struct kmem_cache *cache,
454                                         const struct page *page, void *obj)
455 {
456         u32 offset = (obj - page->s_mem);
457         return reciprocal_divide(offset, cache->reciprocal_buffer_size);
458 }
459
460 /* internal cache of cache description objs */
461 static struct kmem_cache kmem_cache_boot = {
462         .batchcount = 1,
463         .limit = BOOT_CPUCACHE_ENTRIES,
464         .shared = 1,
465         .size = sizeof(struct kmem_cache),
466         .name = "kmem_cache",
467 };
468
469 #define BAD_ALIEN_MAGIC 0x01020304ul
470
471 static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
472
473 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
474 {
475         return this_cpu_ptr(cachep->cpu_cache);
476 }
477
478 static size_t calculate_freelist_size(int nr_objs, size_t align)
479 {
480         size_t freelist_size;
481
482         freelist_size = nr_objs * sizeof(freelist_idx_t);
483         if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK))
484                 freelist_size += nr_objs * sizeof(char);
485
486         if (align)
487                 freelist_size = ALIGN(freelist_size, align);
488
489         return freelist_size;
490 }
491
492 static int calculate_nr_objs(size_t slab_size, size_t buffer_size,
493                                 size_t idx_size, size_t align)
494 {
495         int nr_objs;
496         size_t remained_size;
497         size_t freelist_size;
498         int extra_space = 0;
499
500         if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK))
501                 extra_space = sizeof(char);
502         /*
503          * Ignore padding for the initial guess. The padding
504          * is at most @align-1 bytes, and @buffer_size is at
505          * least @align. In the worst case, this result will
506          * be one greater than the number of objects that fit
507          * into the memory allocation when taking the padding
508          * into account.
509          */
510         nr_objs = slab_size / (buffer_size + idx_size + extra_space);
511
512         /*
513          * This calculated number will be either the right
514          * amount, or one greater than what we want.
515          */
516         remained_size = slab_size - nr_objs * buffer_size;
517         freelist_size = calculate_freelist_size(nr_objs, align);
518         if (remained_size < freelist_size)
519                 nr_objs--;
520
521         return nr_objs;
522 }
523
524 /*
525  * Calculate the number of objects and left-over bytes for a given buffer size.
526  */
527 static void cache_estimate(unsigned long gfporder, size_t buffer_size,
528                            size_t align, int flags, size_t *left_over,
529                            unsigned int *num)
530 {
531         int nr_objs;
532         size_t mgmt_size;
533         size_t slab_size = PAGE_SIZE << gfporder;
534
535         /*
536          * The slab management structure can be either off the slab or
537          * on it. For the latter case, the memory allocated for a
538          * slab is used for:
539          *
540          * - One unsigned int for each object
541          * - Padding to respect alignment of @align
542          * - @buffer_size bytes for each object
543          *
544          * If the slab management structure is off the slab, then the
545          * alignment will already be calculated into the size. Because
546          * the slabs are all pages aligned, the objects will be at the
547          * correct alignment when allocated.
548          */
549         if (flags & CFLGS_OFF_SLAB) {
550                 mgmt_size = 0;
551                 nr_objs = slab_size / buffer_size;
552
553         } else {
554                 nr_objs = calculate_nr_objs(slab_size, buffer_size,
555                                         sizeof(freelist_idx_t), align);
556                 mgmt_size = calculate_freelist_size(nr_objs, align);
557         }
558         *num = nr_objs;
559         *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
560 }
561
562 #if DEBUG
563 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
564
565 static void __slab_error(const char *function, struct kmem_cache *cachep,
566                         char *msg)
567 {
568         printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
569                function, cachep->name, msg);
570         dump_stack();
571         add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
572 }
573 #endif
574
575 /*
576  * By default on NUMA we use alien caches to stage the freeing of
577  * objects allocated from other nodes. This causes massive memory
578  * inefficiencies when using fake NUMA setup to split memory into a
579  * large number of small nodes, so it can be disabled on the command
580  * line
581   */
582
583 static int use_alien_caches __read_mostly = 1;
584 static int __init noaliencache_setup(char *s)
585 {
586         use_alien_caches = 0;
587         return 1;
588 }
589 __setup("noaliencache", noaliencache_setup);
590
591 static int __init slab_max_order_setup(char *str)
592 {
593         get_option(&str, &slab_max_order);
594         slab_max_order = slab_max_order < 0 ? 0 :
595                                 min(slab_max_order, MAX_ORDER - 1);
596         slab_max_order_set = true;
597
598         return 1;
599 }
600 __setup("slab_max_order=", slab_max_order_setup);
601
602 #ifdef CONFIG_NUMA
603 /*
604  * Special reaping functions for NUMA systems called from cache_reap().
605  * These take care of doing round robin flushing of alien caches (containing
606  * objects freed on different nodes from which they were allocated) and the
607  * flushing of remote pcps by calling drain_node_pages.
608  */
609 static DEFINE_PER_CPU(unsigned long, slab_reap_node);
610
611 static void init_reap_node(int cpu)
612 {
613         int node;
614
615         node = next_node(cpu_to_mem(cpu), node_online_map);
616         if (node == MAX_NUMNODES)
617                 node = first_node(node_online_map);
618
619         per_cpu(slab_reap_node, cpu) = node;
620 }
621
622 static void next_reap_node(void)
623 {
624         int node = __this_cpu_read(slab_reap_node);
625
626         node = next_node(node, node_online_map);
627         if (unlikely(node >= MAX_NUMNODES))
628                 node = first_node(node_online_map);
629         __this_cpu_write(slab_reap_node, node);
630 }
631
632 #else
633 #define init_reap_node(cpu) do { } while (0)
634 #define next_reap_node(void) do { } while (0)
635 #endif
636
637 /*
638  * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
639  * via the workqueue/eventd.
640  * Add the CPU number into the expiration time to minimize the possibility of
641  * the CPUs getting into lockstep and contending for the global cache chain
642  * lock.
643  */
644 static void start_cpu_timer(int cpu)
645 {
646         struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
647
648         /*
649          * When this gets called from do_initcalls via cpucache_init(),
650          * init_workqueues() has already run, so keventd will be setup
651          * at that time.
652          */
653         if (keventd_up() && reap_work->work.func == NULL) {
654                 init_reap_node(cpu);
655                 INIT_DEFERRABLE_WORK(reap_work, cache_reap);
656                 schedule_delayed_work_on(cpu, reap_work,
657                                         __round_jiffies_relative(HZ, cpu));
658         }
659 }
660
661 static void init_arraycache(struct array_cache *ac, int limit, int batch)
662 {
663         /*
664          * The array_cache structures contain pointers to free object.
665          * However, when such objects are allocated or transferred to another
666          * cache the pointers are not cleared and they could be counted as
667          * valid references during a kmemleak scan. Therefore, kmemleak must
668          * not scan such objects.
669          */
670         kmemleak_no_scan(ac);
671         if (ac) {
672                 ac->avail = 0;
673                 ac->limit = limit;
674                 ac->batchcount = batch;
675                 ac->touched = 0;
676         }
677 }
678
679 static struct array_cache *alloc_arraycache(int node, int entries,
680                                             int batchcount, gfp_t gfp)
681 {
682         size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
683         struct array_cache *ac = NULL;
684
685         ac = kmalloc_node(memsize, gfp, node);
686         init_arraycache(ac, entries, batchcount);
687         return ac;
688 }
689
690 static inline bool is_slab_pfmemalloc(struct page *page)
691 {
692         return PageSlabPfmemalloc(page);
693 }
694
695 /* Clears pfmemalloc_active if no slabs have pfmalloc set */
696 static void recheck_pfmemalloc_active(struct kmem_cache *cachep,
697                                                 struct array_cache *ac)
698 {
699         struct kmem_cache_node *n = get_node(cachep, numa_mem_id());
700         struct page *page;
701         unsigned long flags;
702
703         if (!pfmemalloc_active)
704                 return;
705
706         spin_lock_irqsave(&n->list_lock, flags);
707         list_for_each_entry(page, &n->slabs_full, lru)
708                 if (is_slab_pfmemalloc(page))
709                         goto out;
710
711         list_for_each_entry(page, &n->slabs_partial, lru)
712                 if (is_slab_pfmemalloc(page))
713                         goto out;
714
715         list_for_each_entry(page, &n->slabs_free, lru)
716                 if (is_slab_pfmemalloc(page))
717                         goto out;
718
719         pfmemalloc_active = false;
720 out:
721         spin_unlock_irqrestore(&n->list_lock, flags);
722 }
723
724 static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac,
725                                                 gfp_t flags, bool force_refill)
726 {
727         int i;
728         void *objp = ac->entry[--ac->avail];
729
730         /* Ensure the caller is allowed to use objects from PFMEMALLOC slab */
731         if (unlikely(is_obj_pfmemalloc(objp))) {
732                 struct kmem_cache_node *n;
733
734                 if (gfp_pfmemalloc_allowed(flags)) {
735                         clear_obj_pfmemalloc(&objp);
736                         return objp;
737                 }
738
739                 /* The caller cannot use PFMEMALLOC objects, find another one */
740                 for (i = 0; i < ac->avail; i++) {
741                         /* If a !PFMEMALLOC object is found, swap them */
742                         if (!is_obj_pfmemalloc(ac->entry[i])) {
743                                 objp = ac->entry[i];
744                                 ac->entry[i] = ac->entry[ac->avail];
745                                 ac->entry[ac->avail] = objp;
746                                 return objp;
747                         }
748                 }
749
750                 /*
751                  * If there are empty slabs on the slabs_free list and we are
752                  * being forced to refill the cache, mark this one !pfmemalloc.
753                  */
754                 n = get_node(cachep, numa_mem_id());
755                 if (!list_empty(&n->slabs_free) && force_refill) {
756                         struct page *page = virt_to_head_page(objp);
757                         ClearPageSlabPfmemalloc(page);
758                         clear_obj_pfmemalloc(&objp);
759                         recheck_pfmemalloc_active(cachep, ac);
760                         return objp;
761                 }
762
763                 /* No !PFMEMALLOC objects available */
764                 ac->avail++;
765                 objp = NULL;
766         }
767
768         return objp;
769 }
770
771 static inline void *ac_get_obj(struct kmem_cache *cachep,
772                         struct array_cache *ac, gfp_t flags, bool force_refill)
773 {
774         void *objp;
775
776         if (unlikely(sk_memalloc_socks()))
777                 objp = __ac_get_obj(cachep, ac, flags, force_refill);
778         else
779                 objp = ac->entry[--ac->avail];
780
781         return objp;
782 }
783
784 static noinline void *__ac_put_obj(struct kmem_cache *cachep,
785                         struct array_cache *ac, void *objp)
786 {
787         if (unlikely(pfmemalloc_active)) {
788                 /* Some pfmemalloc slabs exist, check if this is one */
789                 struct page *page = virt_to_head_page(objp);
790                 if (PageSlabPfmemalloc(page))
791                         set_obj_pfmemalloc(&objp);
792         }
793
794         return objp;
795 }
796
797 static inline void ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
798                                                                 void *objp)
799 {
800         if (unlikely(sk_memalloc_socks()))
801                 objp = __ac_put_obj(cachep, ac, objp);
802
803         ac->entry[ac->avail++] = objp;
804 }
805
806 /*
807  * Transfer objects in one arraycache to another.
808  * Locking must be handled by the caller.
809  *
810  * Return the number of entries transferred.
811  */
812 static int transfer_objects(struct array_cache *to,
813                 struct array_cache *from, unsigned int max)
814 {
815         /* Figure out how many entries to transfer */
816         int nr = min3(from->avail, max, to->limit - to->avail);
817
818         if (!nr)
819                 return 0;
820
821         memcpy(to->entry + to->avail, from->entry + from->avail -nr,
822                         sizeof(void *) *nr);
823
824         from->avail -= nr;
825         to->avail += nr;
826         return nr;
827 }
828
829 #ifndef CONFIG_NUMA
830
831 #define drain_alien_cache(cachep, alien) do { } while (0)
832 #define reap_alien(cachep, n) do { } while (0)
833
834 static inline struct alien_cache **alloc_alien_cache(int node,
835                                                 int limit, gfp_t gfp)
836 {
837         return (struct alien_cache **)BAD_ALIEN_MAGIC;
838 }
839
840 static inline void free_alien_cache(struct alien_cache **ac_ptr)
841 {
842 }
843
844 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
845 {
846         return 0;
847 }
848
849 static inline void *alternate_node_alloc(struct kmem_cache *cachep,
850                 gfp_t flags)
851 {
852         return NULL;
853 }
854
855 static inline void *____cache_alloc_node(struct kmem_cache *cachep,
856                  gfp_t flags, int nodeid)
857 {
858         return NULL;
859 }
860
861 static inline gfp_t gfp_exact_node(gfp_t flags)
862 {
863         return flags;
864 }
865
866 #else   /* CONFIG_NUMA */
867
868 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
869 static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
870
871 static struct alien_cache *__alloc_alien_cache(int node, int entries,
872                                                 int batch, gfp_t gfp)
873 {
874         size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
875         struct alien_cache *alc = NULL;
876
877         alc = kmalloc_node(memsize, gfp, node);
878         init_arraycache(&alc->ac, entries, batch);
879         spin_lock_init(&alc->lock);
880         return alc;
881 }
882
883 static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
884 {
885         struct alien_cache **alc_ptr;
886         size_t memsize = sizeof(void *) * nr_node_ids;
887         int i;
888
889         if (limit > 1)
890                 limit = 12;
891         alc_ptr = kzalloc_node(memsize, gfp, node);
892         if (!alc_ptr)
893                 return NULL;
894
895         for_each_node(i) {
896                 if (i == node || !node_online(i))
897                         continue;
898                 alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
899                 if (!alc_ptr[i]) {
900                         for (i--; i >= 0; i--)
901                                 kfree(alc_ptr[i]);
902                         kfree(alc_ptr);
903                         return NULL;
904                 }
905         }
906         return alc_ptr;
907 }
908
909 static void free_alien_cache(struct alien_cache **alc_ptr)
910 {
911         int i;
912
913         if (!alc_ptr)
914                 return;
915         for_each_node(i)
916             kfree(alc_ptr[i]);
917         kfree(alc_ptr);
918 }
919
920 static void __drain_alien_cache(struct kmem_cache *cachep,
921                                 struct array_cache *ac, int node,
922                                 struct list_head *list)
923 {
924         struct kmem_cache_node *n = get_node(cachep, node);
925
926         if (ac->avail) {
927                 spin_lock(&n->list_lock);
928                 /*
929                  * Stuff objects into the remote nodes shared array first.
930                  * That way we could avoid the overhead of putting the objects
931                  * into the free lists and getting them back later.
932                  */
933                 if (n->shared)
934                         transfer_objects(n->shared, ac, ac->limit);
935
936                 free_block(cachep, ac->entry, ac->avail, node, list);
937                 ac->avail = 0;
938                 spin_unlock(&n->list_lock);
939         }
940 }
941
942 /*
943  * Called from cache_reap() to regularly drain alien caches round robin.
