mm, hugetlb: protect reserved pages when soft offlining a hugepage
[firefly-linux-kernel-4.4.55.git] / mm / hugetlb.c
1 /*
2  * Generic hugetlb support.
3  * (C) Nadia Yvette Chambers, April 2004
4  */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/rmap.h>
22 #include <linux/swap.h>
23 #include <linux/swapops.h>
24
25 #include <asm/page.h>
26 #include <asm/pgtable.h>
27 #include <asm/tlb.h>
28
29 #include <linux/io.h>
30 #include <linux/hugetlb.h>
31 #include <linux/hugetlb_cgroup.h>
32 #include <linux/node.h>
33 #include "internal.h"
34
35 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
36 static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
37 unsigned long hugepages_treat_as_movable;
38
39 int hugetlb_max_hstate __read_mostly;
40 unsigned int default_hstate_idx;
41 struct hstate hstates[HUGE_MAX_HSTATE];
42
43 __initdata LIST_HEAD(huge_boot_pages);
44
45 /* for command line parsing */
46 static struct hstate * __initdata parsed_hstate;
47 static unsigned long __initdata default_hstate_max_huge_pages;
48 static unsigned long __initdata default_hstate_size;
49
50 /*
51  * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
52  */
53 DEFINE_SPINLOCK(hugetlb_lock);
54
55 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
56 {
57         bool free = (spool->count == 0) && (spool->used_hpages == 0);
58
59         spin_unlock(&spool->lock);
60
61         /* If no pages are used, and no other handles to the subpool
62          * remain, free the subpool the subpool remain */
63         if (free)
64                 kfree(spool);
65 }
66
67 struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
68 {
69         struct hugepage_subpool *spool;
70
71         spool = kmalloc(sizeof(*spool), GFP_KERNEL);
72         if (!spool)
73                 return NULL;
74
75         spin_lock_init(&spool->lock);
76         spool->count = 1;
77         spool->max_hpages = nr_blocks;
78         spool->used_hpages = 0;
79
80         return spool;
81 }
82
83 void hugepage_put_subpool(struct hugepage_subpool *spool)
84 {
85         spin_lock(&spool->lock);
86         BUG_ON(!spool->count);
87         spool->count--;
88         unlock_or_release_subpool(spool);
89 }
90
91 static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
92                                       long delta)
93 {
94         int ret = 0;
95
96         if (!spool)
97                 return 0;
98
99         spin_lock(&spool->lock);
100         if ((spool->used_hpages + delta) <= spool->max_hpages) {
101                 spool->used_hpages += delta;
102         } else {
103                 ret = -ENOMEM;
104         }
105         spin_unlock(&spool->lock);
106
107         return ret;
108 }
109
110 static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
111                                        long delta)
112 {
113         if (!spool)
114                 return;
115
116         spin_lock(&spool->lock);
117         spool->used_hpages -= delta;
118         /* If hugetlbfs_put_super couldn't free spool due to
119         * an outstanding quota reference, free it now. */
120         unlock_or_release_subpool(spool);
121 }
122
123 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
124 {
125         return HUGETLBFS_SB(inode->i_sb)->spool;
126 }
127
128 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
129 {
130         return subpool_inode(file_inode(vma->vm_file));
131 }
132
133 /*
134  * Region tracking -- allows tracking of reservations and instantiated pages
135  *                    across the pages in a mapping.
136  *
137  * The region data structures are protected by a combination of the mmap_sem
138  * and the hugetlb_instantion_mutex.  To access or modify a region the caller
139  * must either hold the mmap_sem for write, or the mmap_sem for read and
140  * the hugetlb_instantiation mutex:
141  *
142  *      down_write(&mm->mmap_sem);
143  * or
144  *      down_read(&mm->mmap_sem);
145  *      mutex_lock(&hugetlb_instantiation_mutex);
146  */
147 struct file_region {
148         struct list_head link;
149         long from;
150         long to;
151 };
152
153 static long region_add(struct list_head *head, long f, long t)
154 {
155         struct file_region *rg, *nrg, *trg;
156
157         /* Locate the region we are either in or before. */
158         list_for_each_entry(rg, head, link)
159                 if (f <= rg->to)
160                         break;
161
162         /* Round our left edge to the current segment if it encloses us. */
163         if (f > rg->from)
164                 f = rg->from;
165
166         /* Check for and consume any regions we now overlap with. */
167         nrg = rg;
168         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
169                 if (&rg->link == head)
170                         break;
171                 if (rg->from > t)
172                         break;
173
174                 /* If this area reaches higher then extend our area to
175                  * include it completely.  If this is not the first area
176                  * which we intend to reuse, free it. */
177                 if (rg->to > t)
178                         t = rg->to;
179                 if (rg != nrg) {
180                         list_del(&rg->link);
181                         kfree(rg);
182                 }
183         }
184         nrg->from = f;
185         nrg->to = t;
186         return 0;
187 }
188
189 static long region_chg(struct list_head *head, long f, long t)
190 {
191         struct file_region *rg, *nrg;
192         long chg = 0;
193
194         /* Locate the region we are before or in. */
195         list_for_each_entry(rg, head, link)
196                 if (f <= rg->to)
197                         break;
198
199         /* If we are below the current region then a new region is required.
200          * Subtle, allocate a new region at the position but make it zero
201          * size such that we can guarantee to record the reservation. */
202         if (&rg->link == head || t < rg->from) {
203                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
204                 if (!nrg)
205                         return -ENOMEM;
206                 nrg->from = f;
207                 nrg->to   = f;
208                 INIT_LIST_HEAD(&nrg->link);
209                 list_add(&nrg->link, rg->link.prev);
210
211                 return t - f;
212         }
213
214         /* Round our left edge to the current segment if it encloses us. */
215         if (f > rg->from)
216                 f = rg->from;
217         chg = t - f;
218
219         /* Check for and consume any regions we now overlap with. */
220         list_for_each_entry(rg, rg->link.prev, link) {
221                 if (&rg->link == head)
222                         break;
223                 if (rg->from > t)
224                         return chg;
225
226                 /* We overlap with this area, if it extends further than
227                  * us then we must extend ourselves.  Account for its
228                  * existing reservation. */
229                 if (rg->to > t) {
230                         chg += rg->to - t;
231                         t = rg->to;
232                 }
233                 chg -= rg->to - rg->from;
234         }
235         return chg;
236 }
237
238 static long region_truncate(struct list_head *head, long end)
239 {
240         struct file_region *rg, *trg;
241         long chg = 0;
242
243         /* Locate the region we are either in or before. */
244         list_for_each_entry(rg, head, link)
245                 if (end <= rg->to)
246                         break;
247         if (&rg->link == head)
248                 return 0;
249
250         /* If we are in the middle of a region then adjust it. */
251         if (end > rg->from) {
252                 chg = rg->to - end;
253                 rg->to = end;
254                 rg = list_entry(rg->link.next, typeof(*rg), link);
255         }
256
257         /* Drop any remaining regions. */
258         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
259                 if (&rg->link == head)
260                         break;
261                 chg += rg->to - rg->from;
262                 list_del(&rg->link);
263                 kfree(rg);
264         }
265         return chg;
266 }
267
268 static long region_count(struct list_head *head, long f, long t)
269 {
270         struct file_region *rg;
271         long chg = 0;
272
273         /* Locate each segment we overlap with, and count that overlap. */
274         list_for_each_entry(rg, head, link) {
275                 long seg_from;
276                 long seg_to;
277
278                 if (rg->to <= f)
279                         continue;
280                 if (rg->from >= t)
281                         break;
282
283                 seg_from = max(rg->from, f);
284                 seg_to = min(rg->to, t);
285
286                 chg += seg_to - seg_from;
287         }
288
289         return chg;
290 }
291
292 /*
293  * Convert the address within this vma to the page offset within
294  * the mapping, in pagecache page units; huge pages here.
295  */
296 static pgoff_t vma_hugecache_offset(struct hstate *h,
297                         struct vm_area_struct *vma, unsigned long address)
298 {
299         return ((address - vma->vm_start) >> huge_page_shift(h)) +
300                         (vma->vm_pgoff >> huge_page_order(h));
301 }
302
303 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
304                                      unsigned long address)
305 {
306         return vma_hugecache_offset(hstate_vma(vma), vma, address);
307 }
308
309 /*
310  * Return the size of the pages allocated when backing a VMA. In the majority
311  * cases this will be same size as used by the page table entries.
312  */
313 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
314 {
315         struct hstate *hstate;
316
317         if (!is_vm_hugetlb_page(vma))
318                 return PAGE_SIZE;
319
320         hstate = hstate_vma(vma);
321
322         return 1UL << (hstate->order + PAGE_SHIFT);
323 }
324 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
325
326 /*
327  * Return the page size being used by the MMU to back a VMA. In the majority
328  * of cases, the page size used by the kernel matches the MMU size. On
329  * architectures where it differs, an architecture-specific version of this
330  * function is required.
331  */
332 #ifndef vma_mmu_pagesize
333 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
334 {
335         return vma_kernel_pagesize(vma);
336 }
337 #endif
338
339 /*
340  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
341  * bits of the reservation map pointer, which are always clear due to
342  * alignment.
343  */
344 #define HPAGE_RESV_OWNER    (1UL << 0)
345 #define HPAGE_RESV_UNMAPPED (1UL << 1)
346 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
347
348 /*
349  * These helpers are used to track how many pages are reserved for
350  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
351  * is guaranteed to have their future faults succeed.
352  *
353  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
354  * the reserve counters are updated with the hugetlb_lock held. It is safe
355  * to reset the VMA at fork() time as it is not in use yet and there is no
356  * chance of the global counters getting corrupted as a result of the values.
357  *
358  * The private mapping reservation is represented in a subtly different
359  * manner to a shared mapping.  A shared mapping has a region map associated
360  * with the underlying file, this region map represents the backing file
361  * pages which have ever had a reservation assigned which this persists even
362  * after the page is instantiated.  A private mapping has a region map
363  * associated with the original mmap which is attached to all VMAs which
364  * reference it, this region map represents those offsets which have consumed
365  * reservation ie. where pages have been instantiated.
366  */
367 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
368 {
369         return (unsigned long)vma->vm_private_data;
370 }
371
372 static void set_vma_private_data(struct vm_area_struct *vma,
373                                                         unsigned long value)
374 {
375         vma->vm_private_data = (void *)value;
376 }
377
378 struct resv_map {
379         struct kref refs;
380         struct list_head regions;
381 };
382
383 static struct resv_map *resv_map_alloc(void)
384 {
385         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
386         if (!resv_map)
387                 return NULL;
388
389         kref_init(&resv_map->refs);
390         INIT_LIST_HEAD(&resv_map->regions);
391
392         return resv_map;
393 }
394
395 static void resv_map_release(struct kref *ref)
396 {
397         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
398
399         /* Clear out any active regions before we release the map. */
400         region_truncate(&resv_map->regions, 0);
401         kfree(resv_map);
402 }
403
404 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
405 {
406         VM_BUG_ON(!is_vm_hugetlb_page(vma));
407         if (!(vma->vm_flags & VM_MAYSHARE))
408                 return (struct resv_map *)(get_vma_private_data(vma) &
409                                                         ~HPAGE_RESV_MASK);
410         return NULL;
411 }
412
413 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
414 {
415         VM_BUG_ON(!is_vm_hugetlb_page(vma));
416         VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
417
418         set_vma_private_data(vma, (get_vma_private_data(vma) &
419                                 HPAGE_RESV_MASK) | (unsigned long)map);
420 }
421
422 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
423 {
424         VM_BUG_ON(!is_vm_hugetlb_page(vma));
425         VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
426
427         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
428 }
429
430 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
431 {
432         VM_BUG_ON(!is_vm_hugetlb_page(vma));
433
434         return (get_vma_private_data(vma) & flag) != 0;
435 }
436
437 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
438 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
439 {
440         VM_BUG_ON(!is_vm_hugetlb_page(vma));
441         if (!(vma->vm_flags & VM_MAYSHARE))
442                 vma->vm_private_data = (void *)0;
443 }
444
445 /* Returns true if the VMA has associated reserve pages */
446 static int vma_has_reserves(struct vm_area_struct *vma, long chg)
447 {
448         if (vma->vm_flags & VM_NORESERVE) {
449                 /*
450                  * This address is already reserved by other process(chg == 0),
451                  * so, we should decrement reserved count. Without decrementing,
452                  * reserve count remains after releasing inode, because this
453                  * allocated page will go into page cache and is regarded as
454                  * coming from reserved pool in releasing step.  Currently, we
455                  * don't have any other solution to deal with this situation
456                  * properly, so add work-around here.
