Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/jkirsher/net...
[firefly-linux-kernel-4.4.55.git] / lib / rhashtable.c
1 /*
2  * Resizable, Scalable, Concurrent Hash Table
3  *
4  * Copyright (c) 2015 Herbert Xu <herbert@gondor.apana.org.au>
5  * Copyright (c) 2014-2015 Thomas Graf <tgraf@suug.ch>
6  * Copyright (c) 2008-2014 Patrick McHardy <kaber@trash.net>
7  *
8  * Code partially derived from nft_hash
9  * Rewritten with rehash code from br_multicast plus single list
10  * pointer as suggested by Josh Triplett
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License version 2 as
14  * published by the Free Software Foundation.
15  */
16
17 #include <linux/atomic.h>
18 #include <linux/kernel.h>
19 #include <linux/init.h>
20 #include <linux/log2.h>
21 #include <linux/sched.h>
22 #include <linux/slab.h>
23 #include <linux/vmalloc.h>
24 #include <linux/mm.h>
25 #include <linux/jhash.h>
26 #include <linux/random.h>
27 #include <linux/rhashtable.h>
28 #include <linux/err.h>
29 #include <linux/export.h>
30
31 #define HASH_DEFAULT_SIZE       64UL
32 #define HASH_MIN_SIZE           4U
33 #define BUCKET_LOCKS_PER_CPU   128UL
34
35 static u32 head_hashfn(struct rhashtable *ht,
36                        const struct bucket_table *tbl,
37                        const struct rhash_head *he)
38 {
39         return rht_head_hashfn(ht, tbl, he, ht->p);
40 }
41
42 #ifdef CONFIG_PROVE_LOCKING
43 #define ASSERT_RHT_MUTEX(HT) BUG_ON(!lockdep_rht_mutex_is_held(HT))
44
45 int lockdep_rht_mutex_is_held(struct rhashtable *ht)
46 {
47         return (debug_locks) ? lockdep_is_held(&ht->mutex) : 1;
48 }
49 EXPORT_SYMBOL_GPL(lockdep_rht_mutex_is_held);
50
51 int lockdep_rht_bucket_is_held(const struct bucket_table *tbl, u32 hash)
52 {
53         spinlock_t *lock = rht_bucket_lock(tbl, hash);
54
55         return (debug_locks) ? lockdep_is_held(lock) : 1;
56 }
57 EXPORT_SYMBOL_GPL(lockdep_rht_bucket_is_held);
58 #else
59 #define ASSERT_RHT_MUTEX(HT)
60 #endif
61
62
63 static int alloc_bucket_locks(struct rhashtable *ht, struct bucket_table *tbl,
64                               gfp_t gfp)
65 {
66         unsigned int i, size;
67 #if defined(CONFIG_PROVE_LOCKING)
68         unsigned int nr_pcpus = 2;
69 #else
70         unsigned int nr_pcpus = num_possible_cpus();
71 #endif
72
73         nr_pcpus = min_t(unsigned int, nr_pcpus, 32UL);
74         size = roundup_pow_of_two(nr_pcpus * ht->p.locks_mul);
75
76         /* Never allocate more than 0.5 locks per bucket */
77         size = min_t(unsigned int, size, tbl->size >> 1);
78
79         if (sizeof(spinlock_t) != 0) {
80 #ifdef CONFIG_NUMA
81                 if (size * sizeof(spinlock_t) > PAGE_SIZE &&
82                     gfp == GFP_KERNEL)
83                         tbl->locks = vmalloc(size * sizeof(spinlock_t));
84                 else
85 #endif
86                 tbl->locks = kmalloc_array(size, sizeof(spinlock_t),
87                                            gfp);
88                 if (!tbl->locks)
89                         return -ENOMEM;
90                 for (i = 0; i < size; i++)
91                         spin_lock_init(&tbl->locks[i]);
92         }
93         tbl->locks_mask = size - 1;
94
95         return 0;
96 }
97
98 static void bucket_table_free(const struct bucket_table *tbl)
99 {
100         if (tbl)
101                 kvfree(tbl->locks);
102
103         kvfree(tbl);
104 }
105
106 static void bucket_table_free_rcu(struct rcu_head *head)
107 {
108         bucket_table_free(container_of(head, struct bucket_table, rcu));
109 }
110
111 static struct bucket_table *bucket_table_alloc(struct rhashtable *ht,
112                                                size_t nbuckets,
113                                                gfp_t gfp)
114 {
115         struct bucket_table *tbl = NULL;
116         size_t size;
117         int i;
118
119         size = sizeof(*tbl) + nbuckets * sizeof(tbl->buckets[0]);
