3aed7ade3482591c8de28a6f5f42f522ee30aafa
[firefly-linux-kernel-4.4.55.git] / mm / compaction.c
1 /*
2  * linux/mm/compaction.c
3  *
4  * Memory compaction for the reduction of external fragmentation. Note that
5  * this heavily depends upon page migration to do all the real heavy
6  * lifting
7  *
8  * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
9  */
10 #include <linux/swap.h>
11 #include <linux/migrate.h>
12 #include <linux/compaction.h>
13 #include <linux/mm_inline.h>
14 #include <linux/backing-dev.h>
15 #include <linux/sysctl.h>
16 #include <linux/sysfs.h>
17 #include <linux/balloon_compaction.h>
18 #include <linux/page-isolation.h>
19 #include <linux/kasan.h>
20 #include "internal.h"
21
22 #ifdef CONFIG_COMPACTION
23 static inline void count_compact_event(enum vm_event_item item)
24 {
25         count_vm_event(item);
26 }
27
28 static inline void count_compact_events(enum vm_event_item item, long delta)
29 {
30         count_vm_events(item, delta);
31 }
32 #else
33 #define count_compact_event(item) do { } while (0)
34 #define count_compact_events(item, delta) do { } while (0)
35 #endif
36
37 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
38
39 #define CREATE_TRACE_POINTS
40 #include <trace/events/compaction.h>
41
42 static unsigned long release_freepages(struct list_head *freelist)
43 {
44         struct page *page, *next;
45         unsigned long high_pfn = 0;
46
47         list_for_each_entry_safe(page, next, freelist, lru) {
48                 unsigned long pfn = page_to_pfn(page);
49                 list_del(&page->lru);
50                 __free_page(page);
51                 if (pfn > high_pfn)
52                         high_pfn = pfn;
53         }
54
55         return high_pfn;
56 }
57
58 static void map_pages(struct list_head *list)
59 {
60         struct page *page;
61
62         list_for_each_entry(page, list, lru) {
63                 arch_alloc_page(page, 0);
64                 kernel_map_pages(page, 1, 1);
65                 kasan_alloc_pages(page, 0);
66         }
67 }
68
69 static inline bool migrate_async_suitable(int migratetype)
70 {
71         return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE;
72 }
73
74 /*
75  * Check that the whole (or subset of) a pageblock given by the interval of
76  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
77  * with the migration of free compaction scanner. The scanners then need to
78  * use only pfn_valid_within() check for arches that allow holes within
79  * pageblocks.
80  *
81  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
82  *
83  * It's possible on some configurations to have a setup like node0 node1 node0
84  * i.e. it's possible that all pages within a zones range of pages do not
85  * belong to a single zone. We assume that a border between node0 and node1
86  * can occur within a single pageblock, but not a node0 node1 node0
87  * interleaving within a single pageblock. It is therefore sufficient to check
88  * the first and last page of a pageblock and avoid checking each individual
89  * page in a pageblock.
90  */
91 static struct page *pageblock_pfn_to_page(unsigned long start_pfn,
92                                 unsigned long end_pfn, struct zone *zone)
93 {
94         struct page *start_page;
95         struct page *end_page;
96
97         /* end_pfn is one past the range we are checking */
98         end_pfn--;
99
100         if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
101                 return NULL;
102
103         start_page = pfn_to_page(start_pfn);
104
105         if (page_zone(start_page) != zone)
106                 return NULL;
107
108         end_page = pfn_to_page(end_pfn);
109
110         /* This gives a shorter code than deriving page_zone(end_page) */
111         if (page_zone_id(start_page) != page_zone_id(end_page))
112                 return NULL;
113
114         return start_page;
115 }
116
117 #ifdef CONFIG_COMPACTION
118
119 /* Do not skip compaction more than 64 times */
120 #define COMPACT_MAX_DEFER_SHIFT 6
121
122 /*
123  * Compaction is deferred when compaction fails to result in a page
124  * allocation success. 1 << compact_defer_limit compactions are skipped up
125  * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
126  */
127 void defer_compaction(struct zone *zone, int order)
128 {
129         zone->compact_considered = 0;
130         zone->compact_defer_shift++;
131
132         if (order < zone->compact_order_failed)
133                 zone->compact_order_failed = order;
134
135         if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
136                 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
137
138         trace_mm_compaction_defer_compaction(zone, order);
139 }
140
141 /* Returns true if compaction should be skipped this time */
142 bool compaction_deferred(struct zone *zone, int order)
143 {
144         unsigned long defer_limit = 1UL << zone->compact_defer_shift;
145
146         if (order < zone->compact_order_failed)
147                 return false;
148
149         /* Avoid possible overflow */
150         if (++zone->compact_considered > defer_limit)
151                 zone->compact_considered = defer_limit;
152
153         if (zone->compact_considered >= defer_limit)
154                 return false;
155
156         trace_mm_compaction_deferred(zone, order);
157
158         return true;
159 }
160
161 /*
162  * Update defer tracking counters after successful compaction of given order,
163  * which means an allocation either succeeded (alloc_success == true) or is
164  * expected to succeed.
165  */
166 void compaction_defer_reset(struct zone *zone, int order,
167                 bool alloc_success)
168 {
169         if (alloc_success) {
170                 zone->compact_considered = 0;
171                 zone->compact_defer_shift = 0;
172         }
173         if (order >= zone->compact_order_failed)
174                 zone->compact_order_failed = order + 1;
175
176         trace_mm_compaction_defer_reset(zone, order);
177 }
178
179 /* Returns true if restarting compaction after many failures */
180 bool compaction_restarting(struct zone *zone, int order)
181 {
182         if (order < zone->compact_order_failed)
183                 return false;
184
185         return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
186                 zone->compact_considered >= 1UL << zone->compact_defer_shift;
187 }
188
189 /* Returns true if the pageblock should be scanned for pages to isolate. */
190 static inline bool isolation_suitable(struct compact_control *cc,
191                                         struct page *page)
192 {
193         if (cc->ignore_skip_hint)
194                 return true;
195
196         return !get_pageblock_skip(page);
197 }
198
199 static void reset_cached_positions(struct zone *zone)
200 {
201         zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
202         zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
203         zone->compact_cached_free_pfn = zone_end_pfn(zone);
204 }
205
206 /*
207  * This function is called to clear all cached information on pageblocks that
208  * should be skipped for page isolation when the migrate and free page scanner
209  * meet.
210  */
211 static void __reset_isolation_suitable(struct zone *zone)
212 {
213         unsigned long start_pfn = zone->zone_start_pfn;
214         unsigned long end_pfn = zone_end_pfn(zone);
215         unsigned long pfn;
216
217         zone->compact_blockskip_flush = false;
218
219         /* Walk the zone and mark every pageblock as suitable for isolation */
220         for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
221                 struct page *page;
222
223                 cond_resched();
224
225                 if (!pfn_valid(pfn))
226                         continue;
227
228                 page = pfn_to_page(pfn);
229                 if (zone != page_zone(page))
230                         continue;
231
232                 clear_pageblock_skip(page);
233         }
234
235         reset_cached_positions(zone);
236 }
237
238 void reset_isolation_suitable(pg_data_t *pgdat)
239 {
240         int zoneid;
241
242         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
243                 struct zone *zone = &pgdat->node_zones[zoneid];
244                 if (!populated_zone(zone))
245                         continue;
246
247                 /* Only flush if a full compaction finished recently */
248                 if (zone->compact_blockskip_flush)
249                         __reset_isolation_suitable(zone);
250         }
251 }
252
253 /*
254  * If no pages were isolated then mark this pageblock to be skipped in the
255  * future. The information is later cleared by __reset_isolation_suitable().
