8d1497939da7f703b88908764c26a6e67208c629
[oota-llvm.git] / lib / Transforms / Utils / LCSSA.cpp
1 //===-- LCSSA.cpp - Convert loops into loop-closed SSA form ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file was developed by Owen Anderson and is distributed under the
6 // University of Illinois Open Source License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass transforms loops by placing phi nodes at the end of the loops for
11 // all values that are live across the loop boundary.  For example, it turns
12 // the left into the right code:
13 // 
14 // for (...)                for (...)
15 //   if (c)                   if(c)
16 //     X1 = ...                 X1 = ...
17 //   else                     else
18 //     X2 = ...                 X2 = ...
19 //   X3 = phi(X1, X2)         X3 = phi(X1, X2)
20 // ... = X3 + 4              X4 = phi(X3)
21 //                           ... = X4 + 4
22 //
23 // This is still valid LLVM; the extra phi nodes are purely redundant, and will
24 // be trivially eliminated by InstCombine.  The major benefit of this 
25 // transformation is that it makes many other loop optimizations, such as 
26 // LoopUnswitching, simpler.
27 //
28 //===----------------------------------------------------------------------===//
29
30 #include "llvm/Transforms/Scalar.h"
31 #include "llvm/Pass.h"
32 #include "llvm/Function.h"
33 #include "llvm/Instructions.h"
34 #include "llvm/ADT/SetVector.h"
35 #include "llvm/ADT/Statistic.h"
36 #include "llvm/Analysis/Dominators.h"
37 #include "llvm/Analysis/LoopInfo.h"
38 #include "llvm/Support/CFG.h"
39 #include <algorithm>
40 #include <map>
41
42 using namespace llvm;
43
44 namespace {
45   static Statistic<> NumLCSSA("lcssa",
46                               "Number of live out of a loop variables");
47   
48   class LCSSA : public FunctionPass {
49   public:
50     
51   
52     LoopInfo *LI;  // Loop information
53     DominatorTree *DT;       // Dominator Tree for the current Function...
54     DominanceFrontier *DF;   // Current Dominance Frontier
55     std::vector<BasicBlock*> LoopBlocks;
56     
57     virtual bool runOnFunction(Function &F);
58     bool visitSubloop(Loop* L);
59     void processInstruction(Instruction* Instr,
60                             const std::vector<BasicBlock*>& exitBlocks);
61     
62     /// This transformation requires natural loop information & requires that
63     /// loop preheaders be inserted into the CFG.  It maintains both of these,
64     /// as well as the CFG.  It also requires dominator information.
65     ///
66     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
67       AU.setPreservesCFG();
68       AU.addRequiredID(LoopSimplifyID);
69       AU.addPreservedID(LoopSimplifyID);
70       AU.addRequired<LoopInfo>();
71       AU.addRequired<DominatorTree>();
72       AU.addRequired<DominanceFrontier>();
73     }
74   private:
75     SetVector<Instruction*> getLoopValuesUsedOutsideLoop(Loop *L);
76     Instruction *getValueDominatingBlock(BasicBlock *BB,
77                                   std::map<BasicBlock*, Instruction*>& PotDoms);
78                                   
79     /// inLoop - returns true if the given block is within the current loop
80     const bool inLoop(BasicBlock* B) {
81            return std::binary_search(LoopBlocks.begin(), LoopBlocks.end(), B); }
82   };
83   
84   RegisterOpt<LCSSA> X("lcssa", "Loop-Closed SSA Form Pass");
85 }
86
87 FunctionPass *llvm::createLCSSAPass() { return new LCSSA(); }
88
89 bool LCSSA::runOnFunction(Function &F) {
90   bool changed = false;
91   LI = &getAnalysis<LoopInfo>();
92   DF = &getAnalysis<DominanceFrontier>();
93   DT = &getAnalysis<DominatorTree>();
94     
95   for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) {
96     changed |= visitSubloop(*I);
97   }
98       
99   return changed;
100 }
101
102 bool LCSSA::visitSubloop(Loop* L) {
103   for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
104     visitSubloop(*I);
105   
106   // Speed up queries by creating a sorted list of blocks
107   LoopBlocks.clear();
108   LoopBlocks.insert(LoopBlocks.end(), L->block_begin(), L->block_end());
109   std::sort(LoopBlocks.begin(), LoopBlocks.end());
110   
111   SetVector<Instruction*> AffectedValues = getLoopValuesUsedOutsideLoop(L);
112   
113   // If no values are affected, we can save a lot of work, since we know that
114   // nothing will be changed.
115   if (AffectedValues.empty())
116     return false;
117   
118   std::vector<BasicBlock*> exitBlocks;
119   L->getExitBlocks(exitBlocks);
120   
121   
122   // Iterate over all affected values for this loop and insert Phi nodes
123   // for them in the appropriate exit blocks
124   
125   for (SetVector<Instruction*>::iterator I = AffectedValues.begin(),
126        E = AffectedValues.end(); I != E; ++I) {
127     processInstruction(*I, exitBlocks);
128   }
129   
130   return true;
131 }
132
133 /// processInstruction - 
134 void LCSSA::processInstruction(Instruction* Instr,
135                                const std::vector<BasicBlock*>& exitBlocks)
136 {
137   ++NumLCSSA; // We are applying the transformation
138   
139   std::map<BasicBlock*, Instruction*> Phis;
140   
141   // Add the base instruction to the Phis list.  This makes tracking down
142   // the dominating values easier when we're filling in Phi nodes.  This will
143   // be removed later, before we perform use replacement.
