rk30 pm.c: fix ctr bits parameter to support help inf,add arm\logic suspend volt...
[firefly-linux-kernel-4.4.55.git] / mm / shmem.c
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *               2000 Transmeta Corp.
6  *               2000-2001 Christoph Rohland
7  *               2000-2001 SAP AG
8  *               2002 Red Hat Inc.
9  * Copyright (C) 2002-2005 Hugh Dickins.
10  * Copyright (C) 2002-2005 VERITAS Software Corporation.
11  * Copyright (C) 2004 Andi Kleen, SuSE Labs
12  *
13  * Extended attribute support for tmpfs:
14  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
15  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
16  *
17  * tiny-shmem:
18  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
19  *
20  * This file is released under the GPL.
21  */
22
23 #include <linux/fs.h>
24 #include <linux/init.h>
25 #include <linux/vfs.h>
26 #include <linux/mount.h>
27 #include <linux/pagemap.h>
28 #include <linux/file.h>
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/percpu_counter.h>
32 #include <linux/swap.h>
33
34 static struct vfsmount *shm_mnt;
35
36 #ifdef CONFIG_SHMEM
37 /*
38  * This virtual memory filesystem is heavily based on the ramfs. It
39  * extends ramfs by the ability to use swap and honor resource limits
40  * which makes it a completely usable filesystem.
41  */
42
43 #include <linux/xattr.h>
44 #include <linux/exportfs.h>
45 #include <linux/posix_acl.h>
46 #include <linux/generic_acl.h>
47 #include <linux/mman.h>
48 #include <linux/string.h>
49 #include <linux/slab.h>
50 #include <linux/backing-dev.h>
51 #include <linux/shmem_fs.h>
52 #include <linux/writeback.h>
53 #include <linux/blkdev.h>
54 #include <linux/security.h>
55 #include <linux/swapops.h>
56 #include <linux/mempolicy.h>
57 #include <linux/namei.h>
58 #include <linux/ctype.h>
59 #include <linux/migrate.h>
60 #include <linux/highmem.h>
61 #include <linux/seq_file.h>
62 #include <linux/magic.h>
63
64 #include <asm/uaccess.h>
65 #include <asm/div64.h>
66 #include <asm/pgtable.h>
67
68 /*
69  * The maximum size of a shmem/tmpfs file is limited by the maximum size of
70  * its triple-indirect swap vector - see illustration at shmem_swp_entry().
71  *
72  * With 4kB page size, maximum file size is just over 2TB on a 32-bit kernel,
73  * but one eighth of that on a 64-bit kernel.  With 8kB page size, maximum
74  * file size is just over 4TB on a 64-bit kernel, but 16TB on a 32-bit kernel,
75  * MAX_LFS_FILESIZE being then more restrictive than swap vector layout.
76  *
77  * We use / and * instead of shifts in the definitions below, so that the swap
78  * vector can be tested with small even values (e.g. 20) for ENTRIES_PER_PAGE.
79  */
80 #define ENTRIES_PER_PAGE (PAGE_CACHE_SIZE/sizeof(unsigned long))
81 #define ENTRIES_PER_PAGEPAGE ((unsigned long long)ENTRIES_PER_PAGE*ENTRIES_PER_PAGE)
82
83 #define SHMSWP_MAX_INDEX (SHMEM_NR_DIRECT + (ENTRIES_PER_PAGEPAGE/2) * (ENTRIES_PER_PAGE+1))
84 #define SHMSWP_MAX_BYTES (SHMSWP_MAX_INDEX << PAGE_CACHE_SHIFT)
85
86 #define SHMEM_MAX_BYTES  min_t(unsigned long long, SHMSWP_MAX_BYTES, MAX_LFS_FILESIZE)
87 #define SHMEM_MAX_INDEX  ((unsigned long)((SHMEM_MAX_BYTES+1) >> PAGE_CACHE_SHIFT))
88
89 #define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
90 #define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
91
92 /* info->flags needs VM_flags to handle pagein/truncate races efficiently */
93 #define SHMEM_PAGEIN     VM_READ
94 #define SHMEM_TRUNCATE   VM_WRITE
95
96 /* Definition to limit shmem_truncate's steps between cond_rescheds */
97 #define LATENCY_LIMIT    64
98
99 /* Pretend that each entry is of this size in directory's i_size */
100 #define BOGO_DIRENT_SIZE 20
101
102 struct shmem_xattr {
103         struct list_head list;  /* anchored by shmem_inode_info->xattr_list */
104         char *name;             /* xattr name */
105         size_t size;
106         char value[0];
107 };
108
109 /* Flag allocation requirements to shmem_getpage and shmem_swp_alloc */
110 enum sgp_type {
111         SGP_READ,       /* don't exceed i_size, don't allocate page */
112         SGP_CACHE,      /* don't exceed i_size, may allocate page */
113         SGP_DIRTY,      /* like SGP_CACHE, but set new page dirty */
114         SGP_WRITE,      /* may exceed i_size, may allocate page */
115 };
116
117 #ifdef CONFIG_TMPFS
118 static unsigned long shmem_default_max_blocks(void)
119 {
120         return totalram_pages / 2;
121 }
122
123 static unsigned long shmem_default_max_inodes(void)
124 {
125         return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
126 }
127 #endif
128
129 static int shmem_getpage(struct inode *inode, unsigned long idx,
130                          struct page **pagep, enum sgp_type sgp, int *type);
131
132 static inline struct page *shmem_dir_alloc(gfp_t gfp_mask)
133 {
134         /*
135          * The above definition of ENTRIES_PER_PAGE, and the use of
136          * BLOCKS_PER_PAGE on indirect pages, assume PAGE_CACHE_SIZE:
137          * might be reconsidered if it ever diverges from PAGE_SIZE.
138          *
139          * Mobility flags are masked out as swap vectors cannot move
140          */
141         return alloc_pages((gfp_mask & ~GFP_MOVABLE_MASK) | __GFP_ZERO,
142                                 PAGE_CACHE_SHIFT-PAGE_SHIFT);
143 }
144
145 static inline void shmem_dir_free(struct page *page)
146 {
147         __free_pages(page, PAGE_CACHE_SHIFT-PAGE_SHIFT);
148 }
149
150 static struct page **shmem_dir_map(struct page *page)
151 {
152         return (struct page **)kmap_atomic(page, KM_USER0);
153 }
154
155 static inline void shmem_dir_unmap(struct page **dir)
156 {
157         kunmap_atomic(dir, KM_USER0);
158 }
159
160 static swp_entry_t *shmem_swp_map(struct page *page)
161 {
162         return (swp_entry_t *)kmap_atomic(page, KM_USER1);
163 }
164
165 static inline void shmem_swp_balance_unmap(void)
166 {
167         /*
168          * When passing a pointer to an i_direct entry, to code which
169          * also handles indirect entries and so will shmem_swp_unmap,
170          * we must arrange for the preempt count to remain in balance.
171          * What kmap_atomic of a lowmem page does depends on config
172          * and architecture, so pretend to kmap_atomic some lowmem page.
173          */
174         (void) kmap_atomic(ZERO_PAGE(0), KM_USER1);
175 }
176
177 static inline void shmem_swp_unmap(swp_entry_t *entry)
178 {
179         kunmap_atomic(entry, KM_USER1);
180 }
181
182 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
183 {
184         return sb->s_fs_info;
185 }
186
187 /*
188  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
189  * for shared memory and for shared anonymous (/dev/zero) mappings
190  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
191  * consistent with the pre-accounting of private mappings ...
192  */
193 static inline int shmem_acct_size(unsigned long flags, loff_t size)
194 {
195         return (flags & VM_NORESERVE) ?
196                 0 : security_vm_enough_memory_kern(VM_ACCT(size));
197 }
198
199 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
200 {
201         if (!(flags & VM_NORESERVE))
202                 vm_unacct_memory(VM_ACCT(size));
203 }
204
205 /*
206  * ... whereas tmpfs objects are accounted incrementally as
207  * pages are allocated, in order to allow huge sparse files.
208  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
209  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
210  */
211 static inline int shmem_acct_block(unsigned long flags)
212 {
213         return (flags & VM_NORESERVE) ?
214                 security_vm_enough_memory_kern(VM_ACCT(PAGE_CACHE_SIZE)) : 0;
215 }
216
217 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
218 {
219         if (flags & VM_NORESERVE)
220                 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
221 }
222
223 static const struct super_operations shmem_ops;
224 static const struct address_space_operations shmem_aops;
225 static const struct file_operations shmem_file_operations;
226 static const struct inode_operations shmem_inode_operations;
227 static const struct inode_operations shmem_dir_inode_operations;
228 static const struct inode_operations shmem_special_inode_operations;
229 static const struct vm_operations_struct shmem_vm_ops;
230
231 static struct backing_dev_info shmem_backing_dev_info  __read_mostly = {
232         .ra_pages       = 0,    /* No readahead */
233         .capabilities   = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
234 };
235
236 static LIST_HEAD(shmem_swaplist);
237 static DEFINE_MUTEX(shmem_swaplist_mutex);
238
239 static void shmem_free_blocks(struct inode *inode, long pages)
240 {
241         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
242         if (sbinfo->max_blocks) {
243                 percpu_counter_add(&sbinfo->used_blocks, -pages);
244                 spin_lock(&inode->i_lock);
245                 inode->i_blocks -= pages*BLOCKS_PER_PAGE;
246                 spin_unlock(&inode->i_lock);
247         }
248 }
249
250 static int shmem_reserve_inode(struct super_block *sb)
251 {
252         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
253         if (sbinfo->max_inodes) {
254                 spin_lock(&sbinfo->stat_lock);
255                 if (!sbinfo->free_inodes) {
256                         spin_unlock(&sbinfo->stat_lock);
257                         return -ENOSPC;
258                 }
259                 sbinfo->free_inodes--;
260                 spin_unlock(&sbinfo->stat_lock);
261         }
262         return 0;
263 }
264
265 static void shmem_free_inode(struct super_block *sb)
266 {
267         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
268         if (sbinfo->max_inodes) {
269                 spin_lock(&sbinfo->stat_lock);
270                 sbinfo->free_inodes++;
271                 spin_unlock(&sbinfo->stat_lock);
272         }
273 }
274
275 /**
276  * shmem_recalc_inode - recalculate the size of an inode
277  * @inode: inode to recalc
278  *
279  * We have to calculate the free blocks since the mm can drop
280  * undirtied hole pages behind our back.
281  *
282  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
283  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
284  *
285  * It has to be called with the spinlock held.
286  */
287 static void shmem_recalc_inode(struct inode *inode)
288 {
289         struct shmem_inode_info *info = SHMEM_I(inode);
290         long freed;
291
292         freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
293         if (freed > 0) {
294                 info->alloced -= freed;
295                 shmem_unacct_blocks(info->flags, freed);
296                 shmem_free_blocks(inode, freed);
297         }
298 }
299
300 /**
301  * shmem_swp_entry - find the swap vector position in the info structure
302  * @info:  info structure for the inode
303  * @index: index of the page to find
304  * @page:  optional page to add to the structure. Has to be preset to
305  *         all zeros
306  *
307  * If there is no space allocated yet it will return NULL when
308  * page is NULL, else it will use the page for the needed block,
309  * setting it to NULL on return to indicate that it has been used.
310  *
311  * The swap vector is organized the following way:
312  *
313  * There are SHMEM_NR_DIRECT entries directly stored in the
314  * shmem_inode_info structure. So small files do not need an addional
315  * allocation.
316  *
317  * For pages with index > SHMEM_NR_DIRECT there is the pointer
318  * i_indirect which points to a page which holds in the first half
319  * doubly indirect blocks, in the second half triple indirect blocks:
320  *
321  * For an artificial ENTRIES_PER_PAGE = 4 this would lead to the
322  * following layout (for SHMEM_NR_DIRECT == 16):
323  *
324  * i_indirect -> dir --> 16-19
325  *            |      +-> 20-23
326  *            |
327  *            +-->dir2 --> 24-27
328  *            |        +-> 28-31
329  *            |        +-> 32-35
330  *            |        +-> 36-39
331  *            |
332  *            +-->dir3 --> 40-43
333  *                     +-> 44-47
334  *                     +-> 48-51
335  *                     +-> 52-55
336  */
337 static swp_entry_t *shmem_swp_entry(struct shmem_inode_info *info, unsigned long index, struct page **page)
338 {
339         unsigned long offset;
340         struct page **dir;
341         struct page *subdir;
342
343         if (index < SHMEM_NR_DIRECT) {
344                 shmem_swp_balance_unmap();
345                 return info->i_direct+index;
346         }
347         if (!info->i_indirect) {
348                 if (page) {
349                         info->i_indirect = *page;
350                         *page = NULL;
351                 }
352                 return NULL;                    /* need another page */
353         }
354
355         index -= SHMEM_NR_DIRECT;
356         offset = index % ENTRIES_PER_PAGE;
357         index /= ENTRIES_PER_PAGE;
358         dir = shmem_dir_map(info->i_indirect);
359
360         if (index >= ENTRIES_PER_PAGE/2) {
361                 index -= ENTRIES_PER_PAGE/2;
362                 dir += ENTRIES_PER_PAGE/2 + index/ENTRIES_PER_PAGE;
363                 index %= ENTRIES_PER_PAGE;
364                 subdir = *dir;
365                 if (!subdir) {
366                         if (page) {
367                                 *dir = *page;
368                                 *page = NULL;
369                         }
370                         shmem_dir_unmap(dir);
371                         return NULL;            /* need another page */
372                 }
373                 shmem_dir_unmap(dir);
374                 dir = shmem_dir_map(subdir);
375         }
376
377         dir += index;
378         subdir = *dir;
379         if (!subdir) {
380                 if (!page || !(subdir = *page)) {
381                         shmem_dir_unmap(dir);
382                         return NULL;            /* need a page */
383                 }
384                 *dir = subdir;
385                 *page = NULL;
386         }
387         shmem_dir_unmap(dir);
388         return shmem_swp_map(subdir) + offset;
389 }
390
391 static void shmem_swp_set(struct shmem_inode_info *info, swp_entry_t *entry, unsigned long value)
392 {
393         long incdec = value? 1: -1;
394
395         entry->val = value;
396         info->swapped += incdec;
397         if ((unsigned long)(entry - info->i_direct) >= SHMEM_NR_DIRECT) {
398                 struct page *page = kmap_atomic_to_page(entry);
399                 set_page_private(page, page_private(page) + incdec);
400         }
401 }
402
403 /**
404  * shmem_swp_alloc - get the position of the swap entry for the page.
