lib/plist: add helper functions
[firefly-linux-kernel-4.4.55.git] / mm / filemap.c
1 /*
2  *      linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/fs.h>
15 #include <linux/uaccess.h>
16 #include <linux/aio.h>
17 #include <linux/capability.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/gfp.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/cpuset.h>
33 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
34 #include <linux/memcontrol.h>
35 #include <linux/cleancache.h>
36 #include <linux/rmap.h>
37 #include "internal.h"
38
39 #define CREATE_TRACE_POINTS
40 #include <trace/events/filemap.h>
41
42 /*
43  * FIXME: remove all knowledge of the buffer layer from the core VM
44  */
45 #include <linux/buffer_head.h> /* for try_to_free_buffers */
46
47 #include <asm/mman.h>
48
49 /*
50  * Shared mappings implemented 30.11.1994. It's not fully working yet,
51  * though.
52  *
53  * Shared mappings now work. 15.8.1995  Bruno.
54  *
55  * finished 'unifying' the page and buffer cache and SMP-threaded the
56  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
57  *
58  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
59  */
60
61 /*
62  * Lock ordering:
63  *
64  *  ->i_mmap_mutex              (truncate_pagecache)
65  *    ->private_lock            (__free_pte->__set_page_dirty_buffers)
66  *      ->swap_lock             (exclusive_swap_page, others)
67  *        ->mapping->tree_lock
68  *
69  *  ->i_mutex
70  *    ->i_mmap_mutex            (truncate->unmap_mapping_range)
71  *
72  *  ->mmap_sem
73  *    ->i_mmap_mutex
74  *      ->page_table_lock or pte_lock   (various, mainly in memory.c)
75  *        ->mapping->tree_lock  (arch-dependent flush_dcache_mmap_lock)
76  *
77  *  ->mmap_sem
78  *    ->lock_page               (access_process_vm)
79  *
80  *  ->i_mutex                   (generic_perform_write)
81  *    ->mmap_sem                (fault_in_pages_readable->do_page_fault)
82  *
83  *  bdi->wb.list_lock
84  *    sb_lock                   (fs/fs-writeback.c)
85  *    ->mapping->tree_lock      (__sync_single_inode)
86  *
87  *  ->i_mmap_mutex
88  *    ->anon_vma.lock           (vma_adjust)
89  *
90  *  ->anon_vma.lock
91  *    ->page_table_lock or pte_lock     (anon_vma_prepare and various)
92  *
93  *  ->page_table_lock or pte_lock
94  *    ->swap_lock               (try_to_unmap_one)
95  *    ->private_lock            (try_to_unmap_one)
96  *    ->tree_lock               (try_to_unmap_one)
97  *    ->zone.lru_lock           (follow_page->mark_page_accessed)
98  *    ->zone.lru_lock           (check_pte_range->isolate_lru_page)
99  *    ->private_lock            (page_remove_rmap->set_page_dirty)
100  *    ->tree_lock               (page_remove_rmap->set_page_dirty)
101  *    bdi.wb->list_lock         (page_remove_rmap->set_page_dirty)
102  *    ->inode->i_lock           (page_remove_rmap->set_page_dirty)
103  *    bdi.wb->list_lock         (zap_pte_range->set_page_dirty)
104  *    ->inode->i_lock           (zap_pte_range->set_page_dirty)
105  *    ->private_lock            (zap_pte_range->__set_page_dirty_buffers)
106  *
107  * ->i_mmap_mutex
108  *   ->tasklist_lock            (memory_failure, collect_procs_ao)
109  */
110
111 static void page_cache_tree_delete(struct address_space *mapping,
112                                    struct page *page, void *shadow)
113 {
114         struct radix_tree_node *node;
115         unsigned long index;
116         unsigned int offset;
117         unsigned int tag;
118         void **slot;
119
120         VM_BUG_ON(!PageLocked(page));
121
122         __radix_tree_lookup(&mapping->page_tree, page->index, &node, &slot);
123
124         if (shadow) {
125                 mapping->nrshadows++;
126                 /*
127                  * Make sure the nrshadows update is committed before
128                  * the nrpages update so that final truncate racing
129                  * with reclaim does not see both counters 0 at the
130                  * same time and miss a shadow entry.
131                  */
132                 smp_wmb();
133         }
134         mapping->nrpages--;
135
136         if (!node) {
137                 /* Clear direct pointer tags in root node */
138                 mapping->page_tree.gfp_mask &= __GFP_BITS_MASK;
139                 radix_tree_replace_slot(slot, shadow);
140                 return;
141         }
142
143         /* Clear tree tags for the removed page */
144         index = page->index;
145         offset = index & RADIX_TREE_MAP_MASK;
146         for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
147                 if (test_bit(offset, node->tags[tag]))
148                         radix_tree_tag_clear(&mapping->page_tree, index, tag);
149         }
150
151         /* Delete page, swap shadow entry */
152         radix_tree_replace_slot(slot, shadow);
153         workingset_node_pages_dec(node);
154         if (shadow)
155                 workingset_node_shadows_inc(node);
156         else
157                 if (__radix_tree_delete_node(&mapping->page_tree, node))
158                         return;
159
160         /*
161          * Track node that only contains shadow entries.
162          *
163          * Avoid acquiring the list_lru lock if already tracked.  The
164          * list_empty() test is safe as node->private_list is
165          * protected by mapping->tree_lock.
166          */
167         if (!workingset_node_pages(node) &&
168             list_empty(&node->private_list)) {
169                 node->private_data = mapping;
170                 list_lru_add(&workingset_shadow_nodes, &node->private_list);
171         }
172 }
173
174 /*
175  * Delete a page from the page cache and free it. Caller has to make
176  * sure the page is locked and that nobody else uses it - or that usage
177  * is safe.  The caller must hold the mapping's tree_lock.
178  */
179 void __delete_from_page_cache(struct page *page, void *shadow)
180 {
181         struct address_space *mapping = page->mapping;
182
183         trace_mm_filemap_delete_from_page_cache(page);
184         /*
185          * if we're uptodate, flush out into the cleancache, otherwise
186          * invalidate any existing cleancache entries.  We can't leave
187          * stale data around in the cleancache once our page is gone
188          */
189         if (PageUptodate(page) && PageMappedToDisk(page))
190                 cleancache_put_page(page);
191         else
192                 cleancache_invalidate_page(mapping, page);
193
194         page_cache_tree_delete(mapping, page, shadow);
195
196         page->mapping = NULL;
197         /* Leave page->index set: truncation lookup relies upon it */
198
199         __dec_zone_page_state(page, NR_FILE_PAGES);
200         if (PageSwapBacked(page))
201                 __dec_zone_page_state(page, NR_SHMEM);
202         BUG_ON(page_mapped(page));
203
204         /*
205          * Some filesystems seem to re-dirty the page even after
206          * the VM has canceled the dirty bit (eg ext3 journaling).
207          *
208          * Fix it up by doing a final dirty accounting check after
209          * having removed the page entirely.
210          */
211         if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
212                 dec_zone_page_state(page, NR_FILE_DIRTY);
213                 dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
214         }
215 }
216
217 /**
218  * delete_from_page_cache - delete page from page cache
219  * @page: the page which the kernel is trying to remove from page cache
220  *
221  * This must be called only on pages that have been verified to be in the page
222  * cache and locked.  It will never put the page into the free list, the caller
223  * has a reference on the page.
224  */
225 void delete_from_page_cache(struct page *page)
226 {
227         struct address_space *mapping = page->mapping;
228         void (*freepage)(struct page *);
229
230         BUG_ON(!PageLocked(page));
231
232         freepage = mapping->a_ops->freepage;
233         spin_lock_irq(&mapping->tree_lock);
234         __delete_from_page_cache(page, NULL);
235         spin_unlock_irq(&mapping->tree_lock);
236         mem_cgroup_uncharge_cache_page(page);
237
238         if (freepage)
239                 freepage(page);
240         page_cache_release(page);
241 }
242 EXPORT_SYMBOL(delete_from_page_cache);
243
244 static int sleep_on_page(void *word)
245 {
246         io_schedule();
247         return 0;
248 }
249
250 static int sleep_on_page_killable(void *word)
251 {
252         sleep_on_page(word);
253         return fatal_signal_pending(current) ? -EINTR : 0;
254 }
255
256 static int filemap_check_errors(struct address_space *mapping)
257 {
258         int ret = 0;
259         /* Check for outstanding write errors */
260         if (test_bit(AS_ENOSPC, &mapping->flags) &&
261             test_and_clear_bit(AS_ENOSPC, &mapping->flags))
262                 ret = -ENOSPC;
263         if (test_bit(AS_EIO, &mapping->flags) &&
264             test_and_clear_bit(AS_EIO, &mapping->flags))
265                 ret = -EIO;
266         return ret;
267 }
268
269 /**
270  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
271  * @mapping:    address space structure to write
272  * @start:      offset in bytes where the range starts
273  * @end:        offset in bytes where the range ends (inclusive)
274  * @sync_mode:  enable synchronous operation
275  *
276  * Start writeback against all of a mapping's dirty pages that lie
277  * within the byte offsets <start, end> inclusive.
278  *
279  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
280  * opposed to a regular memory cleansing writeback.  The difference between
281  * these two operations is that if a dirty page/buffer is encountered, it must
282  * be waited upon, and not just skipped over.
283  */
284 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
285                                 loff_t end, int sync_mode)
286 {
287         int ret;
288         struct writeback_control wbc = {
289                 .sync_mode = sync_mode,
290                 .nr_to_write = LONG_MAX,
291                 .range_start = start,
292                 .range_end = end,
293         };
294
295         if (!mapping_cap_writeback_dirty(mapping))
296                 return 0;
297
298         ret = do_writepages(mapping, &wbc);
299         return ret;
300 }
301
302 static inline int __filemap_fdatawrite(struct address_space *mapping,
303         int sync_mode)
304 {
305         return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
306 }
307
308 int filemap_fdatawrite(struct address_space *mapping)
309 {
310         return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
311 }
312 EXPORT_SYMBOL(filemap_fdatawrite);
313
314 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
315                                 loff_t end)
316 {
317         return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
318 }
319 EXPORT_SYMBOL(filemap_fdatawrite_range);
320
321 /**
322  * filemap_flush - mostly a non-blocking flush
323  * @mapping:    target address_space
324  *
325  * This is a mostly non-blocking flush.  Not suitable for data-integrity
326  * purposes - I/O may not be started against all dirty pages.
327  */
328 int filemap_flush(struct address_space *mapping)
329 {
330         return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
331 }
332 EXPORT_SYMBOL(filemap_flush);
333
334 /**
335  * filemap_fdatawait_range - wait for writeback to complete
336  * @mapping:            address space structure to wait for
337  * @start_byte:         offset in bytes where the range starts
338  * @end_byte:           offset in bytes where the range ends (inclusive)
339  *
340  * Walk the list of under-writeback pages of the given address space
341  * in the given range and wait for all of them.
