1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops
11 // and generates target-independent LLVM-IR.
12 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs
13 // of instructions in order to estimate the profitability of vectorization.
15 // The loop vectorizer combines consecutive loop iterations into a single
16 // 'wide' iteration. After this transformation the index is incremented
17 // by the SIMD vector width, and not by one.
19 // This pass has three parts:
20 // 1. The main loop pass that drives the different parts.
21 // 2. LoopVectorizationLegality - A unit that checks for the legality
22 // of the vectorization.
23 // 3. InnerLoopVectorizer - A unit that performs the actual
24 // widening of instructions.
25 // 4. LoopVectorizationCostModel - A unit that checks for the profitability
26 // of vectorization. It decides on the optimal vector width, which
27 // can be one, if vectorization is not profitable.
29 //===----------------------------------------------------------------------===//
31 // The reduction-variable vectorization is based on the paper:
32 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization.
34 // Variable uniformity checks are inspired by:
35 // Karrenberg, R. and Hack, S. Whole Function Vectorization.
37 // Other ideas/concepts are from:
38 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later.
40 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of
41 // Vectorizing Compilers.
43 //===----------------------------------------------------------------------===//
45 #include "llvm/Transforms/Vectorize.h"
46 #include "llvm/ADT/DenseMap.h"
47 #include "llvm/ADT/EquivalenceClasses.h"
48 #include "llvm/ADT/Hashing.h"
49 #include "llvm/ADT/MapVector.h"
50 #include "llvm/ADT/SetVector.h"
51 #include "llvm/ADT/SmallPtrSet.h"
52 #include "llvm/ADT/SmallSet.h"
53 #include "llvm/ADT/SmallVector.h"
54 #include "llvm/ADT/Statistic.h"
55 #include "llvm/ADT/StringExtras.h"
56 #include "llvm/Analysis/AliasAnalysis.h"
57 #include "llvm/Analysis/AliasSetTracker.h"
58 #include "llvm/Analysis/AssumptionCache.h"
59 #include "llvm/Analysis/BlockFrequencyInfo.h"
60 #include "llvm/Analysis/CodeMetrics.h"
61 #include "llvm/Analysis/LoopInfo.h"
62 #include "llvm/Analysis/LoopIterator.h"
63 #include "llvm/Analysis/LoopPass.h"
64 #include "llvm/Analysis/ScalarEvolution.h"
65 #include "llvm/Analysis/ScalarEvolutionExpander.h"
66 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
67 #include "llvm/Analysis/TargetTransformInfo.h"
68 #include "llvm/Analysis/ValueTracking.h"
69 #include "llvm/IR/Constants.h"
70 #include "llvm/IR/DataLayout.h"
71 #include "llvm/IR/DebugInfo.h"
72 #include "llvm/IR/DerivedTypes.h"
73 #include "llvm/IR/DiagnosticInfo.h"
74 #include "llvm/IR/Dominators.h"
75 #include "llvm/IR/Function.h"
76 #include "llvm/IR/IRBuilder.h"
77 #include "llvm/IR/Instructions.h"
78 #include "llvm/IR/IntrinsicInst.h"
79 #include "llvm/IR/LLVMContext.h"
80 #include "llvm/IR/Module.h"
81 #include "llvm/IR/PatternMatch.h"
82 #include "llvm/IR/Type.h"
83 #include "llvm/IR/Value.h"
84 #include "llvm/IR/ValueHandle.h"
85 #include "llvm/IR/Verifier.h"
86 #include "llvm/Pass.h"
87 #include "llvm/Support/BranchProbability.h"
88 #include "llvm/Support/CommandLine.h"
89 #include "llvm/Support/Debug.h"
90 #include "llvm/Support/raw_ostream.h"
91 #include "llvm/Transforms/Scalar.h"
92 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
93 #include "llvm/Transforms/Utils/Local.h"
94 #include "llvm/Transforms/Utils/VectorUtils.h"
100 using namespace llvm::PatternMatch;
102 #define LV_NAME "loop-vectorize"
103 #define DEBUG_TYPE LV_NAME
105 STATISTIC(LoopsVectorized, "Number of loops vectorized");
106 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization");
108 static cl::opt<unsigned>
109 VectorizationFactor("force-vector-width", cl::init(0), cl::Hidden,
110 cl::desc("Sets the SIMD width. Zero is autoselect."));
112 static cl::opt<unsigned>
113 VectorizationInterleave("force-vector-interleave", cl::init(0), cl::Hidden,
114 cl::desc("Sets the vectorization interleave count. "
115 "Zero is autoselect."));
118 EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden,
119 cl::desc("Enable if-conversion during vectorization."));
121 /// We don't vectorize loops with a known constant trip count below this number.
122 static cl::opt<unsigned>
123 TinyTripCountVectorThreshold("vectorizer-min-trip-count", cl::init(16),
125 cl::desc("Don't vectorize loops with a constant "
126 "trip count that is smaller than this "
129 /// This enables versioning on the strides of symbolically striding memory
130 /// accesses in code like the following.
131 /// for (i = 0; i < N; ++i)
132 /// A[i * Stride1] += B[i * Stride2] ...
134 /// Will be roughly translated to
135 /// if (Stride1 == 1 && Stride2 == 1) {
136 /// for (i = 0; i < N; i+=4)
140 static cl::opt<bool> EnableMemAccessVersioning(
141 "enable-mem-access-versioning", cl::init(true), cl::Hidden,
142 cl::desc("Enable symblic stride memory access versioning"));
144 /// We don't unroll loops with a known constant trip count below this number.
145 static const unsigned TinyTripCountUnrollThreshold = 128;
147 /// When performing memory disambiguation checks at runtime do not make more
148 /// than this number of comparisons.
149 static const unsigned RuntimeMemoryCheckThreshold = 8;
151 /// Maximum simd width.
152 static const unsigned MaxVectorWidth = 64;
154 static cl::opt<unsigned> ForceTargetNumScalarRegs(
155 "force-target-num-scalar-regs", cl::init(0), cl::Hidden,
156 cl::desc("A flag that overrides the target's number of scalar registers."));
158 static cl::opt<unsigned> ForceTargetNumVectorRegs(
159 "force-target-num-vector-regs", cl::init(0), cl::Hidden,
160 cl::desc("A flag that overrides the target's number of vector registers."));
162 /// Maximum vectorization interleave count.
163 static const unsigned MaxInterleaveFactor = 16;
165 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor(
166 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden,
167 cl::desc("A flag that overrides the target's max interleave factor for "
170 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor(
171 "force-target-max-vector-interleave", cl::init(0), cl::Hidden,
172 cl::desc("A flag that overrides the target's max interleave factor for "
173 "vectorized loops."));
175 static cl::opt<unsigned> ForceTargetInstructionCost(
176 "force-target-instruction-cost", cl::init(0), cl::Hidden,
177 cl::desc("A flag that overrides the target's expected cost for "
178 "an instruction to a single constant value. Mostly "
179 "useful for getting consistent testing."));
181 static cl::opt<unsigned> SmallLoopCost(
182 "small-loop-cost", cl::init(20), cl::Hidden,
183 cl::desc("The cost of a loop that is considered 'small' by the unroller."));
185 static cl::opt<bool> LoopVectorizeWithBlockFrequency(
186 "loop-vectorize-with-block-frequency", cl::init(false), cl::Hidden,
187 cl::desc("Enable the use of the block frequency analysis to access PGO "
188 "heuristics minimizing code growth in cold regions and being more "
189 "aggressive in hot regions."));
191 // Runtime unroll loops for load/store throughput.
192 static cl::opt<bool> EnableLoadStoreRuntimeUnroll(
193 "enable-loadstore-runtime-unroll", cl::init(true), cl::Hidden,
194 cl::desc("Enable runtime unrolling until load/store ports are saturated"));
196 /// The number of stores in a loop that are allowed to need predication.
197 static cl::opt<unsigned> NumberOfStoresToPredicate(
198 "vectorize-num-stores-pred", cl::init(1), cl::Hidden,
199 cl::desc("Max number of stores to be predicated behind an if."));
201 static cl::opt<bool> EnableIndVarRegisterHeur(
202 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden,
203 cl::desc("Count the induction variable only once when unrolling"));
205 static cl::opt<bool> EnableCondStoresVectorization(
206 "enable-cond-stores-vec", cl::init(false), cl::Hidden,
207 cl::desc("Enable if predication of stores during vectorization."));
209 static cl::opt<unsigned> MaxNestedScalarReductionUF(
210 "max-nested-scalar-reduction-unroll", cl::init(2), cl::Hidden,
211 cl::desc("The maximum unroll factor to use when unrolling a scalar "
212 "reduction in a nested loop."));
216 // Forward declarations.
217 class LoopVectorizationLegality;
218 class LoopVectorizationCostModel;
219 class LoopVectorizeHints;
221 /// Optimization analysis message produced during vectorization. Messages inform
222 /// the user why vectorization did not occur.
225 raw_string_ostream Out;
229 Report(Instruction *I = nullptr) : Out(Message), Instr(I) {
230 Out << "loop not vectorized: ";
233 template <typename A> Report &operator<<(const A &Value) {
238 Instruction *getInstr() { return Instr; }
240 std::string &str() { return Out.str(); }
241 operator Twine() { return Out.str(); }
244 /// InnerLoopVectorizer vectorizes loops which contain only one basic
245 /// block to a specified vectorization factor (VF).
246 /// This class performs the widening of scalars into vectors, or multiple
247 /// scalars. This class also implements the following features:
248 /// * It inserts an epilogue loop for handling loops that don't have iteration
249 /// counts that are known to be a multiple of the vectorization factor.
250 /// * It handles the code generation for reduction variables.
251 /// * Scalarization (implementation using scalars) of un-vectorizable
253 /// InnerLoopVectorizer does not perform any vectorization-legality
254 /// checks, and relies on the caller to check for the different legality
255 /// aspects. The InnerLoopVectorizer relies on the
256 /// LoopVectorizationLegality class to provide information about the induction
257 /// and reduction variables that were found to a given vectorization factor.
258 class InnerLoopVectorizer {
260 InnerLoopVectorizer(Loop *OrigLoop, ScalarEvolution *SE, LoopInfo *LI,
261 DominatorTree *DT, const DataLayout *DL,
262 const TargetLibraryInfo *TLI, unsigned VecWidth,
263 unsigned UnrollFactor)
264 : OrigLoop(OrigLoop), SE(SE), LI(LI), DT(DT), DL(DL), TLI(TLI),
265 VF(VecWidth), UF(UnrollFactor), Builder(SE->getContext()),
266 Induction(nullptr), OldInduction(nullptr), WidenMap(UnrollFactor),
269 // Perform the actual loop widening (vectorization).
270 void vectorize(LoopVectorizationLegality *L) {
272 // Create a new empty loop. Unlink the old loop and connect the new one.
274 // Widen each instruction in the old loop to a new one in the new loop.
275 // Use the Legality module to find the induction and reduction variables.
277 // Register the new loop and update the analysis passes.
281 virtual ~InnerLoopVectorizer() {}
284 /// A small list of PHINodes.
285 typedef SmallVector<PHINode*, 4> PhiVector;
286 /// When we unroll loops we have multiple vector values for each scalar.
287 /// This data structure holds the unrolled and vectorized values that
288 /// originated from one scalar instruction.
289 typedef SmallVector<Value*, 2> VectorParts;
291 // When we if-convert we need create edge masks. We have to cache values so
292 // that we don't end up with exponential recursion/IR.
293 typedef DenseMap<std::pair<BasicBlock*, BasicBlock*>,
294 VectorParts> EdgeMaskCache;
296 /// \brief Add code that checks at runtime if the accessed arrays overlap.
298 /// Returns a pair of instructions where the first element is the first
299 /// instruction generated in possibly a sequence of instructions and the
300 /// second value is the final comparator value or NULL if no check is needed.
301 std::pair<Instruction *, Instruction *> addRuntimeCheck(Instruction *Loc);
303 /// \brief Add checks for strides that where assumed to be 1.
305 /// Returns the last check instruction and the first check instruction in the
306 /// pair as (first, last).
307 std::pair<Instruction *, Instruction *> addStrideCheck(Instruction *Loc);
309 /// Create an empty loop, based on the loop ranges of the old loop.
310 void createEmptyLoop();
311 /// Copy and widen the instructions from the old loop.
312 virtual void vectorizeLoop();
314 /// \brief The Loop exit block may have single value PHI nodes where the
315 /// incoming value is 'Undef'. While vectorizing we only handled real values
316 /// that were defined inside the loop. Here we fix the 'undef case'.
320 /// A helper function that computes the predicate of the block BB, assuming
321 /// that the header block of the loop is set to True. It returns the *entry*
322 /// mask for the block BB.
323 VectorParts createBlockInMask(BasicBlock *BB);
324 /// A helper function that computes the predicate of the edge between SRC
326 VectorParts createEdgeMask(BasicBlock *Src, BasicBlock *Dst);
328 /// A helper function to vectorize a single BB within the innermost loop.
329 void vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV);
331 /// Vectorize a single PHINode in a block. This method handles the induction
332 /// variable canonicalization. It supports both VF = 1 for unrolled loops and
333 /// arbitrary length vectors.
334 void widenPHIInstruction(Instruction *PN, VectorParts &Entry,
335 unsigned UF, unsigned VF, PhiVector *PV);
337 /// Insert the new loop to the loop hierarchy and pass manager
338 /// and update the analysis passes.
339 void updateAnalysis();
341 /// This instruction is un-vectorizable. Implement it as a sequence
342 /// of scalars. If \p IfPredicateStore is true we need to 'hide' each
343 /// scalarized instruction behind an if block predicated on the control
344 /// dependence of the instruction.
345 virtual void scalarizeInstruction(Instruction *Instr,
346 bool IfPredicateStore=false);
348 /// Vectorize Load and Store instructions,
349 virtual void vectorizeMemoryInstruction(Instruction *Instr);
351 /// Create a broadcast instruction. This method generates a broadcast
352 /// instruction (shuffle) for loop invariant values and for the induction
353 /// value. If this is the induction variable then we extend it to N, N+1, ...
354 /// this is needed because each iteration in the loop corresponds to a SIMD
356 virtual Value *getBroadcastInstrs(Value *V);
358 /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...)
359 /// to each vector element of Val. The sequence starts at StartIndex.
360 virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step);
362 /// When we go over instructions in the basic block we rely on previous
363 /// values within the current basic block or on loop invariant values.
364 /// When we widen (vectorize) values we place them in the map. If the values
365 /// are not within the map, they have to be loop invariant, so we simply
366 /// broadcast them into a vector.
367 VectorParts &getVectorValue(Value *V);
369 /// Generate a shuffle sequence that will reverse the vector Vec.
370 virtual Value *reverseVector(Value *Vec);
372 /// This is a helper class that holds the vectorizer state. It maps scalar
373 /// instructions to vector instructions. When the code is 'unrolled' then
374 /// then a single scalar value is mapped to multiple vector parts. The parts
375 /// are stored in the VectorPart type.
377 /// C'tor. UnrollFactor controls the number of vectors ('parts') that
379 ValueMap(unsigned UnrollFactor) : UF(UnrollFactor) {}
381 /// \return True if 'Key' is saved in the Value Map.
382 bool has(Value *Key) const { return MapStorage.count(Key); }
384 /// Initializes a new entry in the map. Sets all of the vector parts to the
385 /// save value in 'Val'.
386 /// \return A reference to a vector with splat values.
387 VectorParts &splat(Value *Key, Value *Val) {
388 VectorParts &Entry = MapStorage[Key];
389 Entry.assign(UF, Val);
393 ///\return A reference to the value that is stored at 'Key'.
394 VectorParts &get(Value *Key) {
395 VectorParts &Entry = MapStorage[Key];
398 assert(Entry.size() == UF);
403 /// The unroll factor. Each entry in the map stores this number of vector
407 /// Map storage. We use std::map and not DenseMap because insertions to a
408 /// dense map invalidates its iterators.
409 std::map<Value *, VectorParts> MapStorage;
412 /// The original loop.
414 /// Scev analysis to use.
423 const DataLayout *DL;
424 /// Target Library Info.
425 const TargetLibraryInfo *TLI;
427 /// The vectorization SIMD factor to use. Each vector will have this many
432 /// The vectorization unroll factor to use. Each scalar is vectorized to this
433 /// many different vector instructions.
436 /// The builder that we use
439 // --- Vectorization state ---
441 /// The vector-loop preheader.
442 BasicBlock *LoopVectorPreHeader;
443 /// The scalar-loop preheader.
444 BasicBlock *LoopScalarPreHeader;
445 /// Middle Block between the vector and the scalar.
446 BasicBlock *LoopMiddleBlock;
447 ///The ExitBlock of the scalar loop.
448 BasicBlock *LoopExitBlock;
449 ///The vector loop body.
450 SmallVector<BasicBlock *, 4> LoopVectorBody;
451 ///The scalar loop body.
452 BasicBlock *LoopScalarBody;
453 /// A list of all bypass blocks. The first block is the entry of the loop.
454 SmallVector<BasicBlock *, 4> LoopBypassBlocks;
456 /// The new Induction variable which was added to the new block.
458 /// The induction variable of the old basic block.
459 PHINode *OldInduction;
460 /// Holds the extended (to the widest induction type) start index.
462 /// Maps scalars to widened vectors.
464 EdgeMaskCache MaskCache;
466 LoopVectorizationLegality *Legal;
469 class InnerLoopUnroller : public InnerLoopVectorizer {
471 InnerLoopUnroller(Loop *OrigLoop, ScalarEvolution *SE, LoopInfo *LI,
472 DominatorTree *DT, const DataLayout *DL,
473 const TargetLibraryInfo *TLI, unsigned UnrollFactor) :
474 InnerLoopVectorizer(OrigLoop, SE, LI, DT, DL, TLI, 1, UnrollFactor) { }
477 void scalarizeInstruction(Instruction *Instr,
478 bool IfPredicateStore = false) override;
479 void vectorizeMemoryInstruction(Instruction *Instr) override;
480 Value *getBroadcastInstrs(Value *V) override;
481 Value *getStepVector(Value *Val, int StartIdx, Value *Step) override;
482 Value *reverseVector(Value *Vec) override;
485 /// \brief Look for a meaningful debug location on the instruction or it's
487 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) {
492 if (I->getDebugLoc() != Empty)
495 for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) {
496 if (Instruction *OpInst = dyn_cast<Instruction>(*OI))
497 if (OpInst->getDebugLoc() != Empty)
504 /// \brief Set the debug location in the builder using the debug location in the
506 static void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) {
507 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr))
508 B.SetCurrentDebugLocation(Inst->getDebugLoc());
510 B.SetCurrentDebugLocation(DebugLoc());
514 /// \return string containing a file name and a line # for the given loop.
515 static std::string getDebugLocString(const Loop *L) {
518 raw_string_ostream OS(Result);
519 const DebugLoc LoopDbgLoc = L->getStartLoc();
520 if (!LoopDbgLoc.isUnknown())
521 LoopDbgLoc.print(L->getHeader()->getContext(), OS);
523 // Just print the module name.
524 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier();
531 /// \brief Propagate known metadata from one instruction to another.
532 static void propagateMetadata(Instruction *To, const Instruction *From) {
533 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata;
534 From->getAllMetadataOtherThanDebugLoc(Metadata);
536 for (auto M : Metadata) {
537 unsigned Kind = M.first;
539 // These are safe to transfer (this is safe for TBAA, even when we
540 // if-convert, because should that metadata have had a control dependency
541 // on the condition, and thus actually aliased with some other
542 // non-speculated memory access when the condition was false, this would be
543 // caught by the runtime overlap checks).
544 if (Kind != LLVMContext::MD_tbaa &&
545 Kind != LLVMContext::MD_alias_scope &&
546 Kind != LLVMContext::MD_noalias &&
547 Kind != LLVMContext::MD_fpmath)
550 To->setMetadata(Kind, M.second);
554 /// \brief Propagate known metadata from one instruction to a vector of others.
555 static void propagateMetadata(SmallVectorImpl<Value *> &To, const Instruction *From) {
557 if (Instruction *I = dyn_cast<Instruction>(V))
558 propagateMetadata(I, From);
562 /// This struct holds information about the memory runtime legality
563 /// check that a group of pointers do not overlap.
564 struct RuntimePointerCheck {
565 RuntimePointerCheck() : Need(false) {}
567 /// Reset the state of the pointer runtime information.
574 DependencySetId.clear();
578 /// Insert a pointer and calculate the start and end SCEVs.
579 void insert(ScalarEvolution *SE, Loop *Lp, Value *Ptr, bool WritePtr,
580 unsigned DepSetId, unsigned ASId, ValueToValueMap &Strides);
582 /// This flag indicates if we need to add the runtime check.
584 /// Holds the pointers that we need to check.
585 SmallVector<TrackingVH<Value>, 2> Pointers;
586 /// Holds the pointer value at the beginning of the loop.
587 SmallVector<const SCEV*, 2> Starts;
588 /// Holds the pointer value at the end of the loop.
589 SmallVector<const SCEV*, 2> Ends;
590 /// Holds the information if this pointer is used for writing to memory.
591 SmallVector<bool, 2> IsWritePtr;
592 /// Holds the id of the set of pointers that could be dependent because of a
593 /// shared underlying object.
594 SmallVector<unsigned, 2> DependencySetId;
595 /// Holds the id of the disjoint alias set to which this pointer belongs.
596 SmallVector<unsigned, 2> AliasSetId;
598 } // end anonymous namespace
600 /// LoopVectorizationLegality checks if it is legal to vectorize a loop, and
601 /// to what vectorization factor.
602 /// This class does not look at the profitability of vectorization, only the
603 /// legality. This class has two main kinds of checks:
604 /// * Memory checks - The code in canVectorizeMemory checks if vectorization
605 /// will change the order of memory accesses in a way that will change the
606 /// correctness of the program.
607 /// * Scalars checks - The code in canVectorizeInstrs and canVectorizeMemory
608 /// checks for a number of different conditions, such as the availability of a
609 /// single induction variable, that all types are supported and vectorize-able,
610 /// etc. This code reflects the capabilities of InnerLoopVectorizer.
611 /// This class is also used by InnerLoopVectorizer for identifying
612 /// induction variable and the different reduction variables.
613 class LoopVectorizationLegality {
617 unsigned NumPredStores;
619 LoopVectorizationLegality(Loop *L, ScalarEvolution *SE, const DataLayout *DL,
620 DominatorTree *DT, TargetLibraryInfo *TLI,
621 AliasAnalysis *AA, Function *F,
622 const TargetTransformInfo *TTI)
623 : NumLoads(0), NumStores(0), NumPredStores(0), TheLoop(L), SE(SE), DL(DL),
624 DT(DT), TLI(TLI), AA(AA), TheFunction(F), TTI(TTI), Induction(nullptr),
625 WidestIndTy(nullptr), HasFunNoNaNAttr(false), MaxSafeDepDistBytes(-1U) {
628 /// This enum represents the kinds of reductions that we support.
630 RK_NoReduction, ///< Not a reduction.
631 RK_IntegerAdd, ///< Sum of integers.
632 RK_IntegerMult, ///< Product of integers.
633 RK_IntegerOr, ///< Bitwise or logical OR of numbers.
634 RK_IntegerAnd, ///< Bitwise or logical AND of numbers.
635 RK_IntegerXor, ///< Bitwise or logical XOR of numbers.
636 RK_IntegerMinMax, ///< Min/max implemented in terms of select(cmp()).
637 RK_FloatAdd, ///< Sum of floats.
638 RK_FloatMult, ///< Product of floats.
639 RK_FloatMinMax ///< Min/max implemented in terms of select(cmp()).
642 /// This enum represents the kinds of inductions that we support.
644 IK_NoInduction, ///< Not an induction variable.
645 IK_IntInduction, ///< Integer induction variable. Step = C.
646 IK_PtrInduction ///< Pointer induction var. Step = C / sizeof(elem).
649 // This enum represents the kind of minmax reduction.
650 enum MinMaxReductionKind {
660 /// This struct holds information about reduction variables.
661 struct ReductionDescriptor {
662 ReductionDescriptor() : StartValue(nullptr), LoopExitInstr(nullptr),
663 Kind(RK_NoReduction), MinMaxKind(MRK_Invalid) {}
665 ReductionDescriptor(Value *Start, Instruction *Exit, ReductionKind K,
666 MinMaxReductionKind MK)
667 : StartValue(Start), LoopExitInstr(Exit), Kind(K), MinMaxKind(MK) {}
669 // The starting value of the reduction.
670 // It does not have to be zero!
671 TrackingVH<Value> StartValue;
672 // The instruction who's value is used outside the loop.
673 Instruction *LoopExitInstr;
674 // The kind of the reduction.
676 // If this a min/max reduction the kind of reduction.
677 MinMaxReductionKind MinMaxKind;
680 /// This POD struct holds information about a potential reduction operation.
681 struct ReductionInstDesc {
682 ReductionInstDesc(bool IsRedux, Instruction *I) :
683 IsReduction(IsRedux), PatternLastInst(I), MinMaxKind(MRK_Invalid) {}
685 ReductionInstDesc(Instruction *I, MinMaxReductionKind K) :
686 IsReduction(true), PatternLastInst(I), MinMaxKind(K) {}
688 // Is this instruction a reduction candidate.
690 // The last instruction in a min/max pattern (select of the select(icmp())
691 // pattern), or the current reduction instruction otherwise.
692 Instruction *PatternLastInst;
693 // If this is a min/max pattern the comparison predicate.
694 MinMaxReductionKind MinMaxKind;
697 /// A struct for saving information about induction variables.
698 struct InductionInfo {
699 InductionInfo(Value *Start, InductionKind K, ConstantInt *Step)
700 : StartValue(Start), IK(K), StepValue(Step) {
701 assert(IK != IK_NoInduction && "Not an induction");
702 assert(StartValue && "StartValue is null");
703 assert(StepValue && !StepValue->isZero() && "StepValue is zero");
704 assert((IK != IK_PtrInduction || StartValue->getType()->isPointerTy()) &&
705 "StartValue is not a pointer for pointer induction");
706 assert((IK != IK_IntInduction || StartValue->getType()->isIntegerTy()) &&
707 "StartValue is not an integer for integer induction");
708 assert(StepValue->getType()->isIntegerTy() &&
709 "StepValue is not an integer");
712 : StartValue(nullptr), IK(IK_NoInduction), StepValue(nullptr) {}
714 /// Get the consecutive direction. Returns:
715 /// 0 - unknown or non-consecutive.
716 /// 1 - consecutive and increasing.
717 /// -1 - consecutive and decreasing.
718 int getConsecutiveDirection() const {
719 if (StepValue && (StepValue->isOne() || StepValue->isMinusOne()))
720 return StepValue->getSExtValue();
724 /// Compute the transformed value of Index at offset StartValue using step
726 /// For integer induction, returns StartValue + Index * StepValue.
727 /// For pointer induction, returns StartValue[Index * StepValue].
728 /// FIXME: The newly created binary instructions should contain nsw/nuw
729 /// flags, which can be found from the original scalar operations.
730 Value *transform(IRBuilder<> &B, Value *Index) const {
732 case IK_IntInduction:
733 assert(Index->getType() == StartValue->getType() &&
734 "Index type does not match StartValue type");
735 if (StepValue->isMinusOne())
736 return B.CreateSub(StartValue, Index);
737 if (!StepValue->isOne())
738 Index = B.CreateMul(Index, StepValue);
739 return B.CreateAdd(StartValue, Index);
741 case IK_PtrInduction:
742 if (StepValue->isMinusOne())
743 Index = B.CreateNeg(Index);
744 else if (!StepValue->isOne())
745 Index = B.CreateMul(Index, StepValue);
746 return B.CreateGEP(StartValue, Index);
751 llvm_unreachable("invalid enum");
755 TrackingVH<Value> StartValue;
759 ConstantInt *StepValue;
762 /// ReductionList contains the reduction descriptors for all
763 /// of the reductions that were found in the loop.
764 typedef DenseMap<PHINode*, ReductionDescriptor> ReductionList;
766 /// InductionList saves induction variables and maps them to the
767 /// induction descriptor.
768 typedef MapVector<PHINode*, InductionInfo> InductionList;
770 /// Returns true if it is legal to vectorize this loop.
771 /// This does not mean that it is profitable to vectorize this
772 /// loop, only that it is legal to do so.
775 /// Returns the Induction variable.
776 PHINode *getInduction() { return Induction; }
778 /// Returns the reduction variables found in the loop.
779 ReductionList *getReductionVars() { return &Reductions; }
781 /// Returns the induction variables found in the loop.
782 InductionList *getInductionVars() { return &Inductions; }
784 /// Returns the widest induction type.
785 Type *getWidestInductionType() { return WidestIndTy; }
787 /// Returns True if V is an induction variable in this loop.
788 bool isInductionVariable(const Value *V);
790 /// Return true if the block BB needs to be predicated in order for the loop
791 /// to be vectorized.
792 bool blockNeedsPredication(BasicBlock *BB);
794 /// Check if this pointer is consecutive when vectorizing. This happens
795 /// when the last index of the GEP is the induction variable, or that the
796 /// pointer itself is an induction variable.
797 /// This check allows us to vectorize A[idx] into a wide load/store.
799 /// 0 - Stride is unknown or non-consecutive.
800 /// 1 - Address is consecutive.
801 /// -1 - Address is consecutive, and decreasing.
802 int isConsecutivePtr(Value *Ptr);
804 /// Returns true if the value V is uniform within the loop.