120         if (size <= (PAGE_SIZE << PAGE_ALLOC_COSTLY_ORDER) ||
121             gfp != GFP_KERNEL)
122                 tbl = kzalloc(size, gfp | __GFP_NOWARN | __GFP_NORETRY);
123         if (tbl == NULL)
124                 tbl = __vmalloc(size, gfp | __GFP_HIGHMEM | __GFP_ZERO,
125                                 PAGE_KERNEL);
126         if (tbl == NULL)
127                 return NULL;
128
129         tbl->size = nbuckets;
130
131         if (alloc_bucket_locks(ht, tbl, gfp) < 0) {
132                 bucket_table_free(tbl);
133                 return NULL;
134         }
135
136         INIT_LIST_HEAD(&tbl->walkers);
137
138         get_random_bytes(&tbl->hash_rnd, sizeof(tbl->hash_rnd));
139
140         for (i = 0; i < nbuckets; i++)
141                 INIT_RHT_NULLS_HEAD(tbl->buckets[i], ht, i);
142
143         return tbl;
144 }
145
146 static struct bucket_table *rhashtable_last_table(struct rhashtable *ht,
147                                                   struct bucket_table *tbl)
148 {
149         struct bucket_table *new_tbl;
150
151         do {
152                 new_tbl = tbl;
153                 tbl = rht_dereference_rcu(tbl->future_tbl, ht);
154         } while (tbl);
155
156         return new_tbl;
157 }
158
159 static int rhashtable_rehash_one(struct rhashtable *ht, unsigned int old_hash)
160 {
161         struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
162         struct bucket_table *new_tbl = rhashtable_last_table(ht,
163                 rht_dereference_rcu(old_tbl->future_tbl, ht));
164         struct rhash_head __rcu **pprev = &old_tbl->buckets[old_hash];
165         int err = -ENOENT;
166         struct rhash_head *head, *next, *entry;
167         spinlock_t *new_bucket_lock;
168         unsigned int new_hash;
169
170         rht_for_each(entry, old_tbl, old_hash) {
171                 err = 0;
172                 next = rht_dereference_bucket(entry->next, old_tbl, old_hash);
173
174                 if (rht_is_a_nulls(next))
175                         break;
176
177                 pprev = &entry->next;
178         }
179
180         if (err)
181                 goto out;
182
183         new_hash = head_hashfn(ht, new_tbl, entry);
184
185         new_bucket_lock = rht_bucket_lock(new_tbl, new_hash);
186
187         spin_lock_nested(new_bucket_lock, SINGLE_DEPTH_NESTING);
188         head = rht_dereference_bucket(new_tbl->buckets[new_hash],
189                                       new_tbl, new_hash);
190
191         RCU_INIT_POINTER(entry->next, head);
192
193         rcu_assign_pointer(new_tbl->buckets[new_hash], entry);
194         spin_unlock(new_bucket_lock);
195
196         rcu_assign_pointer(*pprev, next);
197
198 out:
199         return err;
200 }
201
202 static void rhashtable_rehash_chain(struct rhashtable *ht,
203                                     unsigned int old_hash)
204 {
205         struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
206         spinlock_t *old_bucket_lock;
207
208         old_bucket_lock = rht_bucket_lock(old_tbl, old_hash);
209
210         spin_lock_bh(old_bucket_lock);
211         while (!rhashtable_rehash_one(ht, old_hash))
212                 ;
213         old_tbl->rehash++;
214         spin_unlock_bh(old_bucket_lock);
215 }
216
217 static int rhashtable_rehash_attach(struct rhashtable *ht,
218                                     struct bucket_table *old_tbl,
219                                     struct bucket_table *new_tbl)
220 {
221         /* Protect future_tbl using the first bucket lock. */
222         spin_lock_bh(old_tbl->locks);
223
224         /* Did somebody beat us to it? */
225         if (rcu_access_pointer(old_tbl->future_tbl)) {
226                 spin_unlock_bh(old_tbl->locks);
227                 return -EEXIST;
228         }
229
230         /* Make insertions go into the new, empty table right away. Deletions
231          * and lookups will be attempted in both tables until we synchronize.