342  */
343 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
344                             loff_t end_byte)
345 {
346         pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
347         pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
348         struct pagevec pvec;
349         int nr_pages;
350         int ret2, ret = 0;
351
352         if (end_byte < start_byte)
353                 goto out;
354
355         pagevec_init(&pvec, 0);
356         while ((index <= end) &&
357                         (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
358                         PAGECACHE_TAG_WRITEBACK,
359                         min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
360                 unsigned i;
361
362                 for (i = 0; i < nr_pages; i++) {
363                         struct page *page = pvec.pages[i];
364
365                         /* until radix tree lookup accepts end_index */
366                         if (page->index > end)
367                                 continue;
368
369                         wait_on_page_writeback(page);
370                         if (TestClearPageError(page))
371                                 ret = -EIO;
372                 }
373                 pagevec_release(&pvec);
374                 cond_resched();
375         }
376 out:
377         ret2 = filemap_check_errors(mapping);
378         if (!ret)
379                 ret = ret2;
380
381         return ret;
382 }
383 EXPORT_SYMBOL(filemap_fdatawait_range);
384
385 /**
386  * filemap_fdatawait - wait for all under-writeback pages to complete
387  * @mapping: address space structure to wait for
388  *
389  * Walk the list of under-writeback pages of the given address space
390  * and wait for all of them.
391  */
392 int filemap_fdatawait(struct address_space *mapping)
393 {
394         loff_t i_size = i_size_read(mapping->host);
395
396         if (i_size == 0)
397                 return 0;
398
399         return filemap_fdatawait_range(mapping, 0, i_size - 1);
400 }
401 EXPORT_SYMBOL(filemap_fdatawait);
402
403 int filemap_write_and_wait(struct address_space *mapping)
404 {
405         int err = 0;
406
407         if (mapping->nrpages) {
408                 err = filemap_fdatawrite(mapping);
409                 /*
410                  * Even if the above returned error, the pages may be
411                  * written partially (e.g. -ENOSPC), so we wait for it.
412                  * But the -EIO is special case, it may indicate the worst
413                  * thing (e.g. bug) happened, so we avoid waiting for it.
414                  */
415                 if (err != -EIO) {
416                         int err2 = filemap_fdatawait(mapping);
417                         if (!err)
418                                 err = err2;
419                 }
420         } else {
421                 err = filemap_check_errors(mapping);
422         }
423         return err;
424 }
425 EXPORT_SYMBOL(filemap_write_and_wait);
426
427 /**
428  * filemap_write_and_wait_range - write out & wait on a file range
429  * @mapping:    the address_space for the pages
430  * @lstart:     offset in bytes where the range starts
431  * @lend:       offset in bytes where the range ends (inclusive)
432  *
433  * Write out and wait upon file offsets lstart->lend, inclusive.
434  *
435  * Note that `lend' is inclusive (describes the last byte to be written) so
436  * that this function can be used to write to the very end-of-file (end = -1).
437  */
438 int filemap_write_and_wait_range(struct address_space *mapping,
439                                  loff_t lstart, loff_t lend)
440 {
441         int err = 0;
442
443         if (mapping->nrpages) {
444                 err = __filemap_fdatawrite_range(mapping, lstart, lend,
445                                                  WB_SYNC_ALL);
446                 /* See comment of filemap_write_and_wait() */
447                 if (err != -EIO) {
448                         int err2 = filemap_fdatawait_range(mapping,
449                                                 lstart, lend);
450                         if (!err)
451                                 err = err2;
452                 }
453         } else {
454                 err = filemap_check_errors(mapping);
455         }
456         return err;
457 }
458 EXPORT_SYMBOL(filemap_write_and_wait_range);
459
460 /**
461  * replace_page_cache_page - replace a pagecache page with a new one
462  * @old:        page to be replaced
463  * @new:        page to replace with
464  * @gfp_mask:   allocation mode
465  *
466  * This function replaces a page in the pagecache with a new one.  On
467  * success it acquires the pagecache reference for the new page and
468  * drops it for the old page.  Both the old and new pages must be
469  * locked.  This function does not add the new page to the LRU, the
470  * caller must do that.
471  *
472  * The remove + add is atomic.  The only way this function can fail is
473  * memory allocation failure.
474  */
475 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
476 {
477         int error;
478
479         VM_BUG_ON_PAGE(!PageLocked(old), old);
480         VM_BUG_ON_PAGE(!PageLocked(new), new);
481         VM_BUG_ON_PAGE(new->mapping, new);
482
483         error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
484         if (!error) {
485                 struct address_space *mapping = old->mapping;
486                 void (*freepage)(struct page *);
487
488                 pgoff_t offset = old->index;
489                 freepage = mapping->a_ops->freepage;
490
491                 page_cache_get(new);
492                 new->mapping = mapping;
493                 new->index = offset;
494
495                 spin_lock_irq(&mapping->tree_lock);
496                 __delete_from_page_cache(old, NULL);
497                 error = radix_tree_insert(&mapping->page_tree, offset, new);
498                 BUG_ON(error);
499                 mapping->nrpages++;
500                 __inc_zone_page_state(new, NR_FILE_PAGES);
501                 if (PageSwapBacked(new))
502                         __inc_zone_page_state(new, NR_SHMEM);
503                 spin_unlock_irq(&mapping->tree_lock);
504                 /* mem_cgroup codes must not be called under tree_lock */
505                 mem_cgroup_replace_page_cache(old, new);
506                 radix_tree_preload_end();
507                 if (freepage)
508                         freepage(old);
509                 page_cache_release(old);
510         }
511
512         return error;
513 }
514 EXPORT_SYMBOL_GPL(replace_page_cache_page);
515
516 static int page_cache_tree_insert(struct address_space *mapping,
517                                   struct page *page, void **shadowp)
518 {
519         struct radix_tree_node *node;
520         void **slot;
521         int error;
522
523         error = __radix_tree_create(&mapping->page_tree, page->index,
524                                     &node, &slot);
525         if (error)
526                 return error;
527         if (*slot) {
528                 void *p;
529
530                 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
531                 if (!radix_tree_exceptional_entry(p))
532                         return -EEXIST;
533                 if (shadowp)
534                         *shadowp = p;
535                 mapping->nrshadows--;
536                 if (node)
537                         workingset_node_shadows_dec(node);
538         }
539         radix_tree_replace_slot(slot, page);
540         mapping->nrpages++;
541         if (node) {
542                 workingset_node_pages_inc(node);
543                 /*
544                  * Don't track node that contains actual pages.
545                  *
546                  * Avoid acquiring the list_lru lock if already
547                  * untracked.  The list_empty() test is safe as
548                  * node->private_list is protected by
549                  * mapping->tree_lock.
550                  */
551                 if (!list_empty(&node->private_list))
552                         list_lru_del(&workingset_shadow_nodes,
553                                      &node->private_list);
554         }
555         return 0;
556 }
557
558 static int __add_to_page_cache_locked(struct page *page,
559                                       struct address_space *mapping,
560                                       pgoff_t offset, gfp_t gfp_mask,
561                                       void **shadowp)
562 {
563         int error;
564
565         VM_BUG_ON_PAGE(!PageLocked(page), page);
566         VM_BUG_ON_PAGE(PageSwapBacked(page), page);
567
568         error = mem_cgroup_charge_file(page, current->mm,
569                                         gfp_mask & GFP_RECLAIM_MASK);
570         if (error)
571                 return error;
572
573         error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
574         if (error) {
575                 mem_cgroup_uncharge_cache_page(page);
576                 return error;
577         }
578
579         page_cache_get(page);
580         page->mapping = mapping;
581         page->index = offset;
582
583         spin_lock_irq(&mapping->tree_lock);
584         error = page_cache_tree_insert(mapping, page, shadowp);
585         radix_tree_preload_end();
586         if (unlikely(error))
587                 goto err_insert;
588         __inc_zone_page_state(page, NR_FILE_PAGES);
589         spin_unlock_irq(&mapping->tree_lock);
590         trace_mm_filemap_add_to_page_cache(page);
591         return 0;
592 err_insert:
593         page->mapping = NULL;
594         /* Leave page->index set: truncation relies upon it */
595         spin_unlock_irq(&mapping->tree_lock);
596         mem_cgroup_uncharge_cache_page(page);
597         page_cache_release(page);
598         return error;
599 }
600
601 /**
602  * add_to_page_cache_locked - add a locked page to the pagecache
603  * @page:       page to add
604  * @mapping:    the page's address_space
605  * @offset:     page index
606  * @gfp_mask:   page allocation mode
607  *
608  * This function is used to add a page to the pagecache. It must be locked.
609  * This function does not add the page to the LRU.  The caller must do that.
610  */
611 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
612                 pgoff_t offset, gfp_t gfp_mask)
613 {
614         return __add_to_page_cache_locked(page, mapping, offset,
615                                           gfp_mask, NULL);
616 }
617 EXPORT_SYMBOL(add_to_page_cache_locked);
618
619 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
620                                 pgoff_t offset, gfp_t gfp_mask)
621 {
622         void *shadow = NULL;
623         int ret;
624
625         __set_page_locked(page);
626         ret = __add_to_page_cache_locked(page, mapping, offset,
627                                          gfp_mask, &shadow);
628         if (unlikely(ret))
629                 __clear_page_locked(page);
630         else {
631                 /*
632                  * The page might have been evicted from cache only
633                  * recently, in which case it should be activated like
634                  * any other repeatedly accessed page.
635                  */
636                 if (shadow && workingset_refault(shadow)) {
637                         SetPageActive(page);
638                         workingset_activation(page);
639                 } else
640                         ClearPageActive(page);
641                 lru_cache_add(page);
642         }
643         return ret;
644 }
645 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
646
647 #ifdef CONFIG_NUMA
648 struct page *__page_cache_alloc(gfp_t gfp)
649 {
650         int n;
651         struct page *page;
652
653         if (cpuset_do_page_mem_spread()) {
654                 unsigned int cpuset_mems_cookie;
655                 do {
656                         cpuset_mems_cookie = read_mems_allowed_begin();
657                         n = cpuset_mem_spread_node();
658                         page = alloc_pages_exact_node(n, gfp, 0);
659                 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
660
661                 return page;
662         }
663         return alloc_pages(gfp, 0);
664 }
665 EXPORT_SYMBOL(__page_cache_alloc);
666 #endif
667
668 /*
669  * In order to wait for pages to become available there must be
670  * waitqueues associated with pages. By using a hash table of
671  * waitqueues where the bucket discipline is to maintain all
672  * waiters on the same queue and wake all when any of the pages
673  * become available, and for the woken contexts to check to be
674  * sure the appropriate page became available, this saves space
675  * at a cost of "thundering herd" phenomena during rare hash
676  * collisions.
677  */
678 static wait_queue_head_t *page_waitqueue(struct page *page)
679 {
680         const struct zone *zone = page_zone(page);
681
682         return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
683 }
684
685 static inline void wake_up_page(struct page *page, int bit)
686 {
687         __wake_up_bit(page_waitqueue(page), &page->flags, bit);
688 }
689
690 void wait_on_page_bit(struct page *page, int bit_nr)
691 {
692         DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
693
694         if (test_bit(bit_nr, &page->flags))
695                 __wait_on_bit(page_waitqueue(page), &wait, sleep_on_page,
696                                                         TASK_UNINTERRUPTIBLE);
697 }
698 EXPORT_SYMBOL(wait_on_page_bit);
699
700 int wait_on_page_bit_killable(struct page *page, int bit_nr)
701 {
702         DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
703
704         if (!test_bit(bit_nr, &page->flags))
705                 return 0;
706
707         return __wait_on_bit(page_waitqueue(page), &wait,
708                              sleep_on_page_killable, TASK_KILLABLE);
709 }
710
711 /**
712  * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
713  * @page: Page defining the wait queue of interest
714  * @waiter: Waiter to add to the queue
715  *
716  * Add an arbitrary @waiter to the wait queue for the nominated @page.