944  */
945 static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
946 {
947         int node = __this_cpu_read(slab_reap_node);
948
949         if (n->alien) {
950                 struct alien_cache *alc = n->alien[node];
951                 struct array_cache *ac;
952
953                 if (alc) {
954                         ac = &alc->ac;
955                         if (ac->avail && spin_trylock_irq(&alc->lock)) {
956                                 LIST_HEAD(list);
957
958                                 __drain_alien_cache(cachep, ac, node, &list);
959                                 spin_unlock_irq(&alc->lock);
960                                 slabs_destroy(cachep, &list);
961                         }
962                 }
963         }
964 }
965
966 static void drain_alien_cache(struct kmem_cache *cachep,
967                                 struct alien_cache **alien)
968 {
969         int i = 0;
970         struct alien_cache *alc;
971         struct array_cache *ac;
972         unsigned long flags;
973
974         for_each_online_node(i) {
975                 alc = alien[i];
976                 if (alc) {
977                         LIST_HEAD(list);
978
979                         ac = &alc->ac;
980                         spin_lock_irqsave(&alc->lock, flags);
981                         __drain_alien_cache(cachep, ac, i, &list);
982                         spin_unlock_irqrestore(&alc->lock, flags);
983                         slabs_destroy(cachep, &list);
984                 }
985         }
986 }
987
988 static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
989                                 int node, int page_node)
990 {
991         struct kmem_cache_node *n;
992         struct alien_cache *alien = NULL;
993         struct array_cache *ac;
994         LIST_HEAD(list);
995
996         n = get_node(cachep, node);
997         STATS_INC_NODEFREES(cachep);
998         if (n->alien && n->alien[page_node]) {
999                 alien = n->alien[page_node];
1000                 ac = &alien->ac;
1001                 spin_lock(&alien->lock);
1002                 if (unlikely(ac->avail == ac->limit)) {
1003                         STATS_INC_ACOVERFLOW(cachep);
1004                         __drain_alien_cache(cachep, ac, page_node, &list);
1005                 }
1006                 ac_put_obj(cachep, ac, objp);
1007                 spin_unlock(&alien->lock);
1008                 slabs_destroy(cachep, &list);
1009         } else {
1010                 n = get_node(cachep, page_node);
1011                 spin_lock(&n->list_lock);
1012                 free_block(cachep, &objp, 1, page_node, &list);
1013                 spin_unlock(&n->list_lock);
1014                 slabs_destroy(cachep, &list);
1015         }
1016         return 1;
1017 }
1018
1019 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1020 {
1021         int page_node = page_to_nid(virt_to_page(objp));
1022         int node = numa_mem_id();
1023         /*
1024          * Make sure we are not freeing a object from another node to the array
1025          * cache on this cpu.
1026          */
1027         if (likely(node == page_node))
1028                 return 0;
1029
1030         return __cache_free_alien(cachep, objp, node, page_node);
1031 }
1032
1033 /*
1034  * Construct gfp mask to allocate from a specific node but do not direct reclaim
1035  * or warn about failures. kswapd may still wake to reclaim in the background.
1036  */
1037 static inline gfp_t gfp_exact_node(gfp_t flags)
1038 {
1039         return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~__GFP_DIRECT_RECLAIM;
1040 }
1041 #endif
1042
1043 /*
1044  * Allocates and initializes node for a node on each slab cache, used for
1045  * either memory or cpu hotplug.  If memory is being hot-added, the kmem_cache_node
1046  * will be allocated off-node since memory is not yet online for the new node.
1047  * When hotplugging memory or a cpu, existing node are not replaced if
1048  * already in use.
1049  *
1050  * Must hold slab_mutex.
1051  */
1052 static int init_cache_node_node(int node)
1053 {
1054         struct kmem_cache *cachep;
1055         struct kmem_cache_node *n;
1056         const size_t memsize = sizeof(struct kmem_cache_node);
1057
1058         list_for_each_entry(cachep, &slab_caches, list) {
1059                 /*
1060                  * Set up the kmem_cache_node for cpu before we can
1061                  * begin anything. Make sure some other cpu on this
1062                  * node has not already allocated this
1063                  */
1064                 n = get_node(cachep, node);
1065                 if (!n) {
1066                         n = kmalloc_node(memsize, GFP_KERNEL, node);
1067                         if (!n)
1068                                 return -ENOMEM;
1069                         kmem_cache_node_init(n);
1070                         n->next_reap = jiffies + REAPTIMEOUT_NODE +
1071                             ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1072
1073                         /*
1074                          * The kmem_cache_nodes don't come and go as CPUs
1075                          * come and go.  slab_mutex is sufficient
1076                          * protection here.
1077                          */
1078                         cachep->node[node] = n;
1079                 }
1080
1081                 spin_lock_irq(&n->list_lock);
1082                 n->free_limit =
1083                         (1 + nr_cpus_node(node)) *
1084                         cachep->batchcount + cachep->num;
1085                 spin_unlock_irq(&n->list_lock);
1086         }
1087         return 0;
1088 }
1089
1090 static inline int slabs_tofree(struct kmem_cache *cachep,
1091                                                 struct kmem_cache_node *n)
1092 {
1093         return (n->free_objects + cachep->num - 1) / cachep->num;
1094 }
1095
1096 static void cpuup_canceled(long cpu)
1097 {
1098         struct kmem_cache *cachep;
1099         struct kmem_cache_node *n = NULL;
1100         int node = cpu_to_mem(cpu);
1101         const struct cpumask *mask = cpumask_of_node(node);
1102
1103         list_for_each_entry(cachep, &slab_caches, list) {
1104                 struct array_cache *nc;
1105                 struct array_cache *shared;
1106                 struct alien_cache **alien;
1107                 LIST_HEAD(list);
1108
1109                 n = get_node(cachep, node);
1110                 if (!n)
1111                         continue;
1112
1113                 spin_lock_irq(&n->list_lock);
1114
1115                 /* Free limit for this kmem_cache_node */
1116                 n->free_limit -= cachep->batchcount;
1117
1118                 /* cpu is dead; no one can alloc from it. */
1119                 nc = per_cpu_ptr(cachep->cpu_cache, cpu);
1120                 if (nc) {
1121                         free_block(cachep, nc->entry, nc->avail, node, &list);
1122                         nc->avail = 0;
1123                 }
1124
1125                 if (!cpumask_empty(mask)) {
1126                         spin_unlock_irq(&n->list_lock);
1127                         goto free_slab;
1128                 }
1129
1130                 shared = n->shared;
1131                 if (shared) {
1132                         free_block(cachep, shared->entry,
1133                                    shared->avail, node, &list);
1134                         n->shared = NULL;
1135                 }
1136
1137                 alien = n->alien;
1138                 n->alien = NULL;
1139
1140                 spin_unlock_irq(&n->list_lock);
1141
1142                 kfree(shared);
1143                 if (alien) {
1144                         drain_alien_cache(cachep, alien);
1145                         free_alien_cache(alien);
1146                 }
1147
1148 free_slab:
1149                 slabs_destroy(cachep, &list);
1150         }
1151         /*
1152          * In the previous loop, all the objects were freed to
1153          * the respective cache's slabs,  now we can go ahead and
1154          * shrink each nodelist to its limit.
1155          */
1156         list_for_each_entry(cachep, &slab_caches, list) {
1157                 n = get_node(cachep, node);
1158                 if (!n)
1159                         continue;
1160                 drain_freelist(cachep, n, slabs_tofree(cachep, n));
1161         }
1162 }
1163
1164 static int cpuup_prepare(long cpu)
1165 {
1166         struct kmem_cache *cachep;
1167         struct kmem_cache_node *n = NULL;
1168         int node = cpu_to_mem(cpu);
1169         int err;
1170
1171         /*
1172          * We need to do this right in the beginning since
1173          * alloc_arraycache's are going to use this list.
1174          * kmalloc_node allows us to add the slab to the right
1175          * kmem_cache_node and not this cpu's kmem_cache_node
1176          */
1177         err = init_cache_node_node(node);
1178         if (err < 0)
1179                 goto bad;
1180
1181         /*
1182          * Now we can go ahead with allocating the shared arrays and
1183          * array caches
1184          */
1185         list_for_each_entry(cachep, &slab_caches, list) {
1186                 struct array_cache *shared = NULL;
1187                 struct alien_cache **alien = NULL;
1188
1189                 if (cachep->shared) {
1190                         shared = alloc_arraycache(node,
1191                                 cachep->shared * cachep->batchcount,
1192                                 0xbaadf00d, GFP_KERNEL);
1193                         if (!shared)
1194                                 goto bad;
1195                 }
1196                 if (use_alien_caches) {
1197                         alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
1198                         if (!alien) {
1199                                 kfree(shared);
1200                                 goto bad;
1201                         }
1202                 }
1203                 n = get_node(cachep, node);
1204                 BUG_ON(!n);
1205
1206                 spin_lock_irq(&n->list_lock);
1207                 if (!n->shared) {
1208                         /*
1209                          * We are serialised from CPU_DEAD or
1210                          * CPU_UP_CANCELLED by the cpucontrol lock
1211                          */
1212                         n->shared = shared;
1213                         shared = NULL;
1214                 }
1215 #ifdef CONFIG_NUMA
1216                 if (!n->alien) {
1217                         n->alien = alien;
1218                         alien = NULL;
1219                 }
1220 #endif
1221                 spin_unlock_irq(&n->list_lock);
1222                 kfree(shared);
1223                 free_alien_cache(alien);
1224         }
1225
1226         return 0;
1227 bad:
1228         cpuup_canceled(cpu);
1229         return -ENOMEM;
1230 }
1231
1232 static int cpuup_callback(struct notifier_block *nfb,
1233                                     unsigned long action, void *hcpu)
1234 {
1235         long cpu = (long)hcpu;
1236         int err = 0;
1237
1238         switch (action) {
1239         case CPU_UP_PREPARE:
1240         case CPU_UP_PREPARE_FROZEN:
1241                 mutex_lock(&slab_mutex);
1242                 err = cpuup_prepare(cpu);
1243                 mutex_unlock(&slab_mutex);
1244                 break;
1245         case CPU_ONLINE:
1246         case CPU_ONLINE_FROZEN:
1247                 start_cpu_timer(cpu);
1248                 break;
1249 #ifdef CONFIG_HOTPLUG_CPU
1250         case CPU_DOWN_PREPARE:
1251         case CPU_DOWN_PREPARE_FROZEN:
1252                 /*
1253                  * Shutdown cache reaper. Note that the slab_mutex is
1254                  * held so that if cache_reap() is invoked it cannot do
1255                  * anything expensive but will only modify reap_work
1256                  * and reschedule the timer.
1257                 */
1258                 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1259                 /* Now the cache_reaper is guaranteed to be not running. */
1260                 per_cpu(slab_reap_work, cpu).work.func = NULL;
1261                 break;
1262         case CPU_DOWN_FAILED:
1263         case CPU_DOWN_FAILED_FROZEN:
1264                 start_cpu_timer(cpu);
1265                 break;
1266         case CPU_DEAD:
1267         case CPU_DEAD_FROZEN:
1268                 /*
1269                  * Even if all the cpus of a node are down, we don't free the
1270                  * kmem_cache_node of any cache. This to avoid a race between
1271                  * cpu_down, and a kmalloc allocation from another cpu for
1272                  * memory from the node of the cpu going down.  The node
1273                  * structure is usually allocated from kmem_cache_create() and
1274                  * gets destroyed at kmem_cache_destroy().
1275                  */
1276                 /* fall through */
1277 #endif
1278         case CPU_UP_CANCELED:
1279         case CPU_UP_CANCELED_FROZEN:
1280                 mutex_lock(&slab_mutex);
1281                 cpuup_canceled(cpu);
1282                 mutex_unlock(&slab_mutex);
1283                 break;
1284         }
1285         return notifier_from_errno(err);
1286 }
1287
1288 static struct notifier_block cpucache_notifier = {
1289         &cpuup_callback, NULL, 0
1290 };
1291
1292 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1293 /*
1294  * Drains freelist for a node on each slab cache, used for memory hot-remove.
1295  * Returns -EBUSY if all objects cannot be drained so that the node is not
1296  * removed.
1297  *
1298  * Must hold slab_mutex.
1299  */
1300 static int __meminit drain_cache_node_node(int node)
1301 {
1302         struct kmem_cache *cachep;
1303         int ret = 0;
1304
1305         list_for_each_entry(cachep, &slab_caches, list) {
1306                 struct kmem_cache_node *n;
1307
1308                 n = get_node(cachep, node);
1309                 if (!n)
1310                         continue;
1311
1312                 drain_freelist(cachep, n, slabs_tofree(cachep, n));
1313
1314                 if (!list_empty(&n->slabs_full) ||
1315                     !list_empty(&n->slabs_partial)) {
1316                         ret = -EBUSY;
1317                         break;
1318                 }
1319         }
1320         return ret;
1321 }
1322
1323 static int __meminit slab_memory_callback(struct notifier_block *self,
1324                                         unsigned long action, void *arg)
1325 {
1326         struct memory_notify *mnb = arg;
1327         int ret = 0;
1328         int nid;
1329
1330         nid = mnb->status_change_nid;
1331         if (nid < 0)
1332                 goto out;
1333
1334         switch (action) {
1335         case MEM_GOING_ONLINE:
1336                 mutex_lock(&slab_mutex);
1337                 ret = init_cache_node_node(nid);
1338                 mutex_unlock(&slab_mutex);
1339                 break;
1340         case MEM_GOING_OFFLINE:
1341                 mutex_lock(&slab_mutex);
1342                 ret = drain_cache_node_node(nid);
1343                 mutex_unlock(&slab_mutex);
1344                 break;
1345         case MEM_ONLINE:
1346         case MEM_OFFLINE:
1347         case MEM_CANCEL_ONLINE:
1348         case MEM_CANCEL_OFFLINE:
1349                 break;
1350         }
1351 out:
1352         return notifier_from_errno(ret);
1353 }
1354 #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1355
1356 /*
1357  * swap the static kmem_cache_node with kmalloced memory
1358  */
1359 static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1360                                 int nodeid)
1361 {
1362         struct kmem_cache_node *ptr;
1363
1364         ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1365         BUG_ON(!ptr);
1366
1367         memcpy(ptr, list, sizeof(struct kmem_cache_node));
1368         /*
1369          * Do not assume that spinlocks can be initialized via memcpy:
1370          */
1371         spin_lock_init(&ptr->list_lock);
1372
1373         MAKE_ALL_LISTS(cachep, ptr, nodeid);
1374         cachep->node[nodeid] = ptr;
1375 }
1376
1377 /*
1378  * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1379  * size of kmem_cache_node.
1380  */
1381 static void __init set_up_node(struct kmem_cache *cachep, int index)
1382 {
1383         int node;
1384
1385         for_each_online_node(node) {
1386                 cachep->node[node] = &init_kmem_cache_node[index + node];
1387                 cachep->node[node]->next_reap = jiffies +
1388                     REAPTIMEOUT_NODE +
1389                     ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1390         }
1391 }
1392
1393 /*
1394  * Initialisation.  Called after the page allocator have been initialised and
1395  * before smp_init().
1396  */
1397 void __init kmem_cache_init(void)
1398 {
1399         int i;
1400
1401         BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) <
1402                                         sizeof(struct rcu_head));
1403         kmem_cache = &kmem_cache_boot;
1404
1405         if (num_possible_nodes() == 1)
1406                 use_alien_caches = 0;
1407
1408         for (i = 0; i < NUM_INIT_LISTS; i++)
1409                 kmem_cache_node_init(&init_kmem_cache_node[i]);
1410
1411         /*
1412          * Fragmentation resistance on low memory - only use bigger
1413          * page orders on machines with more than 32MB of memory if
1414          * not overridden on the command line.