256  */
257 static void update_pageblock_skip(struct compact_control *cc,
258                         struct page *page, unsigned long nr_isolated,
259                         bool migrate_scanner)
260 {
261         struct zone *zone = cc->zone;
262         unsigned long pfn;
263
264         if (cc->ignore_skip_hint)
265                 return;
266
267         if (!page)
268                 return;
269
270         if (nr_isolated)
271                 return;
272
273         set_pageblock_skip(page);
274
275         pfn = page_to_pfn(page);
276
277         /* Update where async and sync compaction should restart */
278         if (migrate_scanner) {
279                 if (pfn > zone->compact_cached_migrate_pfn[0])
280                         zone->compact_cached_migrate_pfn[0] = pfn;
281                 if (cc->mode != MIGRATE_ASYNC &&
282                     pfn > zone->compact_cached_migrate_pfn[1])
283                         zone->compact_cached_migrate_pfn[1] = pfn;
284         } else {
285                 if (pfn < zone->compact_cached_free_pfn)
286                         zone->compact_cached_free_pfn = pfn;
287         }
288 }
289 #else
290 static inline bool isolation_suitable(struct compact_control *cc,
291                                         struct page *page)
292 {
293         return true;
294 }
295
296 static void update_pageblock_skip(struct compact_control *cc,
297                         struct page *page, unsigned long nr_isolated,
298                         bool migrate_scanner)
299 {
300 }
301 #endif /* CONFIG_COMPACTION */
302
303 /*
304  * Compaction requires the taking of some coarse locks that are potentially
305  * very heavily contended. For async compaction, back out if the lock cannot
306  * be taken immediately. For sync compaction, spin on the lock if needed.
307  *
308  * Returns true if the lock is held
309  * Returns false if the lock is not held and compaction should abort
310  */
311 static bool compact_trylock_irqsave(spinlock_t *lock, unsigned long *flags,
312                                                 struct compact_control *cc)
313 {
314         if (cc->mode == MIGRATE_ASYNC) {
315                 if (!spin_trylock_irqsave(lock, *flags)) {
316                         cc->contended = COMPACT_CONTENDED_LOCK;
317                         return false;
318                 }
319         } else {
320                 spin_lock_irqsave(lock, *flags);
321         }
322
323         return true;
324 }
325
326 /*
327  * Compaction requires the taking of some coarse locks that are potentially
328  * very heavily contended. The lock should be periodically unlocked to avoid
329  * having disabled IRQs for a long time, even when there is nobody waiting on
330  * the lock. It might also be that allowing the IRQs will result in
331  * need_resched() becoming true. If scheduling is needed, async compaction
332  * aborts. Sync compaction schedules.
333  * Either compaction type will also abort if a fatal signal is pending.
334  * In either case if the lock was locked, it is dropped and not regained.
335  *
336  * Returns true if compaction should abort due to fatal signal pending, or
337  *              async compaction due to need_resched()
338  * Returns false when compaction can continue (sync compaction might have
339  *              scheduled)
340  */
341 static bool compact_unlock_should_abort(spinlock_t *lock,
342                 unsigned long flags, bool *locked, struct compact_control *cc)
343 {
344         if (*locked) {
345                 spin_unlock_irqrestore(lock, flags);
346                 *locked = false;
347         }
348
349         if (fatal_signal_pending(current)) {
350                 cc->contended = COMPACT_CONTENDED_SCHED;
351                 return true;
352         }
353
354         if (need_resched()) {
355                 if (cc->mode == MIGRATE_ASYNC) {
356                         cc->contended = COMPACT_CONTENDED_SCHED;
357                         return true;
358                 }
359                 cond_resched();
360         }
361
362         return false;
363 }
364
365 /*
366  * Aside from avoiding lock contention, compaction also periodically checks
367  * need_resched() and either schedules in sync compaction or aborts async
368  * compaction. This is similar to what compact_unlock_should_abort() does, but
369  * is used where no lock is concerned.
370  *
371  * Returns false when no scheduling was needed, or sync compaction scheduled.
372  * Returns true when async compaction should abort.
373  */
374 static inline bool compact_should_abort(struct compact_control *cc)
375 {
376         /* async compaction aborts if contended */
377         if (need_resched()) {
378                 if (cc->mode == MIGRATE_ASYNC) {
379                         cc->contended = COMPACT_CONTENDED_SCHED;
380                         return true;
381                 }
382
383                 cond_resched();
384         }
385
386         return false;
387 }
388
389 /*
390  * Isolate free pages onto a private freelist. If @strict is true, will abort
391  * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
392  * (even though it may still end up isolating some pages).
393  */
394 static unsigned long isolate_freepages_block(struct compact_control *cc,
395                                 unsigned long *start_pfn,
396                                 unsigned long end_pfn,
397                                 struct list_head *freelist,
398                                 bool strict)
399 {
400         int nr_scanned = 0, total_isolated = 0;
401         struct page *cursor, *valid_page = NULL;
402         unsigned long flags = 0;
403         bool locked = false;
404         unsigned long blockpfn = *start_pfn;
405
406         cursor = pfn_to_page(blockpfn);
407
408         /* Isolate free pages. */
409         for (; blockpfn < end_pfn; blockpfn++, cursor++) {
410                 int isolated, i;
411                 struct page *page = cursor;
412
413                 /*
414                  * Periodically drop the lock (if held) regardless of its
415                  * contention, to give chance to IRQs. Abort if fatal signal
416                  * pending or async compaction detects need_resched()
417                  */
418                 if (!(blockpfn % SWAP_CLUSTER_MAX)
419                     && compact_unlock_should_abort(&cc->zone->lock, flags,
420                                                                 &locked, cc))
421                         break;
422
423                 nr_scanned++;
424                 if (!pfn_valid_within(blockpfn))
425                         goto isolate_fail;
426
427                 if (!valid_page)
428                         valid_page = page;
429
430                 /*
431                  * For compound pages such as THP and hugetlbfs, we can save
432                  * potentially a lot of iterations if we skip them at once.
433                  * The check is racy, but we can consider only valid values
434                  * and the only danger is skipping too much.
435                  */
436                 if (PageCompound(page)) {
437                         unsigned int comp_order = compound_order(page);
438
439                         if (likely(comp_order < MAX_ORDER)) {
440                                 blockpfn += (1UL << comp_order) - 1;
441                                 cursor += (1UL << comp_order) - 1;
442                         }
443
444                         goto isolate_fail;
445                 }
446
447                 if (!PageBuddy(page))
448                         goto isolate_fail;
449
450                 /*
451                  * If we already hold the lock, we can skip some rechecking.
452                  * Note that if we hold the lock now, checked_pageblock was
453                  * already set in some previous iteration (or strict is true),
454                  * so it is correct to skip the suitable migration target
455                  * recheck as well.
456                  */
457                 if (!locked) {
458                         /*
459                          * The zone lock must be held to isolate freepages.
460                          * Unfortunately this is a very coarse lock and can be
461                          * heavily contended if there are parallel allocations
462                          * or parallel compactions. For async compaction do not
463                          * spin on the lock and we acquire the lock as late as
464                          * possible.