232          */
233         rcu_assign_pointer(old_tbl->future_tbl, new_tbl);
234
235         /* Ensure the new table is visible to readers. */
236         smp_wmb();
237
238         spin_unlock_bh(old_tbl->locks);
239
240         return 0;
241 }
242
243 static int rhashtable_rehash_table(struct rhashtable *ht)
244 {
245         struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
246         struct bucket_table *new_tbl;
247         struct rhashtable_walker *walker;
248         unsigned int old_hash;
249
250         new_tbl = rht_dereference(old_tbl->future_tbl, ht);
251         if (!new_tbl)
252                 return 0;
253
254         for (old_hash = 0; old_hash < old_tbl->size; old_hash++)
255                 rhashtable_rehash_chain(ht, old_hash);
256
257         /* Publish the new table pointer. */
258         rcu_assign_pointer(ht->tbl, new_tbl);
259
260         spin_lock(&ht->lock);
261         list_for_each_entry(walker, &old_tbl->walkers, list)
262                 walker->tbl = NULL;
263         spin_unlock(&ht->lock);
264
265         /* Wait for readers. All new readers will see the new
266          * table, and thus no references to the old table will
267          * remain.
268          */
269         call_rcu(&old_tbl->rcu, bucket_table_free_rcu);
270
271         return rht_dereference(new_tbl->future_tbl, ht) ? -EAGAIN : 0;
272 }
273
274 /**
275  * rhashtable_expand - Expand hash table while allowing concurrent lookups
276  * @ht:         the hash table to expand
277  *
278  * A secondary bucket array is allocated and the hash entries are migrated.
279  *
280  * This function may only be called in a context where it is safe to call
281  * synchronize_rcu(), e.g. not within a rcu_read_lock() section.
282  *
283  * The caller must ensure that no concurrent resizing occurs by holding
284  * ht->mutex.
285  *
286  * It is valid to have concurrent insertions and deletions protected by per
287  * bucket locks or concurrent RCU protected lookups and traversals.
288  */
289 static int rhashtable_expand(struct rhashtable *ht)
290 {
291         struct bucket_table *new_tbl, *old_tbl = rht_dereference(ht->tbl, ht);
292         int err;
293
294         ASSERT_RHT_MUTEX(ht);
295
296         old_tbl = rhashtable_last_table(ht, old_tbl);
297
298         new_tbl = bucket_table_alloc(ht, old_tbl->size * 2, GFP_KERNEL);
299         if (new_tbl == NULL)
300                 return -ENOMEM;
301
302         err = rhashtable_rehash_attach(ht, old_tbl, new_tbl);
303         if (err)
304                 bucket_table_free(new_tbl);
305
306         return err;
307 }
308
309 /**
310  * rhashtable_shrink - Shrink hash table while allowing concurrent lookups
311  * @ht:         the hash table to shrink
312  *
313  * This function shrinks the hash table to fit, i.e., the smallest
314  * size would not cause it to expand right away automatically.
315  *
316  * The caller must ensure that no concurrent resizing occurs by holding
317  * ht->mutex.
318  *
319  * The caller must ensure that no concurrent table mutations take place.
320  * It is however valid to have concurrent lookups if they are RCU protected.
321  *
322  * It is valid to have concurrent insertions and deletions protected by per
323  * bucket locks or concurrent RCU protected lookups and traversals.