1415          */
1416         if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1417                 slab_max_order = SLAB_MAX_ORDER_HI;
1418
1419         /* Bootstrap is tricky, because several objects are allocated
1420          * from caches that do not exist yet:
1421          * 1) initialize the kmem_cache cache: it contains the struct
1422          *    kmem_cache structures of all caches, except kmem_cache itself:
1423          *    kmem_cache is statically allocated.
1424          *    Initially an __init data area is used for the head array and the
1425          *    kmem_cache_node structures, it's replaced with a kmalloc allocated
1426          *    array at the end of the bootstrap.
1427          * 2) Create the first kmalloc cache.
1428          *    The struct kmem_cache for the new cache is allocated normally.
1429          *    An __init data area is used for the head array.
1430          * 3) Create the remaining kmalloc caches, with minimally sized
1431          *    head arrays.
1432          * 4) Replace the __init data head arrays for kmem_cache and the first
1433          *    kmalloc cache with kmalloc allocated arrays.
1434          * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1435          *    the other cache's with kmalloc allocated memory.
1436          * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1437          */
1438
1439         /* 1) create the kmem_cache */
1440
1441         /*
1442          * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1443          */
1444         create_boot_cache(kmem_cache, "kmem_cache",
1445                 offsetof(struct kmem_cache, node) +
1446                                   nr_node_ids * sizeof(struct kmem_cache_node *),
1447                                   SLAB_HWCACHE_ALIGN);
1448         list_add(&kmem_cache->list, &slab_caches);
1449         slab_state = PARTIAL;
1450
1451         /*
1452          * Initialize the caches that provide memory for the  kmem_cache_node
1453          * structures first.  Without this, further allocations will bug.
1454          */
1455         kmalloc_caches[INDEX_NODE] = create_kmalloc_cache("kmalloc-node",
1456                                 kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
1457         slab_state = PARTIAL_NODE;
1458         setup_kmalloc_cache_index_table();
1459
1460         slab_early_init = 0;
1461
1462         /* 5) Replace the bootstrap kmem_cache_node */
1463         {
1464                 int nid;
1465
1466                 for_each_online_node(nid) {
1467                         init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1468
1469                         init_list(kmalloc_caches[INDEX_NODE],
1470                                           &init_kmem_cache_node[SIZE_NODE + nid], nid);
1471                 }
1472         }
1473
1474         create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1475 }
1476
1477 void __init kmem_cache_init_late(void)
1478 {
1479         struct kmem_cache *cachep;
1480
1481         slab_state = UP;
1482
1483         /* 6) resize the head arrays to their final sizes */
1484         mutex_lock(&slab_mutex);
1485         list_for_each_entry(cachep, &slab_caches, list)
1486                 if (enable_cpucache(cachep, GFP_NOWAIT))
1487                         BUG();
1488         mutex_unlock(&slab_mutex);
1489
1490         /* Done! */
1491         slab_state = FULL;
1492
1493         /*
1494          * Register a cpu startup notifier callback that initializes
1495          * cpu_cache_get for all new cpus
1496          */
1497         register_cpu_notifier(&cpucache_notifier);
1498
1499 #ifdef CONFIG_NUMA
1500         /*
1501          * Register a memory hotplug callback that initializes and frees
1502          * node.
1503          */
1504         hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1505 #endif
1506
1507         /*
1508          * The reap timers are started later, with a module init call: That part
1509          * of the kernel is not yet operational.
1510          */
1511 }
1512
1513 static int __init cpucache_init(void)
1514 {
1515         int cpu;
1516
1517         /*
1518          * Register the timers that return unneeded pages to the page allocator
1519          */
1520         for_each_online_cpu(cpu)
1521                 start_cpu_timer(cpu);
1522
1523         /* Done! */
1524         slab_state = FULL;
1525         return 0;
1526 }
1527 __initcall(cpucache_init);
1528
1529 static noinline void
1530 slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1531 {
1532 #if DEBUG
1533         struct kmem_cache_node *n;
1534         struct page *page;
1535         unsigned long flags;
1536         int node;
1537         static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1538                                       DEFAULT_RATELIMIT_BURST);
1539
1540         if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
1541                 return;
1542
1543         printk(KERN_WARNING
1544                 "SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1545                 nodeid, gfpflags);
1546         printk(KERN_WARNING "  cache: %s, object size: %d, order: %d\n",
1547                 cachep->name, cachep->size, cachep->gfporder);
1548
1549         for_each_kmem_cache_node(cachep, node, n) {
1550                 unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
1551                 unsigned long active_slabs = 0, num_slabs = 0;
1552
1553                 spin_lock_irqsave(&n->list_lock, flags);
1554                 list_for_each_entry(page, &n->slabs_full, lru) {
1555                         active_objs += cachep->num;
1556                         active_slabs++;
1557                 }
1558                 list_for_each_entry(page, &n->slabs_partial, lru) {
1559                         active_objs += page->active;
1560                         active_slabs++;
1561                 }
1562                 list_for_each_entry(page, &n->slabs_free, lru)
1563                         num_slabs++;
1564
1565                 free_objects += n->free_objects;
1566                 spin_unlock_irqrestore(&n->list_lock, flags);
1567
1568                 num_slabs += active_slabs;
1569                 num_objs = num_slabs * cachep->num;
1570                 printk(KERN_WARNING
1571                         "  node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
1572                         node, active_slabs, num_slabs, active_objs, num_objs,
1573                         free_objects);
1574         }
1575 #endif
1576 }
1577
1578 /*
1579  * Interface to system's page allocator. No need to hold the
1580  * kmem_cache_node ->list_lock.
1581  *
1582  * If we requested dmaable memory, we will get it. Even if we
1583  * did not request dmaable memory, we might get it, but that
1584  * would be relatively rare and ignorable.
1585  */
1586 static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1587                                                                 int nodeid)
1588 {
1589         struct page *page;
1590         int nr_pages;
1591
1592         flags |= cachep->allocflags;
1593         if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1594                 flags |= __GFP_RECLAIMABLE;
1595
1596         page = __alloc_pages_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1597         if (!page) {
1598                 slab_out_of_memory(cachep, flags, nodeid);
1599                 return NULL;
1600         }
1601
1602         if (memcg_charge_slab(page, flags, cachep->gfporder, cachep)) {
1603                 __free_pages(page, cachep->gfporder);
1604                 return NULL;
1605         }
1606
1607         /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1608         if (page_is_pfmemalloc(page))
1609                 pfmemalloc_active = true;
1610
1611         nr_pages = (1 << cachep->gfporder);
1612         if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1613                 add_zone_page_state(page_zone(page),
1614                         NR_SLAB_RECLAIMABLE, nr_pages);
1615         else
1616                 add_zone_page_state(page_zone(page),
1617                         NR_SLAB_UNRECLAIMABLE, nr_pages);
1618         __SetPageSlab(page);
1619         if (page_is_pfmemalloc(page))
1620                 SetPageSlabPfmemalloc(page);
1621
1622         if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1623                 kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1624
1625                 if (cachep->ctor)
1626                         kmemcheck_mark_uninitialized_pages(page, nr_pages);
1627                 else
1628                         kmemcheck_mark_unallocated_pages(page, nr_pages);
1629         }
1630
1631         return page;
1632 }
1633
1634 /*
1635  * Interface to system's page release.
1636  */
1637 static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
1638 {
1639         const unsigned long nr_freed = (1 << cachep->gfporder);
1640
1641         kmemcheck_free_shadow(page, cachep->gfporder);
1642
1643         if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1644                 sub_zone_page_state(page_zone(page),
1645                                 NR_SLAB_RECLAIMABLE, nr_freed);
1646         else
1647                 sub_zone_page_state(page_zone(page),
1648                                 NR_SLAB_UNRECLAIMABLE, nr_freed);
1649
1650         BUG_ON(!PageSlab(page));
1651         __ClearPageSlabPfmemalloc(page);
1652         __ClearPageSlab(page);
1653         page_mapcount_reset(page);
1654         page->mapping = NULL;
1655
1656         if (current->reclaim_state)
1657                 current->reclaim_state->reclaimed_slab += nr_freed;
1658         __free_kmem_pages(page, cachep->gfporder);
1659 }
1660
1661 static void kmem_rcu_free(struct rcu_head *head)
1662 {
1663         struct kmem_cache *cachep;
1664         struct page *page;
1665
1666         page = container_of(head, struct page, rcu_head);
1667         cachep = page->slab_cache;
1668
1669         kmem_freepages(cachep, page);
1670 }
1671
1672 #if DEBUG
1673
1674 #ifdef CONFIG_DEBUG_PAGEALLOC
1675 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1676                             unsigned long caller)
1677 {
1678         int size = cachep->object_size;
1679
1680         addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1681
1682         if (size < 5 * sizeof(unsigned long))
1683                 return;
1684
1685         *addr++ = 0x12345678;
1686         *addr++ = caller;
1687         *addr++ = smp_processor_id();
1688         size -= 3 * sizeof(unsigned long);
1689         {
1690                 unsigned long *sptr = &caller;
1691                 unsigned long svalue;
1692
1693                 while (!kstack_end(sptr)) {
1694                         svalue = *sptr++;
1695                         if (kernel_text_address(svalue)) {
1696                                 *addr++ = svalue;
1697                                 size -= sizeof(unsigned long);
1698                                 if (size <= sizeof(unsigned long))
1699                                         break;
1700                         }
1701                 }
1702
1703         }
1704         *addr++ = 0x87654321;
1705 }
1706 #endif
1707
1708 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1709 {
1710         int size = cachep->object_size;
1711         addr = &((char *)addr)[obj_offset(cachep)];
1712
1713         memset(addr, val, size);
1714         *(unsigned char *)(addr + size - 1) = POISON_END;
1715 }
1716
1717 static void dump_line(char *data, int offset, int limit)
1718 {
1719         int i;
1720         unsigned char error = 0;
1721         int bad_count = 0;
1722
1723         printk(KERN_ERR "%03x: ", offset);
1724         for (i = 0; i < limit; i++) {
1725                 if (data[offset + i] != POISON_FREE) {
1726                         error = data[offset + i];
1727                         bad_count++;
1728                 }
1729         }
1730         print_hex_dump(KERN_CONT, "", 0, 16, 1,
1731                         &data[offset], limit, 1);
1732
1733         if (bad_count == 1) {
1734                 error ^= POISON_FREE;
1735                 if (!(error & (error - 1))) {
1736                         printk(KERN_ERR "Single bit error detected. Probably "
1737                                         "bad RAM.\n");
1738 #ifdef CONFIG_X86
1739                         printk(KERN_ERR "Run memtest86+ or a similar memory "
1740                                         "test tool.\n");
1741 #else
1742                         printk(KERN_ERR "Run a memory test tool.\n");
1743 #endif
1744                 }
1745         }
1746 }
1747 #endif
1748
1749 #if DEBUG
1750
1751 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1752 {
1753         int i, size;
1754         char *realobj;
1755
1756         if (cachep->flags & SLAB_RED_ZONE) {
1757                 printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
1758                         *dbg_redzone1(cachep, objp),
1759                         *dbg_redzone2(cachep, objp));
1760         }
1761
1762         if (cachep->flags & SLAB_STORE_USER) {
1763                 printk(KERN_ERR "Last user: [<%p>](%pSR)\n",
1764                        *dbg_userword(cachep, objp),
1765                        *dbg_userword(cachep, objp));
1766         }
1767         realobj = (char *)objp + obj_offset(cachep);
1768         size = cachep->object_size;
1769         for (i = 0; i < size && lines; i += 16, lines--) {
1770                 int limit;
1771                 limit = 16;
1772                 if (i + limit > size)
1773                         limit = size - i;
1774                 dump_line(realobj, i, limit);
1775         }
1776 }
1777
1778 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1779 {
1780         char *realobj;
1781         int size, i;
1782         int lines = 0;
1783
1784         realobj = (char *)objp + obj_offset(cachep);
1785         size = cachep->object_size;
1786
1787         for (i = 0; i < size; i++) {
1788                 char exp = POISON_FREE;
1789                 if (i == size - 1)
1790                         exp = POISON_END;
1791                 if (realobj[i] != exp) {
1792                         int limit;
1793                         /* Mismatch ! */
1794                         /* Print header */
1795                         if (lines == 0) {
1796                                 printk(KERN_ERR
1797                                         "Slab corruption (%s): %s start=%p, len=%d\n",
1798                                         print_tainted(), cachep->name, realobj, size);
1799                                 print_objinfo(cachep, objp, 0);
1800                         }
1801                         /* Hexdump the affected line */
1802                         i = (i / 16) * 16;
1803                         limit = 16;
1804                         if (i + limit > size)
1805                                 limit = size - i;
1806                         dump_line(realobj, i, limit);
1807                         i += 16;
1808                         lines++;
1809                         /* Limit to 5 lines */
1810                         if (lines > 5)
1811                                 break;
1812                 }
1813         }
1814         if (lines != 0) {
1815                 /* Print some data about the neighboring objects, if they
1816                  * exist:
1817                  */
1818                 struct page *page = virt_to_head_page(objp);
1819                 unsigned int objnr;
1820
1821                 objnr = obj_to_index(cachep, page, objp);
1822                 if (objnr) {
1823                         objp = index_to_obj(cachep, page, objnr - 1);
1824                         realobj = (char *)objp + obj_offset(cachep);
1825                         printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
1826                                realobj, size);
1827                         print_objinfo(cachep, objp, 2);
1828                 }
1829                 if (objnr + 1 < cachep->num) {
1830                         objp = index_to_obj(cachep, page, objnr + 1);
1831                         realobj = (char *)objp + obj_offset(cachep);
1832                         printk(KERN_ERR "Next obj: start=%p, len=%d\n",
1833                                realobj, size);
1834                         print_objinfo(cachep, objp, 2);
1835                 }
1836         }
1837 }
1838 #endif
1839
1840 #if DEBUG
1841 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1842                                                 struct page *page)
1843 {
1844         int i;
1845         for (i = 0; i < cachep->num; i++) {
1846                 void *objp = index_to_obj(cachep, page, i);
1847
1848                 if (cachep->flags & SLAB_POISON) {
1849 #ifdef CONFIG_DEBUG_PAGEALLOC
1850                         if (cachep->size % PAGE_SIZE == 0 &&
1851                                         OFF_SLAB(cachep))
1852                                 kernel_map_pages(virt_to_page(objp),
1853                                         cachep->size / PAGE_SIZE, 1);
1854                         else
1855                                 check_poison_obj(cachep, objp);
1856 #else
1857                         check_poison_obj(cachep, objp);
1858 #endif
1859                 }
1860                 if (cachep->flags & SLAB_RED_ZONE) {
1861                         if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1862                                 slab_error(cachep, "start of a freed object "
1863                                            "was overwritten");
1864                         if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1865                                 slab_error(cachep, "end of a freed object "
1866                                            "was overwritten");
1867                 }
1868         }
1869 }
1870 #else
1871 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1872                                                 struct page *page)
1873 {
1874 }
1875 #endif
1876
1877 /**
1878  * slab_destroy - destroy and release all objects in a slab
1879  * @cachep: cache pointer being destroyed
1880  * @page: page pointer being destroyed
1881  *
1882  * Destroy all the objs in a slab page, and release the mem back to the system.
1883  * Before calling the slab page must have been unlinked from the cache. The
1884  * kmem_cache_node ->list_lock is not held/needed.