465                          */
466                         locked = compact_trylock_irqsave(&cc->zone->lock,
467                                                                 &flags, cc);
468                         if (!locked)
469                                 break;
470
471                         /* Recheck this is a buddy page under lock */
472                         if (!PageBuddy(page))
473                                 goto isolate_fail;
474                 }
475
476                 /* Found a free page, break it into order-0 pages */
477                 isolated = split_free_page(page);
478                 if (!isolated)
479                         break;
480
481                 total_isolated += isolated;
482                 cc->nr_freepages += isolated;
483                 for (i = 0; i < isolated; i++) {
484                         list_add(&page->lru, freelist);
485                         page++;
486                 }
487                 if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
488                         blockpfn += isolated;
489                         break;
490                 }
491                 /* Advance to the end of split page */
492                 blockpfn += isolated - 1;
493                 cursor += isolated - 1;
494                 continue;
495
496 isolate_fail:
497                 if (strict)
498                         break;
499                 else
500                         continue;
501
502         }
503
504         if (locked)
505                 spin_unlock_irqrestore(&cc->zone->lock, flags);
506
507         /*
508          * There is a tiny chance that we have read bogus compound_order(),
509          * so be careful to not go outside of the pageblock.
510          */
511         if (unlikely(blockpfn > end_pfn))
512                 blockpfn = end_pfn;
513
514         trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
515                                         nr_scanned, total_isolated);
516
517         /* Record how far we have got within the block */
518         *start_pfn = blockpfn;
519
520         /*
521          * If strict isolation is requested by CMA then check that all the
522          * pages requested were isolated. If there were any failures, 0 is
523          * returned and CMA will fail.
524          */
525         if (strict && blockpfn < end_pfn)
526                 total_isolated = 0;
527
528         /* Update the pageblock-skip if the whole pageblock was scanned */
529         if (blockpfn == end_pfn)
530                 update_pageblock_skip(cc, valid_page, total_isolated, false);
531
532         count_compact_events(COMPACTFREE_SCANNED, nr_scanned);
533         if (total_isolated)
534                 count_compact_events(COMPACTISOLATED, total_isolated);
535         return total_isolated;
536 }
537
538 /**
539  * isolate_freepages_range() - isolate free pages.
540  * @start_pfn: The first PFN to start isolating.
541  * @end_pfn:   The one-past-last PFN.
542  *
543  * Non-free pages, invalid PFNs, or zone boundaries within the
544  * [start_pfn, end_pfn) range are considered errors, cause function to
545  * undo its actions and return zero.
546  *
547  * Otherwise, function returns one-past-the-last PFN of isolated page
548  * (which may be greater then end_pfn if end fell in a middle of
549  * a free page).
550  */
551 unsigned long
552 isolate_freepages_range(struct compact_control *cc,
553                         unsigned long start_pfn, unsigned long end_pfn)
554 {
555         unsigned long isolated, pfn, block_end_pfn;
556         LIST_HEAD(freelist);
557
558         pfn = start_pfn;
559         block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
560
561         for (; pfn < end_pfn; pfn += isolated,
562                                 block_end_pfn += pageblock_nr_pages) {
563                 /* Protect pfn from changing by isolate_freepages_block */
564                 unsigned long isolate_start_pfn = pfn;
565
566                 block_end_pfn = min(block_end_pfn, end_pfn);
567
568                 /*
569                  * pfn could pass the block_end_pfn if isolated freepage
570                  * is more than pageblock order. In this case, we adjust
571                  * scanning range to right one.
572                  */
573                 if (pfn >= block_end_pfn) {
574                         block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
575                         block_end_pfn = min(block_end_pfn, end_pfn);
576                 }
577
578                 if (!pageblock_pfn_to_page(pfn, block_end_pfn, cc->zone))
579                         break;
580
581                 isolated = isolate_freepages_block(cc, &isolate_start_pfn,
582                                                 block_end_pfn, &freelist, true);
583
584                 /*
585                  * In strict mode, isolate_freepages_block() returns 0 if
586                  * there are any holes in the block (ie. invalid PFNs or
587                  * non-free pages).
588                  */
589                 if (!isolated)
590                         break;
591
592                 /*
593                  * If we managed to isolate pages, it is always (1 << n) *
594                  * pageblock_nr_pages for some non-negative n.  (Max order
595                  * page may span two pageblocks).
596                  */
597         }
598
599         /* split_free_page does not map the pages */
600         map_pages(&freelist);
601
602         if (pfn < end_pfn) {
603                 /* Loop terminated early, cleanup. */
604                 release_freepages(&freelist);
605                 return 0;
606         }
607
608         /* We don't use freelists for anything. */
609         return pfn;
610 }
611
612 /* Update the number of anon and file isolated pages in the zone */
613 static void acct_isolated(struct zone *zone, struct compact_control *cc)
614 {
615         struct page *page;
616         unsigned int count[2] = { 0, };
617
618         if (list_empty(&cc->migratepages))
619                 return;
620
621         list_for_each_entry(page, &cc->migratepages, lru)
622                 count[!!page_is_file_cache(page)]++;
623
624         mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
625         mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
626 }
627
628 /* Similar to reclaim, but different enough that they don't share logic */
629 static bool too_many_isolated(struct zone *zone)
630 {
631         unsigned long active, inactive, isolated;
632
633         inactive = zone_page_state(zone, NR_INACTIVE_FILE) +
634                                         zone_page_state(zone, NR_INACTIVE_ANON);
635         active = zone_page_state(zone, NR_ACTIVE_FILE) +
636                                         zone_page_state(zone, NR_ACTIVE_ANON);
637         isolated = zone_page_state(zone, NR_ISOLATED_FILE) +
638                                         zone_page_state(zone, NR_ISOLATED_ANON);
639
640         return isolated > (inactive + active) / 2;
641 }
642
643 /**
644  * isolate_migratepages_block() - isolate all migrate-able pages within
645  *                                a single pageblock
646  * @cc:         Compaction control structure.
647  * @low_pfn:    The first PFN to isolate
648  * @end_pfn:    The one-past-the-last PFN to isolate, within same pageblock
649  * @isolate_mode: Isolation mode to be used.
650  *
651  * Isolate all pages that can be migrated from the range specified by
652  * [low_pfn, end_pfn). The range is expected to be within same pageblock.
653  * Returns zero if there is a fatal signal pending, otherwise PFN of the
654  * first page that was not scanned (which may be both less, equal to or more
655  * than end_pfn).
656  *
657  * The pages are isolated on cc->migratepages list (not required to be empty),
658  * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
659  * is neither read nor updated.
660  */
661 static unsigned long
662 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
663                         unsigned long end_pfn, isolate_mode_t isolate_mode)
664 {
665         struct zone *zone = cc->zone;
666         unsigned long nr_scanned = 0, nr_isolated = 0;
667         struct list_head *migratelist = &cc->migratepages;
668         struct lruvec *lruvec;
669         unsigned long flags = 0;
670         bool locked = false;
671         struct page *page = NULL, *valid_page = NULL;
672         unsigned long start_pfn = low_pfn;
673
674         /*
675          * Ensure that there are not too many pages isolated from the LRU
676          * list by either parallel reclaimers or compaction. If there are,
677          * delay for some time until fewer pages are isolated
678          */
679         while (unlikely(too_many_isolated(zone))) {
680                 /* async migration should just abort */
681                 if (cc->mode == MIGRATE_ASYNC)
682                         return 0;
683
684                 congestion_wait(BLK_RW_ASYNC, HZ/10);
685
686                 if (fatal_signal_pending(current))
687                         return 0;
688         }
689
690         if (compact_should_abort(cc))
691                 return 0;
692
693         /* Time to isolate some pages for migration */
694         for (; low_pfn < end_pfn; low_pfn++) {
695                 bool is_lru;
696
697                 /*
698                  * Periodically drop the lock (if held) regardless of its
699                  * contention, to give chance to IRQs. Abort async compaction
700                  * if contended.