805 bool isUniform(Value *V);
807 /// Returns true if this instruction will remain scalar after vectorization.
808 bool isUniformAfterVectorization(Instruction* I) { return Uniforms.count(I); }
810 /// Returns the information that we collected about runtime memory check.
811 RuntimePointerCheck *getRuntimePointerCheck() { return &PtrRtCheck; }
813 /// This function returns the identity element (or neutral element) for
815 static Constant *getReductionIdentity(ReductionKind K, Type *Tp);
817 unsigned getMaxSafeDepDistBytes() { return MaxSafeDepDistBytes; }
819 bool hasStride(Value *V) { return StrideSet.count(V); }
820 bool mustCheckStrides() { return !StrideSet.empty(); }
821 SmallPtrSet<Value *, 8>::iterator strides_begin() {
822 return StrideSet.begin();
824 SmallPtrSet<Value *, 8>::iterator strides_end() { return StrideSet.end(); }
826 /// Returns true if the target machine supports masked store operation
827 /// for the given \p DataType and kind of access to \p Ptr.
828 bool isLegalMaskedStore(Type *DataType, Value *Ptr) {
829 return TTI->isLegalMaskedStore(DataType, isConsecutivePtr(Ptr));
831 /// Returns true if the target machine supports masked load operation
832 /// for the given \p DataType and kind of access to \p Ptr.
833 bool isLegalMaskedLoad(Type *DataType, Value *Ptr) {
834 return TTI->isLegalMaskedLoad(DataType, isConsecutivePtr(Ptr));
836 /// Returns true if vector representation of the instruction \p I
838 bool isMaskRequired(const Instruction* I) {
839 return (MaskedOp.count(I) != 0);
842 /// Check if a single basic block loop is vectorizable.
843 /// At this point we know that this is a loop with a constant trip count
844 /// and we only need to check individual instructions.
845 bool canVectorizeInstrs();
847 /// When we vectorize loops we may change the order in which
848 /// we read and write from memory. This method checks if it is
849 /// legal to vectorize the code, considering only memory constrains.
850 /// Returns true if the loop is vectorizable
851 bool canVectorizeMemory();
853 /// Return true if we can vectorize this loop using the IF-conversion
855 bool canVectorizeWithIfConvert();
857 /// Collect the variables that need to stay uniform after vectorization.
858 void collectLoopUniforms();
860 /// Return true if all of the instructions in the block can be speculatively
861 /// executed. \p SafePtrs is a list of addresses that are known to be legal
862 /// and we know that we can read from them without segfault.
863 bool blockCanBePredicated(BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs);
865 /// Returns True, if 'Phi' is the kind of reduction variable for type
866 /// 'Kind'. If this is a reduction variable, it adds it to ReductionList.
867 bool AddReductionVar(PHINode *Phi, ReductionKind Kind);
868 /// Returns a struct describing if the instruction 'I' can be a reduction
869 /// variable of type 'Kind'. If the reduction is a min/max pattern of
870 /// select(icmp()) this function advances the instruction pointer 'I' from the
871 /// compare instruction to the select instruction and stores this pointer in
872 /// 'PatternLastInst' member of the returned struct.
873 ReductionInstDesc isReductionInstr(Instruction *I, ReductionKind Kind,
874 ReductionInstDesc &Desc);
875 /// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction
876 /// pattern corresponding to a min(X, Y) or max(X, Y).
877 static ReductionInstDesc isMinMaxSelectCmpPattern(Instruction *I,
878 ReductionInstDesc &Prev);
879 /// Returns the induction kind of Phi and record the step. This function may
880 /// return NoInduction if the PHI is not an induction variable.
881 InductionKind isInductionVariable(PHINode *Phi, ConstantInt *&StepValue);
883 /// \brief Collect memory access with loop invariant strides.
885 /// Looks for accesses like "a[i * StrideA]" where "StrideA" is loop
887 void collectStridedAccess(Value *LoadOrStoreInst);
889 /// Report an analysis message to assist the user in diagnosing loops that are
891 void emitAnalysis(Report &Message) {
892 DebugLoc DL = TheLoop->getStartLoc();
893 if (Instruction *I = Message.getInstr())
894 DL = I->getDebugLoc();
895 emitOptimizationRemarkAnalysis(TheFunction->getContext(), DEBUG_TYPE,
896 *TheFunction, DL, Message.str());
899 /// The loop that we evaluate.
903 /// DataLayout analysis.
904 const DataLayout *DL;
907 /// Target Library Info.
908 TargetLibraryInfo *TLI;
912 Function *TheFunction;
913 /// Target Transform Info
914 const TargetTransformInfo *TTI;
916 // --- vectorization state --- //
918 /// Holds the integer induction variable. This is the counter of the
921 /// Holds the reduction variables.
922 ReductionList Reductions;
923 /// Holds all of the induction variables that we found in the loop.
924 /// Notice that inductions don't need to start at zero and that induction
925 /// variables can be pointers.
926 InductionList Inductions;
927 /// Holds the widest induction type encountered.
930 /// Allowed outside users. This holds the reduction
931 /// vars which can be accessed from outside the loop.
932 SmallPtrSet<Value*, 4> AllowedExit;
933 /// This set holds the variables which are known to be uniform after
935 SmallPtrSet<Instruction*, 4> Uniforms;
936 /// We need to check that all of the pointers in this list are disjoint
938 RuntimePointerCheck PtrRtCheck;
939 /// Can we assume the absence of NaNs.
940 bool HasFunNoNaNAttr;
942 unsigned MaxSafeDepDistBytes;
944 ValueToValueMap Strides;
945 SmallPtrSet<Value *, 8> StrideSet;
947 /// While vectorizing these instructions we have to generate a
948 /// call to the appropriate masked intrinsic
949 SmallPtrSet<const Instruction*, 8> MaskedOp;
952 /// LoopVectorizationCostModel - estimates the expected speedups due to
954 /// In many cases vectorization is not profitable. This can happen because of
955 /// a number of reasons. In this class we mainly attempt to predict the
956 /// expected speedup/slowdowns due to the supported instruction set. We use the
957 /// TargetTransformInfo to query the different backends for the cost of
958 /// different operations.
959 class LoopVectorizationCostModel {
961 LoopVectorizationCostModel(Loop *L, ScalarEvolution *SE, LoopInfo *LI,
962 LoopVectorizationLegality *Legal,
963 const TargetTransformInfo &TTI,
964 const DataLayout *DL, const TargetLibraryInfo *TLI,
965 AssumptionCache *AC, const Function *F,
966 const LoopVectorizeHints *Hints)
967 : TheLoop(L), SE(SE), LI(LI), Legal(Legal), TTI(TTI), DL(DL), TLI(TLI),
968 TheFunction(F), Hints(Hints) {
969 CodeMetrics::collectEphemeralValues(L, AC, EphValues);
972 /// Information about vectorization costs
973 struct VectorizationFactor {
974 unsigned Width; // Vector width with best cost
975 unsigned Cost; // Cost of the loop with that width
977 /// \return The most profitable vectorization factor and the cost of that VF.
978 /// This method checks every power of two up to VF. If UserVF is not ZERO
979 /// then this vectorization factor will be selected if vectorization is
981 VectorizationFactor selectVectorizationFactor(bool OptForSize);
983 /// \return The size (in bits) of the widest type in the code that
984 /// needs to be vectorized. We ignore values that remain scalar such as
985 /// 64 bit loop indices.
986 unsigned getWidestType();
988 /// \return The most profitable unroll factor.
989 /// If UserUF is non-zero then this method finds the best unroll-factor
990 /// based on register pressure and other parameters.
991 /// VF and LoopCost are the selected vectorization factor and the cost of the
993 unsigned selectUnrollFactor(bool OptForSize, unsigned VF, unsigned LoopCost);
995 /// \brief A struct that represents some properties of the register usage
997 struct RegisterUsage {
998 /// Holds the number of loop invariant values that are used in the loop.
999 unsigned LoopInvariantRegs;
1000 /// Holds the maximum number of concurrent live intervals in the loop.
1001 unsigned MaxLocalUsers;
1002 /// Holds the number of instructions in the loop.
1003 unsigned NumInstructions;
1006 /// \return information about the register usage of the loop.
1007 RegisterUsage calculateRegisterUsage();
1010 /// Returns the expected execution cost. The unit of the cost does
1011 /// not matter because we use the 'cost' units to compare different
1012 /// vector widths. The cost that is returned is *not* normalized by
1013 /// the factor width.
1014 unsigned expectedCost(unsigned VF);
1016 /// Returns the execution time cost of an instruction for a given vector
1017 /// width. Vector width of one means scalar.
1018 unsigned getInstructionCost(Instruction *I, unsigned VF);
1020 /// A helper function for converting Scalar types to vector types.
1021 /// If the incoming type is void, we return void. If the VF is 1, we return
1022 /// the scalar type.
1023 static Type* ToVectorTy(Type *Scalar, unsigned VF);
1025 /// Returns whether the instruction is a load or store and will be a emitted
1026 /// as a vector operation.
1027 bool isConsecutiveLoadOrStore(Instruction *I);
1029 /// Report an analysis message to assist the user in diagnosing loops that are
1031 void emitAnalysis(Report &Message) {
1032 DebugLoc DL = TheLoop->getStartLoc();
1033 if (Instruction *I = Message.getInstr())
1034 DL = I->getDebugLoc();
1035 emitOptimizationRemarkAnalysis(TheFunction->getContext(), DEBUG_TYPE,
1036 *TheFunction, DL, Message.str());
1039 /// Values used only by @llvm.assume calls.
1040 SmallPtrSet<const Value *, 32> EphValues;
1042 /// The loop that we evaluate.
1045 ScalarEvolution *SE;
1046 /// Loop Info analysis.
1048 /// Vectorization legality.
1049 LoopVectorizationLegality *Legal;
1050 /// Vector target information.
1051 const TargetTransformInfo &TTI;
1052 /// Target data layout information.
1053 const DataLayout *DL;
1054 /// Target Library Info.
1055 const TargetLibraryInfo *TLI;
1056 const Function *TheFunction;
1057 // Loop Vectorize Hint.
1058 const LoopVectorizeHints *Hints;
1061 /// Utility class for getting and setting loop vectorizer hints in the form
1062 /// of loop metadata.
1063 /// This class keeps a number of loop annotations locally (as member variables)
1064 /// and can, upon request, write them back as metadata on the loop. It will
1065 /// initially scan the loop for existing metadata, and will update the local
1066 /// values based on information in the loop.
1067 /// We cannot write all values to metadata, as the mere presence of some info,
1068 /// for example 'force', means a decision has been made. So, we need to be
1069 /// careful NOT to add them if the user hasn't specifically asked so.
1070 class LoopVectorizeHints {
1077 /// Hint - associates name and validation with the hint value.
1080 unsigned Value; // This may have to change for non-numeric values.
1083 Hint(const char * Name, unsigned Value, HintKind Kind)
1084 : Name(Name), Value(Value), Kind(Kind) { }
1086 bool validate(unsigned Val) {
1089 return isPowerOf2_32(Val) && Val <= MaxVectorWidth;
1091 return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor;
1099 /// Vectorization width.
1101 /// Vectorization interleave factor.
1103 /// Vectorization forced
1106 /// Return the loop metadata prefix.
1107 static StringRef Prefix() { return "llvm.loop."; }
1111 FK_Undefined = -1, ///< Not selected.
1112 FK_Disabled = 0, ///< Forcing disabled.
1113 FK_Enabled = 1, ///< Forcing enabled.
1116 LoopVectorizeHints(const Loop *L, bool DisableInterleaving)
1117 : Width("vectorize.width", VectorizationFactor, HK_WIDTH),
1118 Interleave("interleave.count", DisableInterleaving, HK_UNROLL),
1119 Force("vectorize.enable", FK_Undefined, HK_FORCE),
1121 // Populate values with existing loop metadata.
1122 getHintsFromMetadata();
1124 // force-vector-interleave overrides DisableInterleaving.
1125 if (VectorizationInterleave.getNumOccurrences() > 0)
1126 Interleave.Value = VectorizationInterleave;
1128 DEBUG(if (DisableInterleaving && Interleave.Value == 1) dbgs()
1129 << "LV: Interleaving disabled by the pass manager\n");
1132 /// Mark the loop L as already vectorized by setting the width to 1.
1133 void setAlreadyVectorized() {
1134 Width.Value = Interleave.Value = 1;
1135 Hint Hints[] = {Width, Interleave};
1136 writeHintsToMetadata(Hints);
1139 /// Dumps all the hint information.
1140 std::string emitRemark() const {
1142 if (Force.Value == LoopVectorizeHints::FK_Disabled)
1143 R << "vectorization is explicitly disabled";
1145 R << "use -Rpass-analysis=loop-vectorize for more info";
1146 if (Force.Value == LoopVectorizeHints::FK_Enabled) {
1147 R << " (Force=true";
1148 if (Width.Value != 0)
1149 R << ", Vector Width=" << Width.Value;
1150 if (Interleave.Value != 0)
1151 R << ", Interleave Count=" << Interleave.Value;
1159 unsigned getWidth() const { return Width.Value; }
1160 unsigned getInterleave() const { return Interleave.Value; }
1161 enum ForceKind getForce() const { return (ForceKind)Force.Value; }
1164 /// Find hints specified in the loop metadata and update local values.
1165 void getHintsFromMetadata() {
1166 MDNode *LoopID = TheLoop->getLoopID();
1170 // First operand should refer to the loop id itself.
1171 assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
1172 assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
1174 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
1175 const MDString *S = nullptr;
1176 SmallVector<Metadata *, 4> Args;
1178 // The expected hint is either a MDString or a MDNode with the first
1179 // operand a MDString.
1180 if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) {
1181 if (!MD || MD->getNumOperands() == 0)
1183 S = dyn_cast<MDString>(MD->getOperand(0));
1184 for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i)
1185 Args.push_back(MD->getOperand(i));
1187 S = dyn_cast<MDString>(LoopID->getOperand(i));
1188 assert(Args.size() == 0 && "too many arguments for MDString");
1194 // Check if the hint starts with the loop metadata prefix.
1195 StringRef Name = S->getString();
1196 if (Args.size() == 1)
1197 setHint(Name, Args[0]);
1201 /// Checks string hint with one operand and set value if valid.
1202 void setHint(StringRef Name, Metadata *Arg) {
1203 if (!Name.startswith(Prefix()))
1205 Name = Name.substr(Prefix().size(), StringRef::npos);
1207 const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg);
1209 unsigned Val = C->getZExtValue();
1211 Hint *Hints[] = {&Width, &Interleave, &Force};
1212 for (auto H : Hints) {
1213 if (Name == H->Name) {
1214 if (H->validate(Val))
1217 DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n");
1223 /// Create a new hint from name / value pair.
1224 MDNode *createHintMetadata(StringRef Name, unsigned V) const {
1225 LLVMContext &Context = TheLoop->getHeader()->getContext();
1226 Metadata *MDs[] = {MDString::get(Context, Name),
1227 ConstantAsMetadata::get(
1228 ConstantInt::get(Type::getInt32Ty(Context), V))};
1229 return MDNode::get(Context, MDs);
1232 /// Matches metadata with hint name.
1233 bool matchesHintMetadataName(MDNode *Node, ArrayRef<Hint> HintTypes) {
1234 MDString* Name = dyn_cast<MDString>(Node->getOperand(0));
1238 for (auto H : HintTypes)
1239 if (Name->getString().endswith(H.Name))
1244 /// Sets current hints into loop metadata, keeping other values intact.
1245 void writeHintsToMetadata(ArrayRef<Hint> HintTypes) {
1246 if (HintTypes.size() == 0)
1249 // Reserve the first element to LoopID (see below).
1250 SmallVector<Metadata *, 4> MDs(1);
1251 // If the loop already has metadata, then ignore the existing operands.
1252 MDNode *LoopID = TheLoop->getLoopID();
1254 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
1255 MDNode *Node = cast<MDNode>(LoopID->getOperand(i));
1256 // If node in update list, ignore old value.
1257 if (!matchesHintMetadataName(Node, HintTypes))
1258 MDs.push_back(Node);
1262 // Now, add the missing hints.
1263 for (auto H : HintTypes)
1264 MDs.push_back(createHintMetadata(Twine(Prefix(), H.Name).str(), H.Value));
1266 // Replace current metadata node with new one.
1267 LLVMContext &Context = TheLoop->getHeader()->getContext();
1268 MDNode *NewLoopID = MDNode::get(Context, MDs);
1269 // Set operand 0 to refer to the loop id itself.
1270 NewLoopID->replaceOperandWith(0, NewLoopID);
1272 TheLoop->setLoopID(NewLoopID);
1275 /// The loop these hints belong to.
1276 const Loop *TheLoop;
1279 static void emitMissedWarning(Function *F, Loop *L,
1280 const LoopVectorizeHints &LH) {
1281 emitOptimizationRemarkMissed(F->getContext(), DEBUG_TYPE, *F,
1282 L->getStartLoc(), LH.emitRemark());
1284 if (LH.getForce() == LoopVectorizeHints::FK_Enabled) {
1285 if (LH.getWidth() != 1)
1286 emitLoopVectorizeWarning(
1287 F->getContext(), *F, L->getStartLoc(),
1288 "failed explicitly specified loop vectorization");
1289 else if (LH.getInterleave() != 1)
1290 emitLoopInterleaveWarning(
1291 F->getContext(), *F, L->getStartLoc(),
1292 "failed explicitly specified loop interleaving");
1296 static void addInnerLoop(Loop &L, SmallVectorImpl<Loop *> &V) {
1298 return V.push_back(&L);
1300 for (Loop *InnerL : L)
1301 addInnerLoop(*InnerL, V);
1304 /// The LoopVectorize Pass.
1305 struct LoopVectorize : public FunctionPass {
1306 /// Pass identification, replacement for typeid
1309 explicit LoopVectorize(bool NoUnrolling = false, bool AlwaysVectorize = true)
1311 DisableUnrolling(NoUnrolling),
1312 AlwaysVectorize(AlwaysVectorize) {
1313 initializeLoopVectorizePass(*PassRegistry::getPassRegistry());
1316 ScalarEvolution *SE;
1317 const DataLayout *DL;
1319 TargetTransformInfo *TTI;
1321 BlockFrequencyInfo *BFI;
1322 TargetLibraryInfo *TLI;
1324 AssumptionCache *AC;
1325 bool DisableUnrolling;
1326 bool AlwaysVectorize;
1328 BlockFrequency ColdEntryFreq;
1330 bool runOnFunction(Function &F) override {
1331 SE = &getAnalysis<ScalarEvolution>();
1332 DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
1333 DL = DLP ? &DLP->getDataLayout() : nullptr;
1334 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1335 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
1336 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1337 BFI = &getAnalysis<BlockFrequencyInfo>();
1338 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
1339 TLI = TLIP ? &TLIP->getTLI() : nullptr;
1340 AA = &getAnalysis<AliasAnalysis>();
1341 AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1343 // Compute some weights outside of the loop over the loops. Compute this
1344 // using a BranchProbability to re-use its scaling math.
1345 const BranchProbability ColdProb(1, 5); // 20%
1346 ColdEntryFreq = BlockFrequency(BFI->getEntryFreq()) * ColdProb;
1348 // If the target claims to have no vector registers don't attempt
1350 if (!TTI->getNumberOfRegisters(true))
1354 DEBUG(dbgs() << "\nLV: Not vectorizing " << F.getName()
1355 << ": Missing data layout\n");
1359 // Build up a worklist of inner-loops to vectorize. This is necessary as
1360 // the act of vectorizing or partially unrolling a loop creates new loops
1361 // and can invalidate iterators across the loops.
1362 SmallVector<Loop *, 8> Worklist;
1365 addInnerLoop(*L, Worklist);
1367 LoopsAnalyzed += Worklist.size();
1369 // Now walk the identified inner loops.
1370 bool Changed = false;
1371 while (!Worklist.empty())
1372 Changed |= processLoop(Worklist.pop_back_val());
1374 // Process each loop nest in the function.
1378 bool processLoop(Loop *L) {
1379 assert(L->empty() && "Only process inner loops.");
1382 const std::string DebugLocStr = getDebugLocString(L);
1385 DEBUG(dbgs() << "\nLV: Checking a loop in \""
1386 << L->getHeader()->getParent()->getName() << "\" from "
1387 << DebugLocStr << "\n");
1389 LoopVectorizeHints Hints(L, DisableUnrolling);
1391 DEBUG(dbgs() << "LV: Loop hints:"
1393 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled
1395 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled
1397 : "?")) << " width=" << Hints.getWidth()
1398 << " unroll=" << Hints.getInterleave() << "\n");
1400 // Function containing loop
1401 Function *F = L->getHeader()->getParent();
1403 // Looking at the diagnostic output is the only way to determine if a loop
1404 // was vectorized (other than looking at the IR or machine code), so it
1405 // is important to generate an optimization remark for each loop. Most of
1406 // these messages are generated by emitOptimizationRemarkAnalysis. Remarks
1407 // generated by emitOptimizationRemark and emitOptimizationRemarkMissed are
1408 // less verbose reporting vectorized loops and unvectorized loops that may
1409 // benefit from vectorization, respectively.
1411 if (Hints.getForce() == LoopVectorizeHints::FK_Disabled) {
1412 DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n");
1413 emitOptimizationRemarkAnalysis(F->getContext(), DEBUG_TYPE, *F,
1414 L->getStartLoc(), Hints.emitRemark());
1418 if (!AlwaysVectorize && Hints.getForce() != LoopVectorizeHints::FK_Enabled) {
1419 DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n");
1420 emitOptimizationRemarkAnalysis(F->getContext(), DEBUG_TYPE, *F,
1421 L->getStartLoc(), Hints.emitRemark());
1425 if (Hints.getWidth() == 1 && Hints.getInterleave() == 1) {
1426 DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n");
1427 emitOptimizationRemarkAnalysis(
1428 F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(),
1429 "loop not vectorized: vector width and interleave count are "
1430 "explicitly set to 1");
1434 // Check the loop for a trip count threshold:
1435 // do not vectorize loops with a tiny trip count.
1436 const unsigned TC = SE->getSmallConstantTripCount(L);
1437 if (TC > 0u && TC < TinyTripCountVectorThreshold) {
1438 DEBUG(dbgs() << "LV: Found a loop with a very small trip count. "
1439 << "This loop is not worth vectorizing.");
1440 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled)
1441 DEBUG(dbgs() << " But vectorizing was explicitly forced.\n");
1443 DEBUG(dbgs() << "\n");
1444 emitOptimizationRemarkAnalysis(
1445 F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(),
1446 "vectorization is not beneficial and is not explicitly forced");
1451 // Check if it is legal to vectorize the loop.
1452 LoopVectorizationLegality LVL(L, SE, DL, DT, TLI, AA, F, TTI);
1453 if (!LVL.canVectorize()) {
1454 DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n");
1455 emitMissedWarning(F, L, Hints);
1459 // Use the cost model.
1460 LoopVectorizationCostModel CM(L, SE, LI, &LVL, *TTI, DL, TLI, AC, F,
1463 // Check the function attributes to find out if this function should be
1464 // optimized for size.
1465 bool OptForSize = Hints.getForce() != LoopVectorizeHints::FK_Enabled &&
1466 F->hasFnAttribute(Attribute::OptimizeForSize);
1468 // Compute the weighted frequency of this loop being executed and see if it
1469 // is less than 20% of the function entry baseline frequency. Note that we
1470 // always have a canonical loop here because we think we *can* vectoriez.
1471 // FIXME: This is hidden behind a flag due to pervasive problems with
1472 // exactly what block frequency models.
1473 if (LoopVectorizeWithBlockFrequency) {
1474 BlockFrequency LoopEntryFreq = BFI->getBlockFreq(L->getLoopPreheader());
1475 if (Hints.getForce() != LoopVectorizeHints::FK_Enabled &&
1476 LoopEntryFreq < ColdEntryFreq)
1480 // Check the function attributes to see if implicit floats are allowed.a
1481 // FIXME: This check doesn't seem possibly correct -- what if the loop is
1482 // an integer loop and the vector instructions selected are purely integer
1483 // vector instructions?
1484 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) {
1485 DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat"
1486 "attribute is used.\n");
1487 emitOptimizationRemarkAnalysis(
1488 F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(),
1489 "loop not vectorized due to NoImplicitFloat attribute");
1490 emitMissedWarning(F, L, Hints);
1494 // Select the optimal vectorization factor.
1495 const LoopVectorizationCostModel::VectorizationFactor VF =
1496 CM.selectVectorizationFactor(OptForSize);
1498 // Select the unroll factor.
1500 CM.selectUnrollFactor(OptForSize, VF.Width, VF.Cost);
1502 DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in "
1503 << DebugLocStr << '\n');
1504 DEBUG(dbgs() << "LV: Unroll Factor is " << UF << '\n');
1506 if (VF.Width == 1) {
1507 DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial\n");
1510 emitOptimizationRemarkAnalysis(
1511 F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(),
1512 "not beneficial to vectorize and user disabled interleaving");
1515 DEBUG(dbgs() << "LV: Trying to at least unroll the loops.\n");
1517 // Report the unrolling decision.
1518 emitOptimizationRemark(F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(),
1519 Twine("unrolled with interleaving factor " +
1521 " (vectorization not beneficial)"));
1523 // We decided not to vectorize, but we may want to unroll.
1525 InnerLoopUnroller Unroller(L, SE, LI, DT, DL, TLI, UF);
1526 Unroller.vectorize(&LVL);
1528 // If we decided that it is *legal* to vectorize the loop then do it.
1529 InnerLoopVectorizer LB(L, SE, LI, DT, DL, TLI, VF.Width, UF);
1533 // Report the vectorization decision.
1534 emitOptimizationRemark(
1535 F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(),
1536 Twine("vectorized loop (vectorization factor: ") + Twine(VF.Width) +
1537 ", unrolling interleave factor: " + Twine(UF) + ")");
1540 // Mark the loop as already vectorized to avoid vectorizing again.
1541 Hints.setAlreadyVectorized();
1543 DEBUG(verifyFunction(*L->getHeader()->getParent()));
1547 void getAnalysisUsage(AnalysisUsage &AU) const override {
1548 AU.addRequired<AssumptionCacheTracker>();
1549 AU.addRequiredID(LoopSimplifyID);
1550 AU.addRequiredID(LCSSAID);
1551 AU.addRequired<BlockFrequencyInfo>();
1552 AU.addRequired<DominatorTreeWrapperPass>();
1553 AU.addRequired<LoopInfoWrapperPass>();
1554 AU.addRequired<ScalarEvolution>();
1555 AU.addRequired<TargetTransformInfoWrapperPass>();
1556 AU.addRequired<AliasAnalysis>();
1557 AU.addPreserved<LoopInfoWrapperPass>();
1558 AU.addPreserved<DominatorTreeWrapperPass>();
1559 AU.addPreserved<AliasAnalysis>();
1564 } // end anonymous namespace
1566 //===----------------------------------------------------------------------===//
1567 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and
1568 // LoopVectorizationCostModel.
1569 //===----------------------------------------------------------------------===//
1571 static Value *stripIntegerCast(Value *V) {
1572 if (CastInst *CI = dyn_cast<CastInst>(V))
1573 if (CI->getOperand(0)->getType()->isIntegerTy())
1574 return CI->getOperand(0);
1578 ///\brief Replaces the symbolic stride in a pointer SCEV expression by one.
1580 /// If \p OrigPtr is not null, use it to look up the stride value instead of
1582 static const SCEV *replaceSymbolicStrideSCEV(ScalarEvolution *SE,
1583 ValueToValueMap &PtrToStride,
1584 Value *Ptr, Value *OrigPtr = nullptr) {
1586 const SCEV *OrigSCEV = SE->getSCEV(Ptr);
1588 // If there is an entry in the map return the SCEV of the pointer with the
1589 // symbolic stride replaced by one.
1590 ValueToValueMap::iterator SI = PtrToStride.find(OrigPtr ? OrigPtr : Ptr);
1591 if (SI != PtrToStride.end()) {
1592 Value *StrideVal = SI->second;
1595 StrideVal = stripIntegerCast(StrideVal);
1597 // Replace symbolic stride by one.
1598 Value *One = ConstantInt::get(StrideVal->getType(), 1);
1599 ValueToValueMap RewriteMap;
1600 RewriteMap[StrideVal] = One;
1603 SCEVParameterRewriter::rewrite(OrigSCEV, *SE, RewriteMap, true);
1604 DEBUG(dbgs() << "LV: Replacing SCEV: " << *OrigSCEV << " by: " << *ByOne
1609 // Otherwise, just return the SCEV of the original pointer.
1610 return SE->getSCEV(Ptr);
1613 void RuntimePointerCheck::insert(ScalarEvolution *SE, Loop *Lp, Value *Ptr,
1614 bool WritePtr, unsigned DepSetId,
1615 unsigned ASId, ValueToValueMap &Strides) {
1616 // Get the stride replaced scev.
1617 const SCEV *Sc = replaceSymbolicStrideSCEV(SE, Strides, Ptr);
1618 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc);
1619 assert(AR && "Invalid addrec expression");
1620 const SCEV *Ex = SE->getBackedgeTakenCount(Lp);
1621 const SCEV *ScEnd = AR->evaluateAtIteration(Ex, *SE);
1622 Pointers.push_back(Ptr);
1623 Starts.push_back(AR->getStart());
1624 Ends.push_back(ScEnd);
1625 IsWritePtr.push_back(WritePtr);
1626 DependencySetId.push_back(DepSetId);
1627 AliasSetId.push_back(ASId);
1630 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) {
1631 // We need to place the broadcast of invariant variables outside the loop.