405  * @info:       info structure for the inode
406  * @index:      index of the page to find
407  * @sgp:        check and recheck i_size? skip allocation?
408  *
409  * If the entry does not exist, allocate it.
410  */
411 static swp_entry_t *shmem_swp_alloc(struct shmem_inode_info *info, unsigned long index, enum sgp_type sgp)
412 {
413         struct inode *inode = &info->vfs_inode;
414         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
415         struct page *page = NULL;
416         swp_entry_t *entry;
417
418         if (sgp != SGP_WRITE &&
419             ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode))
420                 return ERR_PTR(-EINVAL);
421
422         while (!(entry = shmem_swp_entry(info, index, &page))) {
423                 if (sgp == SGP_READ)
424                         return shmem_swp_map(ZERO_PAGE(0));
425                 /*
426                  * Test used_blocks against 1 less max_blocks, since we have 1 data
427                  * page (and perhaps indirect index pages) yet to allocate:
428                  * a waste to allocate index if we cannot allocate data.
429                  */
430                 if (sbinfo->max_blocks) {
431                         if (percpu_counter_compare(&sbinfo->used_blocks,
432                                                 sbinfo->max_blocks - 1) >= 0)
433                                 return ERR_PTR(-ENOSPC);
434                         percpu_counter_inc(&sbinfo->used_blocks);
435                         spin_lock(&inode->i_lock);
436                         inode->i_blocks += BLOCKS_PER_PAGE;
437                         spin_unlock(&inode->i_lock);
438                 }
439
440                 spin_unlock(&info->lock);
441                 page = shmem_dir_alloc(mapping_gfp_mask(inode->i_mapping));
442                 spin_lock(&info->lock);
443
444                 if (!page) {
445                         shmem_free_blocks(inode, 1);
446                         return ERR_PTR(-ENOMEM);
447                 }
448                 if (sgp != SGP_WRITE &&
449                     ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
450                         entry = ERR_PTR(-EINVAL);
451                         break;
452                 }
453                 if (info->next_index <= index)
454                         info->next_index = index + 1;
455         }
456         if (page) {
457                 /* another task gave its page, or truncated the file */
458                 shmem_free_blocks(inode, 1);
459                 shmem_dir_free(page);
460         }
461         if (info->next_index <= index && !IS_ERR(entry))
462                 info->next_index = index + 1;
463         return entry;
464 }
465
466 /**
467  * shmem_free_swp - free some swap entries in a directory
468  * @dir:        pointer to the directory
469  * @edir:       pointer after last entry of the directory
470  * @punch_lock: pointer to spinlock when needed for the holepunch case
471  */
472 static int shmem_free_swp(swp_entry_t *dir, swp_entry_t *edir,
473                                                 spinlock_t *punch_lock)
474 {
475         spinlock_t *punch_unlock = NULL;
476         swp_entry_t *ptr;
477         int freed = 0;
478
479         for (ptr = dir; ptr < edir; ptr++) {
480                 if (ptr->val) {
481                         if (unlikely(punch_lock)) {
482                                 punch_unlock = punch_lock;
483                                 punch_lock = NULL;
484                                 spin_lock(punch_unlock);
485                                 if (!ptr->val)
486                                         continue;
487                         }
488                         free_swap_and_cache(*ptr);
489                         *ptr = (swp_entry_t){0};
490                         freed++;
491                 }
492         }
493         if (punch_unlock)
494                 spin_unlock(punch_unlock);
495         return freed;
496 }
497
498 static int shmem_map_and_free_swp(struct page *subdir, int offset,
499                 int limit, struct page ***dir, spinlock_t *punch_lock)
500 {
501         swp_entry_t *ptr;
502         int freed = 0;
503
504         ptr = shmem_swp_map(subdir);
505         for (; offset < limit; offset += LATENCY_LIMIT) {
506                 int size = limit - offset;
507                 if (size > LATENCY_LIMIT)
508                         size = LATENCY_LIMIT;
509                 freed += shmem_free_swp(ptr+offset, ptr+offset+size,
510                                                         punch_lock);
511                 if (need_resched()) {
512                         shmem_swp_unmap(ptr);
513                         if (*dir) {
514                                 shmem_dir_unmap(*dir);
515                                 *dir = NULL;
516                         }
517                         cond_resched();
518                         ptr = shmem_swp_map(subdir);
519                 }
520         }
521         shmem_swp_unmap(ptr);
522         return freed;
523 }
524
525 static void shmem_free_pages(struct list_head *next)
526 {
527         struct page *page;
528         int freed = 0;
529
530         do {
531                 page = container_of(next, struct page, lru);
532                 next = next->next;
533                 shmem_dir_free(page);
534                 freed++;
535                 if (freed >= LATENCY_LIMIT) {
536                         cond_resched();
537                         freed = 0;
538                 }
539         } while (next);
540 }
541
542 void shmem_truncate_range(struct inode *inode, loff_t start, loff_t end)
543 {
544         struct shmem_inode_info *info = SHMEM_I(inode);
545         unsigned long idx;
546         unsigned long size;
547         unsigned long limit;
548         unsigned long stage;
549         unsigned long diroff;
550         struct page **dir;
551         struct page *topdir;
552         struct page *middir;
553         struct page *subdir;
554         swp_entry_t *ptr;
555         LIST_HEAD(pages_to_free);
556         long nr_pages_to_free = 0;
557         long nr_swaps_freed = 0;
558         int offset;
559         int freed;
560         int punch_hole;
561         spinlock_t *needs_lock;
562         spinlock_t *punch_lock;
563         unsigned long upper_limit;
564
565         truncate_inode_pages_range(inode->i_mapping, start, end);
566
567         inode->i_ctime = inode->i_mtime = CURRENT_TIME;
568         idx = (start + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
569         if (idx >= info->next_index)
570                 return;
571
572         spin_lock(&info->lock);
573         info->flags |= SHMEM_TRUNCATE;
574         if (likely(end == (loff_t) -1)) {
575                 limit = info->next_index;
576                 upper_limit = SHMEM_MAX_INDEX;
577                 info->next_index = idx;
578                 needs_lock = NULL;
579                 punch_hole = 0;
580         } else {
581                 if (end + 1 >= inode->i_size) { /* we may free a little more */
582                         limit = (inode->i_size + PAGE_CACHE_SIZE - 1) >>
583                                                         PAGE_CACHE_SHIFT;
584                         upper_limit = SHMEM_MAX_INDEX;
585                 } else {
586                         limit = (end + 1) >> PAGE_CACHE_SHIFT;
587                         upper_limit = limit;
588                 }
589                 needs_lock = &info->lock;
590                 punch_hole = 1;
591         }
592
593         topdir = info->i_indirect;
594         if (topdir && idx <= SHMEM_NR_DIRECT && !punch_hole) {
595                 info->i_indirect = NULL;
596                 nr_pages_to_free++;
597                 list_add(&topdir->lru, &pages_to_free);
598         }
599         spin_unlock(&info->lock);
600
601         if (info->swapped && idx < SHMEM_NR_DIRECT) {
602                 ptr = info->i_direct;
603                 size = limit;
604                 if (size > SHMEM_NR_DIRECT)
605                         size = SHMEM_NR_DIRECT;
606                 nr_swaps_freed = shmem_free_swp(ptr+idx, ptr+size, needs_lock);
607         }
608
609         /*
610          * If there are no indirect blocks or we are punching a hole
611          * below indirect blocks, nothing to be done.
612          */
613         if (!topdir || limit <= SHMEM_NR_DIRECT)
614                 goto done2;
615
616         /*
617          * The truncation case has already dropped info->lock, and we're safe
618          * because i_size and next_index have already been lowered, preventing
619          * access beyond.  But in the punch_hole case, we still need to take
620          * the lock when updating the swap directory, because there might be
621          * racing accesses by shmem_getpage(SGP_CACHE), shmem_unuse_inode or
622          * shmem_writepage.  However, whenever we find we can remove a whole
623          * directory page (not at the misaligned start or end of the range),
624          * we first NULLify its pointer in the level above, and then have no
625          * need to take the lock when updating its contents: needs_lock and
626          * punch_lock (either pointing to info->lock or NULL) manage this.
627          */
628
629         upper_limit -= SHMEM_NR_DIRECT;
630         limit -= SHMEM_NR_DIRECT;
631         idx = (idx > SHMEM_NR_DIRECT)? (idx - SHMEM_NR_DIRECT): 0;
632         offset = idx % ENTRIES_PER_PAGE;
633         idx -= offset;
634
635         dir = shmem_dir_map(topdir);
636         stage = ENTRIES_PER_PAGEPAGE/2;
637         if (idx < ENTRIES_PER_PAGEPAGE/2) {
638                 middir = topdir;
639                 diroff = idx/ENTRIES_PER_PAGE;
640         } else {
641                 dir += ENTRIES_PER_PAGE/2;
642                 dir += (idx - ENTRIES_PER_PAGEPAGE/2)/ENTRIES_PER_PAGEPAGE;
643                 while (stage <= idx)
644                         stage += ENTRIES_PER_PAGEPAGE;
645                 middir = *dir;
646                 if (*dir) {
647                         diroff = ((idx - ENTRIES_PER_PAGEPAGE/2) %
648                                 ENTRIES_PER_PAGEPAGE) / ENTRIES_PER_PAGE;
649                         if (!diroff && !offset && upper_limit >= stage) {
650                                 if (needs_lock) {
651                                         spin_lock(needs_lock);
652                                         *dir = NULL;
653                                         spin_unlock(needs_lock);
654                                         needs_lock = NULL;
655                                 } else
656                                         *dir = NULL;
657                                 nr_pages_to_free++;
658                                 list_add(&middir->lru, &pages_to_free);
659                         }
660                         shmem_dir_unmap(dir);
661                         dir = shmem_dir_map(middir);
662                 } else {
663                         diroff = 0;
664                         offset = 0;
665                         idx = stage;
666                 }
667         }
668
669         for (; idx < limit; idx += ENTRIES_PER_PAGE, diroff++) {
670                 if (unlikely(idx == stage)) {
671                         shmem_dir_unmap(dir);
672                         dir = shmem_dir_map(topdir) +
673                             ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
674                         while (!*dir) {
675                                 dir++;
676                                 idx += ENTRIES_PER_PAGEPAGE;
677                                 if (idx >= limit)
678                                         goto done1;
679                         }
680                         stage = idx + ENTRIES_PER_PAGEPAGE;
681                         middir = *dir;
682                         if (punch_hole)
683                                 needs_lock = &info->lock;
684                         if (upper_limit >= stage) {
685                                 if (needs_lock) {
686                                         spin_lock(needs_lock);
687                                         *dir = NULL;
688                                         spin_unlock(needs_lock);
689                                         needs_lock = NULL;
690                                 } else
691                                         *dir = NULL;
692                                 nr_pages_to_free++;
693                                 list_add(&middir->lru, &pages_to_free);
694                         }
695                         shmem_dir_unmap(dir);
696                         cond_resched();
697                         dir = shmem_dir_map(middir);
698                         diroff = 0;
699                 }
700                 punch_lock = needs_lock;
701                 subdir = dir[diroff];
702                 if (subdir && !offset && upper_limit-idx >= ENTRIES_PER_PAGE) {
703                         if (needs_lock) {
704                                 spin_lock(needs_lock);
705                                 dir[diroff] = NULL;
706                                 spin_unlock(needs_lock);
707                                 punch_lock = NULL;
708                         } else
709                                 dir[diroff] = NULL;
710                         nr_pages_to_free++;
711                         list_add(&subdir->lru, &pages_to_free);
712                 }
713                 if (subdir && page_private(subdir) /* has swap entries */) {
714                         size = limit - idx;
715                         if (size > ENTRIES_PER_PAGE)
716                                 size = ENTRIES_PER_PAGE;
717                         freed = shmem_map_and_free_swp(subdir,
718                                         offset, size, &dir, punch_lock);
719                         if (!dir)
720                                 dir = shmem_dir_map(middir);
721                         nr_swaps_freed += freed;
722                         if (offset || punch_lock) {
723                                 spin_lock(&info->lock);
724                                 set_page_private(subdir,
725                                         page_private(subdir) - freed);
726                                 spin_unlock(&info->lock);
727                         } else
728                                 BUG_ON(page_private(subdir) != freed);
729                 }
730                 offset = 0;
731         }
732 done1:
733         shmem_dir_unmap(dir);
734 done2:
735         if (inode->i_mapping->nrpages && (info->flags & SHMEM_PAGEIN)) {
736                 /*
737                  * Call truncate_inode_pages again: racing shmem_unuse_inode
738                  * may have swizzled a page in from swap since
739                  * truncate_pagecache or generic_delete_inode did it, before we
740                  * lowered next_index.  Also, though shmem_getpage checks
741                  * i_size before adding to cache, no recheck after: so fix the
742                  * narrow window there too.
