mm: filemap: don't plant shadow entries without radix tree node
[firefly-linux-kernel-4.4.55.git] / mm / filemap.c
1 /*
2  *      linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/fs.h>
15 #include <linux/uaccess.h>
16 #include <linux/capability.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/gfp.h>
19 #include <linux/mm.h>
20 #include <linux/swap.h>
21 #include <linux/mman.h>
22 #include <linux/pagemap.h>
23 #include <linux/file.h>
24 #include <linux/uio.h>
25 #include <linux/hash.h>
26 #include <linux/writeback.h>
27 #include <linux/backing-dev.h>
28 #include <linux/pagevec.h>
29 #include <linux/blkdev.h>
30 #include <linux/security.h>
31 #include <linux/cpuset.h>
32 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
33 #include <linux/hugetlb.h>
34 #include <linux/memcontrol.h>
35 #include <linux/cleancache.h>
36 #include <linux/rmap.h>
37 #include "internal.h"
38
39 #define CREATE_TRACE_POINTS
40 #include <trace/events/filemap.h>
41
42 /*
43  * FIXME: remove all knowledge of the buffer layer from the core VM
44  */
45 #include <linux/buffer_head.h> /* for try_to_free_buffers */
46
47 #include <asm/mman.h>
48
49 /*
50  * Shared mappings implemented 30.11.1994. It's not fully working yet,
51  * though.
52  *
53  * Shared mappings now work. 15.8.1995  Bruno.
54  *
55  * finished 'unifying' the page and buffer cache and SMP-threaded the
56  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
57  *
58  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
59  */
60
61 /*
62  * Lock ordering:
63  *
64  *  ->i_mmap_rwsem              (truncate_pagecache)
65  *    ->private_lock            (__free_pte->__set_page_dirty_buffers)
66  *      ->swap_lock             (exclusive_swap_page, others)
67  *        ->mapping->tree_lock
68  *
69  *  ->i_mutex
70  *    ->i_mmap_rwsem            (truncate->unmap_mapping_range)
71  *
72  *  ->mmap_sem
73  *    ->i_mmap_rwsem
74  *      ->page_table_lock or pte_lock   (various, mainly in memory.c)
75  *        ->mapping->tree_lock  (arch-dependent flush_dcache_mmap_lock)
76  *
77  *  ->mmap_sem
78  *    ->lock_page               (access_process_vm)
79  *
80  *  ->i_mutex                   (generic_perform_write)
81  *    ->mmap_sem                (fault_in_pages_readable->do_page_fault)
82  *
83  *  bdi->wb.list_lock
84  *    sb_lock                   (fs/fs-writeback.c)
85  *    ->mapping->tree_lock      (__sync_single_inode)
86  *
87  *  ->i_mmap_rwsem
88  *    ->anon_vma.lock           (vma_adjust)
89  *
90  *  ->anon_vma.lock
91  *    ->page_table_lock or pte_lock     (anon_vma_prepare and various)
92  *
93  *  ->page_table_lock or pte_lock
94  *    ->swap_lock               (try_to_unmap_one)
95  *    ->private_lock            (try_to_unmap_one)
96  *    ->tree_lock               (try_to_unmap_one)
97  *    ->zone.lru_lock           (follow_page->mark_page_accessed)
98  *    ->zone.lru_lock           (check_pte_range->isolate_lru_page)
99  *    ->private_lock            (page_remove_rmap->set_page_dirty)
100  *    ->tree_lock               (page_remove_rmap->set_page_dirty)
101  *    bdi.wb->list_lock         (page_remove_rmap->set_page_dirty)
102  *    ->inode->i_lock           (page_remove_rmap->set_page_dirty)
103  *    ->memcg->move_lock        (page_remove_rmap->mem_cgroup_begin_page_stat)
104  *    bdi.wb->list_lock         (zap_pte_range->set_page_dirty)
105  *    ->inode->i_lock           (zap_pte_range->set_page_dirty)
106  *    ->private_lock            (zap_pte_range->__set_page_dirty_buffers)
107  *
108  * ->i_mmap_rwsem
109  *   ->tasklist_lock            (memory_failure, collect_procs_ao)
110  */
111
112 static void page_cache_tree_delete(struct address_space *mapping,
113                                    struct page *page, void *shadow)
114 {
115         struct radix_tree_node *node;
116         unsigned long index;
117         unsigned int offset;
118         unsigned int tag;
119         void **slot;
120
121         VM_BUG_ON(!PageLocked(page));
122
123         __radix_tree_lookup(&mapping->page_tree, page->index, &node, &slot);
124
125         if (!node) {
126                 /*
127                  * We need a node to properly account shadow
128                  * entries. Don't plant any without. XXX
129                  */
130                 shadow = NULL;
131         }
132
133         if (shadow) {
134                 mapping->nrshadows++;
135                 /*
136                  * Make sure the nrshadows update is committed before
137                  * the nrpages update so that final truncate racing
138                  * with reclaim does not see both counters 0 at the
139                  * same time and miss a shadow entry.
140                  */
141                 smp_wmb();
142         }
143         mapping->nrpages--;
144
145         if (!node) {
146                 /* Clear direct pointer tags in root node */
147                 mapping->page_tree.gfp_mask &= __GFP_BITS_MASK;
148                 radix_tree_replace_slot(slot, shadow);
149                 return;
150         }
151
152         /* Clear tree tags for the removed page */
153         index = page->index;
154         offset = index & RADIX_TREE_MAP_MASK;
155         for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
156                 if (test_bit(offset, node->tags[tag]))
157                         radix_tree_tag_clear(&mapping->page_tree, index, tag);
158         }
159
160         /* Delete page, swap shadow entry */
161         radix_tree_replace_slot(slot, shadow);
162         workingset_node_pages_dec(node);
163         if (shadow)
164                 workingset_node_shadows_inc(node);
165         else
166                 if (__radix_tree_delete_node(&mapping->page_tree, node))
167                         return;
168
169         /*
170          * Track node that only contains shadow entries.
171          *
172          * Avoid acquiring the list_lru lock if already tracked.  The
173          * list_empty() test is safe as node->private_list is
174          * protected by mapping->tree_lock.
175          */
176         if (!workingset_node_pages(node) &&
177             list_empty(&node->private_list)) {
178                 node->private_data = mapping;
179                 list_lru_add(&workingset_shadow_nodes, &node->private_list);
180         }
181 }
182
183 /*
184  * Delete a page from the page cache and free it. Caller has to make
185  * sure the page is locked and that nobody else uses it - or that usage
186  * is safe.  The caller must hold the mapping's tree_lock and
187  * mem_cgroup_begin_page_stat().
188  */
189 void __delete_from_page_cache(struct page *page, void *shadow,
190                               struct mem_cgroup *memcg)
191 {
192         struct address_space *mapping = page->mapping;
193
194         trace_mm_filemap_delete_from_page_cache(page);
195         /*
196          * if we're uptodate, flush out into the cleancache, otherwise
197          * invalidate any existing cleancache entries.  We can't leave
198          * stale data around in the cleancache once our page is gone
199          */
200         if (PageUptodate(page) && PageMappedToDisk(page))
201                 cleancache_put_page(page);
202         else
203                 cleancache_invalidate_page(mapping, page);
204
205         page_cache_tree_delete(mapping, page, shadow);
206
207         page->mapping = NULL;
208         /* Leave page->index set: truncation lookup relies upon it */
209
210         /* hugetlb pages do not participate in page cache accounting. */
211         if (!PageHuge(page))
212                 __dec_zone_page_state(page, NR_FILE_PAGES);
213         if (PageSwapBacked(page))
214                 __dec_zone_page_state(page, NR_SHMEM);
215         BUG_ON(page_mapped(page));
216
217         /*
218          * At this point page must be either written or cleaned by truncate.
219          * Dirty page here signals a bug and loss of unwritten data.
220          *
221          * This fixes dirty accounting after removing the page entirely but
222          * leaves PageDirty set: it has no effect for truncated page and
223          * anyway will be cleared before returning page into buddy allocator.
224          */
225         if (WARN_ON_ONCE(PageDirty(page)))
226                 account_page_cleaned(page, mapping, memcg,
227                                      inode_to_wb(mapping->host));
228 }
229
230 /**
231  * delete_from_page_cache - delete page from page cache
232  * @page: the page which the kernel is trying to remove from page cache
233  *
234  * This must be called only on pages that have been verified to be in the page
235  * cache and locked.  It will never put the page into the free list, the caller
236  * has a reference on the page.
237  */
238 void delete_from_page_cache(struct page *page)
239 {
240         struct address_space *mapping = page->mapping;
241         struct mem_cgroup *memcg;
242         unsigned long flags;
243
244         void (*freepage)(struct page *);
245
246         BUG_ON(!PageLocked(page));
247
248         freepage = mapping->a_ops->freepage;
249
250         memcg = mem_cgroup_begin_page_stat(page);
251         spin_lock_irqsave(&mapping->tree_lock, flags);
252         __delete_from_page_cache(page, NULL, memcg);
253         spin_unlock_irqrestore(&mapping->tree_lock, flags);
254         mem_cgroup_end_page_stat(memcg);
255
256         if (freepage)
257                 freepage(page);
258         page_cache_release(page);
259 }
260 EXPORT_SYMBOL(delete_from_page_cache);
261
262 static int filemap_check_errors(struct address_space *mapping)
263 {
264         int ret = 0;
265         /* Check for outstanding write errors */
266         if (test_bit(AS_ENOSPC, &mapping->flags) &&
267             test_and_clear_bit(AS_ENOSPC, &mapping->flags))
268                 ret = -ENOSPC;
269         if (test_bit(AS_EIO, &mapping->flags) &&
270             test_and_clear_bit(AS_EIO, &mapping->flags))
271                 ret = -EIO;
272         return ret;
273 }
274
275 /**
276  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
277  * @mapping:    address space structure to write
278  * @start:      offset in bytes where the range starts
279  * @end:        offset in bytes where the range ends (inclusive)
280  * @sync_mode:  enable synchronous operation
281  *
282  * Start writeback against all of a mapping's dirty pages that lie
283  * within the byte offsets <start, end> inclusive.
284  *
285  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
286  * opposed to a regular memory cleansing writeback.  The difference between
287  * these two operations is that if a dirty page/buffer is encountered, it must
288  * be waited upon, and not just skipped over.
289  */
290 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
291                                 loff_t end, int sync_mode)
292 {
293         int ret;
294         struct writeback_control wbc = {
295                 .sync_mode = sync_mode,
296                 .nr_to_write = LONG_MAX,
297                 .range_start = start,
298                 .range_end = end,
299         };
300
301         if (!mapping_cap_writeback_dirty(mapping))
302                 return 0;
303
304         wbc_attach_fdatawrite_inode(&wbc, mapping->host);
305         ret = do_writepages(mapping, &wbc);
306         wbc_detach_inode(&wbc);
307         return ret;
308 }
309
310 static inline int __filemap_fdatawrite(struct address_space *mapping,
311         int sync_mode)
312 {
313         return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
314 }
315
316 int filemap_fdatawrite(struct address_space *mapping)
317 {
318         return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
319 }
320 EXPORT_SYMBOL(filemap_fdatawrite);
321
322 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
323                                 loff_t end)
324 {
325         return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
326 }
327 EXPORT_SYMBOL(filemap_fdatawrite_range);
328
329 /**
330  * filemap_flush - mostly a non-blocking flush
331  * @mapping:    target address_space
332  *
333  * This is a mostly non-blocking flush.  Not suitable for data-integrity
334  * purposes - I/O may not be started against all dirty pages.