1885  */
1886 static void slab_destroy(struct kmem_cache *cachep, struct page *page)
1887 {
1888         void *freelist;
1889
1890         freelist = page->freelist;
1891         slab_destroy_debugcheck(cachep, page);
1892         if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
1893                 call_rcu(&page->rcu_head, kmem_rcu_free);
1894         else
1895                 kmem_freepages(cachep, page);
1896
1897         /*
1898          * From now on, we don't use freelist
1899          * although actual page can be freed in rcu context
1900          */
1901         if (OFF_SLAB(cachep))
1902                 kmem_cache_free(cachep->freelist_cache, freelist);
1903 }
1904
1905 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
1906 {
1907         struct page *page, *n;
1908
1909         list_for_each_entry_safe(page, n, list, lru) {
1910                 list_del(&page->lru);
1911                 slab_destroy(cachep, page);
1912         }
1913 }
1914
1915 /**
1916  * calculate_slab_order - calculate size (page order) of slabs
1917  * @cachep: pointer to the cache that is being created
1918  * @size: size of objects to be created in this cache.
1919  * @align: required alignment for the objects.
1920  * @flags: slab allocation flags
1921  *
1922  * Also calculates the number of objects per slab.
1923  *
1924  * This could be made much more intelligent.  For now, try to avoid using
1925  * high order pages for slabs.  When the gfp() functions are more friendly
1926  * towards high-order requests, this should be changed.
1927  */
1928 static size_t calculate_slab_order(struct kmem_cache *cachep,
1929                         size_t size, size_t align, unsigned long flags)
1930 {
1931         unsigned long offslab_limit;
1932         size_t left_over = 0;
1933         int gfporder;
1934
1935         for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
1936                 unsigned int num;
1937                 size_t remainder;
1938
1939                 cache_estimate(gfporder, size, align, flags, &remainder, &num);
1940                 if (!num)
1941                         continue;
1942
1943                 /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
1944                 if (num > SLAB_OBJ_MAX_NUM)
1945                         break;
1946
1947                 if (flags & CFLGS_OFF_SLAB) {
1948                         size_t freelist_size_per_obj = sizeof(freelist_idx_t);
1949                         /*
1950                          * Max number of objs-per-slab for caches which
1951                          * use off-slab slabs. Needed to avoid a possible
1952                          * looping condition in cache_grow().
1953                          */
1954                         if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK))
1955                                 freelist_size_per_obj += sizeof(char);
1956                         offslab_limit = size;
1957                         offslab_limit /= freelist_size_per_obj;
1958
1959                         if (num > offslab_limit)
1960                                 break;
1961                 }
1962
1963                 /* Found something acceptable - save it away */
1964                 cachep->num = num;
1965                 cachep->gfporder = gfporder;
1966                 left_over = remainder;
1967
1968                 /*
1969                  * A VFS-reclaimable slab tends to have most allocations
1970                  * as GFP_NOFS and we really don't want to have to be allocating
1971                  * higher-order pages when we are unable to shrink dcache.
1972                  */
1973                 if (flags & SLAB_RECLAIM_ACCOUNT)
1974                         break;
1975
1976                 /*
1977                  * Large number of objects is good, but very large slabs are
1978                  * currently bad for the gfp()s.
1979                  */
1980                 if (gfporder >= slab_max_order)
1981                         break;
1982
1983                 /*
1984                  * Acceptable internal fragmentation?
1985                  */
1986                 if (left_over * 8 <= (PAGE_SIZE << gfporder))
1987                         break;
1988         }
1989         return left_over;
1990 }
1991
1992 static struct array_cache __percpu *alloc_kmem_cache_cpus(
1993                 struct kmem_cache *cachep, int entries, int batchcount)
1994 {
1995         int cpu;
1996         size_t size;
1997         struct array_cache __percpu *cpu_cache;
1998
1999         size = sizeof(void *) * entries + sizeof(struct array_cache);
2000         cpu_cache = __alloc_percpu(size, sizeof(void *));
2001
2002         if (!cpu_cache)
2003                 return NULL;
2004
2005         for_each_possible_cpu(cpu) {
2006                 init_arraycache(per_cpu_ptr(cpu_cache, cpu),
2007                                 entries, batchcount);
2008         }
2009
2010         return cpu_cache;
2011 }
2012
2013 static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
2014 {
2015         if (slab_state >= FULL)
2016                 return enable_cpucache(cachep, gfp);
2017
2018         cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
2019         if (!cachep->cpu_cache)
2020                 return 1;
2021
2022         if (slab_state == DOWN) {
2023                 /* Creation of first cache (kmem_cache). */
2024                 set_up_node(kmem_cache, CACHE_CACHE);
2025         } else if (slab_state == PARTIAL) {
2026                 /* For kmem_cache_node */
2027                 set_up_node(cachep, SIZE_NODE);
2028         } else {
2029                 int node;
2030
2031                 for_each_online_node(node) {
2032                         cachep->node[node] = kmalloc_node(
2033                                 sizeof(struct kmem_cache_node), gfp, node);
2034                         BUG_ON(!cachep->node[node]);
2035                         kmem_cache_node_init(cachep->node[node]);
2036                 }
2037         }
2038
2039         cachep->node[numa_mem_id()]->next_reap =
2040                         jiffies + REAPTIMEOUT_NODE +
2041                         ((unsigned long)cachep) % REAPTIMEOUT_NODE;
2042
2043         cpu_cache_get(cachep)->avail = 0;
2044         cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2045         cpu_cache_get(cachep)->batchcount = 1;
2046         cpu_cache_get(cachep)->touched = 0;
2047         cachep->batchcount = 1;
2048         cachep->limit = BOOT_CPUCACHE_ENTRIES;
2049         return 0;
2050 }
2051
2052 unsigned long kmem_cache_flags(unsigned long object_size,
2053         unsigned long flags, const char *name,
2054         void (*ctor)(void *))
2055 {
2056         return flags;
2057 }
2058
2059 struct kmem_cache *
2060 __kmem_cache_alias(const char *name, size_t size, size_t align,
2061                    unsigned long flags, void (*ctor)(void *))
2062 {
2063         struct kmem_cache *cachep;
2064
2065         cachep = find_mergeable(size, align, flags, name, ctor);
2066         if (cachep) {
2067                 cachep->refcount++;
2068
2069                 /*
2070                  * Adjust the object sizes so that we clear
2071                  * the complete object on kzalloc.
2072                  */
2073                 cachep->object_size = max_t(int, cachep->object_size, size);
2074         }
2075         return cachep;
2076 }
2077
2078 /**
2079  * __kmem_cache_create - Create a cache.
2080  * @cachep: cache management descriptor
2081  * @flags: SLAB flags
2082  *
2083  * Returns a ptr to the cache on success, NULL on failure.
2084  * Cannot be called within a int, but can be interrupted.
2085  * The @ctor is run when new pages are allocated by the cache.
2086  *
2087  * The flags are
2088  *
2089  * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2090  * to catch references to uninitialised memory.
2091  *
2092  * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2093  * for buffer overruns.
2094  *
2095  * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2096  * cacheline.  This can be beneficial if you're counting cycles as closely
2097  * as davem.
2098  */
2099 int
2100 __kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
2101 {
2102         size_t left_over, freelist_size;
2103         size_t ralign = BYTES_PER_WORD;
2104         gfp_t gfp;
2105         int err;
2106         size_t size = cachep->size;
2107
2108 #if DEBUG
2109 #if FORCED_DEBUG
2110         /*
2111          * Enable redzoning and last user accounting, except for caches with
2112          * large objects, if the increased size would increase the object size
2113          * above the next power of two: caches with object sizes just above a
2114          * power of two have a significant amount of internal fragmentation.
2115          */
2116         if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2117                                                 2 * sizeof(unsigned long long)))
2118                 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2119         if (!(flags & SLAB_DESTROY_BY_RCU))
2120                 flags |= SLAB_POISON;
2121 #endif
2122         if (flags & SLAB_DESTROY_BY_RCU)
2123                 BUG_ON(flags & SLAB_POISON);
2124 #endif
2125
2126         /*
2127          * Check that size is in terms of words.  This is needed to avoid
2128          * unaligned accesses for some archs when redzoning is used, and makes
2129          * sure any on-slab bufctl's are also correctly aligned.
2130          */
2131         if (size & (BYTES_PER_WORD - 1)) {
2132                 size += (BYTES_PER_WORD - 1);
2133                 size &= ~(BYTES_PER_WORD - 1);
2134         }
2135
2136         if (flags & SLAB_RED_ZONE) {
2137                 ralign = REDZONE_ALIGN;
2138                 /* If redzoning, ensure that the second redzone is suitably
2139                  * aligned, by adjusting the object size accordingly. */
2140                 size += REDZONE_ALIGN - 1;
2141                 size &= ~(REDZONE_ALIGN - 1);
2142         }
2143
2144         /* 3) caller mandated alignment */
2145         if (ralign < cachep->align) {
2146                 ralign = cachep->align;
2147         }
2148         /* disable debug if necessary */
2149         if (ralign > __alignof__(unsigned long long))
2150                 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2151         /*
2152          * 4) Store it.
2153          */
2154         cachep->align = ralign;
2155
2156         if (slab_is_available())
2157                 gfp = GFP_KERNEL;
2158         else
2159                 gfp = GFP_NOWAIT;
2160
2161 #if DEBUG
2162
2163         /*
2164          * Both debugging options require word-alignment which is calculated
2165          * into align above.
2166          */
2167         if (flags & SLAB_RED_ZONE) {
2168                 /* add space for red zone words */
2169                 cachep->obj_offset += sizeof(unsigned long long);
2170                 size += 2 * sizeof(unsigned long long);
2171         }
2172         if (flags & SLAB_STORE_USER) {
2173                 /* user store requires one word storage behind the end of
2174                  * the real object. But if the second red zone needs to be
2175                  * aligned to 64 bits, we must allow that much space.
2176                  */
2177                 if (flags & SLAB_RED_ZONE)
2178                         size += REDZONE_ALIGN;
2179                 else
2180                         size += BYTES_PER_WORD;
2181         }
2182 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2183         /*
2184          * To activate debug pagealloc, off-slab management is necessary
2185          * requirement. In early phase of initialization, small sized slab
2186          * doesn't get initialized so it would not be possible. So, we need
2187          * to check size >= 256. It guarantees that all necessary small
2188          * sized slab is initialized in current slab initialization sequence.
2189          */
2190         if (!slab_early_init && size >= kmalloc_size(INDEX_NODE) &&
2191                 size >= 256 && cachep->object_size > cache_line_size() &&
2192                 ALIGN(size, cachep->align) < PAGE_SIZE) {
2193                 cachep->obj_offset += PAGE_SIZE - ALIGN(size, cachep->align);
2194                 size = PAGE_SIZE;
2195         }
2196 #endif
2197 #endif
2198
2199         /*
2200          * Determine if the slab management is 'on' or 'off' slab.
2201          * (bootstrapping cannot cope with offslab caches so don't do
2202          * it too early on. Always use on-slab management when
2203          * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
2204          */
2205         if (size >= OFF_SLAB_MIN_SIZE && !slab_early_init &&
2206             !(flags & SLAB_NOLEAKTRACE))
2207                 /*
2208                  * Size is large, assume best to place the slab management obj
2209                  * off-slab (should allow better packing of objs).
2210                  */
2211                 flags |= CFLGS_OFF_SLAB;
2212
2213         size = ALIGN(size, cachep->align);
2214         /*
2215          * We should restrict the number of objects in a slab to implement
2216          * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
2217          */
2218         if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
2219                 size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
2220
2221         left_over = calculate_slab_order(cachep, size, cachep->align, flags);
2222
2223         if (!cachep->num)
2224                 return -E2BIG;
2225
2226         freelist_size = calculate_freelist_size(cachep->num, cachep->align);
2227
2228         /*
2229          * If the slab has been placed off-slab, and we have enough space then
2230          * move it on-slab. This is at the expense of any extra colouring.
2231          */
2232         if (flags & CFLGS_OFF_SLAB && left_over >= freelist_size) {
2233                 flags &= ~CFLGS_OFF_SLAB;
2234                 left_over -= freelist_size;
2235         }
2236
2237         if (flags & CFLGS_OFF_SLAB) {
2238                 /* really off slab. No need for manual alignment */
2239                 freelist_size = calculate_freelist_size(cachep->num, 0);
2240
2241 #ifdef CONFIG_PAGE_POISONING
2242                 /* If we're going to use the generic kernel_map_pages()
2243                  * poisoning, then it's going to smash the contents of
2244                  * the redzone and userword anyhow, so switch them off.
2245                  */
2246                 if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
2247                         flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2248 #endif
2249         }
2250
2251         cachep->colour_off = cache_line_size();
2252         /* Offset must be a multiple of the alignment. */
2253         if (cachep->colour_off < cachep->align)
2254                 cachep->colour_off = cachep->align;
2255         cachep->colour = left_over / cachep->colour_off;
2256         cachep->freelist_size = freelist_size;
2257         cachep->flags = flags;
2258         cachep->allocflags = __GFP_COMP;
2259         if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
2260                 cachep->allocflags |= GFP_DMA;
2261         cachep->size = size;
2262         cachep->reciprocal_buffer_size = reciprocal_value(size);
2263
2264         if (flags & CFLGS_OFF_SLAB) {
2265                 cachep->freelist_cache = kmalloc_slab(freelist_size, 0u);
2266                 /*
2267                  * This is a possibility for one of the kmalloc_{dma,}_caches.
2268                  * But since we go off slab only for object size greater than
2269                  * OFF_SLAB_MIN_SIZE, and kmalloc_{dma,}_caches get created
2270                  * in ascending order,this should not happen at all.
2271                  * But leave a BUG_ON for some lucky dude.
2272                  */
2273                 BUG_ON(ZERO_OR_NULL_PTR(cachep->freelist_cache));
2274         }
2275
2276         err = setup_cpu_cache(cachep, gfp);
2277         if (err) {
2278                 __kmem_cache_shutdown(cachep);
2279                 return err;
2280         }
2281
2282         return 0;
2283 }
2284
2285 #if DEBUG
2286 static void check_irq_off(void)
2287 {
2288         BUG_ON(!irqs_disabled());
2289 }
2290
2291 static void check_irq_on(void)
2292 {
2293         BUG_ON(irqs_disabled());
2294 }
2295
2296 static void check_spinlock_acquired(struct kmem_cache *cachep)
2297 {
2298 #ifdef CONFIG_SMP
2299         check_irq_off();
2300         assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
2301 #endif
2302 }
2303
2304 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2305 {
2306 #ifdef CONFIG_SMP
2307         check_irq_off();
2308         assert_spin_locked(&get_node(cachep, node)->list_lock);
2309 #endif
2310 }
2311
2312 #else
2313 #define check_irq_off() do { } while(0)
2314 #define check_irq_on()  do { } while(0)
2315 #define check_spinlock_acquired(x) do { } while(0)
2316 #define check_spinlock_acquired_node(x, y) do { } while(0)
2317 #endif
2318
2319 static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
2320                         struct array_cache *ac,
2321                         int force, int node);
2322
2323 static void do_drain(void *arg)
2324 {
2325         struct kmem_cache *cachep = arg;
2326         struct array_cache *ac;
2327         int node = numa_mem_id();
2328         struct kmem_cache_node *n;
2329         LIST_HEAD(list);
2330
2331         check_irq_off();
2332         ac = cpu_cache_get(cachep);
2333         n = get_node(cachep, node);
2334         spin_lock(&n->list_lock);
2335         free_block(cachep, ac->entry, ac->avail, node, &list);
2336         spin_unlock(&n->list_lock);
2337         slabs_destroy(cachep, &list);
2338         ac->avail = 0;
2339 }
2340
2341 static void drain_cpu_caches(struct kmem_cache *cachep)
2342 {
2343         struct kmem_cache_node *n;
2344         int node;
2345
2346         on_each_cpu(do_drain, cachep, 1);
2347         check_irq_on();
2348         for_each_kmem_cache_node(cachep, node, n)
2349                 if (n->alien)
2350                         drain_alien_cache(cachep, n->alien);
2351
2352         for_each_kmem_cache_node(cachep, node, n)
2353                 drain_array(cachep, n, n->shared, 1, node);
2354 }
2355
2356 /*
2357  * Remove slabs from the list of free slabs.
