1 //===- GVN.cpp - Eliminate redundant values and loads ---------------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This pass performs global value numbering to eliminate fully redundant
11 // instructions. It also performs simple dead load elimination.
13 // Note that this pass does the value numbering itself; it does not use the
14 // ValueNumbering analysis passes.
16 //===----------------------------------------------------------------------===//
18 #include "llvm/Transforms/Scalar.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/DepthFirstIterator.h"
21 #include "llvm/ADT/Hashing.h"
22 #include "llvm/ADT/MapVector.h"
23 #include "llvm/ADT/SetVector.h"
24 #include "llvm/ADT/SmallPtrSet.h"
25 #include "llvm/ADT/Statistic.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Analysis/AssumptionCache.h"
28 #include "llvm/Analysis/CFG.h"
29 #include "llvm/Analysis/ConstantFolding.h"
30 #include "llvm/Analysis/InstructionSimplify.h"
31 #include "llvm/Analysis/Loads.h"
32 #include "llvm/Analysis/MemoryBuiltins.h"
33 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
34 #include "llvm/Analysis/PHITransAddr.h"
35 #include "llvm/Analysis/ValueTracking.h"
36 #include "llvm/IR/DataLayout.h"
37 #include "llvm/IR/Dominators.h"
38 #include "llvm/IR/GlobalVariable.h"
39 #include "llvm/IR/IRBuilder.h"
40 #include "llvm/IR/IntrinsicInst.h"
41 #include "llvm/IR/LLVMContext.h"
42 #include "llvm/IR/Metadata.h"
43 #include "llvm/IR/PatternMatch.h"
44 #include "llvm/Support/Allocator.h"
45 #include "llvm/Support/CommandLine.h"
46 #include "llvm/Support/Debug.h"
47 #include "llvm/Target/TargetLibraryInfo.h"
48 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
49 #include "llvm/Transforms/Utils/Local.h"
50 #include "llvm/Transforms/Utils/SSAUpdater.h"
53 using namespace PatternMatch;
55 #define DEBUG_TYPE "gvn"
57 STATISTIC(NumGVNInstr, "Number of instructions deleted");
58 STATISTIC(NumGVNLoad, "Number of loads deleted");
59 STATISTIC(NumGVNPRE, "Number of instructions PRE'd");
60 STATISTIC(NumGVNBlocks, "Number of blocks merged");
61 STATISTIC(NumGVNSimpl, "Number of instructions simplified");
62 STATISTIC(NumGVNEqProp, "Number of equalities propagated");
63 STATISTIC(NumPRELoad, "Number of loads PRE'd");
65 static cl::opt<bool> EnablePRE("enable-pre",
66 cl::init(true), cl::Hidden);
67 static cl::opt<bool> EnableLoadPRE("enable-load-pre", cl::init(true));
69 // Maximum allowed recursion depth.
70 static cl::opt<uint32_t>
71 MaxRecurseDepth("max-recurse-depth", cl::Hidden, cl::init(1000), cl::ZeroOrMore,
72 cl::desc("Max recurse depth (default = 1000)"));
74 //===----------------------------------------------------------------------===//
76 //===----------------------------------------------------------------------===//
78 /// This class holds the mapping between values and value numbers. It is used
79 /// as an efficient mechanism to determine the expression-wise equivalence of
85 SmallVector<uint32_t, 4> varargs;
87 Expression(uint32_t o = ~2U) : opcode(o) { }
89 bool operator==(const Expression &other) const {
90 if (opcode != other.opcode)
92 if (opcode == ~0U || opcode == ~1U)
94 if (type != other.type)
96 if (varargs != other.varargs)
101 friend hash_code hash_value(const Expression &Value) {
102 return hash_combine(Value.opcode, Value.type,
103 hash_combine_range(Value.varargs.begin(),
104 Value.varargs.end()));
109 DenseMap<Value*, uint32_t> valueNumbering;
110 DenseMap<Expression, uint32_t> expressionNumbering;
112 MemoryDependenceAnalysis *MD;
115 uint32_t nextValueNumber;
117 Expression create_expression(Instruction* I);
118 Expression create_cmp_expression(unsigned Opcode,
119 CmpInst::Predicate Predicate,
120 Value *LHS, Value *RHS);
121 Expression create_extractvalue_expression(ExtractValueInst* EI);
122 uint32_t lookup_or_add_call(CallInst* C);
124 ValueTable() : nextValueNumber(1) { }
125 uint32_t lookup_or_add(Value *V);
126 uint32_t lookup(Value *V) const;
127 uint32_t lookup_or_add_cmp(unsigned Opcode, CmpInst::Predicate Pred,
128 Value *LHS, Value *RHS);
129 void add(Value *V, uint32_t num);
131 void erase(Value *v);
132 void setAliasAnalysis(AliasAnalysis* A) { AA = A; }
133 AliasAnalysis *getAliasAnalysis() const { return AA; }
134 void setMemDep(MemoryDependenceAnalysis* M) { MD = M; }
135 void setDomTree(DominatorTree* D) { DT = D; }
136 uint32_t getNextUnusedValueNumber() { return nextValueNumber; }
137 void verifyRemoved(const Value *) const;
142 template <> struct DenseMapInfo<Expression> {
143 static inline Expression getEmptyKey() {
147 static inline Expression getTombstoneKey() {
151 static unsigned getHashValue(const Expression e) {
152 using llvm::hash_value;
153 return static_cast<unsigned>(hash_value(e));
155 static bool isEqual(const Expression &LHS, const Expression &RHS) {
162 //===----------------------------------------------------------------------===//
163 // ValueTable Internal Functions
164 //===----------------------------------------------------------------------===//
166 Expression ValueTable::create_expression(Instruction *I) {
168 e.type = I->getType();
169 e.opcode = I->getOpcode();
170 for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end();
172 e.varargs.push_back(lookup_or_add(*OI));
173 if (I->isCommutative()) {
174 // Ensure that commutative instructions that only differ by a permutation
175 // of their operands get the same value number by sorting the operand value
176 // numbers. Since all commutative instructions have two operands it is more
177 // efficient to sort by hand rather than using, say, std::sort.
178 assert(I->getNumOperands() == 2 && "Unsupported commutative instruction!");
179 if (e.varargs[0] > e.varargs[1])
180 std::swap(e.varargs[0], e.varargs[1]);
183 if (CmpInst *C = dyn_cast<CmpInst>(I)) {
184 // Sort the operand value numbers so x<y and y>x get the same value number.
185 CmpInst::Predicate Predicate = C->getPredicate();
186 if (e.varargs[0] > e.varargs[1]) {
187 std::swap(e.varargs[0], e.varargs[1]);
188 Predicate = CmpInst::getSwappedPredicate(Predicate);
190 e.opcode = (C->getOpcode() << 8) | Predicate;
191 } else if (InsertValueInst *E = dyn_cast<InsertValueInst>(I)) {
192 for (InsertValueInst::idx_iterator II = E->idx_begin(), IE = E->idx_end();
194 e.varargs.push_back(*II);
200 Expression ValueTable::create_cmp_expression(unsigned Opcode,
201 CmpInst::Predicate Predicate,
202 Value *LHS, Value *RHS) {
203 assert((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) &&
204 "Not a comparison!");
206 e.type = CmpInst::makeCmpResultType(LHS->getType());
207 e.varargs.push_back(lookup_or_add(LHS));
208 e.varargs.push_back(lookup_or_add(RHS));
210 // Sort the operand value numbers so x<y and y>x get the same value number.
211 if (e.varargs[0] > e.varargs[1]) {
212 std::swap(e.varargs[0], e.varargs[1]);
213 Predicate = CmpInst::getSwappedPredicate(Predicate);
215 e.opcode = (Opcode << 8) | Predicate;
219 Expression ValueTable::create_extractvalue_expression(ExtractValueInst *EI) {
220 assert(EI && "Not an ExtractValueInst?");
222 e.type = EI->getType();
225 IntrinsicInst *I = dyn_cast<IntrinsicInst>(EI->getAggregateOperand());
226 if (I != nullptr && EI->getNumIndices() == 1 && *EI->idx_begin() == 0 ) {
227 // EI might be an extract from one of our recognised intrinsics. If it
228 // is we'll synthesize a semantically equivalent expression instead on
229 // an extract value expression.
230 switch (I->getIntrinsicID()) {
231 case Intrinsic::sadd_with_overflow:
232 case Intrinsic::uadd_with_overflow:
233 e.opcode = Instruction::Add;
235 case Intrinsic::ssub_with_overflow:
236 case Intrinsic::usub_with_overflow:
237 e.opcode = Instruction::Sub;
239 case Intrinsic::smul_with_overflow:
240 case Intrinsic::umul_with_overflow:
241 e.opcode = Instruction::Mul;
248 // Intrinsic recognized. Grab its args to finish building the expression.
249 assert(I->getNumArgOperands() == 2 &&
250 "Expect two args for recognised intrinsics.");
251 e.varargs.push_back(lookup_or_add(I->getArgOperand(0)));
252 e.varargs.push_back(lookup_or_add(I->getArgOperand(1)));
257 // Not a recognised intrinsic. Fall back to producing an extract value
259 e.opcode = EI->getOpcode();
260 for (Instruction::op_iterator OI = EI->op_begin(), OE = EI->op_end();
262 e.varargs.push_back(lookup_or_add(*OI));
264 for (ExtractValueInst::idx_iterator II = EI->idx_begin(), IE = EI->idx_end();
266 e.varargs.push_back(*II);
271 //===----------------------------------------------------------------------===//
272 // ValueTable External Functions
273 //===----------------------------------------------------------------------===//
275 /// add - Insert a value into the table with a specified value number.
276 void ValueTable::add(Value *V, uint32_t num) {
277 valueNumbering.insert(std::make_pair(V, num));
280 uint32_t ValueTable::lookup_or_add_call(CallInst *C) {
281 if (AA->doesNotAccessMemory(C)) {
282 Expression exp = create_expression(C);
283 uint32_t &e = expressionNumbering[exp];
284 if (!e) e = nextValueNumber++;
285 valueNumbering[C] = e;
287 } else if (AA->onlyReadsMemory(C)) {
288 Expression exp = create_expression(C);
289 uint32_t &e = expressionNumbering[exp];
291 e = nextValueNumber++;
292 valueNumbering[C] = e;
296 e = nextValueNumber++;
297 valueNumbering[C] = e;
301 MemDepResult local_dep = MD->getDependency(C);
303 if (!local_dep.isDef() && !local_dep.isNonLocal()) {
304 valueNumbering[C] = nextValueNumber;
305 return nextValueNumber++;
308 if (local_dep.isDef()) {
309 CallInst* local_cdep = cast<CallInst>(local_dep.getInst());
311 if (local_cdep->getNumArgOperands() != C->getNumArgOperands()) {
312 valueNumbering[C] = nextValueNumber;
313 return nextValueNumber++;
316 for (unsigned i = 0, e = C->getNumArgOperands(); i < e; ++i) {
317 uint32_t c_vn = lookup_or_add(C->getArgOperand(i));
318 uint32_t cd_vn = lookup_or_add(local_cdep->getArgOperand(i));
320 valueNumbering[C] = nextValueNumber;
321 return nextValueNumber++;
325 uint32_t v = lookup_or_add(local_cdep);
326 valueNumbering[C] = v;
331 const MemoryDependenceAnalysis::NonLocalDepInfo &deps =
332 MD->getNonLocalCallDependency(CallSite(C));
333 // FIXME: Move the checking logic to MemDep!
334 CallInst* cdep = nullptr;
336 // Check to see if we have a single dominating call instruction that is
338 for (unsigned i = 0, e = deps.size(); i != e; ++i) {
339 const NonLocalDepEntry *I = &deps[i];
340 if (I->getResult().isNonLocal())
343 // We don't handle non-definitions. If we already have a call, reject
344 // instruction dependencies.
345 if (!I->getResult().isDef() || cdep != nullptr) {
350 CallInst *NonLocalDepCall = dyn_cast<CallInst>(I->getResult().getInst());
351 // FIXME: All duplicated with non-local case.
352 if (NonLocalDepCall && DT->properlyDominates(I->getBB(), C->getParent())){
353 cdep = NonLocalDepCall;
362 valueNumbering[C] = nextValueNumber;
363 return nextValueNumber++;
366 if (cdep->getNumArgOperands() != C->getNumArgOperands()) {
367 valueNumbering[C] = nextValueNumber;
368 return nextValueNumber++;
370 for (unsigned i = 0, e = C->getNumArgOperands(); i < e; ++i) {
371 uint32_t c_vn = lookup_or_add(C->getArgOperand(i));
372 uint32_t cd_vn = lookup_or_add(cdep->getArgOperand(i));
374 valueNumbering[C] = nextValueNumber;
375 return nextValueNumber++;
379 uint32_t v = lookup_or_add(cdep);
380 valueNumbering[C] = v;
384 valueNumbering[C] = nextValueNumber;
385 return nextValueNumber++;
389 /// lookup_or_add - Returns the value number for the specified value, assigning
390 /// it a new number if it did not have one before.