457                  */
458                 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
459                         return 1;
460                 else
461                         return 0;
462         }
463
464         /* Shared mappings always use reserves */
465         if (vma->vm_flags & VM_MAYSHARE)
466                 return 1;
467
468         /*
469          * Only the process that called mmap() has reserves for
470          * private mappings.
471          */
472         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
473                 return 1;
474
475         return 0;
476 }
477
478 static void copy_gigantic_page(struct page *dst, struct page *src)
479 {
480         int i;
481         struct hstate *h = page_hstate(src);
482         struct page *dst_base = dst;
483         struct page *src_base = src;
484
485         for (i = 0; i < pages_per_huge_page(h); ) {
486                 cond_resched();
487                 copy_highpage(dst, src);
488
489                 i++;
490                 dst = mem_map_next(dst, dst_base, i);
491                 src = mem_map_next(src, src_base, i);
492         }
493 }
494
495 void copy_huge_page(struct page *dst, struct page *src)
496 {
497         int i;
498         struct hstate *h = page_hstate(src);
499
500         if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
501                 copy_gigantic_page(dst, src);
502                 return;
503         }
504
505         might_sleep();
506         for (i = 0; i < pages_per_huge_page(h); i++) {
507                 cond_resched();
508                 copy_highpage(dst + i, src + i);
509         }
510 }
511
512 static void enqueue_huge_page(struct hstate *h, struct page *page)
513 {
514         int nid = page_to_nid(page);
515         list_move(&page->lru, &h->hugepage_freelists[nid]);
516         h->free_huge_pages++;
517         h->free_huge_pages_node[nid]++;
518 }
519
520 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
521 {
522         struct page *page;
523
524         if (list_empty(&h->hugepage_freelists[nid]))
525                 return NULL;
526         page = list_entry(h->hugepage_freelists[nid].next, struct page, lru);
527         list_move(&page->lru, &h->hugepage_activelist);
528         set_page_refcounted(page);
529         h->free_huge_pages--;
530         h->free_huge_pages_node[nid]--;
531         return page;
532 }
533
534 static struct page *dequeue_huge_page_vma(struct hstate *h,
535                                 struct vm_area_struct *vma,
536                                 unsigned long address, int avoid_reserve,
537                                 long chg)
538 {
539         struct page *page = NULL;
540         struct mempolicy *mpol;
541         nodemask_t *nodemask;
542         struct zonelist *zonelist;
543         struct zone *zone;
544         struct zoneref *z;
545         unsigned int cpuset_mems_cookie;
546
547 retry_cpuset:
548         cpuset_mems_cookie = get_mems_allowed();
549         zonelist = huge_zonelist(vma, address,
550                                         htlb_alloc_mask, &mpol, &nodemask);
551         /*
552          * A child process with MAP_PRIVATE mappings created by their parent
553          * have no page reserves. This check ensures that reservations are
554          * not "stolen". The child may still get SIGKILLed
555          */
556         if (!vma_has_reserves(vma, chg) &&
557                         h->free_huge_pages - h->resv_huge_pages == 0)
558                 goto err;
559
560         /* If reserves cannot be used, ensure enough pages are in the pool */
561         if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
562                 goto err;
563
564         for_each_zone_zonelist_nodemask(zone, z, zonelist,
565                                                 MAX_NR_ZONES - 1, nodemask) {
566                 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask)) {
567                         page = dequeue_huge_page_node(h, zone_to_nid(zone));
568                         if (page) {
569                                 if (avoid_reserve)
570                                         break;
571                                 if (!vma_has_reserves(vma, chg))
572                                         break;
573
574                                 h->resv_huge_pages--;
575                                 break;
576                         }
577                 }
578         }
579
580         mpol_cond_put(mpol);
581         if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
582                 goto retry_cpuset;
583         return page;
584
585 err:
586         mpol_cond_put(mpol);
587         return NULL;
588 }
589
590 static void update_and_free_page(struct hstate *h, struct page *page)
591 {
592         int i;
593
594         VM_BUG_ON(h->order >= MAX_ORDER);
595
596         h->nr_huge_pages--;
597         h->nr_huge_pages_node[page_to_nid(page)]--;
598         for (i = 0; i < pages_per_huge_page(h); i++) {
599                 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
600                                 1 << PG_referenced | 1 << PG_dirty |
601                                 1 << PG_active | 1 << PG_reserved |
602                                 1 << PG_private | 1 << PG_writeback);
603         }
604         VM_BUG_ON(hugetlb_cgroup_from_page(page));
605         set_compound_page_dtor(page, NULL);
606         set_page_refcounted(page);
607         arch_release_hugepage(page);
608         __free_pages(page, huge_page_order(h));
609 }
610
611 struct hstate *size_to_hstate(unsigned long size)
612 {
613         struct hstate *h;
614
615         for_each_hstate(h) {
616                 if (huge_page_size(h) == size)
617                         return h;
618         }
619         return NULL;
620 }
621
622 static void free_huge_page(struct page *page)
623 {
624         /*
625          * Can't pass hstate in here because it is called from the
626          * compound page destructor.
627          */
628         struct hstate *h = page_hstate(page);
629         int nid = page_to_nid(page);
630         struct hugepage_subpool *spool =
631                 (struct hugepage_subpool *)page_private(page);
632
633         set_page_private(page, 0);
634         page->mapping = NULL;
635         BUG_ON(page_count(page));
636         BUG_ON(page_mapcount(page));
637
638         spin_lock(&hugetlb_lock);
639         hugetlb_cgroup_uncharge_page(hstate_index(h),
640                                      pages_per_huge_page(h), page);
641         if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
642                 /* remove the page from active list */
643                 list_del(&page->lru);
644                 update_and_free_page(h, page);
645                 h->surplus_huge_pages--;
646                 h->surplus_huge_pages_node[nid]--;
647         } else {
648                 arch_clear_hugepage_flags(page);
649                 enqueue_huge_page(h, page);
650         }
651         spin_unlock(&hugetlb_lock);
652         hugepage_subpool_put_pages(spool, 1);
653 }
654
655 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
656 {
657         INIT_LIST_HEAD(&page->lru);
658         set_compound_page_dtor(page, free_huge_page);
659         spin_lock(&hugetlb_lock);
660         set_hugetlb_cgroup(page, NULL);
661         h->nr_huge_pages++;
662         h->nr_huge_pages_node[nid]++;
663         spin_unlock(&hugetlb_lock);
664         put_page(page); /* free it into the hugepage allocator */
665 }
666
667 static void prep_compound_gigantic_page(struct page *page, unsigned long order)
668 {
669         int i;
670         int nr_pages = 1 << order;
671         struct page *p = page + 1;
672
673         /* we rely on prep_new_huge_page to set the destructor */
674         set_compound_order(page, order);
675         __SetPageHead(page);
676         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
677                 __SetPageTail(p);
678                 set_page_count(p, 0);
679                 p->first_page = page;
680         }
681 }
682
683 /*
684  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
685  * transparent huge pages.  See the PageTransHuge() documentation for more
686  * details.
687  */
688 int PageHuge(struct page *page)
689 {
690         compound_page_dtor *dtor;
691
692         if (!PageCompound(page))
693                 return 0;
694
695         page = compound_head(page);
696         dtor = get_compound_page_dtor(page);
697
698         return dtor == free_huge_page;
699 }
700 EXPORT_SYMBOL_GPL(PageHuge);
701
702 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
703 {
704         struct page *page;
705
706         if (h->order >= MAX_ORDER)
707                 return NULL;
708
709         page = alloc_pages_exact_node(nid,
710                 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
711                                                 __GFP_REPEAT|__GFP_NOWARN,
712                 huge_page_order(h));
713         if (page) {
714                 if (arch_prepare_hugepage(page)) {
715                         __free_pages(page, huge_page_order(h));
716                         return NULL;
717                 }
718                 prep_new_huge_page(h, page, nid);
719         }
720
721         return page;
722 }
723
724 /*
725  * common helper functions for hstate_next_node_to_{alloc|free}.
726  * We may have allocated or freed a huge page based on a different
727  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
728  * be outside of *nodes_allowed.  Ensure that we use an allowed
729  * node for alloc or free.
730  */
731 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
732 {
733         nid = next_node(nid, *nodes_allowed);
734         if (nid == MAX_NUMNODES)
735                 nid = first_node(*nodes_allowed);
736         VM_BUG_ON(nid >= MAX_NUMNODES);
737
738         return nid;
739 }
740
741 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
742 {
743         if (!node_isset(nid, *nodes_allowed))
744                 nid = next_node_allowed(nid, nodes_allowed);
745         return nid;
746 }
747
748 /*
749  * returns the previously saved node ["this node"] from which to
750  * allocate a persistent huge page for the pool and advance the
751  * next node from which to allocate, handling wrap at end of node
752  * mask.
753  */
754 static int hstate_next_node_to_alloc(struct hstate *h,
755                                         nodemask_t *nodes_allowed)
756 {
757         int nid;
758
759         VM_BUG_ON(!nodes_allowed);
760
761         nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
762         h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
763
764         return nid;
765 }
766
767 /*
768  * helper for free_pool_huge_page() - return the previously saved
769  * node ["this node"] from which to free a huge page.  Advance the
770  * next node id whether or not we find a free huge page to free so
771  * that the next attempt to free addresses the next node.
772  */
773 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
774 {
775         int nid;
776
777         VM_BUG_ON(!nodes_allowed);
778
779         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
780         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
781
782         return nid;
783 }
784
785 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)           \
786         for (nr_nodes = nodes_weight(*mask);                            \
787                 nr_nodes > 0 &&                                         \
788                 ((node = hstate_next_node_to_alloc(hs, mask)) || 1);    \
789                 nr_nodes--)
790
791 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)            \
792         for (nr_nodes = nodes_weight(*mask);                            \
793                 nr_nodes > 0 &&                                         \
794                 ((node = hstate_next_node_to_free(hs, mask)) || 1);     \
795                 nr_nodes--)
796
797 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
798 {
799         struct page *page;
800         int nr_nodes, node;
801         int ret = 0;
802
803         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
804                 page = alloc_fresh_huge_page_node(h, node);
805                 if (page) {
806                         ret = 1;
807                         break;
808                 }
809         }
810
811         if (ret)
812                 count_vm_event(HTLB_BUDDY_PGALLOC);
813         else
814                 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
815
816         return ret;
817 }
818
819 /*
820  * Free huge page from pool from next node to free.
821  * Attempt to keep persistent huge pages more or less
822  * balanced over allowed nodes.
823  * Called with hugetlb_lock locked.
824  */
825 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
826                                                          bool acct_surplus)
827 {
828         int nr_nodes, node;
829         int ret = 0;
830
831         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
832                 /*
833                  * If we're returning unused surplus pages, only examine
834                  * nodes with surplus pages.
835                  */
836                 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
837                     !list_empty(&h->hugepage_freelists[node])) {
838                         struct page *page =
839                                 list_entry(h->hugepage_freelists[node].next,
840                                           struct page, lru);
841                         list_del(&page->lru);
842                         h->free_huge_pages--;
843                         h->free_huge_pages_node[node]--;
844                         if (acct_surplus) {
845                                 h->surplus_huge_pages--;
846                                 h->surplus_huge_pages_node[node]--;
847                         }
848                         update_and_free_page(h, page);
849                         ret = 1;
850                         break;
851                 }
852         }
853
854         return ret;
855 }
856
857 static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
858 {
859         struct page *page;
860         unsigned int r_nid;
861
862         if (h->order >= MAX_ORDER)
863                 return NULL;
864
865         /*
866          * Assume we will successfully allocate the surplus page to
867          * prevent racing processes from causing the surplus to exceed
868          * overcommit
869          *
870          * This however introduces a different race, where a process B
871          * tries to grow the static hugepage pool while alloc_pages() is
872          * called by process A. B will only examine the per-node
873          * counters in determining if surplus huge pages can be
874          * converted to normal huge pages in adjust_pool_surplus(). A
875          * won't be able to increment the per-node counter, until the
876          * lock is dropped by B, but B doesn't drop hugetlb_lock until
877          * no more huge pages can be converted from surplus to normal
878          * state (and doesn't try to convert again). Thus, we have a
879          * case where a surplus huge page exists, the pool is grown, and
880          * the surplus huge page still exists after, even though it
881          * should just have been converted to a normal huge page. This
882          * does not leak memory, though, as the hugepage will be freed
883          * once it is out of use. It also does not allow the counters to
884          * go out of whack in adjust_pool_surplus() as we don't modify
885          * the node values until we've gotten the hugepage and only the
886          * per-node value is checked there.