324  */
325 static int rhashtable_shrink(struct rhashtable *ht)
326 {
327         struct bucket_table *new_tbl, *old_tbl = rht_dereference(ht->tbl, ht);
328         unsigned int size;
329         int err;
330
331         ASSERT_RHT_MUTEX(ht);
332
333         size = roundup_pow_of_two(atomic_read(&ht->nelems) * 3 / 2);
334         if (size < ht->p.min_size)
335                 size = ht->p.min_size;
336
337         if (old_tbl->size <= size)
338                 return 0;
339
340         if (rht_dereference(old_tbl->future_tbl, ht))
341                 return -EEXIST;
342
343         new_tbl = bucket_table_alloc(ht, size, GFP_KERNEL);
344         if (new_tbl == NULL)
345                 return -ENOMEM;
346
347         err = rhashtable_rehash_attach(ht, old_tbl, new_tbl);
348         if (err)
349                 bucket_table_free(new_tbl);
350
351         return err;
352 }
353
354 static void rht_deferred_worker(struct work_struct *work)
355 {
356         struct rhashtable *ht;
357         struct bucket_table *tbl;
358         int err = 0;
359
360         ht = container_of(work, struct rhashtable, run_work);
361         mutex_lock(&ht->mutex);
362
363         tbl = rht_dereference(ht->tbl, ht);
364         tbl = rhashtable_last_table(ht, tbl);
365
366         if (rht_grow_above_75(ht, tbl))
367                 rhashtable_expand(ht);
368         else if (ht->p.automatic_shrinking && rht_shrink_below_30(ht, tbl))
369                 rhashtable_shrink(ht);
370
371         err = rhashtable_rehash_table(ht);
372
373         mutex_unlock(&ht->mutex);
374
375         if (err)
376                 schedule_work(&ht->run_work);
377 }
378
379 static bool rhashtable_check_elasticity(struct rhashtable *ht,
380                                         struct bucket_table *tbl,
381                                         unsigned int hash)
382 {
383         unsigned int elasticity = ht->elasticity;
384         struct rhash_head *head;
385
386         rht_for_each(head, tbl, hash)
387                 if (!--elasticity)
388                         return true;
389
390         return false;
391 }
392
393 int rhashtable_insert_rehash(struct rhashtable *ht,
394                              struct bucket_table *tbl)
395 {
396         struct bucket_table *old_tbl;
397         struct bucket_table *new_tbl;
398         unsigned int size;
399         int err;
400
401         old_tbl = rht_dereference_rcu(ht->tbl, ht);
402
403         size = tbl->size;
404
405         err = -EBUSY;
406
407         if (rht_grow_above_75(ht, tbl))
408                 size *= 2;
409         /* Do not schedule more than one rehash */
410         else if (old_tbl != tbl)
411                 goto fail;
412
413         err = -ENOMEM;
414
415         new_tbl = bucket_table_alloc(ht, size, GFP_ATOMIC);
416         if (new_tbl == NULL)
417                 goto fail;
418
419         err = rhashtable_rehash_attach(ht, tbl, new_tbl);
420         if (err) {
421                 bucket_table_free(new_tbl);
422                 if (err == -EEXIST)
423                         err = 0;
424         } else
425                 schedule_work(&ht->run_work);
426
427         return err;
428
429 fail:
430         /* Do not fail the insert if someone else did a rehash. */
431         if (likely(rcu_dereference_raw(tbl->future_tbl)))
432                 return 0;
433
434         /* Schedule async rehash to retry allocation in process context. */
435         if (err == -ENOMEM)
436                 schedule_work(&ht->run_work);
437
438         return err;
439 }
440 EXPORT_SYMBOL_GPL(rhashtable_insert_rehash);
441
442 struct bucket_table *rhashtable_insert_slow(struct rhashtable *ht,
443                                             const void *key,
444                                             struct rhash_head *obj,
445                                             struct bucket_table *tbl)
446 {
447         struct rhash_head *head;
448         unsigned int hash;
449         int err;
450
451         tbl = rhashtable_last_table(ht, tbl);
452         hash = head_hashfn(ht, tbl, obj);
453         spin_lock_nested(rht_bucket_lock(tbl, hash), SINGLE_DEPTH_NESTING);
454
455         err = -EEXIST;
456         if (key && rhashtable_lookup_fast(ht, key, ht->p))
457                 goto exit;
458
459         err = -E2BIG;
460         if (unlikely(rht_grow_above_max(ht, tbl)))
461                 goto exit;
462
463         err = -EAGAIN;
464         if (rhashtable_check_elasticity(ht, tbl, hash) ||
465             rht_grow_above_100(ht, tbl))
466                 goto exit;
467
468         err = 0;
469
470         head = rht_dereference_bucket(tbl->buckets[hash], tbl, hash);
471
472         RCU_INIT_POINTER(obj->next, head);
473
474         rcu_assign_pointer(tbl->buckets[hash], obj);
475
476         atomic_inc(&ht->nelems);
477
478 exit:
479         spin_unlock(rht_bucket_lock(tbl, hash));
480
481         if (err == 0)
482                 return NULL;
483         else if (err == -EAGAIN)
484                 return tbl;
485         else
486                 return ERR_PTR(err);
487 }
488 EXPORT_SYMBOL_GPL(rhashtable_insert_slow);
489
490 /**
491  * rhashtable_walk_init - Initialise an iterator
492  * @ht:         Table to walk over
493  * @iter:       Hash table Iterator
494  *
495  * This function prepares a hash table walk.