701                  */
702                 if (!(low_pfn % SWAP_CLUSTER_MAX)
703                     && compact_unlock_should_abort(&zone->lru_lock, flags,
704                                                                 &locked, cc))
705                         break;
706
707                 if (!pfn_valid_within(low_pfn))
708                         continue;
709                 nr_scanned++;
710
711                 page = pfn_to_page(low_pfn);
712
713                 if (!valid_page)
714                         valid_page = page;
715
716                 /*
717                  * Skip if free. We read page order here without zone lock
718                  * which is generally unsafe, but the race window is small and
719                  * the worst thing that can happen is that we skip some
720                  * potential isolation targets.
721                  */
722                 if (PageBuddy(page)) {
723                         unsigned long freepage_order = page_order_unsafe(page);
724
725                         /*
726                          * Without lock, we cannot be sure that what we got is
727                          * a valid page order. Consider only values in the
728                          * valid order range to prevent low_pfn overflow.
729                          */
730                         if (freepage_order > 0 && freepage_order < MAX_ORDER)
731                                 low_pfn += (1UL << freepage_order) - 1;
732                         continue;
733                 }
734
735                 /*
736                  * Check may be lockless but that's ok as we recheck later.
737                  * It's possible to migrate LRU pages and balloon pages
738                  * Skip any other type of page
739                  */
740                 is_lru = PageLRU(page);
741                 if (!is_lru) {
742                         if (unlikely(balloon_page_movable(page))) {
743                                 if (balloon_page_isolate(page)) {
744                                         /* Successfully isolated */
745                                         goto isolate_success;
746                                 }
747                         }
748                 }
749
750                 /*
751                  * Regardless of being on LRU, compound pages such as THP and
752                  * hugetlbfs are not to be compacted. We can potentially save
753                  * a lot of iterations if we skip them at once. The check is
754                  * racy, but we can consider only valid values and the only
755                  * danger is skipping too much.
756                  */
757                 if (PageCompound(page)) {
758                         unsigned int comp_order = compound_order(page);
759
760                         if (likely(comp_order < MAX_ORDER))
761                                 low_pfn += (1UL << comp_order) - 1;
762
763                         continue;
764                 }
765
766                 if (!is_lru)
767                         continue;
768
769                 /*
770                  * Migration will fail if an anonymous page is pinned in memory,
771                  * so avoid taking lru_lock and isolating it unnecessarily in an
772                  * admittedly racy check.
773                  */
774                 if (!page_mapping(page) &&
775                     page_count(page) > page_mapcount(page))
776                         continue;
777
778                 /* If we already hold the lock, we can skip some rechecking */
779                 if (!locked) {
780                         locked = compact_trylock_irqsave(&zone->lru_lock,
781                                                                 &flags, cc);
782                         if (!locked)
783                                 break;
784
785                         /* Recheck PageLRU and PageCompound under lock */
786                         if (!PageLRU(page))
787                                 continue;
788
789                         /*
790                          * Page become compound since the non-locked check,
791                          * and it's on LRU. It can only be a THP so the order
792                          * is safe to read and it's 0 for tail pages.
793                          */
794                         if (unlikely(PageCompound(page))) {
795                                 low_pfn += (1UL << compound_order(page)) - 1;
796                                 continue;
797                         }
798                 }
799
800                 lruvec = mem_cgroup_page_lruvec(page, zone);
801
802                 /* Try isolate the page */
803                 if (__isolate_lru_page(page, isolate_mode) != 0)
804                         continue;
805
806                 VM_BUG_ON_PAGE(PageCompound(page), page);
807
808                 /* Successfully isolated */
809                 del_page_from_lru_list(page, lruvec, page_lru(page));
810
811 isolate_success:
812                 list_add(&page->lru, migratelist);
813                 cc->nr_migratepages++;
814                 nr_isolated++;
815
816                 /* Avoid isolating too much */
817                 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
818                         ++low_pfn;
819                         break;
820                 }
821         }
822
823         /*
824          * The PageBuddy() check could have potentially brought us outside
825          * the range to be scanned.
826          */
827         if (unlikely(low_pfn > end_pfn))
828                 low_pfn = end_pfn;
829
830         if (locked)
831                 spin_unlock_irqrestore(&zone->lru_lock, flags);
832
833         /*
834          * Update the pageblock-skip information and cached scanner pfn,
835          * if the whole pageblock was scanned without isolating any page.
836          */
837         if (low_pfn == end_pfn)
838                 update_pageblock_skip(cc, valid_page, nr_isolated, true);
839
840         trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
841                                                 nr_scanned, nr_isolated);
842
843         count_compact_events(COMPACTMIGRATE_SCANNED, nr_scanned);
844         if (nr_isolated)
845                 count_compact_events(COMPACTISOLATED, nr_isolated);
846
847         return low_pfn;
848 }
849
850 /**
851  * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
852  * @cc:        Compaction control structure.
853  * @start_pfn: The first PFN to start isolating.
854  * @end_pfn:   The one-past-last PFN.
855  *
856  * Returns zero if isolation fails fatally due to e.g. pending signal.
857  * Otherwise, function returns one-past-the-last PFN of isolated page
858  * (which may be greater than end_pfn if end fell in a middle of a THP page).
859  */
860 unsigned long
861 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
862                                                         unsigned long end_pfn)
863 {
864         unsigned long pfn, block_end_pfn;
865
866         /* Scan block by block. First and last block may be incomplete */
867         pfn = start_pfn;
868         block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
869
870         for (; pfn < end_pfn; pfn = block_end_pfn,
871                                 block_end_pfn += pageblock_nr_pages) {
872
873                 block_end_pfn = min(block_end_pfn, end_pfn);
874
875                 if (!pageblock_pfn_to_page(pfn, block_end_pfn, cc->zone))
876                         continue;
877
878                 pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
879                                                         ISOLATE_UNEVICTABLE);
880
881                 if (!pfn)
882                         break;
883
884                 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
885                         break;
886         }
887         acct_isolated(cc->zone, cc);
888
889         return pfn;
890 }
891
892 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
893 #ifdef CONFIG_COMPACTION
894
895 /* Returns true if the page is within a block suitable for migration to */
896 static bool suitable_migration_target(struct page *page)
897 {
898         /* If the page is a large free page, then disallow migration */
899         if (PageBuddy(page)) {
900                 /*
901                  * We are checking page_order without zone->lock taken. But
902                  * the only small danger is that we skip a potentially suitable
903                  * pageblock, so it's not worth to check order for valid range.
904                  */
905                 if (page_order_unsafe(page) >= pageblock_order)
906                         return false;
907         }
908
909         /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
910         if (migrate_async_suitable(get_pageblock_migratetype(page)))
911                 return true;
912
913         /* Otherwise skip the block */
914         return false;
915 }
916
917 /*
918  * Test whether the free scanner has reached the same or lower pageblock than
919  * the migration scanner, and compaction should thus terminate.
920  */
921 static inline bool compact_scanners_met(struct compact_control *cc)
922 {
923         return (cc->free_pfn >> pageblock_order)
924                 <= (cc->migrate_pfn >> pageblock_order);
925 }
926
927 /*
928  * Based on information in the current compact_control, find blocks
929  * suitable for isolating free pages from and then isolate them.
