Merge remote-tracking branch 'lsk/v3.10/topic/configs' into linux-linaro-lsk
[firefly-linux-kernel-4.4.55.git] / mm / hugetlb.c
1 /*
2  * Generic hugetlb support.
3  * (C) Nadia Yvette Chambers, April 2004
4  */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/rmap.h>
22 #include <linux/swap.h>
23 #include <linux/swapops.h>
24 #include <linux/page-isolation.h>
25
26 #include <asm/page.h>
27 #include <asm/pgtable.h>
28 #include <asm/tlb.h>
29
30 #include <linux/io.h>
31 #include <linux/hugetlb.h>
32 #include <linux/hugetlb_cgroup.h>
33 #include <linux/node.h>
34 #include "internal.h"
35
36 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
37 static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
38 unsigned long hugepages_treat_as_movable;
39
40 int hugetlb_max_hstate __read_mostly;
41 unsigned int default_hstate_idx;
42 struct hstate hstates[HUGE_MAX_HSTATE];
43
44 __initdata LIST_HEAD(huge_boot_pages);
45
46 /* for command line parsing */
47 static struct hstate * __initdata parsed_hstate;
48 static unsigned long __initdata default_hstate_max_huge_pages;
49 static unsigned long __initdata default_hstate_size;
50
51 /*
52  * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
53  */
54 DEFINE_SPINLOCK(hugetlb_lock);
55
56 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
57 {
58         bool free = (spool->count == 0) && (spool->used_hpages == 0);
59
60         spin_unlock(&spool->lock);
61
62         /* If no pages are used, and no other handles to the subpool
63          * remain, free the subpool the subpool remain */
64         if (free)
65                 kfree(spool);
66 }
67
68 struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
69 {
70         struct hugepage_subpool *spool;
71
72         spool = kmalloc(sizeof(*spool), GFP_KERNEL);
73         if (!spool)
74                 return NULL;
75
76         spin_lock_init(&spool->lock);
77         spool->count = 1;
78         spool->max_hpages = nr_blocks;
79         spool->used_hpages = 0;
80
81         return spool;
82 }
83
84 void hugepage_put_subpool(struct hugepage_subpool *spool)
85 {
86         spin_lock(&spool->lock);
87         BUG_ON(!spool->count);
88         spool->count--;
89         unlock_or_release_subpool(spool);
90 }
91
92 static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
93                                       long delta)
94 {
95         int ret = 0;
96
97         if (!spool)
98                 return 0;
99
100         spin_lock(&spool->lock);
101         if ((spool->used_hpages + delta) <= spool->max_hpages) {
102                 spool->used_hpages += delta;
103         } else {
104                 ret = -ENOMEM;
105         }
106         spin_unlock(&spool->lock);
107
108         return ret;
109 }
110
111 static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
112                                        long delta)
113 {
114         if (!spool)
115                 return;
116
117         spin_lock(&spool->lock);
118         spool->used_hpages -= delta;
119         /* If hugetlbfs_put_super couldn't free spool due to
120         * an outstanding quota reference, free it now. */
121         unlock_or_release_subpool(spool);
122 }
123
124 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
125 {
126         return HUGETLBFS_SB(inode->i_sb)->spool;
127 }
128
129 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
130 {
131         return subpool_inode(file_inode(vma->vm_file));
132 }
133
134 /*
135  * Region tracking -- allows tracking of reservations and instantiated pages
136  *                    across the pages in a mapping.
137  *
138  * The region data structures are protected by a combination of the mmap_sem
139  * and the hugetlb_instantion_mutex.  To access or modify a region the caller
140  * must either hold the mmap_sem for write, or the mmap_sem for read and
141  * the hugetlb_instantiation mutex:
142  *
143  *      down_write(&mm->mmap_sem);
144  * or
145  *      down_read(&mm->mmap_sem);
146  *      mutex_lock(&hugetlb_instantiation_mutex);
147  */
148 struct file_region {
149         struct list_head link;
150         long from;
151         long to;
152 };
153
154 static long region_add(struct list_head *head, long f, long t)
155 {
156         struct file_region *rg, *nrg, *trg;
157
158         /* Locate the region we are either in or before. */
159         list_for_each_entry(rg, head, link)
160                 if (f <= rg->to)
161                         break;
162
163         /* Round our left edge to the current segment if it encloses us. */
164         if (f > rg->from)
165                 f = rg->from;
166
167         /* Check for and consume any regions we now overlap with. */
168         nrg = rg;
169         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
170                 if (&rg->link == head)
171                         break;
172                 if (rg->from > t)
173                         break;
174
175                 /* If this area reaches higher then extend our area to
176                  * include it completely.  If this is not the first area
177                  * which we intend to reuse, free it. */
178                 if (rg->to > t)
179                         t = rg->to;
180                 if (rg != nrg) {
181                         list_del(&rg->link);
182                         kfree(rg);
183                 }
184         }
185         nrg->from = f;
186         nrg->to = t;
187         return 0;
188 }
189
190 static long region_chg(struct list_head *head, long f, long t)
191 {
192         struct file_region *rg, *nrg;
193         long chg = 0;
194
195         /* Locate the region we are before or in. */
196         list_for_each_entry(rg, head, link)
197                 if (f <= rg->to)
198                         break;
199
200         /* If we are below the current region then a new region is required.
201          * Subtle, allocate a new region at the position but make it zero
202          * size such that we can guarantee to record the reservation. */
203         if (&rg->link == head || t < rg->from) {
204                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
205                 if (!nrg)
206                         return -ENOMEM;
207                 nrg->from = f;
208                 nrg->to   = f;
209                 INIT_LIST_HEAD(&nrg->link);
210                 list_add(&nrg->link, rg->link.prev);
211
212                 return t - f;
213         }
214
215         /* Round our left edge to the current segment if it encloses us. */
216         if (f > rg->from)
217                 f = rg->from;
218         chg = t - f;
219
220         /* Check for and consume any regions we now overlap with. */
221         list_for_each_entry(rg, rg->link.prev, link) {
222                 if (&rg->link == head)
223                         break;
224                 if (rg->from > t)
225                         return chg;
226
227                 /* We overlap with this area, if it extends further than
228                  * us then we must extend ourselves.  Account for its
229                  * existing reservation. */
230                 if (rg->to > t) {
231                         chg += rg->to - t;
232                         t = rg->to;
233                 }
234                 chg -= rg->to - rg->from;
235         }
236         return chg;
237 }
238
239 static long region_truncate(struct list_head *head, long end)
240 {
241         struct file_region *rg, *trg;
242         long chg = 0;
243
244         /* Locate the region we are either in or before. */
245         list_for_each_entry(rg, head, link)
246                 if (end <= rg->to)
247                         break;
248         if (&rg->link == head)
249                 return 0;
250
251         /* If we are in the middle of a region then adjust it. */
252         if (end > rg->from) {
253                 chg = rg->to - end;
254                 rg->to = end;
255                 rg = list_entry(rg->link.next, typeof(*rg), link);
256         }
257
258         /* Drop any remaining regions. */
259         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
260                 if (&rg->link == head)
261                         break;
262                 chg += rg->to - rg->from;
263                 list_del(&rg->link);
264                 kfree(rg);
265         }
266         return chg;
267 }
268
269 static long region_count(struct list_head *head, long f, long t)
270 {
271         struct file_region *rg;
272         long chg = 0;
273
274         /* Locate each segment we overlap with, and count that overlap. */
275         list_for_each_entry(rg, head, link) {
276                 long seg_from;
277                 long seg_to;
278
279                 if (rg->to <= f)
280                         continue;
281                 if (rg->from >= t)
282                         break;
283
284                 seg_from = max(rg->from, f);
285                 seg_to = min(rg->to, t);
286
287                 chg += seg_to - seg_from;
288         }
289
290         return chg;
291 }
292
293 /*
294  * Convert the address within this vma to the page offset within
295  * the mapping, in pagecache page units; huge pages here.
296  */
297 static pgoff_t vma_hugecache_offset(struct hstate *h,
298                         struct vm_area_struct *vma, unsigned long address)
299 {
300         return ((address - vma->vm_start) >> huge_page_shift(h)) +
301                         (vma->vm_pgoff >> huge_page_order(h));
302 }
303
304 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
305                                      unsigned long address)
306 {
307         return vma_hugecache_offset(hstate_vma(vma), vma, address);
308 }
309
310 /*
311  * Return the size of the pages allocated when backing a VMA. In the majority
312  * cases this will be same size as used by the page table entries.
313  */
314 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
315 {
316         struct hstate *hstate;
317
318         if (!is_vm_hugetlb_page(vma))
319                 return PAGE_SIZE;
320
321         hstate = hstate_vma(vma);
322
323         return 1UL << (hstate->order + PAGE_SHIFT);
324 }
325 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
326
327 /*
328  * Return the page size being used by the MMU to back a VMA. In the majority
329  * of cases, the page size used by the kernel matches the MMU size. On
330  * architectures where it differs, an architecture-specific version of this
331  * function is required.
332  */
333 #ifndef vma_mmu_pagesize
334 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
335 {
336         return vma_kernel_pagesize(vma);
337 }
338 #endif
339
340 /*
341  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
342  * bits of the reservation map pointer, which are always clear due to
343  * alignment.
344  */
345 #define HPAGE_RESV_OWNER    (1UL << 0)
346 #define HPAGE_RESV_UNMAPPED (1UL << 1)
347 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
348
349 /*
350  * These helpers are used to track how many pages are reserved for
351  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
352  * is guaranteed to have their future faults succeed.
353  *
354  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
355  * the reserve counters are updated with the hugetlb_lock held. It is safe
356  * to reset the VMA at fork() time as it is not in use yet and there is no
357  * chance of the global counters getting corrupted as a result of the values.
358  *
359  * The private mapping reservation is represented in a subtly different
360  * manner to a shared mapping.  A shared mapping has a region map associated
361  * with the underlying file, this region map represents the backing file
362  * pages which have ever had a reservation assigned which this persists even
363  * after the page is instantiated.  A private mapping has a region map
364  * associated with the original mmap which is attached to all VMAs which
365  * reference it, this region map represents those offsets which have consumed
366  * reservation ie. where pages have been instantiated.
367  */
368 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
369 {
370         return (unsigned long)vma->vm_private_data;
371 }
372
373 static void set_vma_private_data(struct vm_area_struct *vma,
374                                                         unsigned long value)
375 {
376         vma->vm_private_data = (void *)value;
377 }
378
379 struct resv_map {
380         struct kref refs;
381         struct list_head regions;
382 };
383
384 static struct resv_map *resv_map_alloc(void)
385 {
386         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
387         if (!resv_map)
388                 return NULL;
389
390         kref_init(&resv_map->refs);
391         INIT_LIST_HEAD(&resv_map->regions);
392
393         return resv_map;
394 }
395
396 static void resv_map_release(struct kref *ref)
397 {
398         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
399
400         /* Clear out any active regions before we release the map. */
401         region_truncate(&resv_map->regions, 0);
402         kfree(resv_map);
403 }
404
405 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
406 {
407         VM_BUG_ON(!is_vm_hugetlb_page(vma));
408         if (!(vma->vm_flags & VM_MAYSHARE))
409                 return (struct resv_map *)(get_vma_private_data(vma) &
410                                                         ~HPAGE_RESV_MASK);
411         return NULL;
412 }
413
414 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
415 {
416         VM_BUG_ON(!is_vm_hugetlb_page(vma));
417         VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
418
419         set_vma_private_data(vma, (get_vma_private_data(vma) &
420                                 HPAGE_RESV_MASK) | (unsigned long)map);
421 }
422
423 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
424 {
425         VM_BUG_ON(!is_vm_hugetlb_page(vma));
426         VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
427
428         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
429 }
430
431 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
432 {
433         VM_BUG_ON(!is_vm_hugetlb_page(vma));
434
435         return (get_vma_private_data(vma) & flag) != 0;
436 }
437
438 /* Decrement the reserved pages in the hugepage pool by one */
439 static void decrement_hugepage_resv_vma(struct hstate *h,
440                         struct vm_area_struct *vma)
441 {
442         if (vma->vm_flags & VM_NORESERVE)
443                 return;
444
445         if (vma->vm_flags & VM_MAYSHARE) {
446                 /* Shared mappings always use reserves */
447                 h->resv_huge_pages--;
448         } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
449                 /*
450                  * Only the process that called mmap() has reserves for
451                  * private mappings.
452                  */
453                 h->resv_huge_pages--;
454         }
455 }
456
457 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
458 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
459 {
460         VM_BUG_ON(!is_vm_hugetlb_page(vma));
461         if (!(vma->vm_flags & VM_MAYSHARE))
462                 vma->vm_private_data = (void *)0;
463 }
464
465 /* Returns true if the VMA has associated reserve pages */
466 static int vma_has_reserves(struct vm_area_struct *vma)
467 {
468         if (vma->vm_flags & VM_MAYSHARE)
469                 return 1;
470         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
471                 return 1;
472         return 0;
473 }
474
475 static void copy_gigantic_page(struct page *dst, struct page *src)
476 {
477         int i;
478         struct hstate *h = page_hstate(src);
479         struct page *dst_base = dst;
480         struct page *src_base = src;
481
482         for (i = 0; i < pages_per_huge_page(h); ) {
483                 cond_resched();
484                 copy_highpage(dst, src);
485
486                 i++;
487                 dst = mem_map_next(dst, dst_base, i);
488                 src = mem_map_next(src, src_base, i);
489         }
490 }
491
492 void copy_huge_page(struct page *dst, struct page *src)
493 {
494         int i;
495         struct hstate *h = page_hstate(src);
496
497         if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
498                 copy_gigantic_page(dst, src);
499                 return;
500         }
501
502         might_sleep();
503         for (i = 0; i < pages_per_huge_page(h); i++) {
504                 cond_resched();
505                 copy_highpage(dst + i, src + i);
506         }
507 }
508
509 static void enqueue_huge_page(struct hstate *h, struct page *page)
510 {
511         int nid = page_to_nid(page);
512         list_move(&page->lru, &h->hugepage_freelists[nid]);
513         h->free_huge_pages++;
514         h->free_huge_pages_node[nid]++;
515 }
516
517 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
518 {
519         struct page *page;
520
521         list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
522                 if (!is_migrate_isolate_page(page))
523                         break;
524         /*
525          * if 'non-isolated free hugepage' not found on the list,
526          * the allocation fails.