144   Phis[Instr->getParent()] = Instr;
145   
146   // Phi nodes that need to be IDF-processed
147   std::vector<PHINode*> workList;
148   
149   for (std::vector<BasicBlock*>::const_iterator BBI = exitBlocks.begin(),
150       BBE = exitBlocks.end(); BBI != BBE; ++BBI)
151     if (DT->getNode(Instr->getParent())->dominates(DT->getNode(*BBI))) {
152       PHINode *phi = new PHINode(Instr->getType(), Instr->getName()+".lcssa",
153                                  (*BBI)->begin());
154       workList.push_back(phi);
155       Phis[*BBI] = phi;
156     }
157   
158   // Phi nodes that need to have their incoming values filled.
159   std::vector<PHINode*> needIncomingValues;
160   
161   // Calculate the IDF of these LCSSA Phi nodes, inserting new Phi's where
162   // necessary.  Keep track of these new Phi's in the "Phis" map.
163   while (!workList.empty()) {
164     PHINode *CurPHI = workList.back();
165     workList.pop_back();
166     
167     // Even though we've removed this Phi from the work list, we still need
168     // to fill in its incoming values.
169     needIncomingValues.push_back(CurPHI);
170     
171     // Get the current Phi's DF, and insert Phi nodes.  Add these new
172     // nodes to our worklist.
173     DominanceFrontier::const_iterator it = DF->find(CurPHI->getParent());
174     if (it != DF->end()) {
175       const DominanceFrontier::DomSetType &S = it->second;
176       for (DominanceFrontier::DomSetType::const_iterator P = S.begin(),
177            PE = S.end(); P != PE; ++P) {
178         if (DT->getNode(Instr->getParent())->dominates(DT->getNode(*P))) {
179           Instruction *&Phi = Phis[*P];
180           if (Phi == 0) {
181             // Still doesn't have operands...
182             Phi = new PHINode(Instr->getType(), Instr->getName()+".lcssa",
183                               (*P)->begin());
184           
185             workList.push_back(cast<PHINode>(Phi));
186           }
187         }
188       }
189     }
190   }
191   
192   // Fill in all Phis we've inserted that need their incoming values filled in.
193   for (std::vector<PHINode*>::iterator IVI = needIncomingValues.begin(),
194        IVE = needIncomingValues.end(); IVI != IVE; ++IVI) {
195     for (pred_iterator PI = pred_begin((*IVI)->getParent()),
196          E = pred_end((*IVI)->getParent()); PI != E; ++PI)
197       (*IVI)->addIncoming(getValueDominatingBlock(*PI, Phis),
198                           *PI);
199   }
200   
201   // Find all uses of the affected value, and replace them with the
202   // appropriate Phi.
203   std::vector<Instruction*> Uses;
204   for (Instruction::use_iterator UI = Instr->use_begin(), UE = Instr->use_end();
205        UI != UE; ++UI) {
206     Instruction* use = cast<Instruction>(*UI);
207     // Don't need to update uses within the loop body.
208     if (!inLoop(use->getParent()))
209       Uses.push_back(use);
210   }
211   
212   for (std::vector<Instruction*>::iterator II = Uses.begin(), IE = Uses.end();
213        II != IE; ++II) {
214     if (PHINode* phi = dyn_cast<PHINode>(*II)) {
215       for (unsigned int i = 0; i < phi->getNumIncomingValues(); ++i) {
216         if (phi->getIncomingValue(i) == Instr) {
217           Instruction* dominator = 
218                         getValueDominatingBlock(phi->getIncomingBlock(i), Phis);
219           phi->setIncomingValue(i, dominator);
220         }
221       }
222     } else {
223        Value *NewVal = getValueDominatingBlock((*II)->getParent(), Phis);
224        (*II)->replaceUsesOfWith(Instr, NewVal);
225     }
226   }
227 }
228
229 /// getLoopValuesUsedOutsideLoop - Return any values defined in the loop that
230 /// are used by instructions outside of it.
231 SetVector<Instruction*> LCSSA::getLoopValuesUsedOutsideLoop(Loop *L) {
232   
233   // FIXME: For large loops, we may be able to avoid a lot of use-scanning
234   // by using dominance information.  In particular, if a block does not
235   // dominate any of the loop exits, then none of the values defined in the
236   // block could be used outside the loop.
237   
238   SetVector<Instruction*> AffectedValues;  
239   for (Loop::block_iterator BB = L->block_begin(), E = L->block_end();
240        BB != E; ++BB) {
241     for (BasicBlock::iterator I = (*BB)->begin(), E = (*BB)->end(); I != E; ++I)
242       for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
243            ++UI) {
244         BasicBlock *UserBB = cast<Instruction>(*UI)->getParent();
245         if (!std::binary_search(LoopBlocks.begin(), LoopBlocks.end(), UserBB))
246         {
247           AffectedValues.insert(I);
248           break;
249         }
250       }
251   }
252   return AffectedValues;
253 }
254
255 Instruction *LCSSA::getValueDominatingBlock(BasicBlock *BB,
256                                  std::map<BasicBlock*, Instruction*>& PotDoms) {
257   DominatorTree::Node* bbNode = DT->getNode(BB);
258   while (bbNode != 0) {
259     std::map<BasicBlock*, Instruction*>::iterator I =
260                                                PotDoms.find(bbNode->getBlock());
261     if (I != PotDoms.end()) {
262       return (*I).second;
263     }
264     bbNode = bbNode->getIDom();
265   }
266   
267   assert(0 && "No dominating value found.");
268   
269   return 0;
270 }