930  */
931 static void isolate_freepages(struct compact_control *cc)
932 {
933         struct zone *zone = cc->zone;
934         struct page *page;
935         unsigned long block_start_pfn;  /* start of current pageblock */
936         unsigned long isolate_start_pfn; /* exact pfn we start at */
937         unsigned long block_end_pfn;    /* end of current pageblock */
938         unsigned long low_pfn;       /* lowest pfn scanner is able to scan */
939         struct list_head *freelist = &cc->freepages;
940
941         /*
942          * Initialise the free scanner. The starting point is where we last
943          * successfully isolated from, zone-cached value, or the end of the
944          * zone when isolating for the first time. For looping we also need
945          * this pfn aligned down to the pageblock boundary, because we do
946          * block_start_pfn -= pageblock_nr_pages in the for loop.
947          * For ending point, take care when isolating in last pageblock of a
948          * a zone which ends in the middle of a pageblock.
949          * The low boundary is the end of the pageblock the migration scanner
950          * is using.
951          */
952         isolate_start_pfn = cc->free_pfn;
953         block_start_pfn = cc->free_pfn & ~(pageblock_nr_pages-1);
954         block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
955                                                 zone_end_pfn(zone));
956         low_pfn = ALIGN(cc->migrate_pfn + 1, pageblock_nr_pages);
957
958         /*
959          * Isolate free pages until enough are available to migrate the
960          * pages on cc->migratepages. We stop searching if the migrate
961          * and free page scanners meet or enough free pages are isolated.
962          */
963         for (; block_start_pfn >= low_pfn;
964                                 block_end_pfn = block_start_pfn,
965                                 block_start_pfn -= pageblock_nr_pages,
966                                 isolate_start_pfn = block_start_pfn) {
967                 unsigned long isolated;
968
969                 /*
970                  * This can iterate a massively long zone without finding any
971                  * suitable migration targets, so periodically check if we need
972                  * to schedule, or even abort async compaction.
973                  */
974                 if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
975                                                 && compact_should_abort(cc))
976                         break;
977
978                 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
979                                                                         zone);
980                 if (!page)
981                         continue;
982
983                 /* Check the block is suitable for migration */
984                 if (!suitable_migration_target(page))
985                         continue;
986
987                 /* If isolation recently failed, do not retry */
988                 if (!isolation_suitable(cc, page))
989                         continue;
990
991                 /* Found a block suitable for isolating free pages from. */
992                 isolated = isolate_freepages_block(cc, &isolate_start_pfn,
993                                                 block_end_pfn, freelist, false);
994                 /* If isolation failed early, do not continue needlessly */
995                 if (!isolated && isolate_start_pfn < block_end_pfn &&
996                     cc->nr_migratepages > cc->nr_freepages)
997                         break;
998
999                 /*
1000                  * If we isolated enough freepages, or aborted due to async
1001                  * compaction being contended, terminate the loop.
1002                  * Remember where the free scanner should restart next time,
1003                  * which is where isolate_freepages_block() left off.
1004                  * But if it scanned the whole pageblock, isolate_start_pfn
1005                  * now points at block_end_pfn, which is the start of the next
1006                  * pageblock.
1007                  * In that case we will however want to restart at the start
1008                  * of the previous pageblock.
1009                  */
1010                 if ((cc->nr_freepages >= cc->nr_migratepages)
1011                                                         || cc->contended) {
1012                         if (isolate_start_pfn >= block_end_pfn)
1013                                 isolate_start_pfn =
1014                                         block_start_pfn - pageblock_nr_pages;
1015                         break;
1016                 } else {
1017                         /*
1018                          * isolate_freepages_block() should not terminate
1019                          * prematurely unless contended, or isolated enough
1020                          */
1021                         VM_BUG_ON(isolate_start_pfn < block_end_pfn);
1022                 }
1023         }
1024
1025         /* split_free_page does not map the pages */
1026         map_pages(freelist);
1027
1028         /*
1029          * Record where the free scanner will restart next time. Either we
1030          * broke from the loop and set isolate_start_pfn based on the last
1031          * call to isolate_freepages_block(), or we met the migration scanner
1032          * and the loop terminated due to isolate_start_pfn < low_pfn
1033          */
1034         cc->free_pfn = isolate_start_pfn;
1035 }
1036
1037 /*
1038  * This is a migrate-callback that "allocates" freepages by taking pages
1039  * from the isolated freelists in the block we are migrating to.
1040  */
1041 static struct page *compaction_alloc(struct page *migratepage,
1042                                         unsigned long data,
1043                                         int **result)
1044 {
1045         struct compact_control *cc = (struct compact_control *)data;
1046         struct page *freepage;
1047
1048         /*
1049          * Isolate free pages if necessary, and if we are not aborting due to
1050          * contention.
1051          */
1052         if (list_empty(&cc->freepages)) {
1053                 if (!cc->contended)
1054                         isolate_freepages(cc);
1055
1056                 if (list_empty(&cc->freepages))
1057                         return NULL;
1058         }
1059
1060         freepage = list_entry(cc->freepages.next, struct page, lru);
1061         list_del(&freepage->lru);
1062         cc->nr_freepages--;
1063
1064         return freepage;
1065 }
1066
1067 /*
1068  * This is a migrate-callback that "frees" freepages back to the isolated
1069  * freelist.  All pages on the freelist are from the same zone, so there is no
1070  * special handling needed for NUMA.
1071  */
1072 static void compaction_free(struct page *page, unsigned long data)
1073 {
1074         struct compact_control *cc = (struct compact_control *)data;
1075
1076         list_add(&page->lru, &cc->freepages);
1077         cc->nr_freepages++;
1078 }
1079
1080 /* possible outcome of isolate_migratepages */
1081 typedef enum {
1082         ISOLATE_ABORT,          /* Abort compaction now */
1083         ISOLATE_NONE,           /* No pages isolated, continue scanning */
1084         ISOLATE_SUCCESS,        /* Pages isolated, migrate */
1085 } isolate_migrate_t;
1086
1087 /*
1088  * Allow userspace to control policy on scanning the unevictable LRU for
1089  * compactable pages.
1090  */
1091 int sysctl_compact_unevictable_allowed __read_mostly = 1;
1092
1093 /*
1094  * Isolate all pages that can be migrated from the first suitable block,
1095  * starting at the block pointed to by the migrate scanner pfn within
1096  * compact_control.
1097  */
1098 static isolate_migrate_t isolate_migratepages(struct zone *zone,
1099                                         struct compact_control *cc)
1100 {
1101         unsigned long low_pfn, end_pfn;
1102         unsigned long isolate_start_pfn;
1103         struct page *page;
1104         const isolate_mode_t isolate_mode =
1105                 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1106                 (cc->mode == MIGRATE_ASYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1107
1108         /*
1109          * Start at where we last stopped, or beginning of the zone as
1110          * initialized by compact_zone()
1111          */
1112         low_pfn = cc->migrate_pfn;
1113
1114         /* Only scan within a pageblock boundary */
1115         end_pfn = ALIGN(low_pfn + 1, pageblock_nr_pages);
1116
1117         /*
1118          * Iterate over whole pageblocks until we find the first suitable.
1119          * Do not cross the free scanner.
1120          */
1121         for (; end_pfn <= cc->free_pfn;
1122                         low_pfn = end_pfn, end_pfn += pageblock_nr_pages) {
1123
1124                 /*
1125                  * This can potentially iterate a massively long zone with
1126                  * many pageblocks unsuitable, so periodically check if we
1127                  * need to schedule, or even abort async compaction.