717  */
718 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
719 {
720         wait_queue_head_t *q = page_waitqueue(page);
721         unsigned long flags;
722
723         spin_lock_irqsave(&q->lock, flags);
724         __add_wait_queue(q, waiter);
725         spin_unlock_irqrestore(&q->lock, flags);
726 }
727 EXPORT_SYMBOL_GPL(add_page_wait_queue);
728
729 /**
730  * unlock_page - unlock a locked page
731  * @page: the page
732  *
733  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
734  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
735  * mechananism between PageLocked pages and PageWriteback pages is shared.
736  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
737  *
738  * The mb is necessary to enforce ordering between the clear_bit and the read
739  * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
740  */
741 void unlock_page(struct page *page)
742 {
743         VM_BUG_ON_PAGE(!PageLocked(page), page);
744         clear_bit_unlock(PG_locked, &page->flags);
745         smp_mb__after_atomic();
746         wake_up_page(page, PG_locked);
747 }
748 EXPORT_SYMBOL(unlock_page);
749
750 /**
751  * end_page_writeback - end writeback against a page
752  * @page: the page
753  */
754 void end_page_writeback(struct page *page)
755 {
756         if (TestClearPageReclaim(page))
757                 rotate_reclaimable_page(page);
758
759         if (!test_clear_page_writeback(page))
760                 BUG();
761
762         smp_mb__after_atomic();
763         wake_up_page(page, PG_writeback);
764 }
765 EXPORT_SYMBOL(end_page_writeback);
766
767 /*
768  * After completing I/O on a page, call this routine to update the page
769  * flags appropriately
770  */
771 void page_endio(struct page *page, int rw, int err)
772 {
773         if (rw == READ) {
774                 if (!err) {
775                         SetPageUptodate(page);
776                 } else {
777                         ClearPageUptodate(page);
778                         SetPageError(page);
779                 }
780                 unlock_page(page);
781         } else { /* rw == WRITE */
782                 if (err) {
783                         SetPageError(page);
784                         if (page->mapping)
785                                 mapping_set_error(page->mapping, err);
786                 }
787                 end_page_writeback(page);
788         }
789 }
790 EXPORT_SYMBOL_GPL(page_endio);
791
792 /**
793  * __lock_page - get a lock on the page, assuming we need to sleep to get it
794  * @page: the page to lock
795  */
796 void __lock_page(struct page *page)
797 {
798         DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
799
800         __wait_on_bit_lock(page_waitqueue(page), &wait, sleep_on_page,
801                                                         TASK_UNINTERRUPTIBLE);
802 }
803 EXPORT_SYMBOL(__lock_page);
804
805 int __lock_page_killable(struct page *page)
806 {
807         DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
808
809         return __wait_on_bit_lock(page_waitqueue(page), &wait,
810                                         sleep_on_page_killable, TASK_KILLABLE);
811 }
812 EXPORT_SYMBOL_GPL(__lock_page_killable);
813
814 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
815                          unsigned int flags)
816 {
817         if (flags & FAULT_FLAG_ALLOW_RETRY) {
818                 /*
819                  * CAUTION! In this case, mmap_sem is not released
820                  * even though return 0.
821                  */
822                 if (flags & FAULT_FLAG_RETRY_NOWAIT)
823                         return 0;
824
825                 up_read(&mm->mmap_sem);
826                 if (flags & FAULT_FLAG_KILLABLE)
827                         wait_on_page_locked_killable(page);
828                 else
829                         wait_on_page_locked(page);
830                 return 0;
831         } else {
832                 if (flags & FAULT_FLAG_KILLABLE) {
833                         int ret;
834
835                         ret = __lock_page_killable(page);
836                         if (ret) {
837                                 up_read(&mm->mmap_sem);
838                                 return 0;
839                         }
840                 } else
841                         __lock_page(page);
842                 return 1;
843         }
844 }
845
846 /**
847  * page_cache_next_hole - find the next hole (not-present entry)
848  * @mapping: mapping
849  * @index: index
850  * @max_scan: maximum range to search
851  *
852  * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
853  * lowest indexed hole.
854  *
855  * Returns: the index of the hole if found, otherwise returns an index
856  * outside of the set specified (in which case 'return - index >=
857  * max_scan' will be true). In rare cases of index wrap-around, 0 will
858  * be returned.
859  *
860  * page_cache_next_hole may be called under rcu_read_lock. However,
861  * like radix_tree_gang_lookup, this will not atomically search a
862  * snapshot of the tree at a single point in time. For example, if a
863  * hole is created at index 5, then subsequently a hole is created at
864  * index 10, page_cache_next_hole covering both indexes may return 10
865  * if called under rcu_read_lock.
866  */
867 pgoff_t page_cache_next_hole(struct address_space *mapping,
868                              pgoff_t index, unsigned long max_scan)
869 {
870         unsigned long i;
871
872         for (i = 0; i < max_scan; i++) {
873                 struct page *page;
874
875                 page = radix_tree_lookup(&mapping->page_tree, index);
876                 if (!page || radix_tree_exceptional_entry(page))
877                         break;
878                 index++;
879                 if (index == 0)
880                         break;
881         }
882
883         return index;
884 }
885 EXPORT_SYMBOL(page_cache_next_hole);
886
887 /**
888  * page_cache_prev_hole - find the prev hole (not-present entry)
889  * @mapping: mapping
890  * @index: index
891  * @max_scan: maximum range to search
892  *
893  * Search backwards in the range [max(index-max_scan+1, 0), index] for
894  * the first hole.
895  *
896  * Returns: the index of the hole if found, otherwise returns an index
897  * outside of the set specified (in which case 'index - return >=
898  * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
899  * will be returned.
900  *
901  * page_cache_prev_hole may be called under rcu_read_lock. However,
902  * like radix_tree_gang_lookup, this will not atomically search a
903  * snapshot of the tree at a single point in time. For example, if a
904  * hole is created at index 10, then subsequently a hole is created at
905  * index 5, page_cache_prev_hole covering both indexes may return 5 if
906  * called under rcu_read_lock.
907  */
908 pgoff_t page_cache_prev_hole(struct address_space *mapping,
909                              pgoff_t index, unsigned long max_scan)
910 {
911         unsigned long i;
912
913         for (i = 0; i < max_scan; i++) {
914                 struct page *page;
915
916                 page = radix_tree_lookup(&mapping->page_tree, index);
917                 if (!page || radix_tree_exceptional_entry(page))
918                         break;
919                 index--;
920                 if (index == ULONG_MAX)
921                         break;
922         }
923
924         return index;
925 }
926 EXPORT_SYMBOL(page_cache_prev_hole);
927
928 /**
929  * find_get_entry - find and get a page cache entry
930  * @mapping: the address_space to search
931  * @offset: the page cache index
932  *
933  * Looks up the page cache slot at @mapping & @offset.  If there is a
934  * page cache page, it is returned with an increased refcount.
935  *
936  * If the slot holds a shadow entry of a previously evicted page, or a
937  * swap entry from shmem/tmpfs, it is returned.
938  *
939  * Otherwise, %NULL is returned.
940  */
941 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
942 {
943         void **pagep;
944         struct page *page;
945
946         rcu_read_lock();
947 repeat:
948         page = NULL;
949         pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
950         if (pagep) {
951                 page = radix_tree_deref_slot(pagep);
952                 if (unlikely(!page))
953                         goto out;
954                 if (radix_tree_exception(page)) {
955                         if (radix_tree_deref_retry(page))
956                                 goto repeat;
957                         /*
958                          * A shadow entry of a recently evicted page,
959                          * or a swap entry from shmem/tmpfs.  Return
960                          * it without attempting to raise page count.
961                          */
962                         goto out;
963                 }
964                 if (!page_cache_get_speculative(page))
965                         goto repeat;
966
967                 /*
968                  * Has the page moved?
969                  * This is part of the lockless pagecache protocol. See
970                  * include/linux/pagemap.h for details.
971                  */
972                 if (unlikely(page != *pagep)) {
973                         page_cache_release(page);
974                         goto repeat;
975                 }
976         }
977 out:
978         rcu_read_unlock();
979
980         return page;
981 }
982 EXPORT_SYMBOL(find_get_entry);
983
984 /**
985  * find_get_page - find and get a page reference
986  * @mapping: the address_space to search
987  * @offset: the page index
988  *
989  * Looks up the page cache slot at @mapping & @offset.  If there is a
990  * page cache page, it is returned with an increased refcount.
991  *
992  * Otherwise, %NULL is returned.
993  */
994 struct page *find_get_page(struct address_space *mapping, pgoff_t offset)
995 {
996         struct page *page = find_get_entry(mapping, offset);
997
998         if (radix_tree_exceptional_entry(page))
999                 page = NULL;
1000         return page;
1001 }
1002 EXPORT_SYMBOL(find_get_page);
1003
1004 /**
1005  * find_lock_entry - locate, pin and lock a page cache entry
1006  * @mapping: the address_space to search
1007  * @offset: the page cache index
1008  *
1009  * Looks up the page cache slot at @mapping & @offset.  If there is a
1010  * page cache page, it is returned locked and with an increased
1011  * refcount.
1012  *
1013  * If the slot holds a shadow entry of a previously evicted page, or a
1014  * swap entry from shmem/tmpfs, it is returned.
1015  *
1016  * Otherwise, %NULL is returned.
1017  *
1018  * find_lock_entry() may sleep.
1019  */
1020 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1021 {
1022         struct page *page;
1023
1024 repeat:
1025         page = find_get_entry(mapping, offset);
1026         if (page && !radix_tree_exception(page)) {
1027                 lock_page(page);
1028                 /* Has the page been truncated? */
1029                 if (unlikely(page->mapping != mapping)) {
1030                         unlock_page(page);
1031                         page_cache_release(page);
1032                         goto repeat;
1033                 }
1034                 VM_BUG_ON_PAGE(page->index != offset, page);
1035         }
1036         return page;
1037 }
1038 EXPORT_SYMBOL(find_lock_entry);
1039
1040 /**
1041  * find_lock_page - locate, pin and lock a pagecache page
1042  * @mapping: the address_space to search
1043  * @offset: the page index
1044  *
1045  * Looks up the page cache slot at @mapping & @offset.  If there is a
1046  * page cache page, it is returned locked and with an increased
1047  * refcount.
1048  *
1049  * Otherwise, %NULL is returned.
1050  *
1051  * find_lock_page() may sleep.
1052  */
1053 struct page *find_lock_page(struct address_space *mapping, pgoff_t offset)
1054 {
1055         struct page *page = find_lock_entry(mapping, offset);
1056
1057         if (radix_tree_exceptional_entry(page))
1058                 page = NULL;
1059         return page;
1060 }
1061 EXPORT_SYMBOL(find_lock_page);
1062
1063 /**
1064  * find_or_create_page - locate or add a pagecache page
1065  * @mapping: the page's address_space
1066  * @index: the page's index into the mapping
1067  * @gfp_mask: page allocation mode
1068  *
1069  * Looks up the page cache slot at @mapping & @offset.  If there is a
1070  * page cache page, it is returned locked and with an increased
1071  * refcount.
1072  *
1073  * If the page is not present, a new page is allocated using @gfp_mask
1074  * and added to the page cache and the VM's LRU list.  The page is
1075  * returned locked and with an increased refcount.
