rk3228: initialize platform data
[firefly-linux-kernel-4.4.55.git] / mm / page-writeback.c
1 /*
2  * mm/page-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
6  *
7  * Contains functions related to writing back dirty pages at the
8  * address_space level.
9  *
10  * 10Apr2002    Andrew Morton
11  *              Initial version
12  */
13
14 #include <linux/kernel.h>
15 #include <linux/export.h>
16 #include <linux/spinlock.h>
17 #include <linux/fs.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/slab.h>
21 #include <linux/pagemap.h>
22 #include <linux/writeback.h>
23 #include <linux/init.h>
24 #include <linux/backing-dev.h>
25 #include <linux/task_io_accounting_ops.h>
26 #include <linux/blkdev.h>
27 #include <linux/mpage.h>
28 #include <linux/rmap.h>
29 #include <linux/percpu.h>
30 #include <linux/notifier.h>
31 #include <linux/smp.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/syscalls.h>
35 #include <linux/buffer_head.h> /* __set_page_dirty_buffers */
36 #include <linux/pagevec.h>
37 #include <linux/timer.h>
38 #include <linux/sched/rt.h>
39 #include <trace/events/writeback.h>
40
41 /*
42  * Sleep at most 200ms at a time in balance_dirty_pages().
43  */
44 #define MAX_PAUSE               max(HZ/5, 1)
45
46 /*
47  * Try to keep balance_dirty_pages() call intervals higher than this many pages
48  * by raising pause time to max_pause when falls below it.
49  */
50 #define DIRTY_POLL_THRESH       (128 >> (PAGE_SHIFT - 10))
51
52 /*
53  * Estimate write bandwidth at 200ms intervals.
54  */
55 #define BANDWIDTH_INTERVAL      max(HZ/5, 1)
56
57 #define RATELIMIT_CALC_SHIFT    10
58
59 /*
60  * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
61  * will look to see if it needs to force writeback or throttling.
62  */
63 static long ratelimit_pages = 32;
64
65 /* The following parameters are exported via /proc/sys/vm */
66
67 /*
68  * Start background writeback (via writeback threads) at this percentage
69  */
70 int dirty_background_ratio = 10;
71
72 /*
73  * dirty_background_bytes starts at 0 (disabled) so that it is a function of
74  * dirty_background_ratio * the amount of dirtyable memory
75  */
76 unsigned long dirty_background_bytes;
77
78 /*
79  * free highmem will not be subtracted from the total free memory
80  * for calculating free ratios if vm_highmem_is_dirtyable is true
81  */
82 int vm_highmem_is_dirtyable;
83
84 /*
85  * The generator of dirty data starts writeback at this percentage
86  */
87 int vm_dirty_ratio = 20;
88
89 /*
90  * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
91  * vm_dirty_ratio * the amount of dirtyable memory
92  */
93 unsigned long vm_dirty_bytes;
94
95 /*
96  * The interval between `kupdate'-style writebacks
97  * modify by wlf@20140515
98  */
99 unsigned int dirty_writeback_interval = 1 * 100; /* centiseconds */
100
101 EXPORT_SYMBOL_GPL(dirty_writeback_interval);
102
103 /*
104  * The longest time for which data is allowed to remain dirty
105  */
106 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
107
108 /*
109  * Flag that makes the machine dump writes/reads and block dirtyings.
110  */
111 int block_dump;
112
113 /*
114  * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
115  * a full sync is triggered after this time elapses without any disk activity.
116  */
117 int laptop_mode;
118
119 EXPORT_SYMBOL(laptop_mode);
120
121 /* End of sysctl-exported parameters */
122
123 unsigned long global_dirty_limit;
124
125 /*
126  * Scale the writeback cache size proportional to the relative writeout speeds.
127  *
128  * We do this by keeping a floating proportion between BDIs, based on page
129  * writeback completions [end_page_writeback()]. Those devices that write out
130  * pages fastest will get the larger share, while the slower will get a smaller
131  * share.
132  *
133  * We use page writeout completions because we are interested in getting rid of
134  * dirty pages. Having them written out is the primary goal.
135  *
136  * We introduce a concept of time, a period over which we measure these events,
137  * because demand can/will vary over time. The length of this period itself is
138  * measured in page writeback completions.
139  *
140  */
141 static struct fprop_global writeout_completions;
142
143 static void writeout_period(unsigned long t);
144 /* Timer for aging of writeout_completions */
145 static struct timer_list writeout_period_timer =
146                 TIMER_DEFERRED_INITIALIZER(writeout_period, 0, 0);
147 static unsigned long writeout_period_time = 0;
148
149 /*
150  * Length of period for aging writeout fractions of bdis. This is an
151  * arbitrarily chosen number. The longer the period, the slower fractions will
152  * reflect changes in current writeout rate.
153  */
154 #define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
155
156 /*
157  * Work out the current dirty-memory clamping and background writeout
158  * thresholds.
159  *
160  * The main aim here is to lower them aggressively if there is a lot of mapped
161  * memory around.  To avoid stressing page reclaim with lots of unreclaimable
162  * pages.  It is better to clamp down on writers than to start swapping, and
163  * performing lots of scanning.
164  *
165  * We only allow 1/2 of the currently-unmapped memory to be dirtied.
166  *
167  * We don't permit the clamping level to fall below 5% - that is getting rather
168  * excessive.
169  *
170  * We make sure that the background writeout level is below the adjusted
171  * clamping level.
172  */
173
174 /*
175  * In a memory zone, there is a certain amount of pages we consider
176  * available for the page cache, which is essentially the number of
177  * free and reclaimable pages, minus some zone reserves to protect
178  * lowmem and the ability to uphold the zone's watermarks without
179  * requiring writeback.
180  *
181  * This number of dirtyable pages is the base value of which the
182  * user-configurable dirty ratio is the effictive number of pages that
183  * are allowed to be actually dirtied.  Per individual zone, or
184  * globally by using the sum of dirtyable pages over all zones.
185  *
186  * Because the user is allowed to specify the dirty limit globally as
187  * absolute number of bytes, calculating the per-zone dirty limit can
188  * require translating the configured limit into a percentage of
189  * global dirtyable memory first.
190  */
191
192 /**
193  * zone_dirtyable_memory - number of dirtyable pages in a zone
194  * @zone: the zone
195  *
196  * Returns the zone's number of pages potentially available for dirty
197  * page cache.  This is the base value for the per-zone dirty limits.
198  */
199 static unsigned long zone_dirtyable_memory(struct zone *zone)
200 {
201         unsigned long nr_pages;
202
203         nr_pages = zone_page_state(zone, NR_FREE_PAGES);
204         nr_pages -= min(nr_pages, zone->dirty_balance_reserve);
205
206         nr_pages += zone_page_state(zone, NR_INACTIVE_FILE);
207         nr_pages += zone_page_state(zone, NR_ACTIVE_FILE);
208
209         return nr_pages;
210 }
211
212 static unsigned long highmem_dirtyable_memory(unsigned long total)
213 {
214 #ifdef CONFIG_HIGHMEM
215         int node;
216         unsigned long x = 0;
217
218         for_each_node_state(node, N_HIGH_MEMORY) {
219                 struct zone *z = &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
220
221                 x += zone_dirtyable_memory(z);
222         }
223         /*
224          * Unreclaimable memory (kernel memory or anonymous memory
225          * without swap) can bring down the dirtyable pages below
226          * the zone's dirty balance reserve and the above calculation
227          * will underflow.  However we still want to add in nodes
228          * which are below threshold (negative values) to get a more
229          * accurate calculation but make sure that the total never
230          * underflows.
231          */
232         if ((long)x < 0)
233                 x = 0;
234
235         /*
236          * Make sure that the number of highmem pages is never larger
237          * than the number of the total dirtyable memory. This can only
238          * occur in very strange VM situations but we want to make sure
239          * that this does not occur.
240          */
241         return min(x, total);
242 #else
243         return 0;
244 #endif
245 }
246
247 /**
248  * global_dirtyable_memory - number of globally dirtyable pages
249  *
250  * Returns the global number of pages potentially available for dirty
251  * page cache.  This is the base value for the global dirty limits.
252  */
253 static unsigned long global_dirtyable_memory(void)
254 {
255         unsigned long x;
256
257         x = global_page_state(NR_FREE_PAGES);
258         x -= min(x, dirty_balance_reserve);
259
260         x += global_page_state(NR_INACTIVE_FILE);
261         x += global_page_state(NR_ACTIVE_FILE);
262
263         if (!vm_highmem_is_dirtyable)
264                 x -= highmem_dirtyable_memory(x);
265
266         /* Subtract min_free_kbytes */
267         x -= min_t(unsigned long, x, min_free_kbytes >> (PAGE_SHIFT - 10));
268
269         return x + 1;   /* Ensure that we never return 0 */
270 }
271
272 /*
273  * global_dirty_limits - background-writeback and dirty-throttling thresholds
274  *
275  * Calculate the dirty thresholds based on sysctl parameters
276  * - vm.dirty_background_ratio  or  vm.dirty_background_bytes
277  * - vm.dirty_ratio             or  vm.dirty_bytes
278  * The dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
279  * real-time tasks.
280  */
281 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
282 {
283         unsigned long background;
284         unsigned long dirty;
285         unsigned long uninitialized_var(available_memory);
286         struct task_struct *tsk;
287
288         if (!vm_dirty_bytes || !dirty_background_bytes)
289                 available_memory = global_dirtyable_memory();
290
291         if (vm_dirty_bytes)
292                 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE);
293         else
294                 dirty = (vm_dirty_ratio * available_memory) / 100;
295
296         if (dirty_background_bytes)
297                 background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE);
298         else
299                 background = (dirty_background_ratio * available_memory) / 100;
300
301         if (background >= dirty)
302                 background = dirty / 2;
303         tsk = current;
304         if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
305                 background += background / 4;
306                 dirty += dirty / 4;
307         }
308         *pbackground = background;
309         *pdirty = dirty;
310         trace_global_dirty_state(background, dirty);
311 }
312
313 /**
314  * zone_dirty_limit - maximum number of dirty pages allowed in a zone
315  * @zone: the zone
316  *
317  * Returns the maximum number of dirty pages allowed in a zone, based
318  * on the zone's dirtyable memory.
319  */
320 static unsigned long zone_dirty_limit(struct zone *zone)
321 {
322         unsigned long zone_memory = zone_dirtyable_memory(zone);
323         struct task_struct *tsk = current;
324         unsigned long dirty;
325
326         if (vm_dirty_bytes)
327                 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
328                         zone_memory / global_dirtyable_memory();
329         else
330                 dirty = vm_dirty_ratio * zone_memory / 100;
331
332         if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk))
333                 dirty += dirty / 4;
334
335         return dirty;
336 }
337
338 /**
339  * zone_dirty_ok - tells whether a zone is within its dirty limits
340  * @zone: the zone to check
341  *
342  * Returns %true when the dirty pages in @zone are within the zone's
343  * dirty limit, %false if the limit is exceeded.