391 uint32_t ValueTable::lookup_or_add(Value *V) {
392 DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V);
393 if (VI != valueNumbering.end())
396 if (!isa<Instruction>(V)) {
397 valueNumbering[V] = nextValueNumber;
398 return nextValueNumber++;
401 Instruction* I = cast<Instruction>(V);
403 switch (I->getOpcode()) {
404 case Instruction::Call:
405 return lookup_or_add_call(cast<CallInst>(I));
406 case Instruction::Add:
407 case Instruction::FAdd:
408 case Instruction::Sub:
409 case Instruction::FSub:
410 case Instruction::Mul:
411 case Instruction::FMul:
412 case Instruction::UDiv:
413 case Instruction::SDiv:
414 case Instruction::FDiv:
415 case Instruction::URem:
416 case Instruction::SRem:
417 case Instruction::FRem:
418 case Instruction::Shl:
419 case Instruction::LShr:
420 case Instruction::AShr:
421 case Instruction::And:
422 case Instruction::Or:
423 case Instruction::Xor:
424 case Instruction::ICmp:
425 case Instruction::FCmp:
426 case Instruction::Trunc:
427 case Instruction::ZExt:
428 case Instruction::SExt:
429 case Instruction::FPToUI:
430 case Instruction::FPToSI:
431 case Instruction::UIToFP:
432 case Instruction::SIToFP:
433 case Instruction::FPTrunc:
434 case Instruction::FPExt:
435 case Instruction::PtrToInt:
436 case Instruction::IntToPtr:
437 case Instruction::BitCast:
438 case Instruction::Select:
439 case Instruction::ExtractElement:
440 case Instruction::InsertElement:
441 case Instruction::ShuffleVector:
442 case Instruction::InsertValue:
443 case Instruction::GetElementPtr:
444 exp = create_expression(I);
446 case Instruction::ExtractValue:
447 exp = create_extractvalue_expression(cast<ExtractValueInst>(I));
450 valueNumbering[V] = nextValueNumber;
451 return nextValueNumber++;
454 uint32_t& e = expressionNumbering[exp];
455 if (!e) e = nextValueNumber++;
456 valueNumbering[V] = e;
460 /// lookup - Returns the value number of the specified value. Fails if
461 /// the value has not yet been numbered.
462 uint32_t ValueTable::lookup(Value *V) const {
463 DenseMap<Value*, uint32_t>::const_iterator VI = valueNumbering.find(V);
464 assert(VI != valueNumbering.end() && "Value not numbered?");
468 /// lookup_or_add_cmp - Returns the value number of the given comparison,
469 /// assigning it a new number if it did not have one before. Useful when
470 /// we deduced the result of a comparison, but don't immediately have an
471 /// instruction realizing that comparison to hand.
472 uint32_t ValueTable::lookup_or_add_cmp(unsigned Opcode,
473 CmpInst::Predicate Predicate,
474 Value *LHS, Value *RHS) {
475 Expression exp = create_cmp_expression(Opcode, Predicate, LHS, RHS);
476 uint32_t& e = expressionNumbering[exp];
477 if (!e) e = nextValueNumber++;
481 /// clear - Remove all entries from the ValueTable.
482 void ValueTable::clear() {
483 valueNumbering.clear();
484 expressionNumbering.clear();
488 /// erase - Remove a value from the value numbering.
489 void ValueTable::erase(Value *V) {
490 valueNumbering.erase(V);
493 /// verifyRemoved - Verify that the value is removed from all internal data
495 void ValueTable::verifyRemoved(const Value *V) const {
496 for (DenseMap<Value*, uint32_t>::const_iterator
497 I = valueNumbering.begin(), E = valueNumbering.end(); I != E; ++I) {
498 assert(I->first != V && "Inst still occurs in value numbering map!");
502 //===----------------------------------------------------------------------===//
504 //===----------------------------------------------------------------------===//
508 struct AvailableValueInBlock {
509 /// BB - The basic block in question.
512 SimpleVal, // A simple offsetted value that is accessed.
513 LoadVal, // A value produced by a load.
514 MemIntrin, // A memory intrinsic which is loaded from.
515 UndefVal // A UndefValue representing a value from dead block (which
516 // is not yet physically removed from the CFG).
519 /// V - The value that is live out of the block.
520 PointerIntPair<Value *, 2, ValType> Val;
522 /// Offset - The byte offset in Val that is interesting for the load query.
525 static AvailableValueInBlock get(BasicBlock *BB, Value *V,
526 unsigned Offset = 0) {
527 AvailableValueInBlock Res;
529 Res.Val.setPointer(V);
530 Res.Val.setInt(SimpleVal);
535 static AvailableValueInBlock getMI(BasicBlock *BB, MemIntrinsic *MI,
536 unsigned Offset = 0) {
537 AvailableValueInBlock Res;
539 Res.Val.setPointer(MI);
540 Res.Val.setInt(MemIntrin);
545 static AvailableValueInBlock getLoad(BasicBlock *BB, LoadInst *LI,
546 unsigned Offset = 0) {
547 AvailableValueInBlock Res;
549 Res.Val.setPointer(LI);
550 Res.Val.setInt(LoadVal);
555 static AvailableValueInBlock getUndef(BasicBlock *BB) {
556 AvailableValueInBlock Res;
558 Res.Val.setPointer(nullptr);
559 Res.Val.setInt(UndefVal);
564 bool isSimpleValue() const { return Val.getInt() == SimpleVal; }
565 bool isCoercedLoadValue() const { return Val.getInt() == LoadVal; }
566 bool isMemIntrinValue() const { return Val.getInt() == MemIntrin; }
567 bool isUndefValue() const { return Val.getInt() == UndefVal; }
569 Value *getSimpleValue() const {
570 assert(isSimpleValue() && "Wrong accessor");
571 return Val.getPointer();
574 LoadInst *getCoercedLoadValue() const {
575 assert(isCoercedLoadValue() && "Wrong accessor");
576 return cast<LoadInst>(Val.getPointer());
579 MemIntrinsic *getMemIntrinValue() const {
580 assert(isMemIntrinValue() && "Wrong accessor");
581 return cast<MemIntrinsic>(Val.getPointer());
584 /// MaterializeAdjustedValue - Emit code into this block to adjust the value
585 /// defined here to the specified type. This handles various coercion cases.
586 Value *MaterializeAdjustedValue(Type *LoadTy, GVN &gvn) const;
589 class GVN : public FunctionPass {
591 MemoryDependenceAnalysis *MD;
593 const DataLayout *DL;
594 const TargetLibraryInfo *TLI;
596 SetVector<BasicBlock *> DeadBlocks;
600 /// LeaderTable - A mapping from value numbers to lists of Value*'s that
601 /// have that value number. Use findLeader to query it.
602 struct LeaderTableEntry {
604 const BasicBlock *BB;
605 LeaderTableEntry *Next;
607 DenseMap<uint32_t, LeaderTableEntry> LeaderTable;
608 BumpPtrAllocator TableAllocator;
610 SmallVector<Instruction*, 8> InstrsToErase;
612 typedef SmallVector<NonLocalDepResult, 64> LoadDepVect;
613 typedef SmallVector<AvailableValueInBlock, 64> AvailValInBlkVect;
614 typedef SmallVector<BasicBlock*, 64> UnavailBlkVect;
617 static char ID; // Pass identification, replacement for typeid
618 explicit GVN(bool noloads = false)
619 : FunctionPass(ID), NoLoads(noloads), MD(nullptr) {
620 initializeGVNPass(*PassRegistry::getPassRegistry());
623 bool runOnFunction(Function &F) override;
625 /// markInstructionForDeletion - This removes the specified instruction from
626 /// our various maps and marks it for deletion.
627 void markInstructionForDeletion(Instruction *I) {
629 InstrsToErase.push_back(I);
632 const DataLayout *getDataLayout() const { return DL; }
633 DominatorTree &getDominatorTree() const { return *DT; }
634 AliasAnalysis *getAliasAnalysis() const { return VN.getAliasAnalysis(); }
635 MemoryDependenceAnalysis &getMemDep() const { return *MD; }
637 /// addToLeaderTable - Push a new Value to the LeaderTable onto the list for
638 /// its value number.
639 void addToLeaderTable(uint32_t N, Value *V, const BasicBlock *BB) {
640 LeaderTableEntry &Curr = LeaderTable[N];
647 LeaderTableEntry *Node = TableAllocator.Allocate<LeaderTableEntry>();
650 Node->Next = Curr.Next;
654 /// removeFromLeaderTable - Scan the list of values corresponding to a given
655 /// value number, and remove the given instruction if encountered.
656 void removeFromLeaderTable(uint32_t N, Instruction *I, BasicBlock *BB) {
657 LeaderTableEntry* Prev = nullptr;
658 LeaderTableEntry* Curr = &LeaderTable[N];
660 while (Curr->Val != I || Curr->BB != BB) {
666 Prev->Next = Curr->Next;
672 LeaderTableEntry* Next = Curr->Next;
673 Curr->Val = Next->Val;
675 Curr->Next = Next->Next;
680 // List of critical edges to be split between iterations.
681 SmallVector<std::pair<TerminatorInst*, unsigned>, 4> toSplit;
683 // This transformation requires dominator postdominator info
684 void getAnalysisUsage(AnalysisUsage &AU) const override {
685 AU.addRequired<AssumptionCacheTracker>();
686 AU.addRequired<DominatorTreeWrapperPass>();
687 AU.addRequired<TargetLibraryInfo>();
689 AU.addRequired<MemoryDependenceAnalysis>();
690 AU.addRequired<AliasAnalysis>();
692 AU.addPreserved<DominatorTreeWrapperPass>();
693 AU.addPreserved<AliasAnalysis>();
697 // Helper fuctions of redundant load elimination
698 bool processLoad(LoadInst *L);
699 bool processNonLocalLoad(LoadInst *L);
700 void AnalyzeLoadAvailability(LoadInst *LI, LoadDepVect &Deps,
701 AvailValInBlkVect &ValuesPerBlock,
702 UnavailBlkVect &UnavailableBlocks);
703 bool PerformLoadPRE(LoadInst *LI, AvailValInBlkVect &ValuesPerBlock,
704 UnavailBlkVect &UnavailableBlocks);
706 // Other helper routines
707 bool processInstruction(Instruction *I);
708 bool processBlock(BasicBlock *BB);
709 void dump(DenseMap<uint32_t, Value*> &d);
710 bool iterateOnFunction(Function &F);
711 bool performPRE(Function &F);
712 Value *findLeader(const BasicBlock *BB, uint32_t num);
713 void cleanupGlobalSets();
714 void verifyRemoved(const Instruction *I) const;
715 bool splitCriticalEdges();
716 BasicBlock *splitCriticalEdges(BasicBlock *Pred, BasicBlock *Succ);
717 unsigned replaceAllDominatedUsesWith(Value *From, Value *To,
718 const BasicBlockEdge &Root);
719 bool propagateEquality(Value *LHS, Value *RHS, const BasicBlockEdge &Root);
720 bool processFoldableCondBr(BranchInst *BI);
721 void addDeadBlock(BasicBlock *BB);
722 void assignValNumForDeadCode();
728 // createGVNPass - The public interface to this file...
729 FunctionPass *llvm::createGVNPass(bool NoLoads) {
730 return new GVN(NoLoads);
733 INITIALIZE_PASS_BEGIN(GVN, "gvn", "Global Value Numbering", false, false)
734 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
735 INITIALIZE_PASS_DEPENDENCY(MemoryDependenceAnalysis)
736 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
737 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
738 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
739 INITIALIZE_PASS_END(GVN, "gvn", "Global Value Numbering", false, false)
741 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
742 void GVN::dump(DenseMap<uint32_t, Value*>& d) {
744 for (DenseMap<uint32_t, Value*>::iterator I = d.begin(),
745 E = d.end(); I != E; ++I) {
746 errs() << I->first << "\n";
753 /// IsValueFullyAvailableInBlock - Return true if we can prove that the value
754 /// we're analyzing is fully available in the specified block. As we go, keep
755 /// track of which blocks we know are fully alive in FullyAvailableBlocks. This
756 /// map is actually a tri-state map with the following values:
757 /// 0) we know the block *is not* fully available.
758 /// 1) we know the block *is* fully available.
759 /// 2) we do not know whether the block is fully available or not, but we are
760 /// currently speculating that it will be.
761 /// 3) we are speculating for this block and have used that to speculate for
763 static bool IsValueFullyAvailableInBlock(BasicBlock *BB,
764 DenseMap<BasicBlock*, char> &FullyAvailableBlocks,
765 uint32_t RecurseDepth) {
766 if (RecurseDepth > MaxRecurseDepth)
769 // Optimistically assume that the block is fully available and check to see
770 // if we already know about this block in one lookup.
771 std::pair<DenseMap<BasicBlock*, char>::iterator, char> IV =
772 FullyAvailableBlocks.insert(std::make_pair(BB, 2));
774 // If the entry already existed for this block, return the precomputed value.
776 // If this is a speculative "available" value, mark it as being used for
777 // speculation of other blocks.