1076  *
1077  * On memory exhaustion, %NULL is returned.
1078  *
1079  * find_or_create_page() may sleep, even if @gfp_flags specifies an
1080  * atomic allocation!
1081  */
1082 struct page *find_or_create_page(struct address_space *mapping,
1083                 pgoff_t index, gfp_t gfp_mask)
1084 {
1085         struct page *page;
1086         int err;
1087 repeat:
1088         page = find_lock_page(mapping, index);
1089         if (!page) {
1090                 page = __page_cache_alloc(gfp_mask);
1091                 if (!page)
1092                         return NULL;
1093                 /*
1094                  * We want a regular kernel memory (not highmem or DMA etc)
1095                  * allocation for the radix tree nodes, but we need to honour
1096                  * the context-specific requirements the caller has asked for.
1097                  * GFP_RECLAIM_MASK collects those requirements.
1098                  */
1099                 err = add_to_page_cache_lru(page, mapping, index,
1100                         (gfp_mask & GFP_RECLAIM_MASK));
1101                 if (unlikely(err)) {
1102                         page_cache_release(page);
1103                         page = NULL;
1104                         if (err == -EEXIST)
1105                                 goto repeat;
1106                 }
1107         }
1108         return page;
1109 }
1110 EXPORT_SYMBOL(find_or_create_page);
1111
1112 /**
1113  * find_get_entries - gang pagecache lookup
1114  * @mapping:    The address_space to search
1115  * @start:      The starting page cache index
1116  * @nr_entries: The maximum number of entries
1117  * @entries:    Where the resulting entries are placed
1118  * @indices:    The cache indices corresponding to the entries in @entries
1119  *
1120  * find_get_entries() will search for and return a group of up to
1121  * @nr_entries entries in the mapping.  The entries are placed at
1122  * @entries.  find_get_entries() takes a reference against any actual
1123  * pages it returns.
1124  *
1125  * The search returns a group of mapping-contiguous page cache entries
1126  * with ascending indexes.  There may be holes in the indices due to
1127  * not-present pages.
1128  *
1129  * Any shadow entries of evicted pages, or swap entries from
1130  * shmem/tmpfs, are included in the returned array.
1131  *
1132  * find_get_entries() returns the number of pages and shadow entries
1133  * which were found.
1134  */
1135 unsigned find_get_entries(struct address_space *mapping,
1136                           pgoff_t start, unsigned int nr_entries,
1137                           struct page **entries, pgoff_t *indices)
1138 {
1139         void **slot;
1140         unsigned int ret = 0;
1141         struct radix_tree_iter iter;
1142
1143         if (!nr_entries)
1144                 return 0;
1145
1146         rcu_read_lock();
1147 restart:
1148         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1149                 struct page *page;
1150 repeat:
1151                 page = radix_tree_deref_slot(slot);
1152                 if (unlikely(!page))
1153                         continue;
1154                 if (radix_tree_exception(page)) {
1155                         if (radix_tree_deref_retry(page))
1156                                 goto restart;
1157                         /*
1158                          * A shadow entry of a recently evicted page,
1159                          * or a swap entry from shmem/tmpfs.  Return
1160                          * it without attempting to raise page count.
1161                          */
1162                         goto export;
1163                 }
1164                 if (!page_cache_get_speculative(page))
1165                         goto repeat;
1166
1167                 /* Has the page moved? */
1168                 if (unlikely(page != *slot)) {
1169                         page_cache_release(page);
1170                         goto repeat;
1171                 }
1172 export:
1173                 indices[ret] = iter.index;
1174                 entries[ret] = page;
1175                 if (++ret == nr_entries)
1176                         break;
1177         }
1178         rcu_read_unlock();
1179         return ret;
1180 }
1181
1182 /**
1183  * find_get_pages - gang pagecache lookup
1184  * @mapping:    The address_space to search
1185  * @start:      The starting page index
1186  * @nr_pages:   The maximum number of pages
1187  * @pages:      Where the resulting pages are placed
1188  *
1189  * find_get_pages() will search for and return a group of up to
1190  * @nr_pages pages in the mapping.  The pages are placed at @pages.
1191  * find_get_pages() takes a reference against the returned pages.
1192  *
1193  * The search returns a group of mapping-contiguous pages with ascending
1194  * indexes.  There may be holes in the indices due to not-present pages.
1195  *
1196  * find_get_pages() returns the number of pages which were found.
1197  */
1198 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1199                             unsigned int nr_pages, struct page **pages)
1200 {
1201         struct radix_tree_iter iter;
1202         void **slot;
1203         unsigned ret = 0;
1204
1205         if (unlikely(!nr_pages))
1206                 return 0;
1207
1208         rcu_read_lock();
1209 restart:
1210         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1211                 struct page *page;
1212 repeat:
1213                 page = radix_tree_deref_slot(slot);
1214                 if (unlikely(!page))
1215                         continue;
1216
1217                 if (radix_tree_exception(page)) {
1218                         if (radix_tree_deref_retry(page)) {
1219                                 /*
1220                                  * Transient condition which can only trigger
1221                                  * when entry at index 0 moves out of or back
1222                                  * to root: none yet gotten, safe to restart.
1223                                  */
1224                                 WARN_ON(iter.index);
1225                                 goto restart;
1226                         }
1227                         /*
1228                          * A shadow entry of a recently evicted page,
1229                          * or a swap entry from shmem/tmpfs.  Skip
1230                          * over it.
1231                          */
1232                         continue;
1233                 }
1234
1235                 if (!page_cache_get_speculative(page))
1236                         goto repeat;
1237
1238                 /* Has the page moved? */
1239                 if (unlikely(page != *slot)) {
1240                         page_cache_release(page);
1241                         goto repeat;
1242                 }
1243
1244                 pages[ret] = page;
1245                 if (++ret == nr_pages)
1246                         break;
1247         }
1248
1249         rcu_read_unlock();
1250         return ret;
1251 }
1252
1253 /**
1254  * find_get_pages_contig - gang contiguous pagecache lookup
1255  * @mapping:    The address_space to search
1256  * @index:      The starting page index
1257  * @nr_pages:   The maximum number of pages
1258  * @pages:      Where the resulting pages are placed
1259  *
1260  * find_get_pages_contig() works exactly like find_get_pages(), except
1261  * that the returned number of pages are guaranteed to be contiguous.
1262  *
1263  * find_get_pages_contig() returns the number of pages which were found.
1264  */
1265 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1266                                unsigned int nr_pages, struct page **pages)
1267 {
1268         struct radix_tree_iter iter;
1269         void **slot;
1270         unsigned int ret = 0;
1271
1272         if (unlikely(!nr_pages))
1273                 return 0;
1274
1275         rcu_read_lock();
1276 restart:
1277         radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
1278                 struct page *page;
1279 repeat:
1280                 page = radix_tree_deref_slot(slot);
1281                 /* The hole, there no reason to continue */
1282                 if (unlikely(!page))
1283                         break;
1284
1285                 if (radix_tree_exception(page)) {
1286                         if (radix_tree_deref_retry(page)) {
1287                                 /*
1288                                  * Transient condition which can only trigger
1289                                  * when entry at index 0 moves out of or back
1290                                  * to root: none yet gotten, safe to restart.
1291                                  */
1292                                 goto restart;
1293                         }
1294                         /*
1295                          * A shadow entry of a recently evicted page,
1296                          * or a swap entry from shmem/tmpfs.  Stop
1297                          * looking for contiguous pages.
1298                          */
1299                         break;
1300                 }
1301
1302                 if (!page_cache_get_speculative(page))
1303                         goto repeat;
1304
1305                 /* Has the page moved? */
1306                 if (unlikely(page != *slot)) {
1307                         page_cache_release(page);
1308                         goto repeat;
1309                 }
1310
1311                 /*
1312                  * must check mapping and index after taking the ref.
1313                  * otherwise we can get both false positives and false
1314                  * negatives, which is just confusing to the caller.
1315                  */
1316                 if (page->mapping == NULL || page->index != iter.index) {
1317                         page_cache_release(page);
1318                         break;
1319                 }
1320
1321                 pages[ret] = page;
1322                 if (++ret == nr_pages)
1323                         break;
1324         }
1325         rcu_read_unlock();
1326         return ret;
1327 }
1328 EXPORT_SYMBOL(find_get_pages_contig);
1329
1330 /**
1331  * find_get_pages_tag - find and return pages that match @tag
1332  * @mapping:    the address_space to search
1333  * @index:      the starting page index
1334  * @tag:        the tag index
1335  * @nr_pages:   the maximum number of pages
1336  * @pages:      where the resulting pages are placed
1337  *
1338  * Like find_get_pages, except we only return pages which are tagged with
1339  * @tag.   We update @index to index the next page for the traversal.
1340  */
1341 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1342                         int tag, unsigned int nr_pages, struct page **pages)
1343 {
1344         struct radix_tree_iter iter;
1345         void **slot;
1346         unsigned ret = 0;
1347
1348         if (unlikely(!nr_pages))
1349                 return 0;
1350
1351         rcu_read_lock();
1352 restart:
1353         radix_tree_for_each_tagged(slot, &mapping->page_tree,
1354                                    &iter, *index, tag) {
1355                 struct page *page;
1356 repeat:
1357                 page = radix_tree_deref_slot(slot);
1358                 if (unlikely(!page))
1359                         continue;
1360
1361                 if (radix_tree_exception(page)) {
1362                         if (radix_tree_deref_retry(page)) {
1363                                 /*
1364                                  * Transient condition which can only trigger
1365                                  * when entry at index 0 moves out of or back
1366                                  * to root: none yet gotten, safe to restart.
1367                                  */
1368                                 goto restart;
1369                         }
1370                         /*
1371                          * A shadow entry of a recently evicted page.
1372                          *
1373                          * Those entries should never be tagged, but
1374                          * this tree walk is lockless and the tags are
1375                          * looked up in bulk, one radix tree node at a
1376                          * time, so there is a sizable window for page
1377                          * reclaim to evict a page we saw tagged.
1378                          *
1379                          * Skip over it.
1380                          */
1381                         continue;
1382                 }
1383
1384                 if (!page_cache_get_speculative(page))
1385                         goto repeat;
1386
1387                 /* Has the page moved? */
1388                 if (unlikely(page != *slot)) {
1389                         page_cache_release(page);
1390                         goto repeat;
1391                 }
1392
1393                 pages[ret] = page;
1394                 if (++ret == nr_pages)
1395                         break;
1396         }
1397
1398         rcu_read_unlock();
1399
1400         if (ret)
1401                 *index = pages[ret - 1]->index + 1;
1402
1403         return ret;
1404 }
1405 EXPORT_SYMBOL(find_get_pages_tag);
1406
1407 /**
1408  * grab_cache_page_nowait - returns locked page at given index in given cache
1409  * @mapping: target address_space
1410  * @index: the page index
1411  *
1412  * Same as grab_cache_page(), but do not wait if the page is unavailable.
1413  * This is intended for speculative data generators, where the data can
1414  * be regenerated if the page couldn't be grabbed.  This routine should
1415  * be safe to call while holding the lock for another page.
1416  *
1417  * Clear __GFP_FS when allocating the page to avoid recursion into the fs
1418  * and deadlock against the caller's locked page.