1632 Instruction *Instr = dyn_cast<Instruction>(V);
1634 (Instr && std::find(LoopVectorBody.begin(), LoopVectorBody.end(),
1635 Instr->getParent()) != LoopVectorBody.end());
1636 bool Invariant = OrigLoop->isLoopInvariant(V) && !NewInstr;
1638 // Place the code for broadcasting invariant variables in the new preheader.
1639 IRBuilder<>::InsertPointGuard Guard(Builder);
1641 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
1643 // Broadcast the scalar into all locations in the vector.
1644 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
1649 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx,
1651 assert(Val->getType()->isVectorTy() && "Must be a vector");
1652 assert(Val->getType()->getScalarType()->isIntegerTy() &&
1653 "Elem must be an integer");
1654 assert(Step->getType() == Val->getType()->getScalarType() &&
1655 "Step has wrong type");
1656 // Create the types.
1657 Type *ITy = Val->getType()->getScalarType();
1658 VectorType *Ty = cast<VectorType>(Val->getType());
1659 int VLen = Ty->getNumElements();
1660 SmallVector<Constant*, 8> Indices;
1662 // Create a vector of consecutive numbers from zero to VF.
1663 for (int i = 0; i < VLen; ++i)
1664 Indices.push_back(ConstantInt::get(ITy, StartIdx + i));
1666 // Add the consecutive indices to the vector value.
1667 Constant *Cv = ConstantVector::get(Indices);
1668 assert(Cv->getType() == Val->getType() && "Invalid consecutive vec");
1669 Step = Builder.CreateVectorSplat(VLen, Step);
1670 assert(Step->getType() == Val->getType() && "Invalid step vec");
1671 // FIXME: The newly created binary instructions should contain nsw/nuw flags,
1672 // which can be found from the original scalar operations.
1673 Step = Builder.CreateMul(Cv, Step);
1674 return Builder.CreateAdd(Val, Step, "induction");
1677 /// \brief Find the operand of the GEP that should be checked for consecutive
1678 /// stores. This ignores trailing indices that have no effect on the final
1680 static unsigned getGEPInductionOperand(const DataLayout *DL,
1681 const GetElementPtrInst *Gep) {
1682 unsigned LastOperand = Gep->getNumOperands() - 1;
1683 unsigned GEPAllocSize = DL->getTypeAllocSize(
1684 cast<PointerType>(Gep->getType()->getScalarType())->getElementType());
1686 // Walk backwards and try to peel off zeros.
1687 while (LastOperand > 1 && match(Gep->getOperand(LastOperand), m_Zero())) {
1688 // Find the type we're currently indexing into.
1689 gep_type_iterator GEPTI = gep_type_begin(Gep);
1690 std::advance(GEPTI, LastOperand - 1);
1692 // If it's a type with the same allocation size as the result of the GEP we
1693 // can peel off the zero index.
1694 if (DL->getTypeAllocSize(*GEPTI) != GEPAllocSize)
1702 int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) {
1703 assert(Ptr->getType()->isPointerTy() && "Unexpected non-ptr");
1704 // Make sure that the pointer does not point to structs.
1705 if (Ptr->getType()->getPointerElementType()->isAggregateType())
1708 // If this value is a pointer induction variable we know it is consecutive.
1709 PHINode *Phi = dyn_cast_or_null<PHINode>(Ptr);
1710 if (Phi && Inductions.count(Phi)) {
1711 InductionInfo II = Inductions[Phi];
1712 return II.getConsecutiveDirection();
1715 GetElementPtrInst *Gep = dyn_cast_or_null<GetElementPtrInst>(Ptr);
1719 unsigned NumOperands = Gep->getNumOperands();
1720 Value *GpPtr = Gep->getPointerOperand();
1721 // If this GEP value is a consecutive pointer induction variable and all of
1722 // the indices are constant then we know it is consecutive. We can
1723 Phi = dyn_cast<PHINode>(GpPtr);
1724 if (Phi && Inductions.count(Phi)) {
1726 // Make sure that the pointer does not point to structs.
1727 PointerType *GepPtrType = cast<PointerType>(GpPtr->getType());
1728 if (GepPtrType->getElementType()->isAggregateType())
1731 // Make sure that all of the index operands are loop invariant.
1732 for (unsigned i = 1; i < NumOperands; ++i)
1733 if (!SE->isLoopInvariant(SE->getSCEV(Gep->getOperand(i)), TheLoop))
1736 InductionInfo II = Inductions[Phi];
1737 return II.getConsecutiveDirection();
1740 unsigned InductionOperand = getGEPInductionOperand(DL, Gep);
1742 // Check that all of the gep indices are uniform except for our induction
1744 for (unsigned i = 0; i != NumOperands; ++i)
1745 if (i != InductionOperand &&
1746 !SE->isLoopInvariant(SE->getSCEV(Gep->getOperand(i)), TheLoop))
1749 // We can emit wide load/stores only if the last non-zero index is the
1750 // induction variable.
1751 const SCEV *Last = nullptr;
1752 if (!Strides.count(Gep))
1753 Last = SE->getSCEV(Gep->getOperand(InductionOperand));
1755 // Because of the multiplication by a stride we can have a s/zext cast.
1756 // We are going to replace this stride by 1 so the cast is safe to ignore.
1758 // %indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ]
1759 // %0 = trunc i64 %indvars.iv to i32
1760 // %mul = mul i32 %0, %Stride1
1761 // %idxprom = zext i32 %mul to i64 << Safe cast.
1762 // %arrayidx = getelementptr inbounds i32* %B, i64 %idxprom
1764 Last = replaceSymbolicStrideSCEV(SE, Strides,
1765 Gep->getOperand(InductionOperand), Gep);
1766 if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(Last))
1768 (C->getSCEVType() == scSignExtend || C->getSCEVType() == scZeroExtend)
1772 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Last)) {
1773 const SCEV *Step = AR->getStepRecurrence(*SE);
1775 // The memory is consecutive because the last index is consecutive
1776 // and all other indices are loop invariant.
1779 if (Step->isAllOnesValue())
1786 bool LoopVectorizationLegality::isUniform(Value *V) {
1787 return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop));
1790 InnerLoopVectorizer::VectorParts&
1791 InnerLoopVectorizer::getVectorValue(Value *V) {
1792 assert(V != Induction && "The new induction variable should not be used.");
1793 assert(!V->getType()->isVectorTy() && "Can't widen a vector");
1795 // If we have a stride that is replaced by one, do it here.
1796 if (Legal->hasStride(V))
1797 V = ConstantInt::get(V->getType(), 1);
1799 // If we have this scalar in the map, return it.
1800 if (WidenMap.has(V))
1801 return WidenMap.get(V);
1803 // If this scalar is unknown, assume that it is a constant or that it is
1804 // loop invariant. Broadcast V and save the value for future uses.
1805 Value *B = getBroadcastInstrs(V);
1806 return WidenMap.splat(V, B);
1809 Value *InnerLoopVectorizer::reverseVector(Value *Vec) {
1810 assert(Vec->getType()->isVectorTy() && "Invalid type");
1811 SmallVector<Constant*, 8> ShuffleMask;
1812 for (unsigned i = 0; i < VF; ++i)
1813 ShuffleMask.push_back(Builder.getInt32(VF - i - 1));
1815 return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()),
1816 ConstantVector::get(ShuffleMask),
1820 void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr) {
1821 // Attempt to issue a wide load.
1822 LoadInst *LI = dyn_cast<LoadInst>(Instr);
1823 StoreInst *SI = dyn_cast<StoreInst>(Instr);
1825 assert((LI || SI) && "Invalid Load/Store instruction");
1827 Type *ScalarDataTy = LI ? LI->getType() : SI->getValueOperand()->getType();
1828 Type *DataTy = VectorType::get(ScalarDataTy, VF);
1829 Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand();
1830 unsigned Alignment = LI ? LI->getAlignment() : SI->getAlignment();
1831 // An alignment of 0 means target abi alignment. We need to use the scalar's
1832 // target abi alignment in such a case.
1834 Alignment = DL->getABITypeAlignment(ScalarDataTy);
1835 unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace();
1836 unsigned ScalarAllocatedSize = DL->getTypeAllocSize(ScalarDataTy);
1837 unsigned VectorElementSize = DL->getTypeStoreSize(DataTy)/VF;
1839 if (SI && Legal->blockNeedsPredication(SI->getParent()) &&
1840 !Legal->isMaskRequired(SI))
1841 return scalarizeInstruction(Instr, true);
1843 if (ScalarAllocatedSize != VectorElementSize)
1844 return scalarizeInstruction(Instr);
1846 // If the pointer is loop invariant or if it is non-consecutive,
1847 // scalarize the load.
1848 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr);
1849 bool Reverse = ConsecutiveStride < 0;
1850 bool UniformLoad = LI && Legal->isUniform(Ptr);
1851 if (!ConsecutiveStride || UniformLoad)
1852 return scalarizeInstruction(Instr);
1854 Constant *Zero = Builder.getInt32(0);
1855 VectorParts &Entry = WidenMap.get(Instr);
1857 // Handle consecutive loads/stores.
1858 GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr);
1859 if (Gep && Legal->isInductionVariable(Gep->getPointerOperand())) {
1860 setDebugLocFromInst(Builder, Gep);
1861 Value *PtrOperand = Gep->getPointerOperand();
1862 Value *FirstBasePtr = getVectorValue(PtrOperand)[0];
1863 FirstBasePtr = Builder.CreateExtractElement(FirstBasePtr, Zero);
1865 // Create the new GEP with the new induction variable.
1866 GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone());
1867 Gep2->setOperand(0, FirstBasePtr);
1868 Gep2->setName("gep.indvar.base");
1869 Ptr = Builder.Insert(Gep2);
1871 setDebugLocFromInst(Builder, Gep);
1872 assert(SE->isLoopInvariant(SE->getSCEV(Gep->getPointerOperand()),
1873 OrigLoop) && "Base ptr must be invariant");
1875 // The last index does not have to be the induction. It can be
1876 // consecutive and be a function of the index. For example A[I+1];
1877 unsigned NumOperands = Gep->getNumOperands();
1878 unsigned InductionOperand = getGEPInductionOperand(DL, Gep);
1879 // Create the new GEP with the new induction variable.
1880 GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone());
1882 for (unsigned i = 0; i < NumOperands; ++i) {
1883 Value *GepOperand = Gep->getOperand(i);
1884 Instruction *GepOperandInst = dyn_cast<Instruction>(GepOperand);
1886 // Update last index or loop invariant instruction anchored in loop.
1887 if (i == InductionOperand ||
1888 (GepOperandInst && OrigLoop->contains(GepOperandInst))) {
1889 assert((i == InductionOperand ||
1890 SE->isLoopInvariant(SE->getSCEV(GepOperandInst), OrigLoop)) &&
1891 "Must be last index or loop invariant");
1893 VectorParts &GEPParts = getVectorValue(GepOperand);
1894 Value *Index = GEPParts[0];
1895 Index = Builder.CreateExtractElement(Index, Zero);
1896 Gep2->setOperand(i, Index);
1897 Gep2->setName("gep.indvar.idx");
1900 Ptr = Builder.Insert(Gep2);
1902 // Use the induction element ptr.
1903 assert(isa<PHINode>(Ptr) && "Invalid induction ptr");
1904 setDebugLocFromInst(Builder, Ptr);
1905 VectorParts &PtrVal = getVectorValue(Ptr);
1906 Ptr = Builder.CreateExtractElement(PtrVal[0], Zero);
1909 VectorParts Mask = createBlockInMask(Instr->getParent());
1912 assert(!Legal->isUniform(SI->getPointerOperand()) &&
1913 "We do not allow storing to uniform addresses");
1914 setDebugLocFromInst(Builder, SI);
1915 // We don't want to update the value in the map as it might be used in
1916 // another expression. So don't use a reference type for "StoredVal".
1917 VectorParts StoredVal = getVectorValue(SI->getValueOperand());
1919 for (unsigned Part = 0; Part < UF; ++Part) {
1920 // Calculate the pointer for the specific unroll-part.
1921 Value *PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(Part * VF));
1924 // If we store to reverse consecutive memory locations then we need
1925 // to reverse the order of elements in the stored value.
1926 StoredVal[Part] = reverseVector(StoredVal[Part]);
1927 // If the address is consecutive but reversed, then the
1928 // wide store needs to start at the last vector element.
1929 PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(-Part * VF));
1930 PartPtr = Builder.CreateGEP(PartPtr, Builder.getInt32(1 - VF));
1931 Mask[Part] = reverseVector(Mask[Part]);
1934 Value *VecPtr = Builder.CreateBitCast(PartPtr,
1935 DataTy->getPointerTo(AddressSpace));
1938 if (Legal->isMaskRequired(SI))
1939 NewSI = Builder.CreateMaskedStore(StoredVal[Part], VecPtr, Alignment,
1942 NewSI = Builder.CreateAlignedStore(StoredVal[Part], VecPtr, Alignment);
1943 propagateMetadata(NewSI, SI);
1949 assert(LI && "Must have a load instruction");
1950 setDebugLocFromInst(Builder, LI);
1951 for (unsigned Part = 0; Part < UF; ++Part) {
1952 // Calculate the pointer for the specific unroll-part.
1953 Value *PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(Part * VF));
1956 // If the address is consecutive but reversed, then the
1957 // wide load needs to start at the last vector element.
1958 PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(-Part * VF));
1959 PartPtr = Builder.CreateGEP(PartPtr, Builder.getInt32(1 - VF));
1960 Mask[Part] = reverseVector(Mask[Part]);
1964 Value *VecPtr = Builder.CreateBitCast(PartPtr,
1965 DataTy->getPointerTo(AddressSpace));
1966 if (Legal->isMaskRequired(LI))
1967 NewLI = Builder.CreateMaskedLoad(VecPtr, Alignment, Mask[Part],
1968 UndefValue::get(DataTy),
1969 "wide.masked.load");
1971 NewLI = Builder.CreateAlignedLoad(VecPtr, Alignment, "wide.load");
1972 propagateMetadata(NewLI, LI);
1973 Entry[Part] = Reverse ? reverseVector(NewLI) : NewLI;
1977 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, bool IfPredicateStore) {
1978 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
1979 // Holds vector parameters or scalars, in case of uniform vals.
1980 SmallVector<VectorParts, 4> Params;
1982 setDebugLocFromInst(Builder, Instr);
1984 // Find all of the vectorized parameters.
1985 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
1986 Value *SrcOp = Instr->getOperand(op);
1988 // If we are accessing the old induction variable, use the new one.
1989 if (SrcOp == OldInduction) {
1990 Params.push_back(getVectorValue(SrcOp));
1994 // Try using previously calculated values.
1995 Instruction *SrcInst = dyn_cast<Instruction>(SrcOp);
1997 // If the src is an instruction that appeared earlier in the basic block
1998 // then it should already be vectorized.
1999 if (SrcInst && OrigLoop->contains(SrcInst)) {
2000 assert(WidenMap.has(SrcInst) && "Source operand is unavailable");
2001 // The parameter is a vector value from earlier.
2002 Params.push_back(WidenMap.get(SrcInst));
2004 // The parameter is a scalar from outside the loop. Maybe even a constant.
2005 VectorParts Scalars;
2006 Scalars.append(UF, SrcOp);
2007 Params.push_back(Scalars);
2011 assert(Params.size() == Instr->getNumOperands() &&
2012 "Invalid number of operands");
2014 // Does this instruction return a value ?
2015 bool IsVoidRetTy = Instr->getType()->isVoidTy();
2017 Value *UndefVec = IsVoidRetTy ? nullptr :
2018 UndefValue::get(VectorType::get(Instr->getType(), VF));
2019 // Create a new entry in the WidenMap and initialize it to Undef or Null.
2020 VectorParts &VecResults = WidenMap.splat(Instr, UndefVec);
2022 Instruction *InsertPt = Builder.GetInsertPoint();
2023 BasicBlock *IfBlock = Builder.GetInsertBlock();
2024 BasicBlock *CondBlock = nullptr;
2027 Loop *VectorLp = nullptr;
2028 if (IfPredicateStore) {
2029 assert(Instr->getParent()->getSinglePredecessor() &&
2030 "Only support single predecessor blocks");
2031 Cond = createEdgeMask(Instr->getParent()->getSinglePredecessor(),
2032 Instr->getParent());
2033 VectorLp = LI->getLoopFor(IfBlock);
2034 assert(VectorLp && "Must have a loop for this block");
2037 // For each vector unroll 'part':
2038 for (unsigned Part = 0; Part < UF; ++Part) {
2039 // For each scalar that we create:
2040 for (unsigned Width = 0; Width < VF; ++Width) {
2043 Value *Cmp = nullptr;
2044 if (IfPredicateStore) {
2045 Cmp = Builder.CreateExtractElement(Cond[Part], Builder.getInt32(Width));
2046 Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cmp, ConstantInt::get(Cmp->getType(), 1));
2047 CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.store");
2048 LoopVectorBody.push_back(CondBlock);
2049 VectorLp->addBasicBlockToLoop(CondBlock, *LI);
2050 // Update Builder with newly created basic block.
2051 Builder.SetInsertPoint(InsertPt);
2054 Instruction *Cloned = Instr->clone();
2056 Cloned->setName(Instr->getName() + ".cloned");
2057 // Replace the operands of the cloned instructions with extracted scalars.
2058 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
2059 Value *Op = Params[op][Part];
2060 // Param is a vector. Need to extract the right lane.
2061 if (Op->getType()->isVectorTy())
2062 Op = Builder.CreateExtractElement(Op, Builder.getInt32(Width));
2063 Cloned->setOperand(op, Op);
2066 // Place the cloned scalar in the new loop.
2067 Builder.Insert(Cloned);
2069 // If the original scalar returns a value we need to place it in a vector
2070 // so that future users will be able to use it.
2072 VecResults[Part] = Builder.CreateInsertElement(VecResults[Part], Cloned,
2073 Builder.getInt32(Width));
2075 if (IfPredicateStore) {
2076 BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else");
2077 LoopVectorBody.push_back(NewIfBlock);
2078 VectorLp->addBasicBlockToLoop(NewIfBlock, *LI);
2079 Builder.SetInsertPoint(InsertPt);
2080 Instruction *OldBr = IfBlock->getTerminator();
2081 BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr);
2082 OldBr->eraseFromParent();
2083 IfBlock = NewIfBlock;
2089 static Instruction *getFirstInst(Instruction *FirstInst, Value *V,
2093 if (Instruction *I = dyn_cast<Instruction>(V))
2094 return I->getParent() == Loc->getParent() ? I : nullptr;
2098 std::pair<Instruction *, Instruction *>
2099 InnerLoopVectorizer::addStrideCheck(Instruction *Loc) {
2100 Instruction *tnullptr = nullptr;
2101 if (!Legal->mustCheckStrides())
2102 return std::pair<Instruction *, Instruction *>(tnullptr, tnullptr);
2104 IRBuilder<> ChkBuilder(Loc);
2107 Value *Check = nullptr;
2108 Instruction *FirstInst = nullptr;
2109 for (SmallPtrSet<Value *, 8>::iterator SI = Legal->strides_begin(),
2110 SE = Legal->strides_end();
2112 Value *Ptr = stripIntegerCast(*SI);
2113 Value *C = ChkBuilder.CreateICmpNE(Ptr, ConstantInt::get(Ptr->getType(), 1),
2115 // Store the first instruction we create.
2116 FirstInst = getFirstInst(FirstInst, C, Loc);
2118 Check = ChkBuilder.CreateOr(Check, C);
2123 // We have to do this trickery because the IRBuilder might fold the check to a
2124 // constant expression in which case there is no Instruction anchored in a
2126 LLVMContext &Ctx = Loc->getContext();
2127 Instruction *TheCheck =
2128 BinaryOperator::CreateAnd(Check, ConstantInt::getTrue(Ctx));
2129 ChkBuilder.Insert(TheCheck, "stride.not.one");
2130 FirstInst = getFirstInst(FirstInst, TheCheck, Loc);
2132 return std::make_pair(FirstInst, TheCheck);
2135 std::pair<Instruction *, Instruction *>
2136 InnerLoopVectorizer::addRuntimeCheck(Instruction *Loc) {
2137 RuntimePointerCheck *PtrRtCheck = Legal->getRuntimePointerCheck();
2139 Instruction *tnullptr = nullptr;
2140 if (!PtrRtCheck->Need)
2141 return std::pair<Instruction *, Instruction *>(tnullptr, tnullptr);
2143 unsigned NumPointers = PtrRtCheck->Pointers.size();
2144 SmallVector<TrackingVH<Value> , 2> Starts;
2145 SmallVector<TrackingVH<Value> , 2> Ends;
2147 LLVMContext &Ctx = Loc->getContext();
2148 SCEVExpander Exp(*SE, "induction");
2149 Instruction *FirstInst = nullptr;
2151 for (unsigned i = 0; i < NumPointers; ++i) {
2152 Value *Ptr = PtrRtCheck->Pointers[i];
2153 const SCEV *Sc = SE->getSCEV(Ptr);
2155 if (SE->isLoopInvariant(Sc, OrigLoop)) {
2156 DEBUG(dbgs() << "LV: Adding RT check for a loop invariant ptr:" <<
2158 Starts.push_back(Ptr);
2159 Ends.push_back(Ptr);
2161 DEBUG(dbgs() << "LV: Adding RT check for range:" << *Ptr << '\n');
2162 unsigned AS = Ptr->getType()->getPointerAddressSpace();
2164 // Use this type for pointer arithmetic.
2165 Type *PtrArithTy = Type::getInt8PtrTy(Ctx, AS);
2167 Value *Start = Exp.expandCodeFor(PtrRtCheck->Starts[i], PtrArithTy, Loc);
2168 Value *End = Exp.expandCodeFor(PtrRtCheck->Ends[i], PtrArithTy, Loc);
2169 Starts.push_back(Start);
2170 Ends.push_back(End);
2174 IRBuilder<> ChkBuilder(Loc);
2175 // Our instructions might fold to a constant.
2176 Value *MemoryRuntimeCheck = nullptr;
2177 for (unsigned i = 0; i < NumPointers; ++i) {
2178 for (unsigned j = i+1; j < NumPointers; ++j) {
2179 // No need to check if two readonly pointers intersect.
2180 if (!PtrRtCheck->IsWritePtr[i] && !PtrRtCheck->IsWritePtr[j])
2183 // Only need to check pointers between two different dependency sets.
2184 if (PtrRtCheck->DependencySetId[i] == PtrRtCheck->DependencySetId[j])
2186 // Only need to check pointers in the same alias set.
2187 if (PtrRtCheck->AliasSetId[i] != PtrRtCheck->AliasSetId[j])
2190 unsigned AS0 = Starts[i]->getType()->getPointerAddressSpace();
2191 unsigned AS1 = Starts[j]->getType()->getPointerAddressSpace();
2193 assert((AS0 == Ends[j]->getType()->getPointerAddressSpace()) &&
2194 (AS1 == Ends[i]->getType()->getPointerAddressSpace()) &&
2195 "Trying to bounds check pointers with different address spaces");
2197 Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0);
2198 Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1);
2200 Value *Start0 = ChkBuilder.CreateBitCast(Starts[i], PtrArithTy0, "bc");
2201 Value *Start1 = ChkBuilder.CreateBitCast(Starts[j], PtrArithTy1, "bc");
2202 Value *End0 = ChkBuilder.CreateBitCast(Ends[i], PtrArithTy1, "bc");
2203 Value *End1 = ChkBuilder.CreateBitCast(Ends[j], PtrArithTy0, "bc");
2205 Value *Cmp0 = ChkBuilder.CreateICmpULE(Start0, End1, "bound0");
2206 FirstInst = getFirstInst(FirstInst, Cmp0, Loc);
2207 Value *Cmp1 = ChkBuilder.CreateICmpULE(Start1, End0, "bound1");
2208 FirstInst = getFirstInst(FirstInst, Cmp1, Loc);
2209 Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict");
2210 FirstInst = getFirstInst(FirstInst, IsConflict, Loc);
2211 if (MemoryRuntimeCheck) {
2212 IsConflict = ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict,
2214 FirstInst = getFirstInst(FirstInst, IsConflict, Loc);
2216 MemoryRuntimeCheck = IsConflict;
2220 // We have to do this trickery because the IRBuilder might fold the check to a
2221 // constant expression in which case there is no Instruction anchored in a
2223 Instruction *Check = BinaryOperator::CreateAnd(MemoryRuntimeCheck,
2224 ConstantInt::getTrue(Ctx));
2225 ChkBuilder.Insert(Check, "memcheck.conflict");
2226 FirstInst = getFirstInst(FirstInst, Check, Loc);
2227 return std::make_pair(FirstInst, Check);
2230 void InnerLoopVectorizer::createEmptyLoop() {
2232 In this function we generate a new loop. The new loop will contain
2233 the vectorized instructions while the old loop will continue to run the
2236 [ ] <-- Back-edge taken count overflow check.
2239 | [ ] <-- vector loop bypass (may consist of multiple blocks).
2242 || [ ] <-- vector pre header.
2246 || [ ]_| <-- vector loop.
2249 | >[ ] <--- middle-block.
2252 -|- >[ ] <--- new preheader.
2256 | [ ]_| <-- old scalar loop to handle remainder.
2259 >[ ] <-- exit block.
2263 BasicBlock *OldBasicBlock = OrigLoop->getHeader();
2264 BasicBlock *BypassBlock = OrigLoop->getLoopPreheader();
2265 BasicBlock *ExitBlock = OrigLoop->getExitBlock();
2266 assert(BypassBlock && "Invalid loop structure");
2267 assert(ExitBlock && "Must have an exit block");
2269 // Some loops have a single integer induction variable, while other loops
2270 // don't. One example is c++ iterators that often have multiple pointer
2271 // induction variables. In the code below we also support a case where we
2272 // don't have a single induction variable.
2273 OldInduction = Legal->getInduction();
2274 Type *IdxTy = Legal->getWidestInductionType();
2276 // Find the loop boundaries.
2277 const SCEV *ExitCount = SE->getBackedgeTakenCount(OrigLoop);
2278 assert(ExitCount != SE->getCouldNotCompute() && "Invalid loop count");
2280 // The exit count might have the type of i64 while the phi is i32. This can
2281 // happen if we have an induction variable that is sign extended before the
2282 // compare. The only way that we get a backedge taken count is that the
2283 // induction variable was signed and as such will not overflow. In such a case
2284 // truncation is legal.
2285 if (ExitCount->getType()->getPrimitiveSizeInBits() >
2286 IdxTy->getPrimitiveSizeInBits())
2287 ExitCount = SE->getTruncateOrNoop(ExitCount, IdxTy);
2289 const SCEV *BackedgeTakeCount = SE->getNoopOrZeroExtend(ExitCount, IdxTy);
2290 // Get the total trip count from the count by adding 1.
2291 ExitCount = SE->getAddExpr(BackedgeTakeCount,
2292 SE->getConstant(BackedgeTakeCount->getType(), 1));
2294 // Expand the trip count and place the new instructions in the preheader.
2295 // Notice that the pre-header does not change, only the loop body.
2296 SCEVExpander Exp(*SE, "induction");
2298 // We need to test whether the backedge-taken count is uint##_max. Adding one
2299 // to it will cause overflow and an incorrect loop trip count in the vector
2300 // body. In case of overflow we want to directly jump to the scalar remainder
2302 Value *BackedgeCount =
2303 Exp.expandCodeFor(BackedgeTakeCount, BackedgeTakeCount->getType(),
2304 BypassBlock->getTerminator());
2305 if (BackedgeCount->getType()->isPointerTy())
2306 BackedgeCount = CastInst::CreatePointerCast(BackedgeCount, IdxTy,
2307 "backedge.ptrcnt.to.int",
2308 BypassBlock->getTerminator());
2309 Instruction *CheckBCOverflow =
2310 CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, BackedgeCount,
2311 Constant::getAllOnesValue(BackedgeCount->getType()),
2312 "backedge.overflow", BypassBlock->getTerminator());
2314 // The loop index does not have to start at Zero. Find the original start
2315 // value from the induction PHI node. If we don't have an induction variable
2316 // then we know that it starts at zero.
2317 Builder.SetInsertPoint(BypassBlock->getTerminator());
2318 Value *StartIdx = ExtendedIdx = OldInduction ?
2319 Builder.CreateZExt(OldInduction->getIncomingValueForBlock(BypassBlock),
2321 ConstantInt::get(IdxTy, 0);
2323 // We need an instruction to anchor the overflow check on. StartIdx needs to
2324 // be defined before the overflow check branch. Because the scalar preheader
2325 // is going to merge the start index and so the overflow branch block needs to
2326 // contain a definition of the start index.
2327 Instruction *OverflowCheckAnchor = BinaryOperator::CreateAdd(
2328 StartIdx, ConstantInt::get(IdxTy, 0), "overflow.check.anchor",
2329 BypassBlock->getTerminator());
2331 // Count holds the overall loop count (N).
2332 Value *Count = Exp.expandCodeFor(ExitCount, ExitCount->getType(),
2333 BypassBlock->getTerminator());
2335 LoopBypassBlocks.push_back(BypassBlock);
2337 // Split the single block loop into the two loop structure described above.
2338 BasicBlock *VectorPH =
2339 BypassBlock->splitBasicBlock(BypassBlock->getTerminator(), "vector.ph");
2340 BasicBlock *VecBody =
2341 VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body");
2342 BasicBlock *MiddleBlock =
2343 VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block");
2344 BasicBlock *ScalarPH =
2345 MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph");
2347 // Create and register the new vector loop.