335  */
336 int filemap_flush(struct address_space *mapping)
337 {
338         return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
339 }
340 EXPORT_SYMBOL(filemap_flush);
341
342 static int __filemap_fdatawait_range(struct address_space *mapping,
343                                      loff_t start_byte, loff_t end_byte)
344 {
345         pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
346         pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
347         struct pagevec pvec;
348         int nr_pages;
349         int ret = 0;
350
351         if (end_byte < start_byte)
352                 goto out;
353
354         pagevec_init(&pvec, 0);
355         while ((index <= end) &&
356                         (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
357                         PAGECACHE_TAG_WRITEBACK,
358                         min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
359                 unsigned i;
360
361                 for (i = 0; i < nr_pages; i++) {
362                         struct page *page = pvec.pages[i];
363
364                         /* until radix tree lookup accepts end_index */
365                         if (page->index > end)
366                                 continue;
367
368                         wait_on_page_writeback(page);
369                         if (TestClearPageError(page))
370                                 ret = -EIO;
371                 }
372                 pagevec_release(&pvec);
373                 cond_resched();
374         }
375 out:
376         return ret;
377 }
378
379 /**
380  * filemap_fdatawait_range - wait for writeback to complete
381  * @mapping:            address space structure to wait for
382  * @start_byte:         offset in bytes where the range starts
383  * @end_byte:           offset in bytes where the range ends (inclusive)
384  *
385  * Walk the list of under-writeback pages of the given address space
386  * in the given range and wait for all of them.  Check error status of
387  * the address space and return it.
388  *
389  * Since the error status of the address space is cleared by this function,
390  * callers are responsible for checking the return value and handling and/or
391  * reporting the error.
392  */
393 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
394                             loff_t end_byte)
395 {
396         int ret, ret2;
397
398         ret = __filemap_fdatawait_range(mapping, start_byte, end_byte);
399         ret2 = filemap_check_errors(mapping);
400         if (!ret)
401                 ret = ret2;
402
403         return ret;
404 }
405 EXPORT_SYMBOL(filemap_fdatawait_range);
406
407 /**
408  * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
409  * @mapping: address space structure to wait for
410  *
411  * Walk the list of under-writeback pages of the given address space
412  * and wait for all of them.  Unlike filemap_fdatawait(), this function
413  * does not clear error status of the address space.
414  *
415  * Use this function if callers don't handle errors themselves.  Expected
416  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
417  * fsfreeze(8)
418  */
419 void filemap_fdatawait_keep_errors(struct address_space *mapping)
420 {
421         loff_t i_size = i_size_read(mapping->host);
422
423         if (i_size == 0)
424                 return;
425
426         __filemap_fdatawait_range(mapping, 0, i_size - 1);
427 }
428
429 /**
430  * filemap_fdatawait - wait for all under-writeback pages to complete
431  * @mapping: address space structure to wait for
432  *
433  * Walk the list of under-writeback pages of the given address space
434  * and wait for all of them.  Check error status of the address space
435  * and return it.
436  *
437  * Since the error status of the address space is cleared by this function,
438  * callers are responsible for checking the return value and handling and/or
439  * reporting the error.
440  */
441 int filemap_fdatawait(struct address_space *mapping)
442 {
443         loff_t i_size = i_size_read(mapping->host);
444
445         if (i_size == 0)
446                 return 0;
447
448         return filemap_fdatawait_range(mapping, 0, i_size - 1);
449 }
450 EXPORT_SYMBOL(filemap_fdatawait);
451
452 int filemap_write_and_wait(struct address_space *mapping)
453 {
454         int err = 0;
455
456         if (mapping->nrpages) {
457                 err = filemap_fdatawrite(mapping);
458                 /*
459                  * Even if the above returned error, the pages may be
460                  * written partially (e.g. -ENOSPC), so we wait for it.
461                  * But the -EIO is special case, it may indicate the worst
462                  * thing (e.g. bug) happened, so we avoid waiting for it.
463                  */
464                 if (err != -EIO) {
465                         int err2 = filemap_fdatawait(mapping);
466                         if (!err)
467                                 err = err2;
468                 }
469         } else {
470                 err = filemap_check_errors(mapping);
471         }
472         return err;
473 }
474 EXPORT_SYMBOL(filemap_write_and_wait);
475
476 /**
477  * filemap_write_and_wait_range - write out & wait on a file range
478  * @mapping:    the address_space for the pages
479  * @lstart:     offset in bytes where the range starts
480  * @lend:       offset in bytes where the range ends (inclusive)
481  *
482  * Write out and wait upon file offsets lstart->lend, inclusive.
483  *
484  * Note that `lend' is inclusive (describes the last byte to be written) so
485  * that this function can be used to write to the very end-of-file (end = -1).
486  */
487 int filemap_write_and_wait_range(struct address_space *mapping,
488                                  loff_t lstart, loff_t lend)
489 {
490         int err = 0;
491
492         if (mapping->nrpages) {
493                 err = __filemap_fdatawrite_range(mapping, lstart, lend,
494                                                  WB_SYNC_ALL);
495                 /* See comment of filemap_write_and_wait() */
496                 if (err != -EIO) {
497                         int err2 = filemap_fdatawait_range(mapping,
498                                                 lstart, lend);
499                         if (!err)
500                                 err = err2;
501                 }
502         } else {
503                 err = filemap_check_errors(mapping);
504         }
505         return err;
506 }
507 EXPORT_SYMBOL(filemap_write_and_wait_range);
508
509 /**
510  * replace_page_cache_page - replace a pagecache page with a new one
511  * @old:        page to be replaced
512  * @new:        page to replace with
513  * @gfp_mask:   allocation mode
514  *
515  * This function replaces a page in the pagecache with a new one.  On
516  * success it acquires the pagecache reference for the new page and
517  * drops it for the old page.  Both the old and new pages must be
518  * locked.  This function does not add the new page to the LRU, the
519  * caller must do that.
520  *
521  * The remove + add is atomic.  The only way this function can fail is
522  * memory allocation failure.
523  */
524 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
525 {
526         int error;
527
528         VM_BUG_ON_PAGE(!PageLocked(old), old);
529         VM_BUG_ON_PAGE(!PageLocked(new), new);
530         VM_BUG_ON_PAGE(new->mapping, new);
531
532         error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
533         if (!error) {
534                 struct address_space *mapping = old->mapping;
535                 void (*freepage)(struct page *);
536                 struct mem_cgroup *memcg;
537                 unsigned long flags;
538
539                 pgoff_t offset = old->index;
540                 freepage = mapping->a_ops->freepage;
541
542                 page_cache_get(new);
543                 new->mapping = mapping;
544                 new->index = offset;
545
546                 memcg = mem_cgroup_begin_page_stat(old);
547                 spin_lock_irqsave(&mapping->tree_lock, flags);
548                 __delete_from_page_cache(old, NULL, memcg);
549                 error = radix_tree_insert(&mapping->page_tree, offset, new);
550                 BUG_ON(error);
551                 mapping->nrpages++;
552
553                 /*
554                  * hugetlb pages do not participate in page cache accounting.
555                  */
556                 if (!PageHuge(new))
557                         __inc_zone_page_state(new, NR_FILE_PAGES);
558                 if (PageSwapBacked(new))
559                         __inc_zone_page_state(new, NR_SHMEM);
560                 spin_unlock_irqrestore(&mapping->tree_lock, flags);
561                 mem_cgroup_end_page_stat(memcg);
562                 mem_cgroup_replace_page(old, new);
563                 radix_tree_preload_end();
564                 if (freepage)
565                         freepage(old);
566                 page_cache_release(old);
567         }
568
569         return error;
570 }
571 EXPORT_SYMBOL_GPL(replace_page_cache_page);
572
573 static int page_cache_tree_insert(struct address_space *mapping,
574                                   struct page *page, void **shadowp)
575 {
576         struct radix_tree_node *node;
577         void **slot;
578         int error;
579
580         error = __radix_tree_create(&mapping->page_tree, page->index,
581                                     &node, &slot);
582         if (error)
583                 return error;
584         if (*slot) {
585                 void *p;
586
587                 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
588                 if (!radix_tree_exceptional_entry(p))
589                         return -EEXIST;
590                 if (shadowp)
591                         *shadowp = p;
592                 mapping->nrshadows--;
593                 if (node)
594                         workingset_node_shadows_dec(node);
595         }
596         radix_tree_replace_slot(slot, page);
597         mapping->nrpages++;
598         if (node) {
599                 workingset_node_pages_inc(node);
600                 /*
601                  * Don't track node that contains actual pages.
602                  *
603                  * Avoid acquiring the list_lru lock if already
604                  * untracked.  The list_empty() test is safe as
605                  * node->private_list is protected by
606                  * mapping->tree_lock.
607                  */
608                 if (!list_empty(&node->private_list))
609                         list_lru_del(&workingset_shadow_nodes,
610                                      &node->private_list);
611         }
612         return 0;
613 }
614
615 static int __add_to_page_cache_locked(struct page *page,
616                                       struct address_space *mapping,
617                                       pgoff_t offset, gfp_t gfp_mask,
618                                       void **shadowp)
619 {
620         int huge = PageHuge(page);
621         struct mem_cgroup *memcg;
622         int error;
623
624         VM_BUG_ON_PAGE(!PageLocked(page), page);
625         VM_BUG_ON_PAGE(PageSwapBacked(page), page);
626
627         if (!huge) {
628                 error = mem_cgroup_try_charge(page, current->mm,
629                                               gfp_mask, &memcg);
630                 if (error)
631                         return error;
632         }
633
634         error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
635         if (error) {
636                 if (!huge)
637                         mem_cgroup_cancel_charge(page, memcg);
638                 return error;
639         }
640
641         page_cache_get(page);
642         page->mapping = mapping;
643         page->index = offset;
644
645         spin_lock_irq(&mapping->tree_lock);
646         error = page_cache_tree_insert(mapping, page, shadowp);
647         radix_tree_preload_end();
648         if (unlikely(error))
649                 goto err_insert;
650
651         /* hugetlb pages do not participate in page cache accounting. */
652         if (!huge)
653                 __inc_zone_page_state(page, NR_FILE_PAGES);
654         spin_unlock_irq(&mapping->tree_lock);
655         if (!huge)
656                 mem_cgroup_commit_charge(page, memcg, false);
657         trace_mm_filemap_add_to_page_cache(page);
658         return 0;
659 err_insert:
660         page->mapping = NULL;
661         /* Leave page->index set: truncation relies upon it */
662         spin_unlock_irq(&mapping->tree_lock);
663         if (!huge)
664                 mem_cgroup_cancel_charge(page, memcg);
665         page_cache_release(page);
666         return error;
667 }
668
669 /**
670  * add_to_page_cache_locked - add a locked page to the pagecache
671  * @page:       page to add
672  * @mapping:    the page's address_space
673  * @offset:     page index
674  * @gfp_mask:   page allocation mode
675  *
676  * This function is used to add a page to the pagecache. It must be locked.
677  * This function does not add the page to the LRU.  The caller must do that.
