[ARM] Enable shrink-wrapping by default.
[oota-llvm.git] / lib / Target / SystemZ / SystemZInstrInfo.cpp
1 //===-- SystemZInstrInfo.cpp - SystemZ instruction information ------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the SystemZ implementation of the TargetInstrInfo class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "SystemZInstrInfo.h"
15 #include "SystemZInstrBuilder.h"
16 #include "SystemZTargetMachine.h"
17 #include "llvm/CodeGen/LiveVariables.h"
18 #include "llvm/CodeGen/MachineRegisterInfo.h"
19
20 using namespace llvm;
21
22 #define GET_INSTRINFO_CTOR_DTOR
23 #define GET_INSTRMAP_INFO
24 #include "SystemZGenInstrInfo.inc"
25
26 // Return a mask with Count low bits set.
27 static uint64_t allOnes(unsigned int Count) {
28   return Count == 0 ? 0 : (uint64_t(1) << (Count - 1) << 1) - 1;
29 }
30
31 // Reg should be a 32-bit GPR.  Return true if it is a high register rather
32 // than a low register.
33 static bool isHighReg(unsigned int Reg) {
34   if (SystemZ::GRH32BitRegClass.contains(Reg))
35     return true;
36   assert(SystemZ::GR32BitRegClass.contains(Reg) && "Invalid GRX32");
37   return false;
38 }
39
40 // Pin the vtable to this file.
41 void SystemZInstrInfo::anchor() {}
42
43 SystemZInstrInfo::SystemZInstrInfo(SystemZSubtarget &sti)
44   : SystemZGenInstrInfo(SystemZ::ADJCALLSTACKDOWN, SystemZ::ADJCALLSTACKUP),
45     RI(), STI(sti) {
46 }
47
48 // MI is a 128-bit load or store.  Split it into two 64-bit loads or stores,
49 // each having the opcode given by NewOpcode.
50 void SystemZInstrInfo::splitMove(MachineBasicBlock::iterator MI,
51                                  unsigned NewOpcode) const {
52   MachineBasicBlock *MBB = MI->getParent();
53   MachineFunction &MF = *MBB->getParent();
54
55   // Get two load or store instructions.  Use the original instruction for one
56   // of them (arbitrarily the second here) and create a clone for the other.
57   MachineInstr *EarlierMI = MF.CloneMachineInstr(MI);
58   MBB->insert(MI, EarlierMI);
59
60   // Set up the two 64-bit registers.
61   MachineOperand &HighRegOp = EarlierMI->getOperand(0);
62   MachineOperand &LowRegOp = MI->getOperand(0);
63   HighRegOp.setReg(RI.getSubReg(HighRegOp.getReg(), SystemZ::subreg_h64));
64   LowRegOp.setReg(RI.getSubReg(LowRegOp.getReg(), SystemZ::subreg_l64));
65
66   // The address in the first (high) instruction is already correct.
67   // Adjust the offset in the second (low) instruction.
68   MachineOperand &HighOffsetOp = EarlierMI->getOperand(2);
69   MachineOperand &LowOffsetOp = MI->getOperand(2);
70   LowOffsetOp.setImm(LowOffsetOp.getImm() + 8);
71
72  // Clear the kill flags for the base and index registers in the first
73  // instruction.
74   EarlierMI->getOperand(1).setIsKill(false);
75   EarlierMI->getOperand(3).setIsKill(false);
76
77   // Set the opcodes.
78   unsigned HighOpcode = getOpcodeForOffset(NewOpcode, HighOffsetOp.getImm());
79   unsigned LowOpcode = getOpcodeForOffset(NewOpcode, LowOffsetOp.getImm());
80   assert(HighOpcode && LowOpcode && "Both offsets should be in range");
81
82   EarlierMI->setDesc(get(HighOpcode));
83   MI->setDesc(get(LowOpcode));
84 }
85
86 // Split ADJDYNALLOC instruction MI.
87 void SystemZInstrInfo::splitAdjDynAlloc(MachineBasicBlock::iterator MI) const {
88   MachineBasicBlock *MBB = MI->getParent();
89   MachineFunction &MF = *MBB->getParent();
90   MachineFrameInfo *MFFrame = MF.getFrameInfo();
91   MachineOperand &OffsetMO = MI->getOperand(2);
92
93   uint64_t Offset = (MFFrame->getMaxCallFrameSize() +
94                      SystemZMC::CallFrameSize +
95                      OffsetMO.getImm());
96   unsigned NewOpcode = getOpcodeForOffset(SystemZ::LA, Offset);
97   assert(NewOpcode && "No support for huge argument lists yet");
98   MI->setDesc(get(NewOpcode));
99   OffsetMO.setImm(Offset);
100 }
101
102 // MI is an RI-style pseudo instruction.  Replace it with LowOpcode
103 // if the first operand is a low GR32 and HighOpcode if the first operand
104 // is a high GR32.  ConvertHigh is true if LowOpcode takes a signed operand
105 // and HighOpcode takes an unsigned 32-bit operand.  In those cases,
106 // MI has the same kind of operand as LowOpcode, so needs to be converted
107 // if HighOpcode is used.