2348 Loop* Lp = new Loop();
2349 Loop *ParentLoop = OrigLoop->getParentLoop();
2351 // Insert the new loop into the loop nest and register the new basic blocks
2352 // before calling any utilities such as SCEV that require valid LoopInfo.
2354 ParentLoop->addChildLoop(Lp);
2355 ParentLoop->addBasicBlockToLoop(ScalarPH, *LI);
2356 ParentLoop->addBasicBlockToLoop(VectorPH, *LI);
2357 ParentLoop->addBasicBlockToLoop(MiddleBlock, *LI);
2359 LI->addTopLevelLoop(Lp);
2361 Lp->addBasicBlockToLoop(VecBody, *LI);
2363 // Use this IR builder to create the loop instructions (Phi, Br, Cmp)
2365 Builder.SetInsertPoint(VecBody->getFirstNonPHI());
2367 // Generate the induction variable.
2368 setDebugLocFromInst(Builder, getDebugLocFromInstOrOperands(OldInduction));
2369 Induction = Builder.CreatePHI(IdxTy, 2, "index");
2370 // The loop step is equal to the vectorization factor (num of SIMD elements)
2371 // times the unroll factor (num of SIMD instructions).
2372 Constant *Step = ConstantInt::get(IdxTy, VF * UF);
2374 // This is the IR builder that we use to add all of the logic for bypassing
2375 // the new vector loop.
2376 IRBuilder<> BypassBuilder(BypassBlock->getTerminator());
2377 setDebugLocFromInst(BypassBuilder,
2378 getDebugLocFromInstOrOperands(OldInduction));
2380 // We may need to extend the index in case there is a type mismatch.
2381 // We know that the count starts at zero and does not overflow.
2382 if (Count->getType() != IdxTy) {
2383 // The exit count can be of pointer type. Convert it to the correct
2385 if (ExitCount->getType()->isPointerTy())
2386 Count = BypassBuilder.CreatePointerCast(Count, IdxTy, "ptrcnt.to.int");
2388 Count = BypassBuilder.CreateZExtOrTrunc(Count, IdxTy, "cnt.cast");
2391 // Add the start index to the loop count to get the new end index.
2392 Value *IdxEnd = BypassBuilder.CreateAdd(Count, StartIdx, "end.idx");
2394 // Now we need to generate the expression for N - (N % VF), which is
2395 // the part that the vectorized body will execute.
2396 Value *R = BypassBuilder.CreateURem(Count, Step, "n.mod.vf");
2397 Value *CountRoundDown = BypassBuilder.CreateSub(Count, R, "n.vec");
2398 Value *IdxEndRoundDown = BypassBuilder.CreateAdd(CountRoundDown, StartIdx,
2399 "end.idx.rnd.down");
2401 // Now, compare the new count to zero. If it is zero skip the vector loop and
2402 // jump to the scalar loop.
2404 BypassBuilder.CreateICmpEQ(IdxEndRoundDown, StartIdx, "cmp.zero");
2406 BasicBlock *LastBypassBlock = BypassBlock;
2408 // Generate code to check that the loops trip count that we computed by adding
2409 // one to the backedge-taken count will not overflow.
2411 auto PastOverflowCheck =
2412 std::next(BasicBlock::iterator(OverflowCheckAnchor));
2413 BasicBlock *CheckBlock =
2414 LastBypassBlock->splitBasicBlock(PastOverflowCheck, "overflow.checked");
2416 ParentLoop->addBasicBlockToLoop(CheckBlock, *LI);
2417 LoopBypassBlocks.push_back(CheckBlock);
2418 Instruction *OldTerm = LastBypassBlock->getTerminator();
2419 BranchInst::Create(ScalarPH, CheckBlock, CheckBCOverflow, OldTerm);
2420 OldTerm->eraseFromParent();
2421 LastBypassBlock = CheckBlock;
2424 // Generate the code to check that the strides we assumed to be one are really
2425 // one. We want the new basic block to start at the first instruction in a
2426 // sequence of instructions that form a check.
2427 Instruction *StrideCheck;
2428 Instruction *FirstCheckInst;
2429 std::tie(FirstCheckInst, StrideCheck) =
2430 addStrideCheck(LastBypassBlock->getTerminator());
2432 // Create a new block containing the stride check.
2433 BasicBlock *CheckBlock =
2434 LastBypassBlock->splitBasicBlock(FirstCheckInst, "vector.stridecheck");
2436 ParentLoop->addBasicBlockToLoop(CheckBlock, *LI);
2437 LoopBypassBlocks.push_back(CheckBlock);
2439 // Replace the branch into the memory check block with a conditional branch
2440 // for the "few elements case".
2441 Instruction *OldTerm = LastBypassBlock->getTerminator();
2442 BranchInst::Create(MiddleBlock, CheckBlock, Cmp, OldTerm);
2443 OldTerm->eraseFromParent();
2446 LastBypassBlock = CheckBlock;
2449 // Generate the code that checks in runtime if arrays overlap. We put the
2450 // checks into a separate block to make the more common case of few elements
2452 Instruction *MemRuntimeCheck;
2453 std::tie(FirstCheckInst, MemRuntimeCheck) =
2454 addRuntimeCheck(LastBypassBlock->getTerminator());
2455 if (MemRuntimeCheck) {
2456 // Create a new block containing the memory check.
2457 BasicBlock *CheckBlock =
2458 LastBypassBlock->splitBasicBlock(MemRuntimeCheck, "vector.memcheck");
2460 ParentLoop->addBasicBlockToLoop(CheckBlock, *LI);
2461 LoopBypassBlocks.push_back(CheckBlock);
2463 // Replace the branch into the memory check block with a conditional branch
2464 // for the "few elements case".
2465 Instruction *OldTerm = LastBypassBlock->getTerminator();
2466 BranchInst::Create(MiddleBlock, CheckBlock, Cmp, OldTerm);
2467 OldTerm->eraseFromParent();
2469 Cmp = MemRuntimeCheck;
2470 LastBypassBlock = CheckBlock;
2473 LastBypassBlock->getTerminator()->eraseFromParent();
2474 BranchInst::Create(MiddleBlock, VectorPH, Cmp,
2477 // We are going to resume the execution of the scalar loop.
2478 // Go over all of the induction variables that we found and fix the
2479 // PHIs that are left in the scalar version of the loop.
2480 // The starting values of PHI nodes depend on the counter of the last
2481 // iteration in the vectorized loop.
2482 // If we come from a bypass edge then we need to start from the original
2485 // This variable saves the new starting index for the scalar loop.
2486 PHINode *ResumeIndex = nullptr;
2487 LoopVectorizationLegality::InductionList::iterator I, E;
2488 LoopVectorizationLegality::InductionList *List = Legal->getInductionVars();
2489 // Set builder to point to last bypass block.
2490 BypassBuilder.SetInsertPoint(LoopBypassBlocks.back()->getTerminator());
2491 for (I = List->begin(), E = List->end(); I != E; ++I) {
2492 PHINode *OrigPhi = I->first;
2493 LoopVectorizationLegality::InductionInfo II = I->second;
2495 Type *ResumeValTy = (OrigPhi == OldInduction) ? IdxTy : OrigPhi->getType();
2496 PHINode *ResumeVal = PHINode::Create(ResumeValTy, 2, "resume.val",
2497 MiddleBlock->getTerminator());
2498 // We might have extended the type of the induction variable but we need a
2499 // truncated version for the scalar loop.
2500 PHINode *TruncResumeVal = (OrigPhi == OldInduction) ?
2501 PHINode::Create(OrigPhi->getType(), 2, "trunc.resume.val",
2502 MiddleBlock->getTerminator()) : nullptr;
2504 // Create phi nodes to merge from the backedge-taken check block.
2505 PHINode *BCResumeVal = PHINode::Create(ResumeValTy, 3, "bc.resume.val",
2506 ScalarPH->getTerminator());
2507 BCResumeVal->addIncoming(ResumeVal, MiddleBlock);
2509 PHINode *BCTruncResumeVal = nullptr;
2510 if (OrigPhi == OldInduction) {
2512 PHINode::Create(OrigPhi->getType(), 2, "bc.trunc.resume.val",
2513 ScalarPH->getTerminator());
2514 BCTruncResumeVal->addIncoming(TruncResumeVal, MiddleBlock);
2517 Value *EndValue = nullptr;
2519 case LoopVectorizationLegality::IK_NoInduction:
2520 llvm_unreachable("Unknown induction");
2521 case LoopVectorizationLegality::IK_IntInduction: {
2522 // Handle the integer induction counter.
2523 assert(OrigPhi->getType()->isIntegerTy() && "Invalid type");
2525 // We have the canonical induction variable.
2526 if (OrigPhi == OldInduction) {
2527 // Create a truncated version of the resume value for the scalar loop,
2528 // we might have promoted the type to a larger width.
2530 BypassBuilder.CreateTrunc(IdxEndRoundDown, OrigPhi->getType());
2531 // The new PHI merges the original incoming value, in case of a bypass,
2532 // or the value at the end of the vectorized loop.
2533 for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I)
2534 TruncResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[I]);
2535 TruncResumeVal->addIncoming(EndValue, VecBody);
2537 BCTruncResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[0]);
2539 // We know what the end value is.
2540 EndValue = IdxEndRoundDown;
2541 // We also know which PHI node holds it.
2542 ResumeIndex = ResumeVal;
2546 // Not the canonical induction variable - add the vector loop count to the
2548 Value *CRD = BypassBuilder.CreateSExtOrTrunc(CountRoundDown,
2549 II.StartValue->getType(),
2551 EndValue = II.transform(BypassBuilder, CRD);
2552 EndValue->setName("ind.end");
2555 case LoopVectorizationLegality::IK_PtrInduction: {
2556 EndValue = II.transform(BypassBuilder, CountRoundDown);
2557 EndValue->setName("ptr.ind.end");
2562 // The new PHI merges the original incoming value, in case of a bypass,
2563 // or the value at the end of the vectorized loop.
2564 for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I) {
2565 if (OrigPhi == OldInduction)
2566 ResumeVal->addIncoming(StartIdx, LoopBypassBlocks[I]);
2568 ResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[I]);
2570 ResumeVal->addIncoming(EndValue, VecBody);
2572 // Fix the scalar body counter (PHI node).
2573 unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH);
2575 // The old induction's phi node in the scalar body needs the truncated
2577 if (OrigPhi == OldInduction) {
2578 BCResumeVal->addIncoming(StartIdx, LoopBypassBlocks[0]);
2579 OrigPhi->setIncomingValue(BlockIdx, BCTruncResumeVal);
2581 BCResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[0]);
2582 OrigPhi->setIncomingValue(BlockIdx, BCResumeVal);
2586 // If we are generating a new induction variable then we also need to
2587 // generate the code that calculates the exit value. This value is not
2588 // simply the end of the counter because we may skip the vectorized body
2589 // in case of a runtime check.
2591 assert(!ResumeIndex && "Unexpected resume value found");
2592 ResumeIndex = PHINode::Create(IdxTy, 2, "new.indc.resume.val",
2593 MiddleBlock->getTerminator());
2594 for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I)
2595 ResumeIndex->addIncoming(StartIdx, LoopBypassBlocks[I]);
2596 ResumeIndex->addIncoming(IdxEndRoundDown, VecBody);
2599 // Make sure that we found the index where scalar loop needs to continue.
2600 assert(ResumeIndex && ResumeIndex->getType()->isIntegerTy() &&
2601 "Invalid resume Index");
2603 // Add a check in the middle block to see if we have completed
2604 // all of the iterations in the first vector loop.
2605 // If (N - N%VF) == N, then we *don't* need to run the remainder.
2606 Value *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, IdxEnd,
2607 ResumeIndex, "cmp.n",
2608 MiddleBlock->getTerminator());
2610 BranchInst::Create(ExitBlock, ScalarPH, CmpN, MiddleBlock->getTerminator());
2611 // Remove the old terminator.
2612 MiddleBlock->getTerminator()->eraseFromParent();
2614 // Create i+1 and fill the PHINode.
2615 Value *NextIdx = Builder.CreateAdd(Induction, Step, "index.next");
2616 Induction->addIncoming(StartIdx, VectorPH);
2617 Induction->addIncoming(NextIdx, VecBody);
2618 // Create the compare.
2619 Value *ICmp = Builder.CreateICmpEQ(NextIdx, IdxEndRoundDown);
2620 Builder.CreateCondBr(ICmp, MiddleBlock, VecBody);
2622 // Now we have two terminators. Remove the old one from the block.
2623 VecBody->getTerminator()->eraseFromParent();
2625 // Get ready to start creating new instructions into the vectorized body.
2626 Builder.SetInsertPoint(VecBody->getFirstInsertionPt());
2629 LoopVectorPreHeader = VectorPH;
2630 LoopScalarPreHeader = ScalarPH;
2631 LoopMiddleBlock = MiddleBlock;
2632 LoopExitBlock = ExitBlock;
2633 LoopVectorBody.push_back(VecBody);
2634 LoopScalarBody = OldBasicBlock;
2636 LoopVectorizeHints Hints(Lp, true);
2637 Hints.setAlreadyVectorized();
2640 /// This function returns the identity element (or neutral element) for
2641 /// the operation K.
2643 LoopVectorizationLegality::getReductionIdentity(ReductionKind K, Type *Tp) {
2648 // Adding, Xoring, Oring zero to a number does not change it.
2649 return ConstantInt::get(Tp, 0);
2650 case RK_IntegerMult:
2651 // Multiplying a number by 1 does not change it.
2652 return ConstantInt::get(Tp, 1);
2654 // AND-ing a number with an all-1 value does not change it.
2655 return ConstantInt::get(Tp, -1, true);
2657 // Multiplying a number by 1 does not change it.
2658 return ConstantFP::get(Tp, 1.0L);
2660 // Adding zero to a number does not change it.
2661 return ConstantFP::get(Tp, 0.0L);
2663 llvm_unreachable("Unknown reduction kind");
2667 /// This function translates the reduction kind to an LLVM binary operator.
2669 getReductionBinOp(LoopVectorizationLegality::ReductionKind Kind) {
2671 case LoopVectorizationLegality::RK_IntegerAdd:
2672 return Instruction::Add;
2673 case LoopVectorizationLegality::RK_IntegerMult:
2674 return Instruction::Mul;
2675 case LoopVectorizationLegality::RK_IntegerOr:
2676 return Instruction::Or;
2677 case LoopVectorizationLegality::RK_IntegerAnd:
2678 return Instruction::And;
2679 case LoopVectorizationLegality::RK_IntegerXor:
2680 return Instruction::Xor;
2681 case LoopVectorizationLegality::RK_FloatMult:
2682 return Instruction::FMul;
2683 case LoopVectorizationLegality::RK_FloatAdd:
2684 return Instruction::FAdd;
2685 case LoopVectorizationLegality::RK_IntegerMinMax:
2686 return Instruction::ICmp;
2687 case LoopVectorizationLegality::RK_FloatMinMax:
2688 return Instruction::FCmp;
2690 llvm_unreachable("Unknown reduction operation");
2694 Value *createMinMaxOp(IRBuilder<> &Builder,
2695 LoopVectorizationLegality::MinMaxReductionKind RK,
2698 CmpInst::Predicate P = CmpInst::ICMP_NE;
2701 llvm_unreachable("Unknown min/max reduction kind");
2702 case LoopVectorizationLegality::MRK_UIntMin:
2703 P = CmpInst::ICMP_ULT;
2705 case LoopVectorizationLegality::MRK_UIntMax:
2706 P = CmpInst::ICMP_UGT;
2708 case LoopVectorizationLegality::MRK_SIntMin:
2709 P = CmpInst::ICMP_SLT;
2711 case LoopVectorizationLegality::MRK_SIntMax:
2712 P = CmpInst::ICMP_SGT;
2714 case LoopVectorizationLegality::MRK_FloatMin:
2715 P = CmpInst::FCMP_OLT;
2717 case LoopVectorizationLegality::MRK_FloatMax:
2718 P = CmpInst::FCMP_OGT;
2723 if (RK == LoopVectorizationLegality::MRK_FloatMin ||
2724 RK == LoopVectorizationLegality::MRK_FloatMax)
2725 Cmp = Builder.CreateFCmp(P, Left, Right, "rdx.minmax.cmp");
2727 Cmp = Builder.CreateICmp(P, Left, Right, "rdx.minmax.cmp");
2729 Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select");
2734 struct CSEDenseMapInfo {
2735 static bool canHandle(Instruction *I) {
2736 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
2737 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I);
2739 static inline Instruction *getEmptyKey() {
2740 return DenseMapInfo<Instruction *>::getEmptyKey();
2742 static inline Instruction *getTombstoneKey() {
2743 return DenseMapInfo<Instruction *>::getTombstoneKey();
2745 static unsigned getHashValue(Instruction *I) {
2746 assert(canHandle(I) && "Unknown instruction!");
2747 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(),
2748 I->value_op_end()));
2750 static bool isEqual(Instruction *LHS, Instruction *RHS) {
2751 if (LHS == getEmptyKey() || RHS == getEmptyKey() ||
2752 LHS == getTombstoneKey() || RHS == getTombstoneKey())
2754 return LHS->isIdenticalTo(RHS);
2759 /// \brief Check whether this block is a predicated block.
2760 /// Due to if predication of stores we might create a sequence of "if(pred) a[i]
2761 /// = ...; " blocks. We start with one vectorized basic block. For every
2762 /// conditional block we split this vectorized block. Therefore, every second
2763 /// block will be a predicated one.
2764 static bool isPredicatedBlock(unsigned BlockNum) {
2765 return BlockNum % 2;
2768 ///\brief Perform cse of induction variable instructions.
2769 static void cse(SmallVector<BasicBlock *, 4> &BBs) {
2770 // Perform simple cse.
2771 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap;
2772 for (unsigned i = 0, e = BBs.size(); i != e; ++i) {
2773 BasicBlock *BB = BBs[i];
2774 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
2775 Instruction *In = I++;
2777 if (!CSEDenseMapInfo::canHandle(In))
2780 // Check if we can replace this instruction with any of the
2781 // visited instructions.
2782 if (Instruction *V = CSEMap.lookup(In)) {
2783 In->replaceAllUsesWith(V);
2784 In->eraseFromParent();
2787 // Ignore instructions in conditional blocks. We create "if (pred) a[i] =
2788 // ...;" blocks for predicated stores. Every second block is a predicated
2790 if (isPredicatedBlock(i))
2798 /// \brief Adds a 'fast' flag to floating point operations.
2799 static Value *addFastMathFlag(Value *V) {
2800 if (isa<FPMathOperator>(V)){
2801 FastMathFlags Flags;
2802 Flags.setUnsafeAlgebra();
2803 cast<Instruction>(V)->setFastMathFlags(Flags);
2808 void InnerLoopVectorizer::vectorizeLoop() {
2809 //===------------------------------------------------===//
2811 // Notice: any optimization or new instruction that go
2812 // into the code below should be also be implemented in
2815 //===------------------------------------------------===//
2816 Constant *Zero = Builder.getInt32(0);
2818 // In order to support reduction variables we need to be able to vectorize
2819 // Phi nodes. Phi nodes have cycles, so we need to vectorize them in two
2820 // stages. First, we create a new vector PHI node with no incoming edges.
2821 // We use this value when we vectorize all of the instructions that use the
2822 // PHI. Next, after all of the instructions in the block are complete we
2823 // add the new incoming edges to the PHI. At this point all of the
2824 // instructions in the basic block are vectorized, so we can use them to
2825 // construct the PHI.
2826 PhiVector RdxPHIsToFix;
2828 // Scan the loop in a topological order to ensure that defs are vectorized
2830 LoopBlocksDFS DFS(OrigLoop);
2833 // Vectorize all of the blocks in the original loop.
2834 for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(),
2835 be = DFS.endRPO(); bb != be; ++bb)
2836 vectorizeBlockInLoop(*bb, &RdxPHIsToFix);
2838 // At this point every instruction in the original loop is widened to
2839 // a vector form. We are almost done. Now, we need to fix the PHI nodes
2840 // that we vectorized. The PHI nodes are currently empty because we did
2841 // not want to introduce cycles. Notice that the remaining PHI nodes
2842 // that we need to fix are reduction variables.
2844 // Create the 'reduced' values for each of the induction vars.
2845 // The reduced values are the vector values that we scalarize and combine
2846 // after the loop is finished.
2847 for (PhiVector::iterator it = RdxPHIsToFix.begin(), e = RdxPHIsToFix.end();
2849 PHINode *RdxPhi = *it;
2850 assert(RdxPhi && "Unable to recover vectorized PHI");
2852 // Find the reduction variable descriptor.
2853 assert(Legal->getReductionVars()->count(RdxPhi) &&
2854 "Unable to find the reduction variable");
2855 LoopVectorizationLegality::ReductionDescriptor RdxDesc =
2856 (*Legal->getReductionVars())[RdxPhi];
2858 setDebugLocFromInst(Builder, RdxDesc.StartValue);
2860 // We need to generate a reduction vector from the incoming scalar.
2861 // To do so, we need to generate the 'identity' vector and override
2862 // one of the elements with the incoming scalar reduction. We need
2863 // to do it in the vector-loop preheader.
2864 Builder.SetInsertPoint(LoopBypassBlocks[1]->getTerminator());
2866 // This is the vector-clone of the value that leaves the loop.
2867 VectorParts &VectorExit = getVectorValue(RdxDesc.LoopExitInstr);
2868 Type *VecTy = VectorExit[0]->getType();
2870 // Find the reduction identity variable. Zero for addition, or, xor,
2871 // one for multiplication, -1 for And.
2874 if (RdxDesc.Kind == LoopVectorizationLegality::RK_IntegerMinMax ||
2875 RdxDesc.Kind == LoopVectorizationLegality::RK_FloatMinMax) {
2876 // MinMax reduction have the start value as their identify.
2878 VectorStart = Identity = RdxDesc.StartValue;
2880 VectorStart = Identity = Builder.CreateVectorSplat(VF,
2885 // Handle other reduction kinds:
2887 LoopVectorizationLegality::getReductionIdentity(RdxDesc.Kind,
2888 VecTy->getScalarType());
2891 // This vector is the Identity vector where the first element is the
2892 // incoming scalar reduction.
2893 VectorStart = RdxDesc.StartValue;
2895 Identity = ConstantVector::getSplat(VF, Iden);
2897 // This vector is the Identity vector where the first element is the
2898 // incoming scalar reduction.
2899 VectorStart = Builder.CreateInsertElement(Identity,
2900 RdxDesc.StartValue, Zero);
2904 // Fix the vector-loop phi.
2906 // Reductions do not have to start at zero. They can start with
2907 // any loop invariant values.
2908 VectorParts &VecRdxPhi = WidenMap.get(RdxPhi);
2909 BasicBlock *Latch = OrigLoop->getLoopLatch();
2910 Value *LoopVal = RdxPhi->getIncomingValueForBlock(Latch);
2911 VectorParts &Val = getVectorValue(LoopVal);
2912 for (unsigned part = 0; part < UF; ++part) {
2913 // Make sure to add the reduction stat value only to the
2914 // first unroll part.
2915 Value *StartVal = (part == 0) ? VectorStart : Identity;
2916 cast<PHINode>(VecRdxPhi[part])->addIncoming(StartVal,
2917 LoopVectorPreHeader);
2918 cast<PHINode>(VecRdxPhi[part])->addIncoming(Val[part],
2919 LoopVectorBody.back());
2922 // Before each round, move the insertion point right between
2923 // the PHIs and the values we are going to write.
2924 // This allows us to write both PHINodes and the extractelement
2926 Builder.SetInsertPoint(LoopMiddleBlock->getFirstInsertionPt());
2928 VectorParts RdxParts;
2929 setDebugLocFromInst(Builder, RdxDesc.LoopExitInstr);
2930 for (unsigned part = 0; part < UF; ++part) {
2931 // This PHINode contains the vectorized reduction variable, or
2932 // the initial value vector, if we bypass the vector loop.
2933 VectorParts &RdxExitVal = getVectorValue(RdxDesc.LoopExitInstr);
2934 PHINode *NewPhi = Builder.CreatePHI(VecTy, 2, "rdx.vec.exit.phi");
2935 Value *StartVal = (part == 0) ? VectorStart : Identity;
2936 for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I)
2937 NewPhi->addIncoming(StartVal, LoopBypassBlocks[I]);
2938 NewPhi->addIncoming(RdxExitVal[part],
2939 LoopVectorBody.back());
2940 RdxParts.push_back(NewPhi);
2943 // Reduce all of the unrolled parts into a single vector.
2944 Value *ReducedPartRdx = RdxParts[0];
2945 unsigned Op = getReductionBinOp(RdxDesc.Kind);
2946 setDebugLocFromInst(Builder, ReducedPartRdx);
2947 for (unsigned part = 1; part < UF; ++part) {
2948 if (Op != Instruction::ICmp && Op != Instruction::FCmp)
2949 // Floating point operations had to be 'fast' to enable the reduction.
2950 ReducedPartRdx = addFastMathFlag(
2951 Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxParts[part],
2952 ReducedPartRdx, "bin.rdx"));
2954 ReducedPartRdx = createMinMaxOp(Builder, RdxDesc.MinMaxKind,
2955 ReducedPartRdx, RdxParts[part]);
2959 // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles
2960 // and vector ops, reducing the set of values being computed by half each
2962 assert(isPowerOf2_32(VF) &&
2963 "Reduction emission only supported for pow2 vectors!");
2964 Value *TmpVec = ReducedPartRdx;
2965 SmallVector<Constant*, 32> ShuffleMask(VF, nullptr);
2966 for (unsigned i = VF; i != 1; i >>= 1) {
2967 // Move the upper half of the vector to the lower half.
2968 for (unsigned j = 0; j != i/2; ++j)
2969 ShuffleMask[j] = Builder.getInt32(i/2 + j);
2971 // Fill the rest of the mask with undef.
2972 std::fill(&ShuffleMask[i/2], ShuffleMask.end(),
2973 UndefValue::get(Builder.getInt32Ty()));
2976 Builder.CreateShuffleVector(TmpVec,
2977 UndefValue::get(TmpVec->getType()),
2978 ConstantVector::get(ShuffleMask),
2981 if (Op != Instruction::ICmp && Op != Instruction::FCmp)
2982 // Floating point operations had to be 'fast' to enable the reduction.
2983 TmpVec = addFastMathFlag(Builder.CreateBinOp(
2984 (Instruction::BinaryOps)Op, TmpVec, Shuf, "bin.rdx"));
2986 TmpVec = createMinMaxOp(Builder, RdxDesc.MinMaxKind, TmpVec, Shuf);
2989 // The result is in the first element of the vector.
2990 ReducedPartRdx = Builder.CreateExtractElement(TmpVec,
2991 Builder.getInt32(0));
2994 // Create a phi node that merges control-flow from the backedge-taken check
2995 // block and the middle block.
2996 PHINode *BCBlockPhi = PHINode::Create(RdxPhi->getType(), 2, "bc.merge.rdx",
2997 LoopScalarPreHeader->getTerminator());
2998 BCBlockPhi->addIncoming(RdxDesc.StartValue, LoopBypassBlocks[0]);
2999 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock);
3001 // Now, we need to fix the users of the reduction variable
3002 // inside and outside of the scalar remainder loop.
3003 // We know that the loop is in LCSSA form. We need to update the
3004 // PHI nodes in the exit blocks.
3005 for (BasicBlock::iterator LEI = LoopExitBlock->begin(),
3006 LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) {
3007 PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI);
3008 if (!LCSSAPhi) break;
3010 // All PHINodes need to have a single entry edge, or two if
3011 // we already fixed them.
3012 assert(LCSSAPhi->getNumIncomingValues() < 3 && "Invalid LCSSA PHI");
3014 // We found our reduction value exit-PHI. Update it with the
3015 // incoming bypass edge.
3016 if (LCSSAPhi->getIncomingValue(0) == RdxDesc.LoopExitInstr) {
3017 // Add an edge coming from the bypass.
3018 LCSSAPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock);
3021 }// end of the LCSSA phi scan.
3023 // Fix the scalar loop reduction variable with the incoming reduction sum
3024 // from the vector body and from the backedge value.
3025 int IncomingEdgeBlockIdx =
3026 (RdxPhi)->getBasicBlockIndex(OrigLoop->getLoopLatch());
3027 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index");
3028 // Pick the other block.
3029 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1);
3030 (RdxPhi)->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi);
3031 (RdxPhi)->setIncomingValue(IncomingEdgeBlockIdx, RdxDesc.LoopExitInstr);
3032 }// end of for each redux variable.
3036 // Remove redundant induction instructions.
3037 cse(LoopVectorBody);
3040 void InnerLoopVectorizer::fixLCSSAPHIs() {
3041 for (BasicBlock::iterator LEI = LoopExitBlock->begin(),
3042 LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) {
3043 PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI);
3044 if (!LCSSAPhi) break;
3045 if (LCSSAPhi->getNumIncomingValues() == 1)
3046 LCSSAPhi->addIncoming(UndefValue::get(LCSSAPhi->getType()),
3051 InnerLoopVectorizer::VectorParts
3052 InnerLoopVectorizer::createEdgeMask(BasicBlock *Src, BasicBlock *Dst) {
3053 assert(std::find(pred_begin(Dst), pred_end(Dst), Src) != pred_end(Dst) &&
3056 // Look for cached value.