2358  * Specify the number of slabs to drain in tofree.
2359  *
2360  * Returns the actual number of slabs released.
2361  */
2362 static int drain_freelist(struct kmem_cache *cache,
2363                         struct kmem_cache_node *n, int tofree)
2364 {
2365         struct list_head *p;
2366         int nr_freed;
2367         struct page *page;
2368
2369         nr_freed = 0;
2370         while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
2371
2372                 spin_lock_irq(&n->list_lock);
2373                 p = n->slabs_free.prev;
2374                 if (p == &n->slabs_free) {
2375                         spin_unlock_irq(&n->list_lock);
2376                         goto out;
2377                 }
2378
2379                 page = list_entry(p, struct page, lru);
2380 #if DEBUG
2381                 BUG_ON(page->active);
2382 #endif
2383                 list_del(&page->lru);
2384                 /*
2385                  * Safe to drop the lock. The slab is no longer linked
2386                  * to the cache.
2387                  */
2388                 n->free_objects -= cache->num;
2389                 spin_unlock_irq(&n->list_lock);
2390                 slab_destroy(cache, page);
2391                 nr_freed++;
2392         }
2393 out:
2394         return nr_freed;
2395 }
2396
2397 int __kmem_cache_shrink(struct kmem_cache *cachep, bool deactivate)
2398 {
2399         int ret = 0;
2400         int node;
2401         struct kmem_cache_node *n;
2402
2403         drain_cpu_caches(cachep);
2404
2405         check_irq_on();
2406         for_each_kmem_cache_node(cachep, node, n) {
2407                 drain_freelist(cachep, n, slabs_tofree(cachep, n));
2408
2409                 ret += !list_empty(&n->slabs_full) ||
2410                         !list_empty(&n->slabs_partial);
2411         }
2412         return (ret ? 1 : 0);
2413 }
2414
2415 int __kmem_cache_shutdown(struct kmem_cache *cachep)
2416 {
2417         int i;
2418         struct kmem_cache_node *n;
2419         int rc = __kmem_cache_shrink(cachep, false);
2420
2421         if (rc)
2422                 return rc;
2423
2424         free_percpu(cachep->cpu_cache);
2425
2426         /* NUMA: free the node structures */
2427         for_each_kmem_cache_node(cachep, i, n) {
2428                 kfree(n->shared);
2429                 free_alien_cache(n->alien);
2430                 kfree(n);
2431                 cachep->node[i] = NULL;
2432         }
2433         return 0;
2434 }
2435
2436 /*
2437  * Get the memory for a slab management obj.
2438  *
2439  * For a slab cache when the slab descriptor is off-slab, the
2440  * slab descriptor can't come from the same cache which is being created,
2441  * Because if it is the case, that means we defer the creation of
2442  * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
2443  * And we eventually call down to __kmem_cache_create(), which
2444  * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
2445  * This is a "chicken-and-egg" problem.
2446  *
2447  * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
2448  * which are all initialized during kmem_cache_init().
2449  */
2450 static void *alloc_slabmgmt(struct kmem_cache *cachep,
2451                                    struct page *page, int colour_off,
2452                                    gfp_t local_flags, int nodeid)
2453 {
2454         void *freelist;
2455         void *addr = page_address(page);
2456
2457         if (OFF_SLAB(cachep)) {
2458                 /* Slab management obj is off-slab. */
2459                 freelist = kmem_cache_alloc_node(cachep->freelist_cache,
2460                                               local_flags, nodeid);
2461                 if (!freelist)
2462                         return NULL;
2463         } else {
2464                 freelist = addr + colour_off;
2465                 colour_off += cachep->freelist_size;
2466         }
2467         page->active = 0;
2468         page->s_mem = addr + colour_off;
2469         return freelist;
2470 }
2471
2472 static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
2473 {
2474         return ((freelist_idx_t *)page->freelist)[idx];
2475 }
2476
2477 static inline void set_free_obj(struct page *page,
2478                                         unsigned int idx, freelist_idx_t val)
2479 {
2480         ((freelist_idx_t *)(page->freelist))[idx] = val;
2481 }
2482
2483 static void cache_init_objs(struct kmem_cache *cachep,
2484                             struct page *page)
2485 {
2486         int i;
2487
2488         for (i = 0; i < cachep->num; i++) {
2489                 void *objp = index_to_obj(cachep, page, i);
2490 #if DEBUG
2491                 /* need to poison the objs? */
2492                 if (cachep->flags & SLAB_POISON)
2493                         poison_obj(cachep, objp, POISON_FREE);
2494                 if (cachep->flags & SLAB_STORE_USER)
2495                         *dbg_userword(cachep, objp) = NULL;
2496
2497                 if (cachep->flags & SLAB_RED_ZONE) {
2498                         *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2499                         *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2500                 }
2501                 /*
2502                  * Constructors are not allowed to allocate memory from the same
2503                  * cache which they are a constructor for.  Otherwise, deadlock.
2504                  * They must also be threaded.
2505                  */
2506                 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2507                         cachep->ctor(objp + obj_offset(cachep));
2508
2509                 if (cachep->flags & SLAB_RED_ZONE) {
2510                         if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2511                                 slab_error(cachep, "constructor overwrote the"
2512                                            " end of an object");
2513                         if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2514                                 slab_error(cachep, "constructor overwrote the"
2515                                            " start of an object");
2516                 }
2517                 if ((cachep->size % PAGE_SIZE) == 0 &&
2518                             OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
2519                         kernel_map_pages(virt_to_page(objp),
2520                                          cachep->size / PAGE_SIZE, 0);
2521 #else
2522                 if (cachep->ctor)
2523                         cachep->ctor(objp);
2524 #endif
2525                 set_obj_status(page, i, OBJECT_FREE);
2526                 set_free_obj(page, i, i);
2527         }
2528 }
2529
2530 static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
2531 {
2532         if (CONFIG_ZONE_DMA_FLAG) {
2533                 if (flags & GFP_DMA)
2534                         BUG_ON(!(cachep->allocflags & GFP_DMA));
2535                 else
2536                         BUG_ON(cachep->allocflags & GFP_DMA);
2537         }
2538 }
2539
2540 static void *slab_get_obj(struct kmem_cache *cachep, struct page *page,
2541                                 int nodeid)
2542 {
2543         void *objp;
2544
2545         objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
2546         page->active++;
2547 #if DEBUG
2548         WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid);
2549 #endif
2550
2551         return objp;
2552 }
2553
2554 static void slab_put_obj(struct kmem_cache *cachep, struct page *page,
2555                                 void *objp, int nodeid)
2556 {
2557         unsigned int objnr = obj_to_index(cachep, page, objp);
2558 #if DEBUG
2559         unsigned int i;
2560
2561         /* Verify that the slab belongs to the intended node */
2562         WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid);
2563
2564         /* Verify double free bug */
2565         for (i = page->active; i < cachep->num; i++) {
2566                 if (get_free_obj(page, i) == objnr) {
2567                         printk(KERN_ERR "slab: double free detected in cache "
2568                                         "'%s', objp %p\n", cachep->name, objp);
2569                         BUG();
2570                 }
2571         }
2572 #endif
2573         page->active--;
2574         set_free_obj(page, page->active, objnr);
2575 }
2576
2577 /*
2578  * Map pages beginning at addr to the given cache and slab. This is required
2579  * for the slab allocator to be able to lookup the cache and slab of a
2580  * virtual address for kfree, ksize, and slab debugging.
2581  */
2582 static void slab_map_pages(struct kmem_cache *cache, struct page *page,
2583                            void *freelist)
2584 {
2585         page->slab_cache = cache;
2586         page->freelist = freelist;
2587 }
2588
2589 /*
2590  * Grow (by 1) the number of slabs within a cache.  This is called by
2591  * kmem_cache_alloc() when there are no active objs left in a cache.
2592  */
2593 static int cache_grow(struct kmem_cache *cachep,
2594                 gfp_t flags, int nodeid, struct page *page)
2595 {
2596         void *freelist;
2597         size_t offset;
2598         gfp_t local_flags;
2599         struct kmem_cache_node *n;
2600
2601         /*
2602          * Be lazy and only check for valid flags here,  keeping it out of the
2603          * critical path in kmem_cache_alloc().
2604          */
2605         if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
2606                 pr_emerg("gfp: %u\n", flags & GFP_SLAB_BUG_MASK);
2607                 BUG();
2608         }
2609         local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2610
2611         /* Take the node list lock to change the colour_next on this node */
2612         check_irq_off();
2613         n = get_node(cachep, nodeid);
2614         spin_lock(&n->list_lock);
2615
2616         /* Get colour for the slab, and cal the next value. */
2617         offset = n->colour_next;
2618         n->colour_next++;
2619         if (n->colour_next >= cachep->colour)
2620                 n->colour_next = 0;
2621         spin_unlock(&n->list_lock);
2622
2623         offset *= cachep->colour_off;
2624
2625         if (gfpflags_allow_blocking(local_flags))
2626                 local_irq_enable();
2627
2628         /*
2629          * The test for missing atomic flag is performed here, rather than
2630          * the more obvious place, simply to reduce the critical path length
2631          * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2632          * will eventually be caught here (where it matters).
2633          */
2634         kmem_flagcheck(cachep, flags);
2635
2636         /*
2637          * Get mem for the objs.  Attempt to allocate a physical page from
2638          * 'nodeid'.
2639          */
2640         if (!page)
2641                 page = kmem_getpages(cachep, local_flags, nodeid);
2642         if (!page)
2643                 goto failed;
2644
2645         /* Get slab management. */
2646         freelist = alloc_slabmgmt(cachep, page, offset,
2647                         local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
2648         if (!freelist)
2649                 goto opps1;
2650
2651         slab_map_pages(cachep, page, freelist);
2652
2653         cache_init_objs(cachep, page);
2654
2655         if (gfpflags_allow_blocking(local_flags))
2656                 local_irq_disable();
2657         check_irq_off();
2658         spin_lock(&n->list_lock);
2659
2660         /* Make slab active. */
2661         list_add_tail(&page->lru, &(n->slabs_free));
2662         STATS_INC_GROWN(cachep);
2663         n->free_objects += cachep->num;
2664         spin_unlock(&n->list_lock);
2665         return 1;
2666 opps1:
2667         kmem_freepages(cachep, page);
2668 failed:
2669         if (gfpflags_allow_blocking(local_flags))
2670                 local_irq_disable();
2671         return 0;
2672 }
2673
2674 #if DEBUG
2675
2676 /*
2677  * Perform extra freeing checks:
2678  * - detect bad pointers.
2679  * - POISON/RED_ZONE checking
2680  */
2681 static void kfree_debugcheck(const void *objp)
2682 {
2683         if (!virt_addr_valid(objp)) {
2684                 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
2685                        (unsigned long)objp);
2686                 BUG();
2687         }
2688 }
2689
2690 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2691 {
2692         unsigned long long redzone1, redzone2;
2693
2694         redzone1 = *dbg_redzone1(cache, obj);
2695         redzone2 = *dbg_redzone2(cache, obj);
2696
2697         /*
2698          * Redzone is ok.
2699          */
2700         if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2701                 return;
2702
2703         if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2704                 slab_error(cache, "double free detected");
2705         else
2706                 slab_error(cache, "memory outside object was overwritten");
2707
2708         printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2709                         obj, redzone1, redzone2);
2710 }
2711
2712 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2713                                    unsigned long caller)
2714 {
2715         unsigned int objnr;
2716         struct page *page;
2717
2718         BUG_ON(virt_to_cache(objp) != cachep);
2719
2720         objp -= obj_offset(cachep);
2721         kfree_debugcheck(objp);
2722         page = virt_to_head_page(objp);
2723
2724         if (cachep->flags & SLAB_RED_ZONE) {
2725                 verify_redzone_free(cachep, objp);
2726                 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2727                 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2728         }
2729         if (cachep->flags & SLAB_STORE_USER)
2730                 *dbg_userword(cachep, objp) = (void *)caller;
2731
2732         objnr = obj_to_index(cachep, page, objp);
2733
2734         BUG_ON(objnr >= cachep->num);
2735         BUG_ON(objp != index_to_obj(cachep, page, objnr));
2736
2737         set_obj_status(page, objnr, OBJECT_FREE);
2738         if (cachep->flags & SLAB_POISON) {
2739 #ifdef CONFIG_DEBUG_PAGEALLOC
2740                 if ((cachep->size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
2741                         store_stackinfo(cachep, objp, caller);
2742                         kernel_map_pages(virt_to_page(objp),
2743                                          cachep->size / PAGE_SIZE, 0);
2744                 } else {
2745                         poison_obj(cachep, objp, POISON_FREE);
2746                 }
2747 #else
2748                 poison_obj(cachep, objp, POISON_FREE);
2749 #endif
2750         }
2751         return objp;
2752 }
2753
2754 #else
2755 #define kfree_debugcheck(x) do { } while(0)
2756 #define cache_free_debugcheck(x,objp,z) (objp)
2757 #endif
2758
2759 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags,
2760                                                         bool force_refill)
2761 {
2762         int batchcount;
2763         struct kmem_cache_node *n;
2764         struct array_cache *ac;
2765         int node;
2766
2767         check_irq_off();
2768         node = numa_mem_id();
2769         if (unlikely(force_refill))
2770                 goto force_grow;
2771 retry:
2772         ac = cpu_cache_get(cachep);
2773         batchcount = ac->batchcount;
2774         if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2775                 /*
2776                  * If there was little recent activity on this cache, then
2777                  * perform only a partial refill.  Otherwise we could generate
2778                  * refill bouncing.
2779                  */
2780                 batchcount = BATCHREFILL_LIMIT;
2781         }
2782         n = get_node(cachep, node);
2783
2784         BUG_ON(ac->avail > 0 || !n);
2785         spin_lock(&n->list_lock);
2786
2787         /* See if we can refill from the shared array */
2788         if (n->shared && transfer_objects(ac, n->shared, batchcount)) {
2789                 n->shared->touched = 1;
2790                 goto alloc_done;
2791         }
2792
2793         while (batchcount > 0) {
2794                 struct list_head *entry;
2795                 struct page *page;
2796                 /* Get slab alloc is to come from. */
2797                 entry = n->slabs_partial.next;
2798                 if (entry == &n->slabs_partial) {
2799                         n->free_touched = 1;
2800                         entry = n->slabs_free.next;
2801                         if (entry == &n->slabs_free)
2802                                 goto must_grow;
2803                 }
2804
2805                 page = list_entry(entry, struct page, lru);
2806                 check_spinlock_acquired(cachep);
2807
2808                 /*
2809                  * The slab was either on partial or free list so
2810                  * there must be at least one object available for
2811                  * allocation.