1128                  */
1129                 if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
1130                                                 && compact_should_abort(cc))
1131                         break;
1132
1133                 page = pageblock_pfn_to_page(low_pfn, end_pfn, zone);
1134                 if (!page)
1135                         continue;
1136
1137                 /* If isolation recently failed, do not retry */
1138                 if (!isolation_suitable(cc, page))
1139                         continue;
1140
1141                 /*
1142                  * For async compaction, also only scan in MOVABLE blocks.
1143                  * Async compaction is optimistic to see if the minimum amount
1144                  * of work satisfies the allocation.
1145                  */
1146                 if (cc->mode == MIGRATE_ASYNC &&
1147                     !migrate_async_suitable(get_pageblock_migratetype(page)))
1148                         continue;
1149
1150                 /* Perform the isolation */
1151                 isolate_start_pfn = low_pfn;
1152                 low_pfn = isolate_migratepages_block(cc, low_pfn, end_pfn,
1153                                                                 isolate_mode);
1154
1155                 if (!low_pfn || cc->contended) {
1156                         acct_isolated(zone, cc);
1157                         return ISOLATE_ABORT;
1158                 }
1159
1160                 /*
1161                  * Record where we could have freed pages by migration and not
1162                  * yet flushed them to buddy allocator.
1163                  * - this is the lowest page that could have been isolated and
1164                  * then freed by migration.
1165                  */
1166                 if (cc->nr_migratepages && !cc->last_migrated_pfn)
1167                         cc->last_migrated_pfn = isolate_start_pfn;
1168
1169                 /*
1170                  * Either we isolated something and proceed with migration. Or
1171                  * we failed and compact_zone should decide if we should
1172                  * continue or not.
1173                  */
1174                 break;
1175         }
1176
1177         acct_isolated(zone, cc);
1178         /* Record where migration scanner will be restarted. */
1179         cc->migrate_pfn = low_pfn;
1180
1181         return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1182 }
1183
1184 /*
1185  * order == -1 is expected when compacting via
1186  * /proc/sys/vm/compact_memory
1187  */
1188 static inline bool is_via_compact_memory(int order)
1189 {
1190         return order == -1;
1191 }
1192
1193 static int __compact_finished(struct zone *zone, struct compact_control *cc,
1194                             const int migratetype)
1195 {
1196         unsigned int order;
1197         unsigned long watermark;
1198
1199         if (cc->contended || fatal_signal_pending(current))
1200                 return COMPACT_CONTENDED;
1201
1202         /* Compaction run completes if the migrate and free scanner meet */
1203         if (compact_scanners_met(cc)) {
1204                 /* Let the next compaction start anew. */
1205                 reset_cached_positions(zone);
1206
1207                 /*
1208                  * Mark that the PG_migrate_skip information should be cleared
1209                  * by kswapd when it goes to sleep. kswapd does not set the
1210                  * flag itself as the decision to be clear should be directly
1211                  * based on an allocation request.
1212                  */
1213                 if (!current_is_kswapd())
1214                         zone->compact_blockskip_flush = true;
1215
1216                 return COMPACT_COMPLETE;
1217         }
1218
1219         if (is_via_compact_memory(cc->order))
1220                 return COMPACT_CONTINUE;
1221
1222         /* Compaction run is not finished if the watermark is not met */
1223         watermark = low_wmark_pages(zone);
1224
1225         if (!zone_watermark_ok(zone, cc->order, watermark, cc->classzone_idx,
1226                                                         cc->alloc_flags))
1227                 return COMPACT_CONTINUE;
1228
1229         /* Direct compactor: Is a suitable page free? */
1230         for (order = cc->order; order < MAX_ORDER; order++) {
1231                 struct free_area *area = &zone->free_area[order];
1232                 bool can_steal;
1233
1234                 /* Job done if page is free of the right migratetype */
1235                 if (!list_empty(&area->free_list[migratetype]))
1236                         return COMPACT_PARTIAL;
1237
1238 #ifdef CONFIG_CMA
1239                 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
1240                 if (migratetype == MIGRATE_MOVABLE &&
1241                         !list_empty(&area->free_list[MIGRATE_CMA]))
1242                         return COMPACT_PARTIAL;
1243 #endif
1244                 /*
1245                  * Job done if allocation would steal freepages from
1246                  * other migratetype buddy lists.
1247                  */
1248                 if (find_suitable_fallback(area, order, migratetype,
1249                                                 true, &can_steal) != -1)
1250                         return COMPACT_PARTIAL;
1251         }
1252
1253         return COMPACT_NO_SUITABLE_PAGE;
1254 }
1255
1256 static int compact_finished(struct zone *zone, struct compact_control *cc,
1257                             const int migratetype)
1258 {
1259         int ret;
1260
1261         ret = __compact_finished(zone, cc, migratetype);
1262         trace_mm_compaction_finished(zone, cc->order, ret);
1263         if (ret == COMPACT_NO_SUITABLE_PAGE)
1264                 ret = COMPACT_CONTINUE;
1265
1266         return ret;
1267 }
1268
1269 /*
1270  * compaction_suitable: Is this suitable to run compaction on this zone now?
1271  * Returns
1272  *   COMPACT_SKIPPED  - If there are too few free pages for compaction
1273  *   COMPACT_PARTIAL  - If the allocation would succeed without compaction
1274  *   COMPACT_CONTINUE - If compaction should run now
1275  */
1276 static unsigned long __compaction_suitable(struct zone *zone, int order,
1277                                         int alloc_flags, int classzone_idx)
1278 {
1279         int fragindex;
1280         unsigned long watermark;
1281
1282         if (is_via_compact_memory(order))
1283                 return COMPACT_CONTINUE;
1284
1285         watermark = low_wmark_pages(zone);
1286         /*
1287          * If watermarks for high-order allocation are already met, there
1288          * should be no need for compaction at all.
1289          */
1290         if (zone_watermark_ok(zone, order, watermark, classzone_idx,
1291                                                                 alloc_flags))
1292                 return COMPACT_PARTIAL;
1293
1294         /*
1295          * Watermarks for order-0 must be met for compaction. Note the 2UL.
1296          * This is because during migration, copies of pages need to be
1297          * allocated and for a short time, the footprint is higher
1298          */
1299         watermark += (2UL << order);
1300         if (!zone_watermark_ok(zone, 0, watermark, classzone_idx, alloc_flags))
1301                 return COMPACT_SKIPPED;
1302
1303         /*
1304          * fragmentation index determines if allocation failures are due to
1305          * low memory or external fragmentation
1306          *
1307          * index of -1000 would imply allocations might succeed depending on
1308          * watermarks, but we already failed the high-order watermark check
1309          * index towards 0 implies failure is due to lack of memory
1310          * index towards 1000 implies failure is due to fragmentation
1311          *
1312          * Only compact if a failure would be due to fragmentation.
1313          */
1314         fragindex = fragmentation_index(zone, order);
1315         if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
1316                 return COMPACT_NOT_SUITABLE_ZONE;
1317
1318         return COMPACT_CONTINUE;
1319 }
1320
1321 unsigned long compaction_suitable(struct zone *zone, int order,
1322                                         int alloc_flags, int classzone_idx)
1323 {
1324         unsigned long ret;
1325
1326         ret = __compaction_suitable(zone, order, alloc_flags, classzone_idx);
1327         trace_mm_compaction_suitable(zone, order, ret);
1328         if (ret == COMPACT_NOT_SUITABLE_ZONE)
1329                 ret = COMPACT_SKIPPED;
1330
1331         return ret;
1332 }
1333
1334 static int compact_zone(struct zone *zone, struct compact_control *cc)
1335 {
1336         int ret;
1337         unsigned long start_pfn = zone->zone_start_pfn;
1338         unsigned long end_pfn = zone_end_pfn(zone);
1339         const int migratetype = gfpflags_to_migratetype(cc->gfp_mask);
1340         const bool sync = cc->mode != MIGRATE_ASYNC;
1341
1342         ret = compaction_suitable(zone, cc->order, cc->alloc_flags,
1343                                                         cc->classzone_idx);
1344         switch (ret) {
1345         case COMPACT_PARTIAL:
1346         case COMPACT_SKIPPED:
1347                 /* Compaction is likely to fail */
1348                 return ret;
1349         case COMPACT_CONTINUE:
1350                 /* Fall through to compaction */
1351                 ;
1352         }
1353
1354         /*
1355          * Clear pageblock skip if there were failures recently and compaction
1356          * is about to be retried after being deferred. kswapd does not do
1357          * this reset as it'll reset the cached information when going to sleep.