3057 std::pair<BasicBlock*, BasicBlock*> Edge(Src, Dst);
3058 EdgeMaskCache::iterator ECEntryIt = MaskCache.find(Edge);
3059 if (ECEntryIt != MaskCache.end())
3060 return ECEntryIt->second;
3062 VectorParts SrcMask = createBlockInMask(Src);
3064 // The terminator has to be a branch inst!
3065 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator());
3066 assert(BI && "Unexpected terminator found");
3068 if (BI->isConditional()) {
3069 VectorParts EdgeMask = getVectorValue(BI->getCondition());
3071 if (BI->getSuccessor(0) != Dst)
3072 for (unsigned part = 0; part < UF; ++part)
3073 EdgeMask[part] = Builder.CreateNot(EdgeMask[part]);
3075 for (unsigned part = 0; part < UF; ++part)
3076 EdgeMask[part] = Builder.CreateAnd(EdgeMask[part], SrcMask[part]);
3078 MaskCache[Edge] = EdgeMask;
3082 MaskCache[Edge] = SrcMask;
3086 InnerLoopVectorizer::VectorParts
3087 InnerLoopVectorizer::createBlockInMask(BasicBlock *BB) {
3088 assert(OrigLoop->contains(BB) && "Block is not a part of a loop");
3090 // Loop incoming mask is all-one.
3091 if (OrigLoop->getHeader() == BB) {
3092 Value *C = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 1);
3093 return getVectorValue(C);
3096 // This is the block mask. We OR all incoming edges, and with zero.
3097 Value *Zero = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 0);
3098 VectorParts BlockMask = getVectorValue(Zero);
3101 for (pred_iterator it = pred_begin(BB), e = pred_end(BB); it != e; ++it) {
3102 VectorParts EM = createEdgeMask(*it, BB);
3103 for (unsigned part = 0; part < UF; ++part)
3104 BlockMask[part] = Builder.CreateOr(BlockMask[part], EM[part]);
3110 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN,
3111 InnerLoopVectorizer::VectorParts &Entry,
3112 unsigned UF, unsigned VF, PhiVector *PV) {
3113 PHINode* P = cast<PHINode>(PN);
3114 // Handle reduction variables:
3115 if (Legal->getReductionVars()->count(P)) {
3116 for (unsigned part = 0; part < UF; ++part) {
3117 // This is phase one of vectorizing PHIs.
3118 Type *VecTy = (VF == 1) ? PN->getType() :
3119 VectorType::get(PN->getType(), VF);
3120 Entry[part] = PHINode::Create(VecTy, 2, "vec.phi",
3121 LoopVectorBody.back()-> getFirstInsertionPt());
3127 setDebugLocFromInst(Builder, P);
3128 // Check for PHI nodes that are lowered to vector selects.
3129 if (P->getParent() != OrigLoop->getHeader()) {
3130 // We know that all PHIs in non-header blocks are converted into
3131 // selects, so we don't have to worry about the insertion order and we
3132 // can just use the builder.
3133 // At this point we generate the predication tree. There may be
3134 // duplications since this is a simple recursive scan, but future
3135 // optimizations will clean it up.
3137 unsigned NumIncoming = P->getNumIncomingValues();
3139 // Generate a sequence of selects of the form:
3140 // SELECT(Mask3, In3,
3141 // SELECT(Mask2, In2,
3143 for (unsigned In = 0; In < NumIncoming; In++) {
3144 VectorParts Cond = createEdgeMask(P->getIncomingBlock(In),
3146 VectorParts &In0 = getVectorValue(P->getIncomingValue(In));
3148 for (unsigned part = 0; part < UF; ++part) {
3149 // We might have single edge PHIs (blocks) - use an identity
3150 // 'select' for the first PHI operand.
3152 Entry[part] = Builder.CreateSelect(Cond[part], In0[part],
3155 // Select between the current value and the previous incoming edge
3156 // based on the incoming mask.
3157 Entry[part] = Builder.CreateSelect(Cond[part], In0[part],
3158 Entry[part], "predphi");
3164 // This PHINode must be an induction variable.
3165 // Make sure that we know about it.
3166 assert(Legal->getInductionVars()->count(P) &&
3167 "Not an induction variable");
3169 LoopVectorizationLegality::InductionInfo II =
3170 Legal->getInductionVars()->lookup(P);
3172 // FIXME: The newly created binary instructions should contain nsw/nuw flags,
3173 // which can be found from the original scalar operations.
3175 case LoopVectorizationLegality::IK_NoInduction:
3176 llvm_unreachable("Unknown induction");
3177 case LoopVectorizationLegality::IK_IntInduction: {
3178 assert(P->getType() == II.StartValue->getType() && "Types must match");
3179 Type *PhiTy = P->getType();
3181 if (P == OldInduction) {
3182 // Handle the canonical induction variable. We might have had to
3184 Broadcasted = Builder.CreateTrunc(Induction, PhiTy);
3186 // Handle other induction variables that are now based on the
3188 Value *NormalizedIdx = Builder.CreateSub(Induction, ExtendedIdx,
3190 NormalizedIdx = Builder.CreateSExtOrTrunc(NormalizedIdx, PhiTy);
3191 Broadcasted = II.transform(Builder, NormalizedIdx);
3192 Broadcasted->setName("offset.idx");
3194 Broadcasted = getBroadcastInstrs(Broadcasted);
3195 // After broadcasting the induction variable we need to make the vector
3196 // consecutive by adding 0, 1, 2, etc.
3197 for (unsigned part = 0; part < UF; ++part)
3198 Entry[part] = getStepVector(Broadcasted, VF * part, II.StepValue);
3201 case LoopVectorizationLegality::IK_PtrInduction:
3202 // Handle the pointer induction variable case.
3203 assert(P->getType()->isPointerTy() && "Unexpected type.");
3204 // This is the normalized GEP that starts counting at zero.
3205 Value *NormalizedIdx =
3206 Builder.CreateSub(Induction, ExtendedIdx, "normalized.idx");
3207 // This is the vector of results. Notice that we don't generate
3208 // vector geps because scalar geps result in better code.
3209 for (unsigned part = 0; part < UF; ++part) {
3211 int EltIndex = part;
3212 Constant *Idx = ConstantInt::get(Induction->getType(), EltIndex);
3213 Value *GlobalIdx = Builder.CreateAdd(NormalizedIdx, Idx);
3214 Value *SclrGep = II.transform(Builder, GlobalIdx);
3215 SclrGep->setName("next.gep");
3216 Entry[part] = SclrGep;
3220 Value *VecVal = UndefValue::get(VectorType::get(P->getType(), VF));
3221 for (unsigned int i = 0; i < VF; ++i) {
3222 int EltIndex = i + part * VF;
3223 Constant *Idx = ConstantInt::get(Induction->getType(), EltIndex);
3224 Value *GlobalIdx = Builder.CreateAdd(NormalizedIdx, Idx);
3225 Value *SclrGep = II.transform(Builder, GlobalIdx);
3226 SclrGep->setName("next.gep");
3227 VecVal = Builder.CreateInsertElement(VecVal, SclrGep,
3228 Builder.getInt32(i),
3231 Entry[part] = VecVal;
3237 void InnerLoopVectorizer::vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV) {
3238 // For each instruction in the old loop.
3239 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
3240 VectorParts &Entry = WidenMap.get(it);
3241 switch (it->getOpcode()) {
3242 case Instruction::Br:
3243 // Nothing to do for PHIs and BR, since we already took care of the
3244 // loop control flow instructions.
3246 case Instruction::PHI: {
3247 // Vectorize PHINodes.
3248 widenPHIInstruction(it, Entry, UF, VF, PV);
3252 case Instruction::Add:
3253 case Instruction::FAdd:
3254 case Instruction::Sub:
3255 case Instruction::FSub:
3256 case Instruction::Mul:
3257 case Instruction::FMul:
3258 case Instruction::UDiv:
3259 case Instruction::SDiv:
3260 case Instruction::FDiv:
3261 case Instruction::URem:
3262 case Instruction::SRem:
3263 case Instruction::FRem:
3264 case Instruction::Shl:
3265 case Instruction::LShr:
3266 case Instruction::AShr:
3267 case Instruction::And:
3268 case Instruction::Or:
3269 case Instruction::Xor: {
3270 // Just widen binops.
3271 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(it);
3272 setDebugLocFromInst(Builder, BinOp);
3273 VectorParts &A = getVectorValue(it->getOperand(0));
3274 VectorParts &B = getVectorValue(it->getOperand(1));
3276 // Use this vector value for all users of the original instruction.
3277 for (unsigned Part = 0; Part < UF; ++Part) {
3278 Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A[Part], B[Part]);
3280 if (BinaryOperator *VecOp = dyn_cast<BinaryOperator>(V))
3281 VecOp->copyIRFlags(BinOp);
3286 propagateMetadata(Entry, it);
3289 case Instruction::Select: {
3291 // If the selector is loop invariant we can create a select
3292 // instruction with a scalar condition. Otherwise, use vector-select.
3293 bool InvariantCond = SE->isLoopInvariant(SE->getSCEV(it->getOperand(0)),
3295 setDebugLocFromInst(Builder, it);
3297 // The condition can be loop invariant but still defined inside the
3298 // loop. This means that we can't just use the original 'cond' value.
3299 // We have to take the 'vectorized' value and pick the first lane.
3300 // Instcombine will make this a no-op.
3301 VectorParts &Cond = getVectorValue(it->getOperand(0));
3302 VectorParts &Op0 = getVectorValue(it->getOperand(1));
3303 VectorParts &Op1 = getVectorValue(it->getOperand(2));
3305 Value *ScalarCond = (VF == 1) ? Cond[0] :
3306 Builder.CreateExtractElement(Cond[0], Builder.getInt32(0));
3308 for (unsigned Part = 0; Part < UF; ++Part) {
3309 Entry[Part] = Builder.CreateSelect(
3310 InvariantCond ? ScalarCond : Cond[Part],
3315 propagateMetadata(Entry, it);
3319 case Instruction::ICmp:
3320 case Instruction::FCmp: {
3321 // Widen compares. Generate vector compares.
3322 bool FCmp = (it->getOpcode() == Instruction::FCmp);
3323 CmpInst *Cmp = dyn_cast<CmpInst>(it);
3324 setDebugLocFromInst(Builder, it);
3325 VectorParts &A = getVectorValue(it->getOperand(0));
3326 VectorParts &B = getVectorValue(it->getOperand(1));
3327 for (unsigned Part = 0; Part < UF; ++Part) {
3330 C = Builder.CreateFCmp(Cmp->getPredicate(), A[Part], B[Part]);
3332 C = Builder.CreateICmp(Cmp->getPredicate(), A[Part], B[Part]);
3336 propagateMetadata(Entry, it);
3340 case Instruction::Store:
3341 case Instruction::Load:
3342 vectorizeMemoryInstruction(it);
3344 case Instruction::ZExt:
3345 case Instruction::SExt:
3346 case Instruction::FPToUI:
3347 case Instruction::FPToSI:
3348 case Instruction::FPExt:
3349 case Instruction::PtrToInt:
3350 case Instruction::IntToPtr:
3351 case Instruction::SIToFP:
3352 case Instruction::UIToFP:
3353 case Instruction::Trunc:
3354 case Instruction::FPTrunc:
3355 case Instruction::BitCast: {
3356 CastInst *CI = dyn_cast<CastInst>(it);
3357 setDebugLocFromInst(Builder, it);
3358 /// Optimize the special case where the source is the induction
3359 /// variable. Notice that we can only optimize the 'trunc' case
3360 /// because: a. FP conversions lose precision, b. sext/zext may wrap,
3361 /// c. other casts depend on pointer size.
3362 if (CI->getOperand(0) == OldInduction &&
3363 it->getOpcode() == Instruction::Trunc) {
3364 Value *ScalarCast = Builder.CreateCast(CI->getOpcode(), Induction,
3366 Value *Broadcasted = getBroadcastInstrs(ScalarCast);
3367 LoopVectorizationLegality::InductionInfo II =
3368 Legal->getInductionVars()->lookup(OldInduction);
3370 ConstantInt::getSigned(CI->getType(), II.StepValue->getSExtValue());
3371 for (unsigned Part = 0; Part < UF; ++Part)
3372 Entry[Part] = getStepVector(Broadcasted, VF * Part, Step);
3373 propagateMetadata(Entry, it);
3376 /// Vectorize casts.
3377 Type *DestTy = (VF == 1) ? CI->getType() :
3378 VectorType::get(CI->getType(), VF);
3380 VectorParts &A = getVectorValue(it->getOperand(0));
3381 for (unsigned Part = 0; Part < UF; ++Part)
3382 Entry[Part] = Builder.CreateCast(CI->getOpcode(), A[Part], DestTy);
3383 propagateMetadata(Entry, it);
3387 case Instruction::Call: {
3388 // Ignore dbg intrinsics.
3389 if (isa<DbgInfoIntrinsic>(it))
3391 setDebugLocFromInst(Builder, it);
3393 Module *M = BB->getParent()->getParent();
3394 CallInst *CI = cast<CallInst>(it);
3395 Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI);
3396 assert(ID && "Not an intrinsic call!");
3398 case Intrinsic::assume:
3399 case Intrinsic::lifetime_end:
3400 case Intrinsic::lifetime_start:
3401 scalarizeInstruction(it);
3404 bool HasScalarOpd = hasVectorInstrinsicScalarOpd(ID, 1);
3405 for (unsigned Part = 0; Part < UF; ++Part) {
3406 SmallVector<Value *, 4> Args;
3407 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) {
3408 if (HasScalarOpd && i == 1) {
3409 Args.push_back(CI->getArgOperand(i));
3412 VectorParts &Arg = getVectorValue(CI->getArgOperand(i));
3413 Args.push_back(Arg[Part]);
3415 Type *Tys[] = {CI->getType()};
3417 Tys[0] = VectorType::get(CI->getType()->getScalarType(), VF);
3419 Function *F = Intrinsic::getDeclaration(M, ID, Tys);
3420 Entry[Part] = Builder.CreateCall(F, Args);
3423 propagateMetadata(Entry, it);
3430 // All other instructions are unsupported. Scalarize them.
3431 scalarizeInstruction(it);
3434 }// end of for_each instr.
3437 void InnerLoopVectorizer::updateAnalysis() {
3438 // Forget the original basic block.
3439 SE->forgetLoop(OrigLoop);
3441 // Update the dominator tree information.
3442 assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) &&
3443 "Entry does not dominate exit.");
3445 for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I)
3446 DT->addNewBlock(LoopBypassBlocks[I], LoopBypassBlocks[I-1]);
3447 DT->addNewBlock(LoopVectorPreHeader, LoopBypassBlocks.back());
3449 // Due to if predication of stores we might create a sequence of "if(pred)
3450 // a[i] = ...; " blocks.
3451 for (unsigned i = 0, e = LoopVectorBody.size(); i != e; ++i) {
3453 DT->addNewBlock(LoopVectorBody[0], LoopVectorPreHeader);
3454 else if (isPredicatedBlock(i)) {
3455 DT->addNewBlock(LoopVectorBody[i], LoopVectorBody[i-1]);
3457 DT->addNewBlock(LoopVectorBody[i], LoopVectorBody[i-2]);
3461 DT->addNewBlock(LoopMiddleBlock, LoopBypassBlocks[1]);
3462 DT->addNewBlock(LoopScalarPreHeader, LoopBypassBlocks[0]);
3463 DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader);
3464 DT->changeImmediateDominator(LoopExitBlock, LoopBypassBlocks[0]);
3466 DEBUG(DT->verifyDomTree());
3469 /// \brief Check whether it is safe to if-convert this phi node.
3471 /// Phi nodes with constant expressions that can trap are not safe to if
3473 static bool canIfConvertPHINodes(BasicBlock *BB) {
3474 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
3475 PHINode *Phi = dyn_cast<PHINode>(I);
3478 for (unsigned p = 0, e = Phi->getNumIncomingValues(); p != e; ++p)
3479 if (Constant *C = dyn_cast<Constant>(Phi->getIncomingValue(p)))
3486 bool LoopVectorizationLegality::canVectorizeWithIfConvert() {
3487 if (!EnableIfConversion) {
3488 emitAnalysis(Report() << "if-conversion is disabled");
3492 assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable");
3494 // A list of pointers that we can safely read and write to.
3495 SmallPtrSet<Value *, 8> SafePointes;
3497 // Collect safe addresses.
3498 for (Loop::block_iterator BI = TheLoop->block_begin(),
3499 BE = TheLoop->block_end(); BI != BE; ++BI) {
3500 BasicBlock *BB = *BI;
3502 if (blockNeedsPredication(BB))
3505 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
3506 if (LoadInst *LI = dyn_cast<LoadInst>(I))
3507 SafePointes.insert(LI->getPointerOperand());
3508 else if (StoreInst *SI = dyn_cast<StoreInst>(I))
3509 SafePointes.insert(SI->getPointerOperand());
3513 // Collect the blocks that need predication.
3514 BasicBlock *Header = TheLoop->getHeader();
3515 for (Loop::block_iterator BI = TheLoop->block_begin(),
3516 BE = TheLoop->block_end(); BI != BE; ++BI) {
3517 BasicBlock *BB = *BI;
3519 // We don't support switch statements inside loops.
3520 if (!isa<BranchInst>(BB->getTerminator())) {
3521 emitAnalysis(Report(BB->getTerminator())
3522 << "loop contains a switch statement");
3526 // We must be able to predicate all blocks that need to be predicated.
3527 if (blockNeedsPredication(BB)) {
3528 if (!blockCanBePredicated(BB, SafePointes)) {
3529 emitAnalysis(Report(BB->getTerminator())
3530 << "control flow cannot be substituted for a select");
3533 } else if (BB != Header && !canIfConvertPHINodes(BB)) {
3534 emitAnalysis(Report(BB->getTerminator())
3535 << "control flow cannot be substituted for a select");
3540 // We can if-convert this loop.
3544 bool LoopVectorizationLegality::canVectorize() {
3545 // We must have a loop in canonical form. Loops with indirectbr in them cannot
3546 // be canonicalized.
3547 if (!TheLoop->getLoopPreheader()) {
3549 Report() << "loop control flow is not understood by vectorizer");
3553 // We can only vectorize innermost loops.
3554 if (!TheLoop->getSubLoopsVector().empty()) {
3555 emitAnalysis(Report() << "loop is not the innermost loop");
3559 // We must have a single backedge.
3560 if (TheLoop->getNumBackEdges() != 1) {
3562 Report() << "loop control flow is not understood by vectorizer");
3566 // We must have a single exiting block.
3567 if (!TheLoop->getExitingBlock()) {
3569 Report() << "loop control flow is not understood by vectorizer");
3573 // We only handle bottom-tested loops, i.e. loop in which the condition is
3574 // checked at the end of each iteration. With that we can assume that all
3575 // instructions in the loop are executed the same number of times.
3576 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) {
3578 Report() << "loop control flow is not understood by vectorizer");
3582 // We need to have a loop header.
3583 DEBUG(dbgs() << "LV: Found a loop: " <<
3584 TheLoop->getHeader()->getName() << '\n');
3586 // Check if we can if-convert non-single-bb loops.
3587 unsigned NumBlocks = TheLoop->getNumBlocks();
3588 if (NumBlocks != 1 && !canVectorizeWithIfConvert()) {
3589 DEBUG(dbgs() << "LV: Can't if-convert the loop.\n");
3593 // ScalarEvolution needs to be able to find the exit count.
3594 const SCEV *ExitCount = SE->getBackedgeTakenCount(TheLoop);
3595 if (ExitCount == SE->getCouldNotCompute()) {
3596 emitAnalysis(Report() << "could not determine number of loop iterations");
3597 DEBUG(dbgs() << "LV: SCEV could not compute the loop exit count.\n");
3601 // Check if we can vectorize the instructions and CFG in this loop.
3602 if (!canVectorizeInstrs()) {
3603 DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n");
3607 // Go over each instruction and look at memory deps.
3608 if (!canVectorizeMemory()) {
3609 DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n");
3613 // Collect all of the variables that remain uniform after vectorization.
3614 collectLoopUniforms();
3616 DEBUG(dbgs() << "LV: We can vectorize this loop" <<
3617 (PtrRtCheck.Need ? " (with a runtime bound check)" : "")
3620 // Okay! We can vectorize. At this point we don't have any other mem analysis
3621 // which may limit our maximum vectorization factor, so just return true with
3626 static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) {
3627 if (Ty->isPointerTy())
3628 return DL.getIntPtrType(Ty);
3630 // It is possible that char's or short's overflow when we ask for the loop's
3631 // trip count, work around this by changing the type size.
3632 if (Ty->getScalarSizeInBits() < 32)
3633 return Type::getInt32Ty(Ty->getContext());
3638 static Type* getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) {
3639 Ty0 = convertPointerToIntegerType(DL, Ty0);
3640 Ty1 = convertPointerToIntegerType(DL, Ty1);
3641 if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits())
3646 /// \brief Check that the instruction has outside loop users and is not an
3647 /// identified reduction variable.
3648 static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst,
3649 SmallPtrSetImpl<Value *> &Reductions) {
3650 // Reduction instructions are allowed to have exit users. All other
3651 // instructions must not have external users.
3652 if (!Reductions.count(Inst))
3653 //Check that all of the users of the loop are inside the BB.
3654 for (User *U : Inst->users()) {
3655 Instruction *UI = cast<Instruction>(U);
3656 // This user may be a reduction exit value.
3657 if (!TheLoop->contains(UI)) {
3658 DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n');
3665 bool LoopVectorizationLegality::canVectorizeInstrs() {
3666 BasicBlock *PreHeader = TheLoop->getLoopPreheader();
3667 BasicBlock *Header = TheLoop->getHeader();
3669 // Look for the attribute signaling the absence of NaNs.
3670 Function &F = *Header->getParent();
3671 if (F.hasFnAttribute("no-nans-fp-math"))
3672 HasFunNoNaNAttr = F.getAttributes().getAttribute(
3673 AttributeSet::FunctionIndex,
3674 "no-nans-fp-math").getValueAsString() == "true";
3676 // For each block in the loop.
3677 for (Loop::block_iterator bb = TheLoop->block_begin(),
3678 be = TheLoop->block_end(); bb != be; ++bb) {
3680 // Scan the instructions in the block and look for hazards.
3681 for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e;
3684 if (PHINode *Phi = dyn_cast<PHINode>(it)) {
3685 Type *PhiTy = Phi->getType();
3686 // Check that this PHI type is allowed.
3687 if (!PhiTy->isIntegerTy() &&
3688 !PhiTy->isFloatingPointTy() &&
3689 !PhiTy->isPointerTy()) {
3690 emitAnalysis(Report(it)
3691 << "loop control flow is not understood by vectorizer");
3692 DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n");
3696 // If this PHINode is not in the header block, then we know that we
3697 // can convert it to select during if-conversion. No need to check if
3698 // the PHIs in this block are induction or reduction variables.
3699 if (*bb != Header) {
3700 // Check that this instruction has no outside users or is an
3701 // identified reduction value with an outside user.
3702 if (!hasOutsideLoopUser(TheLoop, it, AllowedExit))
3704 emitAnalysis(Report(it) << "value could not be identified as "
3705 "an induction or reduction variable");
3709 // We only allow if-converted PHIs with exactly two incoming values.
3710 if (Phi->getNumIncomingValues() != 2) {
3711 emitAnalysis(Report(it)
3712 << "control flow not understood by vectorizer");
3713 DEBUG(dbgs() << "LV: Found an invalid PHI.\n");
3717 // This is the value coming from the preheader.
3718 Value *StartValue = Phi->getIncomingValueForBlock(PreHeader);
3719 ConstantInt *StepValue = nullptr;
3720 // Check if this is an induction variable.
3721 InductionKind IK = isInductionVariable(Phi, StepValue);
3723 if (IK_NoInduction != IK) {
3724 // Get the widest type.
3726 WidestIndTy = convertPointerToIntegerType(*DL, PhiTy);
3728 WidestIndTy = getWiderType(*DL, PhiTy, WidestIndTy);
3730 // Int inductions are special because we only allow one IV.
3731 if (IK == IK_IntInduction && StepValue->isOne()) {
3732 // Use the phi node with the widest type as induction. Use the last
3733 // one if there are multiple (no good reason for doing this other
3734 // than it is expedient).
3735 if (!Induction || PhiTy == WidestIndTy)
3739 DEBUG(dbgs() << "LV: Found an induction variable.\n");
3740 Inductions[Phi] = InductionInfo(StartValue, IK, StepValue);
3742 // Until we explicitly handle the case of an induction variable with
3743 // an outside loop user we have to give up vectorizing this loop.
3744 if (hasOutsideLoopUser(TheLoop, it, AllowedExit)) {
3745 emitAnalysis(Report(it) << "use of induction value outside of the "
3746 "loop is not handled by vectorizer");
3753 if (AddReductionVar(Phi, RK_IntegerAdd)) {
3754 DEBUG(dbgs() << "LV: Found an ADD reduction PHI."<< *Phi <<"\n");
3757 if (AddReductionVar(Phi, RK_IntegerMult)) {
3758 DEBUG(dbgs() << "LV: Found a MUL reduction PHI."<< *Phi <<"\n");
3761 if (AddReductionVar(Phi, RK_IntegerOr)) {
3762 DEBUG(dbgs() << "LV: Found an OR reduction PHI."<< *Phi <<"\n");
3765 if (AddReductionVar(Phi, RK_IntegerAnd)) {
3766 DEBUG(dbgs() << "LV: Found an AND reduction PHI."<< *Phi <<"\n");
3769 if (AddReductionVar(Phi, RK_IntegerXor)) {
3770 DEBUG(dbgs() << "LV: Found a XOR reduction PHI."<< *Phi <<"\n");
3773 if (AddReductionVar(Phi, RK_IntegerMinMax)) {
3774 DEBUG(dbgs() << "LV: Found a MINMAX reduction PHI."<< *Phi <<"\n");
3777 if (AddReductionVar(Phi, RK_FloatMult)) {
3778 DEBUG(dbgs() << "LV: Found an FMult reduction PHI."<< *Phi <<"\n");
3781 if (AddReductionVar(Phi, RK_FloatAdd)) {
3782 DEBUG(dbgs() << "LV: Found an FAdd reduction PHI."<< *Phi <<"\n");
3785 if (AddReductionVar(Phi, RK_FloatMinMax)) {
3786 DEBUG(dbgs() << "LV: Found an float MINMAX reduction PHI."<< *Phi <<
3791 emitAnalysis(Report(it) << "value that could not be identified as "
3792 "reduction is used outside the loop");
3793 DEBUG(dbgs() << "LV: Found an unidentified PHI."<< *Phi <<"\n");
3795 }// end of PHI handling
3797 // We still don't handle functions. However, we can ignore dbg intrinsic
3798 // calls and we do handle certain intrinsic and libm functions.
3799 CallInst *CI = dyn_cast<CallInst>(it);
3800 if (CI && !getIntrinsicIDForCall(CI, TLI) && !isa<DbgInfoIntrinsic>(CI)) {
3801 emitAnalysis(Report(it) << "call instruction cannot be vectorized");
3802 DEBUG(dbgs() << "LV: Found a call site.\n");
3806 // Intrinsics such as powi,cttz and ctlz are legal to vectorize if the
3807 // second argument is the same (i.e. loop invariant)
3809 hasVectorInstrinsicScalarOpd(getIntrinsicIDForCall(CI, TLI), 1)) {
3810 if (!SE->isLoopInvariant(SE->getSCEV(CI->getOperand(1)), TheLoop)) {
3811 emitAnalysis(Report(it)
3812 << "intrinsic instruction cannot be vectorized");
3813 DEBUG(dbgs() << "LV: Found unvectorizable intrinsic " << *CI << "\n");
3818 // Check that the instruction return type is vectorizable.
3819 // Also, we can't vectorize extractelement instructions.
3820 if ((!VectorType::isValidElementType(it->getType()) &&
3821 !it->getType()->isVoidTy()) || isa<ExtractElementInst>(it)) {
3822 emitAnalysis(Report(it)
3823 << "instruction return type cannot be vectorized");
3824 DEBUG(dbgs() << "LV: Found unvectorizable type.\n");
3828 // Check that the stored type is vectorizable.
3829 if (StoreInst *ST = dyn_cast<StoreInst>(it)) {
3830 Type *T = ST->getValueOperand()->getType();
3831 if (!VectorType::isValidElementType(T)) {
3832 emitAnalysis(Report(ST) << "store instruction cannot be vectorized");
3835 if (EnableMemAccessVersioning)
3836 collectStridedAccess(ST);
3839 if (EnableMemAccessVersioning)
3840 if (LoadInst *LI = dyn_cast<LoadInst>(it))
3841 collectStridedAccess(LI);
3843 // Reduction instructions are allowed to have exit users.
3844 // All other instructions must not have external users.
3845 if (hasOutsideLoopUser(TheLoop, it, AllowedExit)) {
3846 emitAnalysis(Report(it) << "value cannot be used outside the loop");
3855 DEBUG(dbgs() << "LV: Did not find one integer induction var.\n");
3856 if (Inductions.empty()) {
3857 emitAnalysis(Report()
3858 << "loop induction variable could not be identified");
3866 ///\brief Remove GEPs whose indices but the last one are loop invariant and
3867 /// return the induction operand of the gep pointer.