2812                  */
2813                 BUG_ON(page->active >= cachep->num);
2814
2815                 while (page->active < cachep->num && batchcount--) {
2816                         STATS_INC_ALLOCED(cachep);
2817                         STATS_INC_ACTIVE(cachep);
2818                         STATS_SET_HIGH(cachep);
2819
2820                         ac_put_obj(cachep, ac, slab_get_obj(cachep, page,
2821                                                                         node));
2822                 }
2823
2824                 /* move slabp to correct slabp list: */
2825                 list_del(&page->lru);
2826                 if (page->active == cachep->num)
2827                         list_add(&page->lru, &n->slabs_full);
2828                 else
2829                         list_add(&page->lru, &n->slabs_partial);
2830         }
2831
2832 must_grow:
2833         n->free_objects -= ac->avail;
2834 alloc_done:
2835         spin_unlock(&n->list_lock);
2836
2837         if (unlikely(!ac->avail)) {
2838                 int x;
2839 force_grow:
2840                 x = cache_grow(cachep, gfp_exact_node(flags), node, NULL);
2841
2842                 /* cache_grow can reenable interrupts, then ac could change. */
2843                 ac = cpu_cache_get(cachep);
2844                 node = numa_mem_id();
2845
2846                 /* no objects in sight? abort */
2847                 if (!x && (ac->avail == 0 || force_refill))
2848                         return NULL;
2849
2850                 if (!ac->avail)         /* objects refilled by interrupt? */
2851                         goto retry;
2852         }
2853         ac->touched = 1;
2854
2855         return ac_get_obj(cachep, ac, flags, force_refill);
2856 }
2857
2858 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
2859                                                 gfp_t flags)
2860 {
2861         might_sleep_if(gfpflags_allow_blocking(flags));
2862 #if DEBUG
2863         kmem_flagcheck(cachep, flags);
2864 #endif
2865 }
2866
2867 #if DEBUG
2868 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
2869                                 gfp_t flags, void *objp, unsigned long caller)
2870 {
2871         struct page *page;
2872
2873         if (!objp)
2874                 return objp;
2875         if (cachep->flags & SLAB_POISON) {
2876 #ifdef CONFIG_DEBUG_PAGEALLOC
2877                 if ((cachep->size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
2878                         kernel_map_pages(virt_to_page(objp),
2879                                          cachep->size / PAGE_SIZE, 1);
2880                 else
2881                         check_poison_obj(cachep, objp);
2882 #else
2883                 check_poison_obj(cachep, objp);
2884 #endif
2885                 poison_obj(cachep, objp, POISON_INUSE);
2886         }
2887         if (cachep->flags & SLAB_STORE_USER)
2888                 *dbg_userword(cachep, objp) = (void *)caller;
2889
2890         if (cachep->flags & SLAB_RED_ZONE) {
2891                 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
2892                                 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
2893                         slab_error(cachep, "double free, or memory outside"
2894                                                 " object was overwritten");
2895                         printk(KERN_ERR
2896                                 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
2897                                 objp, *dbg_redzone1(cachep, objp),
2898                                 *dbg_redzone2(cachep, objp));
2899                 }
2900                 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
2901                 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
2902         }
2903
2904         page = virt_to_head_page(objp);
2905         set_obj_status(page, obj_to_index(cachep, page, objp), OBJECT_ACTIVE);
2906         objp += obj_offset(cachep);
2907         if (cachep->ctor && cachep->flags & SLAB_POISON)
2908                 cachep->ctor(objp);
2909         if (ARCH_SLAB_MINALIGN &&
2910             ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
2911                 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
2912                        objp, (int)ARCH_SLAB_MINALIGN);
2913         }
2914         return objp;
2915 }
2916 #else
2917 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
2918 #endif
2919
2920 static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
2921 {
2922         if (unlikely(cachep == kmem_cache))
2923                 return false;
2924
2925         return should_failslab(cachep->object_size, flags, cachep->flags);
2926 }
2927
2928 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
2929 {
2930         void *objp;
2931         struct array_cache *ac;
2932         bool force_refill = false;
2933
2934         check_irq_off();
2935
2936         ac = cpu_cache_get(cachep);
2937         if (likely(ac->avail)) {
2938                 ac->touched = 1;
2939                 objp = ac_get_obj(cachep, ac, flags, false);
2940
2941                 /*
2942                  * Allow for the possibility all avail objects are not allowed
2943                  * by the current flags
2944                  */
2945                 if (objp) {
2946                         STATS_INC_ALLOCHIT(cachep);
2947                         goto out;
2948                 }
2949                 force_refill = true;
2950         }
2951
2952         STATS_INC_ALLOCMISS(cachep);
2953         objp = cache_alloc_refill(cachep, flags, force_refill);
2954         /*
2955          * the 'ac' may be updated by cache_alloc_refill(),
2956          * and kmemleak_erase() requires its correct value.
2957          */
2958         ac = cpu_cache_get(cachep);
2959
2960 out:
2961         /*
2962          * To avoid a false negative, if an object that is in one of the
2963          * per-CPU caches is leaked, we need to make sure kmemleak doesn't
2964          * treat the array pointers as a reference to the object.
2965          */
2966         if (objp)
2967                 kmemleak_erase(&ac->entry[ac->avail]);
2968         return objp;
2969 }
2970
2971 #ifdef CONFIG_NUMA
2972 /*
2973  * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
2974  *
2975  * If we are in_interrupt, then process context, including cpusets and
2976  * mempolicy, may not apply and should not be used for allocation policy.
2977  */
2978 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
2979 {
2980         int nid_alloc, nid_here;
2981
2982         if (in_interrupt() || (flags & __GFP_THISNODE))
2983                 return NULL;
2984         nid_alloc = nid_here = numa_mem_id();
2985         if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
2986                 nid_alloc = cpuset_slab_spread_node();
2987         else if (current->mempolicy)
2988                 nid_alloc = mempolicy_slab_node();
2989         if (nid_alloc != nid_here)
2990                 return ____cache_alloc_node(cachep, flags, nid_alloc);
2991         return NULL;
2992 }
2993
2994 /*
2995  * Fallback function if there was no memory available and no objects on a
2996  * certain node and fall back is permitted. First we scan all the
2997  * available node for available objects. If that fails then we
2998  * perform an allocation without specifying a node. This allows the page
2999  * allocator to do its reclaim / fallback magic. We then insert the
3000  * slab into the proper nodelist and then allocate from it.
3001  */
3002 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3003 {
3004         struct zonelist *zonelist;
3005         gfp_t local_flags;
3006         struct zoneref *z;
3007         struct zone *zone;
3008         enum zone_type high_zoneidx = gfp_zone(flags);
3009         void *obj = NULL;
3010         int nid;
3011         unsigned int cpuset_mems_cookie;
3012
3013         if (flags & __GFP_THISNODE)
3014                 return NULL;
3015
3016         local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
3017
3018 retry_cpuset:
3019         cpuset_mems_cookie = read_mems_allowed_begin();
3020         zonelist = node_zonelist(mempolicy_slab_node(), flags);
3021
3022 retry:
3023         /*
3024          * Look through allowed nodes for objects available
3025          * from existing per node queues.
3026          */
3027         for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3028                 nid = zone_to_nid(zone);
3029
3030                 if (cpuset_zone_allowed(zone, flags) &&
3031                         get_node(cache, nid) &&
3032                         get_node(cache, nid)->free_objects) {
3033                                 obj = ____cache_alloc_node(cache,
3034                                         gfp_exact_node(flags), nid);
3035                                 if (obj)
3036                                         break;
3037                 }
3038         }
3039
3040         if (!obj) {
3041                 /*
3042                  * This allocation will be performed within the constraints
3043                  * of the current cpuset / memory policy requirements.
3044                  * We may trigger various forms of reclaim on the allowed
3045                  * set and go into memory reserves if necessary.
3046                  */
3047                 struct page *page;
3048
3049                 if (gfpflags_allow_blocking(local_flags))
3050                         local_irq_enable();
3051                 kmem_flagcheck(cache, flags);
3052                 page = kmem_getpages(cache, local_flags, numa_mem_id());
3053                 if (gfpflags_allow_blocking(local_flags))
3054                         local_irq_disable();
3055                 if (page) {
3056                         /*
3057                          * Insert into the appropriate per node queues
3058                          */
3059                         nid = page_to_nid(page);
3060                         if (cache_grow(cache, flags, nid, page)) {
3061                                 obj = ____cache_alloc_node(cache,
3062                                         gfp_exact_node(flags), nid);
3063                                 if (!obj)
3064                                         /*
3065                                          * Another processor may allocate the
3066                                          * objects in the slab since we are
3067                                          * not holding any locks.
3068                                          */
3069                                         goto retry;
3070                         } else {
3071                                 /* cache_grow already freed obj */
3072                                 obj = NULL;
3073                         }
3074                 }
3075         }
3076
3077         if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
3078                 goto retry_cpuset;
3079         return obj;
3080 }
3081
3082 /*
3083  * A interface to enable slab creation on nodeid
3084  */
3085 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3086                                 int nodeid)
3087 {
3088         struct list_head *entry;
3089         struct page *page;
3090         struct kmem_cache_node *n;
3091         void *obj;
3092         int x;
3093
3094         VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
3095         n = get_node(cachep, nodeid);
3096         BUG_ON(!n);
3097
3098 retry:
3099         check_irq_off();
3100         spin_lock(&n->list_lock);
3101         entry = n->slabs_partial.next;
3102         if (entry == &n->slabs_partial) {
3103                 n->free_touched = 1;
3104                 entry = n->slabs_free.next;
3105                 if (entry == &n->slabs_free)
3106                         goto must_grow;
3107         }
3108
3109         page = list_entry(entry, struct page, lru);
3110         check_spinlock_acquired_node(cachep, nodeid);
3111
3112         STATS_INC_NODEALLOCS(cachep);
3113         STATS_INC_ACTIVE(cachep);
3114         STATS_SET_HIGH(cachep);
3115
3116         BUG_ON(page->active == cachep->num);
3117
3118         obj = slab_get_obj(cachep, page, nodeid);
3119         n->free_objects--;
3120         /* move slabp to correct slabp list: */
3121         list_del(&page->lru);
3122
3123         if (page->active == cachep->num)
3124                 list_add(&page->lru, &n->slabs_full);
3125         else
3126                 list_add(&page->lru, &n->slabs_partial);
3127
3128         spin_unlock(&n->list_lock);
3129         goto done;
3130
3131 must_grow:
3132         spin_unlock(&n->list_lock);
3133         x = cache_grow(cachep, gfp_exact_node(flags), nodeid, NULL);
3134         if (x)
3135                 goto retry;
3136
3137         return fallback_alloc(cachep, flags);
3138
3139 done:
3140         return obj;
3141 }
3142
3143 static __always_inline void *
3144 slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3145                    unsigned long caller)
3146 {
3147         unsigned long save_flags;
3148         void *ptr;
3149         int slab_node = numa_mem_id();
3150
3151         flags &= gfp_allowed_mask;
3152
3153         lockdep_trace_alloc(flags);
3154
3155         if (slab_should_failslab(cachep, flags))
3156                 return NULL;
3157
3158         cachep = memcg_kmem_get_cache(cachep, flags);
3159
3160         cache_alloc_debugcheck_before(cachep, flags);
3161         local_irq_save(save_flags);
3162
3163         if (nodeid == NUMA_NO_NODE)
3164                 nodeid = slab_node;
3165
3166         if (unlikely(!get_node(cachep, nodeid))) {
3167                 /* Node not bootstrapped yet */
3168                 ptr = fallback_alloc(cachep, flags);
3169                 goto out;
3170         }
3171
3172         if (nodeid == slab_node) {
3173                 /*
3174                  * Use the locally cached objects if possible.
3175                  * However ____cache_alloc does not allow fallback
3176                  * to other nodes. It may fail while we still have
3177                  * objects on other nodes available.
3178                  */
3179                 ptr = ____cache_alloc(cachep, flags);
3180                 if (ptr)
3181                         goto out;
3182         }
3183         /* ___cache_alloc_node can fall back to other nodes */
3184         ptr = ____cache_alloc_node(cachep, flags, nodeid);
3185   out:
3186         local_irq_restore(save_flags);
3187         ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3188         kmemleak_alloc_recursive(ptr, cachep->object_size, 1, cachep->flags,
3189                                  flags);
3190
3191         if (likely(ptr)) {
3192                 kmemcheck_slab_alloc(cachep, flags, ptr, cachep->object_size);
3193                 if (unlikely(flags & __GFP_ZERO))
3194                         memset(ptr, 0, cachep->object_size);
3195         }
3196
3197         memcg_kmem_put_cache(cachep);
3198         return ptr;
3199 }
3200
3201 static __always_inline void *
3202 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3203 {
3204         void *objp;
3205
3206         if (current->mempolicy || cpuset_do_slab_mem_spread()) {
3207                 objp = alternate_node_alloc(cache, flags);
3208                 if (objp)
3209                         goto out;
3210         }
3211         objp = ____cache_alloc(cache, flags);
3212
3213         /*
3214          * We may just have run out of memory on the local node.
3215          * ____cache_alloc_node() knows how to locate memory on other nodes
3216          */
3217         if (!objp)
3218                 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3219
3220   out:
3221         return objp;
3222 }
3223 #else
3224
3225 static __always_inline void *
3226 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3227 {
3228         return ____cache_alloc(cachep, flags);
3229 }
3230
3231 #endif /* CONFIG_NUMA */
3232
3233 static __always_inline void *
3234 slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3235 {
3236         unsigned long save_flags;
3237         void *objp;
3238
3239         flags &= gfp_allowed_mask;
3240
3241         lockdep_trace_alloc(flags);
3242
3243         if (slab_should_failslab(cachep, flags))
3244                 return NULL;
3245
3246         cachep = memcg_kmem_get_cache(cachep, flags);
3247
3248         cache_alloc_debugcheck_before(cachep, flags);
3249         local_irq_save(save_flags);
3250         objp = __do_cache_alloc(cachep, flags);
3251         local_irq_restore(save_flags);
3252         objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3253         kmemleak_alloc_recursive(objp, cachep->object_size, 1, cachep->flags,
3254                                  flags);
3255         prefetchw(objp);
3256
3257         if (likely(objp)) {
3258                 kmemcheck_slab_alloc(cachep, flags, objp, cachep->object_size);
3259                 if (unlikely(flags & __GFP_ZERO))
3260                         memset(objp, 0, cachep->object_size);
3261         }
3262
3263         memcg_kmem_put_cache(cachep);
3264         return objp;
3265 }
3266
3267 /*
3268  * Caller needs to acquire correct kmem_cache_node's list_lock
3269  * @list: List of detached free slabs should be freed by caller
3270  */
3271 static void free_block(struct kmem_cache *cachep, void **objpp,
3272                         int nr_objects, int node, struct list_head *list)
3273 {
3274         int i;
3275         struct kmem_cache_node *n = get_node(cachep, node);
3276
3277         for (i = 0; i < nr_objects; i++) {
3278                 void *objp;
3279                 struct page *page;
3280
3281                 clear_obj_pfmemalloc(&objpp[i]);
3282                 objp = objpp[i];
3283
3284                 page = virt_to_head_page(objp);
3285                 list_del(&page->lru);
3286                 check_spinlock_acquired_node(cachep, node);
3287                 slab_put_obj(cachep, page, objp, node);
3288                 STATS_DEC_ACTIVE(cachep);
3289                 n->free_objects++;
3290
3291                 /* fixup slab chains */
3292                 if (page->active == 0) {
3293                         if (n->free_objects > n->free_limit) {
3294                                 n->free_objects -= cachep->num;
3295                                 list_add_tail(&page->lru, list);
3296                         } else {
3297                                 list_add(&page->lru, &n->slabs_free);
3298                         }
3299                 } else {
3300                         /* Unconditionally move a slab to the end of the
3301                          * partial list on free - maximum time for the
3302                          * other objects to be freed, too.