887          */
888         spin_lock(&hugetlb_lock);
889         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
890                 spin_unlock(&hugetlb_lock);
891                 return NULL;
892         } else {
893                 h->nr_huge_pages++;
894                 h->surplus_huge_pages++;
895         }
896         spin_unlock(&hugetlb_lock);
897
898         if (nid == NUMA_NO_NODE)
899                 page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
900                                    __GFP_REPEAT|__GFP_NOWARN,
901                                    huge_page_order(h));
902         else
903                 page = alloc_pages_exact_node(nid,
904                         htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
905                         __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
906
907         if (page && arch_prepare_hugepage(page)) {
908                 __free_pages(page, huge_page_order(h));
909                 page = NULL;
910         }
911
912         spin_lock(&hugetlb_lock);
913         if (page) {
914                 INIT_LIST_HEAD(&page->lru);
915                 r_nid = page_to_nid(page);
916                 set_compound_page_dtor(page, free_huge_page);
917                 set_hugetlb_cgroup(page, NULL);
918                 /*
919                  * We incremented the global counters already
920                  */
921                 h->nr_huge_pages_node[r_nid]++;
922                 h->surplus_huge_pages_node[r_nid]++;
923                 __count_vm_event(HTLB_BUDDY_PGALLOC);
924         } else {
925                 h->nr_huge_pages--;
926                 h->surplus_huge_pages--;
927                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
928         }
929         spin_unlock(&hugetlb_lock);
930
931         return page;
932 }
933
934 /*
935  * This allocation function is useful in the context where vma is irrelevant.
936  * E.g. soft-offlining uses this function because it only cares physical
937  * address of error page.
938  */
939 struct page *alloc_huge_page_node(struct hstate *h, int nid)
940 {
941         struct page *page = NULL;
942
943         spin_lock(&hugetlb_lock);
944         if (h->free_huge_pages - h->resv_huge_pages > 0)
945                 page = dequeue_huge_page_node(h, nid);
946         spin_unlock(&hugetlb_lock);
947
948         if (!page)
949                 page = alloc_buddy_huge_page(h, nid);
950
951         return page;
952 }
953
954 /*
955  * Increase the hugetlb pool such that it can accommodate a reservation
956  * of size 'delta'.
957  */
958 static int gather_surplus_pages(struct hstate *h, int delta)
959 {
960         struct list_head surplus_list;
961         struct page *page, *tmp;
962         int ret, i;
963         int needed, allocated;
964         bool alloc_ok = true;
965
966         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
967         if (needed <= 0) {
968                 h->resv_huge_pages += delta;
969                 return 0;
970         }
971
972         allocated = 0;
973         INIT_LIST_HEAD(&surplus_list);
974
975         ret = -ENOMEM;
976 retry:
977         spin_unlock(&hugetlb_lock);
978         for (i = 0; i < needed; i++) {
979                 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
980                 if (!page) {
981                         alloc_ok = false;
982                         break;
983                 }
984                 list_add(&page->lru, &surplus_list);
985         }
986         allocated += i;
987
988         /*
989          * After retaking hugetlb_lock, we need to recalculate 'needed'
990          * because either resv_huge_pages or free_huge_pages may have changed.
991          */
992         spin_lock(&hugetlb_lock);
993         needed = (h->resv_huge_pages + delta) -
994                         (h->free_huge_pages + allocated);
995         if (needed > 0) {
996                 if (alloc_ok)
997                         goto retry;
998                 /*
999                  * We were not able to allocate enough pages to
1000                  * satisfy the entire reservation so we free what
1001                  * we've allocated so far.
1002                  */
1003                 goto free;
1004         }
1005         /*
1006          * The surplus_list now contains _at_least_ the number of extra pages
1007          * needed to accommodate the reservation.  Add the appropriate number
1008          * of pages to the hugetlb pool and free the extras back to the buddy
1009          * allocator.  Commit the entire reservation here to prevent another
1010          * process from stealing the pages as they are added to the pool but
1011          * before they are reserved.
1012          */
1013         needed += allocated;
1014         h->resv_huge_pages += delta;
1015         ret = 0;
1016
1017         /* Free the needed pages to the hugetlb pool */
1018         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1019                 if ((--needed) < 0)
1020                         break;
1021                 /*
1022                  * This page is now managed by the hugetlb allocator and has
1023                  * no users -- drop the buddy allocator's reference.
1024                  */
1025                 put_page_testzero(page);
1026                 VM_BUG_ON(page_count(page));
1027                 enqueue_huge_page(h, page);
1028         }
1029 free:
1030         spin_unlock(&hugetlb_lock);
1031
1032         /* Free unnecessary surplus pages to the buddy allocator */
1033         list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1034                 put_page(page);
1035         spin_lock(&hugetlb_lock);
1036
1037         return ret;
1038 }
1039
1040 /*
1041  * When releasing a hugetlb pool reservation, any surplus pages that were
1042  * allocated to satisfy the reservation must be explicitly freed if they were
1043  * never used.
1044  * Called with hugetlb_lock held.
1045  */
1046 static void return_unused_surplus_pages(struct hstate *h,
1047                                         unsigned long unused_resv_pages)
1048 {
1049         unsigned long nr_pages;
1050
1051         /* Uncommit the reservation */
1052         h->resv_huge_pages -= unused_resv_pages;
1053
1054         /* Cannot return gigantic pages currently */
1055         if (h->order >= MAX_ORDER)
1056                 return;
1057
1058         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1059
1060         /*
1061          * We want to release as many surplus pages as possible, spread
1062          * evenly across all nodes with memory. Iterate across these nodes
1063          * until we can no longer free unreserved surplus pages. This occurs
1064          * when the nodes with surplus pages have no free pages.
1065          * free_pool_huge_page() will balance the the freed pages across the
1066          * on-line nodes with memory and will handle the hstate accounting.
1067          */
1068         while (nr_pages--) {
1069                 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1070                         break;
1071         }
1072 }
1073
1074 /*
1075  * Determine if the huge page at addr within the vma has an associated
1076  * reservation.  Where it does not we will need to logically increase
1077  * reservation and actually increase subpool usage before an allocation
1078  * can occur.  Where any new reservation would be required the
1079  * reservation change is prepared, but not committed.  Once the page
1080  * has been allocated from the subpool and instantiated the change should
1081  * be committed via vma_commit_reservation.  No action is required on
1082  * failure.
1083  */
1084 static long vma_needs_reservation(struct hstate *h,
1085                         struct vm_area_struct *vma, unsigned long addr)
1086 {
1087         struct address_space *mapping = vma->vm_file->f_mapping;
1088         struct inode *inode = mapping->host;
1089
1090         if (vma->vm_flags & VM_MAYSHARE) {
1091                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1092                 return region_chg(&inode->i_mapping->private_list,
1093                                                         idx, idx + 1);
1094
1095         } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1096                 return 1;
1097
1098         } else  {
1099                 long err;
1100                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1101                 struct resv_map *reservations = vma_resv_map(vma);
1102
1103                 err = region_chg(&reservations->regions, idx, idx + 1);
1104                 if (err < 0)
1105                         return err;
1106                 return 0;
1107         }
1108 }
1109 static void vma_commit_reservation(struct hstate *h,
1110                         struct vm_area_struct *vma, unsigned long addr)
1111 {
1112         struct address_space *mapping = vma->vm_file->f_mapping;
1113         struct inode *inode = mapping->host;
1114
1115         if (vma->vm_flags & VM_MAYSHARE) {
1116                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1117                 region_add(&inode->i_mapping->private_list, idx, idx + 1);
1118
1119         } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1120                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1121                 struct resv_map *reservations = vma_resv_map(vma);
1122
1123                 /* Mark this page used in the map. */
1124                 region_add(&reservations->regions, idx, idx + 1);
1125         }
1126 }
1127
1128 static struct page *alloc_huge_page(struct vm_area_struct *vma,
1129                                     unsigned long addr, int avoid_reserve)
1130 {
1131         struct hugepage_subpool *spool = subpool_vma(vma);
1132         struct hstate *h = hstate_vma(vma);
1133         struct page *page;
1134         long chg;
1135         int ret, idx;
1136         struct hugetlb_cgroup *h_cg;
1137
1138         idx = hstate_index(h);
1139         /*
1140          * Processes that did not create the mapping will have no
1141          * reserves and will not have accounted against subpool
1142          * limit. Check that the subpool limit can be made before
1143          * satisfying the allocation MAP_NORESERVE mappings may also
1144          * need pages and subpool limit allocated allocated if no reserve
1145          * mapping overlaps.
1146          */
1147         chg = vma_needs_reservation(h, vma, addr);
1148         if (chg < 0)
1149                 return ERR_PTR(-ENOMEM);
1150         if (chg)
1151                 if (hugepage_subpool_get_pages(spool, chg))
1152                         return ERR_PTR(-ENOSPC);
1153
1154         ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1155         if (ret) {
1156                 hugepage_subpool_put_pages(spool, chg);
1157                 return ERR_PTR(-ENOSPC);
1158         }
1159         spin_lock(&hugetlb_lock);
1160         page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, chg);
1161         if (!page) {
1162                 spin_unlock(&hugetlb_lock);
1163                 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1164                 if (!page) {
1165                         hugetlb_cgroup_uncharge_cgroup(idx,
1166                                                        pages_per_huge_page(h),
1167                                                        h_cg);
1168                         hugepage_subpool_put_pages(spool, chg);
1169                         return ERR_PTR(-ENOSPC);
1170                 }
1171                 spin_lock(&hugetlb_lock);
1172                 list_move(&page->lru, &h->hugepage_activelist);
1173                 /* Fall through */
1174         }
1175         hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1176         spin_unlock(&hugetlb_lock);
1177
1178         set_page_private(page, (unsigned long)spool);
1179
1180         vma_commit_reservation(h, vma, addr);
1181         return page;
1182 }
1183
1184 int __weak alloc_bootmem_huge_page(struct hstate *h)
1185 {
1186         struct huge_bootmem_page *m;
1187         int nr_nodes, node;
1188
1189         for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
1190                 void *addr;
1191
1192                 addr = __alloc_bootmem_node_nopanic(NODE_DATA(node),
1193                                 huge_page_size(h), huge_page_size(h), 0);
1194
1195                 if (addr) {
1196                         /*
1197                          * Use the beginning of the huge page to store the
1198                          * huge_bootmem_page struct (until gather_bootmem
1199                          * puts them into the mem_map).
1200                          */
1201                         m = addr;
1202                         goto found;
1203                 }
1204         }
1205         return 0;
1206
1207 found:
1208         BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1209         /* Put them into a private list first because mem_map is not up yet */
1210         list_add(&m->list, &huge_boot_pages);
1211         m->hstate = h;
1212         return 1;
1213 }
1214
1215 static void prep_compound_huge_page(struct page *page, int order)
1216 {
1217         if (unlikely(order > (MAX_ORDER - 1)))
1218                 prep_compound_gigantic_page(page, order);
1219         else
1220                 prep_compound_page(page, order);
1221 }
1222
1223 /* Put bootmem huge pages into the standard lists after mem_map is up */
1224 static void __init gather_bootmem_prealloc(void)
1225 {
1226         struct huge_bootmem_page *m;
1227
1228         list_for_each_entry(m, &huge_boot_pages, list) {
1229                 struct hstate *h = m->hstate;
1230                 struct page *page;
1231
1232 #ifdef CONFIG_HIGHMEM
1233                 page = pfn_to_page(m->phys >> PAGE_SHIFT);
1234                 free_bootmem_late((unsigned long)m,
1235                                   sizeof(struct huge_bootmem_page));
1236 #else
1237                 page = virt_to_page(m);
1238 #endif
1239                 __ClearPageReserved(page);
1240                 WARN_ON(page_count(page) != 1);
1241                 prep_compound_huge_page(page, h->order);
1242                 prep_new_huge_page(h, page, page_to_nid(page));
1243                 /*
1244                  * If we had gigantic hugepages allocated at boot time, we need
1245                  * to restore the 'stolen' pages to totalram_pages in order to
1246                  * fix confusing memory reports from free(1) and another
1247                  * side-effects, like CommitLimit going negative.