3868 static Value *stripGetElementPtr(Value *Ptr, ScalarEvolution *SE,
3869 const DataLayout *DL, Loop *Lp) {
3870 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
3874 unsigned InductionOperand = getGEPInductionOperand(DL, GEP);
3876 // Check that all of the gep indices are uniform except for our induction
3878 for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i)
3879 if (i != InductionOperand &&
3880 !SE->isLoopInvariant(SE->getSCEV(GEP->getOperand(i)), Lp))
3882 return GEP->getOperand(InductionOperand);
3885 ///\brief Look for a cast use of the passed value.
3886 static Value *getUniqueCastUse(Value *Ptr, Loop *Lp, Type *Ty) {
3887 Value *UniqueCast = nullptr;
3888 for (User *U : Ptr->users()) {
3889 CastInst *CI = dyn_cast<CastInst>(U);
3890 if (CI && CI->getType() == Ty) {
3900 ///\brief Get the stride of a pointer access in a loop.
3901 /// Looks for symbolic strides "a[i*stride]". Returns the symbolic stride as a
3902 /// pointer to the Value, or null otherwise.
3903 static Value *getStrideFromPointer(Value *Ptr, ScalarEvolution *SE,
3904 const DataLayout *DL, Loop *Lp) {
3905 const PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType());
3906 if (!PtrTy || PtrTy->isAggregateType())
3909 // Try to remove a gep instruction to make the pointer (actually index at this
3910 // point) easier analyzable. If OrigPtr is equal to Ptr we are analzying the
3911 // pointer, otherwise, we are analyzing the index.
3912 Value *OrigPtr = Ptr;
3914 // The size of the pointer access.
3915 int64_t PtrAccessSize = 1;
3917 Ptr = stripGetElementPtr(Ptr, SE, DL, Lp);
3918 const SCEV *V = SE->getSCEV(Ptr);
3922 while (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V))
3923 V = C->getOperand();
3925 const SCEVAddRecExpr *S = dyn_cast<SCEVAddRecExpr>(V);
3929 V = S->getStepRecurrence(*SE);
3933 // Strip off the size of access multiplication if we are still analyzing the
3935 if (OrigPtr == Ptr) {
3936 DL->getTypeAllocSize(PtrTy->getElementType());
3937 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(V)) {
3938 if (M->getOperand(0)->getSCEVType() != scConstant)
3941 const APInt &APStepVal =
3942 cast<SCEVConstant>(M->getOperand(0))->getValue()->getValue();
3944 // Huge step value - give up.
3945 if (APStepVal.getBitWidth() > 64)
3948 int64_t StepVal = APStepVal.getSExtValue();
3949 if (PtrAccessSize != StepVal)
3951 V = M->getOperand(1);
3956 Type *StripedOffRecurrenceCast = nullptr;
3957 if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V)) {
3958 StripedOffRecurrenceCast = C->getType();
3959 V = C->getOperand();
3962 // Look for the loop invariant symbolic value.
3963 const SCEVUnknown *U = dyn_cast<SCEVUnknown>(V);
3967 Value *Stride = U->getValue();
3968 if (!Lp->isLoopInvariant(Stride))
3971 // If we have stripped off the recurrence cast we have to make sure that we
3972 // return the value that is used in this loop so that we can replace it later.
3973 if (StripedOffRecurrenceCast)
3974 Stride = getUniqueCastUse(Stride, Lp, StripedOffRecurrenceCast);
3979 void LoopVectorizationLegality::collectStridedAccess(Value *MemAccess) {
3980 Value *Ptr = nullptr;
3981 if (LoadInst *LI = dyn_cast<LoadInst>(MemAccess))
3982 Ptr = LI->getPointerOperand();
3983 else if (StoreInst *SI = dyn_cast<StoreInst>(MemAccess))
3984 Ptr = SI->getPointerOperand();
3988 Value *Stride = getStrideFromPointer(Ptr, SE, DL, TheLoop);
3992 DEBUG(dbgs() << "LV: Found a strided access that we can version");
3993 DEBUG(dbgs() << " Ptr: " << *Ptr << " Stride: " << *Stride << "\n");
3994 Strides[Ptr] = Stride;
3995 StrideSet.insert(Stride);
3998 void LoopVectorizationLegality::collectLoopUniforms() {
3999 // We now know that the loop is vectorizable!
4000 // Collect variables that will remain uniform after vectorization.
4001 std::vector<Value*> Worklist;
4002 BasicBlock *Latch = TheLoop->getLoopLatch();
4004 // Start with the conditional branch and walk up the block.
4005 Worklist.push_back(Latch->getTerminator()->getOperand(0));
4007 // Also add all consecutive pointer values; these values will be uniform
4008 // after vectorization (and subsequent cleanup) and, until revectorization is
4009 // supported, all dependencies must also be uniform.
4010 for (Loop::block_iterator B = TheLoop->block_begin(),
4011 BE = TheLoop->block_end(); B != BE; ++B)
4012 for (BasicBlock::iterator I = (*B)->begin(), IE = (*B)->end();
4014 if (I->getType()->isPointerTy() && isConsecutivePtr(I))
4015 Worklist.insert(Worklist.end(), I->op_begin(), I->op_end());
4017 while (!Worklist.empty()) {
4018 Instruction *I = dyn_cast<Instruction>(Worklist.back());
4019 Worklist.pop_back();
4021 // Look at instructions inside this loop.
4022 // Stop when reaching PHI nodes.
4023 // TODO: we need to follow values all over the loop, not only in this block.
4024 if (!I || !TheLoop->contains(I) || isa<PHINode>(I))
4027 // This is a known uniform.
4030 // Insert all operands.
4031 Worklist.insert(Worklist.end(), I->op_begin(), I->op_end());
4036 /// \brief Analyses memory accesses in a loop.
4038 /// Checks whether run time pointer checks are needed and builds sets for data
4039 /// dependence checking.
4040 class AccessAnalysis {
4042 /// \brief Read or write access location.
4043 typedef PointerIntPair<Value *, 1, bool> MemAccessInfo;
4044 typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet;
4046 /// \brief Set of potential dependent memory accesses.
4047 typedef EquivalenceClasses<MemAccessInfo> DepCandidates;
4049 AccessAnalysis(const DataLayout *Dl, AliasAnalysis *AA, DepCandidates &DA) :
4050 DL(Dl), AST(*AA), DepCands(DA), IsRTCheckNeeded(false) {}
4052 /// \brief Register a load and whether it is only read from.
4053 void addLoad(AliasAnalysis::Location &Loc, bool IsReadOnly) {
4054 Value *Ptr = const_cast<Value*>(Loc.Ptr);
4055 AST.add(Ptr, AliasAnalysis::UnknownSize, Loc.AATags);
4056 Accesses.insert(MemAccessInfo(Ptr, false));
4058 ReadOnlyPtr.insert(Ptr);
4061 /// \brief Register a store.
4062 void addStore(AliasAnalysis::Location &Loc) {
4063 Value *Ptr = const_cast<Value*>(Loc.Ptr);
4064 AST.add(Ptr, AliasAnalysis::UnknownSize, Loc.AATags);
4065 Accesses.insert(MemAccessInfo(Ptr, true));
4068 /// \brief Check whether we can check the pointers at runtime for
4069 /// non-intersection.
4070 bool canCheckPtrAtRT(RuntimePointerCheck &RtCheck, unsigned &NumComparisons,
4071 ScalarEvolution *SE, Loop *TheLoop,
4072 ValueToValueMap &Strides,
4073 bool ShouldCheckStride = false);
4075 /// \brief Goes over all memory accesses, checks whether a RT check is needed
4076 /// and builds sets of dependent accesses.
4077 void buildDependenceSets() {
4078 processMemAccesses();
4081 bool isRTCheckNeeded() { return IsRTCheckNeeded; }
4083 bool isDependencyCheckNeeded() { return !CheckDeps.empty(); }
4084 void resetDepChecks() { CheckDeps.clear(); }
4086 MemAccessInfoSet &getDependenciesToCheck() { return CheckDeps; }
4089 typedef SetVector<MemAccessInfo> PtrAccessSet;
4091 /// \brief Go over all memory access and check whether runtime pointer checks
4092 /// are needed /// and build sets of dependency check candidates.
4093 void processMemAccesses();
4095 /// Set of all accesses.
4096 PtrAccessSet Accesses;
4098 /// Set of accesses that need a further dependence check.
4099 MemAccessInfoSet CheckDeps;
4101 /// Set of pointers that are read only.
4102 SmallPtrSet<Value*, 16> ReadOnlyPtr;
4104 const DataLayout *DL;
4106 /// An alias set tracker to partition the access set by underlying object and
4107 //intrinsic property (such as TBAA metadata).
4108 AliasSetTracker AST;
4110 /// Sets of potentially dependent accesses - members of one set share an
4111 /// underlying pointer. The set "CheckDeps" identfies which sets really need a
4112 /// dependence check.
4113 DepCandidates &DepCands;
4115 bool IsRTCheckNeeded;
4118 } // end anonymous namespace
4120 /// \brief Check whether a pointer can participate in a runtime bounds check.
4121 static bool hasComputableBounds(ScalarEvolution *SE, ValueToValueMap &Strides,
4123 const SCEV *PtrScev = replaceSymbolicStrideSCEV(SE, Strides, Ptr);
4124 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
4128 return AR->isAffine();
4131 /// \brief Check the stride of the pointer and ensure that it does not wrap in
4132 /// the address space.
4133 static int isStridedPtr(ScalarEvolution *SE, const DataLayout *DL, Value *Ptr,
4134 const Loop *Lp, ValueToValueMap &StridesMap);
4136 bool AccessAnalysis::canCheckPtrAtRT(
4137 RuntimePointerCheck &RtCheck,
4138 unsigned &NumComparisons, ScalarEvolution *SE, Loop *TheLoop,
4139 ValueToValueMap &StridesMap, bool ShouldCheckStride) {
4140 // Find pointers with computable bounds. We are going to use this information
4141 // to place a runtime bound check.
4142 bool CanDoRT = true;
4144 bool IsDepCheckNeeded = isDependencyCheckNeeded();
4147 // We assign a consecutive id to access from different alias sets.
4148 // Accesses between different groups doesn't need to be checked.
4150 for (auto &AS : AST) {
4151 unsigned NumReadPtrChecks = 0;
4152 unsigned NumWritePtrChecks = 0;
4154 // We assign consecutive id to access from different dependence sets.
4155 // Accesses within the same set don't need a runtime check.
4156 unsigned RunningDepId = 1;
4157 DenseMap<Value *, unsigned> DepSetId;
4160 Value *Ptr = A.getValue();
4161 bool IsWrite = Accesses.count(MemAccessInfo(Ptr, true));
4162 MemAccessInfo Access(Ptr, IsWrite);
4165 ++NumWritePtrChecks;
4169 if (hasComputableBounds(SE, StridesMap, Ptr) &&
4170 // When we run after a failing dependency check we have to make sure we
4171 // don't have wrapping pointers.
4172 (!ShouldCheckStride ||
4173 isStridedPtr(SE, DL, Ptr, TheLoop, StridesMap) == 1)) {
4174 // The id of the dependence set.
4177 if (IsDepCheckNeeded) {
4178 Value *Leader = DepCands.getLeaderValue(Access).getPointer();
4179 unsigned &LeaderId = DepSetId[Leader];
4181 LeaderId = RunningDepId++;
4184 // Each access has its own dependence set.
4185 DepId = RunningDepId++;
4187 RtCheck.insert(SE, TheLoop, Ptr, IsWrite, DepId, ASId, StridesMap);
4189 DEBUG(dbgs() << "LV: Found a runtime check ptr:" << *Ptr << '\n');
4195 if (IsDepCheckNeeded && CanDoRT && RunningDepId == 2)
4196 NumComparisons += 0; // Only one dependence set.
4198 NumComparisons += (NumWritePtrChecks * (NumReadPtrChecks +
4199 NumWritePtrChecks - 1));
4205 // If the pointers that we would use for the bounds comparison have different
4206 // address spaces, assume the values aren't directly comparable, so we can't
4207 // use them for the runtime check. We also have to assume they could
4208 // overlap. In the future there should be metadata for whether address spaces
4210 unsigned NumPointers = RtCheck.Pointers.size();
4211 for (unsigned i = 0; i < NumPointers; ++i) {
4212 for (unsigned j = i + 1; j < NumPointers; ++j) {
4213 // Only need to check pointers between two different dependency sets.
4214 if (RtCheck.DependencySetId[i] == RtCheck.DependencySetId[j])
4216 // Only need to check pointers in the same alias set.
4217 if (RtCheck.AliasSetId[i] != RtCheck.AliasSetId[j])
4220 Value *PtrI = RtCheck.Pointers[i];
4221 Value *PtrJ = RtCheck.Pointers[j];
4223 unsigned ASi = PtrI->getType()->getPointerAddressSpace();
4224 unsigned ASj = PtrJ->getType()->getPointerAddressSpace();
4226 DEBUG(dbgs() << "LV: Runtime check would require comparison between"
4227 " different address spaces\n");
4236 void AccessAnalysis::processMemAccesses() {
4237 // We process the set twice: first we process read-write pointers, last we
4238 // process read-only pointers. This allows us to skip dependence tests for
4239 // read-only pointers.
4241 DEBUG(dbgs() << "LV: Processing memory accesses...\n");
4242 DEBUG(dbgs() << " AST: "; AST.dump());
4243 DEBUG(dbgs() << "LV: Accesses:\n");
4245 for (auto A : Accesses)
4246 dbgs() << "\t" << *A.getPointer() << " (" <<
4247 (A.getInt() ? "write" : (ReadOnlyPtr.count(A.getPointer()) ?
4248 "read-only" : "read")) << ")\n";
4251 // The AliasSetTracker has nicely partitioned our pointers by metadata
4252 // compatibility and potential for underlying-object overlap. As a result, we
4253 // only need to check for potential pointer dependencies within each alias
4255 for (auto &AS : AST) {
4256 // Note that both the alias-set tracker and the alias sets themselves used
4257 // linked lists internally and so the iteration order here is deterministic
4258 // (matching the original instruction order within each set).
4260 bool SetHasWrite = false;
4262 // Map of pointers to last access encountered.
4263 typedef DenseMap<Value*, MemAccessInfo> UnderlyingObjToAccessMap;
4264 UnderlyingObjToAccessMap ObjToLastAccess;
4266 // Set of access to check after all writes have been processed.
4267 PtrAccessSet DeferredAccesses;
4269 // Iterate over each alias set twice, once to process read/write pointers,
4270 // and then to process read-only pointers.
4271 for (int SetIteration = 0; SetIteration < 2; ++SetIteration) {
4272 bool UseDeferred = SetIteration > 0;
4273 PtrAccessSet &S = UseDeferred ? DeferredAccesses : Accesses;
4275 for (auto AV : AS) {
4276 Value *Ptr = AV.getValue();
4278 // For a single memory access in AliasSetTracker, Accesses may contain
4279 // both read and write, and they both need to be handled for CheckDeps.
4281 if (AC.getPointer() != Ptr)
4284 bool IsWrite = AC.getInt();
4286 // If we're using the deferred access set, then it contains only
4288 bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite;
4289 if (UseDeferred && !IsReadOnlyPtr)
4291 // Otherwise, the pointer must be in the PtrAccessSet, either as a
4293 assert(((IsReadOnlyPtr && UseDeferred) || IsWrite ||
4294 S.count(MemAccessInfo(Ptr, false))) &&
4295 "Alias-set pointer not in the access set?");
4297 MemAccessInfo Access(Ptr, IsWrite);
4298 DepCands.insert(Access);
4300 // Memorize read-only pointers for later processing and skip them in
4301 // the first round (they need to be checked after we have seen all
4302 // write pointers). Note: we also mark pointer that are not
4303 // consecutive as "read-only" pointers (so that we check
4304 // "a[b[i]] +="). Hence, we need the second check for "!IsWrite".
4305 if (!UseDeferred && IsReadOnlyPtr) {
4306 DeferredAccesses.insert(Access);
4310 // If this is a write - check other reads and writes for conflicts. If
4311 // this is a read only check other writes for conflicts (but only if
4312 // there is no other write to the ptr - this is an optimization to
4313 // catch "a[i] = a[i] + " without having to do a dependence check).
4314 if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) {
4315 CheckDeps.insert(Access);
4316 IsRTCheckNeeded = true;
4322 // Create sets of pointers connected by a shared alias set and
4323 // underlying object.
4324 typedef SmallVector<Value *, 16> ValueVector;
4325 ValueVector TempObjects;
4326 GetUnderlyingObjects(Ptr, TempObjects, DL);
4327 for (Value *UnderlyingObj : TempObjects) {
4328 UnderlyingObjToAccessMap::iterator Prev =
4329 ObjToLastAccess.find(UnderlyingObj);
4330 if (Prev != ObjToLastAccess.end())
4331 DepCands.unionSets(Access, Prev->second);
4333 ObjToLastAccess[UnderlyingObj] = Access;
4342 /// \brief Checks memory dependences among accesses to the same underlying
4343 /// object to determine whether there vectorization is legal or not (and at
4344 /// which vectorization factor).
4346 /// This class works under the assumption that we already checked that memory
4347 /// locations with different underlying pointers are "must-not alias".
4348 /// We use the ScalarEvolution framework to symbolically evalutate access
4349 /// functions pairs. Since we currently don't restructure the loop we can rely
4350 /// on the program order of memory accesses to determine their safety.
4351 /// At the moment we will only deem accesses as safe for:
4352 /// * A negative constant distance assuming program order.
4354 /// Safe: tmp = a[i + 1]; OR a[i + 1] = x;
4355 /// a[i] = tmp; y = a[i];
4357 /// The latter case is safe because later checks guarantuee that there can't
4358 /// be a cycle through a phi node (that is, we check that "x" and "y" is not
4359 /// the same variable: a header phi can only be an induction or a reduction, a
4360 /// reduction can't have a memory sink, an induction can't have a memory
4361 /// source). This is important and must not be violated (or we have to
4362 /// resort to checking for cycles through memory).
4364 /// * A positive constant distance assuming program order that is bigger
4365 /// than the biggest memory access.
4367 /// tmp = a[i] OR b[i] = x
4368 /// a[i+2] = tmp y = b[i+2];
4370 /// Safe distance: 2 x sizeof(a[0]), and 2 x sizeof(b[0]), respectively.
4372 /// * Zero distances and all accesses have the same size.
4374 class MemoryDepChecker {
4376 typedef PointerIntPair<Value *, 1, bool> MemAccessInfo;
4377 typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet;
4379 MemoryDepChecker(ScalarEvolution *Se, const DataLayout *Dl, const Loop *L)
4380 : SE(Se), DL(Dl), InnermostLoop(L), AccessIdx(0),
4381 ShouldRetryWithRuntimeCheck(false) {}
4383 /// \brief Register the location (instructions are given increasing numbers)
4384 /// of a write access.
4385 void addAccess(StoreInst *SI) {
4386 Value *Ptr = SI->getPointerOperand();
4387 Accesses[MemAccessInfo(Ptr, true)].push_back(AccessIdx);
4388 InstMap.push_back(SI);
4392 /// \brief Register the location (instructions are given increasing numbers)
4393 /// of a write access.
4394 void addAccess(LoadInst *LI) {
4395 Value *Ptr = LI->getPointerOperand();
4396 Accesses[MemAccessInfo(Ptr, false)].push_back(AccessIdx);
4397 InstMap.push_back(LI);
4401 /// \brief Check whether the dependencies between the accesses are safe.
4403 /// Only checks sets with elements in \p CheckDeps.
4404 bool areDepsSafe(AccessAnalysis::DepCandidates &AccessSets,
4405 MemAccessInfoSet &CheckDeps, ValueToValueMap &Strides);
4407 /// \brief The maximum number of bytes of a vector register we can vectorize
4408 /// the accesses safely with.
4409 unsigned getMaxSafeDepDistBytes() { return MaxSafeDepDistBytes; }
4411 /// \brief In same cases when the dependency check fails we can still
4412 /// vectorize the loop with a dynamic array access check.
4413 bool shouldRetryWithRuntimeCheck() { return ShouldRetryWithRuntimeCheck; }
4416 ScalarEvolution *SE;
4417 const DataLayout *DL;
4418 const Loop *InnermostLoop;
4420 /// \brief Maps access locations (ptr, read/write) to program order.
4421 DenseMap<MemAccessInfo, std::vector<unsigned> > Accesses;
4423 /// \brief Memory access instructions in program order.
4424 SmallVector<Instruction *, 16> InstMap;
4426 /// \brief The program order index to be used for the next instruction.
4429 // We can access this many bytes in parallel safely.
4430 unsigned MaxSafeDepDistBytes;
4432 /// \brief If we see a non-constant dependence distance we can still try to
4433 /// vectorize this loop with runtime checks.
4434 bool ShouldRetryWithRuntimeCheck;
4436 /// \brief Check whether there is a plausible dependence between the two
4439 /// Access \p A must happen before \p B in program order. The two indices
4440 /// identify the index into the program order map.
4442 /// This function checks whether there is a plausible dependence (or the
4443 /// absence of such can't be proved) between the two accesses. If there is a
4444 /// plausible dependence but the dependence distance is bigger than one
4445 /// element access it records this distance in \p MaxSafeDepDistBytes (if this
4446 /// distance is smaller than any other distance encountered so far).
4447 /// Otherwise, this function returns true signaling a possible dependence.
4448 bool isDependent(const MemAccessInfo &A, unsigned AIdx,
4449 const MemAccessInfo &B, unsigned BIdx,
4450 ValueToValueMap &Strides);
4452 /// \brief Check whether the data dependence could prevent store-load
4454 bool couldPreventStoreLoadForward(unsigned Distance, unsigned TypeByteSize);
4457 } // end anonymous namespace
4459 static bool isInBoundsGep(Value *Ptr) {
4460 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr))
4461 return GEP->isInBounds();
4465 /// \brief Check whether the access through \p Ptr has a constant stride.
4466 static int isStridedPtr(ScalarEvolution *SE, const DataLayout *DL, Value *Ptr,
4467 const Loop *Lp, ValueToValueMap &StridesMap) {
4468 const Type *Ty = Ptr->getType();
4469 assert(Ty->isPointerTy() && "Unexpected non-ptr");
4471 // Make sure that the pointer does not point to aggregate types.
4472 const PointerType *PtrTy = cast<PointerType>(Ty);
4473 if (PtrTy->getElementType()->isAggregateType()) {
4474 DEBUG(dbgs() << "LV: Bad stride - Not a pointer to a scalar type" << *Ptr <<
4479 const SCEV *PtrScev = replaceSymbolicStrideSCEV(SE, StridesMap, Ptr);
4481 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
4483 DEBUG(dbgs() << "LV: Bad stride - Not an AddRecExpr pointer "
4484 << *Ptr << " SCEV: " << *PtrScev << "\n");
4488 // The accesss function must stride over the innermost loop.
4489 if (Lp != AR->getLoop()) {
4490 DEBUG(dbgs() << "LV: Bad stride - Not striding over innermost loop " <<
4491 *Ptr << " SCEV: " << *PtrScev << "\n");
4494 // The address calculation must not wrap. Otherwise, a dependence could be
4496 // An inbounds getelementptr that is a AddRec with a unit stride
4497 // cannot wrap per definition. The unit stride requirement is checked later.
4498 // An getelementptr without an inbounds attribute and unit stride would have
4499 // to access the pointer value "0" which is undefined behavior in address
4500 // space 0, therefore we can also vectorize this case.
4501 bool IsInBoundsGEP = isInBoundsGep(Ptr);
4502 bool IsNoWrapAddRec = AR->getNoWrapFlags(SCEV::NoWrapMask);
4503 bool IsInAddressSpaceZero = PtrTy->getAddressSpace() == 0;
4504 if (!IsNoWrapAddRec && !IsInBoundsGEP && !IsInAddressSpaceZero) {
4505 DEBUG(dbgs() << "LV: Bad stride - Pointer may wrap in the address space "
4506 << *Ptr << " SCEV: " << *PtrScev << "\n");
4510 // Check the step is constant.
4511 const SCEV *Step = AR->getStepRecurrence(*SE);
4513 // Calculate the pointer stride and check if it is consecutive.
4514 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
4516 DEBUG(dbgs() << "LV: Bad stride - Not a constant strided " << *Ptr <<
4517 " SCEV: " << *PtrScev << "\n");
4521 int64_t Size = DL->getTypeAllocSize(PtrTy->getElementType());
4522 const APInt &APStepVal = C->getValue()->getValue();
4524 // Huge step value - give up.
4525 if (APStepVal.getBitWidth() > 64)
4528 int64_t StepVal = APStepVal.getSExtValue();
4531 int64_t Stride = StepVal / Size;
4532 int64_t Rem = StepVal % Size;
4536 // If the SCEV could wrap but we have an inbounds gep with a unit stride we
4537 // know we can't "wrap around the address space". In case of address space
4538 // zero we know that this won't happen without triggering undefined behavior.
4539 if (!IsNoWrapAddRec && (IsInBoundsGEP || IsInAddressSpaceZero) &&
4540 Stride != 1 && Stride != -1)
4546 bool MemoryDepChecker::couldPreventStoreLoadForward(unsigned Distance,
4547 unsigned TypeByteSize) {
4548 // If loads occur at a distance that is not a multiple of a feasible vector
4549 // factor store-load forwarding does not take place.
4550 // Positive dependences might cause troubles because vectorizing them might
4551 // prevent store-load forwarding making vectorized code run a lot slower.
4552 // a[i] = a[i-3] ^ a[i-8];
4553 // The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and
4554 // hence on your typical architecture store-load forwarding does not take
4555 // place. Vectorizing in such cases does not make sense.
4556 // Store-load forwarding distance.
4557 const unsigned NumCyclesForStoreLoadThroughMemory = 8*TypeByteSize;
4558 // Maximum vector factor.
4559 unsigned MaxVFWithoutSLForwardIssues = MaxVectorWidth*TypeByteSize;
4560 if(MaxSafeDepDistBytes < MaxVFWithoutSLForwardIssues)
4561 MaxVFWithoutSLForwardIssues = MaxSafeDepDistBytes;
4563 for (unsigned vf = 2*TypeByteSize; vf <= MaxVFWithoutSLForwardIssues;
4565 if (Distance % vf && Distance / vf < NumCyclesForStoreLoadThroughMemory) {
4566 MaxVFWithoutSLForwardIssues = (vf >>=1);
4571 if (MaxVFWithoutSLForwardIssues< 2*TypeByteSize) {
4572 DEBUG(dbgs() << "LV: Distance " << Distance <<
4573 " that could cause a store-load forwarding conflict\n");
4577 if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes &&
4578 MaxVFWithoutSLForwardIssues != MaxVectorWidth*TypeByteSize)
4579 MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues;
4583 bool MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx,
4584 const MemAccessInfo &B, unsigned BIdx,
4585 ValueToValueMap &Strides) {
4586 assert (AIdx < BIdx && "Must pass arguments in program order");
4588 Value *APtr = A.getPointer();
4589 Value *BPtr = B.getPointer();
4590 bool AIsWrite = A.getInt();
4591 bool BIsWrite = B.getInt();
4593 // Two reads are independent.
4594 if (!AIsWrite && !BIsWrite)
4597 // We cannot check pointers in different address spaces.
4598 if (APtr->getType()->getPointerAddressSpace() !=
4599 BPtr->getType()->getPointerAddressSpace())
4602 const SCEV *AScev = replaceSymbolicStrideSCEV(SE, Strides, APtr);
4603 const SCEV *BScev = replaceSymbolicStrideSCEV(SE, Strides, BPtr);
4605 int StrideAPtr = isStridedPtr(SE, DL, APtr, InnermostLoop, Strides);
4606 int StrideBPtr = isStridedPtr(SE, DL, BPtr, InnermostLoop, Strides);
4608 const SCEV *Src = AScev;
4609 const SCEV *Sink = BScev;
4611 // If the induction step is negative we have to invert source and sink of the
4613 if (StrideAPtr < 0) {
4616 std::swap(APtr, BPtr);
4617 std::swap(Src, Sink);
4618 std::swap(AIsWrite, BIsWrite);
4619 std::swap(AIdx, BIdx);
4620 std::swap(StrideAPtr, StrideBPtr);
4623 const SCEV *Dist = SE->getMinusSCEV(Sink, Src);
4625 DEBUG(dbgs() << "LV: Src Scev: " << *Src << "Sink Scev: " << *Sink
4626 << "(Induction step: " << StrideAPtr << ")\n");
4627 DEBUG(dbgs() << "LV: Distance for " << *InstMap[AIdx] << " to "
4628 << *InstMap[BIdx] << ": " << *Dist << "\n");
4630 // Need consecutive accesses. We don't want to vectorize
4631 // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in
4632 // the address space.
4633 if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){
4634 DEBUG(dbgs() << "Non-consecutive pointer access\n");
4638 const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist);
4640 DEBUG(dbgs() << "LV: Dependence because of non-constant distance\n");
4641 ShouldRetryWithRuntimeCheck = true;
4645 Type *ATy = APtr->getType()->getPointerElementType();
4646 Type *BTy = BPtr->getType()->getPointerElementType();
4647 unsigned TypeByteSize = DL->getTypeAllocSize(ATy);
4649 // Negative distances are not plausible dependencies.
4650 const APInt &Val = C->getValue()->getValue();
4651 if (Val.isNegative()) {
4652 bool IsTrueDataDependence = (AIsWrite && !BIsWrite);
4653 if (IsTrueDataDependence &&
4654 (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) ||
4658 DEBUG(dbgs() << "LV: Dependence is negative: NoDep\n");
4662 // Write to the same location with the same size.
4663 // Could be improved to assert type sizes are the same (i32 == float, etc).