527          */
528         if (&h->hugepage_freelists[nid] == &page->lru)
529                 return NULL;
530         list_move(&page->lru, &h->hugepage_activelist);
531         set_page_refcounted(page);
532         h->free_huge_pages--;
533         h->free_huge_pages_node[nid]--;
534         return page;
535 }
536
537 static struct page *dequeue_huge_page_vma(struct hstate *h,
538                                 struct vm_area_struct *vma,
539                                 unsigned long address, int avoid_reserve)
540 {
541         struct page *page = NULL;
542         struct mempolicy *mpol;
543         nodemask_t *nodemask;
544         struct zonelist *zonelist;
545         struct zone *zone;
546         struct zoneref *z;
547         unsigned int cpuset_mems_cookie;
548
549 retry_cpuset:
550         cpuset_mems_cookie = get_mems_allowed();
551         zonelist = huge_zonelist(vma, address,
552                                         htlb_alloc_mask, &mpol, &nodemask);
553         /*
554          * A child process with MAP_PRIVATE mappings created by their parent
555          * have no page reserves. This check ensures that reservations are
556          * not "stolen". The child may still get SIGKILLed
557          */
558         if (!vma_has_reserves(vma) &&
559                         h->free_huge_pages - h->resv_huge_pages == 0)
560                 goto err;
561
562         /* If reserves cannot be used, ensure enough pages are in the pool */
563         if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
564                 goto err;
565
566         for_each_zone_zonelist_nodemask(zone, z, zonelist,
567                                                 MAX_NR_ZONES - 1, nodemask) {
568                 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask)) {
569                         page = dequeue_huge_page_node(h, zone_to_nid(zone));
570                         if (page) {
571                                 if (!avoid_reserve)
572                                         decrement_hugepage_resv_vma(h, vma);
573                                 break;
574                         }
575                 }
576         }
577
578         mpol_cond_put(mpol);
579         if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
580                 goto retry_cpuset;
581         return page;
582
583 err:
584         mpol_cond_put(mpol);
585         return NULL;
586 }
587
588 static void update_and_free_page(struct hstate *h, struct page *page)
589 {
590         int i;
591
592         VM_BUG_ON(h->order >= MAX_ORDER);
593
594         h->nr_huge_pages--;
595         h->nr_huge_pages_node[page_to_nid(page)]--;
596         for (i = 0; i < pages_per_huge_page(h); i++) {
597                 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
598                                 1 << PG_referenced | 1 << PG_dirty |
599                                 1 << PG_active | 1 << PG_reserved |
600                                 1 << PG_private | 1 << PG_writeback);
601         }
602         VM_BUG_ON(hugetlb_cgroup_from_page(page));
603         set_compound_page_dtor(page, NULL);
604         set_page_refcounted(page);
605         arch_release_hugepage(page);
606         __free_pages(page, huge_page_order(h));
607 }
608
609 struct hstate *size_to_hstate(unsigned long size)
610 {
611         struct hstate *h;
612
613         for_each_hstate(h) {
614                 if (huge_page_size(h) == size)
615                         return h;
616         }
617         return NULL;
618 }
619
620 static void free_huge_page(struct page *page)
621 {
622         /*
623          * Can't pass hstate in here because it is called from the
624          * compound page destructor.
625          */
626         struct hstate *h = page_hstate(page);
627         int nid = page_to_nid(page);
628         struct hugepage_subpool *spool =
629                 (struct hugepage_subpool *)page_private(page);
630
631         set_page_private(page, 0);
632         page->mapping = NULL;
633         BUG_ON(page_count(page));
634         BUG_ON(page_mapcount(page));
635
636         spin_lock(&hugetlb_lock);
637         hugetlb_cgroup_uncharge_page(hstate_index(h),
638                                      pages_per_huge_page(h), page);
639         if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
640                 /* remove the page from active list */
641                 list_del(&page->lru);
642                 update_and_free_page(h, page);
643                 h->surplus_huge_pages--;
644                 h->surplus_huge_pages_node[nid]--;
645         } else {
646                 arch_clear_hugepage_flags(page);
647                 enqueue_huge_page(h, page);
648         }
649         spin_unlock(&hugetlb_lock);
650         hugepage_subpool_put_pages(spool, 1);
651 }
652
653 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
654 {
655         INIT_LIST_HEAD(&page->lru);
656         set_compound_page_dtor(page, free_huge_page);
657         spin_lock(&hugetlb_lock);
658         set_hugetlb_cgroup(page, NULL);
659         h->nr_huge_pages++;
660         h->nr_huge_pages_node[nid]++;
661         spin_unlock(&hugetlb_lock);
662         put_page(page); /* free it into the hugepage allocator */
663 }
664
665 static void prep_compound_gigantic_page(struct page *page, unsigned long order)
666 {
667         int i;
668         int nr_pages = 1 << order;
669         struct page *p = page + 1;
670
671         /* we rely on prep_new_huge_page to set the destructor */
672         set_compound_order(page, order);
673         __SetPageHead(page);
674         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
675                 __SetPageTail(p);
676                 set_page_count(p, 0);
677                 p->first_page = page;
678         }
679 }
680
681 /*
682  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
683  * transparent huge pages.  See the PageTransHuge() documentation for more
684  * details.
685  */
686 int PageHuge(struct page *page)
687 {
688         compound_page_dtor *dtor;
689
690         if (!PageCompound(page))
691                 return 0;
692
693         page = compound_head(page);
694         dtor = get_compound_page_dtor(page);
695
696         return dtor == free_huge_page;
697 }
698 EXPORT_SYMBOL_GPL(PageHuge);
699
700 /*
701  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
702  * normal or transparent huge pages.
703  */
704 int PageHeadHuge(struct page *page_head)
705 {
706         compound_page_dtor *dtor;
707
708         if (!PageHead(page_head))
709                 return 0;
710
711         dtor = get_compound_page_dtor(page_head);
712
713         return dtor == free_huge_page;
714 }
715 EXPORT_SYMBOL_GPL(PageHeadHuge);
716
717 pgoff_t __basepage_index(struct page *page)
718 {
719         struct page *page_head = compound_head(page);
720         pgoff_t index = page_index(page_head);
721         unsigned long compound_idx;
722
723         if (!PageHuge(page_head))
724                 return page_index(page);
725
726         if (compound_order(page_head) >= MAX_ORDER)
727                 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
728         else
729                 compound_idx = page - page_head;
730
731         return (index << compound_order(page_head)) + compound_idx;
732 }
733
734 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
735 {
736         struct page *page;
737
738         if (h->order >= MAX_ORDER)
739                 return NULL;
740
741         page = alloc_pages_exact_node(nid,
742                 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
743                                                 __GFP_REPEAT|__GFP_NOWARN,
744                 huge_page_order(h));
745         if (page) {
746                 if (arch_prepare_hugepage(page)) {
747                         __free_pages(page, huge_page_order(h));
748                         return NULL;
749                 }
750                 prep_new_huge_page(h, page, nid);
751         }
752
753         return page;
754 }
755
756 /*
757  * common helper functions for hstate_next_node_to_{alloc|free}.
758  * We may have allocated or freed a huge page based on a different
759  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
760  * be outside of *nodes_allowed.  Ensure that we use an allowed
761  * node for alloc or free.
762  */
763 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
764 {
765         nid = next_node(nid, *nodes_allowed);
766         if (nid == MAX_NUMNODES)
767                 nid = first_node(*nodes_allowed);
768         VM_BUG_ON(nid >= MAX_NUMNODES);
769
770         return nid;
771 }
772
773 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
774 {
775         if (!node_isset(nid, *nodes_allowed))
776                 nid = next_node_allowed(nid, nodes_allowed);
777         return nid;
778 }
779
780 /*
781  * returns the previously saved node ["this node"] from which to
782  * allocate a persistent huge page for the pool and advance the
783  * next node from which to allocate, handling wrap at end of node
784  * mask.
785  */
786 static int hstate_next_node_to_alloc(struct hstate *h,
787                                         nodemask_t *nodes_allowed)
788 {
789         int nid;
790
791         VM_BUG_ON(!nodes_allowed);
792
793         nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
794         h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
795
796         return nid;
797 }
798
799 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
800 {
801         struct page *page;
802         int start_nid;
803         int next_nid;
804         int ret = 0;
805
806         start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
807         next_nid = start_nid;
808
809         do {
810                 page = alloc_fresh_huge_page_node(h, next_nid);
811                 if (page) {
812                         ret = 1;
813                         break;
814                 }
815                 next_nid = hstate_next_node_to_alloc(h, nodes_allowed);
816         } while (next_nid != start_nid);
817
818         if (ret)
819                 count_vm_event(HTLB_BUDDY_PGALLOC);
820         else
821                 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
822
823         return ret;
824 }
825
826 /*
827  * helper for free_pool_huge_page() - return the previously saved
828  * node ["this node"] from which to free a huge page.  Advance the
829  * next node id whether or not we find a free huge page to free so
830  * that the next attempt to free addresses the next node.
831  */
832 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
833 {
834         int nid;
835
836         VM_BUG_ON(!nodes_allowed);
837
838         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
839         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
840
841         return nid;
842 }
843
844 /*
845  * Free huge page from pool from next node to free.
846  * Attempt to keep persistent huge pages more or less
847  * balanced over allowed nodes.
848  * Called with hugetlb_lock locked.
849  */
850 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
851                                                          bool acct_surplus)
852 {
853         int start_nid;
854         int next_nid;
855         int ret = 0;
856
857         start_nid = hstate_next_node_to_free(h, nodes_allowed);
858         next_nid = start_nid;
859
860         do {
861                 /*
862                  * If we're returning unused surplus pages, only examine
863                  * nodes with surplus pages.
864                  */
865                 if ((!acct_surplus || h->surplus_huge_pages_node[next_nid]) &&
866                     !list_empty(&h->hugepage_freelists[next_nid])) {
867                         struct page *page =
868                                 list_entry(h->hugepage_freelists[next_nid].next,
869                                           struct page, lru);
870                         list_del(&page->lru);
871                         h->free_huge_pages--;
872                         h->free_huge_pages_node[next_nid]--;
873                         if (acct_surplus) {
874                                 h->surplus_huge_pages--;
875                                 h->surplus_huge_pages_node[next_nid]--;
876                         }
877                         update_and_free_page(h, page);
878                         ret = 1;
879                         break;
880                 }
881                 next_nid = hstate_next_node_to_free(h, nodes_allowed);
882         } while (next_nid != start_nid);
883
884         return ret;
885 }
886
887 static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
888 {
889         struct page *page;
890         unsigned int r_nid;
891
892         if (h->order >= MAX_ORDER)
893                 return NULL;
894
895         /*
896          * Assume we will successfully allocate the surplus page to
897          * prevent racing processes from causing the surplus to exceed
898          * overcommit
899          *
900          * This however introduces a different race, where a process B
901          * tries to grow the static hugepage pool while alloc_pages() is
902          * called by process A. B will only examine the per-node
903          * counters in determining if surplus huge pages can be
904          * converted to normal huge pages in adjust_pool_surplus(). A
905          * won't be able to increment the per-node counter, until the
906          * lock is dropped by B, but B doesn't drop hugetlb_lock until
907          * no more huge pages can be converted from surplus to normal
908          * state (and doesn't try to convert again). Thus, we have a
909          * case where a surplus huge page exists, the pool is grown, and
910          * the surplus huge page still exists after, even though it
911          * should just have been converted to a normal huge page. This
912          * does not leak memory, though, as the hugepage will be freed
913          * once it is out of use. It also does not allow the counters to
914          * go out of whack in adjust_pool_surplus() as we don't modify
915          * the node values until we've gotten the hugepage and only the
916          * per-node value is checked there.
917          */
918         spin_lock(&hugetlb_lock);
919         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
920                 spin_unlock(&hugetlb_lock);
921                 return NULL;
922         } else {
923                 h->nr_huge_pages++;
924                 h->surplus_huge_pages++;
925         }
926         spin_unlock(&hugetlb_lock);
927
928         if (nid == NUMA_NO_NODE)
929                 page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
930                                    __GFP_REPEAT|__GFP_NOWARN,
931                                    huge_page_order(h));
932         else
933                 page = alloc_pages_exact_node(nid,
934                         htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
935                         __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
936
937         if (page && arch_prepare_hugepage(page)) {
938                 __free_pages(page, huge_page_order(h));
939                 page = NULL;
940         }
941
942         spin_lock(&hugetlb_lock);
943         if (page) {
944                 INIT_LIST_HEAD(&page->lru);
945                 r_nid = page_to_nid(page);
946                 set_compound_page_dtor(page, free_huge_page);
947                 set_hugetlb_cgroup(page, NULL);
948                 /*
949                  * We incremented the global counters already
950                  */
951                 h->nr_huge_pages_node[r_nid]++;
952                 h->surplus_huge_pages_node[r_nid]++;
953                 __count_vm_event(HTLB_BUDDY_PGALLOC);
954         } else {
955                 h->nr_huge_pages--;
956                 h->surplus_huge_pages--;
957                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
958         }
959         spin_unlock(&hugetlb_lock);
960
961         return page;
962 }
963
964 /*
965  * This allocation function is useful in the context where vma is irrelevant.
966  * E.g. soft-offlining uses this function because it only cares physical
967  * address of error page.