1248                  */
1249                 if (h->order > (MAX_ORDER - 1))
1250                         totalram_pages += 1 << h->order;
1251         }
1252 }
1253
1254 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1255 {
1256         unsigned long i;
1257
1258         for (i = 0; i < h->max_huge_pages; ++i) {
1259                 if (h->order >= MAX_ORDER) {
1260                         if (!alloc_bootmem_huge_page(h))
1261                                 break;
1262                 } else if (!alloc_fresh_huge_page(h,
1263                                          &node_states[N_MEMORY]))
1264                         break;
1265         }
1266         h->max_huge_pages = i;
1267 }
1268
1269 static void __init hugetlb_init_hstates(void)
1270 {
1271         struct hstate *h;
1272
1273         for_each_hstate(h) {
1274                 /* oversize hugepages were init'ed in early boot */
1275                 if (h->order < MAX_ORDER)
1276                         hugetlb_hstate_alloc_pages(h);
1277         }
1278 }
1279
1280 static char * __init memfmt(char *buf, unsigned long n)
1281 {
1282         if (n >= (1UL << 30))
1283                 sprintf(buf, "%lu GB", n >> 30);
1284         else if (n >= (1UL << 20))
1285                 sprintf(buf, "%lu MB", n >> 20);
1286         else
1287                 sprintf(buf, "%lu KB", n >> 10);
1288         return buf;
1289 }
1290
1291 static void __init report_hugepages(void)
1292 {
1293         struct hstate *h;
1294
1295         for_each_hstate(h) {
1296                 char buf[32];
1297                 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
1298                         memfmt(buf, huge_page_size(h)),
1299                         h->free_huge_pages);
1300         }
1301 }
1302
1303 #ifdef CONFIG_HIGHMEM
1304 static void try_to_free_low(struct hstate *h, unsigned long count,
1305                                                 nodemask_t *nodes_allowed)
1306 {
1307         int i;
1308
1309         if (h->order >= MAX_ORDER)
1310                 return;
1311
1312         for_each_node_mask(i, *nodes_allowed) {
1313                 struct page *page, *next;
1314                 struct list_head *freel = &h->hugepage_freelists[i];
1315                 list_for_each_entry_safe(page, next, freel, lru) {
1316                         if (count >= h->nr_huge_pages)
1317                                 return;
1318                         if (PageHighMem(page))
1319                                 continue;
1320                         list_del(&page->lru);
1321                         update_and_free_page(h, page);
1322                         h->free_huge_pages--;
1323                         h->free_huge_pages_node[page_to_nid(page)]--;
1324                 }
1325         }
1326 }
1327 #else
1328 static inline void try_to_free_low(struct hstate *h, unsigned long count,
1329                                                 nodemask_t *nodes_allowed)
1330 {
1331 }
1332 #endif
1333
1334 /*
1335  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
1336  * balanced by operating on them in a round-robin fashion.
1337  * Returns 1 if an adjustment was made.
1338  */
1339 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1340                                 int delta)
1341 {
1342         int nr_nodes, node;
1343
1344         VM_BUG_ON(delta != -1 && delta != 1);
1345
1346         if (delta < 0) {
1347                 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1348                         if (h->surplus_huge_pages_node[node])
1349                                 goto found;
1350                 }
1351         } else {
1352                 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1353                         if (h->surplus_huge_pages_node[node] <
1354                                         h->nr_huge_pages_node[node])
1355                                 goto found;
1356                 }
1357         }
1358         return 0;
1359
1360 found:
1361         h->surplus_huge_pages += delta;
1362         h->surplus_huge_pages_node[node] += delta;
1363         return 1;
1364 }
1365
1366 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1367 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1368                                                 nodemask_t *nodes_allowed)
1369 {
1370         unsigned long min_count, ret;
1371
1372         if (h->order >= MAX_ORDER)
1373                 return h->max_huge_pages;
1374
1375         /*
1376          * Increase the pool size
1377          * First take pages out of surplus state.  Then make up the
1378          * remaining difference by allocating fresh huge pages.
1379          *
1380          * We might race with alloc_buddy_huge_page() here and be unable
1381          * to convert a surplus huge page to a normal huge page. That is
1382          * not critical, though, it just means the overall size of the
1383          * pool might be one hugepage larger than it needs to be, but
1384          * within all the constraints specified by the sysctls.
1385          */
1386         spin_lock(&hugetlb_lock);
1387         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1388                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
1389                         break;
1390         }
1391
1392         while (count > persistent_huge_pages(h)) {
1393                 /*
1394                  * If this allocation races such that we no longer need the
1395                  * page, free_huge_page will handle it by freeing the page
1396                  * and reducing the surplus.
1397                  */
1398                 spin_unlock(&hugetlb_lock);
1399                 ret = alloc_fresh_huge_page(h, nodes_allowed);
1400                 spin_lock(&hugetlb_lock);
1401                 if (!ret)
1402                         goto out;
1403
1404                 /* Bail for signals. Probably ctrl-c from user */
1405                 if (signal_pending(current))
1406                         goto out;
1407         }
1408
1409         /*
1410          * Decrease the pool size
1411          * First return free pages to the buddy allocator (being careful
1412          * to keep enough around to satisfy reservations).  Then place
1413          * pages into surplus state as needed so the pool will shrink
1414          * to the desired size as pages become free.
1415          *
1416          * By placing pages into the surplus state independent of the
1417          * overcommit value, we are allowing the surplus pool size to
1418          * exceed overcommit. There are few sane options here. Since
1419          * alloc_buddy_huge_page() is checking the global counter,
1420          * though, we'll note that we're not allowed to exceed surplus
1421          * and won't grow the pool anywhere else. Not until one of the
1422          * sysctls are changed, or the surplus pages go out of use.
1423          */
1424         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1425         min_count = max(count, min_count);
1426         try_to_free_low(h, min_count, nodes_allowed);
1427         while (min_count < persistent_huge_pages(h)) {
1428                 if (!free_pool_huge_page(h, nodes_allowed, 0))
1429                         break;
1430         }
1431         while (count < persistent_huge_pages(h)) {
1432                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
1433                         break;
1434         }
1435 out:
1436         ret = persistent_huge_pages(h);
1437         spin_unlock(&hugetlb_lock);
1438         return ret;
1439 }
1440
1441 #define HSTATE_ATTR_RO(_name) \
1442         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1443
1444 #define HSTATE_ATTR(_name) \
1445         static struct kobj_attribute _name##_attr = \
1446                 __ATTR(_name, 0644, _name##_show, _name##_store)
1447
1448 static struct kobject *hugepages_kobj;
1449 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1450
1451 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1452
1453 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1454 {
1455         int i;
1456
1457         for (i = 0; i < HUGE_MAX_HSTATE; i++)
1458                 if (hstate_kobjs[i] == kobj) {
1459                         if (nidp)
1460                                 *nidp = NUMA_NO_NODE;
1461                         return &hstates[i];
1462                 }
1463
1464         return kobj_to_node_hstate(kobj, nidp);
1465 }
1466
1467 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1468                                         struct kobj_attribute *attr, char *buf)
1469 {
1470         struct hstate *h;
1471         unsigned long nr_huge_pages;
1472         int nid;
1473
1474         h = kobj_to_hstate(kobj, &nid);
1475         if (nid == NUMA_NO_NODE)
1476                 nr_huge_pages = h->nr_huge_pages;
1477         else
1478                 nr_huge_pages = h->nr_huge_pages_node[nid];
1479
1480         return sprintf(buf, "%lu\n", nr_huge_pages);
1481 }
1482
1483 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1484                         struct kobject *kobj, struct kobj_attribute *attr,
1485                         const char *buf, size_t len)
1486 {
1487         int err;
1488         int nid;
1489         unsigned long count;
1490         struct hstate *h;
1491         NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1492
1493         err = strict_strtoul(buf, 10, &count);
1494         if (err)
1495                 goto out;
1496
1497         h = kobj_to_hstate(kobj, &nid);
1498         if (h->order >= MAX_ORDER) {
1499                 err = -EINVAL;
1500                 goto out;
1501         }
1502
1503         if (nid == NUMA_NO_NODE) {
1504                 /*
1505                  * global hstate attribute
1506                  */
1507                 if (!(obey_mempolicy &&
1508                                 init_nodemask_of_mempolicy(nodes_allowed))) {
1509                         NODEMASK_FREE(nodes_allowed);
1510                         nodes_allowed = &node_states[N_MEMORY];
1511                 }
1512         } else if (nodes_allowed) {
1513                 /*
1514                  * per node hstate attribute: adjust count to global,
1515                  * but restrict alloc/free to the specified node.
1516                  */
1517                 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1518                 init_nodemask_of_node(nodes_allowed, nid);
1519         } else
1520                 nodes_allowed = &node_states[N_MEMORY];
1521
1522         h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1523
1524         if (nodes_allowed != &node_states[N_MEMORY])
1525                 NODEMASK_FREE(nodes_allowed);
1526
1527         return len;
1528 out:
1529         NODEMASK_FREE(nodes_allowed);
1530         return err;
1531 }
1532
1533 static ssize_t nr_hugepages_show(struct kobject *kobj,
1534                                        struct kobj_attribute *attr, char *buf)
1535 {
1536         return nr_hugepages_show_common(kobj, attr, buf);
1537 }
1538
1539 static ssize_t nr_hugepages_store(struct kobject *kobj,
1540                struct kobj_attribute *attr, const char *buf, size_t len)
1541 {
1542         return nr_hugepages_store_common(false, kobj, attr, buf, len);
1543 }
1544 HSTATE_ATTR(nr_hugepages);
1545
1546 #ifdef CONFIG_NUMA
1547
1548 /*
1549  * hstate attribute for optionally mempolicy-based constraint on persistent
1550  * huge page alloc/free.
1551  */
1552 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1553                                        struct kobj_attribute *attr, char *buf)
1554 {
1555         return nr_hugepages_show_common(kobj, attr, buf);
1556 }
1557
1558 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1559                struct kobj_attribute *attr, const char *buf, size_t len)
1560 {
1561         return nr_hugepages_store_common(true, kobj, attr, buf, len);
1562 }
1563 HSTATE_ATTR(nr_hugepages_mempolicy);
1564 #endif
1565
1566
1567 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1568                                         struct kobj_attribute *attr, char *buf)
1569 {
1570         struct hstate *h = kobj_to_hstate(kobj, NULL);
1571         return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1572 }
1573
1574 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1575                 struct kobj_attribute *attr, const char *buf, size_t count)
1576 {
1577         int err;
1578         unsigned long input;
1579         struct hstate *h = kobj_to_hstate(kobj, NULL);
1580
1581         if (h->order >= MAX_ORDER)
1582                 return -EINVAL;
1583
1584         err = strict_strtoul(buf, 10, &input);
1585         if (err)
1586                 return err;
1587
1588         spin_lock(&hugetlb_lock);
1589         h->nr_overcommit_huge_pages = input;
1590         spin_unlock(&hugetlb_lock);
1591
1592         return count;
1593 }
1594 HSTATE_ATTR(nr_overcommit_hugepages);
1595
1596 static ssize_t free_hugepages_show(struct kobject *kobj,
1597                                         struct kobj_attribute *attr, char *buf)
1598 {
1599         struct hstate *h;
1600         unsigned long free_huge_pages;
1601         int nid;
1602
1603         h = kobj_to_hstate(kobj, &nid);
1604         if (nid == NUMA_NO_NODE)
1605                 free_huge_pages = h->free_huge_pages;
1606         else
1607                 free_huge_pages = h->free_huge_pages_node[nid];
1608
1609         return sprintf(buf, "%lu\n", free_huge_pages);
1610 }
1611 HSTATE_ATTR_RO(free_hugepages);
1612
1613 static ssize_t resv_hugepages_show(struct kobject *kobj,
1614                                         struct kobj_attribute *attr, char *buf)
1615 {
1616         struct hstate *h = kobj_to_hstate(kobj, NULL);
1617         return sprintf(buf, "%lu\n", h->resv_huge_pages);
1618 }
1619 HSTATE_ATTR_RO(resv_hugepages);
1620
1621 static ssize_t surplus_hugepages_show(struct kobject *kobj,
1622                                         struct kobj_attribute *attr, char *buf)
1623 {
1624         struct hstate *h;
1625         unsigned long surplus_huge_pages;
1626         int nid;
1627
1628         h = kobj_to_hstate(kobj, &nid);
1629         if (nid == NUMA_NO_NODE)
1630                 surplus_huge_pages = h->surplus_huge_pages;
1631         else
1632                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
1633
1634         return sprintf(buf, "%lu\n", surplus_huge_pages);
1635 }
1636 HSTATE_ATTR_RO(surplus_hugepages);
1637
1638 static struct attribute *hstate_attrs[] = {
1639         &nr_hugepages_attr.attr,
1640         &nr_overcommit_hugepages_attr.attr,
1641         &free_hugepages_attr.attr,
1642         &resv_hugepages_attr.attr,
1643         &surplus_hugepages_attr.attr,
1644 #ifdef CONFIG_NUMA
1645         &nr_hugepages_mempolicy_attr.attr,
1646 #endif
1647         NULL,
1648 };
1649
1650 static struct attribute_group hstate_attr_group = {
1651         .attrs = hstate_attrs,
1652 };
1653
1654 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1655                                     struct kobject **hstate_kobjs,
1656                                     struct attribute_group *hstate_attr_group)
1657 {
1658         int retval;
1659         int hi = hstate_index(h);
1660
1661         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1662         if (!hstate_kobjs[hi])
1663                 return -ENOMEM;
1664
1665         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1666         if (retval)
1667                 kobject_put(hstate_kobjs[hi]);
1668
1669         return retval;
1670 }
1671
1672 static void __init hugetlb_sysfs_init(void)
1673 {
1674         struct hstate *h;
1675         int err;
1676
1677         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1678         if (!hugepages_kobj)
1679                 return;
1680
1681         for_each_hstate(h) {
1682                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1683                                          hstate_kobjs, &hstate_attr_group);
1684                 if (err)
1685                         pr_err("Hugetlb: Unable to add hstate %s", h->name);
1686         }
1687 }
1688
1689 #ifdef CONFIG_NUMA
1690
1691 /*
1692  * node_hstate/s - associate per node hstate attributes, via their kobjects,
1693  * with node devices in node_devices[] using a parallel array.  The array
1694  * index of a node device or _hstate == node id.