1358          */
1359         if (compaction_restarting(zone, cc->order) && !current_is_kswapd())
1360                 __reset_isolation_suitable(zone);
1361
1362         /*
1363          * Setup to move all movable pages to the end of the zone. Used cached
1364          * information on where the scanners should start but check that it
1365          * is initialised by ensuring the values are within zone boundaries.
1366          */
1367         cc->migrate_pfn = zone->compact_cached_migrate_pfn[sync];
1368         cc->free_pfn = zone->compact_cached_free_pfn;
1369         if (cc->free_pfn < start_pfn || cc->free_pfn > end_pfn) {
1370                 cc->free_pfn = end_pfn & ~(pageblock_nr_pages-1);
1371                 zone->compact_cached_free_pfn = cc->free_pfn;
1372         }
1373         if (cc->migrate_pfn < start_pfn || cc->migrate_pfn > end_pfn) {
1374                 cc->migrate_pfn = start_pfn;
1375                 zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
1376                 zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
1377         }
1378         cc->last_migrated_pfn = 0;
1379
1380         trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
1381                                 cc->free_pfn, end_pfn, sync);
1382
1383         migrate_prep_local();
1384
1385         while ((ret = compact_finished(zone, cc, migratetype)) ==
1386                                                 COMPACT_CONTINUE) {
1387                 int err;
1388
1389                 switch (isolate_migratepages(zone, cc)) {
1390                 case ISOLATE_ABORT:
1391                         ret = COMPACT_CONTENDED;
1392                         putback_movable_pages(&cc->migratepages);
1393                         cc->nr_migratepages = 0;
1394                         goto out;
1395                 case ISOLATE_NONE:
1396                         /*
1397                          * We haven't isolated and migrated anything, but
1398                          * there might still be unflushed migrations from
1399                          * previous cc->order aligned block.
1400                          */
1401                         goto check_drain;
1402                 case ISOLATE_SUCCESS:
1403                         ;
1404                 }
1405
1406                 err = migrate_pages(&cc->migratepages, compaction_alloc,
1407                                 compaction_free, (unsigned long)cc, cc->mode,
1408                                 MR_COMPACTION);
1409
1410                 trace_mm_compaction_migratepages(cc->nr_migratepages, err,
1411                                                         &cc->migratepages);
1412
1413                 /* All pages were either migrated or will be released */
1414                 cc->nr_migratepages = 0;
1415                 if (err) {
1416                         putback_movable_pages(&cc->migratepages);
1417                         /*
1418                          * migrate_pages() may return -ENOMEM when scanners meet
1419                          * and we want compact_finished() to detect it
1420                          */
1421                         if (err == -ENOMEM && !compact_scanners_met(cc)) {
1422                                 ret = COMPACT_CONTENDED;
1423                                 goto out;
1424                         }
1425                 }
1426
1427 check_drain:
1428                 /*
1429                  * Has the migration scanner moved away from the previous
1430                  * cc->order aligned block where we migrated from? If yes,
1431                  * flush the pages that were freed, so that they can merge and
1432                  * compact_finished() can detect immediately if allocation
1433                  * would succeed.
1434                  */
1435                 if (cc->order > 0 && cc->last_migrated_pfn) {
1436                         int cpu;
1437                         unsigned long current_block_start =
1438                                 cc->migrate_pfn & ~((1UL << cc->order) - 1);
1439
1440                         if (cc->last_migrated_pfn < current_block_start) {
1441                                 cpu = get_cpu();
1442                                 lru_add_drain_cpu(cpu);
1443                                 drain_local_pages(zone);
1444                                 put_cpu();
1445                                 /* No more flushing until we migrate again */
1446                                 cc->last_migrated_pfn = 0;
1447                         }
1448                 }
1449
1450         }
1451
1452 out:
1453         /*
1454          * Release free pages and update where the free scanner should restart,
1455          * so we don't leave any returned pages behind in the next attempt.
1456          */
1457         if (cc->nr_freepages > 0) {
1458                 unsigned long free_pfn = release_freepages(&cc->freepages);
1459
1460                 cc->nr_freepages = 0;
1461                 VM_BUG_ON(free_pfn == 0);
1462                 /* The cached pfn is always the first in a pageblock */
1463                 free_pfn &= ~(pageblock_nr_pages-1);
1464                 /*
1465                  * Only go back, not forward. The cached pfn might have been
1466                  * already reset to zone end in compact_finished()
1467                  */
1468                 if (free_pfn > zone->compact_cached_free_pfn)
1469                         zone->compact_cached_free_pfn = free_pfn;
1470         }
1471
1472         trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
1473                                 cc->free_pfn, end_pfn, sync, ret);
1474
1475         if (ret == COMPACT_CONTENDED)
1476                 ret = COMPACT_PARTIAL;
1477
1478         return ret;
1479 }
1480
1481 static unsigned long compact_zone_order(struct zone *zone, int order,
1482                 gfp_t gfp_mask, enum migrate_mode mode, int *contended,
1483                 int alloc_flags, int classzone_idx)
1484 {
1485         unsigned long ret;
1486         struct compact_control cc = {
1487                 .nr_freepages = 0,
1488                 .nr_migratepages = 0,
1489                 .order = order,
1490                 .gfp_mask = gfp_mask,
1491                 .zone = zone,
1492                 .mode = mode,
1493                 .alloc_flags = alloc_flags,
1494                 .classzone_idx = classzone_idx,
1495         };
1496         INIT_LIST_HEAD(&cc.freepages);
1497         INIT_LIST_HEAD(&cc.migratepages);
1498
1499         ret = compact_zone(zone, &cc);
1500
1501         VM_BUG_ON(!list_empty(&cc.freepages));
1502         VM_BUG_ON(!list_empty(&cc.migratepages));
1503
1504         *contended = cc.contended;
1505         return ret;
1506 }
1507
1508 int sysctl_extfrag_threshold = 500;
1509
1510 /**
1511  * try_to_compact_pages - Direct compact to satisfy a high-order allocation
1512  * @gfp_mask: The GFP mask of the current allocation
1513  * @order: The order of the current allocation
1514  * @alloc_flags: The allocation flags of the current allocation
1515  * @ac: The context of current allocation
1516  * @mode: The migration mode for async, sync light, or sync migration
1517  * @contended: Return value that determines if compaction was aborted due to
1518  *             need_resched() or lock contention
1519  *
1520  * This is the main entry point for direct page compaction.