968  */
969 struct page *alloc_huge_page_node(struct hstate *h, int nid)
970 {
971         struct page *page;
972
973         spin_lock(&hugetlb_lock);
974         page = dequeue_huge_page_node(h, nid);
975         spin_unlock(&hugetlb_lock);
976
977         if (!page)
978                 page = alloc_buddy_huge_page(h, nid);
979
980         return page;
981 }
982
983 /*
984  * Increase the hugetlb pool such that it can accommodate a reservation
985  * of size 'delta'.
986  */
987 static int gather_surplus_pages(struct hstate *h, int delta)
988 {
989         struct list_head surplus_list;
990         struct page *page, *tmp;
991         int ret, i;
992         int needed, allocated;
993         bool alloc_ok = true;
994
995         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
996         if (needed <= 0) {
997                 h->resv_huge_pages += delta;
998                 return 0;
999         }
1000
1001         allocated = 0;
1002         INIT_LIST_HEAD(&surplus_list);
1003
1004         ret = -ENOMEM;
1005 retry:
1006         spin_unlock(&hugetlb_lock);
1007         for (i = 0; i < needed; i++) {
1008                 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1009                 if (!page) {
1010                         alloc_ok = false;
1011                         break;
1012                 }
1013                 list_add(&page->lru, &surplus_list);
1014         }
1015         allocated += i;
1016
1017         /*
1018          * After retaking hugetlb_lock, we need to recalculate 'needed'
1019          * because either resv_huge_pages or free_huge_pages may have changed.
1020          */
1021         spin_lock(&hugetlb_lock);
1022         needed = (h->resv_huge_pages + delta) -
1023                         (h->free_huge_pages + allocated);
1024         if (needed > 0) {
1025                 if (alloc_ok)
1026                         goto retry;
1027                 /*
1028                  * We were not able to allocate enough pages to
1029                  * satisfy the entire reservation so we free what
1030                  * we've allocated so far.
1031                  */
1032                 goto free;
1033         }
1034         /*
1035          * The surplus_list now contains _at_least_ the number of extra pages
1036          * needed to accommodate the reservation.  Add the appropriate number
1037          * of pages to the hugetlb pool and free the extras back to the buddy
1038          * allocator.  Commit the entire reservation here to prevent another
1039          * process from stealing the pages as they are added to the pool but
1040          * before they are reserved.
1041          */
1042         needed += allocated;
1043         h->resv_huge_pages += delta;
1044         ret = 0;
1045
1046         /* Free the needed pages to the hugetlb pool */
1047         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1048                 if ((--needed) < 0)
1049                         break;
1050                 /*
1051                  * This page is now managed by the hugetlb allocator and has
1052                  * no users -- drop the buddy allocator's reference.
1053                  */
1054                 put_page_testzero(page);
1055                 VM_BUG_ON(page_count(page));
1056                 enqueue_huge_page(h, page);
1057         }
1058 free:
1059         spin_unlock(&hugetlb_lock);
1060
1061         /* Free unnecessary surplus pages to the buddy allocator */
1062         if (!list_empty(&surplus_list)) {
1063                 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1064                         put_page(page);
1065                 }
1066         }
1067         spin_lock(&hugetlb_lock);
1068
1069         return ret;
1070 }
1071
1072 /*
1073  * When releasing a hugetlb pool reservation, any surplus pages that were
1074  * allocated to satisfy the reservation must be explicitly freed if they were
1075  * never used.
1076  * Called with hugetlb_lock held.
1077  */
1078 static void return_unused_surplus_pages(struct hstate *h,
1079                                         unsigned long unused_resv_pages)
1080 {
1081         unsigned long nr_pages;
1082
1083         /* Uncommit the reservation */
1084         h->resv_huge_pages -= unused_resv_pages;
1085
1086         /* Cannot return gigantic pages currently */
1087         if (h->order >= MAX_ORDER)
1088                 return;
1089
1090         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1091
1092         /*
1093          * We want to release as many surplus pages as possible, spread
1094          * evenly across all nodes with memory. Iterate across these nodes
1095          * until we can no longer free unreserved surplus pages. This occurs
1096          * when the nodes with surplus pages have no free pages.
1097          * free_pool_huge_page() will balance the the freed pages across the
1098          * on-line nodes with memory and will handle the hstate accounting.
1099          */
1100         while (nr_pages--) {
1101                 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1102                         break;
1103         }
1104 }
1105
1106 /*
1107  * Determine if the huge page at addr within the vma has an associated
1108  * reservation.  Where it does not we will need to logically increase
1109  * reservation and actually increase subpool usage before an allocation
1110  * can occur.  Where any new reservation would be required the
1111  * reservation change is prepared, but not committed.  Once the page
1112  * has been allocated from the subpool and instantiated the change should
1113  * be committed via vma_commit_reservation.  No action is required on
1114  * failure.
1115  */
1116 static long vma_needs_reservation(struct hstate *h,
1117                         struct vm_area_struct *vma, unsigned long addr)
1118 {
1119         struct address_space *mapping = vma->vm_file->f_mapping;
1120         struct inode *inode = mapping->host;
1121
1122         if (vma->vm_flags & VM_MAYSHARE) {
1123                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1124                 return region_chg(&inode->i_mapping->private_list,
1125                                                         idx, idx + 1);
1126
1127         } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1128                 return 1;
1129
1130         } else  {
1131                 long err;
1132                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1133                 struct resv_map *reservations = vma_resv_map(vma);
1134
1135                 err = region_chg(&reservations->regions, idx, idx + 1);
1136                 if (err < 0)
1137                         return err;
1138                 return 0;
1139         }
1140 }
1141 static void vma_commit_reservation(struct hstate *h,
1142                         struct vm_area_struct *vma, unsigned long addr)
1143 {
1144         struct address_space *mapping = vma->vm_file->f_mapping;
1145         struct inode *inode = mapping->host;
1146
1147         if (vma->vm_flags & VM_MAYSHARE) {
1148                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1149                 region_add(&inode->i_mapping->private_list, idx, idx + 1);
1150
1151         } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1152                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1153                 struct resv_map *reservations = vma_resv_map(vma);
1154
1155                 /* Mark this page used in the map. */
1156                 region_add(&reservations->regions, idx, idx + 1);
1157         }
1158 }
1159
1160 static struct page *alloc_huge_page(struct vm_area_struct *vma,
1161                                     unsigned long addr, int avoid_reserve)
1162 {
1163         struct hugepage_subpool *spool = subpool_vma(vma);
1164         struct hstate *h = hstate_vma(vma);
1165         struct page *page;
1166         long chg;
1167         int ret, idx;
1168         struct hugetlb_cgroup *h_cg;
1169
1170         idx = hstate_index(h);
1171         /*
1172          * Processes that did not create the mapping will have no
1173          * reserves and will not have accounted against subpool
1174          * limit. Check that the subpool limit can be made before
1175          * satisfying the allocation MAP_NORESERVE mappings may also
1176          * need pages and subpool limit allocated allocated if no reserve
1177          * mapping overlaps.
1178          */
1179         chg = vma_needs_reservation(h, vma, addr);
1180         if (chg < 0)
1181                 return ERR_PTR(-ENOMEM);
1182         if (chg)
1183                 if (hugepage_subpool_get_pages(spool, chg))
1184                         return ERR_PTR(-ENOSPC);
1185
1186         ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1187         if (ret) {
1188                 hugepage_subpool_put_pages(spool, chg);
1189                 return ERR_PTR(-ENOSPC);
1190         }
1191         spin_lock(&hugetlb_lock);
1192         page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
1193         if (page) {
1194                 /* update page cgroup details */
1195                 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h),
1196                                              h_cg, page);
1197                 spin_unlock(&hugetlb_lock);
1198         } else {
1199                 spin_unlock(&hugetlb_lock);
1200                 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1201                 if (!page) {
1202                         hugetlb_cgroup_uncharge_cgroup(idx,
1203                                                        pages_per_huge_page(h),
1204                                                        h_cg);
1205                         hugepage_subpool_put_pages(spool, chg);
1206                         return ERR_PTR(-ENOSPC);
1207                 }
1208                 spin_lock(&hugetlb_lock);
1209                 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h),
1210                                              h_cg, page);
1211                 list_move(&page->lru, &h->hugepage_activelist);
1212                 spin_unlock(&hugetlb_lock);
1213         }
1214
1215         set_page_private(page, (unsigned long)spool);
1216
1217         vma_commit_reservation(h, vma, addr);
1218         return page;
1219 }
1220
1221 int __weak alloc_bootmem_huge_page(struct hstate *h)
1222 {
1223         struct huge_bootmem_page *m;
1224         int nr_nodes = nodes_weight(node_states[N_MEMORY]);
1225
1226         while (nr_nodes) {
1227                 void *addr;
1228
1229                 addr = __alloc_bootmem_node_nopanic(
1230                                 NODE_DATA(hstate_next_node_to_alloc(h,
1231                                                 &node_states[N_MEMORY])),
1232                                 huge_page_size(h), huge_page_size(h), 0);
1233
1234                 if (addr) {
1235                         /*
1236                          * Use the beginning of the huge page to store the
1237                          * huge_bootmem_page struct (until gather_bootmem
1238                          * puts them into the mem_map).
1239                          */
1240                         m = addr;
1241                         goto found;
1242                 }
1243                 nr_nodes--;
1244         }
1245         return 0;
1246
1247 found:
1248         BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1249         /* Put them into a private list first because mem_map is not up yet */
1250         list_add(&m->list, &huge_boot_pages);
1251         m->hstate = h;
1252         return 1;
1253 }
1254
1255 static void prep_compound_huge_page(struct page *page, int order)
1256 {
1257         if (unlikely(order > (MAX_ORDER - 1)))
1258                 prep_compound_gigantic_page(page, order);
1259         else
1260                 prep_compound_page(page, order);
1261 }
1262
1263 /* Put bootmem huge pages into the standard lists after mem_map is up */
1264 static void __init gather_bootmem_prealloc(void)
1265 {
1266         struct huge_bootmem_page *m;
1267
1268         list_for_each_entry(m, &huge_boot_pages, list) {
1269                 struct hstate *h = m->hstate;
1270                 struct page *page;
1271
1272 #ifdef CONFIG_HIGHMEM
1273                 page = pfn_to_page(m->phys >> PAGE_SHIFT);
1274                 free_bootmem_late((unsigned long)m,
1275                                   sizeof(struct huge_bootmem_page));
1276 #else
1277                 page = virt_to_page(m);
1278 #endif
1279                 __ClearPageReserved(page);
1280                 WARN_ON(page_count(page) != 1);
1281                 prep_compound_huge_page(page, h->order);
1282                 prep_new_huge_page(h, page, page_to_nid(page));
1283                 /*
1284                  * If we had gigantic hugepages allocated at boot time, we need
1285                  * to restore the 'stolen' pages to totalram_pages in order to
1286                  * fix confusing memory reports from free(1) and another
1287                  * side-effects, like CommitLimit going negative.
1288                  */
1289                 if (h->order > (MAX_ORDER - 1))
1290                         totalram_pages += 1 << h->order;
1291         }
1292 }
1293
1294 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1295 {
1296         unsigned long i;
1297
1298         for (i = 0; i < h->max_huge_pages; ++i) {
1299                 if (h->order >= MAX_ORDER) {
1300                         if (!alloc_bootmem_huge_page(h))
1301                                 break;
1302                 } else if (!alloc_fresh_huge_page(h,
1303                                          &node_states[N_MEMORY]))
1304                         break;
1305         }
1306         h->max_huge_pages = i;
1307 }
1308
1309 static void __init hugetlb_init_hstates(void)
1310 {
1311         struct hstate *h;
1312
1313         for_each_hstate(h) {
1314                 /* oversize hugepages were init'ed in early boot */
1315                 if (h->order < MAX_ORDER)
1316                         hugetlb_hstate_alloc_pages(h);
1317         }
1318 }
1319
1320 static char * __init memfmt(char *buf, unsigned long n)
1321 {
1322         if (n >= (1UL << 30))
1323                 sprintf(buf, "%lu GB", n >> 30);
1324         else if (n >= (1UL << 20))
1325                 sprintf(buf, "%lu MB", n >> 20);
1326         else
1327                 sprintf(buf, "%lu KB", n >> 10);
1328         return buf;
1329 }
1330
1331 static void __init report_hugepages(void)
1332 {
1333         struct hstate *h;
1334
1335         for_each_hstate(h) {
1336                 char buf[32];
1337                 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
1338                         memfmt(buf, huge_page_size(h)),
1339                         h->free_huge_pages);
1340         }
1341 }
1342
1343 #ifdef CONFIG_HIGHMEM
1344 static void try_to_free_low(struct hstate *h, unsigned long count,
1345                                                 nodemask_t *nodes_allowed)
1346 {
1347         int i;
1348
1349         if (h->order >= MAX_ORDER)
1350                 return;
1351
1352         for_each_node_mask(i, *nodes_allowed) {
1353                 struct page *page, *next;
1354                 struct list_head *freel = &h->hugepage_freelists[i];
1355                 list_for_each_entry_safe(page, next, freel, lru) {
1356                         if (count >= h->nr_huge_pages)
1357                                 return;
1358                         if (PageHighMem(page))
1359                                 continue;
1360                         list_del(&page->lru);
1361                         update_and_free_page(h, page);
1362                         h->free_huge_pages--;
1363                         h->free_huge_pages_node[page_to_nid(page)]--;
1364                 }
1365         }
1366 }
1367 #else
1368 static inline void try_to_free_low(struct hstate *h, unsigned long count,
1369                                                 nodemask_t *nodes_allowed)
1370 {
1371 }
1372 #endif
1373
1374 /*
1375  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
1376  * balanced by operating on them in a round-robin fashion.
1377  * Returns 1 if an adjustment was made.