496  *
497  * Note that if you restart a walk after rhashtable_walk_stop you
498  * may see the same object twice.  Also, you may miss objects if
499  * there are removals in between rhashtable_walk_stop and the next
500  * call to rhashtable_walk_start.
501  *
502  * For a completely stable walk you should construct your own data
503  * structure outside the hash table.
504  *
505  * This function may sleep so you must not call it from interrupt
506  * context or with spin locks held.
507  *
508  * You must call rhashtable_walk_exit if this function returns
509  * successfully.
510  */
511 int rhashtable_walk_init(struct rhashtable *ht, struct rhashtable_iter *iter)
512 {
513         iter->ht = ht;
514         iter->p = NULL;
515         iter->slot = 0;
516         iter->skip = 0;
517
518         iter->walker = kmalloc(sizeof(*iter->walker), GFP_KERNEL);
519         if (!iter->walker)
520                 return -ENOMEM;
521
522         mutex_lock(&ht->mutex);
523         iter->walker->tbl = rht_dereference(ht->tbl, ht);
524         list_add(&iter->walker->list, &iter->walker->tbl->walkers);
525         mutex_unlock(&ht->mutex);
526
527         return 0;
528 }
529 EXPORT_SYMBOL_GPL(rhashtable_walk_init);
530
531 /**
532  * rhashtable_walk_exit - Free an iterator
533  * @iter:       Hash table Iterator
534  *
535  * This function frees resources allocated by rhashtable_walk_init.
536  */
537 void rhashtable_walk_exit(struct rhashtable_iter *iter)
538 {
539         mutex_lock(&iter->ht->mutex);
540         if (iter->walker->tbl)
541                 list_del(&iter->walker->list);
542         mutex_unlock(&iter->ht->mutex);
543         kfree(iter->walker);
544 }
545 EXPORT_SYMBOL_GPL(rhashtable_walk_exit);
546
547 /**
548  * rhashtable_walk_start - Start a hash table walk
549  * @iter:       Hash table iterator
550  *
551  * Start a hash table walk.  Note that we take the RCU lock in all
552  * cases including when we return an error.  So you must always call
553  * rhashtable_walk_stop to clean up.
554  *
555  * Returns zero if successful.
556  *
557  * Returns -EAGAIN if resize event occured.  Note that the iterator
558  * will rewind back to the beginning and you may use it immediately
559  * by calling rhashtable_walk_next.
560  */
561 int rhashtable_walk_start(struct rhashtable_iter *iter)
562         __acquires(RCU)
563 {
564         struct rhashtable *ht = iter->ht;
565
566         mutex_lock(&ht->mutex);
567
568         if (iter->walker->tbl)
569                 list_del(&iter->walker->list);
570
571         rcu_read_lock();
572
573         mutex_unlock(&ht->mutex);
574
575         if (!iter->walker->tbl) {
576                 iter->walker->tbl = rht_dereference_rcu(ht->tbl, ht);
577                 return -EAGAIN;
578         }
579
580         return 0;
581 }
582 EXPORT_SYMBOL_GPL(rhashtable_walk_start);
583
584 /**
585  * rhashtable_walk_next - Return the next object and advance the iterator
586  * @iter:       Hash table iterator
587  *
588  * Note that you must call rhashtable_walk_stop when you are finished
589  * with the walk.
590  *
591  * Returns the next object or NULL when the end of the table is reached.
592  *
593  * Returns -EAGAIN if resize event occured.  Note that the iterator
594  * will rewind back to the beginning and you may continue to use it.