678  */
679 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
680                 pgoff_t offset, gfp_t gfp_mask)
681 {
682         return __add_to_page_cache_locked(page, mapping, offset,
683                                           gfp_mask, NULL);
684 }
685 EXPORT_SYMBOL(add_to_page_cache_locked);
686
687 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
688                                 pgoff_t offset, gfp_t gfp_mask)
689 {
690         void *shadow = NULL;
691         int ret;
692
693         __set_page_locked(page);
694         ret = __add_to_page_cache_locked(page, mapping, offset,
695                                          gfp_mask, &shadow);
696         if (unlikely(ret))
697                 __clear_page_locked(page);
698         else {
699                 /*
700                  * The page might have been evicted from cache only
701                  * recently, in which case it should be activated like
702                  * any other repeatedly accessed page.
703                  */
704                 if (shadow && workingset_refault(shadow)) {
705                         SetPageActive(page);
706                         workingset_activation(page);
707                 } else
708                         ClearPageActive(page);
709                 lru_cache_add(page);
710         }
711         return ret;
712 }
713 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
714
715 #ifdef CONFIG_NUMA
716 struct page *__page_cache_alloc(gfp_t gfp)
717 {
718         int n;
719         struct page *page;
720
721         if (cpuset_do_page_mem_spread()) {
722                 unsigned int cpuset_mems_cookie;
723                 do {
724                         cpuset_mems_cookie = read_mems_allowed_begin();
725                         n = cpuset_mem_spread_node();
726                         page = __alloc_pages_node(n, gfp, 0);
727                 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
728
729                 return page;
730         }
731         return alloc_pages(gfp, 0);
732 }
733 EXPORT_SYMBOL(__page_cache_alloc);
734 #endif
735
736 /*
737  * In order to wait for pages to become available there must be
738  * waitqueues associated with pages. By using a hash table of
739  * waitqueues where the bucket discipline is to maintain all
740  * waiters on the same queue and wake all when any of the pages
741  * become available, and for the woken contexts to check to be
742  * sure the appropriate page became available, this saves space
743  * at a cost of "thundering herd" phenomena during rare hash
744  * collisions.
745  */
746 wait_queue_head_t *page_waitqueue(struct page *page)
747 {
748         const struct zone *zone = page_zone(page);
749
750         return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
751 }
752 EXPORT_SYMBOL(page_waitqueue);
753
754 void wait_on_page_bit(struct page *page, int bit_nr)
755 {
756         DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
757
758         if (test_bit(bit_nr, &page->flags))
759                 __wait_on_bit(page_waitqueue(page), &wait, bit_wait_io,
760                                                         TASK_UNINTERRUPTIBLE);
761 }
762 EXPORT_SYMBOL(wait_on_page_bit);
763
764 int wait_on_page_bit_killable(struct page *page, int bit_nr)
765 {
766         DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
767
768         if (!test_bit(bit_nr, &page->flags))
769                 return 0;
770
771         return __wait_on_bit(page_waitqueue(page), &wait,
772                              bit_wait_io, TASK_KILLABLE);
773 }
774
775 int wait_on_page_bit_killable_timeout(struct page *page,
776                                        int bit_nr, unsigned long timeout)
777 {
778         DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
779
780         wait.key.timeout = jiffies + timeout;
781         if (!test_bit(bit_nr, &page->flags))
782                 return 0;
783         return __wait_on_bit(page_waitqueue(page), &wait,
784                              bit_wait_io_timeout, TASK_KILLABLE);
785 }
786 EXPORT_SYMBOL_GPL(wait_on_page_bit_killable_timeout);
787
788 /**
789  * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
790  * @page: Page defining the wait queue of interest
791  * @waiter: Waiter to add to the queue
792  *
793  * Add an arbitrary @waiter to the wait queue for the nominated @page.
794  */
795 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
796 {
797         wait_queue_head_t *q = page_waitqueue(page);
798         unsigned long flags;
799
800         spin_lock_irqsave(&q->lock, flags);
801         __add_wait_queue(q, waiter);
802         spin_unlock_irqrestore(&q->lock, flags);
803 }
804 EXPORT_SYMBOL_GPL(add_page_wait_queue);
805
806 /**
807  * unlock_page - unlock a locked page
808  * @page: the page
809  *
810  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
811  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
812  * mechanism between PageLocked pages and PageWriteback pages is shared.
813  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
814  *
815  * The mb is necessary to enforce ordering between the clear_bit and the read
816  * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
817  */
818 void unlock_page(struct page *page)
819 {
820         VM_BUG_ON_PAGE(!PageLocked(page), page);
821         clear_bit_unlock(PG_locked, &page->flags);
822         smp_mb__after_atomic();
823         wake_up_page(page, PG_locked);
824 }
825 EXPORT_SYMBOL(unlock_page);
826
827 /**
828  * end_page_writeback - end writeback against a page
829  * @page: the page
830  */
831 void end_page_writeback(struct page *page)
832 {
833         /*
834          * TestClearPageReclaim could be used here but it is an atomic
835          * operation and overkill in this particular case. Failing to
836          * shuffle a page marked for immediate reclaim is too mild to
837          * justify taking an atomic operation penalty at the end of
838          * ever page writeback.
839          */
840         if (PageReclaim(page)) {
841                 ClearPageReclaim(page);
842                 rotate_reclaimable_page(page);
843         }
844
845         if (!test_clear_page_writeback(page))
846                 BUG();
847
848         smp_mb__after_atomic();
849         wake_up_page(page, PG_writeback);
850 }
851 EXPORT_SYMBOL(end_page_writeback);
852
853 /*
854  * After completing I/O on a page, call this routine to update the page
855  * flags appropriately
856  */
857 void page_endio(struct page *page, int rw, int err)
858 {
859         if (rw == READ) {
860                 if (!err) {
861                         SetPageUptodate(page);
862                 } else {
863                         ClearPageUptodate(page);
864                         SetPageError(page);
865                 }
866                 unlock_page(page);
867         } else { /* rw == WRITE */
868                 if (err) {
869                         SetPageError(page);
870                         if (page->mapping)
871                                 mapping_set_error(page->mapping, err);
872                 }
873                 end_page_writeback(page);
874         }
875 }
876 EXPORT_SYMBOL_GPL(page_endio);
877
878 /**
879  * __lock_page - get a lock on the page, assuming we need to sleep to get it
880  * @page: the page to lock
881  */
882 void __lock_page(struct page *page)
883 {
884         DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
885
886         __wait_on_bit_lock(page_waitqueue(page), &wait, bit_wait_io,
887                                                         TASK_UNINTERRUPTIBLE);
888 }
889 EXPORT_SYMBOL(__lock_page);
890
891 int __lock_page_killable(struct page *page)
892 {
893         DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
894
895         return __wait_on_bit_lock(page_waitqueue(page), &wait,
896                                         bit_wait_io, TASK_KILLABLE);
897 }
898 EXPORT_SYMBOL_GPL(__lock_page_killable);
899
900 /*
901  * Return values:
902  * 1 - page is locked; mmap_sem is still held.
903  * 0 - page is not locked.
904  *     mmap_sem has been released (up_read()), unless flags had both
905  *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
906  *     which case mmap_sem is still held.
907  *
908  * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
909  * with the page locked and the mmap_sem unperturbed.
910  */
911 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
912                          unsigned int flags)
913 {
914         if (flags & FAULT_FLAG_ALLOW_RETRY) {
915                 /*
916                  * CAUTION! In this case, mmap_sem is not released
917                  * even though return 0.
918                  */
919                 if (flags & FAULT_FLAG_RETRY_NOWAIT)
920                         return 0;
921
922                 up_read(&mm->mmap_sem);
923                 if (flags & FAULT_FLAG_KILLABLE)
924                         wait_on_page_locked_killable(page);
925                 else
926                         wait_on_page_locked(page);
927                 return 0;
928         } else {
929                 if (flags & FAULT_FLAG_KILLABLE) {
930                         int ret;
931
932                         ret = __lock_page_killable(page);
933                         if (ret) {
934                                 up_read(&mm->mmap_sem);
935                                 return 0;
936                         }
937                 } else
938                         __lock_page(page);
939                 return 1;
940         }
941 }
942
943 /**
944  * page_cache_next_hole - find the next hole (not-present entry)
945  * @mapping: mapping
946  * @index: index
947  * @max_scan: maximum range to search
948  *
949  * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
950  * lowest indexed hole.
951  *
952  * Returns: the index of the hole if found, otherwise returns an index
953  * outside of the set specified (in which case 'return - index >=
954  * max_scan' will be true). In rare cases of index wrap-around, 0 will
955  * be returned.
956  *
957  * page_cache_next_hole may be called under rcu_read_lock. However,
958  * like radix_tree_gang_lookup, this will not atomically search a
959  * snapshot of the tree at a single point in time. For example, if a
960  * hole is created at index 5, then subsequently a hole is created at
961  * index 10, page_cache_next_hole covering both indexes may return 10
962  * if called under rcu_read_lock.
963  */
964 pgoff_t page_cache_next_hole(struct address_space *mapping,
965                              pgoff_t index, unsigned long max_scan)
966 {
967         unsigned long i;
968
969         for (i = 0; i < max_scan; i++) {
970                 struct page *page;
971
972                 page = radix_tree_lookup(&mapping->page_tree, index);
973                 if (!page || radix_tree_exceptional_entry(page))
974                         break;
975                 index++;
976                 if (index == 0)
977                         break;
978         }
979
980         return index;
981 }
982 EXPORT_SYMBOL(page_cache_next_hole);
983
984 /**
985  * page_cache_prev_hole - find the prev hole (not-present entry)
986  * @mapping: mapping
987  * @index: index
988  * @max_scan: maximum range to search
989  *
990  * Search backwards in the range [max(index-max_scan+1, 0), index] for
991  * the first hole.
992  *
993  * Returns: the index of the hole if found, otherwise returns an index
994  * outside of the set specified (in which case 'index - return >=
995  * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
996  * will be returned.
997  *
998  * page_cache_prev_hole may be called under rcu_read_lock. However,
999  * like radix_tree_gang_lookup, this will not atomically search a
1000  * snapshot of the tree at a single point in time. For example, if a
1001  * hole is created at index 10, then subsequently a hole is created at
1002  * index 5, page_cache_prev_hole covering both indexes may return 5 if
1003  * called under rcu_read_lock.
1004  */
1005 pgoff_t page_cache_prev_hole(struct address_space *mapping,
1006                              pgoff_t index, unsigned long max_scan)
1007 {
1008         unsigned long i;
1009
1010         for (i = 0; i < max_scan; i++) {
1011                 struct page *page;
1012
1013                 page = radix_tree_lookup(&mapping->page_tree, index);
1014                 if (!page || radix_tree_exceptional_entry(page))
1015                         break;
1016                 index--;
1017                 if (index == ULONG_MAX)
1018                         break;
1019         }
1020
1021         return index;
1022 }
1023 EXPORT_SYMBOL(page_cache_prev_hole);
1024
1025 /**
1026  * find_get_entry - find and get a page cache entry
1027  * @mapping: the address_space to search
1028  * @offset: the page cache index
1029  *
1030  * Looks up the page cache slot at @mapping & @offset.  If there is a
1031  * page cache page, it is returned with an increased refcount.