3303                          */
3304                         list_add_tail(&page->lru, &n->slabs_partial);
3305                 }
3306         }
3307 }
3308
3309 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3310 {
3311         int batchcount;
3312         struct kmem_cache_node *n;
3313         int node = numa_mem_id();
3314         LIST_HEAD(list);
3315
3316         batchcount = ac->batchcount;
3317 #if DEBUG
3318         BUG_ON(!batchcount || batchcount > ac->avail);
3319 #endif
3320         check_irq_off();
3321         n = get_node(cachep, node);
3322         spin_lock(&n->list_lock);
3323         if (n->shared) {
3324                 struct array_cache *shared_array = n->shared;
3325                 int max = shared_array->limit - shared_array->avail;
3326                 if (max) {
3327                         if (batchcount > max)
3328                                 batchcount = max;
3329                         memcpy(&(shared_array->entry[shared_array->avail]),
3330                                ac->entry, sizeof(void *) * batchcount);
3331                         shared_array->avail += batchcount;
3332                         goto free_done;
3333                 }
3334         }
3335
3336         free_block(cachep, ac->entry, batchcount, node, &list);
3337 free_done:
3338 #if STATS
3339         {
3340                 int i = 0;
3341                 struct list_head *p;
3342
3343                 p = n->slabs_free.next;
3344                 while (p != &(n->slabs_free)) {
3345                         struct page *page;
3346
3347                         page = list_entry(p, struct page, lru);
3348                         BUG_ON(page->active);
3349
3350                         i++;
3351                         p = p->next;
3352                 }
3353                 STATS_SET_FREEABLE(cachep, i);
3354         }
3355 #endif
3356         spin_unlock(&n->list_lock);
3357         slabs_destroy(cachep, &list);
3358         ac->avail -= batchcount;
3359         memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3360 }
3361
3362 /*
3363  * Release an obj back to its cache. If the obj has a constructed state, it must
3364  * be in this state _before_ it is released.  Called with disabled ints.
3365  */
3366 static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3367                                 unsigned long caller)
3368 {
3369         struct array_cache *ac = cpu_cache_get(cachep);
3370
3371         check_irq_off();
3372         kmemleak_free_recursive(objp, cachep->flags);
3373         objp = cache_free_debugcheck(cachep, objp, caller);
3374
3375         kmemcheck_slab_free(cachep, objp, cachep->object_size);
3376
3377         /*
3378          * Skip calling cache_free_alien() when the platform is not numa.
3379          * This will avoid cache misses that happen while accessing slabp (which
3380          * is per page memory  reference) to get nodeid. Instead use a global
3381          * variable to skip the call, which is mostly likely to be present in
3382          * the cache.
3383          */
3384         if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3385                 return;
3386
3387         if (ac->avail < ac->limit) {
3388                 STATS_INC_FREEHIT(cachep);
3389         } else {
3390                 STATS_INC_FREEMISS(cachep);
3391                 cache_flusharray(cachep, ac);
3392         }
3393
3394         ac_put_obj(cachep, ac, objp);
3395 }
3396
3397 /**
3398  * kmem_cache_alloc - Allocate an object
3399  * @cachep: The cache to allocate from.
3400  * @flags: See kmalloc().
3401  *
3402  * Allocate an object from this cache.  The flags are only relevant
3403  * if the cache has no available objects.
3404  */
3405 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3406 {
3407         void *ret = slab_alloc(cachep, flags, _RET_IP_);
3408
3409         trace_kmem_cache_alloc(_RET_IP_, ret,
3410                                cachep->object_size, cachep->size, flags);
3411
3412         return ret;
3413 }
3414 EXPORT_SYMBOL(kmem_cache_alloc);
3415
3416 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
3417 {
3418         __kmem_cache_free_bulk(s, size, p);
3419 }
3420 EXPORT_SYMBOL(kmem_cache_free_bulk);
3421
3422 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3423                                                                 void **p)
3424 {
3425         return __kmem_cache_alloc_bulk(s, flags, size, p);
3426 }
3427 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3428
3429 #ifdef CONFIG_TRACING
3430 void *
3431 kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
3432 {
3433         void *ret;
3434
3435         ret = slab_alloc(cachep, flags, _RET_IP_);
3436
3437         trace_kmalloc(_RET_IP_, ret,
3438                       size, cachep->size, flags);
3439         return ret;
3440 }
3441 EXPORT_SYMBOL(kmem_cache_alloc_trace);
3442 #endif
3443
3444 #ifdef CONFIG_NUMA
3445 /**
3446  * kmem_cache_alloc_node - Allocate an object on the specified node
3447  * @cachep: The cache to allocate from.
3448  * @flags: See kmalloc().
3449  * @nodeid: node number of the target node.
3450  *
3451  * Identical to kmem_cache_alloc but it will allocate memory on the given
3452  * node, which can improve the performance for cpu bound structures.
3453  *
3454  * Fallback to other node is possible if __GFP_THISNODE is not set.
3455  */
3456 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3457 {
3458         void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3459
3460         trace_kmem_cache_alloc_node(_RET_IP_, ret,
3461                                     cachep->object_size, cachep->size,
3462                                     flags, nodeid);
3463
3464         return ret;
3465 }
3466 EXPORT_SYMBOL(kmem_cache_alloc_node);
3467
3468 #ifdef CONFIG_TRACING
3469 void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3470                                   gfp_t flags,
3471                                   int nodeid,
3472                                   size_t size)
3473 {
3474         void *ret;
3475
3476         ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3477
3478         trace_kmalloc_node(_RET_IP_, ret,
3479                            size, cachep->size,
3480                            flags, nodeid);
3481         return ret;
3482 }
3483 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3484 #endif
3485
3486 static __always_inline void *
3487 __do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3488 {
3489         struct kmem_cache *cachep;
3490
3491         cachep = kmalloc_slab(size, flags);
3492         if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3493                 return cachep;
3494         return kmem_cache_alloc_node_trace(cachep, flags, node, size);
3495 }
3496
3497 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3498 {
3499         return __do_kmalloc_node(size, flags, node, _RET_IP_);
3500 }
3501 EXPORT_SYMBOL(__kmalloc_node);
3502
3503 void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3504                 int node, unsigned long caller)
3505 {
3506         return __do_kmalloc_node(size, flags, node, caller);
3507 }
3508 EXPORT_SYMBOL(__kmalloc_node_track_caller);
3509 #endif /* CONFIG_NUMA */
3510
3511 /**
3512  * __do_kmalloc - allocate memory
3513  * @size: how many bytes of memory are required.
3514  * @flags: the type of memory to allocate (see kmalloc).
3515  * @caller: function caller for debug tracking of the caller
3516  */
3517 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3518                                           unsigned long caller)
3519 {
3520         struct kmem_cache *cachep;
3521         void *ret;
3522
3523         cachep = kmalloc_slab(size, flags);
3524         if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3525                 return cachep;
3526         ret = slab_alloc(cachep, flags, caller);
3527
3528         trace_kmalloc(caller, ret,
3529                       size, cachep->size, flags);
3530
3531         return ret;
3532 }
3533
3534 void *__kmalloc(size_t size, gfp_t flags)
3535 {
3536         return __do_kmalloc(size, flags, _RET_IP_);
3537 }
3538 EXPORT_SYMBOL(__kmalloc);
3539
3540 void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3541 {
3542         return __do_kmalloc(size, flags, caller);
3543 }
3544 EXPORT_SYMBOL(__kmalloc_track_caller);
3545
3546 /**
3547  * kmem_cache_free - Deallocate an object
3548  * @cachep: The cache the allocation was from.
3549  * @objp: The previously allocated object.
3550  *
3551  * Free an object which was previously allocated from this
3552  * cache.
3553  */
3554 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3555 {
3556         unsigned long flags;
3557         cachep = cache_from_obj(cachep, objp);
3558         if (!cachep)
3559                 return;
3560
3561         local_irq_save(flags);
3562         debug_check_no_locks_freed(objp, cachep->object_size);
3563         if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3564                 debug_check_no_obj_freed(objp, cachep->object_size);
3565         __cache_free(cachep, objp, _RET_IP_);
3566         local_irq_restore(flags);
3567
3568         trace_kmem_cache_free(_RET_IP_, objp);
3569 }
3570 EXPORT_SYMBOL(kmem_cache_free);
3571
3572 /**
3573  * kfree - free previously allocated memory
3574  * @objp: pointer returned by kmalloc.
3575  *
3576  * If @objp is NULL, no operation is performed.
3577  *
3578  * Don't free memory not originally allocated by kmalloc()
3579  * or you will run into trouble.
3580  */
3581 void kfree(const void *objp)
3582 {
3583         struct kmem_cache *c;
3584         unsigned long flags;
3585
3586         trace_kfree(_RET_IP_, objp);
3587
3588         if (unlikely(ZERO_OR_NULL_PTR(objp)))
3589                 return;
3590         local_irq_save(flags);
3591         kfree_debugcheck(objp);
3592         c = virt_to_cache(objp);
3593         debug_check_no_locks_freed(objp, c->object_size);
3594
3595         debug_check_no_obj_freed(objp, c->object_size);
3596         __cache_free(c, (void *)objp, _RET_IP_);
3597         local_irq_restore(flags);
3598 }
3599 EXPORT_SYMBOL(kfree);
3600
3601 /*
3602  * This initializes kmem_cache_node or resizes various caches for all nodes.
3603  */
3604 static int alloc_kmem_cache_node(struct kmem_cache *cachep, gfp_t gfp)
3605 {
3606         int node;
3607         struct kmem_cache_node *n;
3608         struct array_cache *new_shared;
3609         struct alien_cache **new_alien = NULL;
3610
3611         for_each_online_node(node) {
3612
3613                 if (use_alien_caches) {
3614                         new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3615                         if (!new_alien)
3616                                 goto fail;
3617                 }
3618
3619                 new_shared = NULL;
3620                 if (cachep->shared) {
3621                         new_shared = alloc_arraycache(node,
3622                                 cachep->shared*cachep->batchcount,
3623                                         0xbaadf00d, gfp);
3624                         if (!new_shared) {
3625                                 free_alien_cache(new_alien);
3626                                 goto fail;
3627                         }
3628                 }
3629
3630                 n = get_node(cachep, node);
3631                 if (n) {
3632                         struct array_cache *shared = n->shared;
3633                         LIST_HEAD(list);
3634
3635                         spin_lock_irq(&n->list_lock);
3636
3637                         if (shared)
3638                                 free_block(cachep, shared->entry,
3639                                                 shared->avail, node, &list);
3640
3641                         n->shared = new_shared;
3642                         if (!n->alien) {
3643                                 n->alien = new_alien;
3644                                 new_alien = NULL;
3645                         }
3646                         n->free_limit = (1 + nr_cpus_node(node)) *
3647                                         cachep->batchcount + cachep->num;
3648                         spin_unlock_irq(&n->list_lock);
3649                         slabs_destroy(cachep, &list);
3650                         kfree(shared);
3651                         free_alien_cache(new_alien);
3652                         continue;
3653                 }
3654                 n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
3655                 if (!n) {
3656                         free_alien_cache(new_alien);
3657                         kfree(new_shared);
3658                         goto fail;
3659                 }
3660
3661                 kmem_cache_node_init(n);
3662                 n->next_reap = jiffies + REAPTIMEOUT_NODE +
3663                                 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
3664                 n->shared = new_shared;
3665                 n->alien = new_alien;
3666                 n->free_limit = (1 + nr_cpus_node(node)) *
3667                                         cachep->batchcount + cachep->num;
3668                 cachep->node[node] = n;
3669         }
3670         return 0;
3671
3672 fail:
3673         if (!cachep->list.next) {
3674                 /* Cache is not active yet. Roll back what we did */
3675                 node--;
3676                 while (node >= 0) {
3677                         n = get_node(cachep, node);
3678                         if (n) {
3679                                 kfree(n->shared);
3680                                 free_alien_cache(n->alien);
3681                                 kfree(n);
3682                                 cachep->node[node] = NULL;
3683                         }
3684                         node--;
3685                 }
3686         }
3687         return -ENOMEM;
3688 }
3689
3690 /* Always called with the slab_mutex held */
3691 static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
3692                                 int batchcount, int shared, gfp_t gfp)
3693 {
3694         struct array_cache __percpu *cpu_cache, *prev;
3695         int cpu;
3696
3697         cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
3698         if (!cpu_cache)
3699                 return -ENOMEM;
3700
3701         prev = cachep->cpu_cache;
3702         cachep->cpu_cache = cpu_cache;
3703         kick_all_cpus_sync();
3704
3705         check_irq_on();
3706         cachep->batchcount = batchcount;
3707         cachep->limit = limit;
3708         cachep->shared = shared;
3709
3710         if (!prev)
3711                 goto alloc_node;
3712
3713         for_each_online_cpu(cpu) {
3714                 LIST_HEAD(list);
3715                 int node;
3716                 struct kmem_cache_node *n;
3717                 struct array_cache *ac = per_cpu_ptr(prev, cpu);
3718
3719                 node = cpu_to_mem(cpu);
3720                 n = get_node(cachep, node);
3721                 spin_lock_irq(&n->list_lock);
3722                 free_block(cachep, ac->entry, ac->avail, node, &list);
3723                 spin_unlock_irq(&n->list_lock);
3724                 slabs_destroy(cachep, &list);
3725         }
3726         free_percpu(prev);
3727
3728 alloc_node:
3729         return alloc_kmem_cache_node(cachep, gfp);
3730 }
3731
3732 static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3733                                 int batchcount, int shared, gfp_t gfp)
3734 {
3735         int ret;
3736         struct kmem_cache *c;
3737
3738         ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3739
3740         if (slab_state < FULL)
3741                 return ret;
3742
3743         if ((ret < 0) || !is_root_cache(cachep))
3744                 return ret;
3745
3746         lockdep_assert_held(&slab_mutex);
3747         for_each_memcg_cache(c, cachep) {
3748                 /* return value determined by the root cache only */
3749                 __do_tune_cpucache(c, limit, batchcount, shared, gfp);
3750         }
3751
3752         return ret;
3753 }
3754
3755 /* Called with slab_mutex held always */
3756 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
3757 {
3758         int err;
3759         int limit = 0;
3760         int shared = 0;
3761         int batchcount = 0;
3762
3763         if (!is_root_cache(cachep)) {
3764                 struct kmem_cache *root = memcg_root_cache(cachep);
3765                 limit = root->limit;
3766                 shared = root->shared;
3767                 batchcount = root->batchcount;
3768         }
3769
3770         if (limit && shared && batchcount)
3771                 goto skip_setup;
3772         /*
3773          * The head array serves three purposes:
3774          * - create a LIFO ordering, i.e. return objects that are cache-warm
3775          * - reduce the number of spinlock operations.
3776          * - reduce the number of linked list operations on the slab and
3777          *   bufctl chains: array operations are cheaper.