743                  */
744                 truncate_inode_pages_range(inode->i_mapping, start, end);
745         }
746
747         spin_lock(&info->lock);
748         info->flags &= ~SHMEM_TRUNCATE;
749         info->swapped -= nr_swaps_freed;
750         if (nr_pages_to_free)
751                 shmem_free_blocks(inode, nr_pages_to_free);
752         shmem_recalc_inode(inode);
753         spin_unlock(&info->lock);
754
755         /*
756          * Empty swap vector directory pages to be freed?
757          */
758         if (!list_empty(&pages_to_free)) {
759                 pages_to_free.prev->next = NULL;
760                 shmem_free_pages(pages_to_free.next);
761         }
762 }
763 EXPORT_SYMBOL_GPL(shmem_truncate_range);
764
765 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
766 {
767         struct inode *inode = dentry->d_inode;
768         int error;
769
770         error = inode_change_ok(inode, attr);
771         if (error)
772                 return error;
773
774         if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
775                 loff_t oldsize = inode->i_size;
776                 loff_t newsize = attr->ia_size;
777                 struct page *page = NULL;
778
779                 if (newsize < oldsize) {
780                         /*
781                          * If truncating down to a partial page, then
782                          * if that page is already allocated, hold it
783                          * in memory until the truncation is over, so
784                          * truncate_partial_page cannot miss it were
785                          * it assigned to swap.
786                          */
787                         if (newsize & (PAGE_CACHE_SIZE-1)) {
788                                 (void) shmem_getpage(inode,
789                                         newsize >> PAGE_CACHE_SHIFT,
790                                                 &page, SGP_READ, NULL);
791                                 if (page)
792                                         unlock_page(page);
793                         }
794                         /*
795                          * Reset SHMEM_PAGEIN flag so that shmem_truncate can
796                          * detect if any pages might have been added to cache
797                          * after truncate_inode_pages.  But we needn't bother
798                          * if it's being fully truncated to zero-length: the
799                          * nrpages check is efficient enough in that case.
800                          */
801                         if (newsize) {
802                                 struct shmem_inode_info *info = SHMEM_I(inode);
803                                 spin_lock(&info->lock);
804                                 info->flags &= ~SHMEM_PAGEIN;
805                                 spin_unlock(&info->lock);
806                         }
807                 }
808                 if (newsize != oldsize) {
809                         i_size_write(inode, newsize);
810                         inode->i_ctime = inode->i_mtime = CURRENT_TIME;
811                 }
812                 if (newsize < oldsize) {
813                         loff_t holebegin = round_up(newsize, PAGE_SIZE);
814                         unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
815                         shmem_truncate_range(inode, newsize, (loff_t)-1);
816                         /* unmap again to remove racily COWed private pages */
817                         unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
818                 }
819                 if (page)
820                         page_cache_release(page);
821         }
822
823         setattr_copy(inode, attr);
824 #ifdef CONFIG_TMPFS_POSIX_ACL
825         if (attr->ia_valid & ATTR_MODE)
826                 error = generic_acl_chmod(inode);
827 #endif
828         return error;
829 }
830
831 static void shmem_evict_inode(struct inode *inode)
832 {
833         struct shmem_inode_info *info = SHMEM_I(inode);
834         struct shmem_xattr *xattr, *nxattr;
835
836         if (inode->i_mapping->a_ops == &shmem_aops) {
837                 shmem_unacct_size(info->flags, inode->i_size);
838                 inode->i_size = 0;
839                 shmem_truncate_range(inode, 0, (loff_t)-1);
840                 if (!list_empty(&info->swaplist)) {
841                         mutex_lock(&shmem_swaplist_mutex);
842                         list_del_init(&info->swaplist);
843                         mutex_unlock(&shmem_swaplist_mutex);
844                 }
845         }
846
847         list_for_each_entry_safe(xattr, nxattr, &info->xattr_list, list) {
848                 kfree(xattr->name);
849                 kfree(xattr);
850         }
851         BUG_ON(inode->i_blocks);
852         shmem_free_inode(inode->i_sb);
853         end_writeback(inode);
854 }
855
856 static inline int shmem_find_swp(swp_entry_t entry, swp_entry_t *dir, swp_entry_t *edir)
857 {
858         swp_entry_t *ptr;
859
860         for (ptr = dir; ptr < edir; ptr++) {
861                 if (ptr->val == entry.val)
862                         return ptr - dir;
863         }
864         return -1;
865 }
866
867 static int shmem_unuse_inode(struct shmem_inode_info *info, swp_entry_t entry, struct page *page)
868 {
869         struct address_space *mapping;
870         unsigned long idx;
871         unsigned long size;
872         unsigned long limit;
873         unsigned long stage;
874         struct page **dir;
875         struct page *subdir;
876         swp_entry_t *ptr;
877         int offset;
878         int error;
879
880         idx = 0;
881         ptr = info->i_direct;
882         spin_lock(&info->lock);
883         if (!info->swapped) {
884                 list_del_init(&info->swaplist);
885                 goto lost2;
886         }
887         limit = info->next_index;
888         size = limit;
889         if (size > SHMEM_NR_DIRECT)
890                 size = SHMEM_NR_DIRECT;
891         offset = shmem_find_swp(entry, ptr, ptr+size);
892         if (offset >= 0) {
893                 shmem_swp_balance_unmap();
894                 goto found;
895         }
896         if (!info->i_indirect)
897                 goto lost2;
898
899         dir = shmem_dir_map(info->i_indirect);
900         stage = SHMEM_NR_DIRECT + ENTRIES_PER_PAGEPAGE/2;
901
902         for (idx = SHMEM_NR_DIRECT; idx < limit; idx += ENTRIES_PER_PAGE, dir++) {
903                 if (unlikely(idx == stage)) {
904                         shmem_dir_unmap(dir-1);
905                         if (cond_resched_lock(&info->lock)) {
906                                 /* check it has not been truncated */
907                                 if (limit > info->next_index) {
908                                         limit = info->next_index;
909                                         if (idx >= limit)
910                                                 goto lost2;
911                                 }
912                         }
913                         dir = shmem_dir_map(info->i_indirect) +
914                             ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
915                         while (!*dir) {
916                                 dir++;
917                                 idx += ENTRIES_PER_PAGEPAGE;
918                                 if (idx >= limit)
919                                         goto lost1;
920                         }
921                         stage = idx + ENTRIES_PER_PAGEPAGE;
922                         subdir = *dir;
923                         shmem_dir_unmap(dir);
924                         dir = shmem_dir_map(subdir);
925                 }
926                 subdir = *dir;
927                 if (subdir && page_private(subdir)) {
928                         ptr = shmem_swp_map(subdir);
929                         size = limit - idx;
930                         if (size > ENTRIES_PER_PAGE)
931                                 size = ENTRIES_PER_PAGE;
932                         offset = shmem_find_swp(entry, ptr, ptr+size);
933                         shmem_swp_unmap(ptr);
934                         if (offset >= 0) {
935                                 shmem_dir_unmap(dir);
936                                 ptr = shmem_swp_map(subdir);
937                                 goto found;
938                         }
939                 }
940         }
941 lost1:
942         shmem_dir_unmap(dir-1);
943 lost2:
944         spin_unlock(&info->lock);
945         return 0;
946 found:
947         idx += offset;
948         ptr += offset;
949
950         /*
951          * Move _head_ to start search for next from here.
952          * But be careful: shmem_evict_inode checks list_empty without taking
953          * mutex, and there's an instant in list_move_tail when info->swaplist
954          * would appear empty, if it were the only one on shmem_swaplist.  We
955          * could avoid doing it if inode NULL; or use this minor optimization.
956          */
957         if (shmem_swaplist.next != &info->swaplist)
958                 list_move_tail(&shmem_swaplist, &info->swaplist);
959
960         /*
961          * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
962          * but also to hold up shmem_evict_inode(): so inode cannot be freed
963          * beneath us (pagelock doesn't help until the page is in pagecache).
964          */
965         mapping = info->vfs_inode.i_mapping;
966         error = add_to_page_cache_locked(page, mapping, idx, GFP_NOWAIT);
967         /* which does mem_cgroup_uncharge_cache_page on error */
968
969         if (error == -EEXIST) {
970                 struct page *filepage = find_get_page(mapping, idx);
971                 error = 1;
972                 if (filepage) {
973                         /*
974                          * There might be a more uptodate page coming down
975                          * from a stacked writepage: forget our swappage if so.
976                          */
977                         if (PageUptodate(filepage))
978                                 error = 0;
979                         page_cache_release(filepage);
980                 }
981         }
982         if (!error) {
983                 delete_from_swap_cache(page);
984                 set_page_dirty(page);
985                 info->flags |= SHMEM_PAGEIN;
986                 shmem_swp_set(info, ptr, 0);
987                 swap_free(entry);
988                 error = 1;      /* not an error, but entry was found */
989         }
990         shmem_swp_unmap(ptr);
991         spin_unlock(&info->lock);
992         return error;
993 }
994
995 /*
996  * shmem_unuse() search for an eventually swapped out shmem page.
997  */
998 int shmem_unuse(swp_entry_t entry, struct page *page)
999 {
1000         struct list_head *p, *next;
1001         struct shmem_inode_info *info;
1002         int found = 0;
1003         int error;
1004
1005         /*
1006          * Charge page using GFP_KERNEL while we can wait, before taking
1007          * the shmem_swaplist_mutex which might hold up shmem_writepage().
1008          * Charged back to the user (not to caller) when swap account is used.
1009          * add_to_page_cache() will be called with GFP_NOWAIT.
1010          */
1011         error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL);
1012         if (error)
1013                 goto out;
1014         /*
1015          * Try to preload while we can wait, to not make a habit of
1016          * draining atomic reserves; but don't latch on to this cpu,
1017          * it's okay if sometimes we get rescheduled after this.
1018          */
1019         error = radix_tree_preload(GFP_KERNEL);
1020         if (error)
1021                 goto uncharge;
1022         radix_tree_preload_end();
1023
1024         mutex_lock(&shmem_swaplist_mutex);
1025         list_for_each_safe(p, next, &shmem_swaplist) {
1026                 info = list_entry(p, struct shmem_inode_info, swaplist);
1027                 found = shmem_unuse_inode(info, entry, page);
1028                 cond_resched();
1029                 if (found)
1030                         break;
1031         }
1032         mutex_unlock(&shmem_swaplist_mutex);
1033
1034 uncharge:
1035         if (!found)
1036                 mem_cgroup_uncharge_cache_page(page);
1037         if (found < 0)
1038                 error = found;
1039 out:
1040         unlock_page(page);
1041         page_cache_release(page);
1042         return error;
1043 }
1044
1045 /*
1046  * Move the page from the page cache to the swap cache.
1047  */
1048 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1049 {
1050         struct shmem_inode_info *info;
1051         swp_entry_t *entry, swap;
1052         struct address_space *mapping;
1053         unsigned long index;
1054         struct inode *inode;
1055
1056         BUG_ON(!PageLocked(page));
1057         mapping = page->mapping;
1058         index = page->index;
1059         inode = mapping->host;
1060         info = SHMEM_I(inode);
1061         if (info->flags & VM_LOCKED)
1062                 goto redirty;
1063         if (!total_swap_pages)
1064                 goto redirty;
1065
1066         /*
1067          * shmem_backing_dev_info's capabilities prevent regular writeback or
1068          * sync from ever calling shmem_writepage; but a stacking filesystem
1069          * may use the ->writepage of its underlying filesystem, in which case
1070          * tmpfs should write out to swap only in response to memory pressure,
1071          * and not for the writeback threads or sync.  However, in those cases,
1072          * we do still want to check if there's a redundant swappage to be
1073          * discarded.
1074          */
1075         if (wbc->for_reclaim)
1076                 swap = get_swap_page();
1077         else
1078                 swap.val = 0;
1079
1080         /*
1081          * Add inode to shmem_unuse()'s list of swapped-out inodes,
1082          * if it's not already there.  Do it now because we cannot take
1083          * mutex while holding spinlock, and must do so before the page
1084          * is moved to swap cache, when its pagelock no longer protects
1085          * the inode from eviction.  But don't unlock the mutex until
1086          * we've taken the spinlock, because shmem_unuse_inode() will
1087          * prune a !swapped inode from the swaplist under both locks.
1088          */
1089         if (swap.val) {
1090                 mutex_lock(&shmem_swaplist_mutex);
1091                 if (list_empty(&info->swaplist))
1092                         list_add_tail(&info->swaplist, &shmem_swaplist);
1093         }
1094
1095         spin_lock(&info->lock);
1096         if (swap.val)
1097                 mutex_unlock(&shmem_swaplist_mutex);
1098
1099         if (index >= info->next_index) {
1100                 BUG_ON(!(info->flags & SHMEM_TRUNCATE));
1101                 goto unlock;
1102         }
1103         entry = shmem_swp_entry(info, index, NULL);
1104         if (entry->val) {
1105                 /*
1106                  * The more uptodate page coming down from a stacked
1107                  * writepage should replace our old swappage.