778 if (IV.first->second == 2)
779 IV.first->second = 3;
780 return IV.first->second != 0;
783 // Otherwise, see if it is fully available in all predecessors.
784 pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
786 // If this block has no predecessors, it isn't live-in here.
788 goto SpeculationFailure;
790 for (; PI != PE; ++PI)
791 // If the value isn't fully available in one of our predecessors, then it
792 // isn't fully available in this block either. Undo our previous
793 // optimistic assumption and bail out.
794 if (!IsValueFullyAvailableInBlock(*PI, FullyAvailableBlocks,RecurseDepth+1))
795 goto SpeculationFailure;
799 // SpeculationFailure - If we get here, we found out that this is not, after
800 // all, a fully-available block. We have a problem if we speculated on this and
801 // used the speculation to mark other blocks as available.
803 char &BBVal = FullyAvailableBlocks[BB];
805 // If we didn't speculate on this, just return with it set to false.
811 // If we did speculate on this value, we could have blocks set to 1 that are
812 // incorrect. Walk the (transitive) successors of this block and mark them as
814 SmallVector<BasicBlock*, 32> BBWorklist;
815 BBWorklist.push_back(BB);
818 BasicBlock *Entry = BBWorklist.pop_back_val();
819 // Note that this sets blocks to 0 (unavailable) if they happen to not
820 // already be in FullyAvailableBlocks. This is safe.
821 char &EntryVal = FullyAvailableBlocks[Entry];
822 if (EntryVal == 0) continue; // Already unavailable.
824 // Mark as unavailable.
827 BBWorklist.append(succ_begin(Entry), succ_end(Entry));
828 } while (!BBWorklist.empty());
834 /// CanCoerceMustAliasedValueToLoad - Return true if
835 /// CoerceAvailableValueToLoadType will succeed.
836 static bool CanCoerceMustAliasedValueToLoad(Value *StoredVal,
838 const DataLayout &DL) {
839 // If the loaded or stored value is an first class array or struct, don't try
840 // to transform them. We need to be able to bitcast to integer.
841 if (LoadTy->isStructTy() || LoadTy->isArrayTy() ||
842 StoredVal->getType()->isStructTy() ||
843 StoredVal->getType()->isArrayTy())
846 // The store has to be at least as big as the load.
847 if (DL.getTypeSizeInBits(StoredVal->getType()) <
848 DL.getTypeSizeInBits(LoadTy))
854 /// CoerceAvailableValueToLoadType - If we saw a store of a value to memory, and
855 /// then a load from a must-aliased pointer of a different type, try to coerce
856 /// the stored value. LoadedTy is the type of the load we want to replace and
857 /// InsertPt is the place to insert new instructions.
859 /// If we can't do it, return null.
860 static Value *CoerceAvailableValueToLoadType(Value *StoredVal,
862 Instruction *InsertPt,
863 const DataLayout &DL) {
864 if (!CanCoerceMustAliasedValueToLoad(StoredVal, LoadedTy, DL))
867 // If this is already the right type, just return it.
868 Type *StoredValTy = StoredVal->getType();
870 uint64_t StoreSize = DL.getTypeSizeInBits(StoredValTy);
871 uint64_t LoadSize = DL.getTypeSizeInBits(LoadedTy);
873 // If the store and reload are the same size, we can always reuse it.
874 if (StoreSize == LoadSize) {
875 // Pointer to Pointer -> use bitcast.
876 if (StoredValTy->getScalarType()->isPointerTy() &&
877 LoadedTy->getScalarType()->isPointerTy())
878 return new BitCastInst(StoredVal, LoadedTy, "", InsertPt);
880 // Convert source pointers to integers, which can be bitcast.
881 if (StoredValTy->getScalarType()->isPointerTy()) {
882 StoredValTy = DL.getIntPtrType(StoredValTy);
883 StoredVal = new PtrToIntInst(StoredVal, StoredValTy, "", InsertPt);
886 Type *TypeToCastTo = LoadedTy;
887 if (TypeToCastTo->getScalarType()->isPointerTy())
888 TypeToCastTo = DL.getIntPtrType(TypeToCastTo);
890 if (StoredValTy != TypeToCastTo)
891 StoredVal = new BitCastInst(StoredVal, TypeToCastTo, "", InsertPt);
893 // Cast to pointer if the load needs a pointer type.
894 if (LoadedTy->getScalarType()->isPointerTy())
895 StoredVal = new IntToPtrInst(StoredVal, LoadedTy, "", InsertPt);
900 // If the loaded value is smaller than the available value, then we can
901 // extract out a piece from it. If the available value is too small, then we
902 // can't do anything.
903 assert(StoreSize >= LoadSize && "CanCoerceMustAliasedValueToLoad fail");
905 // Convert source pointers to integers, which can be manipulated.
906 if (StoredValTy->getScalarType()->isPointerTy()) {
907 StoredValTy = DL.getIntPtrType(StoredValTy);
908 StoredVal = new PtrToIntInst(StoredVal, StoredValTy, "", InsertPt);
911 // Convert vectors and fp to integer, which can be manipulated.
912 if (!StoredValTy->isIntegerTy()) {
913 StoredValTy = IntegerType::get(StoredValTy->getContext(), StoreSize);
914 StoredVal = new BitCastInst(StoredVal, StoredValTy, "", InsertPt);
917 // If this is a big-endian system, we need to shift the value down to the low
918 // bits so that a truncate will work.
919 if (DL.isBigEndian()) {
920 Constant *Val = ConstantInt::get(StoredVal->getType(), StoreSize-LoadSize);
921 StoredVal = BinaryOperator::CreateLShr(StoredVal, Val, "tmp", InsertPt);
924 // Truncate the integer to the right size now.
925 Type *NewIntTy = IntegerType::get(StoredValTy->getContext(), LoadSize);
926 StoredVal = new TruncInst(StoredVal, NewIntTy, "trunc", InsertPt);
928 if (LoadedTy == NewIntTy)
931 // If the result is a pointer, inttoptr.
932 if (LoadedTy->getScalarType()->isPointerTy())
933 return new IntToPtrInst(StoredVal, LoadedTy, "inttoptr", InsertPt);
935 // Otherwise, bitcast.
936 return new BitCastInst(StoredVal, LoadedTy, "bitcast", InsertPt);
939 /// AnalyzeLoadFromClobberingWrite - This function is called when we have a
940 /// memdep query of a load that ends up being a clobbering memory write (store,
941 /// memset, memcpy, memmove). This means that the write *may* provide bits used
942 /// by the load but we can't be sure because the pointers don't mustalias.
944 /// Check this case to see if there is anything more we can do before we give
945 /// up. This returns -1 if we have to give up, or a byte number in the stored
946 /// value of the piece that feeds the load.
947 static int AnalyzeLoadFromClobberingWrite(Type *LoadTy, Value *LoadPtr,
949 uint64_t WriteSizeInBits,
950 const DataLayout &DL) {
951 // If the loaded or stored value is a first class array or struct, don't try
952 // to transform them. We need to be able to bitcast to integer.
953 if (LoadTy->isStructTy() || LoadTy->isArrayTy())
956 int64_t StoreOffset = 0, LoadOffset = 0;
957 Value *StoreBase = GetPointerBaseWithConstantOffset(WritePtr,StoreOffset,&DL);
958 Value *LoadBase = GetPointerBaseWithConstantOffset(LoadPtr, LoadOffset, &DL);
959 if (StoreBase != LoadBase)
962 // If the load and store are to the exact same address, they should have been
963 // a must alias. AA must have gotten confused.
964 // FIXME: Study to see if/when this happens. One case is forwarding a memset
965 // to a load from the base of the memset.
967 if (LoadOffset == StoreOffset) {
968 dbgs() << "STORE/LOAD DEP WITH COMMON POINTER MISSED:\n"
969 << "Base = " << *StoreBase << "\n"
970 << "Store Ptr = " << *WritePtr << "\n"
971 << "Store Offs = " << StoreOffset << "\n"
972 << "Load Ptr = " << *LoadPtr << "\n";
977 // If the load and store don't overlap at all, the store doesn't provide
978 // anything to the load. In this case, they really don't alias at all, AA
979 // must have gotten confused.
980 uint64_t LoadSize = DL.getTypeSizeInBits(LoadTy);
982 if ((WriteSizeInBits & 7) | (LoadSize & 7))
984 uint64_t StoreSize = WriteSizeInBits >> 3; // Convert to bytes.
988 bool isAAFailure = false;
989 if (StoreOffset < LoadOffset)
990 isAAFailure = StoreOffset+int64_t(StoreSize) <= LoadOffset;
992 isAAFailure = LoadOffset+int64_t(LoadSize) <= StoreOffset;
996 dbgs() << "STORE LOAD DEP WITH COMMON BASE:\n"
997 << "Base = " << *StoreBase << "\n"
998 << "Store Ptr = " << *WritePtr << "\n"
999 << "Store Offs = " << StoreOffset << "\n"
1000 << "Load Ptr = " << *LoadPtr << "\n";
1006 // If the Load isn't completely contained within the stored bits, we don't
1007 // have all the bits to feed it. We could do something crazy in the future
1008 // (issue a smaller load then merge the bits in) but this seems unlikely to be
1010 if (StoreOffset > LoadOffset ||
1011 StoreOffset+StoreSize < LoadOffset+LoadSize)
1014 // Okay, we can do this transformation. Return the number of bytes into the
1015 // store that the load is.
1016 return LoadOffset-StoreOffset;
1019 /// AnalyzeLoadFromClobberingStore - This function is called when we have a
1020 /// memdep query of a load that ends up being a clobbering store.
1021 static int AnalyzeLoadFromClobberingStore(Type *LoadTy, Value *LoadPtr,
1023 const DataLayout &DL) {
1024 // Cannot handle reading from store of first-class aggregate yet.
1025 if (DepSI->getValueOperand()->getType()->isStructTy() ||
1026 DepSI->getValueOperand()->getType()->isArrayTy())
1029 Value *StorePtr = DepSI->getPointerOperand();
1030 uint64_t StoreSize =DL.getTypeSizeInBits(DepSI->getValueOperand()->getType());
1031 return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr,
1032 StorePtr, StoreSize, DL);
1035 /// AnalyzeLoadFromClobberingLoad - This function is called when we have a
1036 /// memdep query of a load that ends up being clobbered by another load. See if
1037 /// the other load can feed into the second load.
1038 static int AnalyzeLoadFromClobberingLoad(Type *LoadTy, Value *LoadPtr,
1039 LoadInst *DepLI, const DataLayout &DL){
1040 // Cannot handle reading from store of first-class aggregate yet.
1041 if (DepLI->getType()->isStructTy() || DepLI->getType()->isArrayTy())
1044 Value *DepPtr = DepLI->getPointerOperand();
1045 uint64_t DepSize = DL.getTypeSizeInBits(DepLI->getType());
1046 int R = AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, DepPtr, DepSize, DL);
1047 if (R != -1) return R;
1049 // If we have a load/load clobber an DepLI can be widened to cover this load,
1050 // then we should widen it!
1051 int64_t LoadOffs = 0;
1052 const Value *LoadBase =
1053 GetPointerBaseWithConstantOffset(LoadPtr, LoadOffs, &DL);
1054 unsigned LoadSize = DL.getTypeStoreSize(LoadTy);
1056 unsigned Size = MemoryDependenceAnalysis::
1057 getLoadLoadClobberFullWidthSize(LoadBase, LoadOffs, LoadSize, DepLI, DL);
1058 if (Size == 0) return -1;
1060 return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, DepPtr, Size*8, DL);
1065 static int AnalyzeLoadFromClobberingMemInst(Type *LoadTy, Value *LoadPtr,
1067 const DataLayout &DL) {
1068 // If the mem operation is a non-constant size, we can't handle it.
1069 ConstantInt *SizeCst = dyn_cast<ConstantInt>(MI->getLength());
1070 if (!SizeCst) return -1;
1071 uint64_t MemSizeInBits = SizeCst->getZExtValue()*8;
1073 // If this is memset, we just need to see if the offset is valid in the size
1075 if (MI->getIntrinsicID() == Intrinsic::memset)
1076 return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, MI->getDest(),
1079 // If we have a memcpy/memmove, the only case we can handle is if this is a
1080 // copy from constant memory. In that case, we can read directly from the
1082 MemTransferInst *MTI = cast<MemTransferInst>(MI);
1084 Constant *Src = dyn_cast<Constant>(MTI->getSource());
1085 if (!Src) return -1;
1087 GlobalVariable *GV = dyn_cast<GlobalVariable>(GetUnderlyingObject(Src, &DL));
1088 if (!GV || !GV->isConstant()) return -1;
1090 // See if the access is within the bounds of the transfer.
1091 int Offset = AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr,
1092 MI->getDest(), MemSizeInBits, DL);
1096 unsigned AS = Src->getType()->getPointerAddressSpace();
1097 // Otherwise, see if we can constant fold a load from the constant with the
1098 // offset applied as appropriate.