344  */
345 bool zone_dirty_ok(struct zone *zone)
346 {
347         unsigned long limit = zone_dirty_limit(zone);
348
349         return zone_page_state(zone, NR_FILE_DIRTY) +
350                zone_page_state(zone, NR_UNSTABLE_NFS) +
351                zone_page_state(zone, NR_WRITEBACK) <= limit;
352 }
353
354 int dirty_background_ratio_handler(struct ctl_table *table, int write,
355                 void __user *buffer, size_t *lenp,
356                 loff_t *ppos)
357 {
358         int ret;
359
360         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
361         if (ret == 0 && write)
362                 dirty_background_bytes = 0;
363         return ret;
364 }
365
366 int dirty_background_bytes_handler(struct ctl_table *table, int write,
367                 void __user *buffer, size_t *lenp,
368                 loff_t *ppos)
369 {
370         int ret;
371
372         ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
373         if (ret == 0 && write)
374                 dirty_background_ratio = 0;
375         return ret;
376 }
377
378 int dirty_ratio_handler(struct ctl_table *table, int write,
379                 void __user *buffer, size_t *lenp,
380                 loff_t *ppos)
381 {
382         int old_ratio = vm_dirty_ratio;
383         int ret;
384
385         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
386         if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
387                 writeback_set_ratelimit();
388                 vm_dirty_bytes = 0;
389         }
390         return ret;
391 }
392
393 int dirty_bytes_handler(struct ctl_table *table, int write,
394                 void __user *buffer, size_t *lenp,
395                 loff_t *ppos)
396 {
397         unsigned long old_bytes = vm_dirty_bytes;
398         int ret;
399
400         ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
401         if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
402                 writeback_set_ratelimit();
403                 vm_dirty_ratio = 0;
404         }
405         return ret;
406 }
407
408 static unsigned long wp_next_time(unsigned long cur_time)
409 {
410         cur_time += VM_COMPLETIONS_PERIOD_LEN;
411         /* 0 has a special meaning... */
412         if (!cur_time)
413                 return 1;
414         return cur_time;
415 }
416
417 /*
418  * Increment the BDI's writeout completion count and the global writeout
419  * completion count. Called from test_clear_page_writeback().
420  */
421 static inline void __bdi_writeout_inc(struct backing_dev_info *bdi)
422 {
423         __inc_bdi_stat(bdi, BDI_WRITTEN);
424         __fprop_inc_percpu_max(&writeout_completions, &bdi->completions,
425                                bdi->max_prop_frac);
426         /* First event after period switching was turned off? */
427         if (!unlikely(writeout_period_time)) {
428                 /*
429                  * We can race with other __bdi_writeout_inc calls here but
430                  * it does not cause any harm since the resulting time when
431                  * timer will fire and what is in writeout_period_time will be
432                  * roughly the same.
433                  */
434                 writeout_period_time = wp_next_time(jiffies);
435                 mod_timer(&writeout_period_timer, writeout_period_time);
436         }
437 }
438
439 void bdi_writeout_inc(struct backing_dev_info *bdi)
440 {
441         unsigned long flags;
442
443         local_irq_save(flags);
444         __bdi_writeout_inc(bdi);
445         local_irq_restore(flags);
446 }
447 EXPORT_SYMBOL_GPL(bdi_writeout_inc);
448
449 /*
450  * Obtain an accurate fraction of the BDI's portion.
451  */
452 static void bdi_writeout_fraction(struct backing_dev_info *bdi,
453                 long *numerator, long *denominator)
454 {
455         fprop_fraction_percpu(&writeout_completions, &bdi->completions,
456                                 numerator, denominator);
457 }
458
459 /*
460  * On idle system, we can be called long after we scheduled because we use
461  * deferred timers so count with missed periods.
462  */
463 static void writeout_period(unsigned long t)
464 {
465         int miss_periods = (jiffies - writeout_period_time) /
466                                                  VM_COMPLETIONS_PERIOD_LEN;
467
468         if (fprop_new_period(&writeout_completions, miss_periods + 1)) {
469                 writeout_period_time = wp_next_time(writeout_period_time +
470                                 miss_periods * VM_COMPLETIONS_PERIOD_LEN);
471                 mod_timer(&writeout_period_timer, writeout_period_time);
472         } else {
473                 /*
474                  * Aging has zeroed all fractions. Stop wasting CPU on period
475                  * updates.
476                  */
477                 writeout_period_time = 0;
478         }
479 }
480
481 /*
482  * bdi_min_ratio keeps the sum of the minimum dirty shares of all
483  * registered backing devices, which, for obvious reasons, can not
484  * exceed 100%.
485  */
486 static unsigned int bdi_min_ratio;
487
488 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
489 {
490         int ret = 0;
491
492         spin_lock_bh(&bdi_lock);
493         if (min_ratio > bdi->max_ratio) {
494                 ret = -EINVAL;
495         } else {
496                 min_ratio -= bdi->min_ratio;
497                 if (bdi_min_ratio + min_ratio < 100) {
498                         bdi_min_ratio += min_ratio;
499                         bdi->min_ratio += min_ratio;
500                 } else {
501                         ret = -EINVAL;
502                 }
503         }
504         spin_unlock_bh(&bdi_lock);
505
506         return ret;
507 }
508
509 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
510 {
511         int ret = 0;
512
513         if (max_ratio > 100)
514                 return -EINVAL;
515
516         spin_lock_bh(&bdi_lock);
517         if (bdi->min_ratio > max_ratio) {
518                 ret = -EINVAL;
519         } else {
520                 bdi->max_ratio = max_ratio;
521                 bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100;
522         }
523         spin_unlock_bh(&bdi_lock);
524
525         return ret;
526 }
527 EXPORT_SYMBOL(bdi_set_max_ratio);
528
529 static unsigned long dirty_freerun_ceiling(unsigned long thresh,
530                                            unsigned long bg_thresh)
531 {
532         return (thresh + bg_thresh) / 2;
533 }
534
535 static unsigned long hard_dirty_limit(unsigned long thresh)
536 {
537         return max(thresh, global_dirty_limit);
538 }
539
540 /**
541  * bdi_dirty_limit - @bdi's share of dirty throttling threshold
542  * @bdi: the backing_dev_info to query
543  * @dirty: global dirty limit in pages
544  *
545  * Returns @bdi's dirty limit in pages. The term "dirty" in the context of
546  * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
547  *
548  * Note that balance_dirty_pages() will only seriously take it as a hard limit
549  * when sleeping max_pause per page is not enough to keep the dirty pages under
550  * control. For example, when the device is completely stalled due to some error
551  * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
552  * In the other normal situations, it acts more gently by throttling the tasks
553  * more (rather than completely block them) when the bdi dirty pages go high.
554  *
555  * It allocates high/low dirty limits to fast/slow devices, in order to prevent
556  * - starving fast devices
557  * - piling up dirty pages (that will take long time to sync) on slow devices
558  *
559  * The bdi's share of dirty limit will be adapting to its throughput and
560  * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
561  */
562 unsigned long bdi_dirty_limit(struct backing_dev_info *bdi, unsigned long dirty)
563 {
564         u64 bdi_dirty;
565         long numerator, denominator;
566
567         /*
568          * Calculate this BDI's share of the dirty ratio.
569          */
570         bdi_writeout_fraction(bdi, &numerator, &denominator);
571
572         bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100;
573         bdi_dirty *= numerator;
574         do_div(bdi_dirty, denominator);
575
576         bdi_dirty += (dirty * bdi->min_ratio) / 100;
577         if (bdi_dirty > (dirty * bdi->max_ratio) / 100)
578                 bdi_dirty = dirty * bdi->max_ratio / 100;
579
580         return bdi_dirty;
581 }
582
583 /*
584  * Dirty position control.
585  *
586  * (o) global/bdi setpoints
587  *
588  * We want the dirty pages be balanced around the global/bdi setpoints.
589  * When the number of dirty pages is higher/lower than the setpoint, the
590  * dirty position control ratio (and hence task dirty ratelimit) will be
591  * decreased/increased to bring the dirty pages back to the setpoint.
592  *
593  *     pos_ratio = 1 << RATELIMIT_CALC_SHIFT
594  *
595  *     if (dirty < setpoint) scale up   pos_ratio
596  *     if (dirty > setpoint) scale down pos_ratio
597  *
598  *     if (bdi_dirty < bdi_setpoint) scale up   pos_ratio
599  *     if (bdi_dirty > bdi_setpoint) scale down pos_ratio
600  *
601  *     task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
602  *
603  * (o) global control line
604  *
605  *     ^ pos_ratio
606  *     |
607  *     |            |<===== global dirty control scope ======>|
608  * 2.0 .............*
609  *     |            .*
610  *     |            . *
611  *     |            .   *
612  *     |            .     *
613  *     |            .        *
614  *     |            .            *
615  * 1.0 ................................*
616  *     |            .                  .     *
617  *     |            .                  .          *
618  *     |            .                  .              *
619  *     |            .                  .                 *
620  *     |            .                  .                    *
621  *   0 +------------.------------------.----------------------*------------->
622  *           freerun^          setpoint^                 limit^   dirty pages
623  *
624  * (o) bdi control line
625  *
626  *     ^ pos_ratio
627  *     |
628  *     |            *
629  *     |              *
630  *     |                *
631  *     |                  *
632  *     |                    * |<=========== span ============>|
633  * 1.0 .......................*
634  *     |                      . *
635  *     |                      .   *
636  *     |                      .     *
637  *     |                      .       *
638  *     |                      .         *
639  *     |                      .           *
640  *     |                      .             *
641  *     |                      .               *
642  *     |                      .                 *
643  *     |                      .                   *
644  *     |                      .                     *
645  * 1/4 ...............................................* * * * * * * * * * * *
646  *     |                      .                         .
647  *     |                      .                           .
648  *     |                      .                             .
649  *   0 +----------------------.-------------------------------.------------->
650  *                bdi_setpoint^                    x_intercept^
651  *
652  * The bdi control line won't drop below pos_ratio=1/4, so that bdi_dirty can
653  * be smoothly throttled down to normal if it starts high in situations like
654  * - start writing to a slow SD card and a fast disk at the same time. The SD
655  *   card's bdi_dirty may rush to many times higher than bdi_setpoint.
656  * - the bdi dirty thresh drops quickly due to change of JBOD workload
657  */
658 static unsigned long bdi_position_ratio(struct backing_dev_info *bdi,
659                                         unsigned long thresh,
660                                         unsigned long bg_thresh,
661                                         unsigned long dirty,
662                                         unsigned long bdi_thresh,
663                                         unsigned long bdi_dirty)
664 {
665         unsigned long write_bw = bdi->avg_write_bandwidth;
666         unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
667         unsigned long limit = hard_dirty_limit(thresh);
668         unsigned long x_intercept;
669         unsigned long setpoint;         /* dirty pages' target balance point */
670         unsigned long bdi_setpoint;
671         unsigned long span;
672         long long pos_ratio;            /* for scaling up/down the rate limit */
673         long x;
674
675         if (unlikely(dirty >= limit))
676                 return 0;
677
678         /*
679          * global setpoint
680          *
681          *                           setpoint - dirty 3
682          *        f(dirty) := 1.0 + (----------------)
683          *                           limit - setpoint
684          *
685          * it's a 3rd order polynomial that subjects to
686          *
687          * (1) f(freerun)  = 2.0 => rampup dirty_ratelimit reasonably fast
688          * (2) f(setpoint) = 1.0 => the balance point
689          * (3) f(limit)    = 0   => the hard limit
690          * (4) df/dx      <= 0   => negative feedback control
691          * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
692          *     => fast response on large errors; small oscillation near setpoint
693          */
694         setpoint = (freerun + limit) / 2;
695         x = div_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
696                     limit - setpoint + 1);
697         pos_ratio = x;
698         pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
699         pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
700         pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
701
702         /*
703          * We have computed basic pos_ratio above based on global situation. If
704          * the bdi is over/under its share of dirty pages, we want to scale
705          * pos_ratio further down/up. That is done by the following mechanism.
706          */
707
708         /*
709          * bdi setpoint
710          *
711          *        f(bdi_dirty) := 1.0 + k * (bdi_dirty - bdi_setpoint)
712          *
713          *                        x_intercept - bdi_dirty
714          *                     := --------------------------
715          *                        x_intercept - bdi_setpoint
716          *
717          * The main bdi control line is a linear function that subjects to
718          *
719          * (1) f(bdi_setpoint) = 1.0
720          * (2) k = - 1 / (8 * write_bw)  (in single bdi case)
721          *     or equally: x_intercept = bdi_setpoint + 8 * write_bw
722          *
723          * For single bdi case, the dirty pages are observed to fluctuate
724          * regularly within range
725          *        [bdi_setpoint - write_bw/2, bdi_setpoint + write_bw/2]
726          * for various filesystems, where (2) can yield in a reasonable 12.5%
727          * fluctuation range for pos_ratio.
728          *
729          * For JBOD case, bdi_thresh (not bdi_dirty!) could fluctuate up to its
730          * own size, so move the slope over accordingly and choose a slope that
731          * yields 100% pos_ratio fluctuation on suddenly doubled bdi_thresh.
732          */
733         if (unlikely(bdi_thresh > thresh))
734                 bdi_thresh = thresh;
735         /*
736          * It's very possible that bdi_thresh is close to 0 not because the
737          * device is slow, but that it has remained inactive for long time.
738          * Honour such devices a reasonable good (hopefully IO efficient)
739          * threshold, so that the occasional writes won't be blocked and active
740          * writes can rampup the threshold quickly.
741          */
742         bdi_thresh = max(bdi_thresh, (limit - dirty) / 8);
743         /*
744          * scale global setpoint to bdi's:
745          *      bdi_setpoint = setpoint * bdi_thresh / thresh
746          */
747         x = div_u64((u64)bdi_thresh << 16, thresh + 1);
748         bdi_setpoint = setpoint * (u64)x >> 16;
749         /*
750          * Use span=(8*write_bw) in single bdi case as indicated by
751          * (thresh - bdi_thresh ~= 0) and transit to bdi_thresh in JBOD case.
752          *
753          *        bdi_thresh                    thresh - bdi_thresh
754          * span = ---------- * (8 * write_bw) + ------------------- * bdi_thresh
755          *          thresh                            thresh
756          */
757         span = (thresh - bdi_thresh + 8 * write_bw) * (u64)x >> 16;
758         x_intercept = bdi_setpoint + span;
759
760         if (bdi_dirty < x_intercept - span / 4) {
761                 pos_ratio = div_u64(pos_ratio * (x_intercept - bdi_dirty),
762                                     x_intercept - bdi_setpoint + 1);
763         } else
764                 pos_ratio /= 4;
765
766         /*
767          * bdi reserve area, safeguard against dirty pool underrun and disk idle
768          * It may push the desired control point of global dirty pages higher
769          * than setpoint.
770          */
771         x_intercept = bdi_thresh / 2;
772         if (bdi_dirty < x_intercept) {
773                 if (bdi_dirty > x_intercept / 8)
774                         pos_ratio = div_u64(pos_ratio * x_intercept, bdi_dirty);
775                 else
776                         pos_ratio *= 8;
777         }
778
779         return pos_ratio;
780 }
781
782 static void bdi_update_write_bandwidth(struct backing_dev_info *bdi,
783                                        unsigned long elapsed,
784                                        unsigned long written)
785 {
786         const unsigned long period = roundup_pow_of_two(3 * HZ);
787         unsigned long avg = bdi->avg_write_bandwidth;
788         unsigned long old = bdi->write_bandwidth;
789         u64 bw;
790
791         /*
792          * bw = written * HZ / elapsed
793          *
794          *                   bw * elapsed + write_bandwidth * (period - elapsed)
795          * write_bandwidth = ---------------------------------------------------
796          *                                          period
797          *
798          * @written may have decreased due to account_page_redirty().
799          * Avoid underflowing @bw calculation.
800          */
801         bw = written - min(written, bdi->written_stamp);
802         bw *= HZ;
803         if (unlikely(elapsed > period)) {
804                 do_div(bw, elapsed);
805                 avg = bw;
806                 goto out;
807         }
808         bw += (u64)bdi->write_bandwidth * (period - elapsed);
809         bw >>= ilog2(period);
810
811         /*
812          * one more level of smoothing, for filtering out sudden spikes
813          */
814         if (avg > old && old >= (unsigned long)bw)
815                 avg -= (avg - old) >> 3;
816
817         if (avg < old && old <= (unsigned long)bw)
818                 avg += (old - avg) >> 3;
819
820 out:
821         bdi->write_bandwidth = bw;
822         bdi->avg_write_bandwidth = avg;
823 }
824
825 /*
826  * The global dirtyable memory and dirty threshold could be suddenly knocked
827  * down by a large amount (eg. on the startup of KVM in a swapless system).
828  * This may throw the system into deep dirty exceeded state and throttle
829  * heavy/light dirtiers alike. To retain good responsiveness, maintain
830  * global_dirty_limit for tracking slowly down to the knocked down dirty
831  * threshold.
832  */
833 static void update_dirty_limit(unsigned long thresh, unsigned long dirty)
834 {
835         unsigned long limit = global_dirty_limit;
836
837         /*
838          * Follow up in one step.
839          */
840         if (limit < thresh) {
841                 limit = thresh;
842                 goto update;
843         }
844
845         /*
846          * Follow down slowly. Use the higher one as the target, because thresh
847          * may drop below dirty. This is exactly the reason to introduce
848          * global_dirty_limit which is guaranteed to lie above the dirty pages.
849          */
850         thresh = max(thresh, dirty);
851         if (limit > thresh) {
852                 limit -= (limit - thresh) >> 5;
853                 goto update;
854         }
855         return;
856 update:
857         global_dirty_limit = limit;
858 }
859
860 static void global_update_bandwidth(unsigned long thresh,
861                                     unsigned long dirty,
862                                     unsigned long now)
863 {
864         static DEFINE_SPINLOCK(dirty_lock);
865         static unsigned long update_time = INITIAL_JIFFIES;
866
867         /*
868          * check locklessly first to optimize away locking for the most time
869          */
870         if (time_before(now, update_time + BANDWIDTH_INTERVAL))
871                 return;
872
873         spin_lock(&dirty_lock);
874         if (time_after_eq(now, update_time + BANDWIDTH_INTERVAL)) {
875                 update_dirty_limit(thresh, dirty);
876                 update_time = now;
877         }
878         spin_unlock(&dirty_lock);
879 }
880
881 /*
882  * Maintain bdi->dirty_ratelimit, the base dirty throttle rate.
883  *
884  * Normal bdi tasks will be curbed at or below it in long term.
885  * Obviously it should be around (write_bw / N) when there are N dd tasks.
886  */
887 static void bdi_update_dirty_ratelimit(struct backing_dev_info *bdi,
888                                        unsigned long thresh,
889                                        unsigned long bg_thresh,
890                                        unsigned long dirty,
891                                        unsigned long bdi_thresh,
892                                        unsigned long bdi_dirty,
893                                        unsigned long dirtied,
894                                        unsigned long elapsed)
895 {
896         unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
897         unsigned long limit = hard_dirty_limit(thresh);
898         unsigned long setpoint = (freerun + limit) / 2;
899         unsigned long write_bw = bdi->avg_write_bandwidth;
900         unsigned long dirty_ratelimit = bdi->dirty_ratelimit;
901         unsigned long dirty_rate;
902         unsigned long task_ratelimit;
903         unsigned long balanced_dirty_ratelimit;
904         unsigned long pos_ratio;
905         unsigned long step;
906         unsigned long x;
907
908         /*
909          * The dirty rate will match the writeout rate in long term, except
910          * when dirty pages are truncated by userspace or re-dirtied by FS.
911          */
912         dirty_rate = (dirtied - bdi->dirtied_stamp) * HZ / elapsed;
913
914         pos_ratio = bdi_position_ratio(bdi, thresh, bg_thresh, dirty,
915                                        bdi_thresh, bdi_dirty);
916         /*
917          * task_ratelimit reflects each dd's dirty rate for the past 200ms.
918          */
919         task_ratelimit = (u64)dirty_ratelimit *
920                                         pos_ratio >> RATELIMIT_CALC_SHIFT;
921         task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
922
923         /*
924          * A linear estimation of the "balanced" throttle rate. The theory is,
925          * if there are N dd tasks, each throttled at task_ratelimit, the bdi's
926          * dirty_rate will be measured to be (N * task_ratelimit). So the below
927          * formula will yield the balanced rate limit (write_bw / N).