108 void SystemZInstrInfo::expandRIPseudo(MachineInstr *MI, unsigned LowOpcode,
109                                       unsigned HighOpcode,
110                                       bool ConvertHigh) const {
111   unsigned Reg = MI->getOperand(0).getReg();
112   bool IsHigh = isHighReg(Reg);
113   MI->setDesc(get(IsHigh ? HighOpcode : LowOpcode));
114   if (IsHigh && ConvertHigh)
115     MI->getOperand(1).setImm(uint32_t(MI->getOperand(1).getImm()));
116 }
117
118 // MI is a three-operand RIE-style pseudo instruction.  Replace it with
119 // LowOpcodeK if the registers are both low GR32s, otherwise use a move
120 // followed by HighOpcode or LowOpcode, depending on whether the target
121 // is a high or low GR32.
122 void SystemZInstrInfo::expandRIEPseudo(MachineInstr *MI, unsigned LowOpcode,
123                                        unsigned LowOpcodeK,
124                                        unsigned HighOpcode) const {
125   unsigned DestReg = MI->getOperand(0).getReg();
126   unsigned SrcReg = MI->getOperand(1).getReg();
127   bool DestIsHigh = isHighReg(DestReg);
128   bool SrcIsHigh = isHighReg(SrcReg);
129   if (!DestIsHigh && !SrcIsHigh)
130     MI->setDesc(get(LowOpcodeK));
131   else {
132     emitGRX32Move(*MI->getParent(), MI, MI->getDebugLoc(),
133                   DestReg, SrcReg, SystemZ::LR, 32,
134                   MI->getOperand(1).isKill());
135     MI->setDesc(get(DestIsHigh ? HighOpcode : LowOpcode));
136     MI->getOperand(1).setReg(DestReg);
137     MI->tieOperands(0, 1);
138   }
139 }
140
141 // MI is an RXY-style pseudo instruction.  Replace it with LowOpcode
142 // if the first operand is a low GR32 and HighOpcode if the first operand
143 // is a high GR32.
144 void SystemZInstrInfo::expandRXYPseudo(MachineInstr *MI, unsigned LowOpcode,
145                                        unsigned HighOpcode) const {
146   unsigned Reg = MI->getOperand(0).getReg();
147   unsigned Opcode = getOpcodeForOffset(isHighReg(Reg) ? HighOpcode : LowOpcode,
148                                        MI->getOperand(2).getImm());
149   MI->setDesc(get(Opcode));
150 }
151
152 // MI is an RR-style pseudo instruction that zero-extends the low Size bits
153 // of one GRX32 into another.  Replace it with LowOpcode if both operands
154 // are low registers, otherwise use RISB[LH]G.
155 void SystemZInstrInfo::expandZExtPseudo(MachineInstr *MI, unsigned LowOpcode,
156                                         unsigned Size) const {
157   emitGRX32Move(*MI->getParent(), MI, MI->getDebugLoc(),
158                 MI->getOperand(0).getReg(), MI->getOperand(1).getReg(),
159                 LowOpcode, Size, MI->getOperand(1).isKill());
160   MI->eraseFromParent();
161 }
162
163 // Emit a zero-extending move from 32-bit GPR SrcReg to 32-bit GPR
164 // DestReg before MBBI in MBB.  Use LowLowOpcode when both DestReg and SrcReg
165 // are low registers, otherwise use RISB[LH]G.  Size is the number of bits
166 // taken from the low end of SrcReg (8 for LLCR, 16 for LLHR and 32 for LR).
167 // KillSrc is true if this move is the last use of SrcReg.
168 void SystemZInstrInfo::emitGRX32Move(MachineBasicBlock &MBB,
169                                      MachineBasicBlock::iterator MBBI,
170                                      DebugLoc DL, unsigned DestReg,
171                                      unsigned SrcReg, unsigned LowLowOpcode,
172                                      unsigned Size, bool KillSrc) const {
173   unsigned Opcode;
174   bool DestIsHigh = isHighReg(DestReg);
175   bool SrcIsHigh = isHighReg(SrcReg);
176   if (DestIsHigh && SrcIsHigh)
177     Opcode = SystemZ::RISBHH;
178   else if (DestIsHigh && !SrcIsHigh)
179     Opcode = SystemZ::RISBHL;
180   else if (!DestIsHigh && SrcIsHigh)
181     Opcode = SystemZ::RISBLH;
182   else {
183     BuildMI(MBB, MBBI, DL, get(LowLowOpcode), DestReg)
184       .addReg(SrcReg, getKillRegState(KillSrc));
185     return;
186   }
187   unsigned Rotate = (DestIsHigh != SrcIsHigh ? 32 : 0);
188   BuildMI(MBB, MBBI, DL, get(Opcode), DestReg)
189     .addReg(DestReg, RegState::Undef)
190     .addReg(SrcReg, getKillRegState(KillSrc))
191     .addImm(32 - Size).addImm(128 + 31).addImm(Rotate);
192 }
193
194 // If MI is a simple load or store for a frame object, return the register
195 // it loads or stores and set FrameIndex to the index of the frame object.