1419  */
1420 struct page *
1421 grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
1422 {
1423         struct page *page = find_get_page(mapping, index);
1424
1425         if (page) {
1426                 if (trylock_page(page))
1427                         return page;
1428                 page_cache_release(page);
1429                 return NULL;
1430         }
1431         page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
1432         if (page && add_to_page_cache_lru(page, mapping, index, GFP_NOFS)) {
1433                 page_cache_release(page);
1434                 page = NULL;
1435         }
1436         return page;
1437 }
1438 EXPORT_SYMBOL(grab_cache_page_nowait);
1439
1440 /*
1441  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1442  * a _large_ part of the i/o request. Imagine the worst scenario:
1443  *
1444  *      ---R__________________________________________B__________
1445  *         ^ reading here                             ^ bad block(assume 4k)
1446  *
1447  * read(R) => miss => readahead(R...B) => media error => frustrating retries
1448  * => failing the whole request => read(R) => read(R+1) =>
1449  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1450  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1451  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1452  *
1453  * It is going insane. Fix it by quickly scaling down the readahead size.
1454  */
1455 static void shrink_readahead_size_eio(struct file *filp,
1456                                         struct file_ra_state *ra)
1457 {
1458         ra->ra_pages /= 4;
1459 }
1460
1461 /**
1462  * do_generic_file_read - generic file read routine
1463  * @filp:       the file to read
1464  * @ppos:       current file position
1465  * @iter:       data destination
1466  * @written:    already copied
1467  *
1468  * This is a generic file read routine, and uses the
1469  * mapping->a_ops->readpage() function for the actual low-level stuff.
1470  *
1471  * This is really ugly. But the goto's actually try to clarify some
1472  * of the logic when it comes to error handling etc.
1473  */
1474 static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1475                 struct iov_iter *iter, ssize_t written)
1476 {
1477         struct address_space *mapping = filp->f_mapping;
1478         struct inode *inode = mapping->host;
1479         struct file_ra_state *ra = &filp->f_ra;
1480         pgoff_t index;
1481         pgoff_t last_index;
1482         pgoff_t prev_index;
1483         unsigned long offset;      /* offset into pagecache page */
1484         unsigned int prev_offset;
1485         int error = 0;
1486
1487         index = *ppos >> PAGE_CACHE_SHIFT;
1488         prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1489         prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1490         last_index = (*ppos + iter->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1491         offset = *ppos & ~PAGE_CACHE_MASK;
1492
1493         for (;;) {
1494                 struct page *page;
1495                 pgoff_t end_index;
1496                 loff_t isize;
1497                 unsigned long nr, ret;
1498
1499                 cond_resched();
1500 find_page:
1501                 page = find_get_page(mapping, index);
1502                 if (!page) {
1503                         page_cache_sync_readahead(mapping,
1504                                         ra, filp,
1505                                         index, last_index - index);
1506                         page = find_get_page(mapping, index);
1507                         if (unlikely(page == NULL))
1508                                 goto no_cached_page;
1509                 }
1510                 if (PageReadahead(page)) {
1511                         page_cache_async_readahead(mapping,
1512                                         ra, filp, page,
1513                                         index, last_index - index);
1514                 }
1515                 if (!PageUptodate(page)) {
1516                         if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1517                                         !mapping->a_ops->is_partially_uptodate)
1518                                 goto page_not_up_to_date;
1519                         if (!trylock_page(page))
1520                                 goto page_not_up_to_date;
1521                         /* Did it get truncated before we got the lock? */
1522                         if (!page->mapping)
1523                                 goto page_not_up_to_date_locked;
1524                         if (!mapping->a_ops->is_partially_uptodate(page,
1525                                                         offset, iter->count))
1526                                 goto page_not_up_to_date_locked;
1527                         unlock_page(page);
1528                 }
1529 page_ok:
1530                 /*
1531                  * i_size must be checked after we know the page is Uptodate.
1532                  *
1533                  * Checking i_size after the check allows us to calculate
1534                  * the correct value for "nr", which means the zero-filled
1535                  * part of the page is not copied back to userspace (unless
1536                  * another truncate extends the file - this is desired though).
1537                  */
1538
1539                 isize = i_size_read(inode);
1540                 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1541                 if (unlikely(!isize || index > end_index)) {
1542                         page_cache_release(page);
1543                         goto out;
1544                 }
1545
1546                 /* nr is the maximum number of bytes to copy from this page */
1547                 nr = PAGE_CACHE_SIZE;
1548                 if (index == end_index) {
1549                         nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1550                         if (nr <= offset) {
1551                                 page_cache_release(page);
1552                                 goto out;
1553                         }
1554                 }
1555                 nr = nr - offset;
1556
1557                 /* If users can be writing to this page using arbitrary
1558                  * virtual addresses, take care about potential aliasing
1559                  * before reading the page on the kernel side.
1560                  */
1561                 if (mapping_writably_mapped(mapping))
1562                         flush_dcache_page(page);
1563
1564                 /*
1565                  * When a sequential read accesses a page several times,
1566                  * only mark it as accessed the first time.
1567                  */
1568                 if (prev_index != index || offset != prev_offset)
1569                         mark_page_accessed(page);
1570                 prev_index = index;
1571
1572                 /*
1573                  * Ok, we have the page, and it's up-to-date, so
1574                  * now we can copy it to user space...
1575                  */
1576
1577                 ret = copy_page_to_iter(page, offset, nr, iter);
1578                 offset += ret;
1579                 index += offset >> PAGE_CACHE_SHIFT;
1580                 offset &= ~PAGE_CACHE_MASK;
1581                 prev_offset = offset;
1582
1583                 page_cache_release(page);
1584                 written += ret;
1585                 if (!iov_iter_count(iter))
1586                         goto out;
1587                 if (ret < nr) {
1588                         error = -EFAULT;
1589                         goto out;
1590                 }
1591                 continue;
1592
1593 page_not_up_to_date:
1594                 /* Get exclusive access to the page ... */
1595                 error = lock_page_killable(page);
1596                 if (unlikely(error))
1597                         goto readpage_error;
1598
1599 page_not_up_to_date_locked:
1600                 /* Did it get truncated before we got the lock? */
1601                 if (!page->mapping) {
1602                         unlock_page(page);
1603                         page_cache_release(page);
1604                         continue;
1605                 }
1606
1607                 /* Did somebody else fill it already? */
1608                 if (PageUptodate(page)) {
1609                         unlock_page(page);
1610                         goto page_ok;
1611                 }
1612
1613 readpage:
1614                 /*
1615                  * A previous I/O error may have been due to temporary
1616                  * failures, eg. multipath errors.
1617                  * PG_error will be set again if readpage fails.
1618                  */
1619                 ClearPageError(page);
1620                 /* Start the actual read. The read will unlock the page. */
1621                 error = mapping->a_ops->readpage(filp, page);
1622
1623                 if (unlikely(error)) {
1624                         if (error == AOP_TRUNCATED_PAGE) {
1625                                 page_cache_release(page);
1626                                 error = 0;
1627                                 goto find_page;
1628                         }
1629                         goto readpage_error;
1630                 }
1631
1632                 if (!PageUptodate(page)) {
1633                         error = lock_page_killable(page);
1634                         if (unlikely(error))
1635                                 goto readpage_error;
1636                         if (!PageUptodate(page)) {
1637                                 if (page->mapping == NULL) {
1638                                         /*
1639                                          * invalidate_mapping_pages got it
1640                                          */
1641                                         unlock_page(page);
1642                                         page_cache_release(page);
1643                                         goto find_page;
1644                                 }
1645                                 unlock_page(page);
1646                                 shrink_readahead_size_eio(filp, ra);
1647                                 error = -EIO;
1648                                 goto readpage_error;
1649                         }
1650                         unlock_page(page);
1651                 }
1652
1653                 goto page_ok;
1654
1655 readpage_error:
1656                 /* UHHUH! A synchronous read error occurred. Report it */
1657                 page_cache_release(page);
1658                 goto out;
1659
1660 no_cached_page:
1661                 /*
1662                  * Ok, it wasn't cached, so we need to create a new
1663                  * page..
1664                  */
1665                 page = page_cache_alloc_cold(mapping);
1666                 if (!page) {
1667                         error = -ENOMEM;
1668                         goto out;
1669                 }
1670                 error = add_to_page_cache_lru(page, mapping,
1671                                                 index, GFP_KERNEL);
1672                 if (error) {
1673                         page_cache_release(page);
1674                         if (error == -EEXIST) {
1675                                 error = 0;
1676                                 goto find_page;
1677                         }
1678                         goto out;
1679                 }
1680                 goto readpage;
1681         }
1682
1683 out:
1684         ra->prev_pos = prev_index;
1685         ra->prev_pos <<= PAGE_CACHE_SHIFT;
1686         ra->prev_pos |= prev_offset;
1687
1688         *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1689         file_accessed(filp);
1690         return written ? written : error;
1691 }
1692
1693 /*
1694  * Performs necessary checks before doing a write
1695  * @iov:        io vector request
1696  * @nr_segs:    number of segments in the iovec
1697  * @count:      number of bytes to write
1698  * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1699  *
1700  * Adjust number of segments and amount of bytes to write (nr_segs should be
1701  * properly initialized first). Returns appropriate error code that caller
1702  * should return or zero in case that write should be allowed.
1703  */
1704 int generic_segment_checks(const struct iovec *iov,
1705                         unsigned long *nr_segs, size_t *count, int access_flags)
1706 {
1707         unsigned long   seg;
1708         size_t cnt = 0;
1709         for (seg = 0; seg < *nr_segs; seg++) {
1710                 const struct iovec *iv = &iov[seg];
1711
1712                 /*
1713                  * If any segment has a negative length, or the cumulative
1714                  * length ever wraps negative then return -EINVAL.
1715                  */
1716                 cnt += iv->iov_len;
1717                 if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1718                         return -EINVAL;
1719                 if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1720                         continue;
1721                 if (seg == 0)
1722                         return -EFAULT;
1723                 *nr_segs = seg;
1724                 cnt -= iv->iov_len;     /* This segment is no good */
1725                 break;
1726         }
1727         *count = cnt;
1728         return 0;
1729 }
1730 EXPORT_SYMBOL(generic_segment_checks);
1731
1732 /**
1733  * generic_file_aio_read - generic filesystem read routine
1734  * @iocb:       kernel I/O control block
1735  * @iov:        io vector request
1736  * @nr_segs:    number of segments in the iovec
1737  * @pos:        current file position
1738  *
1739  * This is the "read()" routine for all filesystems
1740  * that can use the page cache directly.
1741  */
1742 ssize_t
1743 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1744                 unsigned long nr_segs, loff_t pos)
1745 {
1746         struct file *filp = iocb->ki_filp;
1747         ssize_t retval;
1748         size_t count;
1749         loff_t *ppos = &iocb->ki_pos;
1750         struct iov_iter i;
1751
1752         count = 0;
1753         retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1754         if (retval)
1755                 return retval;
1756         iov_iter_init(&i, iov, nr_segs, count, 0);
1757
1758         /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1759         if (filp->f_flags & O_DIRECT) {
1760                 loff_t size;
1761                 struct address_space *mapping;
1762                 struct inode *inode;
1763
1764                 mapping = filp->f_mapping;
1765                 inode = mapping->host;
1766                 if (!count)
1767                         goto out; /* skip atime */
1768                 size = i_size_read(inode);
1769                 retval = filemap_write_and_wait_range(mapping, pos,
1770                                         pos + iov_length(iov, nr_segs) - 1);
1771                 if (!retval) {
1772                         retval = mapping->a_ops->direct_IO(READ, iocb,
1773                                                            iov, pos, nr_segs);
1774                 }
1775                 if (retval > 0) {
1776                         *ppos = pos + retval;
1777                         count -= retval;
1778                         /*
1779                          * If we did a short DIO read we need to skip the
1780                          * section of the iov that we've already read data into.