3778          * The numbers are guessed, we should auto-tune as described by
3779          * Bonwick.
3780          */
3781         if (cachep->size > 131072)
3782                 limit = 1;
3783         else if (cachep->size > PAGE_SIZE)
3784                 limit = 8;
3785         else if (cachep->size > 1024)
3786                 limit = 24;
3787         else if (cachep->size > 256)
3788                 limit = 54;
3789         else
3790                 limit = 120;
3791
3792         /*
3793          * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3794          * allocation behaviour: Most allocs on one cpu, most free operations
3795          * on another cpu. For these cases, an efficient object passing between
3796          * cpus is necessary. This is provided by a shared array. The array
3797          * replaces Bonwick's magazine layer.
3798          * On uniprocessor, it's functionally equivalent (but less efficient)
3799          * to a larger limit. Thus disabled by default.
3800          */
3801         shared = 0;
3802         if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
3803                 shared = 8;
3804
3805 #if DEBUG
3806         /*
3807          * With debugging enabled, large batchcount lead to excessively long
3808          * periods with disabled local interrupts. Limit the batchcount
3809          */
3810         if (limit > 32)
3811                 limit = 32;
3812 #endif
3813         batchcount = (limit + 1) / 2;
3814 skip_setup:
3815         err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3816         if (err)
3817                 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
3818                        cachep->name, -err);
3819         return err;
3820 }
3821
3822 /*
3823  * Drain an array if it contains any elements taking the node lock only if
3824  * necessary. Note that the node listlock also protects the array_cache
3825  * if drain_array() is used on the shared array.
3826  */
3827 static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
3828                          struct array_cache *ac, int force, int node)
3829 {
3830         LIST_HEAD(list);
3831         int tofree;
3832
3833         if (!ac || !ac->avail)
3834                 return;
3835         if (ac->touched && !force) {
3836                 ac->touched = 0;
3837         } else {
3838                 spin_lock_irq(&n->list_lock);
3839                 if (ac->avail) {
3840                         tofree = force ? ac->avail : (ac->limit + 4) / 5;
3841                         if (tofree > ac->avail)
3842                                 tofree = (ac->avail + 1) / 2;
3843                         free_block(cachep, ac->entry, tofree, node, &list);
3844                         ac->avail -= tofree;
3845                         memmove(ac->entry, &(ac->entry[tofree]),
3846                                 sizeof(void *) * ac->avail);
3847                 }
3848                 spin_unlock_irq(&n->list_lock);
3849                 slabs_destroy(cachep, &list);
3850         }
3851 }
3852
3853 /**
3854  * cache_reap - Reclaim memory from caches.
3855  * @w: work descriptor
3856  *
3857  * Called from workqueue/eventd every few seconds.
3858  * Purpose:
3859  * - clear the per-cpu caches for this CPU.
3860  * - return freeable pages to the main free memory pool.
3861  *
3862  * If we cannot acquire the cache chain mutex then just give up - we'll try
3863  * again on the next iteration.
3864  */
3865 static void cache_reap(struct work_struct *w)
3866 {
3867         struct kmem_cache *searchp;
3868         struct kmem_cache_node *n;
3869         int node = numa_mem_id();
3870         struct delayed_work *work = to_delayed_work(w);
3871
3872         if (!mutex_trylock(&slab_mutex))
3873                 /* Give up. Setup the next iteration. */
3874                 goto out;
3875
3876         list_for_each_entry(searchp, &slab_caches, list) {
3877                 check_irq_on();
3878
3879                 /*
3880                  * We only take the node lock if absolutely necessary and we
3881                  * have established with reasonable certainty that
3882                  * we can do some work if the lock was obtained.
3883                  */
3884                 n = get_node(searchp, node);
3885
3886                 reap_alien(searchp, n);
3887
3888                 drain_array(searchp, n, cpu_cache_get(searchp), 0, node);
3889
3890                 /*
3891                  * These are racy checks but it does not matter
3892                  * if we skip one check or scan twice.
3893                  */
3894                 if (time_after(n->next_reap, jiffies))
3895                         goto next;
3896
3897                 n->next_reap = jiffies + REAPTIMEOUT_NODE;
3898
3899                 drain_array(searchp, n, n->shared, 0, node);
3900
3901                 if (n->free_touched)
3902                         n->free_touched = 0;
3903                 else {
3904                         int freed;
3905
3906                         freed = drain_freelist(searchp, n, (n->free_limit +
3907                                 5 * searchp->num - 1) / (5 * searchp->num));
3908                         STATS_ADD_REAPED(searchp, freed);
3909                 }
3910 next:
3911                 cond_resched();
3912         }
3913         check_irq_on();
3914         mutex_unlock(&slab_mutex);
3915         next_reap_node();
3916 out:
3917         /* Set up the next iteration */
3918         schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_AC));
3919 }
3920
3921 #ifdef CONFIG_SLABINFO
3922 void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
3923 {
3924         struct page *page;
3925         unsigned long active_objs;
3926         unsigned long num_objs;
3927         unsigned long active_slabs = 0;
3928         unsigned long num_slabs, free_objects = 0, shared_avail = 0;
3929         const char *name;
3930         char *error = NULL;
3931         int node;
3932         struct kmem_cache_node *n;
3933
3934         active_objs = 0;
3935         num_slabs = 0;
3936         for_each_kmem_cache_node(cachep, node, n) {
3937
3938                 check_irq_on();
3939                 spin_lock_irq(&n->list_lock);
3940
3941                 list_for_each_entry(page, &n->slabs_full, lru) {
3942                         if (page->active != cachep->num && !error)
3943                                 error = "slabs_full accounting error";
3944                         active_objs += cachep->num;
3945                         active_slabs++;
3946                 }
3947                 list_for_each_entry(page, &n->slabs_partial, lru) {
3948                         if (page->active == cachep->num && !error)
3949                                 error = "slabs_partial accounting error";
3950                         if (!page->active && !error)
3951                                 error = "slabs_partial accounting error";
3952                         active_objs += page->active;
3953                         active_slabs++;
3954                 }
3955                 list_for_each_entry(page, &n->slabs_free, lru) {
3956                         if (page->active && !error)
3957                                 error = "slabs_free accounting error";
3958                         num_slabs++;
3959                 }
3960                 free_objects += n->free_objects;
3961                 if (n->shared)
3962                         shared_avail += n->shared->avail;
3963
3964                 spin_unlock_irq(&n->list_lock);
3965         }
3966         num_slabs += active_slabs;
3967         num_objs = num_slabs * cachep->num;
3968         if (num_objs - active_objs != free_objects && !error)
3969                 error = "free_objects accounting error";
3970
3971         name = cachep->name;
3972         if (error)
3973                 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
3974
3975         sinfo->active_objs = active_objs;
3976         sinfo->num_objs = num_objs;
3977         sinfo->active_slabs = active_slabs;
3978         sinfo->num_slabs = num_slabs;
3979         sinfo->shared_avail = shared_avail;
3980         sinfo->limit = cachep->limit;
3981         sinfo->batchcount = cachep->batchcount;
3982         sinfo->shared = cachep->shared;
3983         sinfo->objects_per_slab = cachep->num;
3984         sinfo->cache_order = cachep->gfporder;
3985 }
3986
3987 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
3988 {
3989 #if STATS
3990         {                       /* node stats */
3991                 unsigned long high = cachep->high_mark;
3992                 unsigned long allocs = cachep->num_allocations;
3993                 unsigned long grown = cachep->grown;
3994                 unsigned long reaped = cachep->reaped;
3995                 unsigned long errors = cachep->errors;
3996                 unsigned long max_freeable = cachep->max_freeable;
3997                 unsigned long node_allocs = cachep->node_allocs;
3998                 unsigned long node_frees = cachep->node_frees;
3999                 unsigned long overflows = cachep->node_overflow;
4000
4001                 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
4002                            "%4lu %4lu %4lu %4lu %4lu",
4003                            allocs, high, grown,
4004                            reaped, errors, max_freeable, node_allocs,
4005                            node_frees, overflows);
4006         }
4007         /* cpu stats */
4008         {
4009                 unsigned long allochit = atomic_read(&cachep->allochit);
4010                 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4011                 unsigned long freehit = atomic_read(&cachep->freehit);
4012                 unsigned long freemiss = atomic_read(&cachep->freemiss);
4013
4014                 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4015                            allochit, allocmiss, freehit, freemiss);
4016         }
4017 #endif
4018 }
4019
4020 #define MAX_SLABINFO_WRITE 128
4021 /**
4022  * slabinfo_write - Tuning for the slab allocator
4023  * @file: unused
4024  * @buffer: user buffer
4025  * @count: data length
4026  * @ppos: unused
4027  */
4028 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4029                        size_t count, loff_t *ppos)
4030 {
4031         char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4032         int limit, batchcount, shared, res;
4033         struct kmem_cache *cachep;
4034
4035         if (count > MAX_SLABINFO_WRITE)
4036                 return -EINVAL;
4037         if (copy_from_user(&kbuf, buffer, count))
4038                 return -EFAULT;
4039         kbuf[MAX_SLABINFO_WRITE] = '\0';
4040
4041         tmp = strchr(kbuf, ' ');
4042         if (!tmp)
4043                 return -EINVAL;
4044         *tmp = '\0';
4045         tmp++;
4046         if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4047                 return -EINVAL;
4048
4049         /* Find the cache in the chain of caches. */
4050         mutex_lock(&slab_mutex);
4051         res = -EINVAL;
4052         list_for_each_entry(cachep, &slab_caches, list) {
4053                 if (!strcmp(cachep->name, kbuf)) {
4054                         if (limit < 1 || batchcount < 1 ||
4055                                         batchcount > limit || shared < 0) {
4056                                 res = 0;
4057                         } else {
4058                                 res = do_tune_cpucache(cachep, limit,
4059                                                        batchcount, shared,
4060                                                        GFP_KERNEL);
4061                         }
4062                         break;
4063                 }
4064         }
4065         mutex_unlock(&slab_mutex);
4066         if (res >= 0)
4067                 res = count;
4068         return res;
4069 }
4070
4071 #ifdef CONFIG_DEBUG_SLAB_LEAK
4072
4073 static inline int add_caller(unsigned long *n, unsigned long v)
4074 {
4075         unsigned long *p;
4076         int l;
4077         if (!v)
4078                 return 1;
4079         l = n[1];
4080         p = n + 2;
4081         while (l) {
4082                 int i = l/2;
4083                 unsigned long *q = p + 2 * i;
4084                 if (*q == v) {
4085                         q[1]++;
4086                         return 1;
4087                 }
4088                 if (*q > v) {
4089                         l = i;
4090                 } else {
4091                         p = q + 2;
4092                         l -= i + 1;
4093                 }
4094         }
4095         if (++n[1] == n[0])
4096                 return 0;
4097         memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4098         p[0] = v;
4099         p[1] = 1;
4100         return 1;
4101 }
4102
4103 static void handle_slab(unsigned long *n, struct kmem_cache *c,
4104                                                 struct page *page)
4105 {
4106         void *p;
4107         int i;
4108
4109         if (n[0] == n[1])
4110                 return;
4111         for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
4112                 if (get_obj_status(page, i) != OBJECT_ACTIVE)
4113                         continue;
4114
4115                 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4116                         return;
4117         }
4118 }
4119
4120 static void show_symbol(struct seq_file *m, unsigned long address)
4121 {
4122 #ifdef CONFIG_KALLSYMS
4123         unsigned long offset, size;
4124         char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4125
4126         if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4127                 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4128                 if (modname[0])
4129                         seq_printf(m, " [%s]", modname);
4130                 return;
4131         }
4132 #endif
4133         seq_printf(m, "%p", (void *)address);
4134 }
4135
4136 static int leaks_show(struct seq_file *m, void *p)
4137 {
4138         struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4139         struct page *page;
4140         struct kmem_cache_node *n;
4141         const char *name;
4142         unsigned long *x = m->private;
4143         int node;
4144         int i;
4145
4146         if (!(cachep->flags & SLAB_STORE_USER))
4147                 return 0;
4148         if (!(cachep->flags & SLAB_RED_ZONE))
4149                 return 0;
4150
4151         /* OK, we can do it */
4152
4153         x[1] = 0;
4154
4155         for_each_kmem_cache_node(cachep, node, n) {
4156
4157                 check_irq_on();
4158                 spin_lock_irq(&n->list_lock);
4159
4160                 list_for_each_entry(page, &n->slabs_full, lru)
4161                         handle_slab(x, cachep, page);
4162                 list_for_each_entry(page, &n->slabs_partial, lru)
4163                         handle_slab(x, cachep, page);
4164                 spin_unlock_irq(&n->list_lock);
4165         }
4166         name = cachep->name;
4167         if (x[0] == x[1]) {
4168                 /* Increase the buffer size */
4169                 mutex_unlock(&slab_mutex);
4170                 m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4171                 if (!m->private) {
4172                         /* Too bad, we are really out */
4173                         m->private = x;
4174                         mutex_lock(&slab_mutex);
4175                         return -ENOMEM;
4176                 }
4177                 *(unsigned long *)m->private = x[0] * 2;
4178                 kfree(x);
4179                 mutex_lock(&slab_mutex);
4180                 /* Now make sure this entry will be retried */
4181                 m->count = m->size;
4182                 return 0;
4183         }
4184         for (i = 0; i < x[1]; i++) {
4185                 seq_printf(m, "%s: %lu ", name, x[2*i+3]);
4186                 show_symbol(m, x[2*i+2]);
4187                 seq_putc(m, '\n');
4188         }
4189
4190         return 0;
4191 }
4192
4193 static const struct seq_operations slabstats_op = {
4194         .start = slab_start,
4195         .next = slab_next,
4196         .stop = slab_stop,
4197         .show = leaks_show,
4198 };
4199
4200 static int slabstats_open(struct inode *inode, struct file *file)
4201 {
4202         unsigned long *n;
4203
4204         n = __seq_open_private(file, &slabstats_op, PAGE_SIZE);
4205         if (!n)
4206                 return -ENOMEM;
4207
4208         *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4209
4210         return 0;
4211 }
4212
4213 static const struct file_operations proc_slabstats_operations = {
4214         .open           = slabstats_open,
4215         .read           = seq_read,
4216         .llseek         = seq_lseek,
4217         .release        = seq_release_private,
4218 };
4219 #endif
4220
4221 static int __init slab_proc_init(void)
4222 {
4223 #ifdef CONFIG_DEBUG_SLAB_LEAK
4224         proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4225 #endif
4226         return 0;
4227 }
4228 module_init(slab_proc_init);
4229 #endif
4230
4231 /**
4232  * ksize - get the actual amount of memory allocated for a given object
4233  * @objp: Pointer to the object
4234  *
4235  * kmalloc may internally round up allocations and return more memory
4236  * than requested. ksize() can be used to determine the actual amount of
4237  * memory allocated. The caller may use this additional memory, even though
4238  * a smaller amount of memory was initially specified with the kmalloc call.
4239  * The caller must guarantee that objp points to a valid object previously
4240  * allocated with either kmalloc() or kmem_cache_alloc(). The object
4241  * must not be freed during the duration of the call.
4242  */
4243 size_t ksize(const void *objp)
4244 {
4245         BUG_ON(!objp);
4246         if (unlikely(objp == ZERO_SIZE_PTR))
4247                 return 0;
4248
4249         return virt_to_cache(objp)->object_size;
4250 }
4251 EXPORT_SYMBOL(ksize);