1695  * This is here to avoid any static dependency of the node device driver, in
1696  * the base kernel, on the hugetlb module.
1697  */
1698 struct node_hstate {
1699         struct kobject          *hugepages_kobj;
1700         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
1701 };
1702 struct node_hstate node_hstates[MAX_NUMNODES];
1703
1704 /*
1705  * A subset of global hstate attributes for node devices
1706  */
1707 static struct attribute *per_node_hstate_attrs[] = {
1708         &nr_hugepages_attr.attr,
1709         &free_hugepages_attr.attr,
1710         &surplus_hugepages_attr.attr,
1711         NULL,
1712 };
1713
1714 static struct attribute_group per_node_hstate_attr_group = {
1715         .attrs = per_node_hstate_attrs,
1716 };
1717
1718 /*
1719  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
1720  * Returns node id via non-NULL nidp.
1721  */
1722 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1723 {
1724         int nid;
1725
1726         for (nid = 0; nid < nr_node_ids; nid++) {
1727                 struct node_hstate *nhs = &node_hstates[nid];
1728                 int i;
1729                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1730                         if (nhs->hstate_kobjs[i] == kobj) {
1731                                 if (nidp)
1732                                         *nidp = nid;
1733                                 return &hstates[i];
1734                         }
1735         }
1736
1737         BUG();
1738         return NULL;
1739 }
1740
1741 /*
1742  * Unregister hstate attributes from a single node device.
1743  * No-op if no hstate attributes attached.
1744  */
1745 static void hugetlb_unregister_node(struct node *node)
1746 {
1747         struct hstate *h;
1748         struct node_hstate *nhs = &node_hstates[node->dev.id];
1749
1750         if (!nhs->hugepages_kobj)
1751                 return;         /* no hstate attributes */
1752
1753         for_each_hstate(h) {
1754                 int idx = hstate_index(h);
1755                 if (nhs->hstate_kobjs[idx]) {
1756                         kobject_put(nhs->hstate_kobjs[idx]);
1757                         nhs->hstate_kobjs[idx] = NULL;
1758                 }
1759         }
1760
1761         kobject_put(nhs->hugepages_kobj);
1762         nhs->hugepages_kobj = NULL;
1763 }
1764
1765 /*
1766  * hugetlb module exit:  unregister hstate attributes from node devices
1767  * that have them.
1768  */
1769 static void hugetlb_unregister_all_nodes(void)
1770 {
1771         int nid;
1772
1773         /*
1774          * disable node device registrations.
1775          */
1776         register_hugetlbfs_with_node(NULL, NULL);
1777
1778         /*
1779          * remove hstate attributes from any nodes that have them.
1780          */
1781         for (nid = 0; nid < nr_node_ids; nid++)
1782                 hugetlb_unregister_node(node_devices[nid]);
1783 }
1784
1785 /*
1786  * Register hstate attributes for a single node device.
1787  * No-op if attributes already registered.
1788  */
1789 static void hugetlb_register_node(struct node *node)
1790 {
1791         struct hstate *h;
1792         struct node_hstate *nhs = &node_hstates[node->dev.id];
1793         int err;
1794
1795         if (nhs->hugepages_kobj)
1796                 return;         /* already allocated */
1797
1798         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1799                                                         &node->dev.kobj);
1800         if (!nhs->hugepages_kobj)
1801                 return;
1802
1803         for_each_hstate(h) {
1804                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1805                                                 nhs->hstate_kobjs,
1806                                                 &per_node_hstate_attr_group);
1807                 if (err) {
1808                         pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
1809                                 h->name, node->dev.id);
1810                         hugetlb_unregister_node(node);
1811                         break;
1812                 }
1813         }
1814 }
1815
1816 /*
1817  * hugetlb init time:  register hstate attributes for all registered node
1818  * devices of nodes that have memory.  All on-line nodes should have
1819  * registered their associated device by this time.
1820  */
1821 static void hugetlb_register_all_nodes(void)
1822 {
1823         int nid;
1824
1825         for_each_node_state(nid, N_MEMORY) {
1826                 struct node *node = node_devices[nid];
1827                 if (node->dev.id == nid)
1828                         hugetlb_register_node(node);
1829         }
1830
1831         /*
1832          * Let the node device driver know we're here so it can
1833          * [un]register hstate attributes on node hotplug.
1834          */
1835         register_hugetlbfs_with_node(hugetlb_register_node,
1836                                      hugetlb_unregister_node);
1837 }
1838 #else   /* !CONFIG_NUMA */
1839
1840 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1841 {
1842         BUG();
1843         if (nidp)
1844                 *nidp = -1;
1845         return NULL;
1846 }
1847
1848 static void hugetlb_unregister_all_nodes(void) { }
1849
1850 static void hugetlb_register_all_nodes(void) { }
1851
1852 #endif
1853
1854 static void __exit hugetlb_exit(void)
1855 {
1856         struct hstate *h;
1857
1858         hugetlb_unregister_all_nodes();
1859
1860         for_each_hstate(h) {
1861                 kobject_put(hstate_kobjs[hstate_index(h)]);
1862         }
1863
1864         kobject_put(hugepages_kobj);
1865 }
1866 module_exit(hugetlb_exit);
1867
1868 static int __init hugetlb_init(void)
1869 {
1870         /* Some platform decide whether they support huge pages at boot
1871          * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1872          * there is no such support
1873          */
1874         if (HPAGE_SHIFT == 0)
1875                 return 0;
1876
1877         if (!size_to_hstate(default_hstate_size)) {
1878                 default_hstate_size = HPAGE_SIZE;
1879                 if (!size_to_hstate(default_hstate_size))
1880                         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1881         }
1882         default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
1883         if (default_hstate_max_huge_pages)
1884                 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1885
1886         hugetlb_init_hstates();
1887         gather_bootmem_prealloc();
1888         report_hugepages();
1889
1890         hugetlb_sysfs_init();
1891         hugetlb_register_all_nodes();
1892         hugetlb_cgroup_file_init();
1893
1894         return 0;
1895 }
1896 module_init(hugetlb_init);
1897
1898 /* Should be called on processing a hugepagesz=... option */
1899 void __init hugetlb_add_hstate(unsigned order)
1900 {
1901         struct hstate *h;
1902         unsigned long i;
1903
1904         if (size_to_hstate(PAGE_SIZE << order)) {
1905                 pr_warning("hugepagesz= specified twice, ignoring\n");
1906                 return;
1907         }
1908         BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
1909         BUG_ON(order == 0);
1910         h = &hstates[hugetlb_max_hstate++];
1911         h->order = order;
1912         h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1913         h->nr_huge_pages = 0;
1914         h->free_huge_pages = 0;
1915         for (i = 0; i < MAX_NUMNODES; ++i)
1916                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1917         INIT_LIST_HEAD(&h->hugepage_activelist);
1918         h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
1919         h->next_nid_to_free = first_node(node_states[N_MEMORY]);
1920         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1921                                         huge_page_size(h)/1024);
1922
1923         parsed_hstate = h;
1924 }
1925
1926 static int __init hugetlb_nrpages_setup(char *s)
1927 {
1928         unsigned long *mhp;
1929         static unsigned long *last_mhp;
1930
1931         /*
1932          * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
1933          * so this hugepages= parameter goes to the "default hstate".
1934          */
1935         if (!hugetlb_max_hstate)
1936                 mhp = &default_hstate_max_huge_pages;
1937         else
1938                 mhp = &parsed_hstate->max_huge_pages;
1939
1940         if (mhp == last_mhp) {
1941                 pr_warning("hugepages= specified twice without "
1942                            "interleaving hugepagesz=, ignoring\n");
1943                 return 1;
1944         }
1945
1946         if (sscanf(s, "%lu", mhp) <= 0)
1947                 *mhp = 0;
1948
1949         /*
1950          * Global state is always initialized later in hugetlb_init.
1951          * But we need to allocate >= MAX_ORDER hstates here early to still
1952          * use the bootmem allocator.
1953          */
1954         if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
1955                 hugetlb_hstate_alloc_pages(parsed_hstate);
1956
1957         last_mhp = mhp;
1958
1959         return 1;
1960 }
1961 __setup("hugepages=", hugetlb_nrpages_setup);
1962
1963 static int __init hugetlb_default_setup(char *s)
1964 {
1965         default_hstate_size = memparse(s, &s);
1966         return 1;
1967 }
1968 __setup("default_hugepagesz=", hugetlb_default_setup);
1969
1970 static unsigned int cpuset_mems_nr(unsigned int *array)
1971 {
1972         int node;
1973         unsigned int nr = 0;
1974
1975         for_each_node_mask(node, cpuset_current_mems_allowed)
1976                 nr += array[node];
1977
1978         return nr;
1979 }
1980
1981 #ifdef CONFIG_SYSCTL
1982 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
1983                          struct ctl_table *table, int write,
1984                          void __user *buffer, size_t *length, loff_t *ppos)
1985 {
1986         struct hstate *h = &default_hstate;
1987         unsigned long tmp;
1988         int ret;
1989
1990         tmp = h->max_huge_pages;
1991
1992         if (write && h->order >= MAX_ORDER)
1993                 return -EINVAL;
1994
1995         table->data = &tmp;
1996         table->maxlen = sizeof(unsigned long);
1997         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
1998         if (ret)
1999                 goto out;
2000
2001         if (write) {
2002                 NODEMASK_ALLOC(nodemask_t, nodes_allowed,
2003                                                 GFP_KERNEL | __GFP_NORETRY);
2004                 if (!(obey_mempolicy &&
2005                                init_nodemask_of_mempolicy(nodes_allowed))) {
2006                         NODEMASK_FREE(nodes_allowed);
2007                         nodes_allowed = &node_states[N_MEMORY];
2008                 }
2009                 h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
2010
2011                 if (nodes_allowed != &node_states[N_MEMORY])
2012                         NODEMASK_FREE(nodes_allowed);
2013         }
2014 out:
2015         return ret;
2016 }
2017
2018 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2019                           void __user *buffer, size_t *length, loff_t *ppos)
2020 {
2021
2022         return hugetlb_sysctl_handler_common(false, table, write,
2023                                                         buffer, length, ppos);
2024 }
2025
2026 #ifdef CONFIG_NUMA
2027 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2028                           void __user *buffer, size_t *length, loff_t *ppos)
2029 {
2030         return hugetlb_sysctl_handler_common(true, table, write,
2031                                                         buffer, length, ppos);
2032 }
2033 #endif /* CONFIG_NUMA */
2034
2035 int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
2036                         void __user *buffer,
2037                         size_t *length, loff_t *ppos)
2038 {
2039         proc_dointvec(table, write, buffer, length, ppos);
2040         if (hugepages_treat_as_movable)
2041                 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
2042         else
2043                 htlb_alloc_mask = GFP_HIGHUSER;
2044         return 0;
2045 }
2046
2047 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2048                         void __user *buffer,
2049                         size_t *length, loff_t *ppos)
2050 {
2051         struct hstate *h = &default_hstate;
2052         unsigned long tmp;
2053         int ret;
2054
2055         tmp = h->nr_overcommit_huge_pages;
2056
2057         if (write && h->order >= MAX_ORDER)
2058                 return -EINVAL;
2059
2060         table->data = &tmp;
2061         table->maxlen = sizeof(unsigned long);
2062         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2063         if (ret)
2064                 goto out;
2065
2066         if (write) {
2067                 spin_lock(&hugetlb_lock);
2068                 h->nr_overcommit_huge_pages = tmp;
2069                 spin_unlock(&hugetlb_lock);
2070         }
2071 out:
2072         return ret;
2073 }
2074
2075 #endif /* CONFIG_SYSCTL */
2076
2077 void hugetlb_report_meminfo(struct seq_file *m)
2078 {
2079         struct hstate *h = &default_hstate;
2080         seq_printf(m,
2081                         "HugePages_Total:   %5lu\n"
2082                         "HugePages_Free:    %5lu\n"
2083                         "HugePages_Rsvd:    %5lu\n"
2084                         "HugePages_Surp:    %5lu\n"
2085                         "Hugepagesize:   %8lu kB\n",
2086                         h->nr_huge_pages,
2087                         h->free_huge_pages,
2088                         h->resv_huge_pages,
2089                         h->surplus_huge_pages,
2090                         1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2091 }
2092
2093 int hugetlb_report_node_meminfo(int nid, char *buf)
2094 {
2095         struct hstate *h = &default_hstate;
2096         return sprintf(buf,
2097                 "Node %d HugePages_Total: %5u\n"
2098                 "Node %d HugePages_Free:  %5u\n"
2099                 "Node %d HugePages_Surp:  %5u\n",
2100                 nid, h->nr_huge_pages_node[nid],
2101                 nid, h->free_huge_pages_node[nid],
2102                 nid, h->surplus_huge_pages_node[nid]);
2103 }
2104
2105 void hugetlb_show_meminfo(void)
2106 {
2107         struct hstate *h;
2108         int nid;
2109
2110         for_each_node_state(nid, N_MEMORY)
2111                 for_each_hstate(h)
2112                         pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2113                                 nid,
2114                                 h->nr_huge_pages_node[nid],
2115                                 h->free_huge_pages_node[nid],
2116                                 h->surplus_huge_pages_node[nid],
2117                                 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2118 }
2119
2120 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2121 unsigned long hugetlb_total_pages(void)
2122 {
2123         struct hstate *h;
2124         unsigned long nr_total_pages = 0;
2125
2126         for_each_hstate(h)
2127                 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2128         return nr_total_pages;
2129 }
2130
2131 static int hugetlb_acct_memory(struct hstate *h, long delta)
2132 {
2133         int ret = -ENOMEM;
2134
2135         spin_lock(&hugetlb_lock);
2136         /*
2137          * When cpuset is configured, it breaks the strict hugetlb page
2138          * reservation as the accounting is done on a global variable. Such
2139          * reservation is completely rubbish in the presence of cpuset because
2140          * the reservation is not checked against page availability for the
2141          * current cpuset. Application can still potentially OOM'ed by kernel
2142          * with lack of free htlb page in cpuset that the task is in.