1781                          */
1782                         iov_iter_advance(&i, retval);
1783                 }
1784
1785                 /*
1786                  * Btrfs can have a short DIO read if we encounter
1787                  * compressed extents, so if there was an error, or if
1788                  * we've already read everything we wanted to, or if
1789                  * there was a short read because we hit EOF, go ahead
1790                  * and return.  Otherwise fallthrough to buffered io for
1791                  * the rest of the read.
1792                  */
1793                 if (retval < 0 || !count || *ppos >= size) {
1794                         file_accessed(filp);
1795                         goto out;
1796                 }
1797         }
1798
1799         retval = do_generic_file_read(filp, ppos, &i, retval);
1800 out:
1801         return retval;
1802 }
1803 EXPORT_SYMBOL(generic_file_aio_read);
1804
1805 #ifdef CONFIG_MMU
1806 /**
1807  * page_cache_read - adds requested page to the page cache if not already there
1808  * @file:       file to read
1809  * @offset:     page index
1810  *
1811  * This adds the requested page to the page cache if it isn't already there,
1812  * and schedules an I/O to read in its contents from disk.
1813  */
1814 static int page_cache_read(struct file *file, pgoff_t offset)
1815 {
1816         struct address_space *mapping = file->f_mapping;
1817         struct page *page; 
1818         int ret;
1819
1820         do {
1821                 page = page_cache_alloc_cold(mapping);
1822                 if (!page)
1823                         return -ENOMEM;
1824
1825                 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1826                 if (ret == 0)
1827                         ret = mapping->a_ops->readpage(file, page);
1828                 else if (ret == -EEXIST)
1829                         ret = 0; /* losing race to add is OK */
1830
1831                 page_cache_release(page);
1832
1833         } while (ret == AOP_TRUNCATED_PAGE);
1834                 
1835         return ret;
1836 }
1837
1838 #define MMAP_LOTSAMISS  (100)
1839
1840 /*
1841  * Synchronous readahead happens when we don't even find
1842  * a page in the page cache at all.
1843  */
1844 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1845                                    struct file_ra_state *ra,
1846                                    struct file *file,
1847                                    pgoff_t offset)
1848 {
1849         unsigned long ra_pages;
1850         struct address_space *mapping = file->f_mapping;
1851
1852         /* If we don't want any read-ahead, don't bother */
1853         if (vma->vm_flags & VM_RAND_READ)
1854                 return;
1855         if (!ra->ra_pages)
1856                 return;
1857
1858         if (vma->vm_flags & VM_SEQ_READ) {
1859                 page_cache_sync_readahead(mapping, ra, file, offset,
1860                                           ra->ra_pages);
1861                 return;
1862         }
1863
1864         /* Avoid banging the cache line if not needed */
1865         if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
1866                 ra->mmap_miss++;
1867
1868         /*
1869          * Do we miss much more than hit in this file? If so,
1870          * stop bothering with read-ahead. It will only hurt.
1871          */
1872         if (ra->mmap_miss > MMAP_LOTSAMISS)
1873                 return;
1874
1875         /*
1876          * mmap read-around
1877          */
1878         ra_pages = max_sane_readahead(ra->ra_pages);
1879         ra->start = max_t(long, 0, offset - ra_pages / 2);
1880         ra->size = ra_pages;
1881         ra->async_size = ra_pages / 4;
1882         ra_submit(ra, mapping, file);
1883 }
1884
1885 /*
1886  * Asynchronous readahead happens when we find the page and PG_readahead,
1887  * so we want to possibly extend the readahead further..
1888  */
1889 static void do_async_mmap_readahead(struct vm_area_struct *vma,
1890                                     struct file_ra_state *ra,
1891                                     struct file *file,
1892                                     struct page *page,
1893                                     pgoff_t offset)
1894 {
1895         struct address_space *mapping = file->f_mapping;
1896
1897         /* If we don't want any read-ahead, don't bother */
1898         if (vma->vm_flags & VM_RAND_READ)
1899                 return;
1900         if (ra->mmap_miss > 0)
1901                 ra->mmap_miss--;
1902         if (PageReadahead(page))
1903                 page_cache_async_readahead(mapping, ra, file,
1904                                            page, offset, ra->ra_pages);
1905 }
1906
1907 /**
1908  * filemap_fault - read in file data for page fault handling
1909  * @vma:        vma in which the fault was taken
1910  * @vmf:        struct vm_fault containing details of the fault
1911  *
1912  * filemap_fault() is invoked via the vma operations vector for a
1913  * mapped memory region to read in file data during a page fault.
1914  *
1915  * The goto's are kind of ugly, but this streamlines the normal case of having
1916  * it in the page cache, and handles the special cases reasonably without
1917  * having a lot of duplicated code.
1918  */
1919 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1920 {
1921         int error;
1922         struct file *file = vma->vm_file;
1923         struct address_space *mapping = file->f_mapping;
1924         struct file_ra_state *ra = &file->f_ra;
1925         struct inode *inode = mapping->host;
1926         pgoff_t offset = vmf->pgoff;
1927         struct page *page;
1928         loff_t size;
1929         int ret = 0;
1930
1931         size = round_up(i_size_read(inode), PAGE_CACHE_SIZE);
1932         if (offset >= size >> PAGE_CACHE_SHIFT)
1933                 return VM_FAULT_SIGBUS;
1934
1935         /*
1936          * Do we have something in the page cache already?
1937          */
1938         page = find_get_page(mapping, offset);
1939         if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
1940                 /*
1941                  * We found the page, so try async readahead before
1942                  * waiting for the lock.
1943                  */
1944                 do_async_mmap_readahead(vma, ra, file, page, offset);
1945         } else if (!page) {
1946                 /* No page in the page cache at all */
1947                 do_sync_mmap_readahead(vma, ra, file, offset);
1948                 count_vm_event(PGMAJFAULT);
1949                 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1950                 ret = VM_FAULT_MAJOR;
1951 retry_find:
1952                 page = find_get_page(mapping, offset);
1953                 if (!page)
1954                         goto no_cached_page;
1955         }
1956
1957         if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
1958                 page_cache_release(page);
1959                 return ret | VM_FAULT_RETRY;
1960         }
1961
1962         /* Did it get truncated? */
1963         if (unlikely(page->mapping != mapping)) {
1964                 unlock_page(page);
1965                 put_page(page);
1966                 goto retry_find;
1967         }
1968         VM_BUG_ON_PAGE(page->index != offset, page);
1969
1970         /*
1971          * We have a locked page in the page cache, now we need to check
1972          * that it's up-to-date. If not, it is going to be due to an error.
1973          */
1974         if (unlikely(!PageUptodate(page)))
1975                 goto page_not_uptodate;
1976
1977         /*
1978          * Found the page and have a reference on it.
1979          * We must recheck i_size under page lock.
1980          */
1981         size = round_up(i_size_read(inode), PAGE_CACHE_SIZE);
1982         if (unlikely(offset >= size >> PAGE_CACHE_SHIFT)) {
1983                 unlock_page(page);
1984                 page_cache_release(page);
1985                 return VM_FAULT_SIGBUS;
1986         }
1987
1988         vmf->page = page;
1989         return ret | VM_FAULT_LOCKED;
1990
1991 no_cached_page:
1992         /*
1993          * We're only likely to ever get here if MADV_RANDOM is in
1994          * effect.
1995          */
1996         error = page_cache_read(file, offset);
1997
1998         /*
1999          * The page we want has now been added to the page cache.
2000          * In the unlikely event that someone removed it in the
2001          * meantime, we'll just come back here and read it again.
2002          */
2003         if (error >= 0)
2004                 goto retry_find;
2005
2006         /*
2007          * An error return from page_cache_read can result if the
2008          * system is low on memory, or a problem occurs while trying
2009          * to schedule I/O.
2010          */
2011         if (error == -ENOMEM)
2012                 return VM_FAULT_OOM;
2013         return VM_FAULT_SIGBUS;
2014
2015 page_not_uptodate:
2016         /*
2017          * Umm, take care of errors if the page isn't up-to-date.
2018          * Try to re-read it _once_. We do this synchronously,
2019          * because there really aren't any performance issues here
2020          * and we need to check for errors.
2021          */
2022         ClearPageError(page);
2023         error = mapping->a_ops->readpage(file, page);
2024         if (!error) {
2025                 wait_on_page_locked(page);
2026                 if (!PageUptodate(page))
2027                         error = -EIO;
2028         }
2029         page_cache_release(page);
2030
2031         if (!error || error == AOP_TRUNCATED_PAGE)
2032                 goto retry_find;
2033
2034         /* Things didn't work out. Return zero to tell the mm layer so. */
2035         shrink_readahead_size_eio(file, ra);
2036         return VM_FAULT_SIGBUS;
2037 }
2038 EXPORT_SYMBOL(filemap_fault);
2039
2040 void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf)
2041 {
2042         struct radix_tree_iter iter;
2043         void **slot;
2044         struct file *file = vma->vm_file;
2045         struct address_space *mapping = file->f_mapping;
2046         loff_t size;
2047         struct page *page;
2048         unsigned long address = (unsigned long) vmf->virtual_address;
2049         unsigned long addr;
2050         pte_t *pte;
2051
2052         rcu_read_lock();
2053         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, vmf->pgoff) {
2054                 if (iter.index > vmf->max_pgoff)
2055                         break;
2056 repeat:
2057                 page = radix_tree_deref_slot(slot);
2058                 if (unlikely(!page))
2059                         goto next;
2060                 if (radix_tree_exception(page)) {
2061                         if (radix_tree_deref_retry(page))
2062                                 break;
2063                         else
2064                                 goto next;
2065                 }
2066
2067                 if (!page_cache_get_speculative(page))
2068                         goto repeat;
2069
2070                 /* Has the page moved? */
2071                 if (unlikely(page != *slot)) {
2072                         page_cache_release(page);
2073                         goto repeat;
2074                 }
2075
2076                 if (!PageUptodate(page) ||
2077                                 PageReadahead(page) ||
2078                                 PageHWPoison(page))
2079                         goto skip;
2080                 if (!trylock_page(page))
2081                         goto skip;
2082
2083                 if (page->mapping != mapping || !PageUptodate(page))
2084                         goto unlock;
2085
2086                 size = round_up(i_size_read(mapping->host), PAGE_CACHE_SIZE);
2087                 if (page->index >= size >> PAGE_CACHE_SHIFT)
2088                         goto unlock;
2089
2090                 pte = vmf->pte + page->index - vmf->pgoff;
2091                 if (!pte_none(*pte))
2092                         goto unlock;
2093
2094                 if (file->f_ra.mmap_miss > 0)
2095                         file->f_ra.mmap_miss--;
2096                 addr = address + (page->index - vmf->pgoff) * PAGE_SIZE;
2097                 do_set_pte(vma, addr, page, pte, false, false);
2098                 unlock_page(page);
2099                 goto next;
2100 unlock:
2101                 unlock_page(page);
2102 skip:
2103                 page_cache_release(page);
2104 next:
2105                 if (iter.index == vmf->max_pgoff)
2106                         break;
2107         }
2108         rcu_read_unlock();
2109 }
2110 EXPORT_SYMBOL(filemap_map_pages);
2111
2112 int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2113 {
2114         struct page *page = vmf->page;
2115         struct inode *inode = file_inode(vma->vm_file);
2116         int ret = VM_FAULT_LOCKED;
2117
2118         sb_start_pagefault(inode->i_sb);
2119         file_update_time(vma->vm_file);
2120         lock_page(page);
2121         if (page->mapping != inode->i_mapping) {
2122                 unlock_page(page);
2123                 ret = VM_FAULT_NOPAGE;
2124                 goto out;
2125         }
2126         /*
2127          * We mark the page dirty already here so that when freeze is in
2128          * progress, we are guaranteed that writeback during freezing will
2129          * see the dirty page and writeprotect it again.