928          *
929          * Note that the expanded form is not a pure rate feedback:
930          *      rate_(i+1) = rate_(i) * (write_bw / dirty_rate)              (1)
931          * but also takes pos_ratio into account:
932          *      rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio  (2)
933          *
934          * (1) is not realistic because pos_ratio also takes part in balancing
935          * the dirty rate.  Consider the state
936          *      pos_ratio = 0.5                                              (3)
937          *      rate = 2 * (write_bw / N)                                    (4)
938          * If (1) is used, it will stuck in that state! Because each dd will
939          * be throttled at
940          *      task_ratelimit = pos_ratio * rate = (write_bw / N)           (5)
941          * yielding
942          *      dirty_rate = N * task_ratelimit = write_bw                   (6)
943          * put (6) into (1) we get
944          *      rate_(i+1) = rate_(i)                                        (7)
945          *
946          * So we end up using (2) to always keep
947          *      rate_(i+1) ~= (write_bw / N)                                 (8)
948          * regardless of the value of pos_ratio. As long as (8) is satisfied,
949          * pos_ratio is able to drive itself to 1.0, which is not only where
950          * the dirty count meet the setpoint, but also where the slope of
951          * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
952          */
953         balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
954                                            dirty_rate | 1);
955         /*
956          * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
957          */
958         if (unlikely(balanced_dirty_ratelimit > write_bw))
959                 balanced_dirty_ratelimit = write_bw;
960
961         /*
962          * We could safely do this and return immediately:
963          *
964          *      bdi->dirty_ratelimit = balanced_dirty_ratelimit;
965          *
966          * However to get a more stable dirty_ratelimit, the below elaborated
967          * code makes use of task_ratelimit to filter out singular points and
968          * limit the step size.
969          *
970          * The below code essentially only uses the relative value of
971          *
972          *      task_ratelimit - dirty_ratelimit
973          *      = (pos_ratio - 1) * dirty_ratelimit
974          *
975          * which reflects the direction and size of dirty position error.
976          */
977
978         /*
979          * dirty_ratelimit will follow balanced_dirty_ratelimit iff
980          * task_ratelimit is on the same side of dirty_ratelimit, too.
981          * For example, when
982          * - dirty_ratelimit > balanced_dirty_ratelimit
983          * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
984          * lowering dirty_ratelimit will help meet both the position and rate
985          * control targets. Otherwise, don't update dirty_ratelimit if it will
986          * only help meet the rate target. After all, what the users ultimately
987          * feel and care are stable dirty rate and small position error.
988          *
989          * |task_ratelimit - dirty_ratelimit| is used to limit the step size
990          * and filter out the singular points of balanced_dirty_ratelimit. Which
991          * keeps jumping around randomly and can even leap far away at times
992          * due to the small 200ms estimation period of dirty_rate (we want to
993          * keep that period small to reduce time lags).
994          */
995         step = 0;
996         if (dirty < setpoint) {
997                 x = min(bdi->balanced_dirty_ratelimit,
998                          min(balanced_dirty_ratelimit, task_ratelimit));
999                 if (dirty_ratelimit < x)
1000                         step = x - dirty_ratelimit;
1001         } else {
1002                 x = max(bdi->balanced_dirty_ratelimit,
1003                          max(balanced_dirty_ratelimit, task_ratelimit));
1004                 if (dirty_ratelimit > x)
1005                         step = dirty_ratelimit - x;
1006         }
1007
1008         /*
1009          * Don't pursue 100% rate matching. It's impossible since the balanced
1010          * rate itself is constantly fluctuating. So decrease the track speed
1011          * when it gets close to the target. Helps eliminate pointless tremors.
1012          */
1013         step >>= dirty_ratelimit / (2 * step + 1);
1014         /*
1015          * Limit the tracking speed to avoid overshooting.
1016          */
1017         step = (step + 7) / 8;
1018
1019         if (dirty_ratelimit < balanced_dirty_ratelimit)
1020                 dirty_ratelimit += step;
1021         else
1022                 dirty_ratelimit -= step;
1023
1024         bdi->dirty_ratelimit = max(dirty_ratelimit, 1UL);
1025         bdi->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
1026
1027         trace_bdi_dirty_ratelimit(bdi, dirty_rate, task_ratelimit);
1028 }
1029
1030 void __bdi_update_bandwidth(struct backing_dev_info *bdi,
1031                             unsigned long thresh,
1032                             unsigned long bg_thresh,
1033                             unsigned long dirty,
1034                             unsigned long bdi_thresh,
1035                             unsigned long bdi_dirty,
1036                             unsigned long start_time)
1037 {
1038         unsigned long now = jiffies;
1039         unsigned long elapsed = now - bdi->bw_time_stamp;
1040         unsigned long dirtied;
1041         unsigned long written;
1042
1043         /*
1044          * rate-limit, only update once every 200ms.
1045          */
1046         if (elapsed < BANDWIDTH_INTERVAL)
1047                 return;
1048
1049         dirtied = percpu_counter_read(&bdi->bdi_stat[BDI_DIRTIED]);
1050         written = percpu_counter_read(&bdi->bdi_stat[BDI_WRITTEN]);
1051
1052         /*
1053          * Skip quiet periods when disk bandwidth is under-utilized.
1054          * (at least 1s idle time between two flusher runs)
1055          */
1056         if (elapsed > HZ && time_before(bdi->bw_time_stamp, start_time))
1057                 goto snapshot;
1058
1059         if (thresh) {
1060                 global_update_bandwidth(thresh, dirty, now);
1061                 bdi_update_dirty_ratelimit(bdi, thresh, bg_thresh, dirty,
1062                                            bdi_thresh, bdi_dirty,
1063                                            dirtied, elapsed);
1064         }
1065         bdi_update_write_bandwidth(bdi, elapsed, written);
1066
1067 snapshot:
1068         bdi->dirtied_stamp = dirtied;
1069         bdi->written_stamp = written;
1070         bdi->bw_time_stamp = now;
1071 }
1072
1073 static void bdi_update_bandwidth(struct backing_dev_info *bdi,
1074                                  unsigned long thresh,
1075                                  unsigned long bg_thresh,
1076                                  unsigned long dirty,
1077                                  unsigned long bdi_thresh,
1078                                  unsigned long bdi_dirty,
1079                                  unsigned long start_time)
1080 {
1081         if (time_is_after_eq_jiffies(bdi->bw_time_stamp + BANDWIDTH_INTERVAL))
1082                 return;
1083         spin_lock(&bdi->wb.list_lock);
1084         __bdi_update_bandwidth(bdi, thresh, bg_thresh, dirty,
1085                                bdi_thresh, bdi_dirty, start_time);
1086         spin_unlock(&bdi->wb.list_lock);
1087 }
1088
1089 /*
1090  * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
1091  * will look to see if it needs to start dirty throttling.
1092  *
1093  * If dirty_poll_interval is too low, big NUMA machines will call the expensive
1094  * global_page_state() too often. So scale it near-sqrt to the safety margin
1095  * (the number of pages we may dirty without exceeding the dirty limits).
1096  */
1097 static unsigned long dirty_poll_interval(unsigned long dirty,
1098                                          unsigned long thresh)
1099 {
1100         if (thresh > dirty)
1101                 return 1UL << (ilog2(thresh - dirty) >> 1);
1102
1103         return 1;
1104 }
1105
1106 static unsigned long bdi_max_pause(struct backing_dev_info *bdi,
1107                                    unsigned long bdi_dirty)
1108 {
1109         unsigned long bw = bdi->avg_write_bandwidth;
1110         unsigned long t;
1111
1112         /*
1113          * Limit pause time for small memory systems. If sleeping for too long
1114          * time, a small pool of dirty/writeback pages may go empty and disk go
1115          * idle.
1116          *
1117          * 8 serves as the safety ratio.
1118          */
1119         t = bdi_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
1120         t++;
1121
1122         return min_t(unsigned long, t, MAX_PAUSE);
1123 }
1124
1125 static long bdi_min_pause(struct backing_dev_info *bdi,
1126                           long max_pause,
1127                           unsigned long task_ratelimit,
1128                           unsigned long dirty_ratelimit,
1129                           int *nr_dirtied_pause)
1130 {
1131         long hi = ilog2(bdi->avg_write_bandwidth);
1132         long lo = ilog2(bdi->dirty_ratelimit);
1133         long t;         /* target pause */
1134         long pause;     /* estimated next pause */
1135         int pages;      /* target nr_dirtied_pause */
1136
1137         /* target for 10ms pause on 1-dd case */
1138         t = max(1, HZ / 100);
1139
1140         /*
1141          * Scale up pause time for concurrent dirtiers in order to reduce CPU
1142          * overheads.
1143          *
1144          * (N * 10ms) on 2^N concurrent tasks.
1145          */
1146         if (hi > lo)
1147                 t += (hi - lo) * (10 * HZ) / 1024;
1148
1149         /*
1150          * This is a bit convoluted. We try to base the next nr_dirtied_pause
1151          * on the much more stable dirty_ratelimit. However the next pause time
1152          * will be computed based on task_ratelimit and the two rate limits may
1153          * depart considerably at some time. Especially if task_ratelimit goes
1154          * below dirty_ratelimit/2 and the target pause is max_pause, the next
1155          * pause time will be max_pause*2 _trimmed down_ to max_pause.  As a
1156          * result task_ratelimit won't be executed faithfully, which could
1157          * eventually bring down dirty_ratelimit.
1158          *
1159          * We apply two rules to fix it up:
1160          * 1) try to estimate the next pause time and if necessary, use a lower
1161          *    nr_dirtied_pause so as not to exceed max_pause. When this happens,
1162          *    nr_dirtied_pause will be "dancing" with task_ratelimit.
1163          * 2) limit the target pause time to max_pause/2, so that the normal
1164          *    small fluctuations of task_ratelimit won't trigger rule (1) and
1165          *    nr_dirtied_pause will remain as stable as dirty_ratelimit.
1166          */
1167         t = min(t, 1 + max_pause / 2);
1168         pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1169
1170         /*
1171          * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1172          * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1173          * When the 16 consecutive reads are often interrupted by some dirty
1174          * throttling pause during the async writes, cfq will go into idles
1175          * (deadline is fine). So push nr_dirtied_pause as high as possible
1176          * until reaches DIRTY_POLL_THRESH=32 pages.
1177          */
1178         if (pages < DIRTY_POLL_THRESH) {
1179                 t = max_pause;
1180                 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1181                 if (pages > DIRTY_POLL_THRESH) {
1182                         pages = DIRTY_POLL_THRESH;
1183                         t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
1184                 }
1185         }
1186
1187         pause = HZ * pages / (task_ratelimit + 1);
1188         if (pause > max_pause) {
1189                 t = max_pause;
1190                 pages = task_ratelimit * t / roundup_pow_of_two(HZ);
1191         }
1192
1193         *nr_dirtied_pause = pages;
1194         /*
1195          * The minimal pause time will normally be half the target pause time.
1196          */
1197         return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
1198 }
1199
1200 /*
1201  * balance_dirty_pages() must be called by processes which are generating dirty
1202  * data.  It looks at the number of dirty pages in the machine and will force
1203  * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
1204  * If we're over `background_thresh' then the writeback threads are woken to
1205  * perform some writeout.
1206  */
1207 static void balance_dirty_pages(struct address_space *mapping,
1208                                 unsigned long pages_dirtied)
1209 {
1210         unsigned long nr_reclaimable;   /* = file_dirty + unstable_nfs */
1211         unsigned long bdi_reclaimable;
1212         unsigned long nr_dirty;  /* = file_dirty + writeback + unstable_nfs */
1213         unsigned long bdi_dirty;
1214         unsigned long freerun;
1215         unsigned long background_thresh;
1216         unsigned long dirty_thresh;
1217         unsigned long bdi_thresh;
1218         long period;
1219         long pause;
1220         long max_pause;
1221         long min_pause;
1222         int nr_dirtied_pause;
1223         bool dirty_exceeded = false;
1224         unsigned long task_ratelimit;
1225         unsigned long dirty_ratelimit;
1226         unsigned long pos_ratio;
1227         struct backing_dev_info *bdi = mapping->backing_dev_info;
1228         unsigned long start_time = jiffies;
1229
1230         for (;;) {
1231                 unsigned long now = jiffies;
1232
1233                 /*
1234                  * Unstable writes are a feature of certain networked
1235                  * filesystems (i.e. NFS) in which data may have been
1236                  * written to the server's write cache, but has not yet
1237                  * been flushed to permanent storage.
1238                  */
1239                 nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
1240                                         global_page_state(NR_UNSTABLE_NFS);
1241                 nr_dirty = nr_reclaimable + global_page_state(NR_WRITEBACK);
1242
1243                 global_dirty_limits(&background_thresh, &dirty_thresh);
1244
1245                 /*
1246                  * Throttle it only when the background writeback cannot
1247                  * catch-up. This avoids (excessively) small writeouts
1248                  * when the bdi limits are ramping up.
1249                  */
1250                 freerun = dirty_freerun_ceiling(dirty_thresh,
1251                                                 background_thresh);
1252                 if (nr_dirty <= freerun) {
1253                         current->dirty_paused_when = now;
1254                         current->nr_dirtied = 0;
1255                         current->nr_dirtied_pause =
1256                                 dirty_poll_interval(nr_dirty, dirty_thresh);
1257                         break;
1258                 }
1259
1260                 if (unlikely(!writeback_in_progress(bdi)))
1261                         bdi_start_background_writeback(bdi);
1262
1263                 /*
1264                  * bdi_thresh is not treated as some limiting factor as
1265                  * dirty_thresh, due to reasons
1266                  * - in JBOD setup, bdi_thresh can fluctuate a lot
1267                  * - in a system with HDD and USB key, the USB key may somehow
1268                  *   go into state (bdi_dirty >> bdi_thresh) either because
1269                  *   bdi_dirty starts high, or because bdi_thresh drops low.
1270                  *   In this case we don't want to hard throttle the USB key
1271                  *   dirtiers for 100 seconds until bdi_dirty drops under
1272                  *   bdi_thresh. Instead the auxiliary bdi control line in
1273                  *   bdi_position_ratio() will let the dirtier task progress
1274                  *   at some rate <= (write_bw / 2) for bringing down bdi_dirty.
1275                  */
1276                 bdi_thresh = bdi_dirty_limit(bdi, dirty_thresh);
1277
1278                 /*
1279                  * In order to avoid the stacked BDI deadlock we need
1280                  * to ensure we accurately count the 'dirty' pages when
1281                  * the threshold is low.
1282                  *
1283                  * Otherwise it would be possible to get thresh+n pages
1284                  * reported dirty, even though there are thresh-m pages
1285                  * actually dirty; with m+n sitting in the percpu
1286                  * deltas.
1287                  */
1288                 if (bdi_thresh < 2 * bdi_stat_error(bdi)) {
1289                         bdi_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
1290                         bdi_dirty = bdi_reclaimable +
1291                                     bdi_stat_sum(bdi, BDI_WRITEBACK);
1292                 } else {
1293                         bdi_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
1294                         bdi_dirty = bdi_reclaimable +
1295                                     bdi_stat(bdi, BDI_WRITEBACK);
1296                 }
1297
1298                 dirty_exceeded = (bdi_dirty > bdi_thresh) &&
1299                                   (nr_dirty > dirty_thresh);
1300                 if (dirty_exceeded && !bdi->dirty_exceeded)
1301                         bdi->dirty_exceeded = 1;
1302
1303                 bdi_update_bandwidth(bdi, dirty_thresh, background_thresh,
1304                                      nr_dirty, bdi_thresh, bdi_dirty,
1305                                      start_time);
1306
1307                 dirty_ratelimit = bdi->dirty_ratelimit;
1308                 pos_ratio = bdi_position_ratio(bdi, dirty_thresh,
1309                                                background_thresh, nr_dirty,
1310                                                bdi_thresh, bdi_dirty);
1311                 task_ratelimit = ((u64)dirty_ratelimit * pos_ratio) >>
1312                                                         RATELIMIT_CALC_SHIFT;
1313                 max_pause = bdi_max_pause(bdi, bdi_dirty);
1314                 min_pause = bdi_min_pause(bdi, max_pause,
1315                                           task_ratelimit, dirty_ratelimit,
1316                                           &nr_dirtied_pause);
1317
1318                 if (unlikely(task_ratelimit == 0)) {
1319                         period = max_pause;
1320                         pause = max_pause;
1321                         goto pause;
1322                 }
1323                 period = HZ * pages_dirtied / task_ratelimit;
1324                 pause = period;
1325                 if (current->dirty_paused_when)
1326                         pause -= now - current->dirty_paused_when;
1327                 /*
1328                  * For less than 1s think time (ext3/4 may block the dirtier
1329                  * for up to 800ms from time to time on 1-HDD; so does xfs,
1330                  * however at much less frequency), try to compensate it in
1331                  * future periods by updating the virtual time; otherwise just
1332                  * do a reset, as it may be a light dirtier.
1333                  */
1334                 if (pause < min_pause) {
1335                         trace_balance_dirty_pages(bdi,
1336                                                   dirty_thresh,
1337                                                   background_thresh,
1338                                                   nr_dirty,
1339                                                   bdi_thresh,
1340                                                   bdi_dirty,
1341                                                   dirty_ratelimit,
1342                                                   task_ratelimit,
1343                                                   pages_dirtied,
1344                                                   period,
1345                                                   min(pause, 0L),
1346                                                   start_time);
1347                         if (pause < -HZ) {
1348                                 current->dirty_paused_when = now;
1349                                 current->nr_dirtied = 0;
1350                         } else if (period) {
1351                                 current->dirty_paused_when += period;
1352                                 current->nr_dirtied = 0;
1353                         } else if (current->nr_dirtied_pause <= pages_dirtied)
1354                                 current->nr_dirtied_pause += pages_dirtied;
1355                         break;
1356                 }
1357                 if (unlikely(pause > max_pause)) {
1358                         /* for occasional dropped task_ratelimit */
1359                         now += min(pause - max_pause, max_pause);
1360                         pause = max_pause;
1361                 }
1362
1363 pause:
1364                 trace_balance_dirty_pages(bdi,
1365                                           dirty_thresh,
1366                                           background_thresh,
1367                                           nr_dirty,
1368                                           bdi_thresh,
1369                                           bdi_dirty,
1370                                           dirty_ratelimit,
1371                                           task_ratelimit,
1372                                           pages_dirtied,
1373                                           period,
1374                                           pause,
1375                                           start_time);
1376                 __set_current_state(TASK_KILLABLE);
1377                 io_schedule_timeout(pause);
1378
1379                 current->dirty_paused_when = now + pause;
1380                 current->nr_dirtied = 0;
1381                 current->nr_dirtied_pause = nr_dirtied_pause;
1382
1383                 /*
1384                  * This is typically equal to (nr_dirty < dirty_thresh) and can
1385                  * also keep "1000+ dd on a slow USB stick" under control.
1386                  */
1387                 if (task_ratelimit)
1388                         break;
1389
1390                 /*
1391                  * In the case of an unresponding NFS server and the NFS dirty
1392                  * pages exceeds dirty_thresh, give the other good bdi's a pipe
1393                  * to go through, so that tasks on them still remain responsive.
1394                  *
1395                  * In theory 1 page is enough to keep the comsumer-producer
1396                  * pipe going: the flusher cleans 1 page => the task dirties 1
1397                  * more page. However bdi_dirty has accounting errors.  So use
1398                  * the larger and more IO friendly bdi_stat_error.
1399                  */
1400                 if (bdi_dirty <= bdi_stat_error(bdi))
1401                         break;
1402
1403                 if (fatal_signal_pending(current))
1404                         break;
1405         }
1406
1407         if (!dirty_exceeded && bdi->dirty_exceeded)
1408                 bdi->dirty_exceeded = 0;
1409
1410         if (writeback_in_progress(bdi))
1411                 return;
1412
1413         /*
1414          * In laptop mode, we wait until hitting the higher threshold before
1415          * starting background writeout, and then write out all the way down
1416          * to the lower threshold.  So slow writers cause minimal disk activity.
1417          *
1418          * In normal mode, we start background writeout at the lower
1419          * background_thresh, to keep the amount of dirty memory low.
1420          */
1421         if (laptop_mode)
1422                 return;
1423
1424         if (nr_reclaimable > background_thresh)
1425                 bdi_start_background_writeback(bdi);
1426 }
1427
1428 void set_page_dirty_balance(struct page *page, int page_mkwrite)
1429 {
1430         if (set_page_dirty(page) || page_mkwrite) {
1431                 struct address_space *mapping = page_mapping(page);
1432
1433                 if (mapping)
1434                         balance_dirty_pages_ratelimited(mapping);
1435         }
1436 }
1437
1438 static DEFINE_PER_CPU(int, bdp_ratelimits);
1439
1440 /*
1441  * Normal tasks are throttled by
1442  *      loop {
1443  *              dirty tsk->nr_dirtied_pause pages;
1444  *              take a snap in balance_dirty_pages();
1445  *      }
1446  * However there is a worst case. If every task exit immediately when dirtied
1447  * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
1448  * called to throttle the page dirties. The solution is to save the not yet
1449  * throttled page dirties in dirty_throttle_leaks on task exit and charge them
1450  * randomly into the running tasks. This works well for the above worst case,
1451  * as the new task will pick up and accumulate the old task's leaked dirty
1452  * count and eventually get throttled.