1378  */
1379 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1380                                 int delta)
1381 {
1382         int start_nid, next_nid;
1383         int ret = 0;
1384
1385         VM_BUG_ON(delta != -1 && delta != 1);
1386
1387         if (delta < 0)
1388                 start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
1389         else
1390                 start_nid = hstate_next_node_to_free(h, nodes_allowed);
1391         next_nid = start_nid;
1392
1393         do {
1394                 int nid = next_nid;
1395                 if (delta < 0)  {
1396                         /*
1397                          * To shrink on this node, there must be a surplus page
1398                          */
1399                         if (!h->surplus_huge_pages_node[nid]) {
1400                                 next_nid = hstate_next_node_to_alloc(h,
1401                                                                 nodes_allowed);
1402                                 continue;
1403                         }
1404                 }
1405                 if (delta > 0) {
1406                         /*
1407                          * Surplus cannot exceed the total number of pages
1408                          */
1409                         if (h->surplus_huge_pages_node[nid] >=
1410                                                 h->nr_huge_pages_node[nid]) {
1411                                 next_nid = hstate_next_node_to_free(h,
1412                                                                 nodes_allowed);
1413                                 continue;
1414                         }
1415                 }
1416
1417                 h->surplus_huge_pages += delta;
1418                 h->surplus_huge_pages_node[nid] += delta;
1419                 ret = 1;
1420                 break;
1421         } while (next_nid != start_nid);
1422
1423         return ret;
1424 }
1425
1426 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1427 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1428                                                 nodemask_t *nodes_allowed)
1429 {
1430         unsigned long min_count, ret;
1431
1432         if (h->order >= MAX_ORDER)
1433                 return h->max_huge_pages;
1434
1435         /*
1436          * Increase the pool size
1437          * First take pages out of surplus state.  Then make up the
1438          * remaining difference by allocating fresh huge pages.
1439          *
1440          * We might race with alloc_buddy_huge_page() here and be unable
1441          * to convert a surplus huge page to a normal huge page. That is
1442          * not critical, though, it just means the overall size of the
1443          * pool might be one hugepage larger than it needs to be, but
1444          * within all the constraints specified by the sysctls.
1445          */
1446         spin_lock(&hugetlb_lock);
1447         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1448                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
1449                         break;
1450         }
1451
1452         while (count > persistent_huge_pages(h)) {
1453                 /*
1454                  * If this allocation races such that we no longer need the
1455                  * page, free_huge_page will handle it by freeing the page
1456                  * and reducing the surplus.
1457                  */
1458                 spin_unlock(&hugetlb_lock);
1459                 ret = alloc_fresh_huge_page(h, nodes_allowed);
1460                 spin_lock(&hugetlb_lock);
1461                 if (!ret)
1462                         goto out;
1463
1464                 /* Bail for signals. Probably ctrl-c from user */
1465                 if (signal_pending(current))
1466                         goto out;
1467         }
1468
1469         /*
1470          * Decrease the pool size
1471          * First return free pages to the buddy allocator (being careful
1472          * to keep enough around to satisfy reservations).  Then place
1473          * pages into surplus state as needed so the pool will shrink
1474          * to the desired size as pages become free.
1475          *
1476          * By placing pages into the surplus state independent of the
1477          * overcommit value, we are allowing the surplus pool size to
1478          * exceed overcommit. There are few sane options here. Since
1479          * alloc_buddy_huge_page() is checking the global counter,
1480          * though, we'll note that we're not allowed to exceed surplus
1481          * and won't grow the pool anywhere else. Not until one of the
1482          * sysctls are changed, or the surplus pages go out of use.
1483          */
1484         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1485         min_count = max(count, min_count);
1486         try_to_free_low(h, min_count, nodes_allowed);
1487         while (min_count < persistent_huge_pages(h)) {
1488                 if (!free_pool_huge_page(h, nodes_allowed, 0))
1489                         break;
1490                 cond_resched_lock(&hugetlb_lock);
1491         }
1492         while (count < persistent_huge_pages(h)) {
1493                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
1494                         break;
1495         }
1496 out:
1497         ret = persistent_huge_pages(h);
1498         spin_unlock(&hugetlb_lock);
1499         return ret;
1500 }
1501
1502 #define HSTATE_ATTR_RO(_name) \
1503         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1504
1505 #define HSTATE_ATTR(_name) \
1506         static struct kobj_attribute _name##_attr = \
1507                 __ATTR(_name, 0644, _name##_show, _name##_store)
1508
1509 static struct kobject *hugepages_kobj;
1510 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1511
1512 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1513
1514 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1515 {
1516         int i;
1517
1518         for (i = 0; i < HUGE_MAX_HSTATE; i++)
1519                 if (hstate_kobjs[i] == kobj) {
1520                         if (nidp)
1521                                 *nidp = NUMA_NO_NODE;
1522                         return &hstates[i];
1523                 }
1524
1525         return kobj_to_node_hstate(kobj, nidp);
1526 }
1527
1528 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1529                                         struct kobj_attribute *attr, char *buf)
1530 {
1531         struct hstate *h;
1532         unsigned long nr_huge_pages;
1533         int nid;
1534
1535         h = kobj_to_hstate(kobj, &nid);
1536         if (nid == NUMA_NO_NODE)
1537                 nr_huge_pages = h->nr_huge_pages;
1538         else
1539                 nr_huge_pages = h->nr_huge_pages_node[nid];
1540
1541         return sprintf(buf, "%lu\n", nr_huge_pages);
1542 }
1543
1544 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1545                         struct kobject *kobj, struct kobj_attribute *attr,
1546                         const char *buf, size_t len)
1547 {
1548         int err;
1549         int nid;
1550         unsigned long count;
1551         struct hstate *h;
1552         NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1553
1554         err = strict_strtoul(buf, 10, &count);
1555         if (err)
1556                 goto out;
1557
1558         h = kobj_to_hstate(kobj, &nid);
1559         if (h->order >= MAX_ORDER) {
1560                 err = -EINVAL;
1561                 goto out;
1562         }
1563
1564         if (nid == NUMA_NO_NODE) {
1565                 /*
1566                  * global hstate attribute
1567                  */
1568                 if (!(obey_mempolicy &&
1569                                 init_nodemask_of_mempolicy(nodes_allowed))) {
1570                         NODEMASK_FREE(nodes_allowed);
1571                         nodes_allowed = &node_states[N_MEMORY];
1572                 }
1573         } else if (nodes_allowed) {
1574                 /*
1575                  * per node hstate attribute: adjust count to global,
1576                  * but restrict alloc/free to the specified node.
1577                  */
1578                 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1579                 init_nodemask_of_node(nodes_allowed, nid);
1580         } else
1581                 nodes_allowed = &node_states[N_MEMORY];
1582
1583         h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1584
1585         if (nodes_allowed != &node_states[N_MEMORY])
1586                 NODEMASK_FREE(nodes_allowed);
1587
1588         return len;
1589 out:
1590         NODEMASK_FREE(nodes_allowed);
1591         return err;
1592 }
1593
1594 static ssize_t nr_hugepages_show(struct kobject *kobj,
1595                                        struct kobj_attribute *attr, char *buf)
1596 {
1597         return nr_hugepages_show_common(kobj, attr, buf);
1598 }
1599
1600 static ssize_t nr_hugepages_store(struct kobject *kobj,
1601                struct kobj_attribute *attr, const char *buf, size_t len)
1602 {
1603         return nr_hugepages_store_common(false, kobj, attr, buf, len);
1604 }
1605 HSTATE_ATTR(nr_hugepages);
1606
1607 #ifdef CONFIG_NUMA
1608
1609 /*
1610  * hstate attribute for optionally mempolicy-based constraint on persistent
1611  * huge page alloc/free.
1612  */
1613 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1614                                        struct kobj_attribute *attr, char *buf)
1615 {
1616         return nr_hugepages_show_common(kobj, attr, buf);
1617 }
1618
1619 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1620                struct kobj_attribute *attr, const char *buf, size_t len)
1621 {
1622         return nr_hugepages_store_common(true, kobj, attr, buf, len);
1623 }
1624 HSTATE_ATTR(nr_hugepages_mempolicy);
1625 #endif
1626
1627
1628 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1629                                         struct kobj_attribute *attr, char *buf)
1630 {
1631         struct hstate *h = kobj_to_hstate(kobj, NULL);
1632         return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1633 }
1634
1635 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1636                 struct kobj_attribute *attr, const char *buf, size_t count)
1637 {
1638         int err;
1639         unsigned long input;
1640         struct hstate *h = kobj_to_hstate(kobj, NULL);
1641
1642         if (h->order >= MAX_ORDER)
1643                 return -EINVAL;
1644
1645         err = strict_strtoul(buf, 10, &input);
1646         if (err)
1647                 return err;
1648
1649         spin_lock(&hugetlb_lock);
1650         h->nr_overcommit_huge_pages = input;
1651         spin_unlock(&hugetlb_lock);
1652
1653         return count;
1654 }
1655 HSTATE_ATTR(nr_overcommit_hugepages);
1656
1657 static ssize_t free_hugepages_show(struct kobject *kobj,
1658                                         struct kobj_attribute *attr, char *buf)
1659 {
1660         struct hstate *h;
1661         unsigned long free_huge_pages;
1662         int nid;
1663
1664         h = kobj_to_hstate(kobj, &nid);
1665         if (nid == NUMA_NO_NODE)
1666                 free_huge_pages = h->free_huge_pages;
1667         else
1668                 free_huge_pages = h->free_huge_pages_node[nid];
1669
1670         return sprintf(buf, "%lu\n", free_huge_pages);
1671 }
1672 HSTATE_ATTR_RO(free_hugepages);
1673
1674 static ssize_t resv_hugepages_show(struct kobject *kobj,
1675                                         struct kobj_attribute *attr, char *buf)
1676 {
1677         struct hstate *h = kobj_to_hstate(kobj, NULL);
1678         return sprintf(buf, "%lu\n", h->resv_huge_pages);
1679 }
1680 HSTATE_ATTR_RO(resv_hugepages);
1681
1682 static ssize_t surplus_hugepages_show(struct kobject *kobj,
1683                                         struct kobj_attribute *attr, char *buf)
1684 {
1685         struct hstate *h;
1686         unsigned long surplus_huge_pages;
1687         int nid;
1688
1689         h = kobj_to_hstate(kobj, &nid);
1690         if (nid == NUMA_NO_NODE)
1691                 surplus_huge_pages = h->surplus_huge_pages;
1692         else
1693                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
1694
1695         return sprintf(buf, "%lu\n", surplus_huge_pages);
1696 }
1697 HSTATE_ATTR_RO(surplus_hugepages);
1698
1699 static struct attribute *hstate_attrs[] = {
1700         &nr_hugepages_attr.attr,
1701         &nr_overcommit_hugepages_attr.attr,
1702         &free_hugepages_attr.attr,
1703         &resv_hugepages_attr.attr,
1704         &surplus_hugepages_attr.attr,
1705 #ifdef CONFIG_NUMA
1706         &nr_hugepages_mempolicy_attr.attr,
1707 #endif
1708         NULL,
1709 };
1710
1711 static struct attribute_group hstate_attr_group = {
1712         .attrs = hstate_attrs,
1713 };
1714
1715 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1716                                     struct kobject **hstate_kobjs,
1717                                     struct attribute_group *hstate_attr_group)
1718 {
1719         int retval;
1720         int hi = hstate_index(h);
1721
1722         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1723         if (!hstate_kobjs[hi])
1724                 return -ENOMEM;
1725
1726         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1727         if (retval)
1728                 kobject_put(hstate_kobjs[hi]);
1729
1730         return retval;
1731 }
1732
1733 static void __init hugetlb_sysfs_init(void)
1734 {
1735         struct hstate *h;
1736         int err;
1737
1738         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1739         if (!hugepages_kobj)
1740                 return;
1741
1742         for_each_hstate(h) {
1743                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1744                                          hstate_kobjs, &hstate_attr_group);
1745                 if (err)
1746                         pr_err("Hugetlb: Unable to add hstate %s", h->name);
1747         }
1748 }
1749
1750 #ifdef CONFIG_NUMA
1751
1752 /*
1753  * node_hstate/s - associate per node hstate attributes, via their kobjects,
1754  * with node devices in node_devices[] using a parallel array.  The array
1755  * index of a node device or _hstate == node id.
1756  * This is here to avoid any static dependency of the node device driver, in
1757  * the base kernel, on the hugetlb module.
1758  */
1759 struct node_hstate {
1760         struct kobject          *hugepages_kobj;
1761         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
1762 };
1763 struct node_hstate node_hstates[MAX_NUMNODES];
1764
1765 /*
1766  * A subset of global hstate attributes for node devices
1767  */
1768 static struct attribute *per_node_hstate_attrs[] = {
1769         &nr_hugepages_attr.attr,
1770         &free_hugepages_attr.attr,
1771         &surplus_hugepages_attr.attr,
1772         NULL,
1773 };
1774
1775 static struct attribute_group per_node_hstate_attr_group = {
1776         .attrs = per_node_hstate_attrs,
1777 };
1778
1779 /*
1780  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
1781  * Returns node id via non-NULL nidp.
1782  */
1783 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1784 {
1785         int nid;
1786
1787         for (nid = 0; nid < nr_node_ids; nid++) {
1788                 struct node_hstate *nhs = &node_hstates[nid];
1789                 int i;
1790                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1791                         if (nhs->hstate_kobjs[i] == kobj) {
1792                                 if (nidp)
1793                                         *nidp = nid;
1794                                 return &hstates[i];
1795                         }
1796         }
1797
1798         BUG();
1799         return NULL;
1800 }
1801
1802 /*
1803  * Unregister hstate attributes from a single node device.
1804  * No-op if no hstate attributes attached.