1099 Src = ConstantExpr::getBitCast(Src,
1100 Type::getInt8PtrTy(Src->getContext(), AS));
1101 Constant *OffsetCst =
1102 ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset);
1103 Src = ConstantExpr::getGetElementPtr(Src, OffsetCst);
1104 Src = ConstantExpr::getBitCast(Src, PointerType::get(LoadTy, AS));
1105 if (ConstantFoldLoadFromConstPtr(Src, &DL))
1111 /// GetStoreValueForLoad - This function is called when we have a
1112 /// memdep query of a load that ends up being a clobbering store. This means
1113 /// that the store provides bits used by the load but we the pointers don't
1114 /// mustalias. Check this case to see if there is anything more we can do
1115 /// before we give up.
1116 static Value *GetStoreValueForLoad(Value *SrcVal, unsigned Offset,
1118 Instruction *InsertPt, const DataLayout &DL){
1119 LLVMContext &Ctx = SrcVal->getType()->getContext();
1121 uint64_t StoreSize = (DL.getTypeSizeInBits(SrcVal->getType()) + 7) / 8;
1122 uint64_t LoadSize = (DL.getTypeSizeInBits(LoadTy) + 7) / 8;
1124 IRBuilder<> Builder(InsertPt->getParent(), InsertPt);
1126 // Compute which bits of the stored value are being used by the load. Convert
1127 // to an integer type to start with.
1128 if (SrcVal->getType()->getScalarType()->isPointerTy())
1129 SrcVal = Builder.CreatePtrToInt(SrcVal,
1130 DL.getIntPtrType(SrcVal->getType()));
1131 if (!SrcVal->getType()->isIntegerTy())
1132 SrcVal = Builder.CreateBitCast(SrcVal, IntegerType::get(Ctx, StoreSize*8));
1134 // Shift the bits to the least significant depending on endianness.
1136 if (DL.isLittleEndian())
1137 ShiftAmt = Offset*8;
1139 ShiftAmt = (StoreSize-LoadSize-Offset)*8;
1142 SrcVal = Builder.CreateLShr(SrcVal, ShiftAmt);
1144 if (LoadSize != StoreSize)
1145 SrcVal = Builder.CreateTrunc(SrcVal, IntegerType::get(Ctx, LoadSize*8));
1147 return CoerceAvailableValueToLoadType(SrcVal, LoadTy, InsertPt, DL);
1150 /// GetLoadValueForLoad - This function is called when we have a
1151 /// memdep query of a load that ends up being a clobbering load. This means
1152 /// that the load *may* provide bits used by the load but we can't be sure
1153 /// because the pointers don't mustalias. Check this case to see if there is
1154 /// anything more we can do before we give up.
1155 static Value *GetLoadValueForLoad(LoadInst *SrcVal, unsigned Offset,
1156 Type *LoadTy, Instruction *InsertPt,
1158 const DataLayout &DL = *gvn.getDataLayout();
1159 // If Offset+LoadTy exceeds the size of SrcVal, then we must be wanting to
1160 // widen SrcVal out to a larger load.
1161 unsigned SrcValSize = DL.getTypeStoreSize(SrcVal->getType());
1162 unsigned LoadSize = DL.getTypeStoreSize(LoadTy);
1163 if (Offset+LoadSize > SrcValSize) {
1164 assert(SrcVal->isSimple() && "Cannot widen volatile/atomic load!");
1165 assert(SrcVal->getType()->isIntegerTy() && "Can't widen non-integer load");
1166 // If we have a load/load clobber an DepLI can be widened to cover this
1167 // load, then we should widen it to the next power of 2 size big enough!
1168 unsigned NewLoadSize = Offset+LoadSize;
1169 if (!isPowerOf2_32(NewLoadSize))
1170 NewLoadSize = NextPowerOf2(NewLoadSize);
1172 Value *PtrVal = SrcVal->getPointerOperand();
1174 // Insert the new load after the old load. This ensures that subsequent
1175 // memdep queries will find the new load. We can't easily remove the old
1176 // load completely because it is already in the value numbering table.
1177 IRBuilder<> Builder(SrcVal->getParent(), ++BasicBlock::iterator(SrcVal));
1179 IntegerType::get(LoadTy->getContext(), NewLoadSize*8);
1180 DestPTy = PointerType::get(DestPTy,
1181 PtrVal->getType()->getPointerAddressSpace());
1182 Builder.SetCurrentDebugLocation(SrcVal->getDebugLoc());
1183 PtrVal = Builder.CreateBitCast(PtrVal, DestPTy);
1184 LoadInst *NewLoad = Builder.CreateLoad(PtrVal);
1185 NewLoad->takeName(SrcVal);
1186 NewLoad->setAlignment(SrcVal->getAlignment());
1188 DEBUG(dbgs() << "GVN WIDENED LOAD: " << *SrcVal << "\n");
1189 DEBUG(dbgs() << "TO: " << *NewLoad << "\n");
1191 // Replace uses of the original load with the wider load. On a big endian
1192 // system, we need to shift down to get the relevant bits.
1193 Value *RV = NewLoad;
1194 if (DL.isBigEndian())
1195 RV = Builder.CreateLShr(RV,
1196 NewLoadSize*8-SrcVal->getType()->getPrimitiveSizeInBits());
1197 RV = Builder.CreateTrunc(RV, SrcVal->getType());
1198 SrcVal->replaceAllUsesWith(RV);
1200 // We would like to use gvn.markInstructionForDeletion here, but we can't
1201 // because the load is already memoized into the leader map table that GVN
1202 // tracks. It is potentially possible to remove the load from the table,
1203 // but then there all of the operations based on it would need to be
1204 // rehashed. Just leave the dead load around.
1205 gvn.getMemDep().removeInstruction(SrcVal);
1209 return GetStoreValueForLoad(SrcVal, Offset, LoadTy, InsertPt, DL);
1213 /// GetMemInstValueForLoad - This function is called when we have a
1214 /// memdep query of a load that ends up being a clobbering mem intrinsic.
1215 static Value *GetMemInstValueForLoad(MemIntrinsic *SrcInst, unsigned Offset,
1216 Type *LoadTy, Instruction *InsertPt,
1217 const DataLayout &DL){
1218 LLVMContext &Ctx = LoadTy->getContext();
1219 uint64_t LoadSize = DL.getTypeSizeInBits(LoadTy)/8;
1221 IRBuilder<> Builder(InsertPt->getParent(), InsertPt);
1223 // We know that this method is only called when the mem transfer fully
1224 // provides the bits for the load.
1225 if (MemSetInst *MSI = dyn_cast<MemSetInst>(SrcInst)) {
1226 // memset(P, 'x', 1234) -> splat('x'), even if x is a variable, and
1227 // independently of what the offset is.
1228 Value *Val = MSI->getValue();
1230 Val = Builder.CreateZExt(Val, IntegerType::get(Ctx, LoadSize*8));
1232 Value *OneElt = Val;
1234 // Splat the value out to the right number of bits.
1235 for (unsigned NumBytesSet = 1; NumBytesSet != LoadSize; ) {
1236 // If we can double the number of bytes set, do it.
1237 if (NumBytesSet*2 <= LoadSize) {
1238 Value *ShVal = Builder.CreateShl(Val, NumBytesSet*8);
1239 Val = Builder.CreateOr(Val, ShVal);
1244 // Otherwise insert one byte at a time.
1245 Value *ShVal = Builder.CreateShl(Val, 1*8);
1246 Val = Builder.CreateOr(OneElt, ShVal);
1250 return CoerceAvailableValueToLoadType(Val, LoadTy, InsertPt, DL);
1253 // Otherwise, this is a memcpy/memmove from a constant global.
1254 MemTransferInst *MTI = cast<MemTransferInst>(SrcInst);
1255 Constant *Src = cast<Constant>(MTI->getSource());
1256 unsigned AS = Src->getType()->getPointerAddressSpace();
1258 // Otherwise, see if we can constant fold a load from the constant with the
1259 // offset applied as appropriate.
1260 Src = ConstantExpr::getBitCast(Src,
1261 Type::getInt8PtrTy(Src->getContext(), AS));
1262 Constant *OffsetCst =
1263 ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset);
1264 Src = ConstantExpr::getGetElementPtr(Src, OffsetCst);
1265 Src = ConstantExpr::getBitCast(Src, PointerType::get(LoadTy, AS));
1266 return ConstantFoldLoadFromConstPtr(Src, &DL);
1270 /// ConstructSSAForLoadSet - Given a set of loads specified by ValuesPerBlock,
1271 /// construct SSA form, allowing us to eliminate LI. This returns the value
1272 /// that should be used at LI's definition site.
1273 static Value *ConstructSSAForLoadSet(LoadInst *LI,
1274 SmallVectorImpl<AvailableValueInBlock> &ValuesPerBlock,
1276 // Check for the fully redundant, dominating load case. In this case, we can
1277 // just use the dominating value directly.
1278 if (ValuesPerBlock.size() == 1 &&
1279 gvn.getDominatorTree().properlyDominates(ValuesPerBlock[0].BB,
1281 assert(!ValuesPerBlock[0].isUndefValue() && "Dead BB dominate this block");
1282 return ValuesPerBlock[0].MaterializeAdjustedValue(LI->getType(), gvn);
1285 // Otherwise, we have to construct SSA form.
1286 SmallVector<PHINode*, 8> NewPHIs;
1287 SSAUpdater SSAUpdate(&NewPHIs);
1288 SSAUpdate.Initialize(LI->getType(), LI->getName());
1290 Type *LoadTy = LI->getType();
1292 for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i) {
1293 const AvailableValueInBlock &AV = ValuesPerBlock[i];
1294 BasicBlock *BB = AV.BB;
1296 if (SSAUpdate.HasValueForBlock(BB))
1299 SSAUpdate.AddAvailableValue(BB, AV.MaterializeAdjustedValue(LoadTy, gvn));
1302 // Perform PHI construction.
1303 Value *V = SSAUpdate.GetValueInMiddleOfBlock(LI->getParent());
1305 // If new PHI nodes were created, notify alias analysis.
1306 if (V->getType()->getScalarType()->isPointerTy()) {
1307 AliasAnalysis *AA = gvn.getAliasAnalysis();
1309 for (unsigned i = 0, e = NewPHIs.size(); i != e; ++i)
1310 AA->copyValue(LI, NewPHIs[i]);
1312 // Now that we've copied information to the new PHIs, scan through
1313 // them again and inform alias analysis that we've added potentially
1314 // escaping uses to any values that are operands to these PHIs.
1315 for (unsigned i = 0, e = NewPHIs.size(); i != e; ++i) {
1316 PHINode *P = NewPHIs[i];
1317 for (unsigned ii = 0, ee = P->getNumIncomingValues(); ii != ee; ++ii) {
1318 unsigned jj = PHINode::getOperandNumForIncomingValue(ii);
1319 AA->addEscapingUse(P->getOperandUse(jj));
1327 Value *AvailableValueInBlock::MaterializeAdjustedValue(Type *LoadTy, GVN &gvn) const {
1329 if (isSimpleValue()) {
1330 Res = getSimpleValue();
1331 if (Res->getType() != LoadTy) {
1332 const DataLayout *DL = gvn.getDataLayout();
1333 assert(DL && "Need target data to handle type mismatch case");
1334 Res = GetStoreValueForLoad(Res, Offset, LoadTy, BB->getTerminator(),
1337 DEBUG(dbgs() << "GVN COERCED NONLOCAL VAL:\nOffset: " << Offset << " "
1338 << *getSimpleValue() << '\n'
1339 << *Res << '\n' << "\n\n\n");
1341 } else if (isCoercedLoadValue()) {
1342 LoadInst *Load = getCoercedLoadValue();
1343 if (Load->getType() == LoadTy && Offset == 0) {
1346 Res = GetLoadValueForLoad(Load, Offset, LoadTy, BB->getTerminator(),
1349 DEBUG(dbgs() << "GVN COERCED NONLOCAL LOAD:\nOffset: " << Offset << " "
1350 << *getCoercedLoadValue() << '\n'
1351 << *Res << '\n' << "\n\n\n");
1353 } else if (isMemIntrinValue()) {
1354 const DataLayout *DL = gvn.getDataLayout();
1355 assert(DL && "Need target data to handle type mismatch case");
1356 Res = GetMemInstValueForLoad(getMemIntrinValue(), Offset,
1357 LoadTy, BB->getTerminator(), *DL);
1358 DEBUG(dbgs() << "GVN COERCED NONLOCAL MEM INTRIN:\nOffset: " << Offset
1359 << " " << *getMemIntrinValue() << '\n'
1360 << *Res << '\n' << "\n\n\n");
1362 assert(isUndefValue() && "Should be UndefVal");
1363 DEBUG(dbgs() << "GVN COERCED NONLOCAL Undef:\n";);
1364 return UndefValue::get(LoadTy);
1369 static bool isLifetimeStart(const Instruction *Inst) {
1370 if (const IntrinsicInst* II = dyn_cast<IntrinsicInst>(Inst))
1371 return II->getIntrinsicID() == Intrinsic::lifetime_start;
1375 void GVN::AnalyzeLoadAvailability(LoadInst *LI, LoadDepVect &Deps,
1376 AvailValInBlkVect &ValuesPerBlock,
1377 UnavailBlkVect &UnavailableBlocks) {
1379 // Filter out useless results (non-locals, etc). Keep track of the blocks
1380 // where we have a value available in repl, also keep track of whether we see
1381 // dependencies that produce an unknown value for the load (such as a call
1382 // that could potentially clobber the load).