2143          * Attempt to enforce strict accounting with cpuset is almost
2144          * impossible (or too ugly) because cpuset is too fluid that
2145          * task or memory node can be dynamically moved between cpusets.
2146          *
2147          * The change of semantics for shared hugetlb mapping with cpuset is
2148          * undesirable. However, in order to preserve some of the semantics,
2149          * we fall back to check against current free page availability as
2150          * a best attempt and hopefully to minimize the impact of changing
2151          * semantics that cpuset has.
2152          */
2153         if (delta > 0) {
2154                 if (gather_surplus_pages(h, delta) < 0)
2155                         goto out;
2156
2157                 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2158                         return_unused_surplus_pages(h, delta);
2159                         goto out;
2160                 }
2161         }
2162
2163         ret = 0;
2164         if (delta < 0)
2165                 return_unused_surplus_pages(h, (unsigned long) -delta);
2166
2167 out:
2168         spin_unlock(&hugetlb_lock);
2169         return ret;
2170 }
2171
2172 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2173 {
2174         struct resv_map *reservations = vma_resv_map(vma);
2175
2176         /*
2177          * This new VMA should share its siblings reservation map if present.
2178          * The VMA will only ever have a valid reservation map pointer where
2179          * it is being copied for another still existing VMA.  As that VMA
2180          * has a reference to the reservation map it cannot disappear until
2181          * after this open call completes.  It is therefore safe to take a
2182          * new reference here without additional locking.
2183          */
2184         if (reservations)
2185                 kref_get(&reservations->refs);
2186 }
2187
2188 static void resv_map_put(struct vm_area_struct *vma)
2189 {
2190         struct resv_map *reservations = vma_resv_map(vma);
2191
2192         if (!reservations)
2193                 return;
2194         kref_put(&reservations->refs, resv_map_release);
2195 }
2196
2197 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2198 {
2199         struct hstate *h = hstate_vma(vma);
2200         struct resv_map *reservations = vma_resv_map(vma);
2201         struct hugepage_subpool *spool = subpool_vma(vma);
2202         unsigned long reserve;
2203         unsigned long start;
2204         unsigned long end;
2205
2206         if (reservations) {
2207                 start = vma_hugecache_offset(h, vma, vma->vm_start);
2208                 end = vma_hugecache_offset(h, vma, vma->vm_end);
2209
2210                 reserve = (end - start) -
2211                         region_count(&reservations->regions, start, end);
2212
2213                 resv_map_put(vma);
2214
2215                 if (reserve) {
2216                         hugetlb_acct_memory(h, -reserve);
2217                         hugepage_subpool_put_pages(spool, reserve);
2218                 }
2219         }
2220 }
2221
2222 /*
2223  * We cannot handle pagefaults against hugetlb pages at all.  They cause
2224  * handle_mm_fault() to try to instantiate regular-sized pages in the
2225  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
2226  * this far.
2227  */
2228 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2229 {
2230         BUG();
2231         return 0;
2232 }
2233
2234 const struct vm_operations_struct hugetlb_vm_ops = {
2235         .fault = hugetlb_vm_op_fault,
2236         .open = hugetlb_vm_op_open,
2237         .close = hugetlb_vm_op_close,
2238 };
2239
2240 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2241                                 int writable)
2242 {
2243         pte_t entry;
2244
2245         if (writable) {
2246                 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
2247                                          vma->vm_page_prot)));
2248         } else {
2249                 entry = huge_pte_wrprotect(mk_huge_pte(page,
2250                                            vma->vm_page_prot));
2251         }
2252         entry = pte_mkyoung(entry);
2253         entry = pte_mkhuge(entry);
2254         entry = arch_make_huge_pte(entry, vma, page, writable);
2255
2256         return entry;
2257 }
2258
2259 static void set_huge_ptep_writable(struct vm_area_struct *vma,
2260                                    unsigned long address, pte_t *ptep)
2261 {
2262         pte_t entry;
2263
2264         entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
2265         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2266                 update_mmu_cache(vma, address, ptep);
2267 }
2268
2269
2270 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2271                             struct vm_area_struct *vma)
2272 {
2273         pte_t *src_pte, *dst_pte, entry;
2274         struct page *ptepage;
2275         unsigned long addr;
2276         int cow;
2277         struct hstate *h = hstate_vma(vma);
2278         unsigned long sz = huge_page_size(h);
2279
2280         cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
2281
2282         for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2283                 src_pte = huge_pte_offset(src, addr);
2284                 if (!src_pte)
2285                         continue;
2286                 dst_pte = huge_pte_alloc(dst, addr, sz);
2287                 if (!dst_pte)
2288                         goto nomem;
2289
2290                 /* If the pagetables are shared don't copy or take references */
2291                 if (dst_pte == src_pte)
2292                         continue;
2293
2294                 spin_lock(&dst->page_table_lock);
2295                 spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
2296                 if (!huge_pte_none(huge_ptep_get(src_pte))) {
2297                         if (cow)
2298                                 huge_ptep_set_wrprotect(src, addr, src_pte);
2299                         entry = huge_ptep_get(src_pte);
2300                         ptepage = pte_page(entry);
2301                         get_page(ptepage);
2302                         page_dup_rmap(ptepage);
2303                         set_huge_pte_at(dst, addr, dst_pte, entry);
2304                 }
2305                 spin_unlock(&src->page_table_lock);
2306                 spin_unlock(&dst->page_table_lock);
2307         }
2308         return 0;
2309
2310 nomem:
2311         return -ENOMEM;
2312 }
2313
2314 static int is_hugetlb_entry_migration(pte_t pte)
2315 {
2316         swp_entry_t swp;
2317
2318         if (huge_pte_none(pte) || pte_present(pte))
2319                 return 0;
2320         swp = pte_to_swp_entry(pte);
2321         if (non_swap_entry(swp) && is_migration_entry(swp))
2322                 return 1;
2323         else
2324                 return 0;
2325 }
2326
2327 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2328 {
2329         swp_entry_t swp;
2330
2331         if (huge_pte_none(pte) || pte_present(pte))
2332                 return 0;
2333         swp = pte_to_swp_entry(pte);
2334         if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2335                 return 1;
2336         else
2337                 return 0;
2338 }
2339
2340 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
2341                             unsigned long start, unsigned long end,
2342                             struct page *ref_page)
2343 {
2344         int force_flush = 0;
2345         struct mm_struct *mm = vma->vm_mm;
2346         unsigned long address;
2347         pte_t *ptep;
2348         pte_t pte;
2349         struct page *page;
2350         struct hstate *h = hstate_vma(vma);
2351         unsigned long sz = huge_page_size(h);
2352         const unsigned long mmun_start = start; /* For mmu_notifiers */
2353         const unsigned long mmun_end   = end;   /* For mmu_notifiers */
2354
2355         WARN_ON(!is_vm_hugetlb_page(vma));
2356         BUG_ON(start & ~huge_page_mask(h));
2357         BUG_ON(end & ~huge_page_mask(h));
2358
2359         tlb_start_vma(tlb, vma);
2360         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2361 again:
2362         spin_lock(&mm->page_table_lock);
2363         for (address = start; address < end; address += sz) {
2364                 ptep = huge_pte_offset(mm, address);
2365                 if (!ptep)
2366                         continue;
2367
2368                 if (huge_pmd_unshare(mm, &address, ptep))
2369                         continue;
2370
2371                 pte = huge_ptep_get(ptep);
2372                 if (huge_pte_none(pte))
2373                         continue;
2374
2375                 /*
2376                  * HWPoisoned hugepage is already unmapped and dropped reference
2377                  */
2378                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
2379                         huge_pte_clear(mm, address, ptep);
2380                         continue;
2381                 }
2382
2383                 page = pte_page(pte);
2384                 /*
2385                  * If a reference page is supplied, it is because a specific
2386                  * page is being unmapped, not a range. Ensure the page we
2387                  * are about to unmap is the actual page of interest.
2388                  */
2389                 if (ref_page) {
2390                         if (page != ref_page)
2391                                 continue;
2392
2393                         /*
2394                          * Mark the VMA as having unmapped its page so that
2395                          * future faults in this VMA will fail rather than
2396                          * looking like data was lost
2397                          */
2398                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2399                 }
2400
2401                 pte = huge_ptep_get_and_clear(mm, address, ptep);
2402                 tlb_remove_tlb_entry(tlb, ptep, address);
2403                 if (huge_pte_dirty(pte))
2404                         set_page_dirty(page);
2405
2406                 page_remove_rmap(page);
2407                 force_flush = !__tlb_remove_page(tlb, page);
2408                 if (force_flush)
2409                         break;
2410                 /* Bail out after unmapping reference page if supplied */
2411                 if (ref_page)
2412                         break;
2413         }
2414         spin_unlock(&mm->page_table_lock);
2415         /*
2416          * mmu_gather ran out of room to batch pages, we break out of
2417          * the PTE lock to avoid doing the potential expensive TLB invalidate
2418          * and page-free while holding it.
2419          */
2420         if (force_flush) {
2421                 force_flush = 0;
2422                 tlb_flush_mmu(tlb);
2423                 if (address < end && !ref_page)
2424                         goto again;
2425         }
2426         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2427         tlb_end_vma(tlb, vma);
2428 }
2429
2430 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
2431                           struct vm_area_struct *vma, unsigned long start,
2432                           unsigned long end, struct page *ref_page)
2433 {
2434         __unmap_hugepage_range(tlb, vma, start, end, ref_page);
2435
2436         /*
2437          * Clear this flag so that x86's huge_pmd_share page_table_shareable
2438          * test will fail on a vma being torn down, and not grab a page table
2439          * on its way out.  We're lucky that the flag has such an appropriate
2440          * name, and can in fact be safely cleared here. We could clear it
2441          * before the __unmap_hugepage_range above, but all that's necessary
2442          * is to clear it before releasing the i_mmap_mutex. This works
2443          * because in the context this is called, the VMA is about to be
2444          * destroyed and the i_mmap_mutex is held.
2445          */
2446         vma->vm_flags &= ~VM_MAYSHARE;
2447 }
2448
2449 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2450                           unsigned long end, struct page *ref_page)
2451 {
2452         struct mm_struct *mm;
2453         struct mmu_gather tlb;
2454
2455         mm = vma->vm_mm;
2456
2457         tlb_gather_mmu(&tlb, mm, 0);
2458         __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
2459         tlb_finish_mmu(&tlb, start, end);
2460 }
2461
2462 /*
2463  * This is called when the original mapper is failing to COW a MAP_PRIVATE
2464  * mappping it owns the reserve page for. The intention is to unmap the page
2465  * from other VMAs and let the children be SIGKILLed if they are faulting the
2466  * same region.