1805  */
1806 static void hugetlb_unregister_node(struct node *node)
1807 {
1808         struct hstate *h;
1809         struct node_hstate *nhs = &node_hstates[node->dev.id];
1810
1811         if (!nhs->hugepages_kobj)
1812                 return;         /* no hstate attributes */
1813
1814         for_each_hstate(h) {
1815                 int idx = hstate_index(h);
1816                 if (nhs->hstate_kobjs[idx]) {
1817                         kobject_put(nhs->hstate_kobjs[idx]);
1818                         nhs->hstate_kobjs[idx] = NULL;
1819                 }
1820         }
1821
1822         kobject_put(nhs->hugepages_kobj);
1823         nhs->hugepages_kobj = NULL;
1824 }
1825
1826 /*
1827  * hugetlb module exit:  unregister hstate attributes from node devices
1828  * that have them.
1829  */
1830 static void hugetlb_unregister_all_nodes(void)
1831 {
1832         int nid;
1833
1834         /*
1835          * disable node device registrations.
1836          */
1837         register_hugetlbfs_with_node(NULL, NULL);
1838
1839         /*
1840          * remove hstate attributes from any nodes that have them.
1841          */
1842         for (nid = 0; nid < nr_node_ids; nid++)
1843                 hugetlb_unregister_node(node_devices[nid]);
1844 }
1845
1846 /*
1847  * Register hstate attributes for a single node device.
1848  * No-op if attributes already registered.
1849  */
1850 static void hugetlb_register_node(struct node *node)
1851 {
1852         struct hstate *h;
1853         struct node_hstate *nhs = &node_hstates[node->dev.id];
1854         int err;
1855
1856         if (nhs->hugepages_kobj)
1857                 return;         /* already allocated */
1858
1859         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1860                                                         &node->dev.kobj);
1861         if (!nhs->hugepages_kobj)
1862                 return;
1863
1864         for_each_hstate(h) {
1865                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1866                                                 nhs->hstate_kobjs,
1867                                                 &per_node_hstate_attr_group);
1868                 if (err) {
1869                         pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
1870                                 h->name, node->dev.id);
1871                         hugetlb_unregister_node(node);
1872                         break;
1873                 }
1874         }
1875 }
1876
1877 /*
1878  * hugetlb init time:  register hstate attributes for all registered node
1879  * devices of nodes that have memory.  All on-line nodes should have
1880  * registered their associated device by this time.
1881  */
1882 static void hugetlb_register_all_nodes(void)
1883 {
1884         int nid;
1885
1886         for_each_node_state(nid, N_MEMORY) {
1887                 struct node *node = node_devices[nid];
1888                 if (node->dev.id == nid)
1889                         hugetlb_register_node(node);
1890         }
1891
1892         /*
1893          * Let the node device driver know we're here so it can
1894          * [un]register hstate attributes on node hotplug.
1895          */
1896         register_hugetlbfs_with_node(hugetlb_register_node,
1897                                      hugetlb_unregister_node);
1898 }
1899 #else   /* !CONFIG_NUMA */
1900
1901 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1902 {
1903         BUG();
1904         if (nidp)
1905                 *nidp = -1;
1906         return NULL;
1907 }
1908
1909 static void hugetlb_unregister_all_nodes(void) { }
1910
1911 static void hugetlb_register_all_nodes(void) { }
1912
1913 #endif
1914
1915 static void __exit hugetlb_exit(void)
1916 {
1917         struct hstate *h;
1918
1919         hugetlb_unregister_all_nodes();
1920
1921         for_each_hstate(h) {
1922                 kobject_put(hstate_kobjs[hstate_index(h)]);
1923         }
1924
1925         kobject_put(hugepages_kobj);
1926 }
1927 module_exit(hugetlb_exit);
1928
1929 static int __init hugetlb_init(void)
1930 {
1931         /* Some platform decide whether they support huge pages at boot
1932          * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1933          * there is no such support
1934          */
1935         if (HPAGE_SHIFT == 0)
1936                 return 0;
1937
1938         if (!size_to_hstate(default_hstate_size)) {
1939                 default_hstate_size = HPAGE_SIZE;
1940                 if (!size_to_hstate(default_hstate_size))
1941                         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1942         }
1943         default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
1944         if (default_hstate_max_huge_pages)
1945                 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1946
1947         hugetlb_init_hstates();
1948         gather_bootmem_prealloc();
1949         report_hugepages();
1950
1951         hugetlb_sysfs_init();
1952         hugetlb_register_all_nodes();
1953         hugetlb_cgroup_file_init();
1954
1955         return 0;
1956 }
1957 module_init(hugetlb_init);
1958
1959 /* Should be called on processing a hugepagesz=... option */
1960 void __init hugetlb_add_hstate(unsigned order)
1961 {
1962         struct hstate *h;
1963         unsigned long i;
1964
1965         if (size_to_hstate(PAGE_SIZE << order)) {
1966                 pr_warning("hugepagesz= specified twice, ignoring\n");
1967                 return;
1968         }
1969         BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
1970         BUG_ON(order == 0);
1971         h = &hstates[hugetlb_max_hstate++];
1972         h->order = order;
1973         h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1974         h->nr_huge_pages = 0;
1975         h->free_huge_pages = 0;
1976         for (i = 0; i < MAX_NUMNODES; ++i)
1977                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1978         INIT_LIST_HEAD(&h->hugepage_activelist);
1979         h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
1980         h->next_nid_to_free = first_node(node_states[N_MEMORY]);
1981         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1982                                         huge_page_size(h)/1024);
1983
1984         parsed_hstate = h;
1985 }
1986
1987 static int __init hugetlb_nrpages_setup(char *s)
1988 {
1989         unsigned long *mhp;
1990         static unsigned long *last_mhp;
1991
1992         /*
1993          * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
1994          * so this hugepages= parameter goes to the "default hstate".
1995          */
1996         if (!hugetlb_max_hstate)
1997                 mhp = &default_hstate_max_huge_pages;
1998         else
1999                 mhp = &parsed_hstate->max_huge_pages;
2000
2001         if (mhp == last_mhp) {
2002                 pr_warning("hugepages= specified twice without "
2003                            "interleaving hugepagesz=, ignoring\n");
2004                 return 1;
2005         }
2006
2007         if (sscanf(s, "%lu", mhp) <= 0)
2008                 *mhp = 0;
2009
2010         /*
2011          * Global state is always initialized later in hugetlb_init.
2012          * But we need to allocate >= MAX_ORDER hstates here early to still
2013          * use the bootmem allocator.
2014          */
2015         if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2016                 hugetlb_hstate_alloc_pages(parsed_hstate);
2017
2018         last_mhp = mhp;
2019
2020         return 1;
2021 }
2022 __setup("hugepages=", hugetlb_nrpages_setup);
2023
2024 static int __init hugetlb_default_setup(char *s)
2025 {
2026         default_hstate_size = memparse(s, &s);
2027         return 1;
2028 }
2029 __setup("default_hugepagesz=", hugetlb_default_setup);
2030
2031 static unsigned int cpuset_mems_nr(unsigned int *array)
2032 {
2033         int node;
2034         unsigned int nr = 0;
2035
2036         for_each_node_mask(node, cpuset_current_mems_allowed)
2037                 nr += array[node];
2038
2039         return nr;
2040 }
2041
2042 #ifdef CONFIG_SYSCTL
2043 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2044                          struct ctl_table *table, int write,
2045                          void __user *buffer, size_t *length, loff_t *ppos)
2046 {
2047         struct hstate *h = &default_hstate;
2048         unsigned long tmp;
2049         int ret;
2050
2051         tmp = h->max_huge_pages;
2052
2053         if (write && h->order >= MAX_ORDER)
2054                 return -EINVAL;
2055
2056         table->data = &tmp;
2057         table->maxlen = sizeof(unsigned long);
2058         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2059         if (ret)
2060                 goto out;
2061
2062         if (write) {
2063                 NODEMASK_ALLOC(nodemask_t, nodes_allowed,
2064                                                 GFP_KERNEL | __GFP_NORETRY);
2065                 if (!(obey_mempolicy &&
2066                                init_nodemask_of_mempolicy(nodes_allowed))) {
2067                         NODEMASK_FREE(nodes_allowed);
2068                         nodes_allowed = &node_states[N_MEMORY];
2069                 }
2070                 h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
2071
2072                 if (nodes_allowed != &node_states[N_MEMORY])
2073                         NODEMASK_FREE(nodes_allowed);
2074         }
2075 out:
2076         return ret;
2077 }
2078
2079 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2080                           void __user *buffer, size_t *length, loff_t *ppos)
2081 {
2082
2083         return hugetlb_sysctl_handler_common(false, table, write,
2084                                                         buffer, length, ppos);
2085 }
2086
2087 #ifdef CONFIG_NUMA
2088 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2089                           void __user *buffer, size_t *length, loff_t *ppos)
2090 {
2091         return hugetlb_sysctl_handler_common(true, table, write,
2092                                                         buffer, length, ppos);
2093 }
2094 #endif /* CONFIG_NUMA */
2095
2096 int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
2097                         void __user *buffer,
2098                         size_t *length, loff_t *ppos)
2099 {
2100         proc_dointvec(table, write, buffer, length, ppos);
2101         if (hugepages_treat_as_movable)
2102                 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
2103         else
2104                 htlb_alloc_mask = GFP_HIGHUSER;
2105         return 0;
2106 }
2107
2108 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2109                         void __user *buffer,
2110                         size_t *length, loff_t *ppos)
2111 {
2112         struct hstate *h = &default_hstate;
2113         unsigned long tmp;
2114         int ret;
2115
2116         tmp = h->nr_overcommit_huge_pages;
2117
2118         if (write && h->order >= MAX_ORDER)
2119                 return -EINVAL;
2120
2121         table->data = &tmp;
2122         table->maxlen = sizeof(unsigned long);
2123         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2124         if (ret)
2125                 goto out;
2126
2127         if (write) {
2128                 spin_lock(&hugetlb_lock);
2129                 h->nr_overcommit_huge_pages = tmp;
2130                 spin_unlock(&hugetlb_lock);
2131         }
2132 out:
2133         return ret;
2134 }
2135
2136 #endif /* CONFIG_SYSCTL */
2137
2138 void hugetlb_report_meminfo(struct seq_file *m)
2139 {
2140         struct hstate *h = &default_hstate;
2141         seq_printf(m,
2142                         "HugePages_Total:   %5lu\n"
2143                         "HugePages_Free:    %5lu\n"
2144                         "HugePages_Rsvd:    %5lu\n"
2145                         "HugePages_Surp:    %5lu\n"
2146                         "Hugepagesize:   %8lu kB\n",
2147                         h->nr_huge_pages,
2148                         h->free_huge_pages,
2149                         h->resv_huge_pages,
2150                         h->surplus_huge_pages,
2151                         1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2152 }
2153
2154 int hugetlb_report_node_meminfo(int nid, char *buf)
2155 {
2156         struct hstate *h = &default_hstate;
2157         return sprintf(buf,
2158                 "Node %d HugePages_Total: %5u\n"
2159                 "Node %d HugePages_Free:  %5u\n"
2160                 "Node %d HugePages_Surp:  %5u\n",
2161                 nid, h->nr_huge_pages_node[nid],
2162                 nid, h->free_huge_pages_node[nid],
2163                 nid, h->surplus_huge_pages_node[nid]);
2164 }
2165
2166 void hugetlb_show_meminfo(void)
2167 {
2168         struct hstate *h;
2169         int nid;
2170
2171         for_each_node_state(nid, N_MEMORY)
2172                 for_each_hstate(h)
2173                         pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2174                                 nid,
2175                                 h->nr_huge_pages_node[nid],
2176                                 h->free_huge_pages_node[nid],
2177                                 h->surplus_huge_pages_node[nid],
2178                                 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2179 }
2180
2181 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2182 unsigned long hugetlb_total_pages(void)
2183 {
2184         struct hstate *h;
2185         unsigned long nr_total_pages = 0;
2186
2187         for_each_hstate(h)
2188                 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2189         return nr_total_pages;
2190 }
2191
2192 static int hugetlb_acct_memory(struct hstate *h, long delta)
2193 {
2194         int ret = -ENOMEM;
2195
2196         spin_lock(&hugetlb_lock);
2197         /*
2198          * When cpuset is configured, it breaks the strict hugetlb page
2199          * reservation as the accounting is done on a global variable. Such
2200          * reservation is completely rubbish in the presence of cpuset because
2201          * the reservation is not checked against page availability for the
2202          * current cpuset. Application can still potentially OOM'ed by kernel
2203          * with lack of free htlb page in cpuset that the task is in.
2204          * Attempt to enforce strict accounting with cpuset is almost
2205          * impossible (or too ugly) because cpuset is too fluid that
2206          * task or memory node can be dynamically moved between cpusets.
2207          *
2208          * The change of semantics for shared hugetlb mapping with cpuset is
2209          * undesirable. However, in order to preserve some of the semantics,
2210          * we fall back to check against current free page availability as
2211          * a best attempt and hopefully to minimize the impact of changing
2212          * semantics that cpuset has.
2213          */
2214         if (delta > 0) {
2215                 if (gather_surplus_pages(h, delta) < 0)
2216                         goto out;
2217
2218                 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2219                         return_unused_surplus_pages(h, delta);
2220                         goto out;
2221                 }
2222         }
2223
2224         ret = 0;
2225         if (delta < 0)
2226                 return_unused_surplus_pages(h, (unsigned long) -delta);
2227
2228 out:
2229         spin_unlock(&hugetlb_lock);
2230         return ret;
2231 }
2232
2233 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2234 {
2235         struct resv_map *reservations = vma_resv_map(vma);
2236
2237         /*
2238          * This new VMA should share its siblings reservation map if present.
2239          * The VMA will only ever have a valid reservation map pointer where
2240          * it is being copied for another still existing VMA.  As that VMA
2241          * has a reference to the reservation map it cannot disappear until
2242          * after this open call completes.  It is therefore safe to take a
2243          * new reference here without additional locking.