1383 unsigned NumDeps = Deps.size();
1384 for (unsigned i = 0, e = NumDeps; i != e; ++i) {
1385 BasicBlock *DepBB = Deps[i].getBB();
1386 MemDepResult DepInfo = Deps[i].getResult();
1388 if (DeadBlocks.count(DepBB)) {
1389 // Dead dependent mem-op disguise as a load evaluating the same value
1390 // as the load in question.
1391 ValuesPerBlock.push_back(AvailableValueInBlock::getUndef(DepBB));
1395 if (!DepInfo.isDef() && !DepInfo.isClobber()) {
1396 UnavailableBlocks.push_back(DepBB);
1400 if (DepInfo.isClobber()) {
1401 // The address being loaded in this non-local block may not be the same as
1402 // the pointer operand of the load if PHI translation occurs. Make sure
1403 // to consider the right address.
1404 Value *Address = Deps[i].getAddress();
1406 // If the dependence is to a store that writes to a superset of the bits
1407 // read by the load, we can extract the bits we need for the load from the
1409 if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInfo.getInst())) {
1410 if (DL && Address) {
1411 int Offset = AnalyzeLoadFromClobberingStore(LI->getType(), Address,
1414 ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1415 DepSI->getValueOperand(),
1422 // Check to see if we have something like this:
1425 // if we have this, replace the later with an extraction from the former.
1426 if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInfo.getInst())) {
1427 // If this is a clobber and L is the first instruction in its block, then
1428 // we have the first instruction in the entry block.
1429 if (DepLI != LI && Address && DL) {
1430 int Offset = AnalyzeLoadFromClobberingLoad(LI->getType(), Address,
1434 ValuesPerBlock.push_back(AvailableValueInBlock::getLoad(DepBB,DepLI,
1441 // If the clobbering value is a memset/memcpy/memmove, see if we can
1442 // forward a value on from it.
1443 if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(DepInfo.getInst())) {
1444 if (DL && Address) {
1445 int Offset = AnalyzeLoadFromClobberingMemInst(LI->getType(), Address,
1448 ValuesPerBlock.push_back(AvailableValueInBlock::getMI(DepBB, DepMI,
1455 UnavailableBlocks.push_back(DepBB);
1459 // DepInfo.isDef() here
1461 Instruction *DepInst = DepInfo.getInst();
1463 // Loading the allocation -> undef.
1464 if (isa<AllocaInst>(DepInst) || isMallocLikeFn(DepInst, TLI) ||
1465 // Loading immediately after lifetime begin -> undef.
1466 isLifetimeStart(DepInst)) {
1467 ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1468 UndefValue::get(LI->getType())));
1472 // Loading from calloc (which zero initializes memory) -> zero
1473 if (isCallocLikeFn(DepInst, TLI)) {
1474 ValuesPerBlock.push_back(AvailableValueInBlock::get(
1475 DepBB, Constant::getNullValue(LI->getType())));
1479 if (StoreInst *S = dyn_cast<StoreInst>(DepInst)) {
1480 // Reject loads and stores that are to the same address but are of
1481 // different types if we have to.
1482 if (S->getValueOperand()->getType() != LI->getType()) {
1483 // If the stored value is larger or equal to the loaded value, we can
1485 if (!DL || !CanCoerceMustAliasedValueToLoad(S->getValueOperand(),
1486 LI->getType(), *DL)) {
1487 UnavailableBlocks.push_back(DepBB);
1492 ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1493 S->getValueOperand()));
1497 if (LoadInst *LD = dyn_cast<LoadInst>(DepInst)) {
1498 // If the types mismatch and we can't handle it, reject reuse of the load.
1499 if (LD->getType() != LI->getType()) {
1500 // If the stored value is larger or equal to the loaded value, we can
1502 if (!DL || !CanCoerceMustAliasedValueToLoad(LD, LI->getType(),*DL)) {
1503 UnavailableBlocks.push_back(DepBB);
1507 ValuesPerBlock.push_back(AvailableValueInBlock::getLoad(DepBB, LD));
1511 UnavailableBlocks.push_back(DepBB);
1515 bool GVN::PerformLoadPRE(LoadInst *LI, AvailValInBlkVect &ValuesPerBlock,
1516 UnavailBlkVect &UnavailableBlocks) {
1517 // Okay, we have *some* definitions of the value. This means that the value
1518 // is available in some of our (transitive) predecessors. Lets think about
1519 // doing PRE of this load. This will involve inserting a new load into the
1520 // predecessor when it's not available. We could do this in general, but
1521 // prefer to not increase code size. As such, we only do this when we know
1522 // that we only have to insert *one* load (which means we're basically moving
1523 // the load, not inserting a new one).
1525 SmallPtrSet<BasicBlock *, 4> Blockers;
1526 for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
1527 Blockers.insert(UnavailableBlocks[i]);
1529 // Let's find the first basic block with more than one predecessor. Walk
1530 // backwards through predecessors if needed.
1531 BasicBlock *LoadBB = LI->getParent();
1532 BasicBlock *TmpBB = LoadBB;
1534 while (TmpBB->getSinglePredecessor()) {
1535 TmpBB = TmpBB->getSinglePredecessor();
1536 if (TmpBB == LoadBB) // Infinite (unreachable) loop.
1538 if (Blockers.count(TmpBB))
1541 // If any of these blocks has more than one successor (i.e. if the edge we
1542 // just traversed was critical), then there are other paths through this
1543 // block along which the load may not be anticipated. Hoisting the load
1544 // above this block would be adding the load to execution paths along
1545 // which it was not previously executed.
1546 if (TmpBB->getTerminator()->getNumSuccessors() != 1)
1553 // Check to see how many predecessors have the loaded value fully
1555 MapVector<BasicBlock *, Value *> PredLoads;
1556 DenseMap<BasicBlock*, char> FullyAvailableBlocks;
1557 for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i)
1558 FullyAvailableBlocks[ValuesPerBlock[i].BB] = true;
1559 for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
1560 FullyAvailableBlocks[UnavailableBlocks[i]] = false;
1562 SmallVector<BasicBlock *, 4> CriticalEdgePred;
1563 for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB);
1565 BasicBlock *Pred = *PI;
1566 if (IsValueFullyAvailableInBlock(Pred, FullyAvailableBlocks, 0)) {
1570 if (Pred->getTerminator()->getNumSuccessors() != 1) {
1571 if (isa<IndirectBrInst>(Pred->getTerminator())) {
1572 DEBUG(dbgs() << "COULD NOT PRE LOAD BECAUSE OF INDBR CRITICAL EDGE '"
1573 << Pred->getName() << "': " << *LI << '\n');
1577 if (LoadBB->isLandingPad()) {
1579 << "COULD NOT PRE LOAD BECAUSE OF LANDING PAD CRITICAL EDGE '"
1580 << Pred->getName() << "': " << *LI << '\n');
1584 CriticalEdgePred.push_back(Pred);
1586 // Only add the predecessors that will not be split for now.
1587 PredLoads[Pred] = nullptr;
1591 // Decide whether PRE is profitable for this load.
1592 unsigned NumUnavailablePreds = PredLoads.size() + CriticalEdgePred.size();
1593 assert(NumUnavailablePreds != 0 &&
1594 "Fully available value should already be eliminated!");
1596 // If this load is unavailable in multiple predecessors, reject it.
1597 // FIXME: If we could restructure the CFG, we could make a common pred with
1598 // all the preds that don't have an available LI and insert a new load into
1600 if (NumUnavailablePreds != 1)
1603 // Split critical edges, and update the unavailable predecessors accordingly.
1604 for (BasicBlock *OrigPred : CriticalEdgePred) {
1605 BasicBlock *NewPred = splitCriticalEdges(OrigPred, LoadBB);
1606 assert(!PredLoads.count(OrigPred) && "Split edges shouldn't be in map!");
1607 PredLoads[NewPred] = nullptr;
1608 DEBUG(dbgs() << "Split critical edge " << OrigPred->getName() << "->"
1609 << LoadBB->getName() << '\n');
1612 // Check if the load can safely be moved to all the unavailable predecessors.
1613 bool CanDoPRE = true;
1614 SmallVector<Instruction*, 8> NewInsts;
1615 for (auto &PredLoad : PredLoads) {
1616 BasicBlock *UnavailablePred = PredLoad.first;
1618 // Do PHI translation to get its value in the predecessor if necessary. The
1619 // returned pointer (if non-null) is guaranteed to dominate UnavailablePred.
1621 // If all preds have a single successor, then we know it is safe to insert
1622 // the load on the pred (?!?), so we can insert code to materialize the
1623 // pointer if it is not available.
1624 PHITransAddr Address(LI->getPointerOperand(), DL, AC);
1625 Value *LoadPtr = nullptr;
1626 LoadPtr = Address.PHITranslateWithInsertion(LoadBB, UnavailablePred,
1629 // If we couldn't find or insert a computation of this phi translated value,
1632 DEBUG(dbgs() << "COULDN'T INSERT PHI TRANSLATED VALUE OF: "
1633 << *LI->getPointerOperand() << "\n");
1638 PredLoad.second = LoadPtr;
1642 while (!NewInsts.empty()) {
1643 Instruction *I = NewInsts.pop_back_val();
1644 if (MD) MD->removeInstruction(I);
1645 I->eraseFromParent();
1647 // HINT: Don't revert the edge-splitting as following transformation may
1648 // also need to split these critical edges.
1649 return !CriticalEdgePred.empty();
1652 // Okay, we can eliminate this load by inserting a reload in the predecessor
1653 // and using PHI construction to get the value in the other predecessors, do
1655 DEBUG(dbgs() << "GVN REMOVING PRE LOAD: " << *LI << '\n');
1656 DEBUG(if (!NewInsts.empty())
1657 dbgs() << "INSERTED " << NewInsts.size() << " INSTS: "
1658 << *NewInsts.back() << '\n');
1660 // Assign value numbers to the new instructions.
1661 for (unsigned i = 0, e = NewInsts.size(); i != e; ++i) {
1662 // FIXME: We really _ought_ to insert these value numbers into their
1663 // parent's availability map. However, in doing so, we risk getting into
1664 // ordering issues. If a block hasn't been processed yet, we would be
1665 // marking a value as AVAIL-IN, which isn't what we intend.
1666 VN.lookup_or_add(NewInsts[i]);
1669 for (const auto &PredLoad : PredLoads) {
1670 BasicBlock *UnavailablePred = PredLoad.first;
1671 Value *LoadPtr = PredLoad.second;
1673 Instruction *NewLoad = new LoadInst(LoadPtr, LI->getName()+".pre", false,
1675 UnavailablePred->getTerminator());
1677 // Transfer the old load's AA tags to the new load.
1679 LI->getAAMetadata(Tags);
1681 NewLoad->setAAMetadata(Tags);
1683 // Transfer DebugLoc.
1684 NewLoad->setDebugLoc(LI->getDebugLoc());
1686 // Add the newly created load.
1687 ValuesPerBlock.push_back(AvailableValueInBlock::get(UnavailablePred,
1689 MD->invalidateCachedPointerInfo(LoadPtr);
1690 DEBUG(dbgs() << "GVN INSERTED " << *NewLoad << '\n');
1693 // Perform PHI construction.
1694 Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, *this);
1695 LI->replaceAllUsesWith(V);
1696 if (isa<PHINode>(V))
1698 if (V->getType()->getScalarType()->isPointerTy())
1699 MD->invalidateCachedPointerInfo(V);
1700 markInstructionForDeletion(LI);
1705 /// processNonLocalLoad - Attempt to eliminate a load whose dependencies are
1706 /// non-local by performing PHI construction.
1707 bool GVN::processNonLocalLoad(LoadInst *LI) {
1708 // Step 1: Find the non-local dependencies of the load.
1710 AliasAnalysis::Location Loc = VN.getAliasAnalysis()->getLocation(LI);
1711 MD->getNonLocalPointerDependency(Loc, true, LI->getParent(), Deps);
1713 // If we had to process more than one hundred blocks to find the
1714 // dependencies, this load isn't worth worrying about. Optimizing
1715 // it will be too expensive.
1716 unsigned NumDeps = Deps.size();
1720 // If we had a phi translation failure, we'll have a single entry which is a
1721 // clobber in the current block. Reject this early.
1723 !Deps[0].getResult().isDef() && !Deps[0].getResult().isClobber()) {
1725 dbgs() << "GVN: non-local load ";
1726 LI->printAsOperand(dbgs());
1727 dbgs() << " has unknown dependencies\n";
1732 // Step 2: Analyze the availability of the load
1733 AvailValInBlkVect ValuesPerBlock;
1734 UnavailBlkVect UnavailableBlocks;
1735 AnalyzeLoadAvailability(LI, Deps, ValuesPerBlock, UnavailableBlocks);
1737 // If we have no predecessors that produce a known value for this load, exit
1739 if (ValuesPerBlock.empty())
1742 // Step 3: Eliminate fully redundancy.
1744 // If all of the instructions we depend on produce a known value for this
1745 // load, then it is fully redundant and we can use PHI insertion to compute
1746 // its value. Insert PHIs and remove the fully redundant value now.
1747 if (UnavailableBlocks.empty()) {
1748 DEBUG(dbgs() << "GVN REMOVING NONLOCAL LOAD: " << *LI << '\n');
1750 // Perform PHI construction.
1751 Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, *this);
1752 LI->replaceAllUsesWith(V);
1754 if (isa<PHINode>(V))
1756 if (V->getType()->getScalarType()->isPointerTy())
1757 MD->invalidateCachedPointerInfo(V);
1758 markInstructionForDeletion(LI);
1763 // Step 4: Eliminate partial redundancy.
1764 if (!EnablePRE || !EnableLoadPRE)
1767 return PerformLoadPRE(LI, ValuesPerBlock, UnavailableBlocks);
1771 static void patchReplacementInstruction(Instruction *I, Value *Repl) {
1772 // Patch the replacement so that it is not more restrictive than the value
1774 BinaryOperator *Op = dyn_cast<BinaryOperator>(I);
1775 BinaryOperator *ReplOp = dyn_cast<BinaryOperator>(Repl);
1776 if (Op && ReplOp && isa<OverflowingBinaryOperator>(Op) &&
1777 isa<OverflowingBinaryOperator>(ReplOp)) {
1778 if (ReplOp->hasNoSignedWrap() && !Op->hasNoSignedWrap())
1779 ReplOp->setHasNoSignedWrap(false);
1780 if (ReplOp->hasNoUnsignedWrap() && !Op->hasNoUnsignedWrap())
1781 ReplOp->setHasNoUnsignedWrap(false);
1783 if (Instruction *ReplInst = dyn_cast<Instruction>(Repl)) {
1784 // FIXME: If both the original and replacement value are part of the
1785 // same control-flow region (meaning that the execution of one
1786 // guarentees the executation of the other), then we can combine the
1787 // noalias scopes here and do better than the general conservative
1788 // answer used in combineMetadata().
1790 // In general, GVN unifies expressions over different control-flow
1791 // regions, and so we need a conservative combination of the noalias
1793 unsigned KnownIDs[] = {
1794 LLVMContext::MD_tbaa,
1795 LLVMContext::MD_alias_scope,
1796 LLVMContext::MD_noalias,
1797 LLVMContext::MD_range,
1798 LLVMContext::MD_fpmath,
1799 LLVMContext::MD_invariant_load,
1801 combineMetadata(ReplInst, I, KnownIDs);
1805 static void patchAndReplaceAllUsesWith(Instruction *I, Value *Repl) {
1806 patchReplacementInstruction(I, Repl);
1807 I->replaceAllUsesWith(Repl);
1810 /// processLoad - Attempt to eliminate a load, first by eliminating it
1811 /// locally, and then attempting non-local elimination if that fails.
1812 bool GVN::processLoad(LoadInst *L) {
1819 if (L->use_empty()) {
1820 markInstructionForDeletion(L);
1824 // ... to a pointer that has been loaded from before...
1825 MemDepResult Dep = MD->getDependency(L);
1827 // If we have a clobber and target data is around, see if this is a clobber
1828 // that we can fix up through code synthesis.
1829 if (Dep.isClobber() && DL) {
1830 // Check to see if we have something like this:
1831 // store i32 123, i32* %P
1832 // %A = bitcast i32* %P to i8*
1833 // %B = gep i8* %A, i32 1
1836 // We could do that by recognizing if the clobber instructions are obviously
1837 // a common base + constant offset, and if the previous store (or memset)
1838 // completely covers this load. This sort of thing can happen in bitfield
1840 Value *AvailVal = nullptr;
1841 if (StoreInst *DepSI = dyn_cast<StoreInst>(Dep.getInst())) {
1842 int Offset = AnalyzeLoadFromClobberingStore(L->getType(),
1843 L->getPointerOperand(),
1846 AvailVal = GetStoreValueForLoad(DepSI->getValueOperand(), Offset,
1847 L->getType(), L, *DL);
1850 // Check to see if we have something like this:
1853 // if we have this, replace the later with an extraction from the former.
1854 if (LoadInst *DepLI = dyn_cast<LoadInst>(Dep.getInst())) {
1855 // If this is a clobber and L is the first instruction in its block, then
1856 // we have the first instruction in the entry block.
1860 int Offset = AnalyzeLoadFromClobberingLoad(L->getType(),
1861 L->getPointerOperand(),
1864 AvailVal = GetLoadValueForLoad(DepLI, Offset, L->getType(), L, *this);
1867 // If the clobbering value is a memset/memcpy/memmove, see if we can forward
1868 // a value on from it.
1869 if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(Dep.getInst())) {
1870 int Offset = AnalyzeLoadFromClobberingMemInst(L->getType(),
1871 L->getPointerOperand(),
1874 AvailVal = GetMemInstValueForLoad(DepMI, Offset, L->getType(), L, *DL);
1878 DEBUG(dbgs() << "GVN COERCED INST:\n" << *Dep.getInst() << '\n'
1879 << *AvailVal << '\n' << *L << "\n\n\n");
1881 // Replace the load!
1882 L->replaceAllUsesWith(AvailVal);
1883 if (AvailVal->getType()->getScalarType()->isPointerTy())
1884 MD->invalidateCachedPointerInfo(AvailVal);
1885 markInstructionForDeletion(L);
1891 // If the value isn't available, don't do anything!
1892 if (Dep.isClobber()) {
1894 // fast print dep, using operator<< on instruction is too slow.
1895 dbgs() << "GVN: load ";
1896 L->printAsOperand(dbgs());
1897 Instruction *I = Dep.getInst();
1898 dbgs() << " is clobbered by " << *I << '\n';
1903 // If it is defined in another block, try harder.
1904 if (Dep.isNonLocal())
1905 return processNonLocalLoad(L);
1909 // fast print dep, using operator<< on instruction is too slow.
1910 dbgs() << "GVN: load ";
1911 L->printAsOperand(dbgs());
1912 dbgs() << " has unknown dependence\n";
1917 Instruction *DepInst = Dep.getInst();
1918 if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInst)) {
1919 Value *StoredVal = DepSI->getValueOperand();
1921 // The store and load are to a must-aliased pointer, but they may not
1922 // actually have the same type. See if we know how to reuse the stored
1923 // value (depending on its type).
1924 if (StoredVal->getType() != L->getType()) {
1926 StoredVal = CoerceAvailableValueToLoadType(StoredVal, L->getType(),
1931 DEBUG(dbgs() << "GVN COERCED STORE:\n" << *DepSI << '\n' << *StoredVal
1932 << '\n' << *L << "\n\n\n");
1939 L->replaceAllUsesWith(StoredVal);
1940 if (StoredVal->getType()->getScalarType()->isPointerTy())
1941 MD->invalidateCachedPointerInfo(StoredVal);
1942 markInstructionForDeletion(L);
1947 if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInst)) {
1948 Value *AvailableVal = DepLI;
1950 // The loads are of a must-aliased pointer, but they may not actually have
1951 // the same type. See if we know how to reuse the previously loaded value
1952 // (depending on its type).
1953 if (DepLI->getType() != L->getType()) {
1955 AvailableVal = CoerceAvailableValueToLoadType(DepLI, L->getType(),
1960 DEBUG(dbgs() << "GVN COERCED LOAD:\n" << *DepLI << "\n" << *AvailableVal
1961 << "\n" << *L << "\n\n\n");
1968 patchAndReplaceAllUsesWith(L, AvailableVal);
1969 if (DepLI->getType()->getScalarType()->isPointerTy())
1970 MD->invalidateCachedPointerInfo(DepLI);
1971 markInstructionForDeletion(L);
1976 // If this load really doesn't depend on anything, then we must be loading an
1977 // undef value. This can happen when loading for a fresh allocation with no
1978 // intervening stores, for example.
1979 if (isa<AllocaInst>(DepInst) || isMallocLikeFn(DepInst, TLI)) {
1980 L->replaceAllUsesWith(UndefValue::get(L->getType()));
1981 markInstructionForDeletion(L);
1986 // If this load occurs either right after a lifetime begin,
1987 // then the loaded value is undefined.
1988 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(DepInst)) {
1989 if (II->getIntrinsicID() == Intrinsic::lifetime_start) {
1990 L->replaceAllUsesWith(UndefValue::get(L->getType()));
1991 markInstructionForDeletion(L);
1997 // If this load follows a calloc (which zero initializes memory),
1998 // then the loaded value is zero
1999 if (isCallocLikeFn(DepInst, TLI)) {
2000 L->replaceAllUsesWith(Constant::getNullValue(L->getType()));
2001 markInstructionForDeletion(L);
2009 // findLeader - In order to find a leader for a given value number at a
2010 // specific basic block, we first obtain the list of all Values for that number,
2011 // and then scan the list to find one whose block dominates the block in
2012 // question. This is fast because dominator tree queries consist of only
2013 // a few comparisons of DFS numbers.
2014 Value *GVN::findLeader(const BasicBlock *BB, uint32_t num) {
2015 LeaderTableEntry Vals = LeaderTable[num];
2016 if (!Vals.Val) return nullptr;
2018 Value *Val = nullptr;
2019 if (DT->dominates(Vals.BB, BB)) {
2021 if (isa<Constant>(Val)) return Val;
2024 LeaderTableEntry* Next = Vals.Next;
2026 if (DT->dominates(Next->BB, BB)) {
2027 if (isa<Constant>(Next->Val)) return Next->Val;
2028 if (!Val) Val = Next->Val;
2037 /// replaceAllDominatedUsesWith - Replace all uses of 'From' with 'To' if the
2038 /// use is dominated by the given basic block. Returns the number of uses that
2040 unsigned GVN::replaceAllDominatedUsesWith(Value *From, Value *To,
2041 const BasicBlockEdge &Root) {
2043 for (Value::use_iterator UI = From->use_begin(), UE = From->use_end();
2047 if (DT->dominates(Root, U)) {
2055 /// isOnlyReachableViaThisEdge - There is an edge from 'Src' to 'Dst'. Return
2056 /// true if every path from the entry block to 'Dst' passes via this edge. In
2057 /// particular 'Dst' must not be reachable via another edge from 'Src'.
2058 static bool isOnlyReachableViaThisEdge(const BasicBlockEdge &E,
2059 DominatorTree *DT) {
2060 // While in theory it is interesting to consider the case in which Dst has
2061 // more than one predecessor, because Dst might be part of a loop which is
2062 // only reachable from Src, in practice it is pointless since at the time
2063 // GVN runs all such loops have preheaders, which means that Dst will have
2064 // been changed to have only one predecessor, namely Src.
2065 const BasicBlock *Pred = E.getEnd()->getSinglePredecessor();
2066 const BasicBlock *Src = E.getStart();
2067 assert((!Pred || Pred == Src) && "No edge between these basic blocks!");
2069 return Pred != nullptr;
2072 /// propagateEquality - The given values are known to be equal in every block
2073 /// dominated by 'Root'. Exploit this, for example by replacing 'LHS' with
2074 /// 'RHS' everywhere in the scope. Returns whether a change was made.
2075 bool GVN::propagateEquality(Value *LHS, Value *RHS,
2076 const BasicBlockEdge &Root) {
2077 SmallVector<std::pair<Value*, Value*>, 4> Worklist;
2078 Worklist.push_back(std::make_pair(LHS, RHS));
2079 bool Changed = false;
2080 // For speed, compute a conservative fast approximation to
2081 // DT->dominates(Root, Root.getEnd());
2082 bool RootDominatesEnd = isOnlyReachableViaThisEdge(Root, DT);
2084 while (!Worklist.empty()) {
2085 std::pair<Value*, Value*> Item = Worklist.pop_back_val();
2086 LHS = Item.first; RHS = Item.second;
2088 if (LHS == RHS) continue;
2089 assert(LHS->getType() == RHS->getType() && "Equality but unequal types!");
2091 // Don't try to propagate equalities between constants.
2092 if (isa<Constant>(LHS) && isa<Constant>(RHS)) continue;
2094 // Prefer a constant on the right-hand side, or an Argument if no constants.
2095 if (isa<Constant>(LHS) || (isa<Argument>(LHS) && !isa<Constant>(RHS)))
2096 std::swap(LHS, RHS);
2097 assert((isa<Argument>(LHS) || isa<Instruction>(LHS)) && "Unexpected value!");
2099 // If there is no obvious reason to prefer the left-hand side over the right-
2100 // hand side, ensure the longest lived term is on the right-hand side, so the
2101 // shortest lived term will be replaced by the longest lived. This tends to
2102 // expose more simplifications.
2103 uint32_t LVN = VN.lookup_or_add(LHS);
2104 if ((isa<Argument>(LHS) && isa<Argument>(RHS)) ||
2105 (isa<Instruction>(LHS) && isa<Instruction>(RHS))) {
2106 // Move the 'oldest' value to the right-hand side, using the value number as
2108 uint32_t RVN = VN.lookup_or_add(RHS);
2110 std::swap(LHS, RHS);
2115 // If value numbering later sees that an instruction in the scope is equal
2116 // to 'LHS' then ensure it will be turned into 'RHS'. In order to preserve
2117 // the invariant that instructions only occur in the leader table for their
2118 // own value number (this is used by removeFromLeaderTable), do not do this
2119 // if RHS is an instruction (if an instruction in the scope is morphed into
2120 // LHS then it will be turned into RHS by the next GVN iteration anyway, so
2121 // using the leader table is about compiling faster, not optimizing better).
2122 // The leader table only tracks basic blocks, not edges. Only add to if we
2123 // have the simple case where the edge dominates the end.
2124 if (RootDominatesEnd && !isa<Instruction>(RHS))
2125 addToLeaderTable(LVN, RHS, Root.getEnd());
2127 // Replace all occurrences of 'LHS' with 'RHS' everywhere in the scope. As
2128 // LHS always has at least one use that is not dominated by Root, this will
2129 // never do anything if LHS has only one use.
2130 if (!LHS->hasOneUse()) {
2131 unsigned NumReplacements = replaceAllDominatedUsesWith(LHS, RHS, Root);
2132 Changed |= NumReplacements > 0;
2133 NumGVNEqProp += NumReplacements;
2136 // Now try to deduce additional equalities from this one. For example, if the
2137 // known equality was "(A != B)" == "false" then it follows that A and B are
2138 // equal in the scope. Only boolean equalities with an explicit true or false
2139 // RHS are currently supported.
2140 if (!RHS->getType()->isIntegerTy(1))
2141 // Not a boolean equality - bail out.
2143 ConstantInt *CI = dyn_cast<ConstantInt>(RHS);
2145 // RHS neither 'true' nor 'false' - bail out.
2147 // Whether RHS equals 'true'. Otherwise it equals 'false'.
2148 bool isKnownTrue = CI->isAllOnesValue();
2149 bool isKnownFalse = !isKnownTrue;
2151 // If "A && B" is known true then both A and B are known true. If "A || B"
2152 // is known false then both A and B are known false.
2154 if ((isKnownTrue && match(LHS, m_And(m_Value(A), m_Value(B)))) ||
2155 (isKnownFalse && match(LHS, m_Or(m_Value(A), m_Value(B))))) {
2156 Worklist.push_back(std::make_pair(A, RHS));
2157 Worklist.push_back(std::make_pair(B, RHS));
2161 // If we are propagating an equality like "(A == B)" == "true" then also
2162 // propagate the equality A == B. When propagating a comparison such as
2163 // "(A >= B)" == "true", replace all instances of "A < B" with "false".
2164 if (ICmpInst *Cmp = dyn_cast<ICmpInst>(LHS)) {
2165 Value *Op0 = Cmp->getOperand(0), *Op1 = Cmp->getOperand(1);
2167 // If "A == B" is known true, or "A != B" is known false, then replace
2168 // A with B everywhere in the scope.
2169 if ((isKnownTrue && Cmp->getPredicate() == CmpInst::ICMP_EQ) ||
2170 (isKnownFalse && Cmp->getPredicate() == CmpInst::ICMP_NE))
2171 Worklist.push_back(std::make_pair(Op0, Op1));
2173 // If "A >= B" is known true, replace "A < B" with false everywhere.
2174 CmpInst::Predicate NotPred = Cmp->getInversePredicate();
2175 Constant *NotVal = ConstantInt::get(Cmp->getType(), isKnownFalse);
2176 // Since we don't have the instruction "A < B" immediately to hand, work out
2177 // the value number that it would have and use that to find an appropriate
2178 // instruction (if any).
2179 uint32_t NextNum = VN.getNextUnusedValueNumber();
2180 uint32_t Num = VN.lookup_or_add_cmp(Cmp->getOpcode(), NotPred, Op0, Op1);
2181 // If the number we were assigned was brand new then there is no point in
2182 // looking for an instruction realizing it: there cannot be one!
2183 if (Num < NextNum) {
2184 Value *NotCmp = findLeader(Root.getEnd(), Num);
2185 if (NotCmp && isa<Instruction>(NotCmp)) {
2186 unsigned NumReplacements =
2187 replaceAllDominatedUsesWith(NotCmp, NotVal, Root);
2188 Changed |= NumReplacements > 0;
2189 NumGVNEqProp += NumReplacements;
2192 // Ensure that any instruction in scope that gets the "A < B" value number
2193 // is replaced with false.
2194 // The leader table only tracks basic blocks, not edges. Only add to if we
2195 // have the simple case where the edge dominates the end.
2196 if (RootDominatesEnd)
2197 addToLeaderTable(Num, NotVal, Root.getEnd());
2206 /// processInstruction - When calculating availability, handle an instruction
2207 /// by inserting it into the appropriate sets
2208 bool GVN::processInstruction(Instruction *I) {
2209 // Ignore dbg info intrinsics.
2210 if (isa<DbgInfoIntrinsic>(I))
2213 // If the instruction can be easily simplified then do so now in preference
2214 // to value numbering it. Value numbering often exposes redundancies, for
2215 // example if it determines that %y is equal to %x then the instruction
2216 // "%z = and i32 %x, %y" becomes "%z = and i32 %x, %x" which we now simplify.
2217 if (Value *V = SimplifyInstruction(I, DL, TLI, DT, AC)) {
2218 I->replaceAllUsesWith(V);
2219 if (MD && V->getType()->getScalarType()->isPointerTy())
2220 MD->invalidateCachedPointerInfo(V);
2221 markInstructionForDeletion(I);
2226 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
2227 if (processLoad(LI))
2230 unsigned Num = VN.lookup_or_add(LI);
2231 addToLeaderTable(Num, LI, LI->getParent());
2235 // For conditional branches, we can perform simple conditional propagation on
2236 // the condition value itself.
2237 if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
2238 if (!BI->isConditional())
2241 if (isa<Constant>(BI->getCondition()))
2242 return processFoldableCondBr(BI);
2244 Value *BranchCond = BI->getCondition();
2245 BasicBlock *TrueSucc = BI->getSuccessor(0);
2246 BasicBlock *FalseSucc = BI->getSuccessor(1);
2247 // Avoid multiple edges early.
2248 if (TrueSucc == FalseSucc)
2251 BasicBlock *Parent = BI->getParent();
2252 bool Changed = false;
2254 Value *TrueVal = ConstantInt::getTrue(TrueSucc->getContext());
2255 BasicBlockEdge TrueE(Parent, TrueSucc);
2256 Changed |= propagateEquality(BranchCond, TrueVal, TrueE);
2258 Value *FalseVal = ConstantInt::getFalse(FalseSucc->getContext());
2259 BasicBlockEdge FalseE(Parent, FalseSucc);
2260 Changed |= propagateEquality(BranchCond, FalseVal, FalseE);
2265 // For switches, propagate the case values into the case destinations.
2266 if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) {
2267 Value *SwitchCond = SI->getCondition();
2268 BasicBlock *Parent = SI->getParent();
2269 bool Changed = false;
2271 // Remember how many outgoing edges there are to every successor.
2272 SmallDenseMap<BasicBlock *, unsigned, 16> SwitchEdges;
2273 for (unsigned i = 0, n = SI->getNumSuccessors(); i != n; ++i)
2274 ++SwitchEdges[SI->getSuccessor(i)];
2276 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
2278 BasicBlock *Dst = i.getCaseSuccessor();
2279 // If there is only a single edge, propagate the case value into it.
2280 if (SwitchEdges.lookup(Dst) == 1) {
2281 BasicBlockEdge E(Parent, Dst);
2282 Changed |= propagateEquality(SwitchCond, i.getCaseValue(), E);
2288 // Instructions with void type don't return a value, so there's
2289 // no point in trying to find redundancies in them.
2290 if (I->getType()->isVoidTy()) return false;
2292 uint32_t NextNum = VN.getNextUnusedValueNumber();
2293 unsigned Num = VN.lookup_or_add(I);
2295 // Allocations are always uniquely numbered, so we can save time and memory
2296 // by fast failing them.
2297 if (isa<AllocaInst>(I) || isa<TerminatorInst>(I) || isa<PHINode>(I)) {
2298 addToLeaderTable(Num, I, I->getParent());
2302 // If the number we were assigned was a brand new VN, then we don't
2303 // need to do a lookup to see if the number already exists
2304 // somewhere in the domtree: it can't!
2305 if (Num >= NextNum) {
2306 addToLeaderTable(Num, I, I->getParent());
2310 // Perform fast-path value-number based elimination of values inherited from
2312 Value *repl = findLeader(I->getParent(), Num);
2314 // Failure, just remember this instance for future use.
2315 addToLeaderTable(Num, I, I->getParent());
2320 patchAndReplaceAllUsesWith(I, repl);
2321 if (MD && repl->getType()->getScalarType()->isPointerTy())
2322 MD->invalidateCachedPointerInfo(repl);
2323 markInstructionForDeletion(I);
2327 /// runOnFunction - This is the main transformation entry point for a function.
2328 bool GVN::runOnFunction(Function& F) {
2329 if (skipOptnoneFunction(F))
2333 MD = &getAnalysis<MemoryDependenceAnalysis>();
2334 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2335 DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
2336 DL = DLP ? &DLP->getDataLayout() : nullptr;
2337 AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
2338 TLI = &getAnalysis<TargetLibraryInfo>();
2339 VN.setAliasAnalysis(&getAnalysis<AliasAnalysis>());
2343 bool Changed = false;
2344 bool ShouldContinue = true;
2346 // Merge unconditional branches, allowing PRE to catch more
2347 // optimization opportunities.
2348 for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ) {
2349 BasicBlock *BB = FI++;
2351 bool removedBlock = MergeBlockIntoPredecessor(BB, this);
2352 if (removedBlock) ++NumGVNBlocks;
2354 Changed |= removedBlock;
2357 unsigned Iteration = 0;
2358 while (ShouldContinue) {
2359 DEBUG(dbgs() << "GVN iteration: " << Iteration << "\n");
2360 ShouldContinue = iterateOnFunction(F);
2361 Changed |= ShouldContinue;
2366 // Fabricate val-num for dead-code in order to suppress assertion in
2368 assignValNumForDeadCode();
2369 bool PREChanged = true;
2370 while (PREChanged) {
2371 PREChanged = performPRE(F);
2372 Changed |= PREChanged;
2376 // FIXME: Should perform GVN again after PRE does something. PRE can move
2377 // computations into blocks where they become fully redundant. Note that
2378 // we can't do this until PRE's critical edge splitting updates memdep.
2379 // Actually, when this happens, we should just fully integrate PRE into GVN.
2381 cleanupGlobalSets();
2382 // Do not cleanup DeadBlocks in cleanupGlobalSets() as it's called for each
2390 bool GVN::processBlock(BasicBlock *BB) {
2391 // FIXME: Kill off InstrsToErase by doing erasing eagerly in a helper function
2392 // (and incrementing BI before processing an instruction).
2393 assert(InstrsToErase.empty() &&
2394 "We expect InstrsToErase to be empty across iterations");
2395 if (DeadBlocks.count(BB))
2398 bool ChangedFunction = false;
2400 for (BasicBlock::iterator BI = BB->begin(), BE = BB->end();
2402 ChangedFunction |= processInstruction(BI);
2403 if (InstrsToErase.empty()) {
2408 // If we need some instructions deleted, do it now.
2409 NumGVNInstr += InstrsToErase.size();
2411 // Avoid iterator invalidation.
2412 bool AtStart = BI == BB->begin();
2416 for (SmallVectorImpl<Instruction *>::iterator I = InstrsToErase.begin(),
2417 E = InstrsToErase.end(); I != E; ++I) {
2418 DEBUG(dbgs() << "GVN removed: " << **I << '\n');
2419 if (MD) MD->removeInstruction(*I);
2420 DEBUG(verifyRemoved(*I));
2421 (*I)->eraseFromParent();
2423 InstrsToErase.clear();
2431 return ChangedFunction;
2434 /// performPRE - Perform a purely local form of PRE that looks for diamond
2435 /// control flow patterns and attempts to perform simple PRE at the join point.
2436 bool GVN::performPRE(Function &F) {
2437 bool Changed = false;
2438 SmallVector<std::pair<Value*, BasicBlock*>, 8> predMap;
2439 for (BasicBlock *CurrentBlock : depth_first(&F.getEntryBlock())) {
2440 // Nothing to PRE in the entry block.
2441 if (CurrentBlock == &F.getEntryBlock()) continue;
2443 // Don't perform PRE on a landing pad.
2444 if (CurrentBlock->isLandingPad()) continue;
2446 for (BasicBlock::iterator BI = CurrentBlock->begin(),
2447 BE = CurrentBlock->end(); BI != BE; ) {
2448 Instruction *CurInst = BI++;
2450 if (isa<AllocaInst>(CurInst) ||
2451 isa<TerminatorInst>(CurInst) || isa<PHINode>(CurInst) ||
2452 CurInst->getType()->isVoidTy() ||
2453 CurInst->mayReadFromMemory() || CurInst->mayHaveSideEffects() ||
2454 isa<DbgInfoIntrinsic>(CurInst))
2457 // Don't do PRE on compares. The PHI would prevent CodeGenPrepare from
2458 // sinking the compare again, and it would force the code generator to
2459 // move the i1 from processor flags or predicate registers into a general
2460 // purpose register.
2461 if (isa<CmpInst>(CurInst))
2464 // We don't currently value number ANY inline asm calls.
2465 if (CallInst *CallI = dyn_cast<CallInst>(CurInst))
2466 if (CallI->isInlineAsm())
2469 uint32_t ValNo = VN.lookup(CurInst);
2471 // Look for the predecessors for PRE opportunities. We're
2472 // only trying to solve the basic diamond case, where
2473 // a value is computed in the successor and one predecessor,
2474 // but not the other. We also explicitly disallow cases
2475 // where the successor is its own predecessor, because they're
2476 // more complicated to get right.
2477 unsigned NumWith = 0;
2478 unsigned NumWithout = 0;
2479 BasicBlock *PREPred = nullptr;
2482 for (pred_iterator PI = pred_begin(CurrentBlock),
2483 PE = pred_end(CurrentBlock); PI != PE; ++PI) {
2484 BasicBlock *P = *PI;
2485 // We're not interested in PRE where the block is its
2486 // own predecessor, or in blocks with predecessors
2487 // that are not reachable.
2488 if (P == CurrentBlock) {
2491 } else if (!DT->isReachableFromEntry(P)) {
2496 Value* predV = findLeader(P, ValNo);
2498 predMap.push_back(std::make_pair(static_cast<Value *>(nullptr), P));
2501 } else if (predV == CurInst) {
2502 /* CurInst dominates this predecessor. */
2506 predMap.push_back(std::make_pair(predV, P));
2511 // Don't do PRE when it might increase code size, i.e. when
2512 // we would need to insert instructions in more than one pred.
2513 if (NumWithout != 1 || NumWith == 0)
2516 // Don't do PRE across indirect branch.
2517 if (isa<IndirectBrInst>(PREPred->getTerminator()))
2520 // We can't do PRE safely on a critical edge, so instead we schedule
2521 // the edge to be split and perform the PRE the next time we iterate
2523 unsigned SuccNum = GetSuccessorNumber(PREPred, CurrentBlock);
2524 if (isCriticalEdge(PREPred->getTerminator(), SuccNum)) {
2525 toSplit.push_back(std::make_pair(PREPred->getTerminator(), SuccNum));
2529 // Instantiate the expression in the predecessor that lacked it.
2530 // Because we are going top-down through the block, all value numbers
2531 // will be available in the predecessor by the time we need them. Any
2532 // that weren't originally present will have been instantiated earlier
2534 Instruction *PREInstr = CurInst->clone();
2535 bool success = true;
2536 for (unsigned i = 0, e = CurInst->getNumOperands(); i != e; ++i) {
2537 Value *Op = PREInstr->getOperand(i);
2538 if (isa<Argument>(Op) || isa<Constant>(Op) || isa<GlobalValue>(Op))
2541 if (Value *V = findLeader(PREPred, VN.lookup(Op))) {
2542 PREInstr->setOperand(i, V);
2549 // Fail out if we encounter an operand that is not available in
2550 // the PRE predecessor. This is typically because of loads which
2551 // are not value numbered precisely.
2553 DEBUG(verifyRemoved(PREInstr));
2558 PREInstr->insertBefore(PREPred->getTerminator());
2559 PREInstr->setName(CurInst->getName() + ".pre");
2560 PREInstr->setDebugLoc(CurInst->getDebugLoc());
2561 VN.add(PREInstr, ValNo);
2564 // Update the availability map to include the new instruction.
2565 addToLeaderTable(ValNo, PREInstr, PREPred);
2567 // Create a PHI to make the value available in this block.
2568 PHINode* Phi = PHINode::Create(CurInst->getType(), predMap.size(),
2569 CurInst->getName() + ".pre-phi",
2570 CurrentBlock->begin());
2571 for (unsigned i = 0, e = predMap.size(); i != e; ++i) {
2572 if (Value *V = predMap[i].first)
2573 Phi->addIncoming(V, predMap[i].second);
2575 Phi->addIncoming(PREInstr, PREPred);
2579 addToLeaderTable(ValNo, Phi, CurrentBlock);
2580 Phi->setDebugLoc(CurInst->getDebugLoc());
2581 CurInst->replaceAllUsesWith(Phi);
2582 if (Phi->getType()->getScalarType()->isPointerTy()) {
2583 // Because we have added a PHI-use of the pointer value, it has now
2584 // "escaped" from alias analysis' perspective. We need to inform
2586 for (unsigned ii = 0, ee = Phi->getNumIncomingValues(); ii != ee;
2588 unsigned jj = PHINode::getOperandNumForIncomingValue(ii);
2589 VN.getAliasAnalysis()->addEscapingUse(Phi->getOperandUse(jj));
2593 MD->invalidateCachedPointerInfo(Phi);
2596 removeFromLeaderTable(ValNo, CurInst, CurrentBlock);
2598 DEBUG(dbgs() << "GVN PRE removed: " << *CurInst << '\n');
2599 if (MD) MD->removeInstruction(CurInst);
2600 DEBUG(verifyRemoved(CurInst));
2601 CurInst->eraseFromParent();
2606 if (splitCriticalEdges())
2612 /// Split the critical edge connecting the given two blocks, and return
2613 /// the block inserted to the critical edge.
2614 BasicBlock *GVN::splitCriticalEdges(BasicBlock *Pred, BasicBlock *Succ) {
2615 BasicBlock *BB = SplitCriticalEdge(Pred, Succ, this);
2617 MD->invalidateCachedPredecessors();
2621 /// splitCriticalEdges - Split critical edges found during the previous
2622 /// iteration that may enable further optimization.
2623 bool GVN::splitCriticalEdges() {
2624 if (toSplit.empty())
2627 std::pair<TerminatorInst*, unsigned> Edge = toSplit.pop_back_val();
2628 SplitCriticalEdge(Edge.first, Edge.second, this);
2629 } while (!toSplit.empty());
2630 if (MD) MD->invalidateCachedPredecessors();
2634 /// iterateOnFunction - Executes one iteration of GVN
2635 bool GVN::iterateOnFunction(Function &F) {
2636 cleanupGlobalSets();
2638 // Top-down walk of the dominator tree
2639 bool Changed = false;
2641 // Needed for value numbering with phi construction to work.
2642 ReversePostOrderTraversal<Function*> RPOT(&F);
2643 for (ReversePostOrderTraversal<Function*>::rpo_iterator RI = RPOT.begin(),
2644 RE = RPOT.end(); RI != RE; ++RI)
2645 Changed |= processBlock(*RI);
2647 // Save the blocks this function have before transformation begins. GVN may
2648 // split critical edge, and hence may invalidate the RPO/DT iterator.
2650 std::vector<BasicBlock *> BBVect;
2651 BBVect.reserve(256);
2652 for (DomTreeNode *X : depth_first(DT->getRootNode()))
2653 BBVect.push_back(X->getBlock());
2655 for (std::vector<BasicBlock *>::iterator I = BBVect.begin(), E = BBVect.end();
2657 Changed |= processBlock(*I);
2663 void GVN::cleanupGlobalSets() {
2665 LeaderTable.clear();
2666 TableAllocator.Reset();
2669 /// verifyRemoved - Verify that the specified instruction does not occur in our
2670 /// internal data structures.
2671 void GVN::verifyRemoved(const Instruction *Inst) const {
2672 VN.verifyRemoved(Inst);
2674 // Walk through the value number scope to make sure the instruction isn't
2675 // ferreted away in it.
2676 for (DenseMap<uint32_t, LeaderTableEntry>::const_iterator
2677 I = LeaderTable.begin(), E = LeaderTable.end(); I != E; ++I) {
2678 const LeaderTableEntry *Node = &I->second;
2679 assert(Node->Val != Inst && "Inst still in value numbering scope!");
2681 while (Node->Next) {
2683 assert(Node->Val != Inst && "Inst still in value numbering scope!");
2688 // BB is declared dead, which implied other blocks become dead as well. This
2689 // function is to add all these blocks to "DeadBlocks". For the dead blocks'
2690 // live successors, update their phi nodes by replacing the operands
2691 // corresponding to dead blocks with UndefVal.
2693 void GVN::addDeadBlock(BasicBlock *BB) {
2694 SmallVector<BasicBlock *, 4> NewDead;
2695 SmallSetVector<BasicBlock *, 4> DF;
2697 NewDead.push_back(BB);
2698 while (!NewDead.empty()) {
2699 BasicBlock *D = NewDead.pop_back_val();
2700 if (DeadBlocks.count(D))
2703 // All blocks dominated by D are dead.
2704 SmallVector<BasicBlock *, 8> Dom;
2705 DT->getDescendants(D, Dom);
2706 DeadBlocks.insert(Dom.begin(), Dom.end());
2708 // Figure out the dominance-frontier(D).
2709 for (SmallVectorImpl<BasicBlock *>::iterator I = Dom.begin(),
2710 E = Dom.end(); I != E; I++) {
2712 for (succ_iterator SI = succ_begin(B), SE = succ_end(B); SI != SE; SI++) {
2713 BasicBlock *S = *SI;
2714 if (DeadBlocks.count(S))
2717 bool AllPredDead = true;
2718 for (pred_iterator PI = pred_begin(S), PE = pred_end(S); PI != PE; PI++)
2719 if (!DeadBlocks.count(*PI)) {
2720 AllPredDead = false;
2725 // S could be proved dead later on. That is why we don't update phi
2726 // operands at this moment.
2729 // While S is not dominated by D, it is dead by now. This could take
2730 // place if S already have a dead predecessor before D is declared
2732 NewDead.push_back(S);
2738 // For the dead blocks' live successors, update their phi nodes by replacing
2739 // the operands corresponding to dead blocks with UndefVal.
2740 for(SmallSetVector<BasicBlock *, 4>::iterator I = DF.begin(), E = DF.end();
2743 if (DeadBlocks.count(B))
2746 SmallVector<BasicBlock *, 4> Preds(pred_begin(B), pred_end(B));
2747 for (SmallVectorImpl<BasicBlock *>::iterator PI = Preds.begin(),
2748 PE = Preds.end(); PI != PE; PI++) {
2749 BasicBlock *P = *PI;
2751 if (!DeadBlocks.count(P))
2754 if (isCriticalEdge(P->getTerminator(), GetSuccessorNumber(P, B))) {
2755 if (BasicBlock *S = splitCriticalEdges(P, B))
2756 DeadBlocks.insert(P = S);
2759 for (BasicBlock::iterator II = B->begin(); isa<PHINode>(II); ++II) {
2760 PHINode &Phi = cast<PHINode>(*II);
2761 Phi.setIncomingValue(Phi.getBasicBlockIndex(P),
2762 UndefValue::get(Phi.getType()));
2768 // If the given branch is recognized as a foldable branch (i.e. conditional
2769 // branch with constant condition), it will perform following analyses and
2771 // 1) If the dead out-coming edge is a critical-edge, split it. Let
2772 // R be the target of the dead out-coming edge.
2773 // 1) Identify the set of dead blocks implied by the branch's dead outcoming
2774 // edge. The result of this step will be {X| X is dominated by R}
2775 // 2) Identify those blocks which haves at least one dead prodecessor. The
2776 // result of this step will be dominance-frontier(R).
2777 // 3) Update the PHIs in DF(R) by replacing the operands corresponding to
2778 // dead blocks with "UndefVal" in an hope these PHIs will optimized away.
2780 // Return true iff *NEW* dead code are found.
2781 bool GVN::processFoldableCondBr(BranchInst *BI) {
2782 if (!BI || BI->isUnconditional())
2785 ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition());
2789 BasicBlock *DeadRoot = Cond->getZExtValue() ?
2790 BI->getSuccessor(1) : BI->getSuccessor(0);
2791 if (DeadBlocks.count(DeadRoot))
2794 if (!DeadRoot->getSinglePredecessor())
2795 DeadRoot = splitCriticalEdges(BI->getParent(), DeadRoot);
2797 addDeadBlock(DeadRoot);
2801 // performPRE() will trigger assert if it comes across an instruction without
2802 // associated val-num. As it normally has far more live instructions than dead
2803 // instructions, it makes more sense just to "fabricate" a val-number for the
2804 // dead code than checking if instruction involved is dead or not.
2805 void GVN::assignValNumForDeadCode() {
2806 for (SetVector<BasicBlock *>::iterator I = DeadBlocks.begin(),
2807 E = DeadBlocks.end(); I != E; I++) {
2808 BasicBlock *BB = *I;
2809 for (BasicBlock::iterator II = BB->begin(), EE = BB->end();
2811 Instruction *Inst = &*II;
2812 unsigned ValNum = VN.lookup_or_add(Inst);
2813 addToLeaderTable(ValNum, Inst, BB);