1521  */
1522 unsigned long try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
1523                         int alloc_flags, const struct alloc_context *ac,
1524                         enum migrate_mode mode, int *contended)
1525 {
1526         int may_enter_fs = gfp_mask & __GFP_FS;
1527         int may_perform_io = gfp_mask & __GFP_IO;
1528         struct zoneref *z;
1529         struct zone *zone;
1530         int rc = COMPACT_DEFERRED;
1531         int all_zones_contended = COMPACT_CONTENDED_LOCK; /* init for &= op */
1532
1533         *contended = COMPACT_CONTENDED_NONE;
1534
1535         /* Check if the GFP flags allow compaction */
1536         if (!order || !may_enter_fs || !may_perform_io)
1537                 return COMPACT_SKIPPED;
1538
1539         trace_mm_compaction_try_to_compact_pages(order, gfp_mask, mode);
1540
1541         /* Compact each zone in the list */
1542         for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
1543                                                                 ac->nodemask) {
1544                 int status;
1545                 int zone_contended;
1546
1547                 if (compaction_deferred(zone, order))
1548                         continue;
1549
1550                 status = compact_zone_order(zone, order, gfp_mask, mode,
1551                                 &zone_contended, alloc_flags,
1552                                 ac->classzone_idx);
1553                 rc = max(status, rc);
1554                 /*
1555                  * It takes at least one zone that wasn't lock contended
1556                  * to clear all_zones_contended.
1557                  */
1558                 all_zones_contended &= zone_contended;
1559
1560                 /* If a normal allocation would succeed, stop compacting */
1561                 if (zone_watermark_ok(zone, order, low_wmark_pages(zone),
1562                                         ac->classzone_idx, alloc_flags)) {
1563                         /*
1564                          * We think the allocation will succeed in this zone,
1565                          * but it is not certain, hence the false. The caller
1566                          * will repeat this with true if allocation indeed
1567                          * succeeds in this zone.
1568                          */
1569                         compaction_defer_reset(zone, order, false);
1570                         /*
1571                          * It is possible that async compaction aborted due to
1572                          * need_resched() and the watermarks were ok thanks to
1573                          * somebody else freeing memory. The allocation can
1574                          * however still fail so we better signal the
1575                          * need_resched() contention anyway (this will not
1576                          * prevent the allocation attempt).
1577                          */
1578                         if (zone_contended == COMPACT_CONTENDED_SCHED)
1579                                 *contended = COMPACT_CONTENDED_SCHED;
1580
1581                         goto break_loop;
1582                 }
1583
1584                 if (mode != MIGRATE_ASYNC && status == COMPACT_COMPLETE) {
1585                         /*
1586                          * We think that allocation won't succeed in this zone
1587                          * so we defer compaction there. If it ends up
1588                          * succeeding after all, it will be reset.
1589                          */
1590                         defer_compaction(zone, order);
1591                 }
1592
1593                 /*
1594                  * We might have stopped compacting due to need_resched() in
1595                  * async compaction, or due to a fatal signal detected. In that
1596                  * case do not try further zones and signal need_resched()
1597                  * contention.
1598                  */
1599                 if ((zone_contended == COMPACT_CONTENDED_SCHED)
1600                                         || fatal_signal_pending(current)) {
1601                         *contended = COMPACT_CONTENDED_SCHED;
1602                         goto break_loop;
1603                 }
1604
1605                 continue;
1606 break_loop:
1607                 /*
1608                  * We might not have tried all the zones, so  be conservative
1609                  * and assume they are not all lock contended.
1610                  */
1611                 all_zones_contended = 0;
1612                 break;
1613         }
1614
1615         /*
1616          * If at least one zone wasn't deferred or skipped, we report if all
1617          * zones that were tried were lock contended.
1618          */
1619         if (rc > COMPACT_SKIPPED && all_zones_contended)
1620                 *contended = COMPACT_CONTENDED_LOCK;
1621
1622         return rc;
1623 }
1624
1625
1626 /* Compact all zones within a node */
1627 static void __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc)
1628 {
1629         int zoneid;
1630         struct zone *zone;
1631
1632         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
1633
1634                 zone = &pgdat->node_zones[zoneid];
1635                 if (!populated_zone(zone))
1636                         continue;
1637
1638                 cc->nr_freepages = 0;
1639                 cc->nr_migratepages = 0;
1640                 cc->zone = zone;
1641                 INIT_LIST_HEAD(&cc->freepages);
1642                 INIT_LIST_HEAD(&cc->migratepages);
1643
1644                 /*
1645                  * When called via /proc/sys/vm/compact_memory
1646                  * this makes sure we compact the whole zone regardless of
1647                  * cached scanner positions.
1648                  */
1649                 if (is_via_compact_memory(cc->order))
1650                         __reset_isolation_suitable(zone);
1651
1652                 if (is_via_compact_memory(cc->order) ||
1653                                 !compaction_deferred(zone, cc->order))
1654                         compact_zone(zone, cc);
1655
1656                 if (cc->order > 0) {
1657                         if (zone_watermark_ok(zone, cc->order,
1658                                                 low_wmark_pages(zone), 0, 0))
1659                                 compaction_defer_reset(zone, cc->order, false);
1660                 }
1661
1662                 VM_BUG_ON(!list_empty(&cc->freepages));
1663                 VM_BUG_ON(!list_empty(&cc->migratepages));
1664         }
1665 }
1666
1667 void compact_pgdat(pg_data_t *pgdat, int order)
1668 {
1669         struct compact_control cc = {
1670                 .order = order,
1671                 .mode = MIGRATE_ASYNC,
1672         };
1673
1674         if (!order)
1675                 return;
1676
1677         __compact_pgdat(pgdat, &cc);
1678 }
1679
1680 static void compact_node(int nid)
1681 {
1682         struct compact_control cc = {
1683                 .order = -1,
1684                 .mode = MIGRATE_SYNC,
1685                 .ignore_skip_hint = true,
1686         };
1687
1688         __compact_pgdat(NODE_DATA(nid), &cc);
1689 }
1690
1691 /* Compact all nodes in the system */
1692 static void compact_nodes(void)
1693 {
1694         int nid;
1695
1696         /* Flush pending updates to the LRU lists */
1697         lru_add_drain_all();
1698
1699         for_each_online_node(nid)
1700                 compact_node(nid);
1701 }
1702
1703 /* The written value is actually unused, all memory is compacted */
1704 int sysctl_compact_memory;
1705
1706 /* This is the entry point for compacting all nodes via /proc/sys/vm */
1707 int sysctl_compaction_handler(struct ctl_table *table, int write,
1708                         void __user *buffer, size_t *length, loff_t *ppos)
1709 {
1710         if (write)
1711                 compact_nodes();
1712
1713         return 0;
1714 }
1715
1716 int sysctl_extfrag_handler(struct ctl_table *table, int write,
1717                         void __user *buffer, size_t *length, loff_t *ppos)
1718 {
1719         proc_dointvec_minmax(table, write, buffer, length, ppos);
1720
1721         return 0;
1722 }
1723
1724 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
1725 static ssize_t sysfs_compact_node(struct device *dev,
1726                         struct device_attribute *attr,
1727                         const char *buf, size_t count)
1728 {
1729         int nid = dev->id;
1730
1731         if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
1732                 /* Flush pending updates to the LRU lists */
1733                 lru_add_drain_all();
1734
1735                 compact_node(nid);
1736         }
1737
1738         return count;
1739 }
1740 static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
1741
1742 int compaction_register_node(struct node *node)
1743 {
1744         return device_create_file(&node->dev, &dev_attr_compact);
1745 }
1746
1747 void compaction_unregister_node(struct node *node)
1748 {
1749         return device_remove_file(&node->dev, &dev_attr_compact);
1750 }
1751 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
1752
1753 #endif /* CONFIG_COMPACTION */