196 // Return 0 otherwise.
197 //
198 // Flag is SimpleBDXLoad for loads and SimpleBDXStore for stores.
199 static int isSimpleMove(const MachineInstr *MI, int &FrameIndex,
200                         unsigned Flag) {
201   const MCInstrDesc &MCID = MI->getDesc();
202   if ((MCID.TSFlags & Flag) &&
203       MI->getOperand(1).isFI() &&
204       MI->getOperand(2).getImm() == 0 &&
205       MI->getOperand(3).getReg() == 0) {
206     FrameIndex = MI->getOperand(1).getIndex();
207     return MI->getOperand(0).getReg();
208   }
209   return 0;
210 }
211
212 unsigned SystemZInstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
213                                                int &FrameIndex) const {
214   return isSimpleMove(MI, FrameIndex, SystemZII::SimpleBDXLoad);
215 }
216
217 unsigned SystemZInstrInfo::isStoreToStackSlot(const MachineInstr *MI,
218                                               int &FrameIndex) const {
219   return isSimpleMove(MI, FrameIndex, SystemZII::SimpleBDXStore);
220 }
221
222 bool SystemZInstrInfo::isStackSlotCopy(const MachineInstr *MI,
223                                        int &DestFrameIndex,
224                                        int &SrcFrameIndex) const {
225   // Check for MVC 0(Length,FI1),0(FI2)
226   const MachineFrameInfo *MFI = MI->getParent()->getParent()->getFrameInfo();
227   if (MI->getOpcode() != SystemZ::MVC ||
228       !MI->getOperand(0).isFI() ||
229       MI->getOperand(1).getImm() != 0 ||
230       !MI->getOperand(3).isFI() ||
231       MI->getOperand(4).getImm() != 0)
232     return false;
233
234   // Check that Length covers the full slots.
235   int64_t Length = MI->getOperand(2).getImm();
236   unsigned FI1 = MI->getOperand(0).getIndex();
237   unsigned FI2 = MI->getOperand(3).getIndex();
238   if (MFI->getObjectSize(FI1) != Length ||
239       MFI->getObjectSize(FI2) != Length)
240     return false;
241
242   DestFrameIndex = FI1;
243   SrcFrameIndex = FI2;
244   return true;
245 }
246
247 bool SystemZInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
248                                      MachineBasicBlock *&TBB,
249                                      MachineBasicBlock *&FBB,
250                                      SmallVectorImpl<MachineOperand> &Cond,
251                                      bool AllowModify) const {
252   // Most of the code and comments here are boilerplate.
253
254   // Start from the bottom of the block and work up, examining the
255   // terminator instructions.
256   MachineBasicBlock::iterator I = MBB.end();
257   while (I != MBB.begin()) {
258     --I;
259     if (I->isDebugValue())
260       continue;
261
262     // Working from the bottom, when we see a non-terminator instruction, we're
263     // done.
264     if (!isUnpredicatedTerminator(I))
265       break;
266
267     // A terminator that isn't a branch can't easily be handled by this
268     // analysis.
269     if (!I->isBranch())
270       return true;
271
272     // Can't handle indirect branches.
273     SystemZII::Branch Branch(getBranchInfo(I));
274     if (!Branch.Target->isMBB())
275       return true;
276
277     // Punt on compound branches.
278     if (Branch.Type != SystemZII::BranchNormal)
279       return true;
280
281     if (Branch.CCMask == SystemZ::CCMASK_ANY) {
282       // Handle unconditional branches.
283       if (!AllowModify) {
284         TBB = Branch.Target->getMBB();
285         continue;
286       }
287
288       // If the block has any instructions after a JMP, delete them.
289       while (std::next(I) != MBB.end())
290         std::next(I)->eraseFromParent();
291
292       Cond.clear();
293       FBB = nullptr;
294
295       // Delete the JMP if it's equivalent to a fall-through.
296       if (MBB.isLayoutSuccessor(Branch.Target->getMBB())) {
297         TBB = nullptr;
298         I->eraseFromParent();
299         I = MBB.end();
300         continue;
301       }
302
303       // TBB is used to indicate the unconditinal destination.