595  */
596 void *rhashtable_walk_next(struct rhashtable_iter *iter)
597 {
598         struct bucket_table *tbl = iter->walker->tbl;
599         struct rhashtable *ht = iter->ht;
600         struct rhash_head *p = iter->p;
601
602         if (p) {
603                 p = rht_dereference_bucket_rcu(p->next, tbl, iter->slot);
604                 goto next;
605         }
606
607         for (; iter->slot < tbl->size; iter->slot++) {
608                 int skip = iter->skip;
609
610                 rht_for_each_rcu(p, tbl, iter->slot) {
611                         if (!skip)
612                                 break;
613                         skip--;
614                 }
615
616 next:
617                 if (!rht_is_a_nulls(p)) {
618                         iter->skip++;
619                         iter->p = p;
620                         return rht_obj(ht, p);
621                 }
622
623                 iter->skip = 0;
624         }
625
626         iter->p = NULL;
627
628         /* Ensure we see any new tables. */
629         smp_rmb();
630
631         iter->walker->tbl = rht_dereference_rcu(tbl->future_tbl, ht);
632         if (iter->walker->tbl) {
633                 iter->slot = 0;
634                 iter->skip = 0;
635                 return ERR_PTR(-EAGAIN);
636         }
637
638         return NULL;
639 }
640 EXPORT_SYMBOL_GPL(rhashtable_walk_next);
641
642 /**
643  * rhashtable_walk_stop - Finish a hash table walk
644  * @iter:       Hash table iterator
645  *
646  * Finish a hash table walk.
647  */
648 void rhashtable_walk_stop(struct rhashtable_iter *iter)
649         __releases(RCU)
650 {
651         struct rhashtable *ht;
652         struct bucket_table *tbl = iter->walker->tbl;
653
654         if (!tbl)
655                 goto out;
656
657         ht = iter->ht;
658
659         spin_lock(&ht->lock);
660         if (tbl->rehash < tbl->size)
661                 list_add(&iter->walker->list, &tbl->walkers);
662         else
663                 iter->walker->tbl = NULL;
664         spin_unlock(&ht->lock);
665
666         iter->p = NULL;
667
668 out:
669         rcu_read_unlock();
670 }
671 EXPORT_SYMBOL_GPL(rhashtable_walk_stop);
672
673 static size_t rounded_hashtable_size(const struct rhashtable_params *params)
674 {
675         return max(roundup_pow_of_two(params->nelem_hint * 4 / 3),
676                    (unsigned long)params->min_size);
677 }
678
679 static u32 rhashtable_jhash2(const void *key, u32 length, u32 seed)
680 {
681         return jhash2(key, length, seed);
682 }
683
684 /**
685  * rhashtable_init - initialize a new hash table
686  * @ht:         hash table to be initialized
687  * @params:     configuration parameters
688  *
689  * Initializes a new hash table based on the provided configuration
690  * parameters. A table can be configured either with a variable or
691  * fixed length key:
692  *
693  * Configuration Example 1: Fixed length keys
694  * struct test_obj {
695  *      int                     key;
696  *      void *                  my_member;
697  *      struct rhash_head       node;
698  * };
699  *
700  * struct rhashtable_params params = {
701  *      .head_offset = offsetof(struct test_obj, node),
702  *      .key_offset = offsetof(struct test_obj, key),
703  *      .key_len = sizeof(int),
704  *      .hashfn = jhash,
705  *      .nulls_base = (1U << RHT_BASE_SHIFT),
706  * };
707  *
708  * Configuration Example 2: Variable length keys
709  * struct test_obj {
710  *      [...]
711  *      struct rhash_head       node;
712  * };
713  *
714  * u32 my_hash_fn(const void *data, u32 len, u32 seed)
715  * {
716  *      struct test_obj *obj = data;
717  *
718  *      return [... hash ...];
719  * }
720  *
721  * struct rhashtable_params params = {
722  *      .head_offset = offsetof(struct test_obj, node),
723  *      .hashfn = jhash,
724  *      .obj_hashfn = my_hash_fn,
725  * };
726  */
727 int rhashtable_init(struct rhashtable *ht,
728                     const struct rhashtable_params *params)
729 {
730         struct bucket_table *tbl;
731         size_t size;
732
733         size = HASH_DEFAULT_SIZE;
734
735         if ((!params->key_len && !params->obj_hashfn) ||
736             (params->obj_hashfn && !params->obj_cmpfn))
737                 return -EINVAL;
738
739         if (params->nulls_base && params->nulls_base < (1U << RHT_BASE_SHIFT))
740                 return -EINVAL;
741
742         if (params->nelem_hint)
743                 size = rounded_hashtable_size(params);
744
745         memset(ht, 0, sizeof(*ht));
746         mutex_init(&ht->mutex);
747         spin_lock_init(&ht->lock);
748         memcpy(&ht->p, params, sizeof(*params));
749
750         if (params->min_size)
751                 ht->p.min_size = roundup_pow_of_two(params->min_size);
752
753         if (params->max_size)
754                 ht->p.max_size = rounddown_pow_of_two(params->max_size);
755
756         if (params->insecure_max_entries)
757                 ht->p.insecure_max_entries =
758                         rounddown_pow_of_two(params->insecure_max_entries);
759         else
760                 ht->p.insecure_max_entries = ht->p.max_size * 2;
761
762         ht->p.min_size = max(ht->p.min_size, HASH_MIN_SIZE);
763
764         /* The maximum (not average) chain length grows with the
765          * size of the hash table, at a rate of (log N)/(log log N).