2244          */
2245         if (reservations)
2246                 kref_get(&reservations->refs);
2247 }
2248
2249 static void resv_map_put(struct vm_area_struct *vma)
2250 {
2251         struct resv_map *reservations = vma_resv_map(vma);
2252
2253         if (!reservations)
2254                 return;
2255         kref_put(&reservations->refs, resv_map_release);
2256 }
2257
2258 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2259 {
2260         struct hstate *h = hstate_vma(vma);
2261         struct resv_map *reservations = vma_resv_map(vma);
2262         struct hugepage_subpool *spool = subpool_vma(vma);
2263         unsigned long reserve;
2264         unsigned long start;
2265         unsigned long end;
2266
2267         if (reservations) {
2268                 start = vma_hugecache_offset(h, vma, vma->vm_start);
2269                 end = vma_hugecache_offset(h, vma, vma->vm_end);
2270
2271                 reserve = (end - start) -
2272                         region_count(&reservations->regions, start, end);
2273
2274                 resv_map_put(vma);
2275
2276                 if (reserve) {
2277                         hugetlb_acct_memory(h, -reserve);
2278                         hugepage_subpool_put_pages(spool, reserve);
2279                 }
2280         }
2281 }
2282
2283 /*
2284  * We cannot handle pagefaults against hugetlb pages at all.  They cause
2285  * handle_mm_fault() to try to instantiate regular-sized pages in the
2286  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
2287  * this far.
2288  */
2289 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2290 {
2291         BUG();
2292         return 0;
2293 }
2294
2295 const struct vm_operations_struct hugetlb_vm_ops = {
2296         .fault = hugetlb_vm_op_fault,
2297         .open = hugetlb_vm_op_open,
2298         .close = hugetlb_vm_op_close,
2299 };
2300
2301 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2302                                 int writable)
2303 {
2304         pte_t entry;
2305
2306         if (writable) {
2307                 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
2308                                          vma->vm_page_prot)));
2309         } else {
2310                 entry = huge_pte_wrprotect(mk_huge_pte(page,
2311                                            vma->vm_page_prot));
2312         }
2313         entry = pte_mkyoung(entry);
2314         entry = pte_mkhuge(entry);
2315         entry = arch_make_huge_pte(entry, vma, page, writable);
2316
2317         return entry;
2318 }
2319
2320 static void set_huge_ptep_writable(struct vm_area_struct *vma,
2321                                    unsigned long address, pte_t *ptep)
2322 {
2323         pte_t entry;
2324
2325         entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
2326         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2327                 update_mmu_cache(vma, address, ptep);
2328 }
2329
2330
2331 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2332                             struct vm_area_struct *vma)
2333 {
2334         pte_t *src_pte, *dst_pte, entry;
2335         struct page *ptepage;
2336         unsigned long addr;
2337         int cow;
2338         struct hstate *h = hstate_vma(vma);
2339         unsigned long sz = huge_page_size(h);
2340         unsigned long mmun_start;       /* For mmu_notifiers */
2341         unsigned long mmun_end;         /* For mmu_notifiers */
2342         int ret = 0;
2343
2344         cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
2345
2346         mmun_start = vma->vm_start;
2347         mmun_end = vma->vm_end;
2348         if (cow)
2349                 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
2350
2351         for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2352                 src_pte = huge_pte_offset(src, addr);
2353                 if (!src_pte)
2354                         continue;
2355                 dst_pte = huge_pte_alloc(dst, addr, sz);
2356                 if (!dst_pte) {
2357                         ret = -ENOMEM;
2358                         break;
2359                 }
2360
2361                 /* If the pagetables are shared don't copy or take references */
2362                 if (dst_pte == src_pte)
2363                         continue;
2364
2365                 spin_lock(&dst->page_table_lock);
2366                 spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
2367                 if (!huge_pte_none(huge_ptep_get(src_pte))) {
2368                         if (cow)
2369                                 huge_ptep_set_wrprotect(src, addr, src_pte);
2370                         entry = huge_ptep_get(src_pte);
2371                         ptepage = pte_page(entry);
2372                         get_page(ptepage);
2373                         page_dup_rmap(ptepage);
2374                         set_huge_pte_at(dst, addr, dst_pte, entry);
2375                 }
2376                 spin_unlock(&src->page_table_lock);
2377                 spin_unlock(&dst->page_table_lock);
2378         }
2379
2380         if (cow)
2381                 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
2382
2383         return ret;
2384 }
2385
2386 static int is_hugetlb_entry_migration(pte_t pte)
2387 {
2388         swp_entry_t swp;
2389
2390         if (huge_pte_none(pte) || pte_present(pte))
2391                 return 0;
2392         swp = pte_to_swp_entry(pte);
2393         if (non_swap_entry(swp) && is_migration_entry(swp))
2394                 return 1;
2395         else
2396                 return 0;
2397 }
2398
2399 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2400 {
2401         swp_entry_t swp;
2402
2403         if (huge_pte_none(pte) || pte_present(pte))
2404                 return 0;
2405         swp = pte_to_swp_entry(pte);
2406         if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2407                 return 1;
2408         else
2409                 return 0;
2410 }
2411
2412 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
2413                             unsigned long start, unsigned long end,
2414                             struct page *ref_page)
2415 {
2416         int force_flush = 0;
2417         struct mm_struct *mm = vma->vm_mm;
2418         unsigned long address;
2419         pte_t *ptep;
2420         pte_t pte;
2421         struct page *page;
2422         struct hstate *h = hstate_vma(vma);
2423         unsigned long sz = huge_page_size(h);
2424         const unsigned long mmun_start = start; /* For mmu_notifiers */
2425         const unsigned long mmun_end   = end;   /* For mmu_notifiers */
2426
2427         WARN_ON(!is_vm_hugetlb_page(vma));
2428         BUG_ON(start & ~huge_page_mask(h));
2429         BUG_ON(end & ~huge_page_mask(h));
2430
2431         tlb_start_vma(tlb, vma);
2432         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2433 again:
2434         spin_lock(&mm->page_table_lock);
2435         for (address = start; address < end; address += sz) {
2436                 ptep = huge_pte_offset(mm, address);
2437                 if (!ptep)
2438                         continue;
2439
2440                 if (huge_pmd_unshare(mm, &address, ptep))
2441                         continue;
2442
2443                 pte = huge_ptep_get(ptep);
2444                 if (huge_pte_none(pte))
2445                         continue;
2446
2447                 /*
2448                  * HWPoisoned hugepage is already unmapped and dropped reference
2449                  */
2450                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
2451                         huge_pte_clear(mm, address, ptep);
2452                         continue;
2453                 }
2454
2455                 page = pte_page(pte);
2456                 /*
2457                  * If a reference page is supplied, it is because a specific
2458                  * page is being unmapped, not a range. Ensure the page we
2459                  * are about to unmap is the actual page of interest.
2460                  */
2461                 if (ref_page) {
2462                         if (page != ref_page)
2463                                 continue;
2464
2465                         /*
2466                          * Mark the VMA as having unmapped its page so that
2467                          * future faults in this VMA will fail rather than
2468                          * looking like data was lost
2469                          */
2470                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2471                 }
2472
2473                 pte = huge_ptep_get_and_clear(mm, address, ptep);
2474                 tlb_remove_tlb_entry(tlb, ptep, address);
2475                 if (huge_pte_dirty(pte))
2476                         set_page_dirty(page);
2477
2478                 page_remove_rmap(page);
2479                 force_flush = !__tlb_remove_page(tlb, page);
2480                 if (force_flush)
2481                         break;
2482                 /* Bail out after unmapping reference page if supplied */
2483                 if (ref_page)
2484                         break;
2485         }
2486         spin_unlock(&mm->page_table_lock);
2487         /*
2488          * mmu_gather ran out of room to batch pages, we break out of
2489          * the PTE lock to avoid doing the potential expensive TLB invalidate
2490          * and page-free while holding it.
2491          */
2492         if (force_flush) {
2493                 force_flush = 0;
2494                 tlb_flush_mmu(tlb);
2495                 if (address < end && !ref_page)
2496                         goto again;
2497         }
2498         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2499         tlb_end_vma(tlb, vma);
2500 }
2501
2502 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
2503                           struct vm_area_struct *vma, unsigned long start,
2504                           unsigned long end, struct page *ref_page)
2505 {
2506         __unmap_hugepage_range(tlb, vma, start, end, ref_page);
2507
2508         /*
2509          * Clear this flag so that x86's huge_pmd_share page_table_shareable
2510          * test will fail on a vma being torn down, and not grab a page table
2511          * on its way out.  We're lucky that the flag has such an appropriate
2512          * name, and can in fact be safely cleared here. We could clear it
2513          * before the __unmap_hugepage_range above, but all that's necessary
2514          * is to clear it before releasing the i_mmap_mutex. This works
2515          * because in the context this is called, the VMA is about to be
2516          * destroyed and the i_mmap_mutex is held.
2517          */
2518         vma->vm_flags &= ~VM_MAYSHARE;
2519 }
2520
2521 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2522                           unsigned long end, struct page *ref_page)
2523 {
2524         struct mm_struct *mm;
2525         struct mmu_gather tlb;
2526
2527         mm = vma->vm_mm;
2528
2529         tlb_gather_mmu(&tlb, mm, start, end);
2530         __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
2531         tlb_finish_mmu(&tlb, start, end);
2532 }
2533
2534 /*
2535  * This is called when the original mapper is failing to COW a MAP_PRIVATE
2536  * mappping it owns the reserve page for. The intention is to unmap the page
2537  * from other VMAs and let the children be SIGKILLed if they are faulting the
2538  * same region.
2539  */
2540 static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2541                                 struct page *page, unsigned long address)
2542 {
2543         struct hstate *h = hstate_vma(vma);
2544         struct vm_area_struct *iter_vma;
2545         struct address_space *mapping;
2546         pgoff_t pgoff;
2547
2548         /*
2549          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2550          * from page cache lookup which is in HPAGE_SIZE units.
2551          */
2552         address = address & huge_page_mask(h);
2553         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
2554                         vma->vm_pgoff;
2555         mapping = file_inode(vma->vm_file)->i_mapping;
2556
2557         /*
2558          * Take the mapping lock for the duration of the table walk. As
2559          * this mapping should be shared between all the VMAs,
2560          * __unmap_hugepage_range() is called as the lock is already held
2561          */
2562         mutex_lock(&mapping->i_mmap_mutex);
2563         vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
2564                 /* Do not unmap the current VMA */
2565                 if (iter_vma == vma)
2566                         continue;
2567
2568                 /*
2569                  * Unmap the page from other VMAs without their own reserves.
2570                  * They get marked to be SIGKILLed if they fault in these
2571                  * areas. This is because a future no-page fault on this VMA
2572                  * could insert a zeroed page instead of the data existing
2573                  * from the time of fork. This would look like data corruption
2574                  */
2575                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2576                         unmap_hugepage_range(iter_vma, address,
2577                                              address + huge_page_size(h), page);
2578         }
2579         mutex_unlock(&mapping->i_mmap_mutex);
2580
2581         return 1;
2582 }
2583
2584 /*
2585  * Hugetlb_cow() should be called with page lock of the original hugepage held.
2586  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
2587  * cannot race with other handlers or page migration.
2588  * Keep the pte_same checks anyway to make transition from the mutex easier.
2589  */
2590 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2591                         unsigned long address, pte_t *ptep, pte_t pte,
2592                         struct page *pagecache_page)
2593 {
2594         struct hstate *h = hstate_vma(vma);
2595         struct page *old_page, *new_page;
2596         int avoidcopy;
2597         int outside_reserve = 0;
2598         unsigned long mmun_start;       /* For mmu_notifiers */
2599         unsigned long mmun_end;         /* For mmu_notifiers */
2600
2601         old_page = pte_page(pte);
2602
2603 retry_avoidcopy:
2604         /* If no-one else is actually using this page, avoid the copy
2605          * and just make the page writable */
2606         avoidcopy = (page_mapcount(old_page) == 1);
2607         if (avoidcopy) {
2608                 if (PageAnon(old_page))
2609                         page_move_anon_rmap(old_page, vma, address);
2610                 set_huge_ptep_writable(vma, address, ptep);
2611                 return 0;
2612         }
2613
2614         /*
2615          * If the process that created a MAP_PRIVATE mapping is about to
2616          * perform a COW due to a shared page count, attempt to satisfy
2617          * the allocation without using the existing reserves. The pagecache
2618          * page is used to determine if the reserve at this address was
2619          * consumed or not. If reserves were used, a partial faulted mapping
2620          * at the time of fork() could consume its reserves on COW instead
2621          * of the full address range.
2622          */
2623         if (!(vma->vm_flags & VM_MAYSHARE) &&
2624                         is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2625                         old_page != pagecache_page)
2626                 outside_reserve = 1;
2627
2628         page_cache_get(old_page);
2629
2630         /* Drop page_table_lock as buddy allocator may be called */
2631         spin_unlock(&mm->page_table_lock);
2632         new_page = alloc_huge_page(vma, address, outside_reserve);
2633
2634         if (IS_ERR(new_page)) {
2635                 long err = PTR_ERR(new_page);
2636                 page_cache_release(old_page);
2637
2638                 /*
2639                  * If a process owning a MAP_PRIVATE mapping fails to COW,
2640                  * it is due to references held by a child and an insufficient
2641                  * huge page pool. To guarantee the original mappers
2642                  * reliability, unmap the page from child processes. The child
2643                  * may get SIGKILLed if it later faults.
2644                  */
2645                 if (outside_reserve) {
2646                         BUG_ON(huge_pte_none(pte));
2647                         if (unmap_ref_private(mm, vma, old_page, address)) {
2648                                 BUG_ON(huge_pte_none(pte));
2649                                 spin_lock(&mm->page_table_lock);
2650                                 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2651                                 if (likely(pte_same(huge_ptep_get(ptep), pte)))
2652                                         goto retry_avoidcopy;
2653                                 /*
2654                                  * race occurs while re-acquiring page_table_lock, and
2655                                  * our job is done.