2467  */
2468 static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2469                                 struct page *page, unsigned long address)
2470 {
2471         struct hstate *h = hstate_vma(vma);
2472         struct vm_area_struct *iter_vma;
2473         struct address_space *mapping;
2474         pgoff_t pgoff;
2475
2476         /*
2477          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2478          * from page cache lookup which is in HPAGE_SIZE units.
2479          */
2480         address = address & huge_page_mask(h);
2481         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
2482                         vma->vm_pgoff;
2483         mapping = file_inode(vma->vm_file)->i_mapping;
2484
2485         /*
2486          * Take the mapping lock for the duration of the table walk. As
2487          * this mapping should be shared between all the VMAs,
2488          * __unmap_hugepage_range() is called as the lock is already held
2489          */
2490         mutex_lock(&mapping->i_mmap_mutex);
2491         vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
2492                 /* Do not unmap the current VMA */
2493                 if (iter_vma == vma)
2494                         continue;
2495
2496                 /*
2497                  * Unmap the page from other VMAs without their own reserves.
2498                  * They get marked to be SIGKILLed if they fault in these
2499                  * areas. This is because a future no-page fault on this VMA
2500                  * could insert a zeroed page instead of the data existing
2501                  * from the time of fork. This would look like data corruption
2502                  */
2503                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2504                         unmap_hugepage_range(iter_vma, address,
2505                                              address + huge_page_size(h), page);
2506         }
2507         mutex_unlock(&mapping->i_mmap_mutex);
2508
2509         return 1;
2510 }
2511
2512 /*
2513  * Hugetlb_cow() should be called with page lock of the original hugepage held.
2514  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
2515  * cannot race with other handlers or page migration.
2516  * Keep the pte_same checks anyway to make transition from the mutex easier.
2517  */
2518 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2519                         unsigned long address, pte_t *ptep, pte_t pte,
2520                         struct page *pagecache_page)
2521 {
2522         struct hstate *h = hstate_vma(vma);
2523         struct page *old_page, *new_page;
2524         int outside_reserve = 0;
2525         unsigned long mmun_start;       /* For mmu_notifiers */
2526         unsigned long mmun_end;         /* For mmu_notifiers */
2527
2528         old_page = pte_page(pte);
2529
2530 retry_avoidcopy:
2531         /* If no-one else is actually using this page, avoid the copy
2532          * and just make the page writable */
2533         if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
2534                 page_move_anon_rmap(old_page, vma, address);
2535                 set_huge_ptep_writable(vma, address, ptep);
2536                 return 0;
2537         }
2538
2539         /*
2540          * If the process that created a MAP_PRIVATE mapping is about to
2541          * perform a COW due to a shared page count, attempt to satisfy
2542          * the allocation without using the existing reserves. The pagecache
2543          * page is used to determine if the reserve at this address was
2544          * consumed or not. If reserves were used, a partial faulted mapping
2545          * at the time of fork() could consume its reserves on COW instead
2546          * of the full address range.
2547          */
2548         if (!(vma->vm_flags & VM_MAYSHARE) &&
2549                         is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2550                         old_page != pagecache_page)
2551                 outside_reserve = 1;
2552
2553         page_cache_get(old_page);
2554
2555         /* Drop page_table_lock as buddy allocator may be called */
2556         spin_unlock(&mm->page_table_lock);
2557         new_page = alloc_huge_page(vma, address, outside_reserve);
2558
2559         if (IS_ERR(new_page)) {
2560                 long err = PTR_ERR(new_page);
2561                 page_cache_release(old_page);
2562
2563                 /*
2564                  * If a process owning a MAP_PRIVATE mapping fails to COW,
2565                  * it is due to references held by a child and an insufficient
2566                  * huge page pool. To guarantee the original mappers
2567                  * reliability, unmap the page from child processes. The child
2568                  * may get SIGKILLed if it later faults.
2569                  */
2570                 if (outside_reserve) {
2571                         BUG_ON(huge_pte_none(pte));
2572                         if (unmap_ref_private(mm, vma, old_page, address)) {
2573                                 BUG_ON(huge_pte_none(pte));
2574                                 spin_lock(&mm->page_table_lock);
2575                                 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2576                                 if (likely(pte_same(huge_ptep_get(ptep), pte)))
2577                                         goto retry_avoidcopy;
2578                                 /*
2579                                  * race occurs while re-acquiring page_table_lock, and
2580                                  * our job is done.
2581                                  */
2582                                 return 0;
2583                         }
2584                         WARN_ON_ONCE(1);
2585                 }
2586
2587                 /* Caller expects lock to be held */
2588                 spin_lock(&mm->page_table_lock);
2589                 if (err == -ENOMEM)
2590                         return VM_FAULT_OOM;
2591                 else
2592                         return VM_FAULT_SIGBUS;
2593         }
2594
2595         /*
2596          * When the original hugepage is shared one, it does not have
2597          * anon_vma prepared.
2598          */
2599         if (unlikely(anon_vma_prepare(vma))) {
2600                 page_cache_release(new_page);
2601                 page_cache_release(old_page);
2602                 /* Caller expects lock to be held */
2603                 spin_lock(&mm->page_table_lock);
2604                 return VM_FAULT_OOM;
2605         }
2606
2607         copy_user_huge_page(new_page, old_page, address, vma,
2608                             pages_per_huge_page(h));
2609         __SetPageUptodate(new_page);
2610
2611         mmun_start = address & huge_page_mask(h);
2612         mmun_end = mmun_start + huge_page_size(h);
2613         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2614         /*
2615          * Retake the page_table_lock to check for racing updates
2616          * before the page tables are altered
2617          */
2618         spin_lock(&mm->page_table_lock);
2619         ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2620         if (likely(pte_same(huge_ptep_get(ptep), pte))) {
2621                 /* Break COW */
2622                 huge_ptep_clear_flush(vma, address, ptep);
2623                 set_huge_pte_at(mm, address, ptep,
2624                                 make_huge_pte(vma, new_page, 1));
2625                 page_remove_rmap(old_page);
2626                 hugepage_add_new_anon_rmap(new_page, vma, address);
2627                 /* Make the old page be freed below */
2628                 new_page = old_page;
2629         }
2630         spin_unlock(&mm->page_table_lock);
2631         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2632         /* Caller expects lock to be held */
2633         spin_lock(&mm->page_table_lock);
2634         page_cache_release(new_page);
2635         page_cache_release(old_page);
2636         return 0;
2637 }
2638
2639 /* Return the pagecache page at a given address within a VMA */
2640 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2641                         struct vm_area_struct *vma, unsigned long address)
2642 {
2643         struct address_space *mapping;
2644         pgoff_t idx;
2645
2646         mapping = vma->vm_file->f_mapping;
2647         idx = vma_hugecache_offset(h, vma, address);
2648
2649         return find_lock_page(mapping, idx);
2650 }
2651
2652 /*
2653  * Return whether there is a pagecache page to back given address within VMA.
2654  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2655  */
2656 static bool hugetlbfs_pagecache_present(struct hstate *h,
2657                         struct vm_area_struct *vma, unsigned long address)
2658 {
2659         struct address_space *mapping;
2660         pgoff_t idx;
2661         struct page *page;
2662
2663         mapping = vma->vm_file->f_mapping;
2664         idx = vma_hugecache_offset(h, vma, address);
2665
2666         page = find_get_page(mapping, idx);
2667         if (page)
2668                 put_page(page);
2669         return page != NULL;
2670 }
2671
2672 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2673                         unsigned long address, pte_t *ptep, unsigned int flags)
2674 {
2675         struct hstate *h = hstate_vma(vma);
2676         int ret = VM_FAULT_SIGBUS;
2677         int anon_rmap = 0;
2678         pgoff_t idx;
2679         unsigned long size;
2680         struct page *page;
2681         struct address_space *mapping;
2682         pte_t new_pte;
2683
2684         /*
2685          * Currently, we are forced to kill the process in the event the
2686          * original mapper has unmapped pages from the child due to a failed
2687          * COW. Warn that such a situation has occurred as it may not be obvious
2688          */
2689         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2690                 pr_warning("PID %d killed due to inadequate hugepage pool\n",
2691                            current->pid);
2692                 return ret;
2693         }
2694
2695         mapping = vma->vm_file->f_mapping;
2696         idx = vma_hugecache_offset(h, vma, address);
2697
2698         /*
2699          * Use page lock to guard against racing truncation
2700          * before we get page_table_lock.
2701          */
2702 retry:
2703         page = find_lock_page(mapping, idx);
2704         if (!page) {
2705                 size = i_size_read(mapping->host) >> huge_page_shift(h);
2706                 if (idx >= size)
2707                         goto out;
2708                 page = alloc_huge_page(vma, address, 0);
2709                 if (IS_ERR(page)) {
2710                         ret = PTR_ERR(page);
2711                         if (ret == -ENOMEM)
2712                                 ret = VM_FAULT_OOM;
2713                         else
2714                                 ret = VM_FAULT_SIGBUS;
2715                         goto out;
2716                 }
2717                 clear_huge_page(page, address, pages_per_huge_page(h));
2718                 __SetPageUptodate(page);
2719
2720                 if (vma->vm_flags & VM_MAYSHARE) {
2721                         int err;
2722                         struct inode *inode = mapping->host;
2723
2724                         err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2725                         if (err) {
2726                                 put_page(page);
2727                                 if (err == -EEXIST)
2728                                         goto retry;
2729                                 goto out;
2730                         }
2731
2732                         spin_lock(&inode->i_lock);
2733                         inode->i_blocks += blocks_per_huge_page(h);
2734                         spin_unlock(&inode->i_lock);
2735                 } else {
2736                         lock_page(page);
2737                         if (unlikely(anon_vma_prepare(vma))) {
2738                                 ret = VM_FAULT_OOM;
2739                                 goto backout_unlocked;
2740                         }
2741                         anon_rmap = 1;
2742                 }
2743         } else {
2744                 /*
2745                  * If memory error occurs between mmap() and fault, some process
2746                  * don't have hwpoisoned swap entry for errored virtual address.
2747                  * So we need to block hugepage fault by PG_hwpoison bit check.
2748                  */
2749                 if (unlikely(PageHWPoison(page))) {
2750                         ret = VM_FAULT_HWPOISON |
2751                                 VM_FAULT_SET_HINDEX(hstate_index(h));
2752                         goto backout_unlocked;
2753                 }
2754         }
2755
2756         /*
2757          * If we are going to COW a private mapping later, we examine the
2758          * pending reservations for this page now. This will ensure that
2759          * any allocations necessary to record that reservation occur outside
2760          * the spinlock.
2761          */
2762         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2763                 if (vma_needs_reservation(h, vma, address) < 0) {
2764                         ret = VM_FAULT_OOM;
2765                         goto backout_unlocked;
2766                 }
2767
2768         spin_lock(&mm->page_table_lock);
2769         size = i_size_read(mapping->host) >> huge_page_shift(h);
2770         if (idx >= size)
2771                 goto backout;
2772
2773         ret = 0;
2774         if (!huge_pte_none(huge_ptep_get(ptep)))
2775                 goto backout;
2776
2777         if (anon_rmap)
2778                 hugepage_add_new_anon_rmap(page, vma, address);
2779         else
2780                 page_dup_rmap(page);
2781         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2782                                 && (vma->vm_flags & VM_SHARED)));
2783         set_huge_pte_at(mm, address, ptep, new_pte);
2784
2785         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2786                 /* Optimization, do the COW without a second fault */
2787                 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
2788         }
2789
2790         spin_unlock(&mm->page_table_lock);
2791         unlock_page(page);
2792 out:
2793         return ret;
2794
2795 backout:
2796         spin_unlock(&mm->page_table_lock);
2797 backout_unlocked:
2798         unlock_page(page);
2799         put_page(page);
2800         goto out;
2801 }
2802
2803 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2804                         unsigned long address, unsigned int flags)
2805 {
2806         pte_t *ptep;
2807         pte_t entry;
2808         int ret;
2809         struct page *page = NULL;
2810         struct page *pagecache_page = NULL;
2811         static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2812         struct hstate *h = hstate_vma(vma);
2813
2814         address &= huge_page_mask(h);
2815
2816         ptep = huge_pte_offset(mm, address);
2817         if (ptep) {
2818                 entry = huge_ptep_get(ptep);
2819                 if (unlikely(is_hugetlb_entry_migration(entry))) {
2820                         migration_entry_wait_huge(mm, ptep);
2821                         return 0;
2822                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
2823                         return VM_FAULT_HWPOISON_LARGE |
2824                                 VM_FAULT_SET_HINDEX(hstate_index(h));
2825         }
2826
2827         ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2828         if (!ptep)
2829                 return VM_FAULT_OOM;
2830
2831         /*
2832          * Serialize hugepage allocation and instantiation, so that we don't
2833          * get spurious allocation failures if two CPUs race to instantiate
2834          * the same page in the page cache.