2130          */
2131         set_page_dirty(page);
2132         wait_for_stable_page(page);
2133 out:
2134         sb_end_pagefault(inode->i_sb);
2135         return ret;
2136 }
2137 EXPORT_SYMBOL(filemap_page_mkwrite);
2138
2139 const struct vm_operations_struct generic_file_vm_ops = {
2140         .fault          = filemap_fault,
2141         .map_pages      = filemap_map_pages,
2142         .page_mkwrite   = filemap_page_mkwrite,
2143         .remap_pages    = generic_file_remap_pages,
2144 };
2145
2146 /* This is used for a general mmap of a disk file */
2147
2148 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2149 {
2150         struct address_space *mapping = file->f_mapping;
2151
2152         if (!mapping->a_ops->readpage)
2153                 return -ENOEXEC;
2154         file_accessed(file);
2155         vma->vm_ops = &generic_file_vm_ops;
2156         return 0;
2157 }
2158
2159 /*
2160  * This is for filesystems which do not implement ->writepage.
2161  */
2162 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2163 {
2164         if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2165                 return -EINVAL;
2166         return generic_file_mmap(file, vma);
2167 }
2168 #else
2169 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2170 {
2171         return -ENOSYS;
2172 }
2173 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2174 {
2175         return -ENOSYS;
2176 }
2177 #endif /* CONFIG_MMU */
2178
2179 EXPORT_SYMBOL(generic_file_mmap);
2180 EXPORT_SYMBOL(generic_file_readonly_mmap);
2181
2182 static struct page *wait_on_page_read(struct page *page)
2183 {
2184         if (!IS_ERR(page)) {
2185                 wait_on_page_locked(page);
2186                 if (!PageUptodate(page)) {
2187                         page_cache_release(page);
2188                         page = ERR_PTR(-EIO);
2189                 }
2190         }
2191         return page;
2192 }
2193
2194 static struct page *__read_cache_page(struct address_space *mapping,
2195                                 pgoff_t index,
2196                                 int (*filler)(void *, struct page *),
2197                                 void *data,
2198                                 gfp_t gfp)
2199 {
2200         struct page *page;
2201         int err;
2202 repeat:
2203         page = find_get_page(mapping, index);
2204         if (!page) {
2205                 page = __page_cache_alloc(gfp | __GFP_COLD);
2206                 if (!page)
2207                         return ERR_PTR(-ENOMEM);
2208                 err = add_to_page_cache_lru(page, mapping, index, gfp);
2209                 if (unlikely(err)) {
2210                         page_cache_release(page);
2211                         if (err == -EEXIST)
2212                                 goto repeat;
2213                         /* Presumably ENOMEM for radix tree node */
2214                         return ERR_PTR(err);
2215                 }
2216                 err = filler(data, page);
2217                 if (err < 0) {
2218                         page_cache_release(page);
2219                         page = ERR_PTR(err);
2220                 } else {
2221                         page = wait_on_page_read(page);
2222                 }
2223         }
2224         return page;
2225 }
2226
2227 static struct page *do_read_cache_page(struct address_space *mapping,
2228                                 pgoff_t index,
2229                                 int (*filler)(void *, struct page *),
2230                                 void *data,
2231                                 gfp_t gfp)
2232
2233 {
2234         struct page *page;
2235         int err;
2236
2237 retry:
2238         page = __read_cache_page(mapping, index, filler, data, gfp);
2239         if (IS_ERR(page))
2240                 return page;
2241         if (PageUptodate(page))
2242                 goto out;
2243
2244         lock_page(page);
2245         if (!page->mapping) {
2246                 unlock_page(page);
2247                 page_cache_release(page);
2248                 goto retry;
2249         }
2250         if (PageUptodate(page)) {
2251                 unlock_page(page);
2252                 goto out;
2253         }
2254         err = filler(data, page);
2255         if (err < 0) {
2256                 page_cache_release(page);
2257                 return ERR_PTR(err);
2258         } else {
2259                 page = wait_on_page_read(page);
2260                 if (IS_ERR(page))
2261                         return page;
2262         }
2263 out:
2264         mark_page_accessed(page);
2265         return page;
2266 }
2267
2268 /**
2269  * read_cache_page - read into page cache, fill it if needed
2270  * @mapping:    the page's address_space
2271  * @index:      the page index
2272  * @filler:     function to perform the read
2273  * @data:       first arg to filler(data, page) function, often left as NULL
2274  *
2275  * Read into the page cache. If a page already exists, and PageUptodate() is
2276  * not set, try to fill the page and wait for it to become unlocked.
2277  *
2278  * If the page does not get brought uptodate, return -EIO.
2279  */
2280 struct page *read_cache_page(struct address_space *mapping,
2281                                 pgoff_t index,
2282                                 int (*filler)(void *, struct page *),
2283                                 void *data)
2284 {
2285         return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2286 }
2287 EXPORT_SYMBOL(read_cache_page);
2288
2289 /**
2290  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2291  * @mapping:    the page's address_space
2292  * @index:      the page index
2293  * @gfp:        the page allocator flags to use if allocating
2294  *
2295  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2296  * any new page allocations done using the specified allocation flags.
2297  *
2298  * If the page does not get brought uptodate, return -EIO.
2299  */
2300 struct page *read_cache_page_gfp(struct address_space *mapping,
2301                                 pgoff_t index,
2302                                 gfp_t gfp)
2303 {
2304         filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2305
2306         return do_read_cache_page(mapping, index, filler, NULL, gfp);
2307 }
2308 EXPORT_SYMBOL(read_cache_page_gfp);
2309
2310 /*
2311  * Performs necessary checks before doing a write
2312  *
2313  * Can adjust writing position or amount of bytes to write.
2314  * Returns appropriate error code that caller should return or
2315  * zero in case that write should be allowed.
2316  */
2317 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
2318 {
2319         struct inode *inode = file->f_mapping->host;
2320         unsigned long limit = rlimit(RLIMIT_FSIZE);
2321
2322         if (unlikely(*pos < 0))
2323                 return -EINVAL;
2324
2325         if (!isblk) {
2326                 /* FIXME: this is for backwards compatibility with 2.4 */
2327                 if (file->f_flags & O_APPEND)
2328                         *pos = i_size_read(inode);
2329
2330                 if (limit != RLIM_INFINITY) {
2331                         if (*pos >= limit) {
2332                                 send_sig(SIGXFSZ, current, 0);
2333                                 return -EFBIG;
2334                         }
2335                         if (*count > limit - (typeof(limit))*pos) {
2336                                 *count = limit - (typeof(limit))*pos;
2337                         }
2338                 }
2339         }
2340
2341         /*
2342          * LFS rule
2343          */
2344         if (unlikely(*pos + *count > MAX_NON_LFS &&
2345                                 !(file->f_flags & O_LARGEFILE))) {
2346                 if (*pos >= MAX_NON_LFS) {
2347                         return -EFBIG;
2348                 }
2349                 if (*count > MAX_NON_LFS - (unsigned long)*pos) {
2350                         *count = MAX_NON_LFS - (unsigned long)*pos;
2351                 }
2352         }
2353
2354         /*
2355          * Are we about to exceed the fs block limit ?
2356          *
2357          * If we have written data it becomes a short write.  If we have
2358          * exceeded without writing data we send a signal and return EFBIG.
2359          * Linus frestrict idea will clean these up nicely..
2360          */
2361         if (likely(!isblk)) {
2362                 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
2363                         if (*count || *pos > inode->i_sb->s_maxbytes) {
2364                                 return -EFBIG;
2365                         }
2366                         /* zero-length writes at ->s_maxbytes are OK */
2367                 }
2368
2369                 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2370                         *count = inode->i_sb->s_maxbytes - *pos;
2371         } else {
2372 #ifdef CONFIG_BLOCK
2373                 loff_t isize;
2374                 if (bdev_read_only(I_BDEV(inode)))
2375                         return -EPERM;
2376                 isize = i_size_read(inode);
2377                 if (*pos >= isize) {
2378                         if (*count || *pos > isize)
2379                                 return -ENOSPC;
2380                 }
2381
2382                 if (*pos + *count > isize)
2383                         *count = isize - *pos;
2384 #else
2385                 return -EPERM;
2386 #endif
2387         }
2388         return 0;
2389 }
2390 EXPORT_SYMBOL(generic_write_checks);
2391
2392 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2393                                 loff_t pos, unsigned len, unsigned flags,
2394                                 struct page **pagep, void **fsdata)
2395 {
2396         const struct address_space_operations *aops = mapping->a_ops;
2397
2398         return aops->write_begin(file, mapping, pos, len, flags,
2399                                                         pagep, fsdata);
2400 }
2401 EXPORT_SYMBOL(pagecache_write_begin);
2402
2403 int pagecache_write_end(struct file *file, struct address_space *mapping,
2404                                 loff_t pos, unsigned len, unsigned copied,
2405                                 struct page *page, void *fsdata)
2406 {
2407         const struct address_space_operations *aops = mapping->a_ops;
2408
2409         mark_page_accessed(page);
2410         return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2411 }
2412 EXPORT_SYMBOL(pagecache_write_end);
2413
2414 ssize_t
2415 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2416                 unsigned long *nr_segs, loff_t pos,
2417                 size_t count, size_t ocount)
2418 {
2419         struct file     *file = iocb->ki_filp;
2420         struct address_space *mapping = file->f_mapping;
2421         struct inode    *inode = mapping->host;
2422         ssize_t         written;
2423         size_t          write_len;
2424         pgoff_t         end;
2425
2426         if (count != ocount)
2427                 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2428
2429         write_len = iov_length(iov, *nr_segs);
2430         end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2431
2432         written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2433         if (written)
2434                 goto out;
2435
2436         /*
2437          * After a write we want buffered reads to be sure to go to disk to get
2438          * the new data.  We invalidate clean cached page from the region we're
2439          * about to write.  We do this *before* the write so that we can return
2440          * without clobbering -EIOCBQUEUED from ->direct_IO().
2441          */
2442         if (mapping->nrpages) {
2443                 written = invalidate_inode_pages2_range(mapping,
2444                                         pos >> PAGE_CACHE_SHIFT, end);
2445                 /*
2446                  * If a page can not be invalidated, return 0 to fall back
2447                  * to buffered write.