2656                                  */
2657                                 return 0;
2658                         }
2659                         WARN_ON_ONCE(1);
2660                 }
2661
2662                 /* Caller expects lock to be held */
2663                 spin_lock(&mm->page_table_lock);
2664                 if (err == -ENOMEM)
2665                         return VM_FAULT_OOM;
2666                 else
2667                         return VM_FAULT_SIGBUS;
2668         }
2669
2670         /*
2671          * When the original hugepage is shared one, it does not have
2672          * anon_vma prepared.
2673          */
2674         if (unlikely(anon_vma_prepare(vma))) {
2675                 page_cache_release(new_page);
2676                 page_cache_release(old_page);
2677                 /* Caller expects lock to be held */
2678                 spin_lock(&mm->page_table_lock);
2679                 return VM_FAULT_OOM;
2680         }
2681
2682         copy_user_huge_page(new_page, old_page, address, vma,
2683                             pages_per_huge_page(h));
2684         __SetPageUptodate(new_page);
2685
2686         mmun_start = address & huge_page_mask(h);
2687         mmun_end = mmun_start + huge_page_size(h);
2688         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2689         /*
2690          * Retake the page_table_lock to check for racing updates
2691          * before the page tables are altered
2692          */
2693         spin_lock(&mm->page_table_lock);
2694         ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2695         if (likely(pte_same(huge_ptep_get(ptep), pte))) {
2696                 /* Break COW */
2697                 huge_ptep_clear_flush(vma, address, ptep);
2698                 set_huge_pte_at(mm, address, ptep,
2699                                 make_huge_pte(vma, new_page, 1));
2700                 page_remove_rmap(old_page);
2701                 hugepage_add_new_anon_rmap(new_page, vma, address);
2702                 /* Make the old page be freed below */
2703                 new_page = old_page;
2704         }
2705         spin_unlock(&mm->page_table_lock);
2706         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2707         /* Caller expects lock to be held */
2708         spin_lock(&mm->page_table_lock);
2709         page_cache_release(new_page);
2710         page_cache_release(old_page);
2711         return 0;
2712 }
2713
2714 /* Return the pagecache page at a given address within a VMA */
2715 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2716                         struct vm_area_struct *vma, unsigned long address)
2717 {
2718         struct address_space *mapping;
2719         pgoff_t idx;
2720
2721         mapping = vma->vm_file->f_mapping;
2722         idx = vma_hugecache_offset(h, vma, address);
2723
2724         return find_lock_page(mapping, idx);
2725 }
2726
2727 /*
2728  * Return whether there is a pagecache page to back given address within VMA.
2729  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2730  */
2731 static bool hugetlbfs_pagecache_present(struct hstate *h,
2732                         struct vm_area_struct *vma, unsigned long address)
2733 {
2734         struct address_space *mapping;
2735         pgoff_t idx;
2736         struct page *page;
2737
2738         mapping = vma->vm_file->f_mapping;
2739         idx = vma_hugecache_offset(h, vma, address);
2740
2741         page = find_get_page(mapping, idx);
2742         if (page)
2743                 put_page(page);
2744         return page != NULL;
2745 }
2746
2747 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2748                         unsigned long address, pte_t *ptep, unsigned int flags)
2749 {
2750         struct hstate *h = hstate_vma(vma);
2751         int ret = VM_FAULT_SIGBUS;
2752         int anon_rmap = 0;
2753         pgoff_t idx;
2754         unsigned long size;
2755         struct page *page;
2756         struct address_space *mapping;
2757         pte_t new_pte;
2758
2759         /*
2760          * Currently, we are forced to kill the process in the event the
2761          * original mapper has unmapped pages from the child due to a failed
2762          * COW. Warn that such a situation has occurred as it may not be obvious
2763          */
2764         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2765                 pr_warning("PID %d killed due to inadequate hugepage pool\n",
2766                            current->pid);
2767                 return ret;
2768         }
2769
2770         mapping = vma->vm_file->f_mapping;
2771         idx = vma_hugecache_offset(h, vma, address);
2772
2773         /*
2774          * Use page lock to guard against racing truncation
2775          * before we get page_table_lock.
2776          */
2777 retry:
2778         page = find_lock_page(mapping, idx);
2779         if (!page) {
2780                 size = i_size_read(mapping->host) >> huge_page_shift(h);
2781                 if (idx >= size)
2782                         goto out;
2783                 page = alloc_huge_page(vma, address, 0);
2784                 if (IS_ERR(page)) {
2785                         ret = PTR_ERR(page);
2786                         if (ret == -ENOMEM)
2787                                 ret = VM_FAULT_OOM;
2788                         else
2789                                 ret = VM_FAULT_SIGBUS;
2790                         goto out;
2791                 }
2792                 clear_huge_page(page, address, pages_per_huge_page(h));
2793                 __SetPageUptodate(page);
2794
2795                 if (vma->vm_flags & VM_MAYSHARE) {
2796                         int err;
2797                         struct inode *inode = mapping->host;
2798
2799                         err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2800                         if (err) {
2801                                 put_page(page);
2802                                 if (err == -EEXIST)
2803                                         goto retry;
2804                                 goto out;
2805                         }
2806
2807                         spin_lock(&inode->i_lock);
2808                         inode->i_blocks += blocks_per_huge_page(h);
2809                         spin_unlock(&inode->i_lock);
2810                 } else {
2811                         lock_page(page);
2812                         if (unlikely(anon_vma_prepare(vma))) {
2813                                 ret = VM_FAULT_OOM;
2814                                 goto backout_unlocked;
2815                         }
2816                         anon_rmap = 1;
2817                 }
2818         } else {
2819                 /*
2820                  * If memory error occurs between mmap() and fault, some process
2821                  * don't have hwpoisoned swap entry for errored virtual address.
2822                  * So we need to block hugepage fault by PG_hwpoison bit check.
2823                  */
2824                 if (unlikely(PageHWPoison(page))) {
2825                         ret = VM_FAULT_HWPOISON |
2826                                 VM_FAULT_SET_HINDEX(hstate_index(h));
2827                         goto backout_unlocked;
2828                 }
2829         }
2830
2831         /*
2832          * If we are going to COW a private mapping later, we examine the
2833          * pending reservations for this page now. This will ensure that
2834          * any allocations necessary to record that reservation occur outside
2835          * the spinlock.
2836          */
2837         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2838                 if (vma_needs_reservation(h, vma, address) < 0) {
2839                         ret = VM_FAULT_OOM;
2840                         goto backout_unlocked;
2841                 }
2842
2843         spin_lock(&mm->page_table_lock);
2844         size = i_size_read(mapping->host) >> huge_page_shift(h);
2845         if (idx >= size)
2846                 goto backout;
2847
2848         ret = 0;
2849         if (!huge_pte_none(huge_ptep_get(ptep)))
2850                 goto backout;
2851
2852         if (anon_rmap)
2853                 hugepage_add_new_anon_rmap(page, vma, address);
2854         else
2855                 page_dup_rmap(page);
2856         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2857                                 && (vma->vm_flags & VM_SHARED)));
2858         set_huge_pte_at(mm, address, ptep, new_pte);
2859
2860         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2861                 /* Optimization, do the COW without a second fault */
2862                 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
2863         }
2864
2865         spin_unlock(&mm->page_table_lock);
2866         unlock_page(page);
2867 out:
2868         return ret;
2869
2870 backout:
2871         spin_unlock(&mm->page_table_lock);
2872 backout_unlocked:
2873         unlock_page(page);
2874         put_page(page);
2875         goto out;
2876 }
2877
2878 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2879                         unsigned long address, unsigned int flags)
2880 {
2881         pte_t *ptep;
2882         pte_t entry;
2883         int ret;
2884         struct page *page = NULL;
2885         struct page *pagecache_page = NULL;
2886         static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2887         struct hstate *h = hstate_vma(vma);
2888
2889         address &= huge_page_mask(h);
2890
2891         ptep = huge_pte_offset(mm, address);
2892         if (ptep) {
2893                 entry = huge_ptep_get(ptep);
2894                 if (unlikely(is_hugetlb_entry_migration(entry))) {
2895                         migration_entry_wait_huge(mm, ptep);
2896                         return 0;
2897                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
2898                         return VM_FAULT_HWPOISON_LARGE |
2899                                 VM_FAULT_SET_HINDEX(hstate_index(h));
2900         }
2901
2902         ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2903         if (!ptep)
2904                 return VM_FAULT_OOM;
2905
2906         /*
2907          * Serialize hugepage allocation and instantiation, so that we don't
2908          * get spurious allocation failures if two CPUs race to instantiate
2909          * the same page in the page cache.
2910          */
2911         mutex_lock(&hugetlb_instantiation_mutex);
2912         entry = huge_ptep_get(ptep);
2913         if (huge_pte_none(entry)) {
2914                 ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2915                 goto out_mutex;
2916         }
2917
2918         ret = 0;
2919
2920         /*
2921          * If we are going to COW the mapping later, we examine the pending
2922          * reservations for this page now. This will ensure that any
2923          * allocations necessary to record that reservation occur outside the
2924          * spinlock. For private mappings, we also lookup the pagecache
2925          * page now as it is used to determine if a reservation has been
2926          * consumed.
2927          */
2928         if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
2929                 if (vma_needs_reservation(h, vma, address) < 0) {
2930                         ret = VM_FAULT_OOM;
2931                         goto out_mutex;
2932                 }
2933
2934                 if (!(vma->vm_flags & VM_MAYSHARE))
2935                         pagecache_page = hugetlbfs_pagecache_page(h,
2936                                                                 vma, address);
2937         }
2938
2939         /*
2940          * hugetlb_cow() requires page locks of pte_page(entry) and
2941          * pagecache_page, so here we need take the former one
2942          * when page != pagecache_page or !pagecache_page.
2943          * Note that locking order is always pagecache_page -> page,
2944          * so no worry about deadlock.
2945          */
2946         page = pte_page(entry);
2947         get_page(page);
2948         if (page != pagecache_page)
2949                 lock_page(page);
2950
2951         spin_lock(&mm->page_table_lock);
2952         /* Check for a racing update before calling hugetlb_cow */
2953         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2954                 goto out_page_table_lock;
2955
2956
2957         if (flags & FAULT_FLAG_WRITE) {
2958                 if (!huge_pte_write(entry)) {
2959                         ret = hugetlb_cow(mm, vma, address, ptep, entry,
2960                                                         pagecache_page);
2961                         goto out_page_table_lock;
2962                 }
2963                 entry = huge_pte_mkdirty(entry);
2964         }
2965         entry = pte_mkyoung(entry);
2966         if (huge_ptep_set_access_flags(vma, address, ptep, entry,
2967                                                 flags & FAULT_FLAG_WRITE))
2968                 update_mmu_cache(vma, address, ptep);
2969
2970 out_page_table_lock:
2971         spin_unlock(&mm->page_table_lock);
2972
2973         if (pagecache_page) {
2974                 unlock_page(pagecache_page);
2975                 put_page(pagecache_page);
2976         }
2977         if (page != pagecache_page)
2978                 unlock_page(page);
2979         put_page(page);
2980
2981 out_mutex:
2982         mutex_unlock(&hugetlb_instantiation_mutex);
2983
2984         return ret;
2985 }
2986
2987 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
2988                          struct page **pages, struct vm_area_struct **vmas,
2989                          unsigned long *position, unsigned long *nr_pages,
2990                          long i, unsigned int flags)
2991 {
2992         unsigned long pfn_offset;
2993         unsigned long vaddr = *position;
2994         unsigned long remainder = *nr_pages;
2995         struct hstate *h = hstate_vma(vma);
2996
2997         spin_lock(&mm->page_table_lock);
2998         while (vaddr < vma->vm_end && remainder) {
2999                 pte_t *pte;
3000                 int absent;
3001                 struct page *page;
3002
3003                 /*
3004                  * Some archs (sparc64, sh*) have multiple pte_ts to
3005                  * each hugepage.  We have to make sure we get the
3006                  * first, for the page indexing below to work.
3007                  */
3008                 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
3009                 absent = !pte || huge_pte_none(huge_ptep_get(pte));
3010
3011                 /*
3012                  * When coredumping, it suits get_dump_page if we just return
3013                  * an error where there's an empty slot with no huge pagecache
3014                  * to back it.  This way, we avoid allocating a hugepage, and
3015                  * the sparse dumpfile avoids allocating disk blocks, but its
3016                  * huge holes still show up with zeroes where they need to be.
3017                  */
3018                 if (absent && (flags & FOLL_DUMP) &&
3019                     !hugetlbfs_pagecache_present(h, vma, vaddr)) {
3020                         remainder = 0;
3021                         break;
3022                 }
3023
3024                 /*
3025                  * We need call hugetlb_fault for both hugepages under migration
3026                  * (in which case hugetlb_fault waits for the migration,) and
3027                  * hwpoisoned hugepages (in which case we need to prevent the
3028                  * caller from accessing to them.) In order to do this, we use
3029                  * here is_swap_pte instead of is_hugetlb_entry_migration and
3030                  * is_hugetlb_entry_hwpoisoned. This is because it simply covers
3031                  * both cases, and because we can't follow correct pages
3032                  * directly from any kind of swap entries.
3033                  */
3034                 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
3035                     ((flags & FOLL_WRITE) &&
3036                       !huge_pte_write(huge_ptep_get(pte)))) {
3037                         int ret;
3038
3039                         spin_unlock(&mm->page_table_lock);
3040                         ret = hugetlb_fault(mm, vma, vaddr,
3041                                 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
3042                         spin_lock(&mm->page_table_lock);
3043                         if (!(ret & VM_FAULT_ERROR))
3044                                 continue;
3045
3046                         remainder = 0;
3047                         break;
3048                 }
3049
3050                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
3051                 page = pte_page(huge_ptep_get(pte));
3052 same_page:
3053                 if (pages) {
3054                         pages[i] = mem_map_offset(page, pfn_offset);
3055                         get_page(pages[i]);
3056                 }
3057
3058                 if (vmas)
3059                         vmas[i] = vma;
3060
3061                 vaddr += PAGE_SIZE;
3062                 ++pfn_offset;
3063                 --remainder;
3064                 ++i;
3065                 if (vaddr < vma->vm_end && remainder &&
3066                                 pfn_offset < pages_per_huge_page(h)) {
3067                         /*
3068                          * We use pfn_offset to avoid touching the pageframes
3069                          * of this compound page.