1032  *
1033  * If the slot holds a shadow entry of a previously evicted page, or a
1034  * swap entry from shmem/tmpfs, it is returned.
1035  *
1036  * Otherwise, %NULL is returned.
1037  */
1038 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1039 {
1040         void **pagep;
1041         struct page *page;
1042
1043         rcu_read_lock();
1044 repeat:
1045         page = NULL;
1046         pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
1047         if (pagep) {
1048                 page = radix_tree_deref_slot(pagep);
1049                 if (unlikely(!page))
1050                         goto out;
1051                 if (radix_tree_exception(page)) {
1052                         if (radix_tree_deref_retry(page))
1053                                 goto repeat;
1054                         /*
1055                          * A shadow entry of a recently evicted page,
1056                          * or a swap entry from shmem/tmpfs.  Return
1057                          * it without attempting to raise page count.
1058                          */
1059                         goto out;
1060                 }
1061                 if (!page_cache_get_speculative(page))
1062                         goto repeat;
1063
1064                 /*
1065                  * Has the page moved?
1066                  * This is part of the lockless pagecache protocol. See
1067                  * include/linux/pagemap.h for details.
1068                  */
1069                 if (unlikely(page != *pagep)) {
1070                         page_cache_release(page);
1071                         goto repeat;
1072                 }
1073         }
1074 out:
1075         rcu_read_unlock();
1076
1077         return page;
1078 }
1079 EXPORT_SYMBOL(find_get_entry);
1080
1081 /**
1082  * find_lock_entry - locate, pin and lock a page cache entry
1083  * @mapping: the address_space to search
1084  * @offset: the page cache index
1085  *
1086  * Looks up the page cache slot at @mapping & @offset.  If there is a
1087  * page cache page, it is returned locked and with an increased
1088  * refcount.
1089  *
1090  * If the slot holds a shadow entry of a previously evicted page, or a
1091  * swap entry from shmem/tmpfs, it is returned.
1092  *
1093  * Otherwise, %NULL is returned.
1094  *
1095  * find_lock_entry() may sleep.
1096  */
1097 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1098 {
1099         struct page *page;
1100
1101 repeat:
1102         page = find_get_entry(mapping, offset);
1103         if (page && !radix_tree_exception(page)) {
1104                 lock_page(page);
1105                 /* Has the page been truncated? */
1106                 if (unlikely(page->mapping != mapping)) {
1107                         unlock_page(page);
1108                         page_cache_release(page);
1109                         goto repeat;
1110                 }
1111                 VM_BUG_ON_PAGE(page->index != offset, page);
1112         }
1113         return page;
1114 }
1115 EXPORT_SYMBOL(find_lock_entry);
1116
1117 /**
1118  * pagecache_get_page - find and get a page reference
1119  * @mapping: the address_space to search
1120  * @offset: the page index
1121  * @fgp_flags: PCG flags
1122  * @gfp_mask: gfp mask to use for the page cache data page allocation
1123  *
1124  * Looks up the page cache slot at @mapping & @offset.
1125  *
1126  * PCG flags modify how the page is returned.
1127  *
1128  * FGP_ACCESSED: the page will be marked accessed
1129  * FGP_LOCK: Page is return locked
1130  * FGP_CREAT: If page is not present then a new page is allocated using
1131  *              @gfp_mask and added to the page cache and the VM's LRU
1132  *              list. The page is returned locked and with an increased
1133  *              refcount. Otherwise, %NULL is returned.
1134  *
1135  * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1136  * if the GFP flags specified for FGP_CREAT are atomic.
1137  *
1138  * If there is a page cache page, it is returned with an increased refcount.
1139  */
1140 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1141         int fgp_flags, gfp_t gfp_mask)
1142 {
1143         struct page *page;
1144
1145 repeat:
1146         page = find_get_entry(mapping, offset);
1147         if (radix_tree_exceptional_entry(page))
1148                 page = NULL;
1149         if (!page)
1150                 goto no_page;
1151
1152         if (fgp_flags & FGP_LOCK) {
1153                 if (fgp_flags & FGP_NOWAIT) {
1154                         if (!trylock_page(page)) {
1155                                 page_cache_release(page);
1156                                 return NULL;
1157                         }
1158                 } else {
1159                         lock_page(page);
1160                 }
1161
1162                 /* Has the page been truncated? */
1163                 if (unlikely(page->mapping != mapping)) {
1164                         unlock_page(page);
1165                         page_cache_release(page);
1166                         goto repeat;
1167                 }
1168                 VM_BUG_ON_PAGE(page->index != offset, page);
1169         }
1170
1171         if (page && (fgp_flags & FGP_ACCESSED))
1172                 mark_page_accessed(page);
1173
1174 no_page:
1175         if (!page && (fgp_flags & FGP_CREAT)) {
1176                 int err;
1177                 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1178                         gfp_mask |= __GFP_WRITE;
1179                 if (fgp_flags & FGP_NOFS)
1180                         gfp_mask &= ~__GFP_FS;
1181
1182                 page = __page_cache_alloc(gfp_mask);
1183                 if (!page)
1184                         return NULL;
1185
1186                 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1187                         fgp_flags |= FGP_LOCK;
1188
1189                 /* Init accessed so avoid atomic mark_page_accessed later */
1190                 if (fgp_flags & FGP_ACCESSED)
1191                         __SetPageReferenced(page);
1192
1193                 err = add_to_page_cache_lru(page, mapping, offset,
1194                                 gfp_mask & GFP_RECLAIM_MASK);
1195                 if (unlikely(err)) {
1196                         page_cache_release(page);
1197                         page = NULL;
1198                         if (err == -EEXIST)
1199                                 goto repeat;
1200                 }
1201         }
1202
1203         return page;
1204 }
1205 EXPORT_SYMBOL(pagecache_get_page);
1206
1207 /**
1208  * find_get_entries - gang pagecache lookup
1209  * @mapping:    The address_space to search
1210  * @start:      The starting page cache index
1211  * @nr_entries: The maximum number of entries
1212  * @entries:    Where the resulting entries are placed
1213  * @indices:    The cache indices corresponding to the entries in @entries
1214  *
1215  * find_get_entries() will search for and return a group of up to
1216  * @nr_entries entries in the mapping.  The entries are placed at
1217  * @entries.  find_get_entries() takes a reference against any actual
1218  * pages it returns.
1219  *
1220  * The search returns a group of mapping-contiguous page cache entries
1221  * with ascending indexes.  There may be holes in the indices due to
1222  * not-present pages.
1223  *
1224  * Any shadow entries of evicted pages, or swap entries from
1225  * shmem/tmpfs, are included in the returned array.
1226  *
1227  * find_get_entries() returns the number of pages and shadow entries
1228  * which were found.
1229  */
1230 unsigned find_get_entries(struct address_space *mapping,
1231                           pgoff_t start, unsigned int nr_entries,
1232                           struct page **entries, pgoff_t *indices)
1233 {
1234         void **slot;
1235         unsigned int ret = 0;
1236         struct radix_tree_iter iter;
1237
1238         if (!nr_entries)
1239                 return 0;
1240
1241         rcu_read_lock();
1242 restart:
1243         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1244                 struct page *page;
1245 repeat:
1246                 page = radix_tree_deref_slot(slot);
1247                 if (unlikely(!page))
1248                         continue;
1249                 if (radix_tree_exception(page)) {
1250                         if (radix_tree_deref_retry(page))
1251                                 goto restart;
1252                         /*
1253                          * A shadow entry of a recently evicted page,
1254                          * or a swap entry from shmem/tmpfs.  Return
1255                          * it without attempting to raise page count.
1256                          */
1257                         goto export;
1258                 }
1259                 if (!page_cache_get_speculative(page))
1260                         goto repeat;
1261
1262                 /* Has the page moved? */
1263                 if (unlikely(page != *slot)) {
1264                         page_cache_release(page);
1265                         goto repeat;
1266                 }
1267 export:
1268                 indices[ret] = iter.index;
1269                 entries[ret] = page;
1270                 if (++ret == nr_entries)
1271                         break;
1272         }
1273         rcu_read_unlock();
1274         return ret;
1275 }
1276
1277 /**
1278  * find_get_pages - gang pagecache lookup
1279  * @mapping:    The address_space to search
1280  * @start:      The starting page index
1281  * @nr_pages:   The maximum number of pages
1282  * @pages:      Where the resulting pages are placed
1283  *
1284  * find_get_pages() will search for and return a group of up to
1285  * @nr_pages pages in the mapping.  The pages are placed at @pages.
1286  * find_get_pages() takes a reference against the returned pages.
1287  *
1288  * The search returns a group of mapping-contiguous pages with ascending
1289  * indexes.  There may be holes in the indices due to not-present pages.
1290  *
1291  * find_get_pages() returns the number of pages which were found.
1292  */
1293 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1294                             unsigned int nr_pages, struct page **pages)
1295 {
1296         struct radix_tree_iter iter;
1297         void **slot;
1298         unsigned ret = 0;
1299
1300         if (unlikely(!nr_pages))
1301                 return 0;
1302
1303         rcu_read_lock();
1304 restart:
1305         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1306                 struct page *page;
1307 repeat:
1308                 page = radix_tree_deref_slot(slot);
1309                 if (unlikely(!page))
1310                         continue;
1311
1312                 if (radix_tree_exception(page)) {
1313                         if (radix_tree_deref_retry(page)) {
1314                                 /*
1315                                  * Transient condition which can only trigger
1316                                  * when entry at index 0 moves out of or back
1317                                  * to root: none yet gotten, safe to restart.
1318                                  */
1319                                 WARN_ON(iter.index);
1320                                 goto restart;
1321                         }
1322                         /*
1323                          * A shadow entry of a recently evicted page,
1324                          * or a swap entry from shmem/tmpfs.  Skip
1325                          * over it.
1326                          */
1327                         continue;
1328                 }
1329
1330                 if (!page_cache_get_speculative(page))
1331                         goto repeat;
1332
1333                 /* Has the page moved? */
1334                 if (unlikely(page != *slot)) {
1335                         page_cache_release(page);
1336                         goto repeat;
1337                 }
1338
1339                 pages[ret] = page;
1340                 if (++ret == nr_pages)
1341                         break;
1342         }
1343
1344         rcu_read_unlock();
1345         return ret;
1346 }
1347
1348 /**
1349  * find_get_pages_contig - gang contiguous pagecache lookup
1350  * @mapping:    The address_space to search
1351  * @index:      The starting page index
1352  * @nr_pages:   The maximum number of pages
1353  * @pages:      Where the resulting pages are placed
1354  *
1355  * find_get_pages_contig() works exactly like find_get_pages(), except
1356  * that the returned number of pages are guaranteed to be contiguous.
1357  *
1358  * find_get_pages_contig() returns the number of pages which were found.
1359  */
1360 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1361                                unsigned int nr_pages, struct page **pages)
1362 {
1363         struct radix_tree_iter iter;
1364         void **slot;
1365         unsigned int ret = 0;
1366
1367         if (unlikely(!nr_pages))
1368                 return 0;
1369
1370         rcu_read_lock();
1371 restart:
1372         radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
1373                 struct page *page;
1374 repeat:
1375                 page = radix_tree_deref_slot(slot);
1376                 /* The hole, there no reason to continue */
1377                 if (unlikely(!page))
1378                         break;
1379
1380                 if (radix_tree_exception(page)) {
1381                         if (radix_tree_deref_retry(page)) {
1382                                 /*
1383                                  * Transient condition which can only trigger
1384                                  * when entry at index 0 moves out of or back
1385                                  * to root: none yet gotten, safe to restart.