1108                  */
1109                 free_swap_and_cache(*entry);
1110                 shmem_swp_set(info, entry, 0);
1111         }
1112         shmem_recalc_inode(inode);
1113
1114         if (swap.val && add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1115                 delete_from_page_cache(page);
1116                 shmem_swp_set(info, entry, swap.val);
1117                 shmem_swp_unmap(entry);
1118                 swap_shmem_alloc(swap);
1119                 spin_unlock(&info->lock);
1120                 BUG_ON(page_mapped(page));
1121                 swap_writepage(page, wbc);
1122                 return 0;
1123         }
1124
1125         shmem_swp_unmap(entry);
1126 unlock:
1127         spin_unlock(&info->lock);
1128         /*
1129          * add_to_swap_cache() doesn't return -EEXIST, so we can safely
1130          * clear SWAP_HAS_CACHE flag.
1131          */
1132         swapcache_free(swap, NULL);
1133 redirty:
1134         set_page_dirty(page);
1135         if (wbc->for_reclaim)
1136                 return AOP_WRITEPAGE_ACTIVATE;  /* Return with page locked */
1137         unlock_page(page);
1138         return 0;
1139 }
1140
1141 #ifdef CONFIG_NUMA
1142 #ifdef CONFIG_TMPFS
1143 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1144 {
1145         char buffer[64];
1146
1147         if (!mpol || mpol->mode == MPOL_DEFAULT)
1148                 return;         /* show nothing */
1149
1150         mpol_to_str(buffer, sizeof(buffer), mpol, 1);
1151
1152         seq_printf(seq, ",mpol=%s", buffer);
1153 }
1154
1155 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1156 {
1157         struct mempolicy *mpol = NULL;
1158         if (sbinfo->mpol) {
1159                 spin_lock(&sbinfo->stat_lock);  /* prevent replace/use races */
1160                 mpol = sbinfo->mpol;
1161                 mpol_get(mpol);
1162                 spin_unlock(&sbinfo->stat_lock);
1163         }
1164         return mpol;
1165 }
1166 #endif /* CONFIG_TMPFS */
1167
1168 static struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp,
1169                         struct shmem_inode_info *info, unsigned long idx)
1170 {
1171         struct vm_area_struct pvma;
1172         struct page *page;
1173
1174         /* Create a pseudo vma that just contains the policy */
1175         pvma.vm_start = 0;
1176         pvma.vm_pgoff = idx;
1177         pvma.vm_ops = NULL;
1178         pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, idx);
1179
1180         page = swapin_readahead(entry, gfp, &pvma, 0);
1181
1182         /* Drop reference taken by mpol_shared_policy_lookup() */
1183         mpol_cond_put(pvma.vm_policy);
1184
1185         return page;
1186 }
1187
1188 static struct page *shmem_alloc_page(gfp_t gfp,
1189                         struct shmem_inode_info *info, unsigned long idx)
1190 {
1191         struct vm_area_struct pvma;
1192         struct page *page;
1193
1194         /* Create a pseudo vma that just contains the policy */
1195         pvma.vm_start = 0;
1196         pvma.vm_pgoff = idx;
1197         pvma.vm_ops = NULL;
1198         pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, idx);
1199
1200         page = alloc_page_vma(gfp, &pvma, 0);
1201
1202         /* Drop reference taken by mpol_shared_policy_lookup() */
1203         mpol_cond_put(pvma.vm_policy);
1204
1205         return page;
1206 }
1207 #else /* !CONFIG_NUMA */
1208 #ifdef CONFIG_TMPFS
1209 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *p)
1210 {
1211 }
1212 #endif /* CONFIG_TMPFS */
1213
1214 static inline struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp,
1215                         struct shmem_inode_info *info, unsigned long idx)
1216 {
1217         return swapin_readahead(entry, gfp, NULL, 0);
1218 }
1219
1220 static inline struct page *shmem_alloc_page(gfp_t gfp,
1221                         struct shmem_inode_info *info, unsigned long idx)
1222 {
1223         return alloc_page(gfp);
1224 }
1225 #endif /* CONFIG_NUMA */
1226
1227 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
1228 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1229 {
1230         return NULL;
1231 }
1232 #endif
1233
1234 /*
1235  * shmem_getpage - either get the page from swap or allocate a new one
1236  *
1237  * If we allocate a new one we do not mark it dirty. That's up to the
1238  * vm. If we swap it in we mark it dirty since we also free the swap
1239  * entry since a page cannot live in both the swap and page cache
1240  */
1241 static int shmem_getpage(struct inode *inode, unsigned long idx,
1242                         struct page **pagep, enum sgp_type sgp, int *type)
1243 {
1244         struct address_space *mapping = inode->i_mapping;
1245         struct shmem_inode_info *info = SHMEM_I(inode);
1246         struct shmem_sb_info *sbinfo;
1247         struct page *filepage = *pagep;
1248         struct page *swappage;
1249         struct page *prealloc_page = NULL;
1250         swp_entry_t *entry;
1251         swp_entry_t swap;
1252         gfp_t gfp;
1253         int error;
1254
1255         if (idx >= SHMEM_MAX_INDEX)
1256                 return -EFBIG;
1257
1258         if (type)
1259                 *type = 0;
1260
1261         /*
1262          * Normally, filepage is NULL on entry, and either found
1263          * uptodate immediately, or allocated and zeroed, or read
1264          * in under swappage, which is then assigned to filepage.
1265          * But shmem_readpage (required for splice) passes in a locked
1266          * filepage, which may be found not uptodate by other callers
1267          * too, and may need to be copied from the swappage read in.
1268          */
1269 repeat:
1270         if (!filepage)
1271                 filepage = find_lock_page(mapping, idx);
1272         if (filepage && PageUptodate(filepage))
1273                 goto done;
1274         gfp = mapping_gfp_mask(mapping);
1275         if (!filepage) {
1276                 /*
1277                  * Try to preload while we can wait, to not make a habit of
1278                  * draining atomic reserves; but don't latch on to this cpu.
1279                  */
1280                 error = radix_tree_preload(gfp & ~__GFP_HIGHMEM);
1281                 if (error)
1282                         goto failed;
1283                 radix_tree_preload_end();
1284                 if (sgp != SGP_READ && !prealloc_page) {
1285                         /* We don't care if this fails */
1286                         prealloc_page = shmem_alloc_page(gfp, info, idx);
1287                         if (prealloc_page) {
1288                                 if (mem_cgroup_cache_charge(prealloc_page,
1289                                                 current->mm, GFP_KERNEL)) {
1290                                         page_cache_release(prealloc_page);
1291                                         prealloc_page = NULL;
1292                                 }
1293                         }
1294                 }
1295         }
1296         error = 0;
1297
1298         spin_lock(&info->lock);
1299         shmem_recalc_inode(inode);
1300         entry = shmem_swp_alloc(info, idx, sgp);
1301         if (IS_ERR(entry)) {
1302                 spin_unlock(&info->lock);
1303                 error = PTR_ERR(entry);
1304                 goto failed;
1305         }
1306         swap = *entry;
1307
1308         if (swap.val) {
1309                 /* Look it up and read it in.. */
1310                 swappage = lookup_swap_cache(swap);
1311                 if (!swappage) {
1312                         shmem_swp_unmap(entry);
1313                         spin_unlock(&info->lock);
1314                         /* here we actually do the io */
1315                         if (type)
1316                                 *type |= VM_FAULT_MAJOR;
1317                         swappage = shmem_swapin(swap, gfp, info, idx);
1318                         if (!swappage) {
1319                                 spin_lock(&info->lock);
1320                                 entry = shmem_swp_alloc(info, idx, sgp);
1321                                 if (IS_ERR(entry))
1322                                         error = PTR_ERR(entry);
1323                                 else {
1324                                         if (entry->val == swap.val)
1325                                                 error = -ENOMEM;
1326                                         shmem_swp_unmap(entry);
1327                                 }
1328                                 spin_unlock(&info->lock);
1329                                 if (error)
1330                                         goto failed;
1331                                 goto repeat;
1332                         }
1333                         wait_on_page_locked(swappage);
1334                         page_cache_release(swappage);
1335                         goto repeat;
1336                 }
1337
1338                 /* We have to do this with page locked to prevent races */
1339                 if (!trylock_page(swappage)) {
1340                         shmem_swp_unmap(entry);
1341                         spin_unlock(&info->lock);
1342                         wait_on_page_locked(swappage);
1343                         page_cache_release(swappage);
1344                         goto repeat;
1345                 }
1346                 if (PageWriteback(swappage)) {
1347                         shmem_swp_unmap(entry);
1348                         spin_unlock(&info->lock);
1349                         wait_on_page_writeback(swappage);
1350                         unlock_page(swappage);
1351                         page_cache_release(swappage);
1352                         goto repeat;
1353                 }
1354                 if (!PageUptodate(swappage)) {
1355                         shmem_swp_unmap(entry);
1356                         spin_unlock(&info->lock);
1357                         unlock_page(swappage);
1358                         page_cache_release(swappage);
1359                         error = -EIO;
1360                         goto failed;
1361                 }
1362
1363                 if (filepage) {
1364                         shmem_swp_set(info, entry, 0);
1365                         shmem_swp_unmap(entry);
1366                         delete_from_swap_cache(swappage);
1367                         spin_unlock(&info->lock);
1368                         copy_highpage(filepage, swappage);
1369                         unlock_page(swappage);
1370                         page_cache_release(swappage);
1371                         flush_dcache_page(filepage);
1372                         SetPageUptodate(filepage);
1373                         set_page_dirty(filepage);
1374                         swap_free(swap);
1375                 } else if (!(error = add_to_page_cache_locked(swappage, mapping,
1376                                         idx, GFP_NOWAIT))) {
1377                         info->flags |= SHMEM_PAGEIN;
1378                         shmem_swp_set(info, entry, 0);
1379                         shmem_swp_unmap(entry);
1380                         delete_from_swap_cache(swappage);
1381                         spin_unlock(&info->lock);
1382                         filepage = swappage;
1383                         set_page_dirty(filepage);
1384                         swap_free(swap);
1385                 } else {
1386                         shmem_swp_unmap(entry);
1387                         spin_unlock(&info->lock);
1388                         if (error == -ENOMEM) {
1389                                 /*
1390                                  * reclaim from proper memory cgroup and
1391                                  * call memcg's OOM if needed.
1392                                  */
1393                                 error = mem_cgroup_shmem_charge_fallback(
1394                                                                 swappage,
1395                                                                 current->mm,
1396                                                                 gfp);
1397                                 if (error) {
1398                                         unlock_page(swappage);
1399                                         page_cache_release(swappage);
1400                                         goto failed;
1401                                 }
1402                         }
1403                         unlock_page(swappage);
1404                         page_cache_release(swappage);
1405                         goto repeat;
1406                 }
1407         } else if (sgp == SGP_READ && !filepage) {
1408                 shmem_swp_unmap(entry);
1409                 filepage = find_get_page(mapping, idx);
1410                 if (filepage &&
1411                     (!PageUptodate(filepage) || !trylock_page(filepage))) {
1412                         spin_unlock(&info->lock);
1413                         wait_on_page_locked(filepage);
1414                         page_cache_release(filepage);
1415                         filepage = NULL;
1416                         goto repeat;
1417                 }
1418                 spin_unlock(&info->lock);
1419         } else {
1420                 shmem_swp_unmap(entry);
1421                 sbinfo = SHMEM_SB(inode->i_sb);
1422                 if (sbinfo->max_blocks) {
1423                         if (percpu_counter_compare(&sbinfo->used_blocks,
1424                                                 sbinfo->max_blocks) >= 0 ||
1425                             shmem_acct_block(info->flags))
1426                                 goto nospace;
1427                         percpu_counter_inc(&sbinfo->used_blocks);
1428                         spin_lock(&inode->i_lock);
1429                         inode->i_blocks += BLOCKS_PER_PAGE;
1430                         spin_unlock(&inode->i_lock);
1431                 } else if (shmem_acct_block(info->flags))
1432                         goto nospace;
1433
1434                 if (!filepage) {
1435                         int ret;
1436
1437                         if (!prealloc_page) {
1438                                 spin_unlock(&info->lock);
1439                                 filepage = shmem_alloc_page(gfp, info, idx);
1440                                 if (!filepage) {
1441                                         shmem_unacct_blocks(info->flags, 1);
1442                                         shmem_free_blocks(inode, 1);
1443                                         error = -ENOMEM;
1444                                         goto failed;
1445                                 }
1446                                 SetPageSwapBacked(filepage);
1447
1448                                 /*
1449                                  * Precharge page while we can wait, compensate
1450                                  * after
1451                                  */
1452                                 error = mem_cgroup_cache_charge(filepage,
1453                                         current->mm, GFP_KERNEL);
1454                                 if (error) {
1455                                         page_cache_release(filepage);
1456                                         shmem_unacct_blocks(info->flags, 1);
1457                                         shmem_free_blocks(inode, 1);
1458                                         filepage = NULL;
1459                                         goto failed;
1460                                 }
1461
1462                                 spin_lock(&info->lock);
1463                         } else {
1464                                 filepage = prealloc_page;
1465                                 prealloc_page = NULL;
1466                                 SetPageSwapBacked(filepage);
1467                         }
1468
1469                         entry = shmem_swp_alloc(info, idx, sgp);
1470                         if (IS_ERR(entry))
1471                                 error = PTR_ERR(entry);
1472                         else {
1473                                 swap = *entry;
1474                                 shmem_swp_unmap(entry);
1475                         }
1476                         ret = error || swap.val;
1477                         if (ret)
1478                                 mem_cgroup_uncharge_cache_page(filepage);
1479                         else
1480                                 ret = add_to_page_cache_lru(filepage, mapping,
1481                                                 idx, GFP_NOWAIT);
1482                         /*
1483                          * At add_to_page_cache_lru() failure, uncharge will
1484                          * be done automatically.