2835          */
2836         mutex_lock(&hugetlb_instantiation_mutex);
2837         entry = huge_ptep_get(ptep);
2838         if (huge_pte_none(entry)) {
2839                 ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2840                 goto out_mutex;
2841         }
2842
2843         ret = 0;
2844
2845         /*
2846          * If we are going to COW the mapping later, we examine the pending
2847          * reservations for this page now. This will ensure that any
2848          * allocations necessary to record that reservation occur outside the
2849          * spinlock. For private mappings, we also lookup the pagecache
2850          * page now as it is used to determine if a reservation has been
2851          * consumed.
2852          */
2853         if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
2854                 if (vma_needs_reservation(h, vma, address) < 0) {
2855                         ret = VM_FAULT_OOM;
2856                         goto out_mutex;
2857                 }
2858
2859                 if (!(vma->vm_flags & VM_MAYSHARE))
2860                         pagecache_page = hugetlbfs_pagecache_page(h,
2861                                                                 vma, address);
2862         }
2863
2864         /*
2865          * hugetlb_cow() requires page locks of pte_page(entry) and
2866          * pagecache_page, so here we need take the former one
2867          * when page != pagecache_page or !pagecache_page.
2868          * Note that locking order is always pagecache_page -> page,
2869          * so no worry about deadlock.
2870          */
2871         page = pte_page(entry);
2872         get_page(page);
2873         if (page != pagecache_page)
2874                 lock_page(page);
2875
2876         spin_lock(&mm->page_table_lock);
2877         /* Check for a racing update before calling hugetlb_cow */
2878         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2879                 goto out_page_table_lock;
2880
2881
2882         if (flags & FAULT_FLAG_WRITE) {
2883                 if (!huge_pte_write(entry)) {
2884                         ret = hugetlb_cow(mm, vma, address, ptep, entry,
2885                                                         pagecache_page);
2886                         goto out_page_table_lock;
2887                 }
2888                 entry = huge_pte_mkdirty(entry);
2889         }
2890         entry = pte_mkyoung(entry);
2891         if (huge_ptep_set_access_flags(vma, address, ptep, entry,
2892                                                 flags & FAULT_FLAG_WRITE))
2893                 update_mmu_cache(vma, address, ptep);
2894
2895 out_page_table_lock:
2896         spin_unlock(&mm->page_table_lock);
2897
2898         if (pagecache_page) {
2899                 unlock_page(pagecache_page);
2900                 put_page(pagecache_page);
2901         }
2902         if (page != pagecache_page)
2903                 unlock_page(page);
2904         put_page(page);
2905
2906 out_mutex:
2907         mutex_unlock(&hugetlb_instantiation_mutex);
2908
2909         return ret;
2910 }
2911
2912 /* Can be overriden by architectures */
2913 __attribute__((weak)) struct page *
2914 follow_huge_pud(struct mm_struct *mm, unsigned long address,
2915                pud_t *pud, int write)
2916 {
2917         BUG();
2918         return NULL;
2919 }
2920
2921 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
2922                          struct page **pages, struct vm_area_struct **vmas,
2923                          unsigned long *position, unsigned long *nr_pages,
2924                          long i, unsigned int flags)
2925 {
2926         unsigned long pfn_offset;
2927         unsigned long vaddr = *position;
2928         unsigned long remainder = *nr_pages;
2929         struct hstate *h = hstate_vma(vma);
2930
2931         spin_lock(&mm->page_table_lock);
2932         while (vaddr < vma->vm_end && remainder) {
2933                 pte_t *pte;
2934                 int absent;
2935                 struct page *page;
2936
2937                 /*
2938                  * Some archs (sparc64, sh*) have multiple pte_ts to
2939                  * each hugepage.  We have to make sure we get the
2940                  * first, for the page indexing below to work.
2941                  */
2942                 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
2943                 absent = !pte || huge_pte_none(huge_ptep_get(pte));
2944
2945                 /*
2946                  * When coredumping, it suits get_dump_page if we just return
2947                  * an error where there's an empty slot with no huge pagecache
2948                  * to back it.  This way, we avoid allocating a hugepage, and
2949                  * the sparse dumpfile avoids allocating disk blocks, but its
2950                  * huge holes still show up with zeroes where they need to be.
2951                  */
2952                 if (absent && (flags & FOLL_DUMP) &&
2953                     !hugetlbfs_pagecache_present(h, vma, vaddr)) {
2954                         remainder = 0;
2955                         break;
2956                 }
2957
2958                 /*
2959                  * We need call hugetlb_fault for both hugepages under migration
2960                  * (in which case hugetlb_fault waits for the migration,) and
2961                  * hwpoisoned hugepages (in which case we need to prevent the
2962                  * caller from accessing to them.) In order to do this, we use
2963                  * here is_swap_pte instead of is_hugetlb_entry_migration and
2964                  * is_hugetlb_entry_hwpoisoned. This is because it simply covers
2965                  * both cases, and because we can't follow correct pages
2966                  * directly from any kind of swap entries.
2967                  */
2968                 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
2969                     ((flags & FOLL_WRITE) &&
2970                       !huge_pte_write(huge_ptep_get(pte)))) {
2971                         int ret;
2972
2973                         spin_unlock(&mm->page_table_lock);
2974                         ret = hugetlb_fault(mm, vma, vaddr,
2975                                 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
2976                         spin_lock(&mm->page_table_lock);
2977                         if (!(ret & VM_FAULT_ERROR))
2978                                 continue;
2979
2980                         remainder = 0;
2981                         break;
2982                 }
2983
2984                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
2985                 page = pte_page(huge_ptep_get(pte));
2986 same_page:
2987                 if (pages) {
2988                         pages[i] = mem_map_offset(page, pfn_offset);
2989                         get_page(pages[i]);
2990                 }
2991
2992                 if (vmas)
2993                         vmas[i] = vma;
2994
2995                 vaddr += PAGE_SIZE;
2996                 ++pfn_offset;
2997                 --remainder;
2998                 ++i;
2999                 if (vaddr < vma->vm_end && remainder &&
3000                                 pfn_offset < pages_per_huge_page(h)) {
3001                         /*
3002                          * We use pfn_offset to avoid touching the pageframes
3003                          * of this compound page.
3004                          */
3005                         goto same_page;
3006                 }
3007         }
3008         spin_unlock(&mm->page_table_lock);
3009         *nr_pages = remainder;
3010         *position = vaddr;
3011
3012         return i ? i : -EFAULT;
3013 }
3014
3015 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3016                 unsigned long address, unsigned long end, pgprot_t newprot)
3017 {
3018         struct mm_struct *mm = vma->vm_mm;
3019         unsigned long start = address;
3020         pte_t *ptep;
3021         pte_t pte;
3022         struct hstate *h = hstate_vma(vma);
3023         unsigned long pages = 0;
3024
3025         BUG_ON(address >= end);
3026         flush_cache_range(vma, address, end);
3027
3028         mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
3029         spin_lock(&mm->page_table_lock);
3030         for (; address < end; address += huge_page_size(h)) {
3031                 ptep = huge_pte_offset(mm, address);
3032                 if (!ptep)
3033                         continue;
3034                 if (huge_pmd_unshare(mm, &address, ptep)) {
3035                         pages++;
3036                         continue;
3037                 }
3038                 if (!huge_pte_none(huge_ptep_get(ptep))) {
3039                         pte = huge_ptep_get_and_clear(mm, address, ptep);
3040                         pte = pte_mkhuge(huge_pte_modify(pte, newprot));
3041                         pte = arch_make_huge_pte(pte, vma, NULL, 0);
3042                         set_huge_pte_at(mm, address, ptep, pte);
3043                         pages++;
3044                 }
3045         }
3046         spin_unlock(&mm->page_table_lock);
3047         /*
3048          * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare
3049          * may have cleared our pud entry and done put_page on the page table:
3050          * once we release i_mmap_mutex, another task can do the final put_page
3051          * and that page table be reused and filled with junk.
3052          */
3053         flush_tlb_range(vma, start, end);
3054         mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
3055
3056         return pages << h->order;
3057 }
3058
3059 int hugetlb_reserve_pages(struct inode *inode,
3060                                         long from, long to,
3061                                         struct vm_area_struct *vma,
3062                                         vm_flags_t vm_flags)
3063 {
3064         long ret, chg;
3065         struct hstate *h = hstate_inode(inode);
3066         struct hugepage_subpool *spool = subpool_inode(inode);
3067
3068         /*
3069          * Only apply hugepage reservation if asked. At fault time, an
3070          * attempt will be made for VM_NORESERVE to allocate a page
3071          * without using reserves
3072          */
3073         if (vm_flags & VM_NORESERVE)
3074                 return 0;
3075
3076         /*
3077          * Shared mappings base their reservation on the number of pages that
3078          * are already allocated on behalf of the file. Private mappings need
3079          * to reserve the full area even if read-only as mprotect() may be
3080          * called to make the mapping read-write. Assume !vma is a shm mapping
3081          */
3082         if (!vma || vma->vm_flags & VM_MAYSHARE)
3083                 chg = region_chg(&inode->i_mapping->private_list, from, to);
3084         else {
3085                 struct resv_map *resv_map = resv_map_alloc();
3086                 if (!resv_map)
3087                         return -ENOMEM;
3088
3089                 chg = to - from;
3090
3091                 set_vma_resv_map(vma, resv_map);
3092                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
3093         }
3094
3095         if (chg < 0) {
3096                 ret = chg;
3097                 goto out_err;
3098         }
3099
3100         /* There must be enough pages in the subpool for the mapping */
3101         if (hugepage_subpool_get_pages(spool, chg)) {
3102                 ret = -ENOSPC;
3103                 goto out_err;
3104         }
3105
3106         /*
3107          * Check enough hugepages are available for the reservation.
3108          * Hand the pages back to the subpool if there are not
3109          */
3110         ret = hugetlb_acct_memory(h, chg);
3111         if (ret < 0) {
3112                 hugepage_subpool_put_pages(spool, chg);
3113                 goto out_err;
3114         }
3115
3116         /*
3117          * Account for the reservations made. Shared mappings record regions
3118          * that have reservations as they are shared by multiple VMAs.
3119          * When the last VMA disappears, the region map says how much
3120          * the reservation was and the page cache tells how much of
3121          * the reservation was consumed. Private mappings are per-VMA and
3122          * only the consumed reservations are tracked. When the VMA
3123          * disappears, the original reservation is the VMA size and the
3124          * consumed reservations are stored in the map. Hence, nothing
3125          * else has to be done for private mappings here
3126          */
3127         if (!vma || vma->vm_flags & VM_MAYSHARE)
3128                 region_add(&inode->i_mapping->private_list, from, to);
3129         return 0;
3130 out_err:
3131         if (vma)
3132                 resv_map_put(vma);
3133         return ret;
3134 }
3135
3136 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
3137 {
3138         struct hstate *h = hstate_inode(inode);
3139         long chg = region_truncate(&inode->i_mapping->private_list, offset);
3140         struct hugepage_subpool *spool = subpool_inode(inode);
3141
3142         spin_lock(&inode->i_lock);
3143         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
3144         spin_unlock(&inode->i_lock);
3145
3146         hugepage_subpool_put_pages(spool, (chg - freed));
3147         hugetlb_acct_memory(h, -(chg - freed));
3148 }
3149
3150 #ifdef CONFIG_MEMORY_FAILURE
3151
3152 /* Should be called in hugetlb_lock */
3153 static int is_hugepage_on_freelist(struct page *hpage)
3154 {
3155         struct page *page;
3156         struct page *tmp;
3157         struct hstate *h = page_hstate(hpage);
3158         int nid = page_to_nid(hpage);
3159
3160         list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
3161                 if (page == hpage)
3162                         return 1;
3163         return 0;
3164 }
3165
3166 /*
3167  * This function is called from memory failure code.
3168  * Assume the caller holds page lock of the head page.
3169  */
3170 int dequeue_hwpoisoned_huge_page(struct page *hpage)
3171 {
3172         struct hstate *h = page_hstate(hpage);
3173         int nid = page_to_nid(hpage);
3174         int ret = -EBUSY;
3175
3176         spin_lock(&hugetlb_lock);
3177         if (is_hugepage_on_freelist(hpage)) {
3178                 /*
3179                  * Hwpoisoned hugepage isn't linked to activelist or freelist,
3180                  * but dangling hpage->lru can trigger list-debug warnings
3181                  * (this happens when we call unpoison_memory() on it),
3182                  * so let it point to itself with list_del_init().
3183                  */
3184                 list_del_init(&hpage->lru);
3185                 set_page_refcounted(hpage);
3186                 h->free_huge_pages--;
3187                 h->free_huge_pages_node[nid]--;
3188                 ret = 0;
3189         }
3190         spin_unlock(&hugetlb_lock);
3191         return ret;
3192 }
3193 #endif