2448                  */
2449                 if (written) {
2450                         if (written == -EBUSY)
2451                                 return 0;
2452                         goto out;
2453                 }
2454         }
2455
2456         written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2457
2458         /*
2459          * Finally, try again to invalidate clean pages which might have been
2460          * cached by non-direct readahead, or faulted in by get_user_pages()
2461          * if the source of the write was an mmap'ed region of the file
2462          * we're writing.  Either one is a pretty crazy thing to do,
2463          * so we don't support it 100%.  If this invalidation
2464          * fails, tough, the write still worked...
2465          */
2466         if (mapping->nrpages) {
2467                 invalidate_inode_pages2_range(mapping,
2468                                               pos >> PAGE_CACHE_SHIFT, end);
2469         }
2470
2471         if (written > 0) {
2472                 pos += written;
2473                 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2474                         i_size_write(inode, pos);
2475                         mark_inode_dirty(inode);
2476                 }
2477                 iocb->ki_pos = pos;
2478         }
2479 out:
2480         return written;
2481 }
2482 EXPORT_SYMBOL(generic_file_direct_write);
2483
2484 /*
2485  * Find or create a page at the given pagecache position. Return the locked
2486  * page. This function is specifically for buffered writes.
2487  */
2488 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2489                                         pgoff_t index, unsigned flags)
2490 {
2491         int status;
2492         gfp_t gfp_mask;
2493         struct page *page;
2494         gfp_t gfp_notmask = 0;
2495
2496         gfp_mask = mapping_gfp_mask(mapping);
2497         if (mapping_cap_account_dirty(mapping))
2498                 gfp_mask |= __GFP_WRITE;
2499         if (flags & AOP_FLAG_NOFS)
2500                 gfp_notmask = __GFP_FS;
2501 repeat:
2502         page = find_lock_page(mapping, index);
2503         if (page)
2504                 goto found;
2505
2506         page = __page_cache_alloc(gfp_mask & ~gfp_notmask);
2507         if (!page)
2508                 return NULL;
2509         status = add_to_page_cache_lru(page, mapping, index,
2510                                                 GFP_KERNEL & ~gfp_notmask);
2511         if (unlikely(status)) {
2512                 page_cache_release(page);
2513                 if (status == -EEXIST)
2514                         goto repeat;
2515                 return NULL;
2516         }
2517 found:
2518         wait_for_stable_page(page);
2519         return page;
2520 }
2521 EXPORT_SYMBOL(grab_cache_page_write_begin);
2522
2523 ssize_t generic_perform_write(struct file *file,
2524                                 struct iov_iter *i, loff_t pos)
2525 {
2526         struct address_space *mapping = file->f_mapping;
2527         const struct address_space_operations *a_ops = mapping->a_ops;
2528         long status = 0;
2529         ssize_t written = 0;
2530         unsigned int flags = 0;
2531
2532         /*
2533          * Copies from kernel address space cannot fail (NFSD is a big user).
2534          */
2535         if (segment_eq(get_fs(), KERNEL_DS))
2536                 flags |= AOP_FLAG_UNINTERRUPTIBLE;
2537
2538         do {
2539                 struct page *page;
2540                 unsigned long offset;   /* Offset into pagecache page */
2541                 unsigned long bytes;    /* Bytes to write to page */
2542                 size_t copied;          /* Bytes copied from user */
2543                 void *fsdata;
2544
2545                 offset = (pos & (PAGE_CACHE_SIZE - 1));
2546                 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2547                                                 iov_iter_count(i));
2548
2549 again:
2550                 /*
2551                  * Bring in the user page that we will copy from _first_.
2552                  * Otherwise there's a nasty deadlock on copying from the
2553                  * same page as we're writing to, without it being marked
2554                  * up-to-date.
2555                  *
2556                  * Not only is this an optimisation, but it is also required
2557                  * to check that the address is actually valid, when atomic
2558                  * usercopies are used, below.
2559                  */
2560                 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2561                         status = -EFAULT;
2562                         break;
2563                 }
2564
2565                 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2566                                                 &page, &fsdata);
2567                 if (unlikely(status))
2568                         break;
2569
2570                 if (mapping_writably_mapped(mapping))
2571                         flush_dcache_page(page);
2572
2573                 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2574                 flush_dcache_page(page);
2575
2576                 mark_page_accessed(page);
2577                 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2578                                                 page, fsdata);
2579                 if (unlikely(status < 0))
2580                         break;
2581                 copied = status;
2582
2583                 cond_resched();
2584
2585                 iov_iter_advance(i, copied);
2586                 if (unlikely(copied == 0)) {
2587                         /*
2588                          * If we were unable to copy any data at all, we must
2589                          * fall back to a single segment length write.
2590                          *
2591                          * If we didn't fallback here, we could livelock
2592                          * because not all segments in the iov can be copied at
2593                          * once without a pagefault.
2594                          */
2595                         bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2596                                                 iov_iter_single_seg_count(i));
2597                         goto again;
2598                 }
2599                 pos += copied;
2600                 written += copied;
2601
2602                 balance_dirty_pages_ratelimited(mapping);
2603                 if (fatal_signal_pending(current)) {
2604                         status = -EINTR;
2605                         break;
2606                 }
2607         } while (iov_iter_count(i));
2608
2609         return written ? written : status;
2610 }
2611 EXPORT_SYMBOL(generic_perform_write);
2612
2613 /**
2614  * __generic_file_aio_write - write data to a file
2615  * @iocb:       IO state structure (file, offset, etc.)
2616  * @iov:        vector with data to write
2617  * @nr_segs:    number of segments in the vector
2618  *
2619  * This function does all the work needed for actually writing data to a
2620  * file. It does all basic checks, removes SUID from the file, updates
2621  * modification times and calls proper subroutines depending on whether we
2622  * do direct IO or a standard buffered write.
2623  *
2624  * It expects i_mutex to be grabbed unless we work on a block device or similar
2625  * object which does not need locking at all.
2626  *
2627  * This function does *not* take care of syncing data in case of O_SYNC write.
2628  * A caller has to handle it. This is mainly due to the fact that we want to
2629  * avoid syncing under i_mutex.
2630  */
2631 ssize_t __generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2632                                  unsigned long nr_segs)
2633 {
2634         struct file *file = iocb->ki_filp;
2635         struct address_space * mapping = file->f_mapping;
2636         size_t ocount;          /* original count */
2637         size_t count;           /* after file limit checks */
2638         struct inode    *inode = mapping->host;
2639         loff_t          pos = iocb->ki_pos;
2640         ssize_t         written = 0;
2641         ssize_t         err;
2642         ssize_t         status;
2643         struct iov_iter from;
2644
2645         ocount = 0;
2646         err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2647         if (err)
2648                 return err;
2649
2650         count = ocount;
2651
2652         /* We can write back this queue in page reclaim */
2653         current->backing_dev_info = mapping->backing_dev_info;
2654         err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2655         if (err)
2656                 goto out;
2657
2658         if (count == 0)
2659                 goto out;
2660
2661         err = file_remove_suid(file);
2662         if (err)
2663                 goto out;
2664
2665         err = file_update_time(file);
2666         if (err)
2667                 goto out;
2668
2669         iov_iter_init(&from, iov, nr_segs, count, 0);
2670
2671         /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2672         if (unlikely(file->f_flags & O_DIRECT)) {
2673                 loff_t endbyte;
2674
2675                 written = generic_file_direct_write(iocb, iov, &from.nr_segs, pos,
2676                                                         count, ocount);
2677                 if (written < 0 || written == count)
2678                         goto out;
2679                 iov_iter_advance(&from, written);
2680
2681                 /*
2682                  * direct-io write to a hole: fall through to buffered I/O
2683                  * for completing the rest of the request.
2684                  */
2685                 pos += written;
2686                 count -= written;
2687
2688                 status = generic_perform_write(file, &from, pos);
2689                 /*
2690                  * If generic_perform_write() returned a synchronous error
2691                  * then we want to return the number of bytes which were
2692                  * direct-written, or the error code if that was zero.  Note
2693                  * that this differs from normal direct-io semantics, which
2694                  * will return -EFOO even if some bytes were written.
2695                  */
2696                 if (unlikely(status < 0) && !written) {
2697                         err = status;
2698                         goto out;
2699                 }
2700                 iocb->ki_pos = pos + status;
2701                 /*
2702                  * We need to ensure that the page cache pages are written to
2703                  * disk and invalidated to preserve the expected O_DIRECT
2704                  * semantics.
2705                  */
2706                 endbyte = pos + status - 1;
2707                 err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
2708                 if (err == 0) {
2709                         written += status;
2710                         invalidate_mapping_pages(mapping,
2711                                                  pos >> PAGE_CACHE_SHIFT,
2712                                                  endbyte >> PAGE_CACHE_SHIFT);
2713                 } else {
2714                         /*
2715                          * We don't know how much we wrote, so just return
2716                          * the number of bytes which were direct-written
2717                          */
2718                 }
2719         } else {
2720                 written = generic_perform_write(file, &from, pos);
2721                 if (likely(written >= 0))
2722                         iocb->ki_pos = pos + written;
2723         }
2724 out:
2725         current->backing_dev_info = NULL;
2726         return written ? written : err;
2727 }
2728 EXPORT_SYMBOL(__generic_file_aio_write);
2729
2730 /**
2731  * generic_file_aio_write - write data to a file
2732  * @iocb:       IO state structure
2733  * @iov:        vector with data to write
2734  * @nr_segs:    number of segments in the vector
2735  * @pos:        position in file where to write
2736  *
2737  * This is a wrapper around __generic_file_aio_write() to be used by most
2738  * filesystems. It takes care of syncing the file in case of O_SYNC file
2739  * and acquires i_mutex as needed.
2740  */
2741 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2742                 unsigned long nr_segs, loff_t pos)
2743 {
2744         struct file *file = iocb->ki_filp;
2745         struct inode *inode = file->f_mapping->host;
2746         ssize_t ret;
2747
2748         BUG_ON(iocb->ki_pos != pos);
2749
2750         mutex_lock(&inode->i_mutex);
2751         ret = __generic_file_aio_write(iocb, iov, nr_segs);
2752         mutex_unlock(&inode->i_mutex);
2753
2754         if (ret > 0) {
2755                 ssize_t err;
2756
2757                 err = generic_write_sync(file, iocb->ki_pos - ret, ret);
2758                 if (err < 0)
2759                         ret = err;
2760         }
2761         return ret;
2762 }
2763 EXPORT_SYMBOL(generic_file_aio_write);
2764
2765 /**
2766  * try_to_release_page() - release old fs-specific metadata on a page
2767  *
2768  * @page: the page which the kernel is trying to free
2769  * @gfp_mask: memory allocation flags (and I/O mode)
2770  *
2771  * The address_space is to try to release any data against the page
2772  * (presumably at page->private).  If the release was successful, return `1'.
2773  * Otherwise return zero.
2774  *
2775  * This may also be called if PG_fscache is set on a page, indicating that the
2776  * page is known to the local caching routines.
2777  *
2778  * The @gfp_mask argument specifies whether I/O may be performed to release
2779  * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2780  *
2781  */
2782 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2783 {
2784         struct address_space * const mapping = page->mapping;
2785
2786         BUG_ON(!PageLocked(page));
2787         if (PageWriteback(page))
2788                 return 0;
2789
2790         if (mapping && mapping->a_ops->releasepage)
2791                 return mapping->a_ops->releasepage(page, gfp_mask);
2792         return try_to_free_buffers(page);
2793 }
2794
2795 EXPORT_SYMBOL(try_to_release_page);