1485                          */
1486                         if (ret) {
1487                                 spin_unlock(&info->lock);
1488                                 page_cache_release(filepage);
1489                                 shmem_unacct_blocks(info->flags, 1);
1490                                 shmem_free_blocks(inode, 1);
1491                                 filepage = NULL;
1492                                 if (error)
1493                                         goto failed;
1494                                 goto repeat;
1495                         }
1496                         info->flags |= SHMEM_PAGEIN;
1497                 }
1498
1499                 info->alloced++;
1500                 spin_unlock(&info->lock);
1501                 clear_highpage(filepage);
1502                 flush_dcache_page(filepage);
1503                 SetPageUptodate(filepage);
1504                 if (sgp == SGP_DIRTY)
1505                         set_page_dirty(filepage);
1506         }
1507 done:
1508         *pagep = filepage;
1509         error = 0;
1510         goto out;
1511
1512 nospace:
1513         /*
1514          * Perhaps the page was brought in from swap between find_lock_page
1515          * and taking info->lock?  We allow for that at add_to_page_cache_lru,
1516          * but must also avoid reporting a spurious ENOSPC while working on a
1517          * full tmpfs.  (When filepage has been passed in to shmem_getpage, it
1518          * is already in page cache, which prevents this race from occurring.)
1519          */
1520         if (!filepage) {
1521                 struct page *page = find_get_page(mapping, idx);
1522                 if (page) {
1523                         spin_unlock(&info->lock);
1524                         page_cache_release(page);
1525                         goto repeat;
1526                 }
1527         }
1528         spin_unlock(&info->lock);
1529         error = -ENOSPC;
1530 failed:
1531         if (*pagep != filepage) {
1532                 unlock_page(filepage);
1533                 page_cache_release(filepage);
1534         }
1535 out:
1536         if (prealloc_page) {
1537                 mem_cgroup_uncharge_cache_page(prealloc_page);
1538                 page_cache_release(prealloc_page);
1539         }
1540         return error;
1541 }
1542
1543 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1544 {
1545         struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1546         int error;
1547         int ret;
1548
1549         if (((loff_t)vmf->pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode))
1550                 return VM_FAULT_SIGBUS;
1551
1552         error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1553         if (error)
1554                 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1555         if (ret & VM_FAULT_MAJOR) {
1556                 count_vm_event(PGMAJFAULT);
1557                 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1558         }
1559         return ret | VM_FAULT_LOCKED;
1560 }
1561
1562 #ifdef CONFIG_NUMA
1563 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new)
1564 {
1565         struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1566         return mpol_set_shared_policy(&SHMEM_I(i)->policy, vma, new);
1567 }
1568
1569 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1570                                           unsigned long addr)
1571 {
1572         struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1573         unsigned long idx;
1574
1575         idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1576         return mpol_shared_policy_lookup(&SHMEM_I(i)->policy, idx);
1577 }
1578 #endif
1579
1580 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1581 {
1582         struct inode *inode = file->f_path.dentry->d_inode;
1583         struct shmem_inode_info *info = SHMEM_I(inode);
1584         int retval = -ENOMEM;
1585
1586         spin_lock(&info->lock);
1587         if (lock && !(info->flags & VM_LOCKED)) {
1588                 if (!user_shm_lock(inode->i_size, user))
1589                         goto out_nomem;
1590                 info->flags |= VM_LOCKED;
1591                 mapping_set_unevictable(file->f_mapping);
1592         }
1593         if (!lock && (info->flags & VM_LOCKED) && user) {
1594                 user_shm_unlock(inode->i_size, user);
1595                 info->flags &= ~VM_LOCKED;
1596                 mapping_clear_unevictable(file->f_mapping);
1597                 scan_mapping_unevictable_pages(file->f_mapping);
1598         }
1599         retval = 0;
1600
1601 out_nomem:
1602         spin_unlock(&info->lock);
1603         return retval;
1604 }
1605
1606 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1607 {
1608         file_accessed(file);
1609         vma->vm_ops = &shmem_vm_ops;
1610         vma->vm_flags |= VM_CAN_NONLINEAR;
1611         return 0;
1612 }
1613
1614 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1615                                      int mode, dev_t dev, unsigned long flags)
1616 {
1617         struct inode *inode;
1618         struct shmem_inode_info *info;
1619         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1620
1621         if (shmem_reserve_inode(sb))
1622                 return NULL;
1623
1624         inode = new_inode(sb);
1625         if (inode) {
1626                 inode->i_ino = get_next_ino();
1627                 inode_init_owner(inode, dir, mode);
1628                 inode->i_blocks = 0;
1629                 inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1630                 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1631                 inode->i_generation = get_seconds();
1632                 info = SHMEM_I(inode);
1633                 memset(info, 0, (char *)inode - (char *)info);
1634                 spin_lock_init(&info->lock);
1635                 info->flags = flags & VM_NORESERVE;
1636                 INIT_LIST_HEAD(&info->swaplist);
1637                 INIT_LIST_HEAD(&info->xattr_list);
1638                 cache_no_acl(inode);
1639
1640                 switch (mode & S_IFMT) {
1641                 default:
1642                         inode->i_op = &shmem_special_inode_operations;
1643                         init_special_inode(inode, mode, dev);
1644                         break;
1645                 case S_IFREG:
1646                         inode->i_mapping->a_ops = &shmem_aops;
1647                         inode->i_op = &shmem_inode_operations;
1648                         inode->i_fop = &shmem_file_operations;
1649                         mpol_shared_policy_init(&info->policy,
1650                                                  shmem_get_sbmpol(sbinfo));
1651                         break;
1652                 case S_IFDIR:
1653                         inc_nlink(inode);
1654                         /* Some things misbehave if size == 0 on a directory */
1655                         inode->i_size = 2 * BOGO_DIRENT_SIZE;
1656                         inode->i_op = &shmem_dir_inode_operations;
1657                         inode->i_fop = &simple_dir_operations;
1658                         break;
1659                 case S_IFLNK:
1660                         /*
1661                          * Must not load anything in the rbtree,
1662                          * mpol_free_shared_policy will not be called.
1663                          */
1664                         mpol_shared_policy_init(&info->policy, NULL);
1665                         break;
1666                 }
1667         } else
1668                 shmem_free_inode(sb);
1669         return inode;
1670 }
1671
1672 #ifdef CONFIG_TMPFS
1673 static const struct inode_operations shmem_symlink_inode_operations;
1674 static const struct inode_operations shmem_symlink_inline_operations;
1675
1676 /*
1677  * Normally tmpfs avoids the use of shmem_readpage and shmem_write_begin;
1678  * but providing them allows a tmpfs file to be used for splice, sendfile, and
1679  * below the loop driver, in the generic fashion that many filesystems support.
1680  */
1681 static int shmem_readpage(struct file *file, struct page *page)
1682 {
1683         struct inode *inode = page->mapping->host;
1684         int error = shmem_getpage(inode, page->index, &page, SGP_CACHE, NULL);
1685         unlock_page(page);
1686         return error;
1687 }
1688
1689 static int
1690 shmem_write_begin(struct file *file, struct address_space *mapping,
1691                         loff_t pos, unsigned len, unsigned flags,
1692                         struct page **pagep, void **fsdata)
1693 {
1694         struct inode *inode = mapping->host;
1695         pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1696         *pagep = NULL;
1697         return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1698 }
1699
1700 static int
1701 shmem_write_end(struct file *file, struct address_space *mapping,
1702                         loff_t pos, unsigned len, unsigned copied,
1703                         struct page *page, void *fsdata)
1704 {
1705         struct inode *inode = mapping->host;
1706
1707         if (pos + copied > inode->i_size)
1708                 i_size_write(inode, pos + copied);
1709
1710         set_page_dirty(page);
1711         unlock_page(page);
1712         page_cache_release(page);
1713
1714         return copied;
1715 }
1716
1717 static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1718 {
1719         struct inode *inode = filp->f_path.dentry->d_inode;
1720         struct address_space *mapping = inode->i_mapping;
1721         unsigned long index, offset;
1722         enum sgp_type sgp = SGP_READ;
1723
1724         /*
1725          * Might this read be for a stacking filesystem?  Then when reading
1726          * holes of a sparse file, we actually need to allocate those pages,
1727          * and even mark them dirty, so it cannot exceed the max_blocks limit.
1728          */
1729         if (segment_eq(get_fs(), KERNEL_DS))
1730                 sgp = SGP_DIRTY;
1731
1732         index = *ppos >> PAGE_CACHE_SHIFT;
1733         offset = *ppos & ~PAGE_CACHE_MASK;
1734
1735         for (;;) {
1736                 struct page *page = NULL;
1737                 unsigned long end_index, nr, ret;
1738                 loff_t i_size = i_size_read(inode);
1739
1740                 end_index = i_size >> PAGE_CACHE_SHIFT;
1741                 if (index > end_index)
1742                         break;
1743                 if (index == end_index) {
1744                         nr = i_size & ~PAGE_CACHE_MASK;
1745                         if (nr <= offset)
1746                                 break;
1747                 }
1748
1749                 desc->error = shmem_getpage(inode, index, &page, sgp, NULL);
1750                 if (desc->error) {
1751                         if (desc->error == -EINVAL)
1752                                 desc->error = 0;
1753                         break;
1754                 }
1755                 if (page)
1756                         unlock_page(page);
1757
1758                 /*
1759                  * We must evaluate after, since reads (unlike writes)
1760                  * are called without i_mutex protection against truncate
1761                  */
1762                 nr = PAGE_CACHE_SIZE;
1763                 i_size = i_size_read(inode);
1764                 end_index = i_size >> PAGE_CACHE_SHIFT;
1765                 if (index == end_index) {
1766                         nr = i_size & ~PAGE_CACHE_MASK;
1767                         if (nr <= offset) {
1768                                 if (page)
1769                                         page_cache_release(page);
1770                                 break;
1771                         }
1772                 }
1773                 nr -= offset;
1774
1775                 if (page) {
1776                         /*
1777                          * If users can be writing to this page using arbitrary
1778                          * virtual addresses, take care about potential aliasing
1779                          * before reading the page on the kernel side.
1780                          */
1781                         if (mapping_writably_mapped(mapping))
1782                                 flush_dcache_page(page);
1783                         /*
1784                          * Mark the page accessed if we read the beginning.
1785                          */
1786                         if (!offset)
1787                                 mark_page_accessed(page);
1788                 } else {
1789                         page = ZERO_PAGE(0);
1790                         page_cache_get(page);
1791                 }
1792
1793                 /*
1794                  * Ok, we have the page, and it's up-to-date, so
1795                  * now we can copy it to user space...
1796                  *
1797                  * The actor routine returns how many bytes were actually used..
1798                  * NOTE! This may not be the same as how much of a user buffer
1799                  * we filled up (we may be padding etc), so we can only update
1800                  * "pos" here (the actor routine has to update the user buffer
1801                  * pointers and the remaining count).
1802                  */
1803                 ret = actor(desc, page, offset, nr);
1804                 offset += ret;
1805                 index += offset >> PAGE_CACHE_SHIFT;
1806                 offset &= ~PAGE_CACHE_MASK;
1807
1808                 page_cache_release(page);
1809                 if (ret != nr || !desc->count)
1810                         break;
1811
1812                 cond_resched();
1813         }
1814
1815         *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1816         file_accessed(filp);
1817 }
1818
1819 static ssize_t shmem_file_aio_read(struct kiocb *iocb,
1820                 const struct iovec *iov, unsigned long nr_segs, loff_t pos)
1821 {
1822         struct file *filp = iocb->ki_filp;
1823         ssize_t retval;
1824         unsigned long seg;
1825         size_t count;
1826         loff_t *ppos = &iocb->ki_pos;
1827
1828         retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1829         if (retval)
1830                 return retval;
1831
1832         for (seg = 0; seg < nr_segs; seg++) {
1833                 read_descriptor_t desc;
1834
1835                 desc.written = 0;
1836                 desc.arg.buf = iov[seg].iov_base;
1837                 desc.count = iov[seg].iov_len;
1838                 if (desc.count == 0)
1839                         continue;
1840                 desc.error = 0;
1841                 do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1842                 retval += desc.written;
1843                 if (desc.error) {
1844                         retval = retval ?: desc.error;
1845                         break;
1846                 }
1847                 if (desc.count > 0)
1848                         break;
1849         }
1850         return retval;
1851 }
1852
1853 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1854 {
1855         struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1856
1857         buf->f_type = TMPFS_MAGIC;
1858         buf->f_bsize = PAGE_CACHE_SIZE;
1859         buf->f_namelen = NAME_MAX;
1860         if (sbinfo->max_blocks) {
1861                 buf->f_blocks = sbinfo->max_blocks;
1862                 buf->f_bavail = buf->f_bfree =
1863                                 sbinfo->max_blocks - percpu_counter_sum(&sbinfo->used_blocks);
1864         }
1865         if (sbinfo->max_inodes) {
1866                 buf->f_files = sbinfo->max_inodes;
1867                 buf->f_ffree = sbinfo->free_inodes;
1868         }
1869         /* else leave those fields 0 like simple_statfs */
1870         return 0;
1871 }
1872
1873 /*
1874  * File creation. Allocate an inode, and we're done..
1875  */
1876 static int
1877 shmem_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1878 {
1879         struct inode *inode;
1880         int error = -ENOSPC;
1881
1882         inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1883         if (inode) {
1884                 error = security_inode_init_security(inode, dir,
1885                                                      &dentry->d_name, NULL,
1886                                                      NULL, NULL);
1887                 if (error) {
1888                         if (error != -EOPNOTSUPP) {
1889                                 iput(inode);
1890                                 return error;
1891                         }
1892                 }
1893 #ifdef CONFIG_TMPFS_POSIX_ACL
1894                 error = generic_acl_init(inode, dir);
1895                 if (error) {
1896                         iput(inode);
1897                         return error;
1898                 }
1899 #else
1900                 error = 0;
1901 #endif
1902                 dir->i_size += BOGO_DIRENT_SIZE;
1903                 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1904                 d_instantiate(dentry, inode);
1905                 dget(dentry); /* Extra count - pin the dentry in core */
1906         }
1907         return error;
1908 }
1909
1910 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1911 {
1912         int error;
1913
1914         if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1915                 return error;
1916         inc_nlink(dir);
1917         return 0;
1918 }
1919
1920 static int shmem_create(struct inode *dir, struct dentry *dentry, int mode,
1921                 struct nameidata *nd)
1922 {
1923         return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1924 }
1925
1926 /*
1927  * Link a file..
1928  */
1929 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1930 {
1931         struct inode *inode = old_dentry->d_inode;
1932         int ret;
1933
1934         /*
1935          * No ordinary (disk based) filesystem counts links as inodes;
1936          * but each new link needs a new dentry, pinning lowmem, and
1937          * tmpfs dentries cannot be pruned until they are unlinked.
1938          */
1939         ret = shmem_reserve_inode(inode->i_sb);
1940         if (ret)
1941                 goto out;
1942
1943         dir->i_size += BOGO_DIRENT_SIZE;
1944         inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1945         inc_nlink(inode);
1946         ihold(inode);   /* New dentry reference */
1947         dget(dentry);           /* Extra pinning count for the created dentry */
1948         d_instantiate(dentry, inode);
1949 out:
1950         return ret;
1951 }
1952
1953 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1954 {
1955         struct inode *inode = dentry->d_inode;
1956
1957         if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
1958                 shmem_free_inode(inode->i_sb);
1959
1960         dir->i_size -= BOGO_DIRENT_SIZE;
1961         inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1962         drop_nlink(inode);
1963         dput(dentry);   /* Undo the count from "create" - this does all the work */
1964         return 0;
1965 }
1966
1967 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1968 {
1969         if (!simple_empty(dentry))
1970                 return -ENOTEMPTY;
1971
1972         drop_nlink(dentry->d_inode);
1973         drop_nlink(dir);
1974         return shmem_unlink(dir, dentry);
1975 }
1976
1977 /*
1978  * The VFS layer already does all the dentry stuff for rename,
1979  * we just have to decrement the usage count for the target if
1980  * it exists so that the VFS layer correctly free's it when it
1981  * gets overwritten.
1982  */
1983 static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
1984 {
1985         struct inode *inode = old_dentry->d_inode;
1986         int they_are_dirs = S_ISDIR(inode->i_mode);
1987
1988         if (!simple_empty(new_dentry))
1989                 return -ENOTEMPTY;
1990
1991         if (new_dentry->d_inode) {
1992                 (void) shmem_unlink(new_dir, new_dentry);
1993                 if (they_are_dirs)
1994                         drop_nlink(old_dir);
1995         } else if (they_are_dirs) {
1996                 drop_nlink(old_dir);
1997                 inc_nlink(new_dir);
1998         }
1999
2000         old_dir->i_size -= BOGO_DIRENT_SIZE;
2001         new_dir->i_size += BOGO_DIRENT_SIZE;
2002         old_dir->i_ctime = old_dir->i_mtime =
2003         new_dir->i_ctime = new_dir->i_mtime =
2004         inode->i_ctime = CURRENT_TIME;
2005         return 0;
2006 }
2007
2008 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2009 {
2010         int error;
2011         int len;
2012         struct inode *inode;
2013         struct page *page = NULL;
2014         char *kaddr;
2015         struct shmem_inode_info *info;
2016
2017         len = strlen(symname) + 1;
2018         if (len > PAGE_CACHE_SIZE)
2019                 return -ENAMETOOLONG;
2020
2021         inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
2022         if (!inode)
2023                 return -ENOSPC;
2024
2025         error = security_inode_init_security(inode, dir, &dentry->d_name, NULL,
2026                                              NULL, NULL);
2027         if (error) {
2028                 if (error != -EOPNOTSUPP) {
2029                         iput(inode);
2030                         return error;
2031                 }
2032                 error = 0;
2033         }
2034
2035         info = SHMEM_I(inode);
2036         inode->i_size = len-1;
2037         if (len <= SHMEM_SYMLINK_INLINE_LEN) {
2038                 /* do it inline */
2039                 memcpy(info->inline_symlink, symname, len);
2040                 inode->i_op = &shmem_symlink_inline_operations;
2041         } else {
2042                 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
2043                 if (error) {
2044                         iput(inode);
2045                         return error;
2046                 }
2047                 inode->i_mapping->a_ops = &shmem_aops;
2048                 inode->i_op = &shmem_symlink_inode_operations;
2049                 kaddr = kmap_atomic(page, KM_USER0);
2050                 memcpy(kaddr, symname, len);
2051                 kunmap_atomic(kaddr, KM_USER0);
2052                 set_page_dirty(page);
2053                 unlock_page(page);
2054                 page_cache_release(page);
2055         }
2056         dir->i_size += BOGO_DIRENT_SIZE;
2057         dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2058         d_instantiate(dentry, inode);
2059         dget(dentry);
2060         return 0;
2061 }
2062
2063 static void *shmem_follow_link_inline(struct dentry *dentry, struct nameidata *nd)
2064 {
2065         nd_set_link(nd, SHMEM_I(dentry->d_inode)->inline_symlink);
2066         return NULL;
2067 }
2068
2069 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
2070 {
2071         struct page *page = NULL;
2072         int res = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
2073         nd_set_link(nd, res ? ERR_PTR(res) : kmap(page));
2074         if (page)
2075                 unlock_page(page);
2076         return page;
2077 }
2078
2079 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2080 {
2081         if (!IS_ERR(nd_get_link(nd))) {
2082                 struct page *page = cookie;
2083                 kunmap(page);
2084                 mark_page_accessed(page);
2085                 page_cache_release(page);
2086         }
2087 }
2088
2089 #ifdef CONFIG_TMPFS_XATTR
2090 /*
2091  * Superblocks without xattr inode operations may get some security.* xattr
2092  * support from the LSM "for free". As soon as we have any other xattrs
2093  * like ACLs, we also need to implement the security.* handlers at
2094  * filesystem level, though.
2095  */
2096
2097 static int shmem_xattr_get(struct dentry *dentry, const char *name,
2098                            void *buffer, size_t size)
2099 {
2100         struct shmem_inode_info *info;
2101         struct shmem_xattr *xattr;
2102         int ret = -ENODATA;
2103
2104         info = SHMEM_I(dentry->d_inode);
2105
2106         spin_lock(&info->lock);
2107         list_for_each_entry(xattr, &info->xattr_list, list) {
2108                 if (strcmp(name, xattr->name))
2109                         continue;
2110
2111                 ret = xattr->size;
2112                 if (buffer) {
2113                         if (size < xattr->size)
2114                                 ret = -ERANGE;
2115                         else
2116                                 memcpy(buffer, xattr->value, xattr->size);
2117                 }
2118                 break;
2119         }
2120         spin_unlock(&info->lock);
2121         return ret;
2122 }
2123
2124 static int shmem_xattr_set(struct dentry *dentry, const char *name,
2125                            const void *value, size_t size, int flags)
2126 {
2127         struct inode *inode = dentry->d_inode;
2128         struct shmem_inode_info *info = SHMEM_I(inode);
2129         struct shmem_xattr *xattr;
2130         struct shmem_xattr *new_xattr = NULL;
2131         size_t len;
2132         int err = 0;
2133
2134         /* value == NULL means remove */
2135         if (value) {
2136                 /* wrap around? */
2137                 len = sizeof(*new_xattr) + size;
2138                 if (len <= sizeof(*new_xattr))
2139                         return -ENOMEM;
2140
2141                 new_xattr = kmalloc(len, GFP_KERNEL);
2142                 if (!new_xattr)
2143                         return -ENOMEM;
2144
2145                 new_xattr->name = kstrdup(name, GFP_KERNEL);
2146                 if (!new_xattr->name) {
2147                         kfree(new_xattr);
2148                         return -ENOMEM;
2149                 }
2150
2151                 new_xattr->size = size;
2152                 memcpy(new_xattr->value, value, size);
2153         }
2154
2155         spin_lock(&info->lock);
2156         list_for_each_entry(xattr, &info->xattr_list, list) {
2157                 if (!strcmp(name, xattr->name)) {
2158                         if (flags & XATTR_CREATE) {
2159                                 xattr = new_xattr;
2160                                 err = -EEXIST;
2161                         } else if (new_xattr) {
2162                                 list_replace(&xattr->list, &new_xattr->list);
2163                         } else {
2164                                 list_del(&xattr->list);
2165                         }
2166                         goto out;
2167                 }
2168         }
2169         if (flags & XATTR_REPLACE) {
2170                 xattr = new_xattr;
2171                 err = -ENODATA;
2172         } else {
2173                 list_add(&new_xattr->list, &info->xattr_list);
2174                 xattr = NULL;
2175         }
2176 out:
2177         spin_unlock(&info->lock);
2178         if (xattr)
2179                 kfree(xattr->name);
2180         kfree(xattr);
2181         return err;
2182 }
2183
2184
2185 static const struct xattr_handler *shmem_xattr_handlers[] = {
2186 #ifdef CONFIG_TMPFS_POSIX_ACL
2187         &generic_acl_access_handler,
2188         &generic_acl_default_handler,
2189 #endif
2190         NULL
2191 };
2192
2193 static int shmem_xattr_validate(const char *name)
2194 {
2195         struct { const char *prefix; size_t len; } arr[] = {
2196                 { XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN },
2197                 { XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN }
2198         };
2199         int i;
2200
2201         for (i = 0; i < ARRAY_SIZE(arr); i++) {
2202                 size_t preflen = arr[i].len;
2203                 if (strncmp(name, arr[i].prefix, preflen) == 0) {
2204                         if (!name[preflen])
2205                                 return -EINVAL;
2206                         return 0;
2207                 }
2208         }
2209         return -EOPNOTSUPP;
2210 }
2211
2212 static ssize_t shmem_getxattr(struct dentry *dentry, const char *name,
2213                               void *buffer, size_t size)
2214 {
2215         int err;
2216
2217         /*
2218          * If this is a request for a synthetic attribute in the system.*
2219          * namespace use the generic infrastructure to resolve a handler
2220          * for it via sb->s_xattr.
2221          */
2222         if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2223                 return generic_getxattr(dentry, name, buffer, size);
2224
2225         err = shmem_xattr_validate(name);
2226         if (err)
2227                 return err;
2228
2229         return shmem_xattr_get(dentry, name, buffer, size);
2230 }
2231
2232 static int shmem_setxattr(struct dentry *dentry, const char *name,
2233                           const void *value, size_t size, int flags)
2234 {
2235         int err;
2236
2237         /*
2238          * If this is a request for a synthetic attribute in the system.*
2239          * namespace use the generic infrastructure to resolve a handler
2240          * for it via sb->s_xattr.
2241          */
2242         if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2243                 return generic_setxattr(dentry, name, value, size, flags);
2244
2245         err = shmem_xattr_validate(name);
2246         if (err)
2247                 return err;
2248
2249         if (size == 0)
2250                 value = "";  /* empty EA, do not remove */
2251
2252         return shmem_xattr_set(dentry, name, value, size, flags);
2253
2254 }
2255
2256 static int shmem_removexattr(struct dentry *dentry, const char *name)
2257 {
2258         int err;
2259
2260         /*
2261          * If this is a request for a synthetic attribute in the system.*
2262          * namespace use the generic infrastructure to resolve a handler
2263          * for it via sb->s_xattr.
2264          */
2265         if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2266                 return generic_removexattr(dentry, name);
2267
2268         err = shmem_xattr_validate(name);
2269         if (err)
2270                 return err;
2271
2272         return shmem_xattr_set(dentry, name, NULL, 0, XATTR_REPLACE);
2273 }
2274
2275 static bool xattr_is_trusted(const char *name)
2276 {
2277         return !strncmp(name, XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN);
2278 }
2279
2280 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2281 {
2282         bool trusted = capable(CAP_SYS_ADMIN);
2283         struct shmem_xattr *xattr;
2284         struct shmem_inode_info *info;
2285         size_t used = 0;
2286
2287         info = SHMEM_I(dentry->d_inode);
2288
2289         spin_lock(&info->lock);
2290         list_for_each_entry(xattr, &info->xattr_list, list) {
2291                 size_t len;
2292
2293                 /* skip "trusted." attributes for unprivileged callers */
2294                 if (!trusted && xattr_is_trusted(xattr->name))
2295                         continue;
2296
2297                 len = strlen(xattr->name) + 1;
2298                 used += len;
2299                 if (buffer) {
2300                         if (size < used) {
2301                                 used = -ERANGE;
2302                                 break;
2303                         }
2304                         memcpy(buffer, xattr->name, len);
2305                         buffer += len;
2306                 }
2307         }
2308         spin_unlock(&info->lock);
2309
2310         return used;
2311 }
2312 #endif /* CONFIG_TMPFS_XATTR */
2313
2314 static const struct inode_operations shmem_symlink_inline_operations = {
2315         .readlink       = generic_readlink,
2316         .follow_link    = shmem_follow_link_inline,
2317 #ifdef CONFIG_TMPFS_XATTR
2318         .setxattr       = shmem_setxattr,
2319         .getxattr       = shmem_getxattr,
2320         .listxattr      = shmem_listxattr,
2321         .removexattr    = shmem_removexattr,
2322 #endif
2323 };
2324
2325 static const struct inode_operations shmem_symlink_inode_operations = {
2326         .readlink       = generic_readlink,
2327         .follow_link    = shmem_follow_link,
2328         .put_link       = shmem_put_link,
2329 #ifdef CONFIG_TMPFS_XATTR
2330         .setxattr       = shmem_setxattr,
2331         .getxattr       = shmem_getxattr,
2332         .listxattr      = shmem_listxattr,
2333         .removexattr    = shmem_removexattr,
2334 #endif
2335 };
2336
2337 static struct dentry *shmem_get_parent(struct dentry *child)
2338 {
2339         return ERR_PTR(-ESTALE);
2340 }
2341
2342 static int shmem_match(struct inode *ino, void *vfh)
2343 {
2344         __u32 *fh = vfh;
2345         __u64 inum = fh[2];
2346         inum = (inum << 32) | fh[1];
2347         return ino->i_ino == inum && fh[0] == ino->i_generation;
2348 }
2349
2350 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2351                 struct fid *fid, int fh_len, int fh_type)
2352 {
2353         struct inode *inode;
2354         struct dentry *dentry = NULL;
2355         u64 inum;
2356
2357         if (fh_len < 3)
2358                 return NULL;
2359
2360         inum = fid->raw[2];
2361         inum = (inum << 32) | fid->raw[1];
2362
2363         inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2364                         shmem_match, fid->raw);
2365         if (inode) {
2366                 dentry = d_find_alias(inode);
2367                 iput(inode);
2368         }
2369
2370         return dentry;
2371 }
2372
2373 static int shmem_encode_fh(struct dentry *dentry, __u32 *fh, int *len,
2374                                 int connectable)
2375 {
2376         struct inode *inode = dentry->d_inode;
2377
2378         if (*len < 3) {
2379                 *len = 3;
2380                 return 255;
2381         }
2382
2383         if (inode_unhashed(inode)) {
2384                 /* Unfortunately insert_inode_hash is not idempotent,
2385                  * so as we hash inodes here rather than at creation
2386                  * time, we need a lock to ensure we only try
2387                  * to do it once
2388                  */
2389                 static DEFINE_SPINLOCK(lock);
2390                 spin_lock(&lock);
2391                 if (inode_unhashed(inode))
2392                         __insert_inode_hash(inode,
2393                                             inode->i_ino + inode->i_generation);
2394                 spin_unlock(&lock);
2395         }
2396
2397         fh[0] = inode->i_generation;
2398         fh[1] = inode->i_ino;
2399         fh[2] = ((__u64)inode->i_ino) >> 32;
2400
2401         *len = 3;
2402         return 1;
2403 }
2404
2405 static const struct export_operations shmem_export_ops = {
2406         .get_parent     = shmem_get_parent,
2407         .encode_fh      = shmem_encode_fh,
2408         .fh_to_dentry   = shmem_fh_to_dentry,
2409 };
2410
2411 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2412                                bool remount)
2413 {
2414         char *this_char, *value, *rest;
2415
2416         while (options != NULL) {
2417                 this_char = options;
2418                 for (;;) {
2419                         /*
2420                          * NUL-terminate this option: unfortunately,
2421                          * mount options form a comma-separated list,
2422                          * but mpol's nodelist may also contain commas.
2423                          */
2424                         options = strchr(options, ',');
2425                         if (options == NULL)
2426                                 break;
2427                         options++;
2428                         if (!isdigit(*options)) {
2429                                 options[-1] = '\0';
2430                                 break;
2431                         }
2432                 }
2433                 if (!*this_char)
2434                         continue;
2435                 if ((value = strchr(this_char,'=')) != NULL) {
2436                         *value++ = 0;
2437                 } else {
2438                         printk(KERN_ERR
2439                             "tmpfs: No value for mount option '%s'\n",
2440                             this_char);
2441                         return 1;
2442                 }
2443
2444                 if (!strcmp(this_char,"size")) {
2445                         unsigned long long size;
2446                         size = memparse(value,&rest);
2447                         if (*rest == '%') {
2448                                 size <<= PAGE_SHIFT;
2449                                 size *= totalram_pages;
2450                                 do_div(size, 100);
2451                                 rest++;
2452                         }
2453                         if (*rest)
2454                                 goto bad_val;
2455                         sbinfo->max_blocks =
2456                                 DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2457                 } else if (!strcmp(this_char,"nr_blocks")) {
2458                         sbinfo->max_blocks = memparse(value, &rest);
2459                         if (*rest)
2460                                 goto bad_val;
2461                 } else if (!strcmp(this_char,"nr_inodes")) {
2462                         sbinfo->max_inodes = memparse(value, &rest);
2463                         if (*rest)
2464                                 goto bad_val;
2465                 } else if (!strcmp(this_char,"mode")) {
2466                         if (remount)
2467                                 continue;
2468                         sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2469                         if (*rest)
2470                                 goto bad_val;
2471                 } else if (!strcmp(this_char,"uid")) {
2472                         if (remount)
2473                                 continue;
2474                         sbinfo->uid = simple_strtoul(value, &rest, 0);
2475                         if (*rest)
2476                                 goto bad_val;
2477                 } else if (!strcmp(this_char,"gid")) {
2478                         if (remount)
2479                                 continue;
2480                         sbinfo->gid = simple_strtoul(value, &rest, 0);
2481                         if (*rest)
2482                                 goto bad_val;
2483                 } else if (!strcmp(this_char,"mpol")) {
2484                         if (mpol_parse_str(value, &sbinfo->mpol, 1))
2485                                 goto bad_val;
2486                 } else {
2487                         printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2488                                this_char);
2489                         return 1;
2490                 }
2491         }
2492         return 0;
2493
2494 bad_val:
2495         printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2496                value, this_char);
2497         return 1;
2498
2499 }
2500
2501 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2502 {
2503         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2504         struct shmem_sb_info config = *sbinfo;
2505         unsigned long inodes;
2506         int error = -EINVAL;
2507
2508         if (shmem_parse_options(data, &config, true))
2509                 return error;
2510
2511         spin_lock(&sbinfo->stat_lock);
2512         inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2513         if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2514                 goto out;
2515         if (config.max_inodes < inodes)
2516                 goto out;
2517         /*
2518          * Those tests also disallow limited->unlimited while any are in
2519          * use, so i_blocks will always be zero when max_blocks is zero;
2520          * but we must separately disallow unlimited->limited, because
2521          * in that case we have no record of how much is already in use.
2522          */
2523         if (config.max_blocks && !sbinfo->max_blocks)
2524                 goto out;
2525         if (config.max_inodes && !sbinfo->max_inodes)
2526                 goto out;
2527
2528         error = 0;
2529         sbinfo->max_blocks  = config.max_blocks;
2530         sbinfo->max_inodes  = config.max_inodes;
2531         sbinfo->free_inodes = config.max_inodes - inodes;
2532
2533         mpol_put(sbinfo->mpol);
2534         sbinfo->mpol        = config.mpol;      /* transfers initial ref */
2535 out:
2536         spin_unlock(&sbinfo->stat_lock);
2537         return error;
2538 }
2539
2540 static int shmem_show_options(struct seq_file *seq, struct vfsmount *vfs)
2541 {
2542         struct shmem_sb_info *sbinfo = SHMEM_SB(vfs->mnt_sb);
2543
2544         if (sbinfo->max_blocks != shmem_default_max_blocks())
2545                 seq_printf(seq, ",size=%luk",
2546                         sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2547         if (sbinfo->max_inodes != shmem_default_max_inodes())
2548                 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2549         if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2550                 seq_printf(seq, ",mode=%03o", sbinfo->mode);
2551         if (sbinfo->uid != 0)
2552                 seq_printf(seq, ",uid=%u", sbinfo->uid);
2553         if (sbinfo->gid != 0)
2554                 seq_printf(seq, ",gid=%u", sbinfo->gid);
2555         shmem_show_mpol(seq, sbinfo->mpol);
2556         return 0;
2557 }
2558 #endif /* CONFIG_TMPFS */
2559
2560 static void shmem_put_super(struct super_block *sb)
2561 {
2562         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2563
2564         percpu_counter_destroy(&sbinfo->used_blocks);
2565         kfree(sbinfo);
2566         sb->s_fs_info = NULL;
2567 }
2568
2569 int shmem_fill_super(struct super_block *sb, void *data, int silent)
2570 {
2571         struct inode *inode;
2572         struct dentry *root;
2573         struct shmem_sb_info *sbinfo;
2574         int err = -ENOMEM;
2575
2576         /* Round up to L1_CACHE_BYTES to resist false sharing */
2577         sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
2578                                 L1_CACHE_BYTES), GFP_KERNEL);
2579         if (!sbinfo)
2580                 return -ENOMEM;
2581
2582         sbinfo->mode = S_IRWXUGO | S_ISVTX;
2583         sbinfo->uid = current_fsuid();
2584         sbinfo->gid = current_fsgid();
2585         sb->s_fs_info = sbinfo;
2586
2587 #ifdef CONFIG_TMPFS
2588         /*
2589          * Per default we only allow half of the physical ram per
2590          * tmpfs instance, limiting inodes to one per page of lowmem;
2591          * but the internal instance is left unlimited.