3070                          */
3071                         goto same_page;
3072                 }
3073         }
3074         spin_unlock(&mm->page_table_lock);
3075         *nr_pages = remainder;
3076         *position = vaddr;
3077
3078         return i ? i : -EFAULT;
3079 }
3080
3081 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3082                 unsigned long address, unsigned long end, pgprot_t newprot)
3083 {
3084         struct mm_struct *mm = vma->vm_mm;
3085         unsigned long start = address;
3086         pte_t *ptep;
3087         pte_t pte;
3088         struct hstate *h = hstate_vma(vma);
3089         unsigned long pages = 0;
3090
3091         BUG_ON(address >= end);
3092         flush_cache_range(vma, address, end);
3093
3094         mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
3095         spin_lock(&mm->page_table_lock);
3096         for (; address < end; address += huge_page_size(h)) {
3097                 ptep = huge_pte_offset(mm, address);
3098                 if (!ptep)
3099                         continue;
3100                 if (huge_pmd_unshare(mm, &address, ptep)) {
3101                         pages++;
3102                         continue;
3103                 }
3104                 if (!huge_pte_none(huge_ptep_get(ptep))) {
3105                         pte = huge_ptep_get_and_clear(mm, address, ptep);
3106                         pte = pte_mkhuge(huge_pte_modify(pte, newprot));
3107                         pte = arch_make_huge_pte(pte, vma, NULL, 0);
3108                         set_huge_pte_at(mm, address, ptep, pte);
3109                         pages++;
3110                 }
3111         }
3112         spin_unlock(&mm->page_table_lock);
3113         /*
3114          * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare
3115          * may have cleared our pud entry and done put_page on the page table:
3116          * once we release i_mmap_mutex, another task can do the final put_page
3117          * and that page table be reused and filled with junk.
3118          */
3119         flush_tlb_range(vma, start, end);
3120         mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
3121
3122         return pages << h->order;
3123 }
3124
3125 int hugetlb_reserve_pages(struct inode *inode,
3126                                         long from, long to,
3127                                         struct vm_area_struct *vma,
3128                                         vm_flags_t vm_flags)
3129 {
3130         long ret, chg;
3131         struct hstate *h = hstate_inode(inode);
3132         struct hugepage_subpool *spool = subpool_inode(inode);
3133
3134         /*
3135          * Only apply hugepage reservation if asked. At fault time, an
3136          * attempt will be made for VM_NORESERVE to allocate a page
3137          * without using reserves
3138          */
3139         if (vm_flags & VM_NORESERVE)
3140                 return 0;
3141
3142         /*
3143          * Shared mappings base their reservation on the number of pages that
3144          * are already allocated on behalf of the file. Private mappings need
3145          * to reserve the full area even if read-only as mprotect() may be
3146          * called to make the mapping read-write. Assume !vma is a shm mapping
3147          */
3148         if (!vma || vma->vm_flags & VM_MAYSHARE)
3149                 chg = region_chg(&inode->i_mapping->private_list, from, to);
3150         else {
3151                 struct resv_map *resv_map = resv_map_alloc();
3152                 if (!resv_map)
3153                         return -ENOMEM;
3154
3155                 chg = to - from;
3156
3157                 set_vma_resv_map(vma, resv_map);
3158                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
3159         }
3160
3161         if (chg < 0) {
3162                 ret = chg;
3163                 goto out_err;
3164         }
3165
3166         /* There must be enough pages in the subpool for the mapping */
3167         if (hugepage_subpool_get_pages(spool, chg)) {
3168                 ret = -ENOSPC;
3169                 goto out_err;
3170         }
3171
3172         /*
3173          * Check enough hugepages are available for the reservation.
3174          * Hand the pages back to the subpool if there are not
3175          */
3176         ret = hugetlb_acct_memory(h, chg);
3177         if (ret < 0) {
3178                 hugepage_subpool_put_pages(spool, chg);
3179                 goto out_err;
3180         }
3181
3182         /*
3183          * Account for the reservations made. Shared mappings record regions
3184          * that have reservations as they are shared by multiple VMAs.
3185          * When the last VMA disappears, the region map says how much
3186          * the reservation was and the page cache tells how much of
3187          * the reservation was consumed. Private mappings are per-VMA and
3188          * only the consumed reservations are tracked. When the VMA
3189          * disappears, the original reservation is the VMA size and the
3190          * consumed reservations are stored in the map. Hence, nothing
3191          * else has to be done for private mappings here
3192          */
3193         if (!vma || vma->vm_flags & VM_MAYSHARE)
3194                 region_add(&inode->i_mapping->private_list, from, to);
3195         return 0;
3196 out_err:
3197         if (vma)
3198                 resv_map_put(vma);
3199         return ret;
3200 }
3201
3202 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
3203 {
3204         struct hstate *h = hstate_inode(inode);
3205         long chg = region_truncate(&inode->i_mapping->private_list, offset);
3206         struct hugepage_subpool *spool = subpool_inode(inode);
3207
3208         spin_lock(&inode->i_lock);
3209         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
3210         spin_unlock(&inode->i_lock);
3211
3212         hugepage_subpool_put_pages(spool, (chg - freed));
3213         hugetlb_acct_memory(h, -(chg - freed));
3214 }
3215
3216 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
3217 static unsigned long page_table_shareable(struct vm_area_struct *svma,
3218                                 struct vm_area_struct *vma,
3219                                 unsigned long addr, pgoff_t idx)
3220 {
3221         unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
3222                                 svma->vm_start;
3223         unsigned long sbase = saddr & PUD_MASK;
3224         unsigned long s_end = sbase + PUD_SIZE;
3225
3226         /* Allow segments to share if only one is marked locked */
3227         unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED;
3228         unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED;
3229
3230         /*
3231          * match the virtual addresses, permission and the alignment of the
3232          * page table page.
3233          */
3234         if (pmd_index(addr) != pmd_index(saddr) ||
3235             vm_flags != svm_flags ||
3236             sbase < svma->vm_start || svma->vm_end < s_end)
3237                 return 0;
3238
3239         return saddr;
3240 }
3241
3242 static int vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3243 {
3244         unsigned long base = addr & PUD_MASK;
3245         unsigned long end = base + PUD_SIZE;
3246
3247         /*
3248          * check on proper vm_flags and page table alignment
3249          */
3250         if (vma->vm_flags & VM_MAYSHARE &&
3251             vma->vm_start <= base && end <= vma->vm_end)
3252                 return 1;
3253         return 0;
3254 }
3255
3256 /*
3257  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
3258  * and returns the corresponding pte. While this is not necessary for the
3259  * !shared pmd case because we can allocate the pmd later as well, it makes the
3260  * code much cleaner. pmd allocation is essential for the shared case because
3261  * pud has to be populated inside the same i_mmap_mutex section - otherwise
3262  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
3263  * bad pmd for sharing.
3264  */
3265 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3266 {
3267         struct vm_area_struct *vma = find_vma(mm, addr);
3268         struct address_space *mapping = vma->vm_file->f_mapping;
3269         pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
3270                         vma->vm_pgoff;
3271         struct vm_area_struct *svma;
3272         unsigned long saddr;
3273         pte_t *spte = NULL;
3274         pte_t *pte;
3275
3276         if (!vma_shareable(vma, addr))
3277                 return (pte_t *)pmd_alloc(mm, pud, addr);
3278
3279         mutex_lock(&mapping->i_mmap_mutex);
3280         vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
3281                 if (svma == vma)
3282                         continue;
3283
3284                 saddr = page_table_shareable(svma, vma, addr, idx);
3285                 if (saddr) {
3286                         spte = huge_pte_offset(svma->vm_mm, saddr);
3287                         if (spte) {
3288                                 get_page(virt_to_page(spte));
3289                                 break;
3290                         }
3291                 }
3292         }
3293
3294         if (!spte)
3295                 goto out;
3296
3297         spin_lock(&mm->page_table_lock);
3298         if (pud_none(*pud))
3299                 pud_populate(mm, pud,
3300                                 (pmd_t *)((unsigned long)spte & PAGE_MASK));
3301         else
3302                 put_page(virt_to_page(spte));
3303         spin_unlock(&mm->page_table_lock);
3304 out:
3305         pte = (pte_t *)pmd_alloc(mm, pud, addr);
3306         mutex_unlock(&mapping->i_mmap_mutex);
3307         return pte;
3308 }
3309
3310 /*
3311  * unmap huge page backed by shared pte.
3312  *
3313  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
3314  * indicated by page_count > 1, unmap is achieved by clearing pud and
3315  * decrementing the ref count. If count == 1, the pte page is not shared.
3316  *
3317  * called with vma->vm_mm->page_table_lock held.
3318  *
3319  * returns: 1 successfully unmapped a shared pte page
3320  *          0 the underlying pte page is not shared, or it is the last user
3321  */
3322 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
3323 {
3324         pgd_t *pgd = pgd_offset(mm, *addr);
3325         pud_t *pud = pud_offset(pgd, *addr);
3326
3327         BUG_ON(page_count(virt_to_page(ptep)) == 0);
3328         if (page_count(virt_to_page(ptep)) == 1)
3329                 return 0;
3330
3331         pud_clear(pud);
3332         put_page(virt_to_page(ptep));
3333         *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
3334         return 1;
3335 }
3336 #define want_pmd_share()        (1)
3337 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3338 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3339 {
3340         return NULL;
3341 }
3342 #define want_pmd_share()        (0)
3343 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3344
3345 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
3346 pte_t *huge_pte_alloc(struct mm_struct *mm,
3347                         unsigned long addr, unsigned long sz)
3348 {
3349         pgd_t *pgd;
3350         pud_t *pud;
3351         pte_t *pte = NULL;
3352
3353         pgd = pgd_offset(mm, addr);
3354         pud = pud_alloc(mm, pgd, addr);
3355         if (pud) {
3356                 if (sz == PUD_SIZE) {
3357                         pte = (pte_t *)pud;
3358                 } else {
3359                         BUG_ON(sz != PMD_SIZE);
3360                         if (want_pmd_share() && pud_none(*pud))
3361                                 pte = huge_pmd_share(mm, addr, pud);
3362                         else
3363                                 pte = (pte_t *)pmd_alloc(mm, pud, addr);
3364                 }
3365         }
3366         BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
3367
3368         return pte;
3369 }
3370
3371 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
3372 {
3373         pgd_t *pgd;
3374         pud_t *pud;
3375         pmd_t *pmd = NULL;
3376
3377         pgd = pgd_offset(mm, addr);
3378         if (pgd_present(*pgd)) {
3379                 pud = pud_offset(pgd, addr);
3380                 if (pud_present(*pud)) {
3381                         if (pud_huge(*pud))
3382                                 return (pte_t *)pud;
3383                         pmd = pmd_offset(pud, addr);
3384                 }
3385         }
3386         return (pte_t *) pmd;
3387 }
3388
3389 struct page *
3390 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
3391                 pmd_t *pmd, int write)
3392 {
3393         struct page *page;
3394
3395         page = pte_page(*(pte_t *)pmd);
3396         if (page)
3397                 page += ((address & ~PMD_MASK) >> PAGE_SHIFT);
3398         return page;
3399 }
3400
3401 struct page *
3402 follow_huge_pud(struct mm_struct *mm, unsigned long address,
3403                 pud_t *pud, int write)
3404 {
3405         struct page *page;
3406
3407         page = pte_page(*(pte_t *)pud);
3408         if (page)
3409                 page += ((address & ~PUD_MASK) >> PAGE_SHIFT);
3410         return page;
3411 }
3412
3413 #else /* !CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3414
3415 /* Can be overriden by architectures */
3416 __attribute__((weak)) struct page *
3417 follow_huge_pud(struct mm_struct *mm, unsigned long address,
3418                pud_t *pud, int write)
3419 {
3420         BUG();
3421         return NULL;
3422 }
3423
3424 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3425
3426 #ifdef CONFIG_MEMORY_FAILURE
3427
3428 /* Should be called in hugetlb_lock */
3429 static int is_hugepage_on_freelist(struct page *hpage)
3430 {
3431         struct page *page;
3432         struct page *tmp;
3433         struct hstate *h = page_hstate(hpage);
3434         int nid = page_to_nid(hpage);
3435
3436         list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
3437                 if (page == hpage)
3438                         return 1;
3439         return 0;
3440 }
3441
3442 /*
3443  * This function is called from memory failure code.
3444  * Assume the caller holds page lock of the head page.
3445  */
3446 int dequeue_hwpoisoned_huge_page(struct page *hpage)
3447 {
3448         struct hstate *h = page_hstate(hpage);
3449         int nid = page_to_nid(hpage);
3450         int ret = -EBUSY;
3451
3452         spin_lock(&hugetlb_lock);
3453         if (is_hugepage_on_freelist(hpage)) {
3454                 /*
3455                  * Hwpoisoned hugepage isn't linked to activelist or freelist,
3456                  * but dangling hpage->lru can trigger list-debug warnings
3457                  * (this happens when we call unpoison_memory() on it),
3458                  * so let it point to itself with list_del_init().
3459                  */
3460                 list_del_init(&hpage->lru);
3461                 set_page_refcounted(hpage);
3462                 h->free_huge_pages--;
3463                 h->free_huge_pages_node[nid]--;
3464                 ret = 0;
3465         }
3466         spin_unlock(&hugetlb_lock);
3467         return ret;
3468 }
3469 #endif