4667 DEBUG(dbgs() << "LV: Zero dependence difference but different types\n");
4671 assert(Val.isStrictlyPositive() && "Expect a positive value");
4673 // Positive distance bigger than max vectorization factor.
4676 "LV: ReadWrite-Write positive dependency with different types\n");
4680 unsigned Distance = (unsigned) Val.getZExtValue();
4682 // Bail out early if passed-in parameters make vectorization not feasible.
4683 unsigned ForcedFactor = VectorizationFactor ? VectorizationFactor : 1;
4684 unsigned ForcedUnroll = VectorizationInterleave ? VectorizationInterleave : 1;
4686 // The distance must be bigger than the size needed for a vectorized version
4687 // of the operation and the size of the vectorized operation must not be
4688 // bigger than the currrent maximum size.
4689 if (Distance < 2*TypeByteSize ||
4690 2*TypeByteSize > MaxSafeDepDistBytes ||
4691 Distance < TypeByteSize * ForcedUnroll * ForcedFactor) {
4692 DEBUG(dbgs() << "LV: Failure because of Positive distance "
4693 << Val.getSExtValue() << '\n');
4697 MaxSafeDepDistBytes = Distance < MaxSafeDepDistBytes ?
4698 Distance : MaxSafeDepDistBytes;
4700 bool IsTrueDataDependence = (!AIsWrite && BIsWrite);
4701 if (IsTrueDataDependence &&
4702 couldPreventStoreLoadForward(Distance, TypeByteSize))
4705 DEBUG(dbgs() << "LV: Positive distance " << Val.getSExtValue() <<
4706 " with max VF = " << MaxSafeDepDistBytes / TypeByteSize << '\n');
4711 bool MemoryDepChecker::areDepsSafe(AccessAnalysis::DepCandidates &AccessSets,
4712 MemAccessInfoSet &CheckDeps,
4713 ValueToValueMap &Strides) {
4715 MaxSafeDepDistBytes = -1U;
4716 while (!CheckDeps.empty()) {
4717 MemAccessInfo CurAccess = *CheckDeps.begin();
4719 // Get the relevant memory access set.
4720 EquivalenceClasses<MemAccessInfo>::iterator I =
4721 AccessSets.findValue(AccessSets.getLeaderValue(CurAccess));
4723 // Check accesses within this set.
4724 EquivalenceClasses<MemAccessInfo>::member_iterator AI, AE;
4725 AI = AccessSets.member_begin(I), AE = AccessSets.member_end();
4727 // Check every access pair.
4729 CheckDeps.erase(*AI);
4730 EquivalenceClasses<MemAccessInfo>::member_iterator OI = std::next(AI);
4732 // Check every accessing instruction pair in program order.
4733 for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(),
4734 I1E = Accesses[*AI].end(); I1 != I1E; ++I1)
4735 for (std::vector<unsigned>::iterator I2 = Accesses[*OI].begin(),
4736 I2E = Accesses[*OI].end(); I2 != I2E; ++I2) {
4737 if (*I1 < *I2 && isDependent(*AI, *I1, *OI, *I2, Strides))
4739 if (*I2 < *I1 && isDependent(*OI, *I2, *AI, *I1, Strides))
4750 bool LoopVectorizationLegality::canVectorizeMemory() {
4752 typedef SmallVector<Value*, 16> ValueVector;
4753 typedef SmallPtrSet<Value*, 16> ValueSet;
4755 // Holds the Load and Store *instructions*.
4759 // Holds all the different accesses in the loop.
4760 unsigned NumReads = 0;
4761 unsigned NumReadWrites = 0;
4763 PtrRtCheck.Pointers.clear();
4764 PtrRtCheck.Need = false;
4766 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel();
4767 MemoryDepChecker DepChecker(SE, DL, TheLoop);
4770 for (Loop::block_iterator bb = TheLoop->block_begin(),
4771 be = TheLoop->block_end(); bb != be; ++bb) {
4773 // Scan the BB and collect legal loads and stores.
4774 for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e;
4777 // If this is a load, save it. If this instruction can read from memory
4778 // but is not a load, then we quit. Notice that we don't handle function
4779 // calls that read or write.
4780 if (it->mayReadFromMemory()) {
4781 // Many math library functions read the rounding mode. We will only
4782 // vectorize a loop if it contains known function calls that don't set
4783 // the flag. Therefore, it is safe to ignore this read from memory.
4784 CallInst *Call = dyn_cast<CallInst>(it);
4785 if (Call && getIntrinsicIDForCall(Call, TLI))
4788 LoadInst *Ld = dyn_cast<LoadInst>(it);
4789 if (!Ld || (!Ld->isSimple() && !IsAnnotatedParallel)) {
4790 emitAnalysis(Report(Ld)
4791 << "read with atomic ordering or volatile read");
4792 DEBUG(dbgs() << "LV: Found a non-simple load.\n");
4796 Loads.push_back(Ld);
4797 DepChecker.addAccess(Ld);
4801 // Save 'store' instructions. Abort if other instructions write to memory.
4802 if (it->mayWriteToMemory()) {
4803 StoreInst *St = dyn_cast<StoreInst>(it);
4805 emitAnalysis(Report(it) << "instruction cannot be vectorized");
4808 if (!St->isSimple() && !IsAnnotatedParallel) {
4809 emitAnalysis(Report(St)
4810 << "write with atomic ordering or volatile write");
4811 DEBUG(dbgs() << "LV: Found a non-simple store.\n");
4815 Stores.push_back(St);
4816 DepChecker.addAccess(St);
4821 // Now we have two lists that hold the loads and the stores.
4822 // Next, we find the pointers that they use.
4824 // Check if we see any stores. If there are no stores, then we don't
4825 // care if the pointers are *restrict*.
4826 if (!Stores.size()) {
4827 DEBUG(dbgs() << "LV: Found a read-only loop!\n");
4831 AccessAnalysis::DepCandidates DependentAccesses;
4832 AccessAnalysis Accesses(DL, AA, DependentAccesses);
4834 // Holds the analyzed pointers. We don't want to call GetUnderlyingObjects
4835 // multiple times on the same object. If the ptr is accessed twice, once
4836 // for read and once for write, it will only appear once (on the write
4837 // list). This is okay, since we are going to check for conflicts between
4838 // writes and between reads and writes, but not between reads and reads.
4841 ValueVector::iterator I, IE;
4842 for (I = Stores.begin(), IE = Stores.end(); I != IE; ++I) {
4843 StoreInst *ST = cast<StoreInst>(*I);
4844 Value* Ptr = ST->getPointerOperand();
4846 if (isUniform(Ptr)) {
4849 << "write to a loop invariant address could not be vectorized");
4850 DEBUG(dbgs() << "LV: We don't allow storing to uniform addresses\n");
4854 // If we did *not* see this pointer before, insert it to the read-write
4855 // list. At this phase it is only a 'write' list.
4856 if (Seen.insert(Ptr).second) {
4859 AliasAnalysis::Location Loc = AA->getLocation(ST);
4860 // The TBAA metadata could have a control dependency on the predication
4861 // condition, so we cannot rely on it when determining whether or not we
4862 // need runtime pointer checks.
4863 if (blockNeedsPredication(ST->getParent()))
4864 Loc.AATags.TBAA = nullptr;
4866 Accesses.addStore(Loc);
4870 if (IsAnnotatedParallel) {
4872 << "LV: A loop annotated parallel, ignore memory dependency "
4877 for (I = Loads.begin(), IE = Loads.end(); I != IE; ++I) {
4878 LoadInst *LD = cast<LoadInst>(*I);
4879 Value* Ptr = LD->getPointerOperand();
4880 // If we did *not* see this pointer before, insert it to the
4881 // read list. If we *did* see it before, then it is already in
4882 // the read-write list. This allows us to vectorize expressions
4883 // such as A[i] += x; Because the address of A[i] is a read-write
4884 // pointer. This only works if the index of A[i] is consecutive.
4885 // If the address of i is unknown (for example A[B[i]]) then we may
4886 // read a few words, modify, and write a few words, and some of the
4887 // words may be written to the same address.
4888 bool IsReadOnlyPtr = false;
4889 if (Seen.insert(Ptr).second ||
4890 !isStridedPtr(SE, DL, Ptr, TheLoop, Strides)) {
4892 IsReadOnlyPtr = true;
4895 AliasAnalysis::Location Loc = AA->getLocation(LD);
4896 // The TBAA metadata could have a control dependency on the predication
4897 // condition, so we cannot rely on it when determining whether or not we
4898 // need runtime pointer checks.
4899 if (blockNeedsPredication(LD->getParent()))
4900 Loc.AATags.TBAA = nullptr;
4902 Accesses.addLoad(Loc, IsReadOnlyPtr);
4905 // If we write (or read-write) to a single destination and there are no
4906 // other reads in this loop then is it safe to vectorize.
4907 if (NumReadWrites == 1 && NumReads == 0) {
4908 DEBUG(dbgs() << "LV: Found a write-only loop!\n");
4912 // Build dependence sets and check whether we need a runtime pointer bounds
4914 Accesses.buildDependenceSets();
4915 bool NeedRTCheck = Accesses.isRTCheckNeeded();
4917 // Find pointers with computable bounds. We are going to use this information
4918 // to place a runtime bound check.
4919 unsigned NumComparisons = 0;
4920 bool CanDoRT = false;
4922 CanDoRT = Accesses.canCheckPtrAtRT(PtrRtCheck, NumComparisons, SE, TheLoop,
4925 DEBUG(dbgs() << "LV: We need to do " << NumComparisons <<
4926 " pointer comparisons.\n");
4928 // If we only have one set of dependences to check pointers among we don't
4929 // need a runtime check.
4930 if (NumComparisons == 0 && NeedRTCheck)
4931 NeedRTCheck = false;
4933 // Check that we did not collect too many pointers or found an unsizeable
4935 if (!CanDoRT || NumComparisons > RuntimeMemoryCheckThreshold) {
4941 DEBUG(dbgs() << "LV: We can perform a memory runtime check if needed.\n");
4944 if (NeedRTCheck && !CanDoRT) {
4945 emitAnalysis(Report() << "cannot identify array bounds");
4946 DEBUG(dbgs() << "LV: We can't vectorize because we can't find " <<
4947 "the array bounds.\n");
4952 PtrRtCheck.Need = NeedRTCheck;
4954 bool CanVecMem = true;
4955 if (Accesses.isDependencyCheckNeeded()) {
4956 DEBUG(dbgs() << "LV: Checking memory dependencies\n");
4957 CanVecMem = DepChecker.areDepsSafe(
4958 DependentAccesses, Accesses.getDependenciesToCheck(), Strides);
4959 MaxSafeDepDistBytes = DepChecker.getMaxSafeDepDistBytes();
4961 if (!CanVecMem && DepChecker.shouldRetryWithRuntimeCheck()) {
4962 DEBUG(dbgs() << "LV: Retrying with memory checks\n");
4965 // Clear the dependency checks. We assume they are not needed.
4966 Accesses.resetDepChecks();
4969 PtrRtCheck.Need = true;
4971 CanDoRT = Accesses.canCheckPtrAtRT(PtrRtCheck, NumComparisons, SE,
4972 TheLoop, Strides, true);
4973 // Check that we did not collect too many pointers or found an unsizeable
4975 if (!CanDoRT || NumComparisons > RuntimeMemoryCheckThreshold) {
4976 if (!CanDoRT && NumComparisons > 0)
4977 emitAnalysis(Report()
4978 << "cannot check memory dependencies at runtime");
4980 emitAnalysis(Report()
4981 << NumComparisons << " exceeds limit of "
4982 << RuntimeMemoryCheckThreshold
4983 << " dependent memory operations checked at runtime");
4984 DEBUG(dbgs() << "LV: Can't vectorize with memory checks\n");
4994 emitAnalysis(Report() << "unsafe dependent memory operations in loop");
4996 DEBUG(dbgs() << "LV: We" << (NeedRTCheck ? "" : " don't") <<
4997 " need a runtime memory check.\n");
5002 static bool hasMultipleUsesOf(Instruction *I,
5003 SmallPtrSetImpl<Instruction *> &Insts) {
5004 unsigned NumUses = 0;
5005 for(User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use) {
5006 if (Insts.count(dyn_cast<Instruction>(*Use)))
5015 static bool areAllUsesIn(Instruction *I, SmallPtrSetImpl<Instruction *> &Set) {
5016 for(User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use)
5017 if (!Set.count(dyn_cast<Instruction>(*Use)))
5022 bool LoopVectorizationLegality::AddReductionVar(PHINode *Phi,
5023 ReductionKind Kind) {
5024 if (Phi->getNumIncomingValues() != 2)
5027 // Reduction variables are only found in the loop header block.
5028 if (Phi->getParent() != TheLoop->getHeader())
5031 // Obtain the reduction start value from the value that comes from the loop
5033 Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader());
5035 // ExitInstruction is the single value which is used outside the loop.
5036 // We only allow for a single reduction value to be used outside the loop.
5037 // This includes users of the reduction, variables (which form a cycle
5038 // which ends in the phi node).
5039 Instruction *ExitInstruction = nullptr;
5040 // Indicates that we found a reduction operation in our scan.
5041 bool FoundReduxOp = false;
5043 // We start with the PHI node and scan for all of the users of this
5044 // instruction. All users must be instructions that can be used as reduction
5045 // variables (such as ADD). We must have a single out-of-block user. The cycle
5046 // must include the original PHI.
5047 bool FoundStartPHI = false;
5049 // To recognize min/max patterns formed by a icmp select sequence, we store
5050 // the number of instruction we saw from the recognized min/max pattern,
5051 // to make sure we only see exactly the two instructions.
5052 unsigned NumCmpSelectPatternInst = 0;
5053 ReductionInstDesc ReduxDesc(false, nullptr);
5055 SmallPtrSet<Instruction *, 8> VisitedInsts;
5056 SmallVector<Instruction *, 8> Worklist;
5057 Worklist.push_back(Phi);
5058 VisitedInsts.insert(Phi);
5060 // A value in the reduction can be used:
5061 // - By the reduction:
5062 // - Reduction operation:
5063 // - One use of reduction value (safe).
5064 // - Multiple use of reduction value (not safe).
5066 // - All uses of the PHI must be the reduction (safe).
5067 // - Otherwise, not safe.
5068 // - By one instruction outside of the loop (safe).
5069 // - By further instructions outside of the loop (not safe).
5070 // - By an instruction that is not part of the reduction (not safe).
5072 // * An instruction type other than PHI or the reduction operation.
5073 // * A PHI in the header other than the initial PHI.
5074 while (!Worklist.empty()) {
5075 Instruction *Cur = Worklist.back();
5076 Worklist.pop_back();
5079 // If the instruction has no users then this is a broken chain and can't be
5080 // a reduction variable.
5081 if (Cur->use_empty())
5084 bool IsAPhi = isa<PHINode>(Cur);
5086 // A header PHI use other than the original PHI.
5087 if (Cur != Phi && IsAPhi && Cur->getParent() == Phi->getParent())
5090 // Reductions of instructions such as Div, and Sub is only possible if the
5091 // LHS is the reduction variable.
5092 if (!Cur->isCommutative() && !IsAPhi && !isa<SelectInst>(Cur) &&
5093 !isa<ICmpInst>(Cur) && !isa<FCmpInst>(Cur) &&
5094 !VisitedInsts.count(dyn_cast<Instruction>(Cur->getOperand(0))))
5097 // Any reduction instruction must be of one of the allowed kinds.
5098 ReduxDesc = isReductionInstr(Cur, Kind, ReduxDesc);
5099 if (!ReduxDesc.IsReduction)
5102 // A reduction operation must only have one use of the reduction value.
5103 if (!IsAPhi && Kind != RK_IntegerMinMax && Kind != RK_FloatMinMax &&
5104 hasMultipleUsesOf(Cur, VisitedInsts))
5107 // All inputs to a PHI node must be a reduction value.
5108 if(IsAPhi && Cur != Phi && !areAllUsesIn(Cur, VisitedInsts))
5111 if (Kind == RK_IntegerMinMax && (isa<ICmpInst>(Cur) ||
5112 isa<SelectInst>(Cur)))
5113 ++NumCmpSelectPatternInst;
5114 if (Kind == RK_FloatMinMax && (isa<FCmpInst>(Cur) ||
5115 isa<SelectInst>(Cur)))
5116 ++NumCmpSelectPatternInst;
5118 // Check whether we found a reduction operator.
5119 FoundReduxOp |= !IsAPhi;
5121 // Process users of current instruction. Push non-PHI nodes after PHI nodes
5122 // onto the stack. This way we are going to have seen all inputs to PHI
5123 // nodes once we get to them.
5124 SmallVector<Instruction *, 8> NonPHIs;
5125 SmallVector<Instruction *, 8> PHIs;
5126 for (User *U : Cur->users()) {
5127 Instruction *UI = cast<Instruction>(U);
5129 // Check if we found the exit user.
5130 BasicBlock *Parent = UI->getParent();
5131 if (!TheLoop->contains(Parent)) {
5132 // Exit if you find multiple outside users or if the header phi node is
5133 // being used. In this case the user uses the value of the previous
5134 // iteration, in which case we would loose "VF-1" iterations of the
5135 // reduction operation if we vectorize.
5136 if (ExitInstruction != nullptr || Cur == Phi)
5139 // The instruction used by an outside user must be the last instruction
5140 // before we feed back to the reduction phi. Otherwise, we loose VF-1
5141 // operations on the value.
5142 if (std::find(Phi->op_begin(), Phi->op_end(), Cur) == Phi->op_end())
5145 ExitInstruction = Cur;
5149 // Process instructions only once (termination). Each reduction cycle
5150 // value must only be used once, except by phi nodes and min/max
5151 // reductions which are represented as a cmp followed by a select.
5152 ReductionInstDesc IgnoredVal(false, nullptr);
5153 if (VisitedInsts.insert(UI).second) {
5154 if (isa<PHINode>(UI))
5157 NonPHIs.push_back(UI);
5158 } else if (!isa<PHINode>(UI) &&
5159 ((!isa<FCmpInst>(UI) &&
5160 !isa<ICmpInst>(UI) &&
5161 !isa<SelectInst>(UI)) ||
5162 !isMinMaxSelectCmpPattern(UI, IgnoredVal).IsReduction))
5165 // Remember that we completed the cycle.
5167 FoundStartPHI = true;
5169 Worklist.append(PHIs.begin(), PHIs.end());
5170 Worklist.append(NonPHIs.begin(), NonPHIs.end());
5173 // This means we have seen one but not the other instruction of the
5174 // pattern or more than just a select and cmp.
5175 if ((Kind == RK_IntegerMinMax || Kind == RK_FloatMinMax) &&
5176 NumCmpSelectPatternInst != 2)
5179 if (!FoundStartPHI || !FoundReduxOp || !ExitInstruction)
5182 // We found a reduction var if we have reached the original phi node and we
5183 // only have a single instruction with out-of-loop users.
5185 // This instruction is allowed to have out-of-loop users.
5186 AllowedExit.insert(ExitInstruction);
5188 // Save the description of this reduction variable.
5189 ReductionDescriptor RD(RdxStart, ExitInstruction, Kind,
5190 ReduxDesc.MinMaxKind);
5191 Reductions[Phi] = RD;
5192 // We've ended the cycle. This is a reduction variable if we have an
5193 // outside user and it has a binary op.
5198 /// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction
5199 /// pattern corresponding to a min(X, Y) or max(X, Y).
5200 LoopVectorizationLegality::ReductionInstDesc
5201 LoopVectorizationLegality::isMinMaxSelectCmpPattern(Instruction *I,
5202 ReductionInstDesc &Prev) {
5204 assert((isa<ICmpInst>(I) || isa<FCmpInst>(I) || isa<SelectInst>(I)) &&
5205 "Expect a select instruction");
5206 Instruction *Cmp = nullptr;
5207 SelectInst *Select = nullptr;
5209 // We must handle the select(cmp()) as a single instruction. Advance to the
5211 if ((Cmp = dyn_cast<ICmpInst>(I)) || (Cmp = dyn_cast<FCmpInst>(I))) {
5212 if (!Cmp->hasOneUse() || !(Select = dyn_cast<SelectInst>(*I->user_begin())))
5213 return ReductionInstDesc(false, I);
5214 return ReductionInstDesc(Select, Prev.MinMaxKind);
5217 // Only handle single use cases for now.
5218 if (!(Select = dyn_cast<SelectInst>(I)))
5219 return ReductionInstDesc(false, I);
5220 if (!(Cmp = dyn_cast<ICmpInst>(I->getOperand(0))) &&
5221 !(Cmp = dyn_cast<FCmpInst>(I->getOperand(0))))
5222 return ReductionInstDesc(false, I);
5223 if (!Cmp->hasOneUse())
5224 return ReductionInstDesc(false, I);
5229 // Look for a min/max pattern.
5230 if (m_UMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
5231 return ReductionInstDesc(Select, MRK_UIntMin);
5232 else if (m_UMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
5233 return ReductionInstDesc(Select, MRK_UIntMax);
5234 else if (m_SMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
5235 return ReductionInstDesc(Select, MRK_SIntMax);
5236 else if (m_SMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
5237 return ReductionInstDesc(Select, MRK_SIntMin);
5238 else if (m_OrdFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
5239 return ReductionInstDesc(Select, MRK_FloatMin);
5240 else if (m_OrdFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
5241 return ReductionInstDesc(Select, MRK_FloatMax);
5242 else if (m_UnordFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
5243 return ReductionInstDesc(Select, MRK_FloatMin);
5244 else if (m_UnordFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
5245 return ReductionInstDesc(Select, MRK_FloatMax);
5247 return ReductionInstDesc(false, I);
5250 LoopVectorizationLegality::ReductionInstDesc
5251 LoopVectorizationLegality::isReductionInstr(Instruction *I,
5253 ReductionInstDesc &Prev) {
5254 bool FP = I->getType()->isFloatingPointTy();
5255 bool FastMath = FP && I->hasUnsafeAlgebra();
5256 switch (I->getOpcode()) {
5258 return ReductionInstDesc(false, I);
5259 case Instruction::PHI:
5260 if (FP && (Kind != RK_FloatMult && Kind != RK_FloatAdd &&
5261 Kind != RK_FloatMinMax))
5262 return ReductionInstDesc(false, I);
5263 return ReductionInstDesc(I, Prev.MinMaxKind);
5264 case Instruction::Sub:
5265 case Instruction::Add:
5266 return ReductionInstDesc(Kind == RK_IntegerAdd, I);
5267 case Instruction::Mul:
5268 return ReductionInstDesc(Kind == RK_IntegerMult, I);
5269 case Instruction::And:
5270 return ReductionInstDesc(Kind == RK_IntegerAnd, I);
5271 case Instruction::Or:
5272 return ReductionInstDesc(Kind == RK_IntegerOr, I);
5273 case Instruction::Xor:
5274 return ReductionInstDesc(Kind == RK_IntegerXor, I);
5275 case Instruction::FMul:
5276 return ReductionInstDesc(Kind == RK_FloatMult && FastMath, I);
5277 case Instruction::FSub:
5278 case Instruction::FAdd:
5279 return ReductionInstDesc(Kind == RK_FloatAdd && FastMath, I);
5280 case Instruction::FCmp:
5281 case Instruction::ICmp:
5282 case Instruction::Select:
5283 if (Kind != RK_IntegerMinMax &&
5284 (!HasFunNoNaNAttr || Kind != RK_FloatMinMax))
5285 return ReductionInstDesc(false, I);
5286 return isMinMaxSelectCmpPattern(I, Prev);
5290 LoopVectorizationLegality::InductionKind
5291 LoopVectorizationLegality::isInductionVariable(PHINode *Phi,
5292 ConstantInt *&StepValue) {
5293 Type *PhiTy = Phi->getType();
5294 // We only handle integer and pointer inductions variables.
5295 if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy())
5296 return IK_NoInduction;
5298 // Check that the PHI is consecutive.
5299 const SCEV *PhiScev = SE->getSCEV(Phi);
5300 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
5302 DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
5303 return IK_NoInduction;
5306 const SCEV *Step = AR->getStepRecurrence(*SE);
5307 // Calculate the pointer stride and check if it is consecutive.
5308 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
5310 return IK_NoInduction;
5312 ConstantInt *CV = C->getValue();
5313 if (PhiTy->isIntegerTy()) {
5315 return IK_IntInduction;
5318 assert(PhiTy->isPointerTy() && "The PHI must be a pointer");
5319 Type *PointerElementType = PhiTy->getPointerElementType();
5320 // The pointer stride cannot be determined if the pointer element type is not
5322 if (!PointerElementType->isSized())
5323 return IK_NoInduction;
5325 int64_t Size = static_cast<int64_t>(DL->getTypeAllocSize(PointerElementType));
5326 int64_t CVSize = CV->getSExtValue();
5328 return IK_NoInduction;
5329 StepValue = ConstantInt::getSigned(CV->getType(), CVSize / Size);
5330 return IK_PtrInduction;
5333 bool LoopVectorizationLegality::isInductionVariable(const Value *V) {
5334 Value *In0 = const_cast<Value*>(V);
5335 PHINode *PN = dyn_cast_or_null<PHINode>(In0);
5339 return Inductions.count(PN);
5342 bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) {
5343 assert(TheLoop->contains(BB) && "Unknown block used");
5345 // Blocks that do not dominate the latch need predication.
5346 BasicBlock* Latch = TheLoop->getLoopLatch();
5347 return !DT->dominates(BB, Latch);
5350 bool LoopVectorizationLegality::blockCanBePredicated(BasicBlock *BB,
5351 SmallPtrSetImpl<Value *> &SafePtrs) {
5353 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
5354 // Check that we don't have a constant expression that can trap as operand.
5355 for (Instruction::op_iterator OI = it->op_begin(), OE = it->op_end();
5357 if (Constant *C = dyn_cast<Constant>(*OI))
5361 // We might be able to hoist the load.
5362 if (it->mayReadFromMemory()) {
5363 LoadInst *LI = dyn_cast<LoadInst>(it);
5366 if (!SafePtrs.count(LI->getPointerOperand())) {
5367 if (isLegalMaskedLoad(LI->getType(), LI->getPointerOperand())) {
5368 MaskedOp.insert(LI);
5375 // We don't predicate stores at the moment.
5376 if (it->mayWriteToMemory()) {
5377 StoreInst *SI = dyn_cast<StoreInst>(it);
5378 // We only support predication of stores in basic blocks with one
5383 bool isSafePtr = (SafePtrs.count(SI->getPointerOperand()) != 0);
5384 bool isSinglePredecessor = SI->getParent()->getSinglePredecessor();
5386 if (++NumPredStores > NumberOfStoresToPredicate || !isSafePtr ||
5387 !isSinglePredecessor) {
5388 // Build a masked store if it is legal for the target, otherwise scalarize
5390 bool isLegalMaskedOp =
5391 isLegalMaskedStore(SI->getValueOperand()->getType(),
5392 SI->getPointerOperand());
5393 if (isLegalMaskedOp) {
5395 MaskedOp.insert(SI);
5404 // The instructions below can trap.
5405 switch (it->getOpcode()) {
5407 case Instruction::UDiv:
5408 case Instruction::SDiv:
5409 case Instruction::URem:
5410 case Instruction::SRem:
5418 LoopVectorizationCostModel::VectorizationFactor
5419 LoopVectorizationCostModel::selectVectorizationFactor(bool OptForSize) {
5420 // Width 1 means no vectorize
5421 VectorizationFactor Factor = { 1U, 0U };
5422 if (OptForSize && Legal->getRuntimePointerCheck()->Need) {
5423 emitAnalysis(Report() << "runtime pointer checks needed. Enable vectorization of this loop with '#pragma clang loop vectorize(enable)' when compiling with -Os");
5424 DEBUG(dbgs() << "LV: Aborting. Runtime ptr check is required in Os.\n");
5428 if (!EnableCondStoresVectorization && Legal->NumPredStores) {
5429 emitAnalysis(Report() << "store that is conditionally executed prevents vectorization");
5430 DEBUG(dbgs() << "LV: No vectorization. There are conditional stores.\n");
5434 // Find the trip count.
5435 unsigned TC = SE->getSmallConstantTripCount(TheLoop);
5436 DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n');
5438 unsigned WidestType = getWidestType();
5439 unsigned WidestRegister = TTI.getRegisterBitWidth(true);
5440 unsigned MaxSafeDepDist = -1U;
5441 if (Legal->getMaxSafeDepDistBytes() != -1U)
5442 MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8;
5443 WidestRegister = ((WidestRegister < MaxSafeDepDist) ?
5444 WidestRegister : MaxSafeDepDist);
5445 unsigned MaxVectorSize = WidestRegister / WidestType;
5446 DEBUG(dbgs() << "LV: The Widest type: " << WidestType << " bits.\n");
5447 DEBUG(dbgs() << "LV: The Widest register is: "
5448 << WidestRegister << " bits.\n");
5450 if (MaxVectorSize == 0) {
5451 DEBUG(dbgs() << "LV: The target has no vector registers.\n");
5455 assert(MaxVectorSize <= 64 && "Did not expect to pack so many elements"
5456 " into one vector!");
5458 unsigned VF = MaxVectorSize;
5460 // If we optimize the program for size, avoid creating the tail loop.
5462 // If we are unable to calculate the trip count then don't try to vectorize.
5464 emitAnalysis(Report() << "unable to calculate the loop count due to complex control flow");
5465 DEBUG(dbgs() << "LV: Aborting. A tail loop is required in Os.\n");
5469 // Find the maximum SIMD width that can fit within the trip count.