1386                                  */
1387                                 goto restart;
1388                         }
1389                         /*
1390                          * A shadow entry of a recently evicted page,
1391                          * or a swap entry from shmem/tmpfs.  Stop
1392                          * looking for contiguous pages.
1393                          */
1394                         break;
1395                 }
1396
1397                 if (!page_cache_get_speculative(page))
1398                         goto repeat;
1399
1400                 /* Has the page moved? */
1401                 if (unlikely(page != *slot)) {
1402                         page_cache_release(page);
1403                         goto repeat;
1404                 }
1405
1406                 /*
1407                  * must check mapping and index after taking the ref.
1408                  * otherwise we can get both false positives and false
1409                  * negatives, which is just confusing to the caller.
1410                  */
1411                 if (page->mapping == NULL || page->index != iter.index) {
1412                         page_cache_release(page);
1413                         break;
1414                 }
1415
1416                 pages[ret] = page;
1417                 if (++ret == nr_pages)
1418                         break;
1419         }
1420         rcu_read_unlock();
1421         return ret;
1422 }
1423 EXPORT_SYMBOL(find_get_pages_contig);
1424
1425 /**
1426  * find_get_pages_tag - find and return pages that match @tag
1427  * @mapping:    the address_space to search
1428  * @index:      the starting page index
1429  * @tag:        the tag index
1430  * @nr_pages:   the maximum number of pages
1431  * @pages:      where the resulting pages are placed
1432  *
1433  * Like find_get_pages, except we only return pages which are tagged with
1434  * @tag.   We update @index to index the next page for the traversal.
1435  */
1436 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1437                         int tag, unsigned int nr_pages, struct page **pages)
1438 {
1439         struct radix_tree_iter iter;
1440         void **slot;
1441         unsigned ret = 0;
1442
1443         if (unlikely(!nr_pages))
1444                 return 0;
1445
1446         rcu_read_lock();
1447 restart:
1448         radix_tree_for_each_tagged(slot, &mapping->page_tree,
1449                                    &iter, *index, tag) {
1450                 struct page *page;
1451 repeat:
1452                 page = radix_tree_deref_slot(slot);
1453                 if (unlikely(!page))
1454                         continue;
1455
1456                 if (radix_tree_exception(page)) {
1457                         if (radix_tree_deref_retry(page)) {
1458                                 /*
1459                                  * Transient condition which can only trigger
1460                                  * when entry at index 0 moves out of or back
1461                                  * to root: none yet gotten, safe to restart.
1462                                  */
1463                                 goto restart;
1464                         }
1465                         /*
1466                          * A shadow entry of a recently evicted page.
1467                          *
1468                          * Those entries should never be tagged, but
1469                          * this tree walk is lockless and the tags are
1470                          * looked up in bulk, one radix tree node at a
1471                          * time, so there is a sizable window for page
1472                          * reclaim to evict a page we saw tagged.
1473                          *
1474                          * Skip over it.
1475                          */
1476                         continue;
1477                 }
1478
1479                 if (!page_cache_get_speculative(page))
1480                         goto repeat;
1481
1482                 /* Has the page moved? */
1483                 if (unlikely(page != *slot)) {
1484                         page_cache_release(page);
1485                         goto repeat;
1486                 }
1487
1488                 pages[ret] = page;
1489                 if (++ret == nr_pages)
1490                         break;
1491         }
1492
1493         rcu_read_unlock();
1494
1495         if (ret)
1496                 *index = pages[ret - 1]->index + 1;
1497
1498         return ret;
1499 }
1500 EXPORT_SYMBOL(find_get_pages_tag);
1501
1502 /*
1503  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1504  * a _large_ part of the i/o request. Imagine the worst scenario:
1505  *
1506  *      ---R__________________________________________B__________
1507  *         ^ reading here                             ^ bad block(assume 4k)
1508  *
1509  * read(R) => miss => readahead(R...B) => media error => frustrating retries
1510  * => failing the whole request => read(R) => read(R+1) =>
1511  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1512  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1513  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1514  *
1515  * It is going insane. Fix it by quickly scaling down the readahead size.
1516  */
1517 static void shrink_readahead_size_eio(struct file *filp,
1518                                         struct file_ra_state *ra)
1519 {
1520         ra->ra_pages /= 4;
1521 }
1522
1523 /**
1524  * do_generic_file_read - generic file read routine
1525  * @filp:       the file to read
1526  * @ppos:       current file position
1527  * @iter:       data destination
1528  * @written:    already copied
1529  *
1530  * This is a generic file read routine, and uses the
1531  * mapping->a_ops->readpage() function for the actual low-level stuff.
1532  *
1533  * This is really ugly. But the goto's actually try to clarify some
1534  * of the logic when it comes to error handling etc.
1535  */
1536 static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1537                 struct iov_iter *iter, ssize_t written)
1538 {
1539         struct address_space *mapping = filp->f_mapping;
1540         struct inode *inode = mapping->host;
1541         struct file_ra_state *ra = &filp->f_ra;
1542         pgoff_t index;
1543         pgoff_t last_index;
1544         pgoff_t prev_index;
1545         unsigned long offset;      /* offset into pagecache page */
1546         unsigned int prev_offset;
1547         int error = 0;
1548
1549         index = *ppos >> PAGE_CACHE_SHIFT;
1550         prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1551         prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1552         last_index = (*ppos + iter->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1553         offset = *ppos & ~PAGE_CACHE_MASK;
1554
1555         for (;;) {
1556                 struct page *page;
1557                 pgoff_t end_index;
1558                 loff_t isize;
1559                 unsigned long nr, ret;
1560
1561                 cond_resched();
1562 find_page:
1563                 page = find_get_page(mapping, index);
1564                 if (!page) {
1565                         page_cache_sync_readahead(mapping,
1566                                         ra, filp,
1567                                         index, last_index - index);
1568                         page = find_get_page(mapping, index);
1569                         if (unlikely(page == NULL))
1570                                 goto no_cached_page;
1571                 }
1572                 if (PageReadahead(page)) {
1573                         page_cache_async_readahead(mapping,
1574                                         ra, filp, page,
1575                                         index, last_index - index);
1576                 }
1577                 if (!PageUptodate(page)) {
1578                         if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1579                                         !mapping->a_ops->is_partially_uptodate)
1580                                 goto page_not_up_to_date;
1581                         if (!trylock_page(page))
1582                                 goto page_not_up_to_date;
1583                         /* Did it get truncated before we got the lock? */
1584                         if (!page->mapping)
1585                                 goto page_not_up_to_date_locked;
1586                         if (!mapping->a_ops->is_partially_uptodate(page,
1587                                                         offset, iter->count))
1588                                 goto page_not_up_to_date_locked;
1589                         unlock_page(page);
1590                 }
1591 page_ok:
1592                 /*
1593                  * i_size must be checked after we know the page is Uptodate.
1594                  *
1595                  * Checking i_size after the check allows us to calculate
1596                  * the correct value for "nr", which means the zero-filled
1597                  * part of the page is not copied back to userspace (unless
1598                  * another truncate extends the file - this is desired though).
1599                  */
1600
1601                 isize = i_size_read(inode);
1602                 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1603                 if (unlikely(!isize || index > end_index)) {
1604                         page_cache_release(page);
1605                         goto out;
1606                 }
1607
1608                 /* nr is the maximum number of bytes to copy from this page */
1609                 nr = PAGE_CACHE_SIZE;
1610                 if (index == end_index) {
1611                         nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1612                         if (nr <= offset) {
1613                                 page_cache_release(page);
1614                                 goto out;
1615                         }
1616                 }
1617                 nr = nr - offset;
1618
1619                 /* If users can be writing to this page using arbitrary
1620                  * virtual addresses, take care about potential aliasing
1621                  * before reading the page on the kernel side.
1622                  */
1623                 if (mapping_writably_mapped(mapping))
1624                         flush_dcache_page(page);
1625
1626                 /*
1627                  * When a sequential read accesses a page several times,
1628                  * only mark it as accessed the first time.
1629                  */
1630                 if (prev_index != index || offset != prev_offset)
1631                         mark_page_accessed(page);
1632                 prev_index = index;
1633
1634                 /*
1635                  * Ok, we have the page, and it's up-to-date, so
1636                  * now we can copy it to user space...
1637                  */
1638
1639                 ret = copy_page_to_iter(page, offset, nr, iter);
1640                 offset += ret;
1641                 index += offset >> PAGE_CACHE_SHIFT;
1642                 offset &= ~PAGE_CACHE_MASK;
1643                 prev_offset = offset;
1644
1645                 page_cache_release(page);
1646                 written += ret;
1647                 if (!iov_iter_count(iter))
1648                         goto out;
1649                 if (ret < nr) {
1650                         error = -EFAULT;
1651                         goto out;
1652                 }
1653                 continue;
1654
1655 page_not_up_to_date:
1656                 /* Get exclusive access to the page ... */
1657                 error = lock_page_killable(page);
1658                 if (unlikely(error))
1659                         goto readpage_error;
1660
1661 page_not_up_to_date_locked:
1662                 /* Did it get truncated before we got the lock? */
1663                 if (!page->mapping) {
1664                         unlock_page(page);
1665                         page_cache_release(page);
1666                         continue;
1667                 }
1668
1669                 /* Did somebody else fill it already? */
1670                 if (PageUptodate(page)) {
1671                         unlock_page(page);
1672                         goto page_ok;
1673                 }
1674
1675 readpage:
1676                 /*
1677                  * A previous I/O error may have been due to temporary
1678                  * failures, eg. multipath errors.
1679                  * PG_error will be set again if readpage fails.
1680                  */
1681                 ClearPageError(page);
1682                 /* Start the actual read. The read will unlock the page. */
1683                 error = mapping->a_ops->readpage(filp, page);
1684
1685                 if (unlikely(error)) {
1686                         if (error == AOP_TRUNCATED_PAGE) {
1687                                 page_cache_release(page);
1688                                 error = 0;
1689                                 goto find_page;
1690                         }
1691                         goto readpage_error;
1692                 }
1693
1694                 if (!PageUptodate(page)) {
1695                         error = lock_page_killable(page);
1696                         if (unlikely(error))
1697                                 goto readpage_error;
1698                         if (!PageUptodate(page)) {
1699                                 if (page->mapping == NULL) {
1700                                         /*
1701                                          * invalidate_mapping_pages got it
1702                                          */
1703                                         unlock_page(page);
1704                                         page_cache_release(page);
1705                                         goto find_page;
1706                                 }
1707                                 unlock_page(page);
1708                                 shrink_readahead_size_eio(filp, ra);
1709                                 error = -EIO;
1710                                 goto readpage_error;
1711                         }
1712                         unlock_page(page);
1713                 }
1714
1715                 goto page_ok;
1716
1717 readpage_error:
1718                 /* UHHUH! A synchronous read error occurred. Report it */
1719                 page_cache_release(page);
1720                 goto out;
1721
1722 no_cached_page:
1723                 /*
1724                  * Ok, it wasn't cached, so we need to create a new
1725                  * page..
1726                  */
1727                 page = page_cache_alloc_cold(mapping);
1728                 if (!page) {
1729                         error = -ENOMEM;
1730                         goto out;
1731                 }
1732                 error = add_to_page_cache_lru(page, mapping, index,
1733                                 mapping_gfp_constraint(mapping, GFP_KERNEL));
1734                 if (error) {
1735                         page_cache_release(page);
1736                         if (error == -EEXIST) {
1737                                 error = 0;
1738                                 goto find_page;
1739                         }
1740                         goto out;
1741                 }
1742                 goto readpage;
1743         }
1744
1745 out:
1746         ra->prev_pos = prev_index;
1747         ra->prev_pos <<= PAGE_CACHE_SHIFT;
1748         ra->prev_pos |= prev_offset;
1749
1750         *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1751         file_accessed(filp);
1752         return written ? written : error;
1753 }
1754
1755 /**
1756  * generic_file_read_iter - generic filesystem read routine
1757  * @iocb:       kernel I/O control block
1758  * @iter:       destination for the data read
1759  *
1760  * This is the "read_iter()" routine for all filesystems
1761  * that can use the page cache directly.
1762  */
1763 ssize_t
1764 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
1765 {
1766         struct file *file = iocb->ki_filp;
1767         ssize_t retval = 0;
1768         loff_t *ppos = &iocb->ki_pos;
1769         loff_t pos = *ppos;
1770
1771         if (iocb->ki_flags & IOCB_DIRECT) {
1772                 struct address_space *mapping = file->f_mapping;
1773                 struct inode *inode = mapping->host;
1774                 size_t count = iov_iter_count(iter);
1775                 loff_t size;
1776
1777                 if (!count)
1778                         goto out; /* skip atime */
1779                 size = i_size_read(inode);
1780                 retval = filemap_write_and_wait_range(mapping, pos,
1781                                         pos + count - 1);
1782                 if (!retval) {
1783                         struct iov_iter data = *iter;
1784                         retval = mapping->a_ops->direct_IO(iocb, &data, pos);
1785                 }
1786
1787                 if (retval > 0) {
1788                         *ppos = pos + retval;
1789                         iov_iter_advance(iter, retval);
1790                 }
1791
1792                 /*
1793                  * Btrfs can have a short DIO read if we encounter
1794                  * compressed extents, so if there was an error, or if
1795                  * we've already read everything we wanted to, or if
1796                  * there was a short read because we hit EOF, go ahead
1797                  * and return.  Otherwise fallthrough to buffered io for
1798                  * the rest of the read.  Buffered reads will not work for
1799                  * DAX files, so don't bother trying.
1800                  */
1801                 if (retval < 0 || !iov_iter_count(iter) || *ppos >= size ||
1802                     IS_DAX(inode)) {
1803                         file_accessed(file);
1804                         goto out;
1805                 }
1806         }
1807
1808         retval = do_generic_file_read(file, ppos, iter, retval);
1809 out:
1810         return retval;
1811 }
1812 EXPORT_SYMBOL(generic_file_read_iter);
1813
1814 #ifdef CONFIG_MMU
1815 /**
1816  * page_cache_read - adds requested page to the page cache if not already there
1817  * @file:       file to read
1818  * @offset:     page index
1819  *
1820  * This adds the requested page to the page cache if it isn't already there,
1821  * and schedules an I/O to read in its contents from disk.
1822  */
1823 static int page_cache_read(struct file *file, pgoff_t offset)
1824 {
1825         struct address_space *mapping = file->f_mapping;
1826         struct page *page;
1827         int ret;
1828
1829         do {
1830                 page = page_cache_alloc_cold(mapping);
1831                 if (!page)
1832                         return -ENOMEM;
1833
1834                 ret = add_to_page_cache_lru(page, mapping, offset,
1835                                 mapping_gfp_constraint(mapping, GFP_KERNEL));
1836                 if (ret == 0)
1837                         ret = mapping->a_ops->readpage(file, page);
1838                 else if (ret == -EEXIST)
1839                         ret = 0; /* losing race to add is OK */
1840
1841                 page_cache_release(page);
1842
1843         } while (ret == AOP_TRUNCATED_PAGE);
1844
1845         return ret;
1846 }
1847
1848 #define MMAP_LOTSAMISS  (100)
1849
1850 /*
1851  * Synchronous readahead happens when we don't even find
1852  * a page in the page cache at all.
1853  */
1854 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1855                                    struct file_ra_state *ra,
1856                                    struct file *file,
1857                                    pgoff_t offset)
1858 {
1859         struct address_space *mapping = file->f_mapping;
1860
1861         /* If we don't want any read-ahead, don't bother */
1862         if (vma->vm_flags & VM_RAND_READ)
1863                 return;
1864         if (!ra->ra_pages)
1865                 return;
1866
1867         if (vma->vm_flags & VM_SEQ_READ) {
1868                 page_cache_sync_readahead(mapping, ra, file, offset,
1869                                           ra->ra_pages);
1870                 return;
1871         }
1872
1873         /* Avoid banging the cache line if not needed */
1874         if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
1875                 ra->mmap_miss++;
1876
1877         /*
1878          * Do we miss much more than hit in this file? If so,
1879          * stop bothering with read-ahead. It will only hurt.
1880          */
1881         if (ra->mmap_miss > MMAP_LOTSAMISS)
1882                 return;
1883
1884         /*
1885          * mmap read-around
1886          */
1887         ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
1888         ra->size = ra->ra_pages;
1889         ra->async_size = ra->ra_pages / 4;
1890         ra_submit(ra, mapping, file);
1891 }
1892
1893 /*
1894  * Asynchronous readahead happens when we find the page and PG_readahead,
1895  * so we want to possibly extend the readahead further..
1896  */
1897 static void do_async_mmap_readahead(struct vm_area_struct *vma,
1898                                     struct file_ra_state *ra,
1899                                     struct file *file,
1900                                     struct page *page,
1901                                     pgoff_t offset)
1902 {
1903         struct address_space *mapping = file->f_mapping;
1904
1905         /* If we don't want any read-ahead, don't bother */
1906         if (vma->vm_flags & VM_RAND_READ)
1907                 return;
1908         if (ra->mmap_miss > 0)
1909                 ra->mmap_miss--;
1910         if (PageReadahead(page))
1911                 page_cache_async_readahead(mapping, ra, file,
1912                                            page, offset, ra->ra_pages);
1913 }
1914
1915 /**
1916  * filemap_fault - read in file data for page fault handling
1917  * @vma:        vma in which the fault was taken
1918  * @vmf:        struct vm_fault containing details of the fault
1919  *
1920  * filemap_fault() is invoked via the vma operations vector for a
1921  * mapped memory region to read in file data during a page fault.
1922  *
1923  * The goto's are kind of ugly, but this streamlines the normal case of having
1924  * it in the page cache, and handles the special cases reasonably without
1925  * having a lot of duplicated code.
1926  *
1927  * vma->vm_mm->mmap_sem must be held on entry.
1928  *
1929  * If our return value has VM_FAULT_RETRY set, it's because
1930  * lock_page_or_retry() returned 0.
1931  * The mmap_sem has usually been released in this case.
1932  * See __lock_page_or_retry() for the exception.
1933  *
1934  * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
1935  * has not been released.
1936  *
1937  * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
1938  */
1939 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1940 {
1941         int error;
1942         struct file *file = vma->vm_file;
1943         struct address_space *mapping = file->f_mapping;
1944         struct file_ra_state *ra = &file->f_ra;
1945         struct inode *inode = mapping->host;
1946         pgoff_t offset = vmf->pgoff;
1947         struct page *page;
1948         loff_t size;
1949         int ret = 0;
1950
1951         size = round_up(i_size_read(inode), PAGE_CACHE_SIZE);
1952         if (offset >= size >> PAGE_CACHE_SHIFT)
1953                 return VM_FAULT_SIGBUS;
1954
1955         /*
1956          * Do we have something in the page cache already?
1957          */
1958         page = find_get_page(mapping, offset);
1959         if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
1960                 /*
1961                  * We found the page, so try async readahead before
1962                  * waiting for the lock.
1963                  */
1964                 do_async_mmap_readahead(vma, ra, file, page, offset);
1965         } else if (!page) {
1966                 /* No page in the page cache at all */
1967                 do_sync_mmap_readahead(vma, ra, file, offset);
1968                 count_vm_event(PGMAJFAULT);
1969                 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1970                 ret = VM_FAULT_MAJOR;
1971 retry_find:
1972                 page = find_get_page(mapping, offset);
1973                 if (!page)
1974                         goto no_cached_page;
1975         }
1976
1977         if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
1978                 page_cache_release(page);
1979                 return ret | VM_FAULT_RETRY;
1980         }
1981
1982         /* Did it get truncated? */
1983         if (unlikely(page->mapping != mapping)) {
1984                 unlock_page(page);
1985                 put_page(page);
1986                 goto retry_find;
1987         }
1988         VM_BUG_ON_PAGE(page->index != offset, page);
1989
1990         /*
1991          * We have a locked page in the page cache, now we need to check
1992          * that it's up-to-date. If not, it is going to be due to an error.
1993          */
1994         if (unlikely(!PageUptodate(page)))
1995                 goto page_not_uptodate;
1996
1997         /*
1998          * Found the page and have a reference on it.
1999          * We must recheck i_size under page lock.
2000          */
2001         size = round_up(i_size_read(inode), PAGE_CACHE_SIZE);
2002         if (unlikely(offset >= size >> PAGE_CACHE_SHIFT)) {
2003                 unlock_page(page);
2004                 page_cache_release(page);
2005                 return VM_FAULT_SIGBUS;
2006         }
2007
2008         vmf->page = page;
2009         return ret | VM_FAULT_LOCKED;
2010
2011 no_cached_page:
2012         /*
2013          * We're only likely to ever get here if MADV_RANDOM is in
2014          * effect.
2015          */
2016         error = page_cache_read(file, offset);
2017
2018         /*
2019          * The page we want has now been added to the page cache.
2020          * In the unlikely event that someone removed it in the
2021          * meantime, we'll just come back here and read it again.
2022          */
2023         if (error >= 0)
2024                 goto retry_find;
2025
2026         /*
2027          * An error return from page_cache_read can result if the
2028          * system is low on memory, or a problem occurs while trying
2029          * to schedule I/O.
2030          */
2031         if (error == -ENOMEM)
2032                 return VM_FAULT_OOM;
2033         return VM_FAULT_SIGBUS;
2034
2035 page_not_uptodate:
2036         /*
2037          * Umm, take care of errors if the page isn't up-to-date.
2038          * Try to re-read it _once_. We do this synchronously,
2039          * because there really aren't any performance issues here
2040          * and we need to check for errors.
2041          */
2042         ClearPageError(page);
2043         error = mapping->a_ops->readpage(file, page);
2044         if (!error) {
2045                 wait_on_page_locked(page);
2046                 if (!PageUptodate(page))
2047                         error = -EIO;
2048         }
2049         page_cache_release(page);
2050
2051         if (!error || error == AOP_TRUNCATED_PAGE)
2052                 goto retry_find;
2053
2054         /* Things didn't work out. Return zero to tell the mm layer so. */
2055         shrink_readahead_size_eio(file, ra);
2056         return VM_FAULT_SIGBUS;
2057 }
2058 EXPORT_SYMBOL(filemap_fault);
2059
2060 void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf)
2061 {
2062         struct radix_tree_iter iter;
2063         void **slot;
2064         struct file *file = vma->vm_file;
2065         struct address_space *mapping = file->f_mapping;
2066         loff_t size;
2067         struct page *page;
2068         unsigned long address = (unsigned long) vmf->virtual_address;
2069         unsigned long addr;
2070         pte_t *pte;
2071
2072         rcu_read_lock();
2073         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, vmf->pgoff) {
2074                 if (iter.index > vmf->max_pgoff)
2075                         break;
2076 repeat:
2077                 page = radix_tree_deref_slot(slot);
2078                 if (unlikely(!page))
2079                         goto next;
2080                 if (radix_tree_exception(page)) {
2081                         if (radix_tree_deref_retry(page))
2082                                 break;
2083                         else
2084                                 goto next;
2085                 }
2086
2087                 if (!page_cache_get_speculative(page))
2088                         goto repeat;
2089
2090                 /* Has the page moved? */
2091                 if (unlikely(page != *slot)) {
2092                         page_cache_release(page);
2093                         goto repeat;
2094                 }
2095
2096                 if (!PageUptodate(page) ||
2097                                 PageReadahead(page) ||
2098                                 PageHWPoison(page))
2099                         goto skip;
2100                 if (!trylock_page(page))
2101                         goto skip;
2102
2103                 if (page->mapping != mapping || !PageUptodate(page))
2104                         goto unlock;
2105
2106                 size = round_up(i_size_read(mapping->host), PAGE_CACHE_SIZE);
2107                 if (page->index >= size >> PAGE_CACHE_SHIFT)
2108                         goto unlock;
2109
2110                 pte = vmf->pte + page->index - vmf->pgoff;
2111                 if (!pte_none(*pte))
2112                         goto unlock;
2113
2114                 if (file->f_ra.mmap_miss > 0)
2115                         file->f_ra.mmap_miss--;
2116                 addr = address + (page->index - vmf->pgoff) * PAGE_SIZE;
2117                 do_set_pte(vma, addr, page, pte, false, false);
2118                 unlock_page(page);
2119                 goto next;
2120 unlock:
2121                 unlock_page(page);
2122 skip:
2123                 page_cache_release(page);
2124 next:
2125                 if (iter.index == vmf->max_pgoff)
2126                         break;
2127         }
2128         rcu_read_unlock();
2129 }
2130 EXPORT_SYMBOL(filemap_map_pages);
2131
2132 int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2133 {
2134         struct page *page = vmf->page;
2135         struct inode *inode = file_inode(vma->vm_file);
2136         int ret = VM_FAULT_LOCKED;
2137
2138         sb_start_pagefault(inode->i_sb);
2139         file_update_time(vma->vm_file);
2140         lock_page(page);
2141         if (page->mapping != inode->i_mapping) {
2142                 unlock_page(page);
2143                 ret = VM_FAULT_NOPAGE;
2144                 goto out;
2145         }
2146         /*
2147          * We mark the page dirty already here so that when freeze is in
2148          * progress, we are guaranteed that writeback during freezing will
2149          * see the dirty page and writeprotect it again.
2150          */
2151         set_page_dirty(page);
2152         wait_for_stable_page(page);
2153 out:
2154         sb_end_pagefault(inode->i_sb);
2155         return ret;
2156 }
2157 EXPORT_SYMBOL(filemap_page_mkwrite);
2158
2159 const struct vm_operations_struct generic_file_vm_ops = {
2160         .fault          = filemap_fault,
2161         .map_pages      = filemap_map_pages,
2162         .page_mkwrite   = filemap_page_mkwrite,
2163 };
2164
2165 /* This is used for a general mmap of a disk file */
2166
2167 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2168 {
2169         struct address_space *mapping = file->f_mapping;
2170
2171         if (!mapping->a_ops->readpage)
2172                 return -ENOEXEC;
2173         file_accessed(file);
2174         vma->vm_ops = &generic_file_vm_ops;
2175         return 0;
2176 }
2177
2178 /*
2179  * This is for filesystems which do not implement ->writepage.
2180  */
2181 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2182 {
2183         if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2184                 return -EINVAL;
2185         return generic_file_mmap(file, vma);
2186 }
2187 #else
2188 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2189 {
2190         return -ENOSYS;
2191 }
2192 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2193 {
2194         return -ENOSYS;
2195 }
2196 #endif /* CONFIG_MMU */
2197
2198 EXPORT_SYMBOL(generic_file_mmap);
2199 EXPORT_SYMBOL(generic_file_readonly_mmap);
2200
2201 static struct page *wait_on_page_read(struct page *page)
2202 {
2203         if (!IS_ERR(page)) {
2204                 wait_on_page_locked(page);
2205                 if (!PageUptodate(page)) {
2206                         page_cache_release(page);
2207                         page = ERR_PTR(-EIO);
2208                 }
2209         }
2210         return page;
2211 }
2212
2213 static struct page *__read_cache_page(struct address_space *mapping,
2214                                 pgoff_t index,
2215                                 int (*filler)(void *, struct page *),
2216                                 void *data,
2217                                 gfp_t gfp)
2218 {
2219         struct page *page;
2220         int err;
2221 repeat:
2222         page = find_get_page(mapping, index);
2223         if (!page) {
2224                 page = __page_cache_alloc(gfp | __GFP_COLD);
2225                 if (!page)
2226                         return ERR_PTR(-ENOMEM);
2227                 err = add_to_page_cache_lru(page, mapping, index, gfp);
2228                 if (unlikely(err)) {
2229                         page_cache_release(page);
2230                         if (err == -EEXIST)
2231                                 goto repeat;
2232                         /* Presumably ENOMEM for radix tree node */
2233                         return ERR_PTR(err);
2234                 }
2235                 err = filler(data, page);
2236                 if (err < 0) {
2237                         page_cache_release(page);
2238                         page = ERR_PTR(err);
2239                 } else {
2240                         page = wait_on_page_read(page);
2241                 }
2242         }
2243         return page;
2244 }
2245
2246 static struct page *do_read_cache_page(struct address_space *mapping,
2247                                 pgoff_t index,
2248                                 int (*filler)(void *, struct page *),
2249                                 void *data,
2250                                 gfp_t gfp)
2251
2252 {
2253         struct page *page;
2254         int err;
2255
2256 retry:
2257         page = __read_cache_page(mapping, index, filler, data, gfp);
2258         if (IS_ERR(page))
2259                 return page;
2260         if (PageUptodate(page))
2261                 goto out;
2262
2263         lock_page(page);
2264         if (!page->mapping) {
2265                 unlock_page(page);
2266                 page_cache_release(page);
2267                 goto retry;
2268         }
2269         if (PageUptodate(page)) {
2270                 unlock_page(page);
2271                 goto out;
2272         }
2273         err = filler(data, page);
2274         if (err < 0) {
2275                 page_cache_release(page);
2276                 return ERR_PTR(err);
2277         } else {
2278                 page = wait_on_page_read(page);
2279                 if (IS_ERR(page))
2280                         return page;
2281         }
2282 out:
2283         mark_page_accessed(page);
2284         return page;
2285 }
2286
2287 /**
2288  * read_cache_page - read into page cache, fill it if needed
2289  * @mapping:    the page's address_space
2290  * @index:      the page index
2291  * @filler:     function to perform the read
2292  * @data:       first arg to filler(data, page) function, often left as NULL
2293  *
2294  * Read into the page cache. If a page already exists, and PageUptodate() is
2295  * not set, try to fill the page and wait for it to become unlocked.
2296  *
2297  * If the page does not get brought uptodate, return -EIO.
2298  */
2299 struct page *read_cache_page(struct address_space *mapping,
2300                                 pgoff_t index,
2301                                 int (*filler)(void *, struct page *),
2302                                 void *data)
2303 {
2304         return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2305 }
2306 EXPORT_SYMBOL(read_cache_page);
2307
2308 /**
2309  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2310  * @mapping:    the page's address_space
2311  * @index:      the page index
2312  * @gfp:        the page allocator flags to use if allocating
2313  *
2314  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2315  * any new page allocations done using the specified allocation flags.
2316  *
2317  * If the page does not get brought uptodate, return -EIO.
2318  */
2319 struct page *read_cache_page_gfp(struct address_space *mapping,
2320                                 pgoff_t index,
2321                                 gfp_t gfp)
2322 {
2323         filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2324
2325         return do_read_cache_page(mapping, index, filler, NULL, gfp);
2326 }
2327 EXPORT_SYMBOL(read_cache_page_gfp);
2328
2329 /*
2330  * Performs necessary checks before doing a write
2331  *
2332  * Can adjust writing position or amount of bytes to write.
2333  * Returns appropriate error code that caller should return or
2334  * zero in case that write should be allowed.
2335  */
2336 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2337 {
2338         struct file *file = iocb->ki_filp;
2339         struct inode *inode = file->f_mapping->host;
2340         unsigned long limit = rlimit(RLIMIT_FSIZE);
2341         loff_t pos;
2342
2343         if (!iov_iter_count(from))
2344                 return 0;
2345
2346         /* FIXME: this is for backwards compatibility with 2.4 */
2347         if (iocb->ki_flags & IOCB_APPEND)
2348                 iocb->ki_pos = i_size_read(inode);
2349
2350         pos = iocb->ki_pos;
2351
2352         if (limit != RLIM_INFINITY) {
2353                 if (iocb->ki_pos >= limit) {
2354                         send_sig(SIGXFSZ, current, 0);
2355                         return -EFBIG;
2356                 }
2357                 iov_iter_truncate(from, limit - (unsigned long)pos);
2358         }
2359
2360         /*
2361          * LFS rule
2362          */
2363         if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
2364                                 !(file->f_flags & O_LARGEFILE))) {
2365                 if (pos >= MAX_NON_LFS)
2366                         return -EFBIG;
2367                 iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
2368         }
2369
2370         /*
2371          * Are we about to exceed the fs block limit ?
2372          *
2373          * If we have written data it becomes a short write.  If we have
2374          * exceeded without writing data we send a signal and return EFBIG.
2375          * Linus frestrict idea will clean these up nicely..
2376          */
2377         if (unlikely(pos >= inode->i_sb->s_maxbytes))
2378                 return -EFBIG;
2379
2380         iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2381         return iov_iter_count(from);
2382 }
2383 EXPORT_SYMBOL(generic_write_checks);
2384
2385 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2386                                 loff_t pos, unsigned len, unsigned flags,
2387                                 struct page **pagep, void **fsdata)
2388 {
2389         const struct address_space_operations *aops = mapping->a_ops;
2390
2391         return aops->write_begin(file, mapping, pos, len, flags,
2392                                                         pagep, fsdata);
2393 }
2394 EXPORT_SYMBOL(pagecache_write_begin);
2395
2396 int pagecache_write_end(struct file *file, struct address_space *mapping,
2397                                 loff_t pos, unsigned len, unsigned copied,
2398                                 struct page *page, void *fsdata)
2399 {
2400         const struct address_space_operations *aops = mapping->a_ops;
2401
2402         return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2403 }
2404 EXPORT_SYMBOL(pagecache_write_end);
2405
2406 ssize_t
2407 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from, loff_t pos)
2408 {
2409         struct file     *file = iocb->ki_filp;
2410         struct address_space *mapping = file->f_mapping;
2411         struct inode    *inode = mapping->host;
2412         ssize_t         written;
2413         size_t          write_len;
2414         pgoff_t         end;
2415         struct iov_iter data;
2416
2417         write_len = iov_iter_count(from);
2418         end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2419
2420         written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2421         if (written)
2422                 goto out;
2423
2424         /*
2425          * After a write we want buffered reads to be sure to go to disk to get
2426          * the new data.  We invalidate clean cached page from the region we're
2427          * about to write.  We do this *before* the write so that we can return
2428          * without clobbering -EIOCBQUEUED from ->direct_IO().
2429          */
2430         if (mapping->nrpages) {
2431                 written = invalidate_inode_pages2_range(mapping,
2432                                         pos >> PAGE_CACHE_SHIFT, end);
2433                 /*
2434                  * If a page can not be invalidated, return 0 to fall back
2435                  * to buffered write.
2436                  */
2437                 if (written) {
2438                         if (written == -EBUSY)
2439                                 return 0;
2440                         goto out;
2441                 }
2442         }
2443
2444         data = *from;
2445         written = mapping->a_ops->direct_IO(iocb, &data, pos);
2446
2447         /*
2448          * Finally, try again to invalidate clean pages which might have been
2449          * cached by non-direct readahead, or faulted in by get_user_pages()
2450          * if the source of the write was an mmap'ed region of the file
2451          * we're writing.  Either one is a pretty crazy thing to do,
2452          * so we don't support it 100%.  If this invalidation
2453          * fails, tough, the write still worked...
2454          */
2455         if (mapping->nrpages) {
2456                 invalidate_inode_pages2_range(mapping,
2457                                               pos >> PAGE_CACHE_SHIFT, end);
2458         }
2459
2460         if (written > 0) {
2461                 pos += written;
2462                 iov_iter_advance(from, written);
2463                 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2464                         i_size_write(inode, pos);
2465                         mark_inode_dirty(inode);
2466                 }
2467                 iocb->ki_pos = pos;
2468         }
2469 out:
2470         return written;
2471 }
2472 EXPORT_SYMBOL(generic_file_direct_write);
2473
2474 /*
2475  * Find or create a page at the given pagecache position. Return the locked
2476  * page. This function is specifically for buffered writes.
2477  */
2478 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2479                                         pgoff_t index, unsigned flags)
2480 {
2481         struct page *page;
2482         int fgp_flags = FGP_LOCK|FGP_ACCESSED|FGP_WRITE|FGP_CREAT;
2483
2484         if (flags & AOP_FLAG_NOFS)
2485                 fgp_flags |= FGP_NOFS;
2486
2487         page = pagecache_get_page(mapping, index, fgp_flags,
2488                         mapping_gfp_mask(mapping));
2489         if (page)
2490                 wait_for_stable_page(page);
2491
2492         return page;
2493 }
2494 EXPORT_SYMBOL(grab_cache_page_write_begin);
2495
2496 ssize_t generic_perform_write(struct file *file,
2497                                 struct iov_iter *i, loff_t pos)
2498 {
2499         struct address_space *mapping = file->f_mapping;
2500         const struct address_space_operations *a_ops = mapping->a_ops;
2501         long status = 0;
2502         ssize_t written = 0;
2503         unsigned int flags = 0;
2504
2505         /*
2506          * Copies from kernel address space cannot fail (NFSD is a big user).
2507          */
2508         if (!iter_is_iovec(i))
2509                 flags |= AOP_FLAG_UNINTERRUPTIBLE;
2510
2511         do {
2512                 struct page *page;
2513                 unsigned long offset;   /* Offset into pagecache page */
2514                 unsigned long bytes;    /* Bytes to write to page */
2515                 size_t copied;          /* Bytes copied from user */
2516                 void *fsdata;
2517
2518                 offset = (pos & (PAGE_CACHE_SIZE - 1));
2519                 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2520                                                 iov_iter_count(i));
2521
2522 again:
2523                 /*
2524                  * Bring in the user page that we will copy from _first_.
2525                  * Otherwise there's a nasty deadlock on copying from the
2526                  * same page as we're writing to, without it being marked
2527                  * up-to-date.
2528                  *
2529                  * Not only is this an optimisation, but it is also required
2530                  * to check that the address is actually valid, when atomic
2531                  * usercopies are used, below.
2532                  */
2533                 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2534                         status = -EFAULT;
2535                         break;
2536                 }
2537
2538                 if (fatal_signal_pending(current)) {
2539                         status = -EINTR;
2540                         break;
2541                 }
2542
2543                 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2544                                                 &page, &fsdata);
2545                 if (unlikely(status < 0))
2546                         break;
2547
2548                 if (mapping_writably_mapped(mapping))
2549                         flush_dcache_page(page);
2550
2551                 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2552                 flush_dcache_page(page);
2553
2554                 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2555                                                 page, fsdata);
2556                 if (unlikely(status < 0))
2557                         break;
2558                 copied = status;
2559
2560                 cond_resched();
2561
2562                 iov_iter_advance(i, copied);
2563                 if (unlikely(copied == 0)) {
2564                         /*
2565                          * If we were unable to copy any data at all, we must
2566                          * fall back to a single segment length write.
2567                          *
2568                          * If we didn't fallback here, we could livelock
2569                          * because not all segments in the iov can be copied at
2570                          * once without a pagefault.
2571                          */
2572                         bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2573                                                 iov_iter_single_seg_count(i));
2574                         goto again;
2575                 }
2576                 pos += copied;
2577                 written += copied;
2578
2579                 balance_dirty_pages_ratelimited(mapping);
2580         } while (iov_iter_count(i));
2581
2582         return written ? written : status;
2583 }
2584 EXPORT_SYMBOL(generic_perform_write);
2585
2586 /**
2587  * __generic_file_write_iter - write data to a file
2588  * @iocb:       IO state structure (file, offset, etc.)
2589  * @from:       iov_iter with data to write
2590  *
2591  * This function does all the work needed for actually writing data to a
2592  * file. It does all basic checks, removes SUID from the file, updates
2593  * modification times and calls proper subroutines depending on whether we
2594  * do direct IO or a standard buffered write.
2595  *
2596  * It expects i_mutex to be grabbed unless we work on a block device or similar
2597  * object which does not need locking at all.
2598  *
2599  * This function does *not* take care of syncing data in case of O_SYNC write.
2600  * A caller has to handle it. This is mainly due to the fact that we want to
2601  * avoid syncing under i_mutex.
2602  */
2603 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2604 {
2605         struct file *file = iocb->ki_filp;
2606         struct address_space * mapping = file->f_mapping;
2607         struct inode    *inode = mapping->host;
2608         ssize_t         written = 0;
2609         ssize_t         err;
2610         ssize_t         status;
2611
2612         /* We can write back this queue in page reclaim */
2613         current->backing_dev_info = inode_to_bdi(inode);
2614         err = file_remove_privs(file);
2615         if (err)
2616                 goto out;
2617
2618         err = file_update_time(file);
2619         if (err)
2620                 goto out;
2621
2622         if (iocb->ki_flags & IOCB_DIRECT) {
2623                 loff_t pos, endbyte;
2624
2625                 written = generic_file_direct_write(iocb, from, iocb->ki_pos);
2626                 /*
2627                  * If the write stopped short of completing, fall back to
2628                  * buffered writes.  Some filesystems do this for writes to
2629                  * holes, for example.  For DAX files, a buffered write will
2630                  * not succeed (even if it did, DAX does not handle dirty
2631                  * page-cache pages correctly).
2632                  */
2633                 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
2634                         goto out;
2635
2636                 status = generic_perform_write(file, from, pos = iocb->ki_pos);
2637                 /*
2638                  * If generic_perform_write() returned a synchronous error
2639                  * then we want to return the number of bytes which were
2640                  * direct-written, or the error code if that was zero.  Note
2641                  * that this differs from normal direct-io semantics, which
2642                  * will return -EFOO even if some bytes were written.
2643                  */
2644                 if (unlikely(status < 0)) {
2645                         err = status;
2646                         goto out;
2647                 }
2648                 /*
2649                  * We need to ensure that the page cache pages are written to
2650                  * disk and invalidated to preserve the expected O_DIRECT
2651                  * semantics.
2652                  */
2653                 endbyte = pos + status - 1;
2654                 err = filemap_write_and_wait_range(mapping, pos, endbyte);
2655                 if (err == 0) {
2656                         iocb->ki_pos = endbyte + 1;
2657                         written += status;
2658                         invalidate_mapping_pages(mapping,
2659                                                  pos >> PAGE_CACHE_SHIFT,
2660                                                  endbyte >> PAGE_CACHE_SHIFT);
2661                 } else {
2662                         /*
2663                          * We don't know how much we wrote, so just return
2664                          * the number of bytes which were direct-written
2665                          */
2666                 }
2667         } else {
2668                 written = generic_perform_write(file, from, iocb->ki_pos);
2669                 if (likely(written > 0))
2670                         iocb->ki_pos += written;
2671         }
2672 out:
2673         current->backing_dev_info = NULL;
2674         return written ? written : err;
2675 }
2676 EXPORT_SYMBOL(__generic_file_write_iter);
2677
2678 /**
2679  * generic_file_write_iter - write data to a file
2680  * @iocb:       IO state structure
2681  * @from:       iov_iter with data to write
2682  *
2683  * This is a wrapper around __generic_file_write_iter() to be used by most
2684  * filesystems. It takes care of syncing the file in case of O_SYNC file
2685  * and acquires i_mutex as needed.
2686  */
2687 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2688 {
2689         struct file *file = iocb->ki_filp;
2690         struct inode *inode = file->f_mapping->host;
2691         ssize_t ret;
2692
2693         mutex_lock(&inode->i_mutex);
2694         ret = generic_write_checks(iocb, from);
2695         if (ret > 0)
2696                 ret = __generic_file_write_iter(iocb, from);
2697         mutex_unlock(&inode->i_mutex);
2698
2699         if (ret > 0) {
2700                 ssize_t err;
2701
2702                 err = generic_write_sync(file, iocb->ki_pos - ret, ret);
2703                 if (err < 0)
2704                         ret = err;
2705         }
2706         return ret;
2707 }
2708 EXPORT_SYMBOL(generic_file_write_iter);
2709
2710 /**
2711  * try_to_release_page() - release old fs-specific metadata on a page
2712  *
2713  * @page: the page which the kernel is trying to free
2714  * @gfp_mask: memory allocation flags (and I/O mode)
2715  *
2716  * The address_space is to try to release any data against the page
2717  * (presumably at page->private).  If the release was successful, return `1'.
2718  * Otherwise return zero.
2719  *
2720  * This may also be called if PG_fscache is set on a page, indicating that the
2721  * page is known to the local caching routines.
2722  *
2723  * The @gfp_mask argument specifies whether I/O may be performed to release
2724  * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
2725  *
2726  */
2727 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2728 {
2729         struct address_space * const mapping = page->mapping;
2730
2731         BUG_ON(!PageLocked(page));
2732         if (PageWriteback(page))
2733                 return 0;
2734
2735         if (mapping && mapping->a_ops->releasepage)
2736                 return mapping->a_ops->releasepage(page, gfp_mask);
2737         return try_to_free_buffers(page);
2738 }
2739
2740 EXPORT_SYMBOL(try_to_release_page);