1453  */
1454 DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
1455
1456 /**
1457  * balance_dirty_pages_ratelimited - balance dirty memory state
1458  * @mapping: address_space which was dirtied
1459  *
1460  * Processes which are dirtying memory should call in here once for each page
1461  * which was newly dirtied.  The function will periodically check the system's
1462  * dirty state and will initiate writeback if needed.
1463  *
1464  * On really big machines, get_writeback_state is expensive, so try to avoid
1465  * calling it too often (ratelimiting).  But once we're over the dirty memory
1466  * limit we decrease the ratelimiting by a lot, to prevent individual processes
1467  * from overshooting the limit by (ratelimit_pages) each.
1468  */
1469 void balance_dirty_pages_ratelimited(struct address_space *mapping)
1470 {
1471         struct backing_dev_info *bdi = mapping->backing_dev_info;
1472         int ratelimit;
1473         int *p;
1474
1475         if (!bdi_cap_account_dirty(bdi))
1476                 return;
1477
1478         ratelimit = current->nr_dirtied_pause;
1479         if (bdi->dirty_exceeded)
1480                 ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
1481
1482         preempt_disable();
1483         /*
1484          * This prevents one CPU to accumulate too many dirtied pages without
1485          * calling into balance_dirty_pages(), which can happen when there are
1486          * 1000+ tasks, all of them start dirtying pages at exactly the same
1487          * time, hence all honoured too large initial task->nr_dirtied_pause.
1488          */
1489         p =  &__get_cpu_var(bdp_ratelimits);
1490         if (unlikely(current->nr_dirtied >= ratelimit))
1491                 *p = 0;
1492         else if (unlikely(*p >= ratelimit_pages)) {
1493                 *p = 0;
1494                 ratelimit = 0;
1495         }
1496         /*
1497          * Pick up the dirtied pages by the exited tasks. This avoids lots of
1498          * short-lived tasks (eg. gcc invocations in a kernel build) escaping
1499          * the dirty throttling and livelock other long-run dirtiers.
1500          */
1501         p = &__get_cpu_var(dirty_throttle_leaks);
1502         if (*p > 0 && current->nr_dirtied < ratelimit) {
1503                 unsigned long nr_pages_dirtied;
1504                 nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
1505                 *p -= nr_pages_dirtied;
1506                 current->nr_dirtied += nr_pages_dirtied;
1507         }
1508         preempt_enable();
1509
1510         if (unlikely(current->nr_dirtied >= ratelimit))
1511                 balance_dirty_pages(mapping, current->nr_dirtied);
1512 }
1513 EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
1514
1515 void throttle_vm_writeout(gfp_t gfp_mask)
1516 {
1517         unsigned long background_thresh;
1518         unsigned long dirty_thresh;
1519
1520         for ( ; ; ) {
1521                 global_dirty_limits(&background_thresh, &dirty_thresh);
1522                 dirty_thresh = hard_dirty_limit(dirty_thresh);
1523
1524                 /*
1525                  * Boost the allowable dirty threshold a bit for page
1526                  * allocators so they don't get DoS'ed by heavy writers
1527                  */
1528                 dirty_thresh += dirty_thresh / 10;      /* wheeee... */
1529
1530                 if (global_page_state(NR_UNSTABLE_NFS) +
1531                         global_page_state(NR_WRITEBACK) <= dirty_thresh)
1532                                 break;
1533                 congestion_wait(BLK_RW_ASYNC, HZ/10);
1534
1535                 /*
1536                  * The caller might hold locks which can prevent IO completion
1537                  * or progress in the filesystem.  So we cannot just sit here
1538                  * waiting for IO to complete.
1539                  */
1540                 if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
1541                         break;
1542         }
1543 }
1544
1545 /*
1546  * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
1547  */
1548 int dirty_writeback_centisecs_handler(ctl_table *table, int write,
1549         void __user *buffer, size_t *length, loff_t *ppos)
1550 {
1551         proc_dointvec(table, write, buffer, length, ppos);
1552         return 0;
1553 }
1554
1555 #ifdef CONFIG_BLOCK
1556 void laptop_mode_timer_fn(unsigned long data)
1557 {
1558         struct request_queue *q = (struct request_queue *)data;
1559         int nr_pages = global_page_state(NR_FILE_DIRTY) +
1560                 global_page_state(NR_UNSTABLE_NFS);
1561
1562         /*
1563          * We want to write everything out, not just down to the dirty
1564          * threshold
1565          */
1566         if (bdi_has_dirty_io(&q->backing_dev_info))
1567                 bdi_start_writeback(&q->backing_dev_info, nr_pages,
1568                                         WB_REASON_LAPTOP_TIMER);
1569 }
1570
1571 /*
1572  * We've spun up the disk and we're in laptop mode: schedule writeback
1573  * of all dirty data a few seconds from now.  If the flush is already scheduled
1574  * then push it back - the user is still using the disk.
1575  */
1576 void laptop_io_completion(struct backing_dev_info *info)
1577 {
1578         mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
1579 }
1580
1581 /*
1582  * We're in laptop mode and we've just synced. The sync's writes will have
1583  * caused another writeback to be scheduled by laptop_io_completion.
1584  * Nothing needs to be written back anymore, so we unschedule the writeback.
1585  */
1586 void laptop_sync_completion(void)
1587 {
1588         struct backing_dev_info *bdi;
1589
1590         rcu_read_lock();
1591
1592         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
1593                 del_timer(&bdi->laptop_mode_wb_timer);
1594
1595         rcu_read_unlock();
1596 }
1597 #endif
1598
1599 /*
1600  * If ratelimit_pages is too high then we can get into dirty-data overload
1601  * if a large number of processes all perform writes at the same time.
1602  * If it is too low then SMP machines will call the (expensive)
1603  * get_writeback_state too often.
1604  *
1605  * Here we set ratelimit_pages to a level which ensures that when all CPUs are
1606  * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
1607  * thresholds.
1608  */
1609
1610 void writeback_set_ratelimit(void)
1611 {
1612         unsigned long background_thresh;
1613         unsigned long dirty_thresh;
1614         global_dirty_limits(&background_thresh, &dirty_thresh);
1615         global_dirty_limit = dirty_thresh;
1616         ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
1617         if (ratelimit_pages < 16)
1618                 ratelimit_pages = 16;
1619 }
1620
1621 static int __cpuinit
1622 ratelimit_handler(struct notifier_block *self, unsigned long action,
1623                   void *hcpu)
1624 {
1625
1626         switch (action & ~CPU_TASKS_FROZEN) {
1627         case CPU_ONLINE:
1628         case CPU_DEAD:
1629                 writeback_set_ratelimit();
1630                 return NOTIFY_OK;
1631         default:
1632                 return NOTIFY_DONE;
1633         }
1634 }
1635
1636 static struct notifier_block __cpuinitdata ratelimit_nb = {
1637         .notifier_call  = ratelimit_handler,
1638         .next           = NULL,
1639 };
1640
1641 /*
1642  * Called early on to tune the page writeback dirty limits.
1643  *
1644  * We used to scale dirty pages according to how total memory
1645  * related to pages that could be allocated for buffers (by
1646  * comparing nr_free_buffer_pages() to vm_total_pages.
1647  *
1648  * However, that was when we used "dirty_ratio" to scale with
1649  * all memory, and we don't do that any more. "dirty_ratio"
1650  * is now applied to total non-HIGHPAGE memory (by subtracting
1651  * totalhigh_pages from vm_total_pages), and as such we can't
1652  * get into the old insane situation any more where we had
1653  * large amounts of dirty pages compared to a small amount of
1654  * non-HIGHMEM memory.
1655  *
1656  * But we might still want to scale the dirty_ratio by how
1657  * much memory the box has..
1658  */
1659 void __init page_writeback_init(void)
1660 {
1661         writeback_set_ratelimit();
1662         register_cpu_notifier(&ratelimit_nb);
1663
1664         fprop_global_init(&writeout_completions);
1665 }
1666
1667 /**
1668  * tag_pages_for_writeback - tag pages to be written by write_cache_pages
1669  * @mapping: address space structure to write
1670  * @start: starting page index
1671  * @end: ending page index (inclusive)
1672  *
1673  * This function scans the page range from @start to @end (inclusive) and tags
1674  * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
1675  * that write_cache_pages (or whoever calls this function) will then use
1676  * TOWRITE tag to identify pages eligible for writeback.  This mechanism is
1677  * used to avoid livelocking of writeback by a process steadily creating new
1678  * dirty pages in the file (thus it is important for this function to be quick
1679  * so that it can tag pages faster than a dirtying process can create them).
1680  */
1681 /*
1682  * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
1683  */
1684 void tag_pages_for_writeback(struct address_space *mapping,
1685                              pgoff_t start, pgoff_t end)
1686 {
1687 #define WRITEBACK_TAG_BATCH 4096
1688         unsigned long tagged;
1689
1690         do {
1691                 spin_lock_irq(&mapping->tree_lock);
1692                 tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
1693                                 &start, end, WRITEBACK_TAG_BATCH,
1694                                 PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
1695                 spin_unlock_irq(&mapping->tree_lock);
1696                 WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
1697                 cond_resched();
1698                 /* We check 'start' to handle wrapping when end == ~0UL */
1699         } while (tagged >= WRITEBACK_TAG_BATCH && start);
1700 }
1701 EXPORT_SYMBOL(tag_pages_for_writeback);
1702
1703 /**
1704  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
1705  * @mapping: address space structure to write
1706  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1707  * @writepage: function called for each page
1708  * @data: data passed to writepage function
1709  *
1710  * If a page is already under I/O, write_cache_pages() skips it, even
1711  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
1712  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
1713  * and msync() need to guarantee that all the data which was dirty at the time
1714  * the call was made get new I/O started against them.  If wbc->sync_mode is
1715  * WB_SYNC_ALL then we were called for data integrity and we must wait for
1716  * existing IO to complete.
1717  *
1718  * To avoid livelocks (when other process dirties new pages), we first tag
1719  * pages which should be written back with TOWRITE tag and only then start
1720  * writing them. For data-integrity sync we have to be careful so that we do
1721  * not miss some pages (e.g., because some other process has cleared TOWRITE
1722  * tag we set). The rule we follow is that TOWRITE tag can be cleared only
1723  * by the process clearing the DIRTY tag (and submitting the page for IO).
1724  */
1725 int write_cache_pages(struct address_space *mapping,
1726                       struct writeback_control *wbc, writepage_t writepage,
1727                       void *data)
1728 {
1729         int ret = 0;
1730         int done = 0;
1731         struct pagevec pvec;
1732         int nr_pages;
1733         pgoff_t uninitialized_var(writeback_index);
1734         pgoff_t index;
1735         pgoff_t end;            /* Inclusive */
1736         pgoff_t done_index;
1737         int cycled;
1738         int range_whole = 0;
1739         int tag;
1740
1741         pagevec_init(&pvec, 0);
1742         if (wbc->range_cyclic) {
1743                 writeback_index = mapping->writeback_index; /* prev offset */
1744                 index = writeback_index;
1745                 if (index == 0)
1746                         cycled = 1;
1747                 else
1748                         cycled = 0;
1749                 end = -1;
1750         } else {
1751                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
1752                 end = wbc->range_end >> PAGE_CACHE_SHIFT;
1753                 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
1754                         range_whole = 1;
1755                 cycled = 1; /* ignore range_cyclic tests */
1756         }
1757         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1758                 tag = PAGECACHE_TAG_TOWRITE;
1759         else
1760                 tag = PAGECACHE_TAG_DIRTY;
1761 retry:
1762         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1763                 tag_pages_for_writeback(mapping, index, end);
1764         done_index = index;
1765         while (!done && (index <= end)) {
1766                 int i;
1767
1768                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
1769                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1770                 if (nr_pages == 0)
1771                         break;
1772
1773                 for (i = 0; i < nr_pages; i++) {
1774                         struct page *page = pvec.pages[i];
1775
1776                         /*
1777                          * At this point, the page may be truncated or
1778                          * invalidated (changing page->mapping to NULL), or
1779                          * even swizzled back from swapper_space to tmpfs file
1780                          * mapping. However, page->index will not change
1781                          * because we have a reference on the page.
1782                          */
1783                         if (page->index > end) {
1784                                 /*
1785                                  * can't be range_cyclic (1st pass) because
1786                                  * end == -1 in that case.
1787                                  */
1788                                 done = 1;
1789                                 break;
1790                         }
1791
1792                         done_index = page->index;
1793
1794                         lock_page(page);
1795
1796                         /*
1797                          * Page truncated or invalidated. We can freely skip it
1798                          * then, even for data integrity operations: the page
1799                          * has disappeared concurrently, so there could be no
1800                          * real expectation of this data interity operation
1801                          * even if there is now a new, dirty page at the same
1802                          * pagecache address.
1803                          */
1804                         if (unlikely(page->mapping != mapping)) {
1805 continue_unlock:
1806                                 unlock_page(page);
1807                                 continue;
1808                         }
1809
1810                         if (!PageDirty(page)) {
1811                                 /* someone wrote it for us */
1812                                 goto continue_unlock;
1813                         }
1814
1815                         if (PageWriteback(page)) {
1816                                 if (wbc->sync_mode != WB_SYNC_NONE)
1817                                         wait_on_page_writeback(page);
1818                                 else
1819                                         goto continue_unlock;
1820                         }
1821
1822                         BUG_ON(PageWriteback(page));
1823                         if (!clear_page_dirty_for_io(page))
1824                                 goto continue_unlock;
1825
1826                         trace_wbc_writepage(wbc, mapping->backing_dev_info);
1827                         ret = (*writepage)(page, wbc, data);
1828                         if (unlikely(ret)) {
1829                                 if (ret == AOP_WRITEPAGE_ACTIVATE) {
1830                                         unlock_page(page);
1831                                         ret = 0;
1832                                 } else {
1833                                         /*
1834                                          * done_index is set past this page,
1835                                          * so media errors will not choke
1836                                          * background writeout for the entire
1837                                          * file. This has consequences for
1838                                          * range_cyclic semantics (ie. it may
1839                                          * not be suitable for data integrity
1840                                          * writeout).
1841                                          */
1842                                         done_index = page->index + 1;
1843                                         done = 1;
1844                                         break;
1845                                 }
1846                         }
1847
1848                         /*
1849                          * We stop writing back only if we are not doing
1850                          * integrity sync. In case of integrity sync we have to
1851                          * keep going until we have written all the pages
1852                          * we tagged for writeback prior to entering this loop.
1853                          */
1854                         if (--wbc->nr_to_write <= 0 &&
1855                             wbc->sync_mode == WB_SYNC_NONE) {
1856                                 done = 1;
1857                                 break;
1858                         }
1859                 }
1860                 pagevec_release(&pvec);
1861                 cond_resched();
1862         }
1863         if (!cycled && !done) {
1864                 /*
1865                  * range_cyclic:
1866                  * We hit the last page and there is more work to be done: wrap
1867                  * back to the start of the file
1868                  */
1869                 cycled = 1;
1870                 index = 0;
1871                 end = writeback_index - 1;
1872                 goto retry;
1873         }
1874         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
1875                 mapping->writeback_index = done_index;
1876
1877         return ret;
1878 }
1879 EXPORT_SYMBOL(write_cache_pages);
1880
1881 /*
1882  * Function used by generic_writepages to call the real writepage
1883  * function and set the mapping flags on error
1884  */
1885 static int __writepage(struct page *page, struct writeback_control *wbc,
1886                        void *data)
1887 {
1888         struct address_space *mapping = data;
1889         int ret = mapping->a_ops->writepage(page, wbc);
1890         mapping_set_error(mapping, ret);
1891         return ret;
1892 }
1893
1894 /**
1895  * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
1896  * @mapping: address space structure to write
1897  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1898  *
1899  * This is a library function, which implements the writepages()
1900  * address_space_operation.
1901  */
1902 int generic_writepages(struct address_space *mapping,
1903                        struct writeback_control *wbc)
1904 {
1905         struct blk_plug plug;
1906         int ret;
1907
1908         /* deal with chardevs and other special file */
1909         if (!mapping->a_ops->writepage)
1910                 return 0;
1911
1912         blk_start_plug(&plug);
1913         ret = write_cache_pages(mapping, wbc, __writepage, mapping);
1914         blk_finish_plug(&plug);
1915         return ret;
1916 }
1917
1918 EXPORT_SYMBOL(generic_writepages);
1919
1920 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
1921 {
1922         int ret;
1923
1924         if (wbc->nr_to_write <= 0)
1925                 return 0;
1926         if (mapping->a_ops->writepages)
1927                 ret = mapping->a_ops->writepages(mapping, wbc);
1928         else
1929                 ret = generic_writepages(mapping, wbc);
1930         return ret;
1931 }
1932
1933 /**
1934  * write_one_page - write out a single page and optionally wait on I/O
1935  * @page: the page to write
1936  * @wait: if true, wait on writeout
1937  *
1938  * The page must be locked by the caller and will be unlocked upon return.
1939  *
1940  * write_one_page() returns a negative error code if I/O failed.
1941  */
1942 int write_one_page(struct page *page, int wait)
1943 {
1944         struct address_space *mapping = page->mapping;
1945         int ret = 0;
1946         struct writeback_control wbc = {
1947                 .sync_mode = WB_SYNC_ALL,
1948                 .nr_to_write = 1,
1949         };
1950
1951         BUG_ON(!PageLocked(page));
1952
1953         if (wait)
1954                 wait_on_page_writeback(page);
1955
1956         if (clear_page_dirty_for_io(page)) {
1957                 page_cache_get(page);
1958                 ret = mapping->a_ops->writepage(page, &wbc);
1959                 if (ret == 0 && wait) {
1960                         wait_on_page_writeback(page);
1961                         if (PageError(page))
1962                                 ret = -EIO;
1963                 }
1964                 page_cache_release(page);
1965         } else {
1966                 unlock_page(page);
1967         }
1968         return ret;
1969 }
1970 EXPORT_SYMBOL(write_one_page);
1971
1972 /*
1973  * For address_spaces which do not use buffers nor write back.
1974  */
1975 int __set_page_dirty_no_writeback(struct page *page)
1976 {
1977         if (!PageDirty(page))
1978                 return !TestSetPageDirty(page);
1979         return 0;
1980 }
1981
1982 /*
1983  * Helper function for set_page_dirty family.
1984  * NOTE: This relies on being atomic wrt interrupts.
1985  */
1986 void account_page_dirtied(struct page *page, struct address_space *mapping)
1987 {
1988         trace_writeback_dirty_page(page, mapping);
1989
1990         if (mapping_cap_account_dirty(mapping)) {
1991                 __inc_zone_page_state(page, NR_FILE_DIRTY);
1992                 __inc_zone_page_state(page, NR_DIRTIED);
1993                 __inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
1994                 __inc_bdi_stat(mapping->backing_dev_info, BDI_DIRTIED);
1995                 task_io_account_write(PAGE_CACHE_SIZE);
1996                 current->nr_dirtied++;
1997                 this_cpu_inc(bdp_ratelimits);
1998         }
1999 }
2000 EXPORT_SYMBOL(account_page_dirtied);
2001
2002 /*
2003  * Helper function for set_page_writeback family.
2004  * NOTE: Unlike account_page_dirtied this does not rely on being atomic
2005  * wrt interrupts.
2006  */
2007 void account_page_writeback(struct page *page)
2008 {
2009         inc_zone_page_state(page, NR_WRITEBACK);
2010 }
2011 EXPORT_SYMBOL(account_page_writeback);
2012
2013 /*
2014  * For address_spaces which do not use buffers.  Just tag the page as dirty in
2015  * its radix tree.
2016  *
2017  * This is also used when a single buffer is being dirtied: we want to set the
2018  * page dirty in that case, but not all the buffers.  This is a "bottom-up"
2019  * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
2020  *
2021  * Most callers have locked the page, which pins the address_space in memory.
2022  * But zap_pte_range() does not lock the page, however in that case the
2023  * mapping is pinned by the vma's ->vm_file reference.
2024  *
2025  * We take care to handle the case where the page was truncated from the
2026  * mapping by re-checking page_mapping() inside tree_lock.
2027  */
2028 int __set_page_dirty_nobuffers(struct page *page)
2029 {
2030         if (!TestSetPageDirty(page)) {
2031                 struct address_space *mapping = page_mapping(page);
2032                 struct address_space *mapping2;
2033                 unsigned long flags;
2034
2035                 if (!mapping)
2036                         return 1;
2037
2038                 spin_lock_irqsave(&mapping->tree_lock, flags);
2039                 mapping2 = page_mapping(page);
2040                 if (mapping2) { /* Race with truncate? */
2041                         BUG_ON(mapping2 != mapping);
2042                         WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
2043                         account_page_dirtied(page, mapping);
2044                         radix_tree_tag_set(&mapping->page_tree,
2045                                 page_index(page), PAGECACHE_TAG_DIRTY);
2046                 }
2047                 spin_unlock_irqrestore(&mapping->tree_lock, flags);
2048                 if (mapping->host) {
2049                         /* !PageAnon && !swapper_space */
2050                         __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
2051                 }
2052                 return 1;
2053         }
2054         return 0;
2055 }
2056 EXPORT_SYMBOL(__set_page_dirty_nobuffers);
2057
2058 /*
2059  * Call this whenever redirtying a page, to de-account the dirty counters
2060  * (NR_DIRTIED, BDI_DIRTIED, tsk->nr_dirtied), so that they match the written
2061  * counters (NR_WRITTEN, BDI_WRITTEN) in long term. The mismatches will lead to
2062  * systematic errors in balanced_dirty_ratelimit and the dirty pages position
2063  * control.
2064  */
2065 void account_page_redirty(struct page *page)
2066 {
2067         struct address_space *mapping = page->mapping;
2068         if (mapping && mapping_cap_account_dirty(mapping)) {
2069                 current->nr_dirtied--;
2070                 dec_zone_page_state(page, NR_DIRTIED);
2071                 dec_bdi_stat(mapping->backing_dev_info, BDI_DIRTIED);
2072         }
2073 }
2074 EXPORT_SYMBOL(account_page_redirty);
2075
2076 /*
2077  * When a writepage implementation decides that it doesn't want to write this
2078  * page for some reason, it should redirty the locked page via
2079  * redirty_page_for_writepage() and it should then unlock the page and return 0
2080  */
2081 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
2082 {
2083         wbc->pages_skipped++;
2084         account_page_redirty(page);
2085         return __set_page_dirty_nobuffers(page);
2086 }
2087 EXPORT_SYMBOL(redirty_page_for_writepage);
2088
2089 /*
2090  * Dirty a page.
2091  *
2092  * For pages with a mapping this should be done under the page lock
2093  * for the benefit of asynchronous memory errors who prefer a consistent
2094  * dirty state. This rule can be broken in some special cases,
2095  * but should be better not to.
2096  *
2097  * If the mapping doesn't provide a set_page_dirty a_op, then
2098  * just fall through and assume that it wants buffer_heads.
2099  */
2100 int set_page_dirty(struct page *page)
2101 {
2102         struct address_space *mapping = page_mapping(page);
2103
2104         if (likely(mapping)) {
2105                 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
2106                 /*
2107                  * readahead/lru_deactivate_page could remain
2108                  * PG_readahead/PG_reclaim due to race with end_page_writeback
2109                  * About readahead, if the page is written, the flags would be
2110                  * reset. So no problem.
2111                  * About lru_deactivate_page, if the page is redirty, the flag
2112                  * will be reset. So no problem. but if the page is used by readahead
2113                  * it will confuse readahead and make it restart the size rampup
2114                  * process. But it's a trivial problem.
2115                  */
2116                 ClearPageReclaim(page);
2117 #ifdef CONFIG_BLOCK
2118                 if (!spd)
2119                         spd = __set_page_dirty_buffers;
2120 #endif
2121                 return (*spd)(page);
2122         }
2123         if (!PageDirty(page)) {
2124                 if (!TestSetPageDirty(page))
2125                         return 1;
2126         }
2127         return 0;
2128 }
2129 EXPORT_SYMBOL(set_page_dirty);
2130
2131 /*
2132  * set_page_dirty() is racy if the caller has no reference against
2133  * page->mapping->host, and if the page is unlocked.  This is because another
2134  * CPU could truncate the page off the mapping and then free the mapping.
2135  *
2136  * Usually, the page _is_ locked, or the caller is a user-space process which
2137  * holds a reference on the inode by having an open file.
2138  *
2139  * In other cases, the page should be locked before running set_page_dirty().
2140  */
2141 int set_page_dirty_lock(struct page *page)
2142 {
2143         int ret;
2144
2145         lock_page(page);
2146         ret = set_page_dirty(page);
2147         unlock_page(page);
2148         return ret;
2149 }
2150 EXPORT_SYMBOL(set_page_dirty_lock);
2151
2152 /*
2153  * Clear a page's dirty flag, while caring for dirty memory accounting.
2154  * Returns true if the page was previously dirty.
2155  *
2156  * This is for preparing to put the page under writeout.  We leave the page
2157  * tagged as dirty in the radix tree so that a concurrent write-for-sync
2158  * can discover it via a PAGECACHE_TAG_DIRTY walk.  The ->writepage
2159  * implementation will run either set_page_writeback() or set_page_dirty(),
2160  * at which stage we bring the page's dirty flag and radix-tree dirty tag
2161  * back into sync.
2162  *
2163  * This incoherency between the page's dirty flag and radix-tree tag is
2164  * unfortunate, but it only exists while the page is locked.
2165  */
2166 int clear_page_dirty_for_io(struct page *page)
2167 {
2168         struct address_space *mapping = page_mapping(page);
2169
2170         BUG_ON(!PageLocked(page));
2171
2172         if (mapping && mapping_cap_account_dirty(mapping)) {
2173                 /*
2174                  * Yes, Virginia, this is indeed insane.
2175                  *
2176                  * We use this sequence to make sure that
2177                  *  (a) we account for dirty stats properly
2178                  *  (b) we tell the low-level filesystem to
2179                  *      mark the whole page dirty if it was
2180                  *      dirty in a pagetable. Only to then
2181                  *  (c) clean the page again and return 1 to
2182                  *      cause the writeback.
2183                  *
2184                  * This way we avoid all nasty races with the
2185                  * dirty bit in multiple places and clearing
2186                  * them concurrently from different threads.
2187                  *
2188                  * Note! Normally the "set_page_dirty(page)"
2189                  * has no effect on the actual dirty bit - since
2190                  * that will already usually be set. But we
2191                  * need the side effects, and it can help us
2192                  * avoid races.
2193                  *
2194                  * We basically use the page "master dirty bit"
2195                  * as a serialization point for all the different
2196                  * threads doing their things.
2197                  */
2198                 if (page_mkclean(page))
2199                         set_page_dirty(page);
2200                 /*
2201                  * We carefully synchronise fault handlers against
2202                  * installing a dirty pte and marking the page dirty
2203                  * at this point. We do this by having them hold the
2204                  * page lock at some point after installing their
2205                  * pte, but before marking the page dirty.
2206                  * Pages are always locked coming in here, so we get
2207                  * the desired exclusion. See mm/memory.c:do_wp_page()
2208                  * for more comments.
2209                  */
2210                 if (TestClearPageDirty(page)) {
2211                         dec_zone_page_state(page, NR_FILE_DIRTY);
2212                         dec_bdi_stat(mapping->backing_dev_info,
2213                                         BDI_RECLAIMABLE);
2214                         return 1;
2215                 }
2216                 return 0;
2217         }
2218         return TestClearPageDirty(page);
2219 }
2220 EXPORT_SYMBOL(clear_page_dirty_for_io);
2221
2222 int test_clear_page_writeback(struct page *page)
2223 {
2224         struct address_space *mapping = page_mapping(page);
2225         int ret;
2226
2227         if (mapping) {
2228                 struct backing_dev_info *bdi = mapping->backing_dev_info;
2229                 unsigned long flags;
2230
2231                 spin_lock_irqsave(&mapping->tree_lock, flags);
2232                 ret = TestClearPageWriteback(page);
2233                 if (ret) {
2234                         radix_tree_tag_clear(&mapping->page_tree,
2235                                                 page_index(page),
2236                                                 PAGECACHE_TAG_WRITEBACK);
2237                         if (bdi_cap_account_writeback(bdi)) {
2238                                 __dec_bdi_stat(bdi, BDI_WRITEBACK);
2239                                 __bdi_writeout_inc(bdi);
2240                         }
2241                 }
2242                 spin_unlock_irqrestore(&mapping->tree_lock, flags);
2243         } else {
2244                 ret = TestClearPageWriteback(page);
2245         }
2246         if (ret) {
2247                 dec_zone_page_state(page, NR_WRITEBACK);
2248                 inc_zone_page_state(page, NR_WRITTEN);
2249         }
2250         return ret;
2251 }
2252
2253 int test_set_page_writeback(struct page *page)
2254 {
2255         struct address_space *mapping = page_mapping(page);
2256         int ret;
2257
2258         if (mapping) {
2259                 struct backing_dev_info *bdi = mapping->backing_dev_info;
2260                 unsigned long flags;
2261
2262                 spin_lock_irqsave(&mapping->tree_lock, flags);
2263                 ret = TestSetPageWriteback(page);
2264                 if (!ret) {
2265                         radix_tree_tag_set(&mapping->page_tree,
2266                                                 page_index(page),
2267                                                 PAGECACHE_TAG_WRITEBACK);
2268                         if (bdi_cap_account_writeback(bdi))
2269                                 __inc_bdi_stat(bdi, BDI_WRITEBACK);
2270                 }
2271                 if (!PageDirty(page))
2272                         radix_tree_tag_clear(&mapping->page_tree,
2273                                                 page_index(page),
2274                                                 PAGECACHE_TAG_DIRTY);
2275                 radix_tree_tag_clear(&mapping->page_tree,
2276                                      page_index(page),
2277                                      PAGECACHE_TAG_TOWRITE);
2278                 spin_unlock_irqrestore(&mapping->tree_lock, flags);
2279         } else {
2280                 ret = TestSetPageWriteback(page);
2281         }
2282         if (!ret)
2283                 account_page_writeback(page);
2284         return ret;
2285
2286 }
2287 EXPORT_SYMBOL(test_set_page_writeback);
2288
2289 /*
2290  * Return true if any of the pages in the mapping are marked with the
2291  * passed tag.
2292  */
2293 int mapping_tagged(struct address_space *mapping, int tag)
2294 {
2295         return radix_tree_tagged(&mapping->page_tree, tag);
2296 }
2297 EXPORT_SYMBOL(mapping_tagged);
2298
2299 /**
2300  * wait_for_stable_page() - wait for writeback to finish, if necessary.
2301  * @page:       The page to wait on.
2302  *
2303  * This function determines if the given page is related to a backing device
2304  * that requires page contents to be held stable during writeback.  If so, then
2305  * it will wait for any pending writeback to complete.
2306  */
2307 void wait_for_stable_page(struct page *page)
2308 {
2309         struct address_space *mapping = page_mapping(page);
2310         struct backing_dev_info *bdi = mapping->backing_dev_info;
2311
2312         if (!bdi_cap_stable_pages_required(bdi))
2313                 return;
2314
2315         wait_on_page_writeback(page);
2316 }
2317 EXPORT_SYMBOL_GPL(wait_for_stable_page);