5470 VF = TC % MaxVectorSize;
5475 // If the trip count that we found modulo the vectorization factor is not
5476 // zero then we require a tail.
5478 emitAnalysis(Report() << "cannot optimize for size and vectorize at the "
5479 "same time. Enable vectorization of this loop "
5480 "with '#pragma clang loop vectorize(enable)' "
5481 "when compiling with -Os");
5482 DEBUG(dbgs() << "LV: Aborting. A tail loop is required in Os.\n");
5487 int UserVF = Hints->getWidth();
5489 assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two");
5490 DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n");
5492 Factor.Width = UserVF;
5496 float Cost = expectedCost(1);
5498 const float ScalarCost = Cost;
5501 DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n");
5503 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled;
5504 // Ignore scalar width, because the user explicitly wants vectorization.
5505 if (ForceVectorization && VF > 1) {
5507 Cost = expectedCost(Width) / (float)Width;
5510 for (unsigned i=2; i <= VF; i*=2) {
5511 // Notice that the vector loop needs to be executed less times, so
5512 // we need to divide the cost of the vector loops by the width of
5513 // the vector elements.
5514 float VectorCost = expectedCost(i) / (float)i;
5515 DEBUG(dbgs() << "LV: Vector loop of width " << i << " costs: " <<
5516 (int)VectorCost << ".\n");
5517 if (VectorCost < Cost) {
5523 DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs()
5524 << "LV: Vectorization seems to be not beneficial, "
5525 << "but was forced by a user.\n");
5526 DEBUG(dbgs() << "LV: Selecting VF: "<< Width << ".\n");
5527 Factor.Width = Width;
5528 Factor.Cost = Width * Cost;
5532 unsigned LoopVectorizationCostModel::getWidestType() {
5533 unsigned MaxWidth = 8;
5536 for (Loop::block_iterator bb = TheLoop->block_begin(),
5537 be = TheLoop->block_end(); bb != be; ++bb) {
5538 BasicBlock *BB = *bb;
5540 // For each instruction in the loop.
5541 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
5542 Type *T = it->getType();
5544 // Ignore ephemeral values.
5545 if (EphValues.count(it))
5548 // Only examine Loads, Stores and PHINodes.
5549 if (!isa<LoadInst>(it) && !isa<StoreInst>(it) && !isa<PHINode>(it))
5552 // Examine PHI nodes that are reduction variables.
5553 if (PHINode *PN = dyn_cast<PHINode>(it))
5554 if (!Legal->getReductionVars()->count(PN))
5557 // Examine the stored values.
5558 if (StoreInst *ST = dyn_cast<StoreInst>(it))
5559 T = ST->getValueOperand()->getType();
5561 // Ignore loaded pointer types and stored pointer types that are not
5562 // consecutive. However, we do want to take consecutive stores/loads of
5563 // pointer vectors into account.
5564 if (T->isPointerTy() && !isConsecutiveLoadOrStore(it))
5567 MaxWidth = std::max(MaxWidth,
5568 (unsigned)DL->getTypeSizeInBits(T->getScalarType()));
5576 LoopVectorizationCostModel::selectUnrollFactor(bool OptForSize,
5578 unsigned LoopCost) {
5580 // -- The unroll heuristics --
5581 // We unroll the loop in order to expose ILP and reduce the loop overhead.
5582 // There are many micro-architectural considerations that we can't predict
5583 // at this level. For example, frontend pressure (on decode or fetch) due to
5584 // code size, or the number and capabilities of the execution ports.
5586 // We use the following heuristics to select the unroll factor:
5587 // 1. If the code has reductions, then we unroll in order to break the cross
5588 // iteration dependency.
5589 // 2. If the loop is really small, then we unroll in order to reduce the loop
5591 // 3. We don't unroll if we think that we will spill registers to memory due
5592 // to the increased register pressure.
5594 // Use the user preference, unless 'auto' is selected.
5595 int UserUF = Hints->getInterleave();
5599 // When we optimize for size, we don't unroll.
5603 // We used the distance for the unroll factor.
5604 if (Legal->getMaxSafeDepDistBytes() != -1U)
5607 // Do not unroll loops with a relatively small trip count.
5608 unsigned TC = SE->getSmallConstantTripCount(TheLoop);
5609 if (TC > 1 && TC < TinyTripCountUnrollThreshold)
5612 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(VF > 1);
5613 DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters <<
5617 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0)
5618 TargetNumRegisters = ForceTargetNumScalarRegs;
5620 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0)
5621 TargetNumRegisters = ForceTargetNumVectorRegs;
5624 LoopVectorizationCostModel::RegisterUsage R = calculateRegisterUsage();
5625 // We divide by these constants so assume that we have at least one
5626 // instruction that uses at least one register.
5627 R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U);
5628 R.NumInstructions = std::max(R.NumInstructions, 1U);
5630 // We calculate the unroll factor using the following formula.
5631 // Subtract the number of loop invariants from the number of available
5632 // registers. These registers are used by all of the unrolled instances.
5633 // Next, divide the remaining registers by the number of registers that is
5634 // required by the loop, in order to estimate how many parallel instances
5635 // fit without causing spills. All of this is rounded down if necessary to be
5636 // a power of two. We want power of two unroll factors to simplify any
5637 // addressing operations or alignment considerations.
5638 unsigned UF = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs) /
5641 // Don't count the induction variable as unrolled.
5642 if (EnableIndVarRegisterHeur)
5643 UF = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs - 1) /
5644 std::max(1U, (R.MaxLocalUsers - 1)));
5646 // Clamp the unroll factor ranges to reasonable factors.
5647 unsigned MaxInterleaveSize = TTI.getMaxInterleaveFactor();
5649 // Check if the user has overridden the unroll max.
5651 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0)
5652 MaxInterleaveSize = ForceTargetMaxScalarInterleaveFactor;
5654 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0)
5655 MaxInterleaveSize = ForceTargetMaxVectorInterleaveFactor;
5658 // If we did not calculate the cost for VF (because the user selected the VF)
5659 // then we calculate the cost of VF here.
5661 LoopCost = expectedCost(VF);
5663 // Clamp the calculated UF to be between the 1 and the max unroll factor
5664 // that the target allows.
5665 if (UF > MaxInterleaveSize)
5666 UF = MaxInterleaveSize;
5670 // Unroll if we vectorized this loop and there is a reduction that could
5671 // benefit from unrolling.
5672 if (VF > 1 && Legal->getReductionVars()->size()) {
5673 DEBUG(dbgs() << "LV: Unrolling because of reductions.\n");
5677 // Note that if we've already vectorized the loop we will have done the
5678 // runtime check and so unrolling won't require further checks.
5679 bool UnrollingRequiresRuntimePointerCheck =
5680 (VF == 1 && Legal->getRuntimePointerCheck()->Need);
5682 // We want to unroll small loops in order to reduce the loop overhead and
5683 // potentially expose ILP opportunities.
5684 DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n');
5685 if (!UnrollingRequiresRuntimePointerCheck &&
5686 LoopCost < SmallLoopCost) {
5687 // We assume that the cost overhead is 1 and we use the cost model
5688 // to estimate the cost of the loop and unroll until the cost of the
5689 // loop overhead is about 5% of the cost of the loop.
5690 unsigned SmallUF = std::min(UF, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost));
5692 // Unroll until store/load ports (estimated by max unroll factor) are
5694 unsigned StoresUF = UF / (Legal->NumStores ? Legal->NumStores : 1);
5695 unsigned LoadsUF = UF / (Legal->NumLoads ? Legal->NumLoads : 1);
5697 // If we have a scalar reduction (vector reductions are already dealt with
5698 // by this point), we can increase the critical path length if the loop
5699 // we're unrolling is inside another loop. Limit, by default to 2, so the
5700 // critical path only gets increased by one reduction operation.
5701 if (Legal->getReductionVars()->size() &&
5702 TheLoop->getLoopDepth() > 1) {
5703 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionUF);
5704 SmallUF = std::min(SmallUF, F);
5705 StoresUF = std::min(StoresUF, F);
5706 LoadsUF = std::min(LoadsUF, F);
5709 if (EnableLoadStoreRuntimeUnroll && std::max(StoresUF, LoadsUF) > SmallUF) {
5710 DEBUG(dbgs() << "LV: Unrolling to saturate store or load ports.\n");
5711 return std::max(StoresUF, LoadsUF);
5714 DEBUG(dbgs() << "LV: Unrolling to reduce branch cost.\n");
5718 DEBUG(dbgs() << "LV: Not Unrolling.\n");
5722 LoopVectorizationCostModel::RegisterUsage
5723 LoopVectorizationCostModel::calculateRegisterUsage() {
5724 // This function calculates the register usage by measuring the highest number
5725 // of values that are alive at a single location. Obviously, this is a very
5726 // rough estimation. We scan the loop in a topological order in order and
5727 // assign a number to each instruction. We use RPO to ensure that defs are
5728 // met before their users. We assume that each instruction that has in-loop
5729 // users starts an interval. We record every time that an in-loop value is
5730 // used, so we have a list of the first and last occurrences of each
5731 // instruction. Next, we transpose this data structure into a multi map that
5732 // holds the list of intervals that *end* at a specific location. This multi
5733 // map allows us to perform a linear search. We scan the instructions linearly
5734 // and record each time that a new interval starts, by placing it in a set.
5735 // If we find this value in the multi-map then we remove it from the set.
5736 // The max register usage is the maximum size of the set.
5737 // We also search for instructions that are defined outside the loop, but are
5738 // used inside the loop. We need this number separately from the max-interval
5739 // usage number because when we unroll, loop-invariant values do not take
5741 LoopBlocksDFS DFS(TheLoop);
5745 R.NumInstructions = 0;
5747 // Each 'key' in the map opens a new interval. The values
5748 // of the map are the index of the 'last seen' usage of the
5749 // instruction that is the key.
5750 typedef DenseMap<Instruction*, unsigned> IntervalMap;
5751 // Maps instruction to its index.
5752 DenseMap<unsigned, Instruction*> IdxToInstr;
5753 // Marks the end of each interval.
5754 IntervalMap EndPoint;
5755 // Saves the list of instruction indices that are used in the loop.
5756 SmallSet<Instruction*, 8> Ends;
5757 // Saves the list of values that are used in the loop but are
5758 // defined outside the loop, such as arguments and constants.
5759 SmallPtrSet<Value*, 8> LoopInvariants;
5762 for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(),
5763 be = DFS.endRPO(); bb != be; ++bb) {
5764 R.NumInstructions += (*bb)->size();
5765 for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e;
5767 Instruction *I = it;
5768 IdxToInstr[Index++] = I;
5770 // Save the end location of each USE.
5771 for (unsigned i = 0; i < I->getNumOperands(); ++i) {
5772 Value *U = I->getOperand(i);
5773 Instruction *Instr = dyn_cast<Instruction>(U);
5775 // Ignore non-instruction values such as arguments, constants, etc.
5776 if (!Instr) continue;
5778 // If this instruction is outside the loop then record it and continue.
5779 if (!TheLoop->contains(Instr)) {
5780 LoopInvariants.insert(Instr);
5784 // Overwrite previous end points.
5785 EndPoint[Instr] = Index;
5791 // Saves the list of intervals that end with the index in 'key'.
5792 typedef SmallVector<Instruction*, 2> InstrList;
5793 DenseMap<unsigned, InstrList> TransposeEnds;
5795 // Transpose the EndPoints to a list of values that end at each index.
5796 for (IntervalMap::iterator it = EndPoint.begin(), e = EndPoint.end();
5798 TransposeEnds[it->second].push_back(it->first);
5800 SmallSet<Instruction*, 8> OpenIntervals;
5801 unsigned MaxUsage = 0;
5804 DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n");
5805 for (unsigned int i = 0; i < Index; ++i) {
5806 Instruction *I = IdxToInstr[i];
5807 // Ignore instructions that are never used within the loop.
5808 if (!Ends.count(I)) continue;
5810 // Ignore ephemeral values.
5811 if (EphValues.count(I))
5814 // Remove all of the instructions that end at this location.
5815 InstrList &List = TransposeEnds[i];
5816 for (unsigned int j=0, e = List.size(); j < e; ++j)
5817 OpenIntervals.erase(List[j]);
5819 // Count the number of live interals.
5820 MaxUsage = std::max(MaxUsage, OpenIntervals.size());
5822 DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " <<
5823 OpenIntervals.size() << '\n');
5825 // Add the current instruction to the list of open intervals.
5826 OpenIntervals.insert(I);
5829 unsigned Invariant = LoopInvariants.size();
5830 DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsage << '\n');
5831 DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant << '\n');
5832 DEBUG(dbgs() << "LV(REG): LoopSize: " << R.NumInstructions << '\n');
5834 R.LoopInvariantRegs = Invariant;
5835 R.MaxLocalUsers = MaxUsage;
5839 unsigned LoopVectorizationCostModel::expectedCost(unsigned VF) {
5843 for (Loop::block_iterator bb = TheLoop->block_begin(),
5844 be = TheLoop->block_end(); bb != be; ++bb) {
5845 unsigned BlockCost = 0;
5846 BasicBlock *BB = *bb;
5848 // For each instruction in the old loop.
5849 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
5850 // Skip dbg intrinsics.
5851 if (isa<DbgInfoIntrinsic>(it))
5854 // Ignore ephemeral values.
5855 if (EphValues.count(it))
5858 unsigned C = getInstructionCost(it, VF);
5860 // Check if we should override the cost.
5861 if (ForceTargetInstructionCost.getNumOccurrences() > 0)
5862 C = ForceTargetInstructionCost;
5865 DEBUG(dbgs() << "LV: Found an estimated cost of " << C << " for VF " <<
5866 VF << " For instruction: " << *it << '\n');
5869 // We assume that if-converted blocks have a 50% chance of being executed.
5870 // When the code is scalar then some of the blocks are avoided due to CF.
5871 // When the code is vectorized we execute all code paths.
5872 if (VF == 1 && Legal->blockNeedsPredication(*bb))
5881 /// \brief Check whether the address computation for a non-consecutive memory
5882 /// access looks like an unlikely candidate for being merged into the indexing
5885 /// We look for a GEP which has one index that is an induction variable and all
5886 /// other indices are loop invariant. If the stride of this access is also
5887 /// within a small bound we decide that this address computation can likely be
5888 /// merged into the addressing mode.
5889 /// In all other cases, we identify the address computation as complex.
5890 static bool isLikelyComplexAddressComputation(Value *Ptr,
5891 LoopVectorizationLegality *Legal,
5892 ScalarEvolution *SE,
5893 const Loop *TheLoop) {
5894 GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr);
5898 // We are looking for a gep with all loop invariant indices except for one
5899 // which should be an induction variable.
5900 unsigned NumOperands = Gep->getNumOperands();
5901 for (unsigned i = 1; i < NumOperands; ++i) {
5902 Value *Opd = Gep->getOperand(i);
5903 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) &&
5904 !Legal->isInductionVariable(Opd))
5908 // Now we know we have a GEP ptr, %inv, %ind, %inv. Make sure that the step
5909 // can likely be merged into the address computation.
5910 unsigned MaxMergeDistance = 64;
5912 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Ptr));
5916 // Check the step is constant.
5917 const SCEV *Step = AddRec->getStepRecurrence(*SE);
5918 // Calculate the pointer stride and check if it is consecutive.
5919 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
5923 const APInt &APStepVal = C->getValue()->getValue();
5925 // Huge step value - give up.
5926 if (APStepVal.getBitWidth() > 64)
5929 int64_t StepVal = APStepVal.getSExtValue();
5931 return StepVal > MaxMergeDistance;
5934 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) {
5935 if (Legal->hasStride(I->getOperand(0)) || Legal->hasStride(I->getOperand(1)))
5941 LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) {
5942 // If we know that this instruction will remain uniform, check the cost of
5943 // the scalar version.
5944 if (Legal->isUniformAfterVectorization(I))
5947 Type *RetTy = I->getType();
5948 Type *VectorTy = ToVectorTy(RetTy, VF);
5950 // TODO: We need to estimate the cost of intrinsic calls.
5951 switch (I->getOpcode()) {
5952 case Instruction::GetElementPtr:
5953 // We mark this instruction as zero-cost because the cost of GEPs in
5954 // vectorized code depends on whether the corresponding memory instruction
5955 // is scalarized or not. Therefore, we handle GEPs with the memory
5956 // instruction cost.
5958 case Instruction::Br: {
5959 return TTI.getCFInstrCost(I->getOpcode());
5961 case Instruction::PHI:
5962 //TODO: IF-converted IFs become selects.
5964 case Instruction::Add:
5965 case Instruction::FAdd:
5966 case Instruction::Sub:
5967 case Instruction::FSub:
5968 case Instruction::Mul:
5969 case Instruction::FMul:
5970 case Instruction::UDiv:
5971 case Instruction::SDiv:
5972 case Instruction::FDiv:
5973 case Instruction::URem:
5974 case Instruction::SRem:
5975 case Instruction::FRem:
5976 case Instruction::Shl:
5977 case Instruction::LShr:
5978 case Instruction::AShr:
5979 case Instruction::And:
5980 case Instruction::Or:
5981 case Instruction::Xor: {
5982 // Since we will replace the stride by 1 the multiplication should go away.
5983 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal))
5985 // Certain instructions can be cheaper to vectorize if they have a constant
5986 // second vector operand. One example of this are shifts on x86.
5987 TargetTransformInfo::OperandValueKind Op1VK =
5988 TargetTransformInfo::OK_AnyValue;
5989 TargetTransformInfo::OperandValueKind Op2VK =
5990 TargetTransformInfo::OK_AnyValue;
5991 TargetTransformInfo::OperandValueProperties Op1VP =
5992 TargetTransformInfo::OP_None;
5993 TargetTransformInfo::OperandValueProperties Op2VP =
5994 TargetTransformInfo::OP_None;
5995 Value *Op2 = I->getOperand(1);
5997 // Check for a splat of a constant or for a non uniform vector of constants.
5998 if (isa<ConstantInt>(Op2)) {
5999 ConstantInt *CInt = cast<ConstantInt>(Op2);
6000 if (CInt && CInt->getValue().isPowerOf2())
6001 Op2VP = TargetTransformInfo::OP_PowerOf2;
6002 Op2VK = TargetTransformInfo::OK_UniformConstantValue;
6003 } else if (isa<ConstantVector>(Op2) || isa<ConstantDataVector>(Op2)) {
6004 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue;
6005 Constant *SplatValue = cast<Constant>(Op2)->getSplatValue();
6007 ConstantInt *CInt = dyn_cast<ConstantInt>(SplatValue);
6008 if (CInt && CInt->getValue().isPowerOf2())
6009 Op2VP = TargetTransformInfo::OP_PowerOf2;
6010 Op2VK = TargetTransformInfo::OK_UniformConstantValue;
6014 return TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy, Op1VK, Op2VK,
6017 case Instruction::Select: {
6018 SelectInst *SI = cast<SelectInst>(I);
6019 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition());
6020 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop));
6021 Type *CondTy = SI->getCondition()->getType();
6023 CondTy = VectorType::get(CondTy, VF);
6025 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy);
6027 case Instruction::ICmp:
6028 case Instruction::FCmp: {
6029 Type *ValTy = I->getOperand(0)->getType();
6030 VectorTy = ToVectorTy(ValTy, VF);
6031 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy);
6033 case Instruction::Store:
6034 case Instruction::Load: {
6035 StoreInst *SI = dyn_cast<StoreInst>(I);
6036 LoadInst *LI = dyn_cast<LoadInst>(I);
6037 Type *ValTy = (SI ? SI->getValueOperand()->getType() :
6039 VectorTy = ToVectorTy(ValTy, VF);
6041 unsigned Alignment = SI ? SI->getAlignment() : LI->getAlignment();
6042 unsigned AS = SI ? SI->getPointerAddressSpace() :
6043 LI->getPointerAddressSpace();
6044 Value *Ptr = SI ? SI->getPointerOperand() : LI->getPointerOperand();
6045 // We add the cost of address computation here instead of with the gep
6046 // instruction because only here we know whether the operation is
6049 return TTI.getAddressComputationCost(VectorTy) +
6050 TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS);
6052 // Scalarized loads/stores.
6053 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr);
6054 bool Reverse = ConsecutiveStride < 0;
6055 unsigned ScalarAllocatedSize = DL->getTypeAllocSize(ValTy);
6056 unsigned VectorElementSize = DL->getTypeStoreSize(VectorTy)/VF;
6057 if (!ConsecutiveStride || ScalarAllocatedSize != VectorElementSize) {
6058 bool IsComplexComputation =
6059 isLikelyComplexAddressComputation(Ptr, Legal, SE, TheLoop);
6061 // The cost of extracting from the value vector and pointer vector.
6062 Type *PtrTy = ToVectorTy(Ptr->getType(), VF);
6063 for (unsigned i = 0; i < VF; ++i) {
6064 // The cost of extracting the pointer operand.
6065 Cost += TTI.getVectorInstrCost(Instruction::ExtractElement, PtrTy, i);
6066 // In case of STORE, the cost of ExtractElement from the vector.
6067 // In case of LOAD, the cost of InsertElement into the returned
6069 Cost += TTI.getVectorInstrCost(SI ? Instruction::ExtractElement :
6070 Instruction::InsertElement,
6074 // The cost of the scalar loads/stores.
6075 Cost += VF * TTI.getAddressComputationCost(PtrTy, IsComplexComputation);
6076 Cost += VF * TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(),
6081 // Wide load/stores.
6082 unsigned Cost = TTI.getAddressComputationCost(VectorTy);
6083 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS);
6086 Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse,
6090 case Instruction::ZExt:
6091 case Instruction::SExt:
6092 case Instruction::FPToUI:
6093 case Instruction::FPToSI:
6094 case Instruction::FPExt:
6095 case Instruction::PtrToInt:
6096 case Instruction::IntToPtr:
6097 case Instruction::SIToFP:
6098 case Instruction::UIToFP:
6099 case Instruction::Trunc:
6100 case Instruction::FPTrunc:
6101 case Instruction::BitCast: {
6102 // We optimize the truncation of induction variable.
6103 // The cost of these is the same as the scalar operation.
6104 if (I->getOpcode() == Instruction::Trunc &&
6105 Legal->isInductionVariable(I->getOperand(0)))
6106 return TTI.getCastInstrCost(I->getOpcode(), I->getType(),
6107 I->getOperand(0)->getType());
6109 Type *SrcVecTy = ToVectorTy(I->getOperand(0)->getType(), VF);
6110 return TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy);
6112 case Instruction::Call: {
6113 CallInst *CI = cast<CallInst>(I);
6114 Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI);
6115 assert(ID && "Not an intrinsic call!");
6116 Type *RetTy = ToVectorTy(CI->getType(), VF);
6117 SmallVector<Type*, 4> Tys;
6118 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i)
6119 Tys.push_back(ToVectorTy(CI->getArgOperand(i)->getType(), VF));
6120 return TTI.getIntrinsicInstrCost(ID, RetTy, Tys);
6123 // We are scalarizing the instruction. Return the cost of the scalar
6124 // instruction, plus the cost of insert and extract into vector
6125 // elements, times the vector width.
6128 if (!RetTy->isVoidTy() && VF != 1) {
6129 unsigned InsCost = TTI.getVectorInstrCost(Instruction::InsertElement,
6131 unsigned ExtCost = TTI.getVectorInstrCost(Instruction::ExtractElement,
6134 // The cost of inserting the results plus extracting each one of the
6136 Cost += VF * (InsCost + ExtCost * I->getNumOperands());
6139 // The cost of executing VF copies of the scalar instruction. This opcode
6140 // is unknown. Assume that it is the same as 'mul'.
6141 Cost += VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy);
6147 Type* LoopVectorizationCostModel::ToVectorTy(Type *Scalar, unsigned VF) {
6148 if (Scalar->isVoidTy() || VF == 1)
6150 return VectorType::get(Scalar, VF);
6153 char LoopVectorize::ID = 0;
6154 static const char lv_name[] = "Loop Vectorization";
6155 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false)
6156 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
6157 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
6158 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
6159 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfo)
6160 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
6161 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
6162 INITIALIZE_PASS_DEPENDENCY(LCSSA)
6163 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
6164 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
6165 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false)
6168 Pass *createLoopVectorizePass(bool NoUnrolling, bool AlwaysVectorize) {
6169 return new LoopVectorize(NoUnrolling, AlwaysVectorize);
6173 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) {
6174 // Check for a store.
6175 if (StoreInst *ST = dyn_cast<StoreInst>(Inst))
6176 return Legal->isConsecutivePtr(ST->getPointerOperand()) != 0;
6178 // Check for a load.
6179 if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
6180 return Legal->isConsecutivePtr(LI->getPointerOperand()) != 0;
6186 void InnerLoopUnroller::scalarizeInstruction(Instruction *Instr,
6187 bool IfPredicateStore) {
6188 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
6189 // Holds vector parameters or scalars, in case of uniform vals.
6190 SmallVector<VectorParts, 4> Params;
6192 setDebugLocFromInst(Builder, Instr);
6194 // Find all of the vectorized parameters.
6195 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
6196 Value *SrcOp = Instr->getOperand(op);
6198 // If we are accessing the old induction variable, use the new one.
6199 if (SrcOp == OldInduction) {
6200 Params.push_back(getVectorValue(SrcOp));
6204 // Try using previously calculated values.
6205 Instruction *SrcInst = dyn_cast<Instruction>(SrcOp);
6207 // If the src is an instruction that appeared earlier in the basic block
6208 // then it should already be vectorized.
6209 if (SrcInst && OrigLoop->contains(SrcInst)) {
6210 assert(WidenMap.has(SrcInst) && "Source operand is unavailable");
6211 // The parameter is a vector value from earlier.
6212 Params.push_back(WidenMap.get(SrcInst));
6214 // The parameter is a scalar from outside the loop. Maybe even a constant.
6215 VectorParts Scalars;
6216 Scalars.append(UF, SrcOp);
6217 Params.push_back(Scalars);
6221 assert(Params.size() == Instr->getNumOperands() &&
6222 "Invalid number of operands");
6224 // Does this instruction return a value ?
6225 bool IsVoidRetTy = Instr->getType()->isVoidTy();
6227 Value *UndefVec = IsVoidRetTy ? nullptr :
6228 UndefValue::get(Instr->getType());
6229 // Create a new entry in the WidenMap and initialize it to Undef or Null.
6230 VectorParts &VecResults = WidenMap.splat(Instr, UndefVec);
6232 Instruction *InsertPt = Builder.GetInsertPoint();
6233 BasicBlock *IfBlock = Builder.GetInsertBlock();
6234 BasicBlock *CondBlock = nullptr;
6237 Loop *VectorLp = nullptr;
6238 if (IfPredicateStore) {
6239 assert(Instr->getParent()->getSinglePredecessor() &&
6240 "Only support single predecessor blocks");
6241 Cond = createEdgeMask(Instr->getParent()->getSinglePredecessor(),
6242 Instr->getParent());
6243 VectorLp = LI->getLoopFor(IfBlock);
6244 assert(VectorLp && "Must have a loop for this block");
6247 // For each vector unroll 'part':
6248 for (unsigned Part = 0; Part < UF; ++Part) {
6249 // For each scalar that we create:
6251 // Start an "if (pred) a[i] = ..." block.
6252 Value *Cmp = nullptr;
6253 if (IfPredicateStore) {
6254 if (Cond[Part]->getType()->isVectorTy())
6256 Builder.CreateExtractElement(Cond[Part], Builder.getInt32(0));
6257 Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cond[Part],
6258 ConstantInt::get(Cond[Part]->getType(), 1));
6259 CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.store");
6260 LoopVectorBody.push_back(CondBlock);
6261 VectorLp->addBasicBlockToLoop(CondBlock, *LI);
6262 // Update Builder with newly created basic block.
6263 Builder.SetInsertPoint(InsertPt);
6266 Instruction *Cloned = Instr->clone();
6268 Cloned->setName(Instr->getName() + ".cloned");
6269 // Replace the operands of the cloned instructions with extracted scalars.
6270 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
6271 Value *Op = Params[op][Part];
6272 Cloned->setOperand(op, Op);
6275 // Place the cloned scalar in the new loop.
6276 Builder.Insert(Cloned);
6278 // If the original scalar returns a value we need to place it in a vector
6279 // so that future users will be able to use it.
6281 VecResults[Part] = Cloned;
6284 if (IfPredicateStore) {
6285 BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else");
6286 LoopVectorBody.push_back(NewIfBlock);
6287 VectorLp->addBasicBlockToLoop(NewIfBlock, *LI);
6288 Builder.SetInsertPoint(InsertPt);
6289 Instruction *OldBr = IfBlock->getTerminator();
6290 BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr);
6291 OldBr->eraseFromParent();
6292 IfBlock = NewIfBlock;
6297 void InnerLoopUnroller::vectorizeMemoryInstruction(Instruction *Instr) {
6298 StoreInst *SI = dyn_cast<StoreInst>(Instr);
6299 bool IfPredicateStore = (SI && Legal->blockNeedsPredication(SI->getParent()));
6301 return scalarizeInstruction(Instr, IfPredicateStore);
6304 Value *InnerLoopUnroller::reverseVector(Value *Vec) {
6308 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) {
6312 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step) {
6313 // When unrolling and the VF is 1, we only need to add a simple scalar.
6314 Type *ITy = Val->getType();
6315 assert(!ITy->isVectorTy() && "Val must be a scalar");
6316 Constant *C = ConstantInt::get(ITy, StartIdx);
6317 return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction");