4 * Replacement code for mm functions to support CPU's that don't
5 * have any form of memory management unit (thus no virtual memory).
7 * See Documentation/nommu-mmap.txt
9 * Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
10 * Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
11 * Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
12 * Copyright (c) 2002 Greg Ungerer <gerg@snapgear.com>
13 * Copyright (c) 2007-2009 Paul Mundt <lethal@linux-sh.org>
16 #include <linux/module.h>
18 #include <linux/mman.h>
19 #include <linux/swap.h>
20 #include <linux/file.h>
21 #include <linux/highmem.h>
22 #include <linux/pagemap.h>
23 #include <linux/slab.h>
24 #include <linux/vmalloc.h>
25 #include <linux/tracehook.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/mount.h>
29 #include <linux/personality.h>
30 #include <linux/security.h>
31 #include <linux/syscalls.h>
33 #include <asm/uaccess.h>
35 #include <asm/tlbflush.h>
36 #include <asm/mmu_context.h>
39 static inline __attribute__((format(printf, 1, 2)))
40 void no_printk(const char *fmt, ...)
45 #define kenter(FMT, ...) \
46 printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
47 #define kleave(FMT, ...) \
48 printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
49 #define kdebug(FMT, ...) \
50 printk(KERN_DEBUG "xxx" FMT"yyy\n", ##__VA_ARGS__)
52 #define kenter(FMT, ...) \
53 no_printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
54 #define kleave(FMT, ...) \
55 no_printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
56 #define kdebug(FMT, ...) \
57 no_printk(KERN_DEBUG FMT"\n", ##__VA_ARGS__)
62 unsigned long max_mapnr;
63 unsigned long num_physpages;
64 unsigned long highest_memmap_pfn;
65 struct percpu_counter vm_committed_as;
66 int sysctl_overcommit_memory = OVERCOMMIT_GUESS; /* heuristic overcommit */
67 int sysctl_overcommit_ratio = 50; /* default is 50% */
68 int sysctl_max_map_count = DEFAULT_MAX_MAP_COUNT;
69 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
70 int heap_stack_gap = 0;
72 atomic_long_t mmap_pages_allocated;
74 EXPORT_SYMBOL(mem_map);
75 EXPORT_SYMBOL(num_physpages);
77 /* list of mapped, potentially shareable regions */
78 static struct kmem_cache *vm_region_jar;
79 struct rb_root nommu_region_tree = RB_ROOT;
80 DECLARE_RWSEM(nommu_region_sem);
82 const struct vm_operations_struct generic_file_vm_ops = {
86 * Return the total memory allocated for this pointer, not
87 * just what the caller asked for.
89 * Doesn't have to be accurate, i.e. may have races.
91 unsigned int kobjsize(const void *objp)
96 * If the object we have should not have ksize performed on it,
99 if (!objp || !virt_addr_valid(objp))
102 page = virt_to_head_page(objp);
105 * If the allocator sets PageSlab, we know the pointer came from
112 * If it's not a compound page, see if we have a matching VMA
113 * region. This test is intentionally done in reverse order,
114 * so if there's no VMA, we still fall through and hand back
115 * PAGE_SIZE for 0-order pages.
117 if (!PageCompound(page)) {
118 struct vm_area_struct *vma;
120 vma = find_vma(current->mm, (unsigned long)objp);
122 return vma->vm_end - vma->vm_start;
126 * The ksize() function is only guaranteed to work for pointers
127 * returned by kmalloc(). So handle arbitrary pointers here.
129 return PAGE_SIZE << compound_order(page);
132 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
133 unsigned long start, int nr_pages, unsigned int foll_flags,
134 struct page **pages, struct vm_area_struct **vmas)
136 struct vm_area_struct *vma;
137 unsigned long vm_flags;
140 /* calculate required read or write permissions.
141 * If FOLL_FORCE is set, we only require the "MAY" flags.
143 vm_flags = (foll_flags & FOLL_WRITE) ?
144 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
145 vm_flags &= (foll_flags & FOLL_FORCE) ?
146 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
148 for (i = 0; i < nr_pages; i++) {
149 vma = find_vma(mm, start);
151 goto finish_or_fault;
153 /* protect what we can, including chardevs */
154 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
155 !(vm_flags & vma->vm_flags))
156 goto finish_or_fault;
159 pages[i] = virt_to_page(start);
161 page_cache_get(pages[i]);
171 return i ? : -EFAULT;
175 * get a list of pages in an address range belonging to the specified process
176 * and indicate the VMA that covers each page
177 * - this is potentially dodgy as we may end incrementing the page count of a
178 * slab page or a secondary page from a compound page
179 * - don't permit access to VMAs that don't support it, such as I/O mappings
181 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
182 unsigned long start, int nr_pages, int write, int force,
183 struct page **pages, struct vm_area_struct **vmas)
192 return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas);
194 EXPORT_SYMBOL(get_user_pages);
197 * follow_pfn - look up PFN at a user virtual address
198 * @vma: memory mapping
199 * @address: user virtual address
200 * @pfn: location to store found PFN
202 * Only IO mappings and raw PFN mappings are allowed.
204 * Returns zero and the pfn at @pfn on success, -ve otherwise.
206 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
209 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
212 *pfn = address >> PAGE_SHIFT;
215 EXPORT_SYMBOL(follow_pfn);
217 DEFINE_RWLOCK(vmlist_lock);
218 struct vm_struct *vmlist;
220 void vfree(const void *addr)
224 EXPORT_SYMBOL(vfree);
226 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
229 * You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
230 * returns only a logical address.
232 return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
234 EXPORT_SYMBOL(__vmalloc);
236 void *vmalloc_user(unsigned long size)
240 ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
243 struct vm_area_struct *vma;
245 down_write(¤t->mm->mmap_sem);
246 vma = find_vma(current->mm, (unsigned long)ret);
248 vma->vm_flags |= VM_USERMAP;
249 up_write(¤t->mm->mmap_sem);
254 EXPORT_SYMBOL(vmalloc_user);
256 struct page *vmalloc_to_page(const void *addr)
258 return virt_to_page(addr);
260 EXPORT_SYMBOL(vmalloc_to_page);
262 unsigned long vmalloc_to_pfn(const void *addr)
264 return page_to_pfn(virt_to_page(addr));
266 EXPORT_SYMBOL(vmalloc_to_pfn);
268 long vread(char *buf, char *addr, unsigned long count)
270 memcpy(buf, addr, count);
274 long vwrite(char *buf, char *addr, unsigned long count)
276 /* Don't allow overflow */
277 if ((unsigned long) addr + count < count)
278 count = -(unsigned long) addr;
280 memcpy(addr, buf, count);
285 * vmalloc - allocate virtually continguos memory
287 * @size: allocation size
289 * Allocate enough pages to cover @size from the page level
290 * allocator and map them into continguos kernel virtual space.
292 * For tight control over page level allocator and protection flags
293 * use __vmalloc() instead.
295 void *vmalloc(unsigned long size)
297 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL);
299 EXPORT_SYMBOL(vmalloc);
301 void *vmalloc_node(unsigned long size, int node)
303 return vmalloc(size);
305 EXPORT_SYMBOL(vmalloc_node);
307 #ifndef PAGE_KERNEL_EXEC
308 # define PAGE_KERNEL_EXEC PAGE_KERNEL
312 * vmalloc_exec - allocate virtually contiguous, executable memory
313 * @size: allocation size
315 * Kernel-internal function to allocate enough pages to cover @size
316 * the page level allocator and map them into contiguous and
317 * executable kernel virtual space.
319 * For tight control over page level allocator and protection flags
320 * use __vmalloc() instead.
323 void *vmalloc_exec(unsigned long size)
325 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
329 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
330 * @size: allocation size
332 * Allocate enough 32bit PA addressable pages to cover @size from the
333 * page level allocator and map them into continguos kernel virtual space.
335 void *vmalloc_32(unsigned long size)
337 return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL);
339 EXPORT_SYMBOL(vmalloc_32);
342 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
343 * @size: allocation size
345 * The resulting memory area is 32bit addressable and zeroed so it can be
346 * mapped to userspace without leaking data.
348 * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
349 * remap_vmalloc_range() are permissible.
351 void *vmalloc_32_user(unsigned long size)
354 * We'll have to sort out the ZONE_DMA bits for 64-bit,
355 * but for now this can simply use vmalloc_user() directly.
357 return vmalloc_user(size);
359 EXPORT_SYMBOL(vmalloc_32_user);
361 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
368 void vunmap(const void *addr)
372 EXPORT_SYMBOL(vunmap);
374 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
379 EXPORT_SYMBOL(vm_map_ram);
381 void vm_unmap_ram(const void *mem, unsigned int count)
385 EXPORT_SYMBOL(vm_unmap_ram);
387 void vm_unmap_aliases(void)
390 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
393 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
396 void __attribute__((weak)) vmalloc_sync_all(void)
400 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
405 EXPORT_SYMBOL(vm_insert_page);
408 * sys_brk() for the most part doesn't need the global kernel
409 * lock, except when an application is doing something nasty
410 * like trying to un-brk an area that has already been mapped
411 * to a regular file. in this case, the unmapping will need
412 * to invoke file system routines that need the global lock.
414 SYSCALL_DEFINE1(brk, unsigned long, brk)
416 struct mm_struct *mm = current->mm;
418 if (brk < mm->start_brk || brk > mm->context.end_brk)
425 * Always allow shrinking brk
427 if (brk <= mm->brk) {
433 * Ok, looks good - let it rip.
435 return mm->brk = brk;
439 * initialise the VMA and region record slabs
441 void __init mmap_init(void)
445 ret = percpu_counter_init(&vm_committed_as, 0);
447 vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC);
451 * validate the region tree
452 * - the caller must hold the region lock
454 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
455 static noinline void validate_nommu_regions(void)
457 struct vm_region *region, *last;
458 struct rb_node *p, *lastp;
460 lastp = rb_first(&nommu_region_tree);
464 last = rb_entry(lastp, struct vm_region, vm_rb);
465 BUG_ON(unlikely(last->vm_end <= last->vm_start));
466 BUG_ON(unlikely(last->vm_top < last->vm_end));
468 while ((p = rb_next(lastp))) {
469 region = rb_entry(p, struct vm_region, vm_rb);
470 last = rb_entry(lastp, struct vm_region, vm_rb);
472 BUG_ON(unlikely(region->vm_end <= region->vm_start));
473 BUG_ON(unlikely(region->vm_top < region->vm_end));
474 BUG_ON(unlikely(region->vm_start < last->vm_top));
480 static void validate_nommu_regions(void)
486 * add a region into the global tree
488 static void add_nommu_region(struct vm_region *region)
490 struct vm_region *pregion;
491 struct rb_node **p, *parent;
493 validate_nommu_regions();
496 p = &nommu_region_tree.rb_node;
499 pregion = rb_entry(parent, struct vm_region, vm_rb);
500 if (region->vm_start < pregion->vm_start)
502 else if (region->vm_start > pregion->vm_start)
504 else if (pregion == region)
510 rb_link_node(®ion->vm_rb, parent, p);
511 rb_insert_color(®ion->vm_rb, &nommu_region_tree);
513 validate_nommu_regions();
517 * delete a region from the global tree
519 static void delete_nommu_region(struct vm_region *region)
521 BUG_ON(!nommu_region_tree.rb_node);
523 validate_nommu_regions();
524 rb_erase(®ion->vm_rb, &nommu_region_tree);
525 validate_nommu_regions();
529 * free a contiguous series of pages
531 static void free_page_series(unsigned long from, unsigned long to)
533 for (; from < to; from += PAGE_SIZE) {
534 struct page *page = virt_to_page(from);
536 kdebug("- free %lx", from);
537 atomic_long_dec(&mmap_pages_allocated);
538 if (page_count(page) != 1)
539 kdebug("free page %p: refcount not one: %d",
540 page, page_count(page));
546 * release a reference to a region
547 * - the caller must hold the region semaphore for writing, which this releases
548 * - the region may not have been added to the tree yet, in which case vm_top
549 * will equal vm_start
551 static void __put_nommu_region(struct vm_region *region)
552 __releases(nommu_region_sem)
554 kenter("%p{%d}", region, atomic_read(®ion->vm_usage));
556 BUG_ON(!nommu_region_tree.rb_node);
558 if (atomic_dec_and_test(®ion->vm_usage)) {
559 if (region->vm_top > region->vm_start)
560 delete_nommu_region(region);
561 up_write(&nommu_region_sem);
564 fput(region->vm_file);
566 /* IO memory and memory shared directly out of the pagecache
567 * from ramfs/tmpfs mustn't be released here */
568 if (region->vm_flags & VM_MAPPED_COPY) {
569 kdebug("free series");
570 free_page_series(region->vm_start, region->vm_top);
572 kmem_cache_free(vm_region_jar, region);
574 up_write(&nommu_region_sem);
579 * release a reference to a region
581 static void put_nommu_region(struct vm_region *region)
583 down_write(&nommu_region_sem);
584 __put_nommu_region(region);
588 * update protection on a vma
590 static void protect_vma(struct vm_area_struct *vma, unsigned long flags)
593 struct mm_struct *mm = vma->vm_mm;
594 long start = vma->vm_start & PAGE_MASK;
595 while (start < vma->vm_end) {
596 protect_page(mm, start, flags);
599 update_protections(mm);
604 * add a VMA into a process's mm_struct in the appropriate place in the list
605 * and tree and add to the address space's page tree also if not an anonymous
607 * - should be called with mm->mmap_sem held writelocked
609 static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma)
611 struct vm_area_struct *pvma, **pp;
612 struct address_space *mapping;
613 struct rb_node **p, *parent;
617 BUG_ON(!vma->vm_region);
622 protect_vma(vma, vma->vm_flags);
624 /* add the VMA to the mapping */
626 mapping = vma->vm_file->f_mapping;
628 flush_dcache_mmap_lock(mapping);
629 vma_prio_tree_insert(vma, &mapping->i_mmap);
630 flush_dcache_mmap_unlock(mapping);
633 /* add the VMA to the tree */
635 p = &mm->mm_rb.rb_node;
638 pvma = rb_entry(parent, struct vm_area_struct, vm_rb);
640 /* sort by: start addr, end addr, VMA struct addr in that order
641 * (the latter is necessary as we may get identical VMAs) */
642 if (vma->vm_start < pvma->vm_start)
644 else if (vma->vm_start > pvma->vm_start)
646 else if (vma->vm_end < pvma->vm_end)
648 else if (vma->vm_end > pvma->vm_end)
658 rb_link_node(&vma->vm_rb, parent, p);
659 rb_insert_color(&vma->vm_rb, &mm->mm_rb);
661 /* add VMA to the VMA list also */
662 for (pp = &mm->mmap; (pvma = *pp); pp = &(*pp)->vm_next) {
663 if (pvma->vm_start > vma->vm_start)
665 if (pvma->vm_start < vma->vm_start)
667 if (pvma->vm_end < vma->vm_end)
676 * delete a VMA from its owning mm_struct and address space
678 static void delete_vma_from_mm(struct vm_area_struct *vma)
680 struct vm_area_struct **pp;
681 struct address_space *mapping;
682 struct mm_struct *mm = vma->vm_mm;
689 if (mm->mmap_cache == vma)
690 mm->mmap_cache = NULL;
692 /* remove the VMA from the mapping */
694 mapping = vma->vm_file->f_mapping;
696 flush_dcache_mmap_lock(mapping);
697 vma_prio_tree_remove(vma, &mapping->i_mmap);
698 flush_dcache_mmap_unlock(mapping);
701 /* remove from the MM's tree and list */
702 rb_erase(&vma->vm_rb, &mm->mm_rb);
703 for (pp = &mm->mmap; *pp; pp = &(*pp)->vm_next) {
714 * destroy a VMA record
716 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
719 if (vma->vm_ops && vma->vm_ops->close)
720 vma->vm_ops->close(vma);
723 if (vma->vm_flags & VM_EXECUTABLE)
724 removed_exe_file_vma(mm);
726 put_nommu_region(vma->vm_region);
727 kmem_cache_free(vm_area_cachep, vma);
731 * look up the first VMA in which addr resides, NULL if none
732 * - should be called with mm->mmap_sem at least held readlocked
734 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
736 struct vm_area_struct *vma;
737 struct rb_node *n = mm->mm_rb.rb_node;
739 /* check the cache first */
740 vma = mm->mmap_cache;
741 if (vma && vma->vm_start <= addr && vma->vm_end > addr)
744 /* trawl the tree (there may be multiple mappings in which addr
746 for (n = rb_first(&mm->mm_rb); n; n = rb_next(n)) {
747 vma = rb_entry(n, struct vm_area_struct, vm_rb);
748 if (vma->vm_start > addr)
750 if (vma->vm_end > addr) {
751 mm->mmap_cache = vma;
758 EXPORT_SYMBOL(find_vma);
762 * - we don't extend stack VMAs under NOMMU conditions
764 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
766 return find_vma(mm, addr);
770 * expand a stack to a given address
771 * - not supported under NOMMU conditions
773 int expand_stack(struct vm_area_struct *vma, unsigned long address)
779 * look up the first VMA exactly that exactly matches addr
780 * - should be called with mm->mmap_sem at least held readlocked
782 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
786 struct vm_area_struct *vma;
787 struct rb_node *n = mm->mm_rb.rb_node;
788 unsigned long end = addr + len;
790 /* check the cache first */
791 vma = mm->mmap_cache;
792 if (vma && vma->vm_start == addr && vma->vm_end == end)
795 /* trawl the tree (there may be multiple mappings in which addr
797 for (n = rb_first(&mm->mm_rb); n; n = rb_next(n)) {
798 vma = rb_entry(n, struct vm_area_struct, vm_rb);
799 if (vma->vm_start < addr)
801 if (vma->vm_start > addr)
803 if (vma->vm_end == end) {
804 mm->mmap_cache = vma;
813 * determine whether a mapping should be permitted and, if so, what sort of
814 * mapping we're capable of supporting
816 static int validate_mmap_request(struct file *file,
822 unsigned long *_capabilities)
824 unsigned long capabilities, rlen;
825 unsigned long reqprot = prot;
828 /* do the simple checks first */
829 if (flags & MAP_FIXED) {
831 "%d: Can't do fixed-address/overlay mmap of RAM\n",
836 if ((flags & MAP_TYPE) != MAP_PRIVATE &&
837 (flags & MAP_TYPE) != MAP_SHARED)
843 /* Careful about overflows.. */
844 rlen = PAGE_ALIGN(len);
845 if (!rlen || rlen > TASK_SIZE)
848 /* offset overflow? */
849 if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
853 /* validate file mapping requests */
854 struct address_space *mapping;
856 /* files must support mmap */
857 if (!file->f_op || !file->f_op->mmap)
860 /* work out if what we've got could possibly be shared
861 * - we support chardevs that provide their own "memory"
862 * - we support files/blockdevs that are memory backed
864 mapping = file->f_mapping;
866 mapping = file->f_path.dentry->d_inode->i_mapping;
869 if (mapping && mapping->backing_dev_info)
870 capabilities = mapping->backing_dev_info->capabilities;
873 /* no explicit capabilities set, so assume some
875 switch (file->f_path.dentry->d_inode->i_mode & S_IFMT) {
878 capabilities = BDI_CAP_MAP_COPY;
893 /* eliminate any capabilities that we can't support on this
895 if (!file->f_op->get_unmapped_area)
896 capabilities &= ~BDI_CAP_MAP_DIRECT;
897 if (!file->f_op->read)
898 capabilities &= ~BDI_CAP_MAP_COPY;
900 /* The file shall have been opened with read permission. */
901 if (!(file->f_mode & FMODE_READ))
904 if (flags & MAP_SHARED) {
905 /* do checks for writing, appending and locking */
906 if ((prot & PROT_WRITE) &&
907 !(file->f_mode & FMODE_WRITE))
910 if (IS_APPEND(file->f_path.dentry->d_inode) &&
911 (file->f_mode & FMODE_WRITE))
914 if (locks_verify_locked(file->f_path.dentry->d_inode))
917 if (!(capabilities & BDI_CAP_MAP_DIRECT))
920 if (((prot & PROT_READ) && !(capabilities & BDI_CAP_READ_MAP)) ||
921 ((prot & PROT_WRITE) && !(capabilities & BDI_CAP_WRITE_MAP)) ||
922 ((prot & PROT_EXEC) && !(capabilities & BDI_CAP_EXEC_MAP))
924 printk("MAP_SHARED not completely supported on !MMU\n");
928 /* we mustn't privatise shared mappings */
929 capabilities &= ~BDI_CAP_MAP_COPY;
932 /* we're going to read the file into private memory we
934 if (!(capabilities & BDI_CAP_MAP_COPY))
937 /* we don't permit a private writable mapping to be
938 * shared with the backing device */
939 if (prot & PROT_WRITE)
940 capabilities &= ~BDI_CAP_MAP_DIRECT;
943 /* handle executable mappings and implied executable
945 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
946 if (prot & PROT_EXEC)
949 else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
950 /* handle implication of PROT_EXEC by PROT_READ */
951 if (current->personality & READ_IMPLIES_EXEC) {
952 if (capabilities & BDI_CAP_EXEC_MAP)
956 else if ((prot & PROT_READ) &&
957 (prot & PROT_EXEC) &&
958 !(capabilities & BDI_CAP_EXEC_MAP)
960 /* backing file is not executable, try to copy */
961 capabilities &= ~BDI_CAP_MAP_DIRECT;
965 /* anonymous mappings are always memory backed and can be
968 capabilities = BDI_CAP_MAP_COPY;
970 /* handle PROT_EXEC implication by PROT_READ */
971 if ((prot & PROT_READ) &&
972 (current->personality & READ_IMPLIES_EXEC))
976 /* allow the security API to have its say */
977 ret = security_file_mmap(file, reqprot, prot, flags, addr, 0);
982 *_capabilities = capabilities;
987 * we've determined that we can make the mapping, now translate what we
988 * now know into VMA flags
990 static unsigned long determine_vm_flags(struct file *file,
993 unsigned long capabilities)
995 unsigned long vm_flags;
997 vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags);
998 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
999 /* vm_flags |= mm->def_flags; */
1001 if (!(capabilities & BDI_CAP_MAP_DIRECT)) {
1002 /* attempt to share read-only copies of mapped file chunks */
1003 if (file && !(prot & PROT_WRITE))
1004 vm_flags |= VM_MAYSHARE;
1007 /* overlay a shareable mapping on the backing device or inode
1008 * if possible - used for chardevs, ramfs/tmpfs/shmfs and
1010 if (flags & MAP_SHARED)
1011 vm_flags |= VM_MAYSHARE | VM_SHARED;
1012 else if ((((vm_flags & capabilities) ^ vm_flags) & BDI_CAP_VMFLAGS) == 0)
1013 vm_flags |= VM_MAYSHARE;
1016 /* refuse to let anyone share private mappings with this process if
1017 * it's being traced - otherwise breakpoints set in it may interfere
1018 * with another untraced process
1020 if ((flags & MAP_PRIVATE) && tracehook_expect_breakpoints(current))
1021 vm_flags &= ~VM_MAYSHARE;
1027 * set up a shared mapping on a file (the driver or filesystem provides and
1030 static int do_mmap_shared_file(struct vm_area_struct *vma)
1034 ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1036 vma->vm_region->vm_top = vma->vm_region->vm_end;
1042 /* getting an ENOSYS error indicates that direct mmap isn't
1043 * possible (as opposed to tried but failed) so we'll fall
1044 * through to making a private copy of the data and mapping
1050 * set up a private mapping or an anonymous shared mapping
1052 static int do_mmap_private(struct vm_area_struct *vma,
1053 struct vm_region *region,
1055 unsigned long capabilities)
1058 unsigned long total, point, n, rlen;
1062 /* invoke the file's mapping function so that it can keep track of
1063 * shared mappings on devices or memory
1064 * - VM_MAYSHARE will be set if it may attempt to share
1066 if (capabilities & BDI_CAP_MAP_DIRECT) {
1067 ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1069 /* shouldn't return success if we're not sharing */
1070 BUG_ON(!(vma->vm_flags & VM_MAYSHARE));
1071 vma->vm_region->vm_top = vma->vm_region->vm_end;
1077 /* getting an ENOSYS error indicates that direct mmap isn't
1078 * possible (as opposed to tried but failed) so we'll try to
1079 * make a private copy of the data and map that instead */
1082 rlen = PAGE_ALIGN(len);
1084 /* allocate some memory to hold the mapping
1085 * - note that this may not return a page-aligned address if the object
1086 * we're allocating is smaller than a page
1088 order = get_order(rlen);
1089 kdebug("alloc order %d for %lx", order, len);
1091 pages = alloc_pages(GFP_KERNEL, order);
1096 atomic_long_add(total, &mmap_pages_allocated);
1098 point = rlen >> PAGE_SHIFT;
1100 /* we allocated a power-of-2 sized page set, so we may want to trim off
1102 if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages) {
1103 while (total > point) {
1104 order = ilog2(total - point);
1106 kdebug("shave %lu/%lu @%lu", n, total - point, total);
1107 atomic_long_sub(n, &mmap_pages_allocated);
1109 set_page_refcounted(pages + total);
1110 __free_pages(pages + total, order);
1114 for (point = 1; point < total; point++)
1115 set_page_refcounted(&pages[point]);
1117 base = page_address(pages);
1118 region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY;
1119 region->vm_start = (unsigned long) base;
1120 region->vm_end = region->vm_start + rlen;
1121 region->vm_top = region->vm_start + (total << PAGE_SHIFT);
1123 vma->vm_start = region->vm_start;
1124 vma->vm_end = region->vm_start + len;
1127 /* read the contents of a file into the copy */
1128 mm_segment_t old_fs;
1131 fpos = vma->vm_pgoff;
1132 fpos <<= PAGE_SHIFT;
1136 ret = vma->vm_file->f_op->read(vma->vm_file, base, rlen, &fpos);
1142 /* clear the last little bit */
1144 memset(base + ret, 0, rlen - ret);
1147 /* if it's an anonymous mapping, then just clear it */
1148 memset(base, 0, rlen);
1154 free_page_series(region->vm_start, region->vm_end);
1155 region->vm_start = vma->vm_start = 0;
1156 region->vm_end = vma->vm_end = 0;
1161 printk("Allocation of length %lu from process %d (%s) failed\n",
1162 len, current->pid, current->comm);
1168 * handle mapping creation for uClinux
1170 unsigned long do_mmap_pgoff(struct file *file,
1174 unsigned long flags,
1175 unsigned long pgoff)
1177 struct vm_area_struct *vma;
1178 struct vm_region *region;
1180 unsigned long capabilities, vm_flags, result;
1183 kenter(",%lx,%lx,%lx,%lx,%lx", addr, len, prot, flags, pgoff);
1185 /* decide whether we should attempt the mapping, and if so what sort of
1187 ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1190 kleave(" = %d [val]", ret);
1194 /* we ignore the address hint */
1197 /* we've determined that we can make the mapping, now translate what we
1198 * now know into VMA flags */
1199 vm_flags = determine_vm_flags(file, prot, flags, capabilities);
1201 /* we're going to need to record the mapping */
1202 region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1204 goto error_getting_region;
1206 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1208 goto error_getting_vma;
1210 atomic_set(®ion->vm_usage, 1);
1211 region->vm_flags = vm_flags;
1212 region->vm_pgoff = pgoff;
1214 INIT_LIST_HEAD(&vma->anon_vma_node);
1215 vma->vm_flags = vm_flags;
1216 vma->vm_pgoff = pgoff;
1219 region->vm_file = file;
1221 vma->vm_file = file;
1223 if (vm_flags & VM_EXECUTABLE) {
1224 added_exe_file_vma(current->mm);
1225 vma->vm_mm = current->mm;
1229 down_write(&nommu_region_sem);
1231 /* if we want to share, we need to check for regions created by other
1232 * mmap() calls that overlap with our proposed mapping
1233 * - we can only share with a superset match on most regular files
1234 * - shared mappings on character devices and memory backed files are
1235 * permitted to overlap inexactly as far as we are concerned for in
1236 * these cases, sharing is handled in the driver or filesystem rather
1239 if (vm_flags & VM_MAYSHARE) {
1240 struct vm_region *pregion;
1241 unsigned long pglen, rpglen, pgend, rpgend, start;
1243 pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1244 pgend = pgoff + pglen;
1246 for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1247 pregion = rb_entry(rb, struct vm_region, vm_rb);
1249 if (!(pregion->vm_flags & VM_MAYSHARE))
1252 /* search for overlapping mappings on the same file */
1253 if (pregion->vm_file->f_path.dentry->d_inode !=
1254 file->f_path.dentry->d_inode)
1257 if (pregion->vm_pgoff >= pgend)
1260 rpglen = pregion->vm_end - pregion->vm_start;
1261 rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1262 rpgend = pregion->vm_pgoff + rpglen;
1263 if (pgoff >= rpgend)
1266 /* handle inexactly overlapping matches between
1268 if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1269 !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1270 /* new mapping is not a subset of the region */
1271 if (!(capabilities & BDI_CAP_MAP_DIRECT))
1272 goto sharing_violation;
1276 /* we've found a region we can share */
1277 atomic_inc(&pregion->vm_usage);
1278 vma->vm_region = pregion;
1279 start = pregion->vm_start;
1280 start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1281 vma->vm_start = start;
1282 vma->vm_end = start + len;
1284 if (pregion->vm_flags & VM_MAPPED_COPY) {
1285 kdebug("share copy");
1286 vma->vm_flags |= VM_MAPPED_COPY;
1288 kdebug("share mmap");
1289 ret = do_mmap_shared_file(vma);
1291 vma->vm_region = NULL;
1294 atomic_dec(&pregion->vm_usage);
1296 goto error_just_free;
1299 fput(region->vm_file);
1300 kmem_cache_free(vm_region_jar, region);
1306 /* obtain the address at which to make a shared mapping
1307 * - this is the hook for quasi-memory character devices to
1308 * tell us the location of a shared mapping
1310 if (capabilities & BDI_CAP_MAP_DIRECT) {
1311 addr = file->f_op->get_unmapped_area(file, addr, len,
1313 if (IS_ERR((void *) addr)) {
1315 if (ret != (unsigned long) -ENOSYS)
1316 goto error_just_free;
1318 /* the driver refused to tell us where to site
1319 * the mapping so we'll have to attempt to copy
1321 ret = (unsigned long) -ENODEV;
1322 if (!(capabilities & BDI_CAP_MAP_COPY))
1323 goto error_just_free;
1325 capabilities &= ~BDI_CAP_MAP_DIRECT;
1327 vma->vm_start = region->vm_start = addr;
1328 vma->vm_end = region->vm_end = addr + len;
1333 vma->vm_region = region;
1335 /* set up the mapping
1336 * - the region is filled in if BDI_CAP_MAP_DIRECT is still set
1338 if (file && vma->vm_flags & VM_SHARED)
1339 ret = do_mmap_shared_file(vma);
1341 ret = do_mmap_private(vma, region, len, capabilities);
1343 goto error_just_free;
1344 add_nommu_region(region);
1346 /* okay... we have a mapping; now we have to register it */
1347 result = vma->vm_start;
1349 current->mm->total_vm += len >> PAGE_SHIFT;
1352 add_vma_to_mm(current->mm, vma);
1354 up_write(&nommu_region_sem);
1356 if (prot & PROT_EXEC)
1357 flush_icache_range(result, result + len);
1359 kleave(" = %lx", result);
1363 up_write(&nommu_region_sem);
1365 if (region->vm_file)
1366 fput(region->vm_file);
1367 kmem_cache_free(vm_region_jar, region);
1370 if (vma->vm_flags & VM_EXECUTABLE)
1371 removed_exe_file_vma(vma->vm_mm);
1372 kmem_cache_free(vm_area_cachep, vma);
1373 kleave(" = %d", ret);
1377 up_write(&nommu_region_sem);
1378 printk(KERN_WARNING "Attempt to share mismatched mappings\n");
1383 kmem_cache_free(vm_region_jar, region);
1384 printk(KERN_WARNING "Allocation of vma for %lu byte allocation"
1385 " from process %d failed\n",
1390 error_getting_region:
1391 printk(KERN_WARNING "Allocation of vm region for %lu byte allocation"
1392 " from process %d failed\n",
1397 EXPORT_SYMBOL(do_mmap_pgoff);
1400 * split a vma into two pieces at address 'addr', a new vma is allocated either
1401 * for the first part or the tail.
1403 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1404 unsigned long addr, int new_below)
1406 struct vm_area_struct *new;
1407 struct vm_region *region;
1408 unsigned long npages;
1412 /* we're only permitted to split anonymous regions that have a single
1415 atomic_read(&vma->vm_region->vm_usage) != 1)
1418 if (mm->map_count >= sysctl_max_map_count)
1421 region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1425 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1427 kmem_cache_free(vm_region_jar, region);
1431 /* most fields are the same, copy all, and then fixup */
1433 *region = *vma->vm_region;
1434 new->vm_region = region;
1436 npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1439 region->vm_top = region->vm_end = new->vm_end = addr;
1441 region->vm_start = new->vm_start = addr;
1442 region->vm_pgoff = new->vm_pgoff += npages;
1445 if (new->vm_ops && new->vm_ops->open)
1446 new->vm_ops->open(new);
1448 delete_vma_from_mm(vma);
1449 down_write(&nommu_region_sem);
1450 delete_nommu_region(vma->vm_region);
1452 vma->vm_region->vm_start = vma->vm_start = addr;
1453 vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1455 vma->vm_region->vm_end = vma->vm_end = addr;
1456 vma->vm_region->vm_top = addr;
1458 add_nommu_region(vma->vm_region);
1459 add_nommu_region(new->vm_region);
1460 up_write(&nommu_region_sem);
1461 add_vma_to_mm(mm, vma);
1462 add_vma_to_mm(mm, new);
1467 * shrink a VMA by removing the specified chunk from either the beginning or
1470 static int shrink_vma(struct mm_struct *mm,
1471 struct vm_area_struct *vma,
1472 unsigned long from, unsigned long to)
1474 struct vm_region *region;
1478 /* adjust the VMA's pointers, which may reposition it in the MM's tree
1480 delete_vma_from_mm(vma);
1481 if (from > vma->vm_start)
1485 add_vma_to_mm(mm, vma);
1487 /* cut the backing region down to size */
1488 region = vma->vm_region;
1489 BUG_ON(atomic_read(®ion->vm_usage) != 1);
1491 down_write(&nommu_region_sem);
1492 delete_nommu_region(region);
1493 if (from > region->vm_start) {
1494 to = region->vm_top;
1495 region->vm_top = region->vm_end = from;
1497 region->vm_start = to;
1499 add_nommu_region(region);
1500 up_write(&nommu_region_sem);
1502 free_page_series(from, to);
1508 * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1509 * VMA, though it need not cover the whole VMA
1511 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
1513 struct vm_area_struct *vma;
1515 unsigned long end = start + len;
1518 kenter(",%lx,%zx", start, len);
1523 /* find the first potentially overlapping VMA */
1524 vma = find_vma(mm, start);
1526 static int limit = 0;
1529 "munmap of memory not mmapped by process %d"
1530 " (%s): 0x%lx-0x%lx\n",
1531 current->pid, current->comm,
1532 start, start + len - 1);
1538 /* we're allowed to split an anonymous VMA but not a file-backed one */
1541 if (start > vma->vm_start) {
1542 kleave(" = -EINVAL [miss]");
1545 if (end == vma->vm_end)
1546 goto erase_whole_vma;
1547 rb = rb_next(&vma->vm_rb);
1548 vma = rb_entry(rb, struct vm_area_struct, vm_rb);
1550 kleave(" = -EINVAL [split file]");
1553 /* the chunk must be a subset of the VMA found */
1554 if (start == vma->vm_start && end == vma->vm_end)
1555 goto erase_whole_vma;
1556 if (start < vma->vm_start || end > vma->vm_end) {
1557 kleave(" = -EINVAL [superset]");
1560 if (start & ~PAGE_MASK) {
1561 kleave(" = -EINVAL [unaligned start]");
1564 if (end != vma->vm_end && end & ~PAGE_MASK) {
1565 kleave(" = -EINVAL [unaligned split]");
1568 if (start != vma->vm_start && end != vma->vm_end) {
1569 ret = split_vma(mm, vma, start, 1);
1571 kleave(" = %d [split]", ret);
1575 return shrink_vma(mm, vma, start, end);
1579 delete_vma_from_mm(vma);
1580 delete_vma(mm, vma);
1584 EXPORT_SYMBOL(do_munmap);
1586 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1589 struct mm_struct *mm = current->mm;
1591 down_write(&mm->mmap_sem);
1592 ret = do_munmap(mm, addr, len);
1593 up_write(&mm->mmap_sem);
1598 * release all the mappings made in a process's VM space
1600 void exit_mmap(struct mm_struct *mm)
1602 struct vm_area_struct *vma;
1611 while ((vma = mm->mmap)) {
1612 mm->mmap = vma->vm_next;
1613 delete_vma_from_mm(vma);
1614 delete_vma(mm, vma);
1620 unsigned long do_brk(unsigned long addr, unsigned long len)
1626 * expand (or shrink) an existing mapping, potentially moving it at the same
1627 * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1629 * under NOMMU conditions, we only permit changing a mapping's size, and only
1630 * as long as it stays within the region allocated by do_mmap_private() and the
1631 * block is not shareable
1633 * MREMAP_FIXED is not supported under NOMMU conditions
1635 unsigned long do_mremap(unsigned long addr,
1636 unsigned long old_len, unsigned long new_len,
1637 unsigned long flags, unsigned long new_addr)
1639 struct vm_area_struct *vma;
1641 /* insanity checks first */
1642 if (old_len == 0 || new_len == 0)
1643 return (unsigned long) -EINVAL;
1645 if (addr & ~PAGE_MASK)
1648 if (flags & MREMAP_FIXED && new_addr != addr)
1649 return (unsigned long) -EINVAL;
1651 vma = find_vma_exact(current->mm, addr, old_len);
1653 return (unsigned long) -EINVAL;
1655 if (vma->vm_end != vma->vm_start + old_len)
1656 return (unsigned long) -EFAULT;
1658 if (vma->vm_flags & VM_MAYSHARE)
1659 return (unsigned long) -EPERM;
1661 if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1662 return (unsigned long) -ENOMEM;
1664 /* all checks complete - do it */
1665 vma->vm_end = vma->vm_start + new_len;
1666 return vma->vm_start;
1668 EXPORT_SYMBOL(do_mremap);
1670 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1671 unsigned long, new_len, unsigned long, flags,
1672 unsigned long, new_addr)
1676 down_write(¤t->mm->mmap_sem);
1677 ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1678 up_write(¤t->mm->mmap_sem);
1682 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1683 unsigned int foll_flags)
1688 int remap_pfn_range(struct vm_area_struct *vma, unsigned long from,
1689 unsigned long to, unsigned long size, pgprot_t prot)
1691 vma->vm_start = vma->vm_pgoff << PAGE_SHIFT;
1694 EXPORT_SYMBOL(remap_pfn_range);
1696 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1697 unsigned long pgoff)
1699 unsigned int size = vma->vm_end - vma->vm_start;
1701 if (!(vma->vm_flags & VM_USERMAP))
1704 vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1705 vma->vm_end = vma->vm_start + size;
1709 EXPORT_SYMBOL(remap_vmalloc_range);
1711 void swap_unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
1715 unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr,
1716 unsigned long len, unsigned long pgoff, unsigned long flags)
1721 void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1725 void unmap_mapping_range(struct address_space *mapping,
1726 loff_t const holebegin, loff_t const holelen,
1730 EXPORT_SYMBOL(unmap_mapping_range);
1733 * ask for an unmapped area at which to create a mapping on a file
1735 unsigned long get_unmapped_area(struct file *file, unsigned long addr,
1736 unsigned long len, unsigned long pgoff,
1737 unsigned long flags)
1739 unsigned long (*get_area)(struct file *, unsigned long, unsigned long,
1740 unsigned long, unsigned long);
1742 get_area = current->mm->get_unmapped_area;
1743 if (file && file->f_op && file->f_op->get_unmapped_area)
1744 get_area = file->f_op->get_unmapped_area;
1749 return get_area(file, addr, len, pgoff, flags);
1751 EXPORT_SYMBOL(get_unmapped_area);
1754 * Check that a process has enough memory to allocate a new virtual
1755 * mapping. 0 means there is enough memory for the allocation to
1756 * succeed and -ENOMEM implies there is not.
1758 * We currently support three overcommit policies, which are set via the
1759 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
1761 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
1762 * Additional code 2002 Jul 20 by Robert Love.
1764 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
1766 * Note this is a helper function intended to be used by LSMs which
1767 * wish to use this logic.
1769 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
1771 unsigned long free, allowed;
1773 vm_acct_memory(pages);
1776 * Sometimes we want to use more memory than we have
1778 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
1781 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
1784 free = global_page_state(NR_FILE_PAGES);
1785 free += nr_swap_pages;
1788 * Any slabs which are created with the
1789 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
1790 * which are reclaimable, under pressure. The dentry
1791 * cache and most inode caches should fall into this
1793 free += global_page_state(NR_SLAB_RECLAIMABLE);
1796 * Leave the last 3% for root
1805 * nr_free_pages() is very expensive on large systems,
1806 * only call if we're about to fail.
1808 n = nr_free_pages();
1811 * Leave reserved pages. The pages are not for anonymous pages.
1813 if (n <= totalreserve_pages)
1816 n -= totalreserve_pages;
1819 * Leave the last 3% for root
1831 allowed = totalram_pages * sysctl_overcommit_ratio / 100;
1833 * Leave the last 3% for root
1836 allowed -= allowed / 32;
1837 allowed += total_swap_pages;
1839 /* Don't let a single process grow too big:
1840 leave 3% of the size of this process for other processes */
1842 allowed -= mm->total_vm / 32;
1844 if (percpu_counter_read_positive(&vm_committed_as) < allowed)
1848 vm_unacct_memory(pages);
1853 int in_gate_area_no_task(unsigned long addr)
1858 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1863 EXPORT_SYMBOL(filemap_fault);
1866 * Access another process' address space.
1867 * - source/target buffer must be kernel space
1869 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
1871 struct vm_area_struct *vma;
1872 struct mm_struct *mm;
1874 if (addr + len < addr)
1877 mm = get_task_mm(tsk);
1881 down_read(&mm->mmap_sem);
1883 /* the access must start within one of the target process's mappings */
1884 vma = find_vma(mm, addr);
1886 /* don't overrun this mapping */
1887 if (addr + len >= vma->vm_end)
1888 len = vma->vm_end - addr;
1890 /* only read or write mappings where it is permitted */
1891 if (write && vma->vm_flags & VM_MAYWRITE)
1892 len -= copy_to_user((void *) addr, buf, len);
1893 else if (!write && vma->vm_flags & VM_MAYREAD)
1894 len -= copy_from_user(buf, (void *) addr, len);
1901 up_read(&mm->mmap_sem);