mm/page-writeback.c: make determine_dirtyable_memory static again
[firefly-linux-kernel-4.4.55.git] / mm / page-writeback.c
1 /*
2  * mm/page-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
6  *
7  * Contains functions related to writing back dirty pages at the
8  * address_space level.
9  *
10  * 10Apr2002    Andrew Morton
11  *              Initial version
12  */
13
14 #include <linux/kernel.h>
15 #include <linux/export.h>
16 #include <linux/spinlock.h>
17 #include <linux/fs.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/slab.h>
21 #include <linux/pagemap.h>
22 #include <linux/writeback.h>
23 #include <linux/init.h>
24 #include <linux/backing-dev.h>
25 #include <linux/task_io_accounting_ops.h>
26 #include <linux/blkdev.h>
27 #include <linux/mpage.h>
28 #include <linux/rmap.h>
29 #include <linux/percpu.h>
30 #include <linux/notifier.h>
31 #include <linux/smp.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/syscalls.h>
35 #include <linux/buffer_head.h> /* __set_page_dirty_buffers */
36 #include <linux/pagevec.h>
37 #include <trace/events/writeback.h>
38
39 /*
40  * Sleep at most 200ms at a time in balance_dirty_pages().
41  */
42 #define MAX_PAUSE               max(HZ/5, 1)
43
44 /*
45  * Estimate write bandwidth at 200ms intervals.
46  */
47 #define BANDWIDTH_INTERVAL      max(HZ/5, 1)
48
49 #define RATELIMIT_CALC_SHIFT    10
50
51 /*
52  * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
53  * will look to see if it needs to force writeback or throttling.
54  */
55 static long ratelimit_pages = 32;
56
57 /* The following parameters are exported via /proc/sys/vm */
58
59 /*
60  * Start background writeback (via writeback threads) at this percentage
61  */
62 int dirty_background_ratio = 10;
63
64 /*
65  * dirty_background_bytes starts at 0 (disabled) so that it is a function of
66  * dirty_background_ratio * the amount of dirtyable memory
67  */
68 unsigned long dirty_background_bytes;
69
70 /*
71  * free highmem will not be subtracted from the total free memory
72  * for calculating free ratios if vm_highmem_is_dirtyable is true
73  */
74 int vm_highmem_is_dirtyable;
75
76 /*
77  * The generator of dirty data starts writeback at this percentage
78  */
79 int vm_dirty_ratio = 20;
80
81 /*
82  * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
83  * vm_dirty_ratio * the amount of dirtyable memory
84  */
85 unsigned long vm_dirty_bytes;
86
87 /*
88  * The interval between `kupdate'-style writebacks
89  */
90 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
91
92 /*
93  * The longest time for which data is allowed to remain dirty
94  */
95 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
96
97 /*
98  * Flag that makes the machine dump writes/reads and block dirtyings.
99  */
100 int block_dump;
101
102 /*
103  * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
104  * a full sync is triggered after this time elapses without any disk activity.
105  */
106 int laptop_mode;
107
108 EXPORT_SYMBOL(laptop_mode);
109
110 /* End of sysctl-exported parameters */
111
112 unsigned long global_dirty_limit;
113
114 /*
115  * Scale the writeback cache size proportional to the relative writeout speeds.
116  *
117  * We do this by keeping a floating proportion between BDIs, based on page
118  * writeback completions [end_page_writeback()]. Those devices that write out
119  * pages fastest will get the larger share, while the slower will get a smaller
120  * share.
121  *
122  * We use page writeout completions because we are interested in getting rid of
123  * dirty pages. Having them written out is the primary goal.
124  *
125  * We introduce a concept of time, a period over which we measure these events,
126  * because demand can/will vary over time. The length of this period itself is
127  * measured in page writeback completions.
128  *
129  */
130 static struct prop_descriptor vm_completions;
131
132 /*
133  * Work out the current dirty-memory clamping and background writeout
134  * thresholds.
135  *
136  * The main aim here is to lower them aggressively if there is a lot of mapped
137  * memory around.  To avoid stressing page reclaim with lots of unreclaimable
138  * pages.  It is better to clamp down on writers than to start swapping, and
139  * performing lots of scanning.
140  *
141  * We only allow 1/2 of the currently-unmapped memory to be dirtied.
142  *
143  * We don't permit the clamping level to fall below 5% - that is getting rather
144  * excessive.
145  *
146  * We make sure that the background writeout level is below the adjusted
147  * clamping level.
148  */
149 static unsigned long highmem_dirtyable_memory(unsigned long total)
150 {
151 #ifdef CONFIG_HIGHMEM
152         int node;
153         unsigned long x = 0;
154
155         for_each_node_state(node, N_HIGH_MEMORY) {
156                 struct zone *z =
157                         &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
158
159                 x += zone_page_state(z, NR_FREE_PAGES) +
160                      zone_reclaimable_pages(z);
161         }
162         /*
163          * Make sure that the number of highmem pages is never larger
164          * than the number of the total dirtyable memory. This can only
165          * occur in very strange VM situations but we want to make sure
166          * that this does not occur.
167          */
168         return min(x, total);
169 #else
170         return 0;
171 #endif
172 }
173
174 /**
175  * determine_dirtyable_memory - amount of memory that may be used
176  *
177  * Returns the numebr of pages that can currently be freed and used
178  * by the kernel for direct mappings.
179  */
180 static unsigned long determine_dirtyable_memory(void)
181 {
182         unsigned long x;
183
184         x = global_page_state(NR_FREE_PAGES) + global_reclaimable_pages();
185
186         if (!vm_highmem_is_dirtyable)
187                 x -= highmem_dirtyable_memory(x);
188
189         return x + 1;   /* Ensure that we never return 0 */
190 }
191
192 /*
193  * couple the period to the dirty_ratio:
194  *
195  *   period/2 ~ roundup_pow_of_two(dirty limit)
196  */
197 static int calc_period_shift(void)
198 {
199         unsigned long dirty_total;
200
201         if (vm_dirty_bytes)
202                 dirty_total = vm_dirty_bytes / PAGE_SIZE;
203         else
204                 dirty_total = (vm_dirty_ratio * determine_dirtyable_memory()) /
205                                 100;
206         return 2 + ilog2(dirty_total - 1);
207 }
208
209 /*
210  * update the period when the dirty threshold changes.
211  */
212 static void update_completion_period(void)
213 {
214         int shift = calc_period_shift();
215         prop_change_shift(&vm_completions, shift);
216
217         writeback_set_ratelimit();
218 }
219
220 int dirty_background_ratio_handler(struct ctl_table *table, int write,
221                 void __user *buffer, size_t *lenp,
222                 loff_t *ppos)
223 {
224         int ret;
225
226         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
227         if (ret == 0 && write)
228                 dirty_background_bytes = 0;
229         return ret;
230 }
231
232 int dirty_background_bytes_handler(struct ctl_table *table, int write,
233                 void __user *buffer, size_t *lenp,
234                 loff_t *ppos)
235 {
236         int ret;
237
238         ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
239         if (ret == 0 && write)
240                 dirty_background_ratio = 0;
241         return ret;
242 }
243
244 int dirty_ratio_handler(struct ctl_table *table, int write,
245                 void __user *buffer, size_t *lenp,
246                 loff_t *ppos)
247 {
248         int old_ratio = vm_dirty_ratio;
249         int ret;
250
251         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
252         if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
253                 update_completion_period();
254                 vm_dirty_bytes = 0;
255         }
256         return ret;
257 }
258
259 int dirty_bytes_handler(struct ctl_table *table, int write,
260                 void __user *buffer, size_t *lenp,
261                 loff_t *ppos)
262 {
263         unsigned long old_bytes = vm_dirty_bytes;
264         int ret;
265
266         ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
267         if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
268                 update_completion_period();
269                 vm_dirty_ratio = 0;
270         }
271         return ret;
272 }
273
274 /*
275  * Increment the BDI's writeout completion count and the global writeout
276  * completion count. Called from test_clear_page_writeback().
277  */
278 static inline void __bdi_writeout_inc(struct backing_dev_info *bdi)
279 {
280         __inc_bdi_stat(bdi, BDI_WRITTEN);
281         __prop_inc_percpu_max(&vm_completions, &bdi->completions,
282                               bdi->max_prop_frac);
283 }
284
285 void bdi_writeout_inc(struct backing_dev_info *bdi)
286 {
287         unsigned long flags;
288
289         local_irq_save(flags);
290         __bdi_writeout_inc(bdi);
291         local_irq_restore(flags);
292 }
293 EXPORT_SYMBOL_GPL(bdi_writeout_inc);
294
295 /*
296  * Obtain an accurate fraction of the BDI's portion.
297  */
298 static void bdi_writeout_fraction(struct backing_dev_info *bdi,
299                 long *numerator, long *denominator)
300 {
301         prop_fraction_percpu(&vm_completions, &bdi->completions,
302                                 numerator, denominator);
303 }
304
305 /*
306  * bdi_min_ratio keeps the sum of the minimum dirty shares of all
307  * registered backing devices, which, for obvious reasons, can not
308  * exceed 100%.
309  */
310 static unsigned int bdi_min_ratio;
311
312 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
313 {
314         int ret = 0;
315
316         spin_lock_bh(&bdi_lock);
317         if (min_ratio > bdi->max_ratio) {
318                 ret = -EINVAL;
319         } else {
320                 min_ratio -= bdi->min_ratio;
321                 if (bdi_min_ratio + min_ratio < 100) {
322                         bdi_min_ratio += min_ratio;
323                         bdi->min_ratio += min_ratio;
324                 } else {
325                         ret = -EINVAL;
326                 }
327         }
328         spin_unlock_bh(&bdi_lock);
329
330         return ret;
331 }
332
333 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
334 {
335         int ret = 0;
336
337         if (max_ratio > 100)
338                 return -EINVAL;
339
340         spin_lock_bh(&bdi_lock);
341         if (bdi->min_ratio > max_ratio) {
342                 ret = -EINVAL;
343         } else {
344                 bdi->max_ratio = max_ratio;
345                 bdi->max_prop_frac = (PROP_FRAC_BASE * max_ratio) / 100;
346         }
347         spin_unlock_bh(&bdi_lock);
348
349         return ret;
350 }
351 EXPORT_SYMBOL(bdi_set_max_ratio);
352
353 static unsigned long dirty_freerun_ceiling(unsigned long thresh,
354                                            unsigned long bg_thresh)
355 {
356         return (thresh + bg_thresh) / 2;
357 }
358
359 static unsigned long hard_dirty_limit(unsigned long thresh)
360 {
361         return max(thresh, global_dirty_limit);
362 }
363
364 /*
365  * global_dirty_limits - background-writeback and dirty-throttling thresholds
366  *
367  * Calculate the dirty thresholds based on sysctl parameters
368  * - vm.dirty_background_ratio  or  vm.dirty_background_bytes
369  * - vm.dirty_ratio             or  vm.dirty_bytes
370  * The dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
371  * real-time tasks.
372  */
373 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
374 {
375         unsigned long background;
376         unsigned long dirty;
377         unsigned long uninitialized_var(available_memory);
378         struct task_struct *tsk;
379
380         if (!vm_dirty_bytes || !dirty_background_bytes)
381                 available_memory = determine_dirtyable_memory();
382
383         if (vm_dirty_bytes)
384                 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE);
385         else
386                 dirty = (vm_dirty_ratio * available_memory) / 100;
387
388         if (dirty_background_bytes)
389                 background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE);
390         else
391                 background = (dirty_background_ratio * available_memory) / 100;
392
393         if (background >= dirty)
394                 background = dirty / 2;
395         tsk = current;
396         if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
397                 background += background / 4;
398                 dirty += dirty / 4;
399         }
400         *pbackground = background;
401         *pdirty = dirty;
402         trace_global_dirty_state(background, dirty);
403 }
404
405 /**
406  * bdi_dirty_limit - @bdi's share of dirty throttling threshold
407  * @bdi: the backing_dev_info to query
408  * @dirty: global dirty limit in pages
409  *
410  * Returns @bdi's dirty limit in pages. The term "dirty" in the context of
411  * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
412  *
413  * Note that balance_dirty_pages() will only seriously take it as a hard limit
414  * when sleeping max_pause per page is not enough to keep the dirty pages under
415  * control. For example, when the device is completely stalled due to some error
416  * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
417  * In the other normal situations, it acts more gently by throttling the tasks
418  * more (rather than completely block them) when the bdi dirty pages go high.
419  *
420  * It allocates high/low dirty limits to fast/slow devices, in order to prevent
421  * - starving fast devices
422  * - piling up dirty pages (that will take long time to sync) on slow devices
423  *
424  * The bdi's share of dirty limit will be adapting to its throughput and
425  * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
426  */
427 unsigned long bdi_dirty_limit(struct backing_dev_info *bdi, unsigned long dirty)
428 {
429         u64 bdi_dirty;
430         long numerator, denominator;
431
432         /*
433          * Calculate this BDI's share of the dirty ratio.
434          */
435         bdi_writeout_fraction(bdi, &numerator, &denominator);
436
437         bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100;
438         bdi_dirty *= numerator;
439         do_div(bdi_dirty, denominator);
440
441         bdi_dirty += (dirty * bdi->min_ratio) / 100;
442         if (bdi_dirty > (dirty * bdi->max_ratio) / 100)
443                 bdi_dirty = dirty * bdi->max_ratio / 100;
444
445         return bdi_dirty;
446 }
447
448 /*
449  * Dirty position control.
450  *
451  * (o) global/bdi setpoints
452  *
453  * We want the dirty pages be balanced around the global/bdi setpoints.
454  * When the number of dirty pages is higher/lower than the setpoint, the
455  * dirty position control ratio (and hence task dirty ratelimit) will be
456  * decreased/increased to bring the dirty pages back to the setpoint.
457  *
458  *     pos_ratio = 1 << RATELIMIT_CALC_SHIFT
459  *
460  *     if (dirty < setpoint) scale up   pos_ratio
461  *     if (dirty > setpoint) scale down pos_ratio
462  *
463  *     if (bdi_dirty < bdi_setpoint) scale up   pos_ratio
464  *     if (bdi_dirty > bdi_setpoint) scale down pos_ratio
465  *
466  *     task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
467  *
468  * (o) global control line
469  *
470  *     ^ pos_ratio
471  *     |
472  *     |            |<===== global dirty control scope ======>|
473  * 2.0 .............*
474  *     |            .*
475  *     |            . *
476  *     |            .   *
477  *     |            .     *
478  *     |            .        *
479  *     |            .            *
480  * 1.0 ................................*
481  *     |            .                  .     *
482  *     |            .                  .          *
483  *     |            .                  .              *
484  *     |            .                  .                 *
485  *     |            .                  .                    *
486  *   0 +------------.------------------.----------------------*------------->
487  *           freerun^          setpoint^                 limit^   dirty pages
488  *
489  * (o) bdi control line
490  *
491  *     ^ pos_ratio
492  *     |
493  *     |            *
494  *     |              *
495  *     |                *
496  *     |                  *
497  *     |                    * |<=========== span ============>|
498  * 1.0 .......................*
499  *     |                      . *
500  *     |                      .   *
501  *     |                      .     *
502  *     |                      .       *
503  *     |                      .         *
504  *     |                      .           *
505  *     |                      .             *
506  *     |                      .               *
507  *     |                      .                 *
508  *     |                      .                   *
509  *     |                      .                     *
510  * 1/4 ...............................................* * * * * * * * * * * *
511  *     |                      .                         .
512  *     |                      .                           .
513  *     |                      .                             .
514  *   0 +----------------------.-------------------------------.------------->
515  *                bdi_setpoint^                    x_intercept^
516  *
517  * The bdi control line won't drop below pos_ratio=1/4, so that bdi_dirty can
518  * be smoothly throttled down to normal if it starts high in situations like
519  * - start writing to a slow SD card and a fast disk at the same time. The SD
520  *   card's bdi_dirty may rush to many times higher than bdi_setpoint.
521  * - the bdi dirty thresh drops quickly due to change of JBOD workload
522  */
523 static unsigned long bdi_position_ratio(struct backing_dev_info *bdi,
524                                         unsigned long thresh,
525                                         unsigned long bg_thresh,
526                                         unsigned long dirty,
527                                         unsigned long bdi_thresh,
528                                         unsigned long bdi_dirty)
529 {
530         unsigned long write_bw = bdi->avg_write_bandwidth;
531         unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
532         unsigned long limit = hard_dirty_limit(thresh);
533         unsigned long x_intercept;
534         unsigned long setpoint;         /* dirty pages' target balance point */
535         unsigned long bdi_setpoint;
536         unsigned long span;
537         long long pos_ratio;            /* for scaling up/down the rate limit */
538         long x;
539
540         if (unlikely(dirty >= limit))
541                 return 0;
542
543         /*
544          * global setpoint
545          *
546          *                           setpoint - dirty 3
547          *        f(dirty) := 1.0 + (----------------)
548          *                           limit - setpoint
549          *
550          * it's a 3rd order polynomial that subjects to
551          *
552          * (1) f(freerun)  = 2.0 => rampup dirty_ratelimit reasonably fast
553          * (2) f(setpoint) = 1.0 => the balance point
554          * (3) f(limit)    = 0   => the hard limit
555          * (4) df/dx      <= 0   => negative feedback control
556          * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
557          *     => fast response on large errors; small oscillation near setpoint
558          */
559         setpoint = (freerun + limit) / 2;
560         x = div_s64((setpoint - dirty) << RATELIMIT_CALC_SHIFT,
561                     limit - setpoint + 1);
562         pos_ratio = x;
563         pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
564         pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
565         pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
566
567         /*
568          * We have computed basic pos_ratio above based on global situation. If
569          * the bdi is over/under its share of dirty pages, we want to scale
570          * pos_ratio further down/up. That is done by the following mechanism.
571          */
572
573         /*
574          * bdi setpoint
575          *
576          *        f(bdi_dirty) := 1.0 + k * (bdi_dirty - bdi_setpoint)
577          *
578          *                        x_intercept - bdi_dirty
579          *                     := --------------------------
580          *                        x_intercept - bdi_setpoint
581          *
582          * The main bdi control line is a linear function that subjects to
583          *
584          * (1) f(bdi_setpoint) = 1.0
585          * (2) k = - 1 / (8 * write_bw)  (in single bdi case)
586          *     or equally: x_intercept = bdi_setpoint + 8 * write_bw
587          *
588          * For single bdi case, the dirty pages are observed to fluctuate
589          * regularly within range
590          *        [bdi_setpoint - write_bw/2, bdi_setpoint + write_bw/2]
591          * for various filesystems, where (2) can yield in a reasonable 12.5%
592          * fluctuation range for pos_ratio.
593          *
594          * For JBOD case, bdi_thresh (not bdi_dirty!) could fluctuate up to its
595          * own size, so move the slope over accordingly and choose a slope that
596          * yields 100% pos_ratio fluctuation on suddenly doubled bdi_thresh.
597          */
598         if (unlikely(bdi_thresh > thresh))
599                 bdi_thresh = thresh;
600         /*
601          * It's very possible that bdi_thresh is close to 0 not because the
602          * device is slow, but that it has remained inactive for long time.
603          * Honour such devices a reasonable good (hopefully IO efficient)
604          * threshold, so that the occasional writes won't be blocked and active
605          * writes can rampup the threshold quickly.
606          */
607         bdi_thresh = max(bdi_thresh, (limit - dirty) / 8);
608         /*
609          * scale global setpoint to bdi's:
610          *      bdi_setpoint = setpoint * bdi_thresh / thresh
611          */
612         x = div_u64((u64)bdi_thresh << 16, thresh + 1);
613         bdi_setpoint = setpoint * (u64)x >> 16;
614         /*
615          * Use span=(8*write_bw) in single bdi case as indicated by
616          * (thresh - bdi_thresh ~= 0) and transit to bdi_thresh in JBOD case.
617          *
618          *        bdi_thresh                    thresh - bdi_thresh
619          * span = ---------- * (8 * write_bw) + ------------------- * bdi_thresh
620          *          thresh                            thresh
621          */
622         span = (thresh - bdi_thresh + 8 * write_bw) * (u64)x >> 16;
623         x_intercept = bdi_setpoint + span;
624
625         if (bdi_dirty < x_intercept - span / 4) {
626                 pos_ratio = div_u64(pos_ratio * (x_intercept - bdi_dirty),
627                                     x_intercept - bdi_setpoint + 1);
628         } else
629                 pos_ratio /= 4;
630
631         /*
632          * bdi reserve area, safeguard against dirty pool underrun and disk idle
633          * It may push the desired control point of global dirty pages higher
634          * than setpoint.
635          */
636         x_intercept = bdi_thresh / 2;
637         if (bdi_dirty < x_intercept) {
638                 if (bdi_dirty > x_intercept / 8)
639                         pos_ratio = div_u64(pos_ratio * x_intercept, bdi_dirty);
640                 else
641                         pos_ratio *= 8;
642         }
643
644         return pos_ratio;
645 }
646
647 static void bdi_update_write_bandwidth(struct backing_dev_info *bdi,
648                                        unsigned long elapsed,
649                                        unsigned long written)
650 {
651         const unsigned long period = roundup_pow_of_two(3 * HZ);
652         unsigned long avg = bdi->avg_write_bandwidth;
653         unsigned long old = bdi->write_bandwidth;
654         u64 bw;
655
656         /*
657          * bw = written * HZ / elapsed
658          *
659          *                   bw * elapsed + write_bandwidth * (period - elapsed)
660          * write_bandwidth = ---------------------------------------------------
661          *                                          period
662          */
663         bw = written - bdi->written_stamp;
664         bw *= HZ;
665         if (unlikely(elapsed > period)) {
666                 do_div(bw, elapsed);
667                 avg = bw;
668                 goto out;
669         }
670         bw += (u64)bdi->write_bandwidth * (period - elapsed);
671         bw >>= ilog2(period);
672
673         /*
674          * one more level of smoothing, for filtering out sudden spikes
675          */
676         if (avg > old && old >= (unsigned long)bw)
677                 avg -= (avg - old) >> 3;
678
679         if (avg < old && old <= (unsigned long)bw)
680                 avg += (old - avg) >> 3;
681
682 out:
683         bdi->write_bandwidth = bw;
684         bdi->avg_write_bandwidth = avg;
685 }
686
687 /*
688  * The global dirtyable memory and dirty threshold could be suddenly knocked
689  * down by a large amount (eg. on the startup of KVM in a swapless system).
690  * This may throw the system into deep dirty exceeded state and throttle
691  * heavy/light dirtiers alike. To retain good responsiveness, maintain
692  * global_dirty_limit for tracking slowly down to the knocked down dirty
693  * threshold.
694  */
695 static void update_dirty_limit(unsigned long thresh, unsigned long dirty)
696 {
697         unsigned long limit = global_dirty_limit;
698
699         /*
700          * Follow up in one step.
701          */
702         if (limit < thresh) {
703                 limit = thresh;
704                 goto update;
705         }
706
707         /*
708          * Follow down slowly. Use the higher one as the target, because thresh
709          * may drop below dirty. This is exactly the reason to introduce
710          * global_dirty_limit which is guaranteed to lie above the dirty pages.
711          */
712         thresh = max(thresh, dirty);
713         if (limit > thresh) {
714                 limit -= (limit - thresh) >> 5;
715                 goto update;
716         }
717         return;
718 update:
719         global_dirty_limit = limit;
720 }
721
722 static void global_update_bandwidth(unsigned long thresh,
723                                     unsigned long dirty,
724                                     unsigned long now)
725 {
726         static DEFINE_SPINLOCK(dirty_lock);
727         static unsigned long update_time;
728
729         /*
730          * check locklessly first to optimize away locking for the most time
731          */
732         if (time_before(now, update_time + BANDWIDTH_INTERVAL))
733                 return;
734
735         spin_lock(&dirty_lock);
736         if (time_after_eq(now, update_time + BANDWIDTH_INTERVAL)) {
737                 update_dirty_limit(thresh, dirty);
738                 update_time = now;
739         }
740         spin_unlock(&dirty_lock);
741 }
742
743 /*
744  * Maintain bdi->dirty_ratelimit, the base dirty throttle rate.
745  *
746  * Normal bdi tasks will be curbed at or below it in long term.
747  * Obviously it should be around (write_bw / N) when there are N dd tasks.
748  */
749 static void bdi_update_dirty_ratelimit(struct backing_dev_info *bdi,
750                                        unsigned long thresh,
751                                        unsigned long bg_thresh,
752                                        unsigned long dirty,
753                                        unsigned long bdi_thresh,
754                                        unsigned long bdi_dirty,
755                                        unsigned long dirtied,
756                                        unsigned long elapsed)
757 {
758         unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
759         unsigned long limit = hard_dirty_limit(thresh);
760         unsigned long setpoint = (freerun + limit) / 2;
761         unsigned long write_bw = bdi->avg_write_bandwidth;
762         unsigned long dirty_ratelimit = bdi->dirty_ratelimit;
763         unsigned long dirty_rate;
764         unsigned long task_ratelimit;
765         unsigned long balanced_dirty_ratelimit;
766         unsigned long pos_ratio;
767         unsigned long step;
768         unsigned long x;
769
770         /*
771          * The dirty rate will match the writeout rate in long term, except
772          * when dirty pages are truncated by userspace or re-dirtied by FS.
773          */
774         dirty_rate = (dirtied - bdi->dirtied_stamp) * HZ / elapsed;
775
776         pos_ratio = bdi_position_ratio(bdi, thresh, bg_thresh, dirty,
777                                        bdi_thresh, bdi_dirty);
778         /*
779          * task_ratelimit reflects each dd's dirty rate for the past 200ms.
780          */
781         task_ratelimit = (u64)dirty_ratelimit *
782                                         pos_ratio >> RATELIMIT_CALC_SHIFT;
783         task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
784
785         /*
786          * A linear estimation of the "balanced" throttle rate. The theory is,
787          * if there are N dd tasks, each throttled at task_ratelimit, the bdi's
788          * dirty_rate will be measured to be (N * task_ratelimit). So the below
789          * formula will yield the balanced rate limit (write_bw / N).
790          *
791          * Note that the expanded form is not a pure rate feedback:
792          *      rate_(i+1) = rate_(i) * (write_bw / dirty_rate)              (1)
793          * but also takes pos_ratio into account:
794          *      rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio  (2)
795          *
796          * (1) is not realistic because pos_ratio also takes part in balancing
797          * the dirty rate.  Consider the state
798          *      pos_ratio = 0.5                                              (3)
799          *      rate = 2 * (write_bw / N)                                    (4)
800          * If (1) is used, it will stuck in that state! Because each dd will
801          * be throttled at
802          *      task_ratelimit = pos_ratio * rate = (write_bw / N)           (5)
803          * yielding
804          *      dirty_rate = N * task_ratelimit = write_bw                   (6)
805          * put (6) into (1) we get
806          *      rate_(i+1) = rate_(i)                                        (7)
807          *
808          * So we end up using (2) to always keep
809          *      rate_(i+1) ~= (write_bw / N)                                 (8)
810          * regardless of the value of pos_ratio. As long as (8) is satisfied,
811          * pos_ratio is able to drive itself to 1.0, which is not only where
812          * the dirty count meet the setpoint, but also where the slope of
813          * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
814          */
815         balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
816                                            dirty_rate | 1);
817
818         /*
819          * We could safely do this and return immediately:
820          *
821          *      bdi->dirty_ratelimit = balanced_dirty_ratelimit;
822          *
823          * However to get a more stable dirty_ratelimit, the below elaborated
824          * code makes use of task_ratelimit to filter out sigular points and
825          * limit the step size.
826          *
827          * The below code essentially only uses the relative value of
828          *
829          *      task_ratelimit - dirty_ratelimit
830          *      = (pos_ratio - 1) * dirty_ratelimit
831          *
832          * which reflects the direction and size of dirty position error.
833          */
834
835         /*
836          * dirty_ratelimit will follow balanced_dirty_ratelimit iff
837          * task_ratelimit is on the same side of dirty_ratelimit, too.
838          * For example, when
839          * - dirty_ratelimit > balanced_dirty_ratelimit
840          * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
841          * lowering dirty_ratelimit will help meet both the position and rate
842          * control targets. Otherwise, don't update dirty_ratelimit if it will
843          * only help meet the rate target. After all, what the users ultimately
844          * feel and care are stable dirty rate and small position error.
845          *
846          * |task_ratelimit - dirty_ratelimit| is used to limit the step size
847          * and filter out the sigular points of balanced_dirty_ratelimit. Which
848          * keeps jumping around randomly and can even leap far away at times
849          * due to the small 200ms estimation period of dirty_rate (we want to
850          * keep that period small to reduce time lags).
851          */
852         step = 0;
853         if (dirty < setpoint) {
854                 x = min(bdi->balanced_dirty_ratelimit,
855                          min(balanced_dirty_ratelimit, task_ratelimit));
856                 if (dirty_ratelimit < x)
857                         step = x - dirty_ratelimit;
858         } else {
859                 x = max(bdi->balanced_dirty_ratelimit,
860                          max(balanced_dirty_ratelimit, task_ratelimit));
861                 if (dirty_ratelimit > x)
862                         step = dirty_ratelimit - x;
863         }
864
865         /*
866          * Don't pursue 100% rate matching. It's impossible since the balanced
867          * rate itself is constantly fluctuating. So decrease the track speed
868          * when it gets close to the target. Helps eliminate pointless tremors.
869          */
870         step >>= dirty_ratelimit / (2 * step + 1);
871         /*
872          * Limit the tracking speed to avoid overshooting.
873          */
874         step = (step + 7) / 8;
875
876         if (dirty_ratelimit < balanced_dirty_ratelimit)
877                 dirty_ratelimit += step;
878         else
879                 dirty_ratelimit -= step;
880
881         bdi->dirty_ratelimit = max(dirty_ratelimit, 1UL);
882         bdi->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
883
884         trace_bdi_dirty_ratelimit(bdi, dirty_rate, task_ratelimit);
885 }
886
887 void __bdi_update_bandwidth(struct backing_dev_info *bdi,
888                             unsigned long thresh,
889                             unsigned long bg_thresh,
890                             unsigned long dirty,
891                             unsigned long bdi_thresh,
892                             unsigned long bdi_dirty,
893                             unsigned long start_time)
894 {
895         unsigned long now = jiffies;
896         unsigned long elapsed = now - bdi->bw_time_stamp;
897         unsigned long dirtied;
898         unsigned long written;
899
900         /*
901          * rate-limit, only update once every 200ms.
902          */
903         if (elapsed < BANDWIDTH_INTERVAL)
904                 return;
905
906         dirtied = percpu_counter_read(&bdi->bdi_stat[BDI_DIRTIED]);
907         written = percpu_counter_read(&bdi->bdi_stat[BDI_WRITTEN]);
908
909         /*
910          * Skip quiet periods when disk bandwidth is under-utilized.
911          * (at least 1s idle time between two flusher runs)
912          */
913         if (elapsed > HZ && time_before(bdi->bw_time_stamp, start_time))
914                 goto snapshot;
915
916         if (thresh) {
917                 global_update_bandwidth(thresh, dirty, now);
918                 bdi_update_dirty_ratelimit(bdi, thresh, bg_thresh, dirty,
919                                            bdi_thresh, bdi_dirty,
920                                            dirtied, elapsed);
921         }
922         bdi_update_write_bandwidth(bdi, elapsed, written);
923
924 snapshot:
925         bdi->dirtied_stamp = dirtied;
926         bdi->written_stamp = written;
927         bdi->bw_time_stamp = now;
928 }
929
930 static void bdi_update_bandwidth(struct backing_dev_info *bdi,
931                                  unsigned long thresh,
932                                  unsigned long bg_thresh,
933                                  unsigned long dirty,
934                                  unsigned long bdi_thresh,
935                                  unsigned long bdi_dirty,
936                                  unsigned long start_time)
937 {
938         if (time_is_after_eq_jiffies(bdi->bw_time_stamp + BANDWIDTH_INTERVAL))
939                 return;
940         spin_lock(&bdi->wb.list_lock);
941         __bdi_update_bandwidth(bdi, thresh, bg_thresh, dirty,
942                                bdi_thresh, bdi_dirty, start_time);
943         spin_unlock(&bdi->wb.list_lock);
944 }
945
946 /*
947  * After a task dirtied this many pages, balance_dirty_pages_ratelimited_nr()
948  * will look to see if it needs to start dirty throttling.
949  *
950  * If dirty_poll_interval is too low, big NUMA machines will call the expensive
951  * global_page_state() too often. So scale it near-sqrt to the safety margin
952  * (the number of pages we may dirty without exceeding the dirty limits).
953  */
954 static unsigned long dirty_poll_interval(unsigned long dirty,
955                                          unsigned long thresh)
956 {
957         if (thresh > dirty)
958                 return 1UL << (ilog2(thresh - dirty) >> 1);
959
960         return 1;
961 }
962
963 static unsigned long bdi_max_pause(struct backing_dev_info *bdi,
964                                    unsigned long bdi_dirty)
965 {
966         unsigned long bw = bdi->avg_write_bandwidth;
967         unsigned long hi = ilog2(bw);
968         unsigned long lo = ilog2(bdi->dirty_ratelimit);
969         unsigned long t;
970
971         /* target for 20ms max pause on 1-dd case */
972         t = HZ / 50;
973
974         /*
975          * Scale up pause time for concurrent dirtiers in order to reduce CPU
976          * overheads.
977          *
978          * (N * 20ms) on 2^N concurrent tasks.
979          */
980         if (hi > lo)
981                 t += (hi - lo) * (20 * HZ) / 1024;
982
983         /*
984          * Limit pause time for small memory systems. If sleeping for too long
985          * time, a small pool of dirty/writeback pages may go empty and disk go
986          * idle.
987          *
988          * 8 serves as the safety ratio.
989          */
990         t = min(t, bdi_dirty * HZ / (8 * bw + 1));
991
992         /*
993          * The pause time will be settled within range (max_pause/4, max_pause).
994          * Apply a minimal value of 4 to get a non-zero max_pause/4.
995          */
996         return clamp_val(t, 4, MAX_PAUSE);
997 }
998
999 /*
1000  * balance_dirty_pages() must be called by processes which are generating dirty
1001  * data.  It looks at the number of dirty pages in the machine and will force
1002  * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
1003  * If we're over `background_thresh' then the writeback threads are woken to
1004  * perform some writeout.
1005  */
1006 static void balance_dirty_pages(struct address_space *mapping,
1007                                 unsigned long pages_dirtied)
1008 {
1009         unsigned long nr_reclaimable;   /* = file_dirty + unstable_nfs */
1010         unsigned long bdi_reclaimable;
1011         unsigned long nr_dirty;  /* = file_dirty + writeback + unstable_nfs */
1012         unsigned long bdi_dirty;
1013         unsigned long freerun;
1014         unsigned long background_thresh;
1015         unsigned long dirty_thresh;
1016         unsigned long bdi_thresh;
1017         long pause = 0;
1018         long uninitialized_var(max_pause);
1019         bool dirty_exceeded = false;
1020         unsigned long task_ratelimit;
1021         unsigned long uninitialized_var(dirty_ratelimit);
1022         unsigned long pos_ratio;
1023         struct backing_dev_info *bdi = mapping->backing_dev_info;
1024         unsigned long start_time = jiffies;
1025
1026         for (;;) {
1027                 /*
1028                  * Unstable writes are a feature of certain networked
1029                  * filesystems (i.e. NFS) in which data may have been
1030                  * written to the server's write cache, but has not yet
1031                  * been flushed to permanent storage.
1032                  */
1033                 nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
1034                                         global_page_state(NR_UNSTABLE_NFS);
1035                 nr_dirty = nr_reclaimable + global_page_state(NR_WRITEBACK);
1036
1037                 global_dirty_limits(&background_thresh, &dirty_thresh);
1038
1039                 /*
1040                  * Throttle it only when the background writeback cannot
1041                  * catch-up. This avoids (excessively) small writeouts
1042                  * when the bdi limits are ramping up.
1043                  */
1044                 freerun = dirty_freerun_ceiling(dirty_thresh,
1045                                                 background_thresh);
1046                 if (nr_dirty <= freerun)
1047                         break;
1048
1049                 if (unlikely(!writeback_in_progress(bdi)))
1050                         bdi_start_background_writeback(bdi);
1051
1052                 /*
1053                  * bdi_thresh is not treated as some limiting factor as
1054                  * dirty_thresh, due to reasons
1055                  * - in JBOD setup, bdi_thresh can fluctuate a lot
1056                  * - in a system with HDD and USB key, the USB key may somehow
1057                  *   go into state (bdi_dirty >> bdi_thresh) either because
1058                  *   bdi_dirty starts high, or because bdi_thresh drops low.
1059                  *   In this case we don't want to hard throttle the USB key
1060                  *   dirtiers for 100 seconds until bdi_dirty drops under
1061                  *   bdi_thresh. Instead the auxiliary bdi control line in
1062                  *   bdi_position_ratio() will let the dirtier task progress
1063                  *   at some rate <= (write_bw / 2) for bringing down bdi_dirty.
1064                  */
1065                 bdi_thresh = bdi_dirty_limit(bdi, dirty_thresh);
1066
1067                 /*
1068                  * In order to avoid the stacked BDI deadlock we need
1069                  * to ensure we accurately count the 'dirty' pages when
1070                  * the threshold is low.
1071                  *
1072                  * Otherwise it would be possible to get thresh+n pages
1073                  * reported dirty, even though there are thresh-m pages
1074                  * actually dirty; with m+n sitting in the percpu
1075                  * deltas.
1076                  */
1077                 if (bdi_thresh < 2 * bdi_stat_error(bdi)) {
1078                         bdi_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
1079                         bdi_dirty = bdi_reclaimable +
1080                                     bdi_stat_sum(bdi, BDI_WRITEBACK);
1081                 } else {
1082                         bdi_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
1083                         bdi_dirty = bdi_reclaimable +
1084                                     bdi_stat(bdi, BDI_WRITEBACK);
1085                 }
1086
1087                 dirty_exceeded = (bdi_dirty > bdi_thresh) ||
1088                                   (nr_dirty > dirty_thresh);
1089                 if (dirty_exceeded && !bdi->dirty_exceeded)
1090                         bdi->dirty_exceeded = 1;
1091
1092                 bdi_update_bandwidth(bdi, dirty_thresh, background_thresh,
1093                                      nr_dirty, bdi_thresh, bdi_dirty,
1094                                      start_time);
1095
1096                 max_pause = bdi_max_pause(bdi, bdi_dirty);
1097
1098                 dirty_ratelimit = bdi->dirty_ratelimit;
1099                 pos_ratio = bdi_position_ratio(bdi, dirty_thresh,
1100                                                background_thresh, nr_dirty,
1101                                                bdi_thresh, bdi_dirty);
1102                 task_ratelimit = ((u64)dirty_ratelimit * pos_ratio) >>
1103                                                         RATELIMIT_CALC_SHIFT;
1104                 if (unlikely(task_ratelimit == 0)) {
1105                         pause = max_pause;
1106                         goto pause;
1107                 }
1108                 pause = HZ * pages_dirtied / task_ratelimit;
1109                 if (unlikely(pause <= 0)) {
1110                         trace_balance_dirty_pages(bdi,
1111                                                   dirty_thresh,
1112                                                   background_thresh,
1113                                                   nr_dirty,
1114                                                   bdi_thresh,
1115                                                   bdi_dirty,
1116                                                   dirty_ratelimit,
1117                                                   task_ratelimit,
1118                                                   pages_dirtied,
1119                                                   pause,
1120                                                   start_time);
1121                         pause = 1; /* avoid resetting nr_dirtied_pause below */
1122                         break;
1123                 }
1124                 pause = min(pause, max_pause);
1125
1126 pause:
1127                 trace_balance_dirty_pages(bdi,
1128                                           dirty_thresh,
1129                                           background_thresh,
1130                                           nr_dirty,
1131                                           bdi_thresh,
1132                                           bdi_dirty,
1133                                           dirty_ratelimit,
1134                                           task_ratelimit,
1135                                           pages_dirtied,
1136                                           pause,
1137                                           start_time);
1138                 __set_current_state(TASK_KILLABLE);
1139                 io_schedule_timeout(pause);
1140
1141                 /*
1142                  * This is typically equal to (nr_dirty < dirty_thresh) and can
1143                  * also keep "1000+ dd on a slow USB stick" under control.
1144                  */
1145                 if (task_ratelimit)
1146                         break;
1147
1148                 /*
1149                  * In the case of an unresponding NFS server and the NFS dirty
1150                  * pages exceeds dirty_thresh, give the other good bdi's a pipe
1151                  * to go through, so that tasks on them still remain responsive.
1152                  *
1153                  * In theory 1 page is enough to keep the comsumer-producer
1154                  * pipe going: the flusher cleans 1 page => the task dirties 1
1155                  * more page. However bdi_dirty has accounting errors.  So use
1156                  * the larger and more IO friendly bdi_stat_error.
1157                  */
1158                 if (bdi_dirty <= bdi_stat_error(bdi))
1159                         break;
1160
1161                 if (fatal_signal_pending(current))
1162                         break;
1163         }
1164
1165         if (!dirty_exceeded && bdi->dirty_exceeded)
1166                 bdi->dirty_exceeded = 0;
1167
1168         current->nr_dirtied = 0;
1169         if (pause == 0) { /* in freerun area */
1170                 current->nr_dirtied_pause =
1171                                 dirty_poll_interval(nr_dirty, dirty_thresh);
1172         } else if (pause <= max_pause / 4 &&
1173                    pages_dirtied >= current->nr_dirtied_pause) {
1174                 current->nr_dirtied_pause = clamp_val(
1175                                         dirty_ratelimit * (max_pause / 2) / HZ,
1176                                         pages_dirtied + pages_dirtied / 8,
1177                                         pages_dirtied * 4);
1178         } else if (pause >= max_pause) {
1179                 current->nr_dirtied_pause = 1 | clamp_val(
1180                                         dirty_ratelimit * (max_pause / 2) / HZ,
1181                                         pages_dirtied / 4,
1182                                         pages_dirtied - pages_dirtied / 8);
1183         }
1184
1185         if (writeback_in_progress(bdi))
1186                 return;
1187
1188         /*
1189          * In laptop mode, we wait until hitting the higher threshold before
1190          * starting background writeout, and then write out all the way down
1191          * to the lower threshold.  So slow writers cause minimal disk activity.
1192          *
1193          * In normal mode, we start background writeout at the lower
1194          * background_thresh, to keep the amount of dirty memory low.
1195          */
1196         if (laptop_mode)
1197                 return;
1198
1199         if (nr_reclaimable > background_thresh)
1200                 bdi_start_background_writeback(bdi);
1201 }
1202
1203 void set_page_dirty_balance(struct page *page, int page_mkwrite)
1204 {
1205         if (set_page_dirty(page) || page_mkwrite) {
1206                 struct address_space *mapping = page_mapping(page);
1207
1208                 if (mapping)
1209                         balance_dirty_pages_ratelimited(mapping);
1210         }
1211 }
1212
1213 static DEFINE_PER_CPU(int, bdp_ratelimits);
1214
1215 /**
1216  * balance_dirty_pages_ratelimited_nr - balance dirty memory state
1217  * @mapping: address_space which was dirtied
1218  * @nr_pages_dirtied: number of pages which the caller has just dirtied
1219  *
1220  * Processes which are dirtying memory should call in here once for each page
1221  * which was newly dirtied.  The function will periodically check the system's
1222  * dirty state and will initiate writeback if needed.
1223  *
1224  * On really big machines, get_writeback_state is expensive, so try to avoid
1225  * calling it too often (ratelimiting).  But once we're over the dirty memory
1226  * limit we decrease the ratelimiting by a lot, to prevent individual processes
1227  * from overshooting the limit by (ratelimit_pages) each.
1228  */
1229 void balance_dirty_pages_ratelimited_nr(struct address_space *mapping,
1230                                         unsigned long nr_pages_dirtied)
1231 {
1232         struct backing_dev_info *bdi = mapping->backing_dev_info;
1233         int ratelimit;
1234         int *p;
1235
1236         if (!bdi_cap_account_dirty(bdi))
1237                 return;
1238
1239         ratelimit = current->nr_dirtied_pause;
1240         if (bdi->dirty_exceeded)
1241                 ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
1242
1243         current->nr_dirtied += nr_pages_dirtied;
1244
1245         preempt_disable();
1246         /*
1247          * This prevents one CPU to accumulate too many dirtied pages without
1248          * calling into balance_dirty_pages(), which can happen when there are
1249          * 1000+ tasks, all of them start dirtying pages at exactly the same
1250          * time, hence all honoured too large initial task->nr_dirtied_pause.
1251          */
1252         p =  &__get_cpu_var(bdp_ratelimits);
1253         if (unlikely(current->nr_dirtied >= ratelimit))
1254                 *p = 0;
1255         else {
1256                 *p += nr_pages_dirtied;
1257                 if (unlikely(*p >= ratelimit_pages)) {
1258                         *p = 0;
1259                         ratelimit = 0;
1260                 }
1261         }
1262         preempt_enable();
1263
1264         if (unlikely(current->nr_dirtied >= ratelimit))
1265                 balance_dirty_pages(mapping, current->nr_dirtied);
1266 }
1267 EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr);
1268
1269 void throttle_vm_writeout(gfp_t gfp_mask)
1270 {
1271         unsigned long background_thresh;
1272         unsigned long dirty_thresh;
1273
1274         for ( ; ; ) {
1275                 global_dirty_limits(&background_thresh, &dirty_thresh);
1276
1277                 /*
1278                  * Boost the allowable dirty threshold a bit for page
1279                  * allocators so they don't get DoS'ed by heavy writers
1280                  */
1281                 dirty_thresh += dirty_thresh / 10;      /* wheeee... */
1282
1283                 if (global_page_state(NR_UNSTABLE_NFS) +
1284                         global_page_state(NR_WRITEBACK) <= dirty_thresh)
1285                                 break;
1286                 congestion_wait(BLK_RW_ASYNC, HZ/10);
1287
1288                 /*
1289                  * The caller might hold locks which can prevent IO completion
1290                  * or progress in the filesystem.  So we cannot just sit here
1291                  * waiting for IO to complete.
1292                  */
1293                 if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
1294                         break;
1295         }
1296 }
1297
1298 /*
1299  * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
1300  */
1301 int dirty_writeback_centisecs_handler(ctl_table *table, int write,
1302         void __user *buffer, size_t *length, loff_t *ppos)
1303 {
1304         proc_dointvec(table, write, buffer, length, ppos);
1305         bdi_arm_supers_timer();
1306         return 0;
1307 }
1308
1309 #ifdef CONFIG_BLOCK
1310 void laptop_mode_timer_fn(unsigned long data)
1311 {
1312         struct request_queue *q = (struct request_queue *)data;
1313         int nr_pages = global_page_state(NR_FILE_DIRTY) +
1314                 global_page_state(NR_UNSTABLE_NFS);
1315
1316         /*
1317          * We want to write everything out, not just down to the dirty
1318          * threshold
1319          */
1320         if (bdi_has_dirty_io(&q->backing_dev_info))
1321                 bdi_start_writeback(&q->backing_dev_info, nr_pages,
1322                                         WB_REASON_LAPTOP_TIMER);
1323 }
1324
1325 /*
1326  * We've spun up the disk and we're in laptop mode: schedule writeback
1327  * of all dirty data a few seconds from now.  If the flush is already scheduled
1328  * then push it back - the user is still using the disk.
1329  */
1330 void laptop_io_completion(struct backing_dev_info *info)
1331 {
1332         mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
1333 }
1334
1335 /*
1336  * We're in laptop mode and we've just synced. The sync's writes will have
1337  * caused another writeback to be scheduled by laptop_io_completion.
1338  * Nothing needs to be written back anymore, so we unschedule the writeback.
1339  */
1340 void laptop_sync_completion(void)
1341 {
1342         struct backing_dev_info *bdi;
1343
1344         rcu_read_lock();
1345
1346         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
1347                 del_timer(&bdi->laptop_mode_wb_timer);
1348
1349         rcu_read_unlock();
1350 }
1351 #endif
1352
1353 /*
1354  * If ratelimit_pages is too high then we can get into dirty-data overload
1355  * if a large number of processes all perform writes at the same time.
1356  * If it is too low then SMP machines will call the (expensive)
1357  * get_writeback_state too often.
1358  *
1359  * Here we set ratelimit_pages to a level which ensures that when all CPUs are
1360  * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
1361  * thresholds.
1362  */
1363
1364 void writeback_set_ratelimit(void)
1365 {
1366         unsigned long background_thresh;
1367         unsigned long dirty_thresh;
1368         global_dirty_limits(&background_thresh, &dirty_thresh);
1369         ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
1370         if (ratelimit_pages < 16)
1371                 ratelimit_pages = 16;
1372 }
1373
1374 static int __cpuinit
1375 ratelimit_handler(struct notifier_block *self, unsigned long u, void *v)
1376 {
1377         writeback_set_ratelimit();
1378         return NOTIFY_DONE;
1379 }
1380
1381 static struct notifier_block __cpuinitdata ratelimit_nb = {
1382         .notifier_call  = ratelimit_handler,
1383         .next           = NULL,
1384 };
1385
1386 /*
1387  * Called early on to tune the page writeback dirty limits.
1388  *
1389  * We used to scale dirty pages according to how total memory
1390  * related to pages that could be allocated for buffers (by
1391  * comparing nr_free_buffer_pages() to vm_total_pages.
1392  *
1393  * However, that was when we used "dirty_ratio" to scale with
1394  * all memory, and we don't do that any more. "dirty_ratio"
1395  * is now applied to total non-HIGHPAGE memory (by subtracting
1396  * totalhigh_pages from vm_total_pages), and as such we can't
1397  * get into the old insane situation any more where we had
1398  * large amounts of dirty pages compared to a small amount of
1399  * non-HIGHMEM memory.
1400  *
1401  * But we might still want to scale the dirty_ratio by how
1402  * much memory the box has..
1403  */
1404 void __init page_writeback_init(void)
1405 {
1406         int shift;
1407
1408         writeback_set_ratelimit();
1409         register_cpu_notifier(&ratelimit_nb);
1410
1411         shift = calc_period_shift();
1412         prop_descriptor_init(&vm_completions, shift);
1413 }
1414
1415 /**
1416  * tag_pages_for_writeback - tag pages to be written by write_cache_pages
1417  * @mapping: address space structure to write
1418  * @start: starting page index
1419  * @end: ending page index (inclusive)
1420  *
1421  * This function scans the page range from @start to @end (inclusive) and tags
1422  * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
1423  * that write_cache_pages (or whoever calls this function) will then use
1424  * TOWRITE tag to identify pages eligible for writeback.  This mechanism is
1425  * used to avoid livelocking of writeback by a process steadily creating new
1426  * dirty pages in the file (thus it is important for this function to be quick
1427  * so that it can tag pages faster than a dirtying process can create them).
1428  */
1429 /*
1430  * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
1431  */
1432 void tag_pages_for_writeback(struct address_space *mapping,
1433                              pgoff_t start, pgoff_t end)
1434 {
1435 #define WRITEBACK_TAG_BATCH 4096
1436         unsigned long tagged;
1437
1438         do {
1439                 spin_lock_irq(&mapping->tree_lock);
1440                 tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
1441                                 &start, end, WRITEBACK_TAG_BATCH,
1442                                 PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
1443                 spin_unlock_irq(&mapping->tree_lock);
1444                 WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
1445                 cond_resched();
1446                 /* We check 'start' to handle wrapping when end == ~0UL */
1447         } while (tagged >= WRITEBACK_TAG_BATCH && start);
1448 }
1449 EXPORT_SYMBOL(tag_pages_for_writeback);
1450
1451 /**
1452  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
1453  * @mapping: address space structure to write
1454  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1455  * @writepage: function called for each page
1456  * @data: data passed to writepage function
1457  *
1458  * If a page is already under I/O, write_cache_pages() skips it, even
1459  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
1460  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
1461  * and msync() need to guarantee that all the data which was dirty at the time
1462  * the call was made get new I/O started against them.  If wbc->sync_mode is
1463  * WB_SYNC_ALL then we were called for data integrity and we must wait for
1464  * existing IO to complete.
1465  *
1466  * To avoid livelocks (when other process dirties new pages), we first tag
1467  * pages which should be written back with TOWRITE tag and only then start
1468  * writing them. For data-integrity sync we have to be careful so that we do
1469  * not miss some pages (e.g., because some other process has cleared TOWRITE
1470  * tag we set). The rule we follow is that TOWRITE tag can be cleared only
1471  * by the process clearing the DIRTY tag (and submitting the page for IO).
1472  */
1473 int write_cache_pages(struct address_space *mapping,
1474                       struct writeback_control *wbc, writepage_t writepage,
1475                       void *data)
1476 {
1477         int ret = 0;
1478         int done = 0;
1479         struct pagevec pvec;
1480         int nr_pages;
1481         pgoff_t uninitialized_var(writeback_index);
1482         pgoff_t index;
1483         pgoff_t end;            /* Inclusive */
1484         pgoff_t done_index;
1485         int cycled;
1486         int range_whole = 0;
1487         int tag;
1488
1489         pagevec_init(&pvec, 0);
1490         if (wbc->range_cyclic) {
1491                 writeback_index = mapping->writeback_index; /* prev offset */
1492                 index = writeback_index;
1493                 if (index == 0)
1494                         cycled = 1;
1495                 else
1496                         cycled = 0;
1497                 end = -1;
1498         } else {
1499                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
1500                 end = wbc->range_end >> PAGE_CACHE_SHIFT;
1501                 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
1502                         range_whole = 1;
1503                 cycled = 1; /* ignore range_cyclic tests */
1504         }
1505         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1506                 tag = PAGECACHE_TAG_TOWRITE;
1507         else
1508                 tag = PAGECACHE_TAG_DIRTY;
1509 retry:
1510         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1511                 tag_pages_for_writeback(mapping, index, end);
1512         done_index = index;
1513         while (!done && (index <= end)) {
1514                 int i;
1515
1516                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
1517                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1518                 if (nr_pages == 0)
1519                         break;
1520
1521                 for (i = 0; i < nr_pages; i++) {
1522                         struct page *page = pvec.pages[i];
1523
1524                         /*
1525                          * At this point, the page may be truncated or
1526                          * invalidated (changing page->mapping to NULL), or
1527                          * even swizzled back from swapper_space to tmpfs file
1528                          * mapping. However, page->index will not change
1529                          * because we have a reference on the page.
1530                          */
1531                         if (page->index > end) {
1532                                 /*
1533                                  * can't be range_cyclic (1st pass) because
1534                                  * end == -1 in that case.
1535                                  */
1536                                 done = 1;
1537                                 break;
1538                         }
1539
1540                         done_index = page->index;
1541
1542                         lock_page(page);
1543
1544                         /*
1545                          * Page truncated or invalidated. We can freely skip it
1546                          * then, even for data integrity operations: the page
1547                          * has disappeared concurrently, so there could be no
1548                          * real expectation of this data interity operation
1549                          * even if there is now a new, dirty page at the same
1550                          * pagecache address.
1551                          */
1552                         if (unlikely(page->mapping != mapping)) {
1553 continue_unlock:
1554                                 unlock_page(page);
1555                                 continue;
1556                         }
1557
1558                         if (!PageDirty(page)) {
1559                                 /* someone wrote it for us */
1560                                 goto continue_unlock;
1561                         }
1562
1563                         if (PageWriteback(page)) {
1564                                 if (wbc->sync_mode != WB_SYNC_NONE)
1565                                         wait_on_page_writeback(page);
1566                                 else
1567                                         goto continue_unlock;
1568                         }
1569
1570                         BUG_ON(PageWriteback(page));
1571                         if (!clear_page_dirty_for_io(page))
1572                                 goto continue_unlock;
1573
1574                         trace_wbc_writepage(wbc, mapping->backing_dev_info);
1575                         ret = (*writepage)(page, wbc, data);
1576                         if (unlikely(ret)) {
1577                                 if (ret == AOP_WRITEPAGE_ACTIVATE) {
1578                                         unlock_page(page);
1579                                         ret = 0;
1580                                 } else {
1581                                         /*
1582                                          * done_index is set past this page,
1583                                          * so media errors will not choke
1584                                          * background writeout for the entire
1585                                          * file. This has consequences for
1586                                          * range_cyclic semantics (ie. it may
1587                                          * not be suitable for data integrity
1588                                          * writeout).
1589                                          */
1590                                         done_index = page->index + 1;
1591                                         done = 1;
1592                                         break;
1593                                 }
1594                         }
1595
1596                         /*
1597                          * We stop writing back only if we are not doing
1598                          * integrity sync. In case of integrity sync we have to
1599                          * keep going until we have written all the pages
1600                          * we tagged for writeback prior to entering this loop.
1601                          */
1602                         if (--wbc->nr_to_write <= 0 &&
1603                             wbc->sync_mode == WB_SYNC_NONE) {
1604                                 done = 1;
1605                                 break;
1606                         }
1607                 }
1608                 pagevec_release(&pvec);
1609                 cond_resched();
1610         }
1611         if (!cycled && !done) {
1612                 /*
1613                  * range_cyclic:
1614                  * We hit the last page and there is more work to be done: wrap
1615                  * back to the start of the file
1616                  */
1617                 cycled = 1;
1618                 index = 0;
1619                 end = writeback_index - 1;
1620                 goto retry;
1621         }
1622         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
1623                 mapping->writeback_index = done_index;
1624
1625         return ret;
1626 }
1627 EXPORT_SYMBOL(write_cache_pages);
1628
1629 /*
1630  * Function used by generic_writepages to call the real writepage
1631  * function and set the mapping flags on error
1632  */
1633 static int __writepage(struct page *page, struct writeback_control *wbc,
1634                        void *data)
1635 {
1636         struct address_space *mapping = data;
1637         int ret = mapping->a_ops->writepage(page, wbc);
1638         mapping_set_error(mapping, ret);
1639         return ret;
1640 }
1641
1642 /**
1643  * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
1644  * @mapping: address space structure to write
1645  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1646  *
1647  * This is a library function, which implements the writepages()
1648  * address_space_operation.
1649  */
1650 int generic_writepages(struct address_space *mapping,
1651                        struct writeback_control *wbc)
1652 {
1653         struct blk_plug plug;
1654         int ret;
1655
1656         /* deal with chardevs and other special file */
1657         if (!mapping->a_ops->writepage)
1658                 return 0;
1659
1660         blk_start_plug(&plug);
1661         ret = write_cache_pages(mapping, wbc, __writepage, mapping);
1662         blk_finish_plug(&plug);
1663         return ret;
1664 }
1665
1666 EXPORT_SYMBOL(generic_writepages);
1667
1668 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
1669 {
1670         int ret;
1671
1672         if (wbc->nr_to_write <= 0)
1673                 return 0;
1674         if (mapping->a_ops->writepages)
1675                 ret = mapping->a_ops->writepages(mapping, wbc);
1676         else
1677                 ret = generic_writepages(mapping, wbc);
1678         return ret;
1679 }
1680
1681 /**
1682  * write_one_page - write out a single page and optionally wait on I/O
1683  * @page: the page to write
1684  * @wait: if true, wait on writeout
1685  *
1686  * The page must be locked by the caller and will be unlocked upon return.
1687  *
1688  * write_one_page() returns a negative error code if I/O failed.
1689  */
1690 int write_one_page(struct page *page, int wait)
1691 {
1692         struct address_space *mapping = page->mapping;
1693         int ret = 0;
1694         struct writeback_control wbc = {
1695                 .sync_mode = WB_SYNC_ALL,
1696                 .nr_to_write = 1,
1697         };
1698
1699         BUG_ON(!PageLocked(page));
1700
1701         if (wait)
1702                 wait_on_page_writeback(page);
1703
1704         if (clear_page_dirty_for_io(page)) {
1705                 page_cache_get(page);
1706                 ret = mapping->a_ops->writepage(page, &wbc);
1707                 if (ret == 0 && wait) {
1708                         wait_on_page_writeback(page);
1709                         if (PageError(page))
1710                                 ret = -EIO;
1711                 }
1712                 page_cache_release(page);
1713         } else {
1714                 unlock_page(page);
1715         }
1716         return ret;
1717 }
1718 EXPORT_SYMBOL(write_one_page);
1719
1720 /*
1721  * For address_spaces which do not use buffers nor write back.
1722  */
1723 int __set_page_dirty_no_writeback(struct page *page)
1724 {
1725         if (!PageDirty(page))
1726                 return !TestSetPageDirty(page);
1727         return 0;
1728 }
1729
1730 /*
1731  * Helper function for set_page_dirty family.
1732  * NOTE: This relies on being atomic wrt interrupts.
1733  */
1734 void account_page_dirtied(struct page *page, struct address_space *mapping)
1735 {
1736         if (mapping_cap_account_dirty(mapping)) {
1737                 __inc_zone_page_state(page, NR_FILE_DIRTY);
1738                 __inc_zone_page_state(page, NR_DIRTIED);
1739                 __inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
1740                 __inc_bdi_stat(mapping->backing_dev_info, BDI_DIRTIED);
1741                 task_io_account_write(PAGE_CACHE_SIZE);
1742         }
1743 }
1744 EXPORT_SYMBOL(account_page_dirtied);
1745
1746 /*
1747  * Helper function for set_page_writeback family.
1748  * NOTE: Unlike account_page_dirtied this does not rely on being atomic
1749  * wrt interrupts.
1750  */
1751 void account_page_writeback(struct page *page)
1752 {
1753         inc_zone_page_state(page, NR_WRITEBACK);
1754 }
1755 EXPORT_SYMBOL(account_page_writeback);
1756
1757 /*
1758  * For address_spaces which do not use buffers.  Just tag the page as dirty in
1759  * its radix tree.
1760  *
1761  * This is also used when a single buffer is being dirtied: we want to set the
1762  * page dirty in that case, but not all the buffers.  This is a "bottom-up"
1763  * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
1764  *
1765  * Most callers have locked the page, which pins the address_space in memory.
1766  * But zap_pte_range() does not lock the page, however in that case the
1767  * mapping is pinned by the vma's ->vm_file reference.
1768  *
1769  * We take care to handle the case where the page was truncated from the
1770  * mapping by re-checking page_mapping() inside tree_lock.
1771  */
1772 int __set_page_dirty_nobuffers(struct page *page)
1773 {
1774         if (!TestSetPageDirty(page)) {
1775                 struct address_space *mapping = page_mapping(page);
1776                 struct address_space *mapping2;
1777
1778                 if (!mapping)
1779                         return 1;
1780
1781                 spin_lock_irq(&mapping->tree_lock);
1782                 mapping2 = page_mapping(page);
1783                 if (mapping2) { /* Race with truncate? */
1784                         BUG_ON(mapping2 != mapping);
1785                         WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
1786                         account_page_dirtied(page, mapping);
1787                         radix_tree_tag_set(&mapping->page_tree,
1788                                 page_index(page), PAGECACHE_TAG_DIRTY);
1789                 }
1790                 spin_unlock_irq(&mapping->tree_lock);
1791                 if (mapping->host) {
1792                         /* !PageAnon && !swapper_space */
1793                         __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1794                 }
1795                 return 1;
1796         }
1797         return 0;
1798 }
1799 EXPORT_SYMBOL(__set_page_dirty_nobuffers);
1800
1801 /*
1802  * When a writepage implementation decides that it doesn't want to write this
1803  * page for some reason, it should redirty the locked page via
1804  * redirty_page_for_writepage() and it should then unlock the page and return 0
1805  */
1806 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
1807 {
1808         wbc->pages_skipped++;
1809         return __set_page_dirty_nobuffers(page);
1810 }
1811 EXPORT_SYMBOL(redirty_page_for_writepage);
1812
1813 /*
1814  * Dirty a page.
1815  *
1816  * For pages with a mapping this should be done under the page lock
1817  * for the benefit of asynchronous memory errors who prefer a consistent
1818  * dirty state. This rule can be broken in some special cases,
1819  * but should be better not to.
1820  *
1821  * If the mapping doesn't provide a set_page_dirty a_op, then
1822  * just fall through and assume that it wants buffer_heads.
1823  */
1824 int set_page_dirty(struct page *page)
1825 {
1826         struct address_space *mapping = page_mapping(page);
1827
1828         if (likely(mapping)) {
1829                 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
1830                 /*
1831                  * readahead/lru_deactivate_page could remain
1832                  * PG_readahead/PG_reclaim due to race with end_page_writeback
1833                  * About readahead, if the page is written, the flags would be
1834                  * reset. So no problem.
1835                  * About lru_deactivate_page, if the page is redirty, the flag
1836                  * will be reset. So no problem. but if the page is used by readahead
1837                  * it will confuse readahead and make it restart the size rampup
1838                  * process. But it's a trivial problem.
1839                  */
1840                 ClearPageReclaim(page);
1841 #ifdef CONFIG_BLOCK
1842                 if (!spd)
1843                         spd = __set_page_dirty_buffers;
1844 #endif
1845                 return (*spd)(page);
1846         }
1847         if (!PageDirty(page)) {
1848                 if (!TestSetPageDirty(page))
1849                         return 1;
1850         }
1851         return 0;
1852 }
1853 EXPORT_SYMBOL(set_page_dirty);
1854
1855 /*
1856  * set_page_dirty() is racy if the caller has no reference against
1857  * page->mapping->host, and if the page is unlocked.  This is because another
1858  * CPU could truncate the page off the mapping and then free the mapping.
1859  *
1860  * Usually, the page _is_ locked, or the caller is a user-space process which
1861  * holds a reference on the inode by having an open file.
1862  *
1863  * In other cases, the page should be locked before running set_page_dirty().
1864  */
1865 int set_page_dirty_lock(struct page *page)
1866 {
1867         int ret;
1868
1869         lock_page(page);
1870         ret = set_page_dirty(page);
1871         unlock_page(page);
1872         return ret;
1873 }
1874 EXPORT_SYMBOL(set_page_dirty_lock);
1875
1876 /*
1877  * Clear a page's dirty flag, while caring for dirty memory accounting.
1878  * Returns true if the page was previously dirty.
1879  *
1880  * This is for preparing to put the page under writeout.  We leave the page
1881  * tagged as dirty in the radix tree so that a concurrent write-for-sync
1882  * can discover it via a PAGECACHE_TAG_DIRTY walk.  The ->writepage
1883  * implementation will run either set_page_writeback() or set_page_dirty(),
1884  * at which stage we bring the page's dirty flag and radix-tree dirty tag
1885  * back into sync.
1886  *
1887  * This incoherency between the page's dirty flag and radix-tree tag is
1888  * unfortunate, but it only exists while the page is locked.
1889  */
1890 int clear_page_dirty_for_io(struct page *page)
1891 {
1892         struct address_space *mapping = page_mapping(page);
1893
1894         BUG_ON(!PageLocked(page));
1895
1896         if (mapping && mapping_cap_account_dirty(mapping)) {
1897                 /*
1898                  * Yes, Virginia, this is indeed insane.
1899                  *
1900                  * We use this sequence to make sure that
1901                  *  (a) we account for dirty stats properly
1902                  *  (b) we tell the low-level filesystem to
1903                  *      mark the whole page dirty if it was
1904                  *      dirty in a pagetable. Only to then
1905                  *  (c) clean the page again and return 1 to
1906                  *      cause the writeback.
1907                  *
1908                  * This way we avoid all nasty races with the
1909                  * dirty bit in multiple places and clearing
1910                  * them concurrently from different threads.
1911                  *
1912                  * Note! Normally the "set_page_dirty(page)"
1913                  * has no effect on the actual dirty bit - since
1914                  * that will already usually be set. But we
1915                  * need the side effects, and it can help us
1916                  * avoid races.
1917                  *
1918                  * We basically use the page "master dirty bit"
1919                  * as a serialization point for all the different
1920                  * threads doing their things.
1921                  */
1922                 if (page_mkclean(page))
1923                         set_page_dirty(page);
1924                 /*
1925                  * We carefully synchronise fault handlers against
1926                  * installing a dirty pte and marking the page dirty
1927                  * at this point. We do this by having them hold the
1928                  * page lock at some point after installing their
1929                  * pte, but before marking the page dirty.
1930                  * Pages are always locked coming in here, so we get
1931                  * the desired exclusion. See mm/memory.c:do_wp_page()
1932                  * for more comments.
1933                  */
1934                 if (TestClearPageDirty(page)) {
1935                         dec_zone_page_state(page, NR_FILE_DIRTY);
1936                         dec_bdi_stat(mapping->backing_dev_info,
1937                                         BDI_RECLAIMABLE);
1938                         return 1;
1939                 }
1940                 return 0;
1941         }
1942         return TestClearPageDirty(page);
1943 }
1944 EXPORT_SYMBOL(clear_page_dirty_for_io);
1945
1946 int test_clear_page_writeback(struct page *page)
1947 {
1948         struct address_space *mapping = page_mapping(page);
1949         int ret;
1950
1951         if (mapping) {
1952                 struct backing_dev_info *bdi = mapping->backing_dev_info;
1953                 unsigned long flags;
1954
1955                 spin_lock_irqsave(&mapping->tree_lock, flags);
1956                 ret = TestClearPageWriteback(page);
1957                 if (ret) {
1958                         radix_tree_tag_clear(&mapping->page_tree,
1959                                                 page_index(page),
1960                                                 PAGECACHE_TAG_WRITEBACK);
1961                         if (bdi_cap_account_writeback(bdi)) {
1962                                 __dec_bdi_stat(bdi, BDI_WRITEBACK);
1963                                 __bdi_writeout_inc(bdi);
1964                         }
1965                 }
1966                 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1967         } else {
1968                 ret = TestClearPageWriteback(page);
1969         }
1970         if (ret) {
1971                 dec_zone_page_state(page, NR_WRITEBACK);
1972                 inc_zone_page_state(page, NR_WRITTEN);
1973         }
1974         return ret;
1975 }
1976
1977 int test_set_page_writeback(struct page *page)
1978 {
1979         struct address_space *mapping = page_mapping(page);
1980         int ret;
1981
1982         if (mapping) {
1983                 struct backing_dev_info *bdi = mapping->backing_dev_info;
1984                 unsigned long flags;
1985
1986                 spin_lock_irqsave(&mapping->tree_lock, flags);
1987                 ret = TestSetPageWriteback(page);
1988                 if (!ret) {
1989                         radix_tree_tag_set(&mapping->page_tree,
1990                                                 page_index(page),
1991                                                 PAGECACHE_TAG_WRITEBACK);
1992                         if (bdi_cap_account_writeback(bdi))
1993                                 __inc_bdi_stat(bdi, BDI_WRITEBACK);
1994                 }
1995                 if (!PageDirty(page))
1996                         radix_tree_tag_clear(&mapping->page_tree,
1997                                                 page_index(page),
1998                                                 PAGECACHE_TAG_DIRTY);
1999                 radix_tree_tag_clear(&mapping->page_tree,
2000                                      page_index(page),
2001                                      PAGECACHE_TAG_TOWRITE);
2002                 spin_unlock_irqrestore(&mapping->tree_lock, flags);
2003         } else {
2004                 ret = TestSetPageWriteback(page);
2005         }
2006         if (!ret)
2007                 account_page_writeback(page);
2008         return ret;
2009
2010 }
2011 EXPORT_SYMBOL(test_set_page_writeback);
2012
2013 /*
2014  * Return true if any of the pages in the mapping are marked with the
2015  * passed tag.
2016  */
2017 int mapping_tagged(struct address_space *mapping, int tag)
2018 {
2019         return radix_tree_tagged(&mapping->page_tree, tag);
2020 }
2021 EXPORT_SYMBOL(mapping_tagged);