2592          */
2593         if (!(sb->s_flags & MS_NOUSER)) {
2594                 sbinfo->max_blocks = shmem_default_max_blocks();
2595                 sbinfo->max_inodes = shmem_default_max_inodes();
2596                 if (shmem_parse_options(data, sbinfo, false)) {
2597                         err = -EINVAL;
2598                         goto failed;
2599                 }
2600         }
2601         sb->s_export_op = &shmem_export_ops;
2602 #else
2603         sb->s_flags |= MS_NOUSER;
2604 #endif
2605
2606         spin_lock_init(&sbinfo->stat_lock);
2607         if (percpu_counter_init(&sbinfo->used_blocks, 0))
2608                 goto failed;
2609         sbinfo->free_inodes = sbinfo->max_inodes;
2610
2611         sb->s_maxbytes = SHMEM_MAX_BYTES;
2612         sb->s_blocksize = PAGE_CACHE_SIZE;
2613         sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2614         sb->s_magic = TMPFS_MAGIC;
2615         sb->s_op = &shmem_ops;
2616         sb->s_time_gran = 1;
2617 #ifdef CONFIG_TMPFS_XATTR
2618         sb->s_xattr = shmem_xattr_handlers;
2619 #endif
2620 #ifdef CONFIG_TMPFS_POSIX_ACL
2621         sb->s_flags |= MS_POSIXACL;
2622 #endif
2623
2624         inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
2625         if (!inode)
2626                 goto failed;
2627         inode->i_uid = sbinfo->uid;
2628         inode->i_gid = sbinfo->gid;
2629         root = d_alloc_root(inode);
2630         if (!root)
2631                 goto failed_iput;
2632         sb->s_root = root;
2633         return 0;
2634
2635 failed_iput:
2636         iput(inode);
2637 failed:
2638         shmem_put_super(sb);
2639         return err;
2640 }
2641
2642 static struct kmem_cache *shmem_inode_cachep;
2643
2644 static struct inode *shmem_alloc_inode(struct super_block *sb)
2645 {
2646         struct shmem_inode_info *p;
2647         p = (struct shmem_inode_info *)kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2648         if (!p)
2649                 return NULL;
2650         return &p->vfs_inode;
2651 }
2652
2653 static void shmem_i_callback(struct rcu_head *head)
2654 {
2655         struct inode *inode = container_of(head, struct inode, i_rcu);
2656         INIT_LIST_HEAD(&inode->i_dentry);
2657         kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2658 }
2659
2660 static void shmem_destroy_inode(struct inode *inode)
2661 {
2662         if ((inode->i_mode & S_IFMT) == S_IFREG) {
2663                 /* only struct inode is valid if it's an inline symlink */
2664                 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2665         }
2666         call_rcu(&inode->i_rcu, shmem_i_callback);
2667 }
2668
2669 static void init_once(void *foo)
2670 {
2671         struct shmem_inode_info *p = (struct shmem_inode_info *) foo;
2672
2673         inode_init_once(&p->vfs_inode);
2674 }
2675
2676 static int init_inodecache(void)
2677 {
2678         shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2679                                 sizeof(struct shmem_inode_info),
2680                                 0, SLAB_PANIC, init_once);
2681         return 0;
2682 }
2683
2684 static void destroy_inodecache(void)
2685 {
2686         kmem_cache_destroy(shmem_inode_cachep);
2687 }
2688
2689 static const struct address_space_operations shmem_aops = {
2690         .writepage      = shmem_writepage,
2691         .set_page_dirty = __set_page_dirty_no_writeback,
2692 #ifdef CONFIG_TMPFS
2693         .readpage       = shmem_readpage,
2694         .write_begin    = shmem_write_begin,
2695         .write_end      = shmem_write_end,
2696 #endif
2697         .migratepage    = migrate_page,
2698         .error_remove_page = generic_error_remove_page,
2699 };
2700
2701 static const struct file_operations shmem_file_operations = {
2702         .mmap           = shmem_mmap,
2703 #ifdef CONFIG_TMPFS
2704         .llseek         = generic_file_llseek,
2705         .read           = do_sync_read,
2706         .write          = do_sync_write,
2707         .aio_read       = shmem_file_aio_read,
2708         .aio_write      = generic_file_aio_write,
2709         .fsync          = noop_fsync,
2710         .splice_read    = generic_file_splice_read,
2711         .splice_write   = generic_file_splice_write,
2712 #endif
2713 };
2714
2715 static const struct inode_operations shmem_inode_operations = {
2716         .setattr        = shmem_setattr,
2717         .truncate_range = shmem_truncate_range,
2718 #ifdef CONFIG_TMPFS_XATTR
2719         .setxattr       = shmem_setxattr,
2720         .getxattr       = shmem_getxattr,
2721         .listxattr      = shmem_listxattr,
2722         .removexattr    = shmem_removexattr,
2723 #endif
2724 #ifdef CONFIG_TMPFS_POSIX_ACL
2725         .check_acl      = generic_check_acl,
2726 #endif
2727
2728 };
2729
2730 static const struct inode_operations shmem_dir_inode_operations = {
2731 #ifdef CONFIG_TMPFS
2732         .create         = shmem_create,
2733         .lookup         = simple_lookup,
2734         .link           = shmem_link,
2735         .unlink         = shmem_unlink,
2736         .symlink        = shmem_symlink,
2737         .mkdir          = shmem_mkdir,
2738         .rmdir          = shmem_rmdir,
2739         .mknod          = shmem_mknod,
2740         .rename         = shmem_rename,
2741 #endif
2742 #ifdef CONFIG_TMPFS_XATTR
2743         .setxattr       = shmem_setxattr,
2744         .getxattr       = shmem_getxattr,
2745         .listxattr      = shmem_listxattr,
2746         .removexattr    = shmem_removexattr,
2747 #endif
2748 #ifdef CONFIG_TMPFS_POSIX_ACL
2749         .setattr        = shmem_setattr,
2750         .check_acl      = generic_check_acl,
2751 #endif
2752 };
2753
2754 static const struct inode_operations shmem_special_inode_operations = {
2755 #ifdef CONFIG_TMPFS_XATTR
2756         .setxattr       = shmem_setxattr,
2757         .getxattr       = shmem_getxattr,
2758         .listxattr      = shmem_listxattr,
2759         .removexattr    = shmem_removexattr,
2760 #endif
2761 #ifdef CONFIG_TMPFS_POSIX_ACL
2762         .setattr        = shmem_setattr,
2763         .check_acl      = generic_check_acl,
2764 #endif
2765 };
2766
2767 static const struct super_operations shmem_ops = {
2768         .alloc_inode    = shmem_alloc_inode,
2769         .destroy_inode  = shmem_destroy_inode,
2770 #ifdef CONFIG_TMPFS
2771         .statfs         = shmem_statfs,
2772         .remount_fs     = shmem_remount_fs,
2773         .show_options   = shmem_show_options,
2774 #endif
2775         .evict_inode    = shmem_evict_inode,
2776         .drop_inode     = generic_delete_inode,
2777         .put_super      = shmem_put_super,
2778 };
2779
2780 static const struct vm_operations_struct shmem_vm_ops = {
2781         .fault          = shmem_fault,
2782 #ifdef CONFIG_NUMA
2783         .set_policy     = shmem_set_policy,
2784         .get_policy     = shmem_get_policy,
2785 #endif
2786 };
2787
2788
2789 static struct dentry *shmem_mount(struct file_system_type *fs_type,
2790         int flags, const char *dev_name, void *data)
2791 {
2792         return mount_nodev(fs_type, flags, data, shmem_fill_super);
2793 }
2794
2795 static struct file_system_type tmpfs_fs_type = {
2796         .owner          = THIS_MODULE,
2797         .name           = "tmpfs",
2798         .mount          = shmem_mount,
2799         .kill_sb        = kill_litter_super,
2800 };
2801
2802 int __init init_tmpfs(void)
2803 {
2804         int error;
2805
2806         error = bdi_init(&shmem_backing_dev_info);
2807         if (error)
2808                 goto out4;
2809
2810         error = init_inodecache();
2811         if (error)
2812                 goto out3;
2813
2814         error = register_filesystem(&tmpfs_fs_type);
2815         if (error) {
2816                 printk(KERN_ERR "Could not register tmpfs\n");
2817                 goto out2;
2818         }
2819
2820         shm_mnt = vfs_kern_mount(&tmpfs_fs_type, MS_NOUSER,
2821                                 tmpfs_fs_type.name, NULL);
2822         if (IS_ERR(shm_mnt)) {
2823                 error = PTR_ERR(shm_mnt);
2824                 printk(KERN_ERR "Could not kern_mount tmpfs\n");
2825                 goto out1;
2826         }
2827         return 0;
2828
2829 out1:
2830         unregister_filesystem(&tmpfs_fs_type);
2831 out2:
2832         destroy_inodecache();
2833 out3:
2834         bdi_destroy(&shmem_backing_dev_info);
2835 out4:
2836         shm_mnt = ERR_PTR(error);
2837         return error;
2838 }
2839
2840 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
2841 /**
2842  * mem_cgroup_get_shmem_target - find a page or entry assigned to the shmem file
2843  * @inode: the inode to be searched
2844  * @pgoff: the offset to be searched
2845  * @pagep: the pointer for the found page to be stored
2846  * @ent: the pointer for the found swap entry to be stored
2847  *
2848  * If a page is found, refcount of it is incremented. Callers should handle
2849  * these refcount.
2850  */
2851 void mem_cgroup_get_shmem_target(struct inode *inode, pgoff_t pgoff,
2852                                         struct page **pagep, swp_entry_t *ent)
2853 {
2854         swp_entry_t entry = { .val = 0 }, *ptr;
2855         struct page *page = NULL;
2856         struct shmem_inode_info *info = SHMEM_I(inode);
2857
2858         if ((pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode))
2859                 goto out;
2860
2861         spin_lock(&info->lock);
2862         ptr = shmem_swp_entry(info, pgoff, NULL);
2863 #ifdef CONFIG_SWAP
2864         if (ptr && ptr->val) {
2865                 entry.val = ptr->val;
2866                 page = find_get_page(&swapper_space, entry.val);
2867         } else
2868 #endif
2869                 page = find_get_page(inode->i_mapping, pgoff);
2870         if (ptr)
2871                 shmem_swp_unmap(ptr);
2872         spin_unlock(&info->lock);
2873 out:
2874         *pagep = page;
2875         *ent = entry;
2876 }
2877 #endif
2878
2879 #else /* !CONFIG_SHMEM */
2880
2881 /*
2882  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2883  *
2884  * This is intended for small system where the benefits of the full
2885  * shmem code (swap-backed and resource-limited) are outweighed by
2886  * their complexity. On systems without swap this code should be
2887  * effectively equivalent, but much lighter weight.
2888  */
2889
2890 #include <linux/ramfs.h>
2891
2892 static struct file_system_type tmpfs_fs_type = {
2893         .name           = "tmpfs",
2894         .mount          = ramfs_mount,
2895         .kill_sb        = kill_litter_super,
2896 };
2897
2898 int __init init_tmpfs(void)
2899 {
2900         BUG_ON(register_filesystem(&tmpfs_fs_type) != 0);
2901
2902         shm_mnt = kern_mount(&tmpfs_fs_type);
2903         BUG_ON(IS_ERR(shm_mnt));
2904
2905         return 0;
2906 }
2907
2908 int shmem_unuse(swp_entry_t entry, struct page *page)
2909 {
2910         return 0;
2911 }
2912
2913 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2914 {
2915         return 0;
2916 }
2917
2918 void shmem_truncate_range(struct inode *inode, loff_t start, loff_t end)
2919 {
2920         truncate_inode_pages_range(inode->i_mapping, start, end);
2921 }
2922 EXPORT_SYMBOL_GPL(shmem_truncate_range);
2923
2924 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
2925 /**
2926  * mem_cgroup_get_shmem_target - find a page or entry assigned to the shmem file
2927  * @inode: the inode to be searched
2928  * @pgoff: the offset to be searched
2929  * @pagep: the pointer for the found page to be stored
2930  * @ent: the pointer for the found swap entry to be stored
2931  *
2932  * If a page is found, refcount of it is incremented. Callers should handle
2933  * these refcount.
2934  */
2935 void mem_cgroup_get_shmem_target(struct inode *inode, pgoff_t pgoff,
2936                                         struct page **pagep, swp_entry_t *ent)
2937 {
2938         struct page *page = NULL;
2939
2940         if ((pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode))
2941                 goto out;
2942         page = find_get_page(inode->i_mapping, pgoff);
2943 out:
2944         *pagep = page;
2945         *ent = (swp_entry_t){ .val = 0 };
2946 }
2947 #endif
2948
2949 #define shmem_vm_ops                            generic_file_vm_ops
2950 #define shmem_file_operations                   ramfs_file_operations
2951 #define shmem_get_inode(sb, dir, mode, dev, flags)      ramfs_get_inode(sb, dir, mode, dev)
2952 #define shmem_acct_size(flags, size)            0
2953 #define shmem_unacct_size(flags, size)          do {} while (0)
2954 #define SHMEM_MAX_BYTES                         MAX_LFS_FILESIZE
2955
2956 #endif /* CONFIG_SHMEM */
2957
2958 /* common code */
2959
2960 /**
2961  * shmem_file_setup - get an unlinked file living in tmpfs
2962  * @name: name for dentry (to be seen in /proc/<pid>/maps
2963  * @size: size to be set for the file
2964  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2965  */
2966 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
2967 {
2968         int error;
2969         struct file *file;
2970         struct inode *inode;
2971         struct path path;
2972         struct dentry *root;
2973         struct qstr this;
2974
2975         if (IS_ERR(shm_mnt))
2976                 return (void *)shm_mnt;
2977
2978         if (size < 0 || size > SHMEM_MAX_BYTES)
2979                 return ERR_PTR(-EINVAL);
2980
2981         if (shmem_acct_size(flags, size))
2982                 return ERR_PTR(-ENOMEM);
2983
2984         error = -ENOMEM;
2985         this.name = name;
2986         this.len = strlen(name);
2987         this.hash = 0; /* will go */
2988         root = shm_mnt->mnt_root;
2989         path.dentry = d_alloc(root, &this);
2990         if (!path.dentry)
2991                 goto put_memory;
2992         path.mnt = mntget(shm_mnt);
2993
2994         error = -ENOSPC;
2995         inode = shmem_get_inode(root->d_sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
2996         if (!inode)
2997                 goto put_dentry;
2998
2999         d_instantiate(path.dentry, inode);
3000         inode->i_size = size;
3001         inode->i_nlink = 0;     /* It is unlinked */
3002 #ifndef CONFIG_MMU
3003         error = ramfs_nommu_expand_for_mapping(inode, size);
3004         if (error)
3005                 goto put_dentry;
3006 #endif
3007
3008         error = -ENFILE;
3009         file = alloc_file(&path, FMODE_WRITE | FMODE_READ,
3010                   &shmem_file_operations);
3011         if (!file)
3012                 goto put_dentry;
3013
3014         return file;
3015
3016 put_dentry:
3017         path_put(&path);
3018 put_memory:
3019         shmem_unacct_size(flags, size);
3020         return ERR_PTR(error);
3021 }
3022 EXPORT_SYMBOL_GPL(shmem_file_setup);
3023
3024 void shmem_set_file(struct vm_area_struct *vma, struct file *file)
3025 {
3026         if (vma->vm_file)
3027                 fput(vma->vm_file);
3028         vma->vm_file = file;
3029         vma->vm_ops = &shmem_vm_ops;
3030         vma->vm_flags |= VM_CAN_NONLINEAR;
3031 }
3032
3033 /**
3034  * shmem_zero_setup - setup a shared anonymous mapping
3035  * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
3036  */
3037 int shmem_zero_setup(struct vm_area_struct *vma)
3038 {
3039         struct file *file;
3040         loff_t size = vma->vm_end - vma->vm_start;
3041
3042         file = shmem_file_setup("dev/zero", size, vma->vm_flags);
3043         if (IS_ERR(file))
3044                 return PTR_ERR(file);
3045
3046         shmem_set_file(vma, file);
3047         return 0;
3048 }
3049
3050 /**
3051  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
3052  * @mapping:    the page's address_space
3053  * @index:      the page index
3054  * @gfp:        the page allocator flags to use if allocating
3055  *
3056  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
3057  * with any new page allocations done using the specified allocation flags.
3058  * But read_cache_page_gfp() uses the ->readpage() method: which does not
3059  * suit tmpfs, since it may have pages in swapcache, and needs to find those
3060  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
3061  *
3062  * Provide a stub for those callers to start using now, then later
3063  * flesh it out to call shmem_getpage() with additional gfp mask, when
3064  * shmem_file_splice_read() is added and shmem_readpage() is removed.
3065  */
3066 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
3067                                          pgoff_t index, gfp_t gfp)
3068 {
3069         return read_cache_page_gfp(mapping, index, gfp);
3070 }
3071 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);