766          * The value of 16 is selected so that even if the hash
767          * table grew to 2^32 you would not expect the maximum
768          * chain length to exceed it unless we are under attack
769          * (or extremely unlucky).
770          *
771          * As this limit is only to detect attacks, we don't need
772          * to set it to a lower value as you'd need the chain
773          * length to vastly exceed 16 to have any real effect
774          * on the system.
775          */
776         if (!params->insecure_elasticity)
777                 ht->elasticity = 16;
778
779         if (params->locks_mul)
780                 ht->p.locks_mul = roundup_pow_of_two(params->locks_mul);
781         else
782                 ht->p.locks_mul = BUCKET_LOCKS_PER_CPU;
783
784         ht->key_len = ht->p.key_len;
785         if (!params->hashfn) {
786                 ht->p.hashfn = jhash;
787
788                 if (!(ht->key_len & (sizeof(u32) - 1))) {
789                         ht->key_len /= sizeof(u32);
790                         ht->p.hashfn = rhashtable_jhash2;
791                 }
792         }
793
794         tbl = bucket_table_alloc(ht, size, GFP_KERNEL);
795         if (tbl == NULL)
796                 return -ENOMEM;
797
798         atomic_set(&ht->nelems, 0);
799
800         RCU_INIT_POINTER(ht->tbl, tbl);
801
802         INIT_WORK(&ht->run_work, rht_deferred_worker);
803
804         return 0;
805 }
806 EXPORT_SYMBOL_GPL(rhashtable_init);
807
808 /**
809  * rhashtable_free_and_destroy - free elements and destroy hash table
810  * @ht:         the hash table to destroy
811  * @free_fn:    callback to release resources of element
812  * @arg:        pointer passed to free_fn
813  *
814  * Stops an eventual async resize. If defined, invokes free_fn for each
815  * element to releasal resources. Please note that RCU protected
816  * readers may still be accessing the elements. Releasing of resources
817  * must occur in a compatible manner. Then frees the bucket array.
818  *
819  * This function will eventually sleep to wait for an async resize
820  * to complete. The caller is responsible that no further write operations
821  * occurs in parallel.
822  */
823 void rhashtable_free_and_destroy(struct rhashtable *ht,
824                                  void (*free_fn)(void *ptr, void *arg),
825                                  void *arg)
826 {
827         const struct bucket_table *tbl;
828         unsigned int i;
829
830         cancel_work_sync(&ht->run_work);
831
832         mutex_lock(&ht->mutex);
833         tbl = rht_dereference(ht->tbl, ht);
834         if (free_fn) {
835                 for (i = 0; i < tbl->size; i++) {
836                         struct rhash_head *pos, *next;
837
838                         for (pos = rht_dereference(tbl->buckets[i], ht),
839                              next = !rht_is_a_nulls(pos) ?
840                                         rht_dereference(pos->next, ht) : NULL;
841                              !rht_is_a_nulls(pos);
842                              pos = next,
843                              next = !rht_is_a_nulls(pos) ?
844                                         rht_dereference(pos->next, ht) : NULL)
845                                 free_fn(rht_obj(ht, pos), arg);
846                 }
847         }
848
849         bucket_table_free(tbl);
850         mutex_unlock(&ht->mutex);
851 }
852 EXPORT_SYMBOL_GPL(rhashtable_free_and_destroy);
853
854 void rhashtable_destroy(struct rhashtable *ht)
855 {
856         return rhashtable_free_and_destroy(ht, NULL, NULL);
857 }
858 EXPORT_SYMBOL_GPL(rhashtable_destroy);