304       TBB = Branch.Target->getMBB();
305       continue;
306     }
307
308     // Working from the bottom, handle the first conditional branch.
309     if (Cond.empty()) {
310       // FIXME: add X86-style branch swap
311       FBB = TBB;
312       TBB = Branch.Target->getMBB();
313       Cond.push_back(MachineOperand::CreateImm(Branch.CCValid));
314       Cond.push_back(MachineOperand::CreateImm(Branch.CCMask));
315       continue;
316     }
317
318     // Handle subsequent conditional branches.
319     assert(Cond.size() == 2 && TBB && "Should have seen a conditional branch");
320
321     // Only handle the case where all conditional branches branch to the same
322     // destination.
323     if (TBB != Branch.Target->getMBB())
324       return true;
325
326     // If the conditions are the same, we can leave them alone.
327     unsigned OldCCValid = Cond[0].getImm();
328     unsigned OldCCMask = Cond[1].getImm();
329     if (OldCCValid == Branch.CCValid && OldCCMask == Branch.CCMask)
330       continue;
331
332     // FIXME: Try combining conditions like X86 does.  Should be easy on Z!
333     return false;
334   }
335
336   return false;
337 }
338
339 unsigned SystemZInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
340   // Most of the code and comments here are boilerplate.
341   MachineBasicBlock::iterator I = MBB.end();
342   unsigned Count = 0;
343
344   while (I != MBB.begin()) {
345     --I;
346     if (I->isDebugValue())
347       continue;
348     if (!I->isBranch())
349       break;
350     if (!getBranchInfo(I).Target->isMBB())
351       break;
352     // Remove the branch.
353     I->eraseFromParent();
354     I = MBB.end();
355     ++Count;
356   }
357
358   return Count;
359 }
360
361 bool SystemZInstrInfo::
362 ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
363   assert(Cond.size() == 2 && "Invalid condition");
364   Cond[1].setImm(Cond[1].getImm() ^ Cond[0].getImm());
365   return false;
366 }
367
368 unsigned
369 SystemZInstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
370                                MachineBasicBlock *FBB,
371                                ArrayRef<MachineOperand> Cond,
372                                DebugLoc DL) const {
373   // In this function we output 32-bit branches, which should always
374   // have enough range.  They can be shortened and relaxed by later code
375   // in the pipeline, if desired.
376
377   // Shouldn't be a fall through.
378   assert(TBB && "InsertBranch must not be told to insert a fallthrough");
379   assert((Cond.size() == 2 || Cond.size() == 0) &&
380          "SystemZ branch conditions have one component!");
381
382   if (Cond.empty()) {
383     // Unconditional branch?
384     assert(!FBB && "Unconditional branch with multiple successors!");
385     BuildMI(&MBB, DL, get(SystemZ::J)).addMBB(TBB);
386     return 1;
387   }
388
389   // Conditional branch.
390   unsigned Count = 0;
391   unsigned CCValid = Cond[0].getImm();
392   unsigned CCMask = Cond[1].getImm();
393   BuildMI(&MBB, DL, get(SystemZ::BRC))
394     .addImm(CCValid).addImm(CCMask).addMBB(TBB);
395   ++Count;
396
397   if (FBB) {
398     // Two-way Conditional branch. Insert the second branch.
399     BuildMI(&MBB, DL, get(SystemZ::J)).addMBB(FBB);
400     ++Count;
401   }
402   return Count;
403 }
404
405 bool SystemZInstrInfo::analyzeCompare(const MachineInstr *MI,
406                                       unsigned &SrcReg, unsigned &SrcReg2,
407                                       int &Mask, int &Value) const {
408   assert(MI->isCompare() && "Caller should have checked for a comparison");
409
410   if (MI->getNumExplicitOperands() == 2 &&
411       MI->getOperand(0).isReg() &&
412       MI->getOperand(1).isImm()) {
413     SrcReg = MI->getOperand(0).getReg();
414     SrcReg2 = 0;
415     Value = MI->getOperand(1).getImm();
416     Mask = ~0;
417     return true;
418   }
419
420   return false;
421 }
422
423 // If Reg is a virtual register, return its definition, otherwise return null.
424 static MachineInstr *getDef(unsigned Reg,
425                             const MachineRegisterInfo *MRI) {
426   if (TargetRegisterInfo::isPhysicalRegister(Reg))
427     return nullptr;
428   return MRI->getUniqueVRegDef(Reg);
429 }
430
431 // Return true if MI is a shift of type Opcode by Imm bits.
432 static bool isShift(MachineInstr *MI, unsigned Opcode, int64_t Imm) {
433   return (MI->getOpcode() == Opcode &&
434           !MI->getOperand(2).getReg() &&
435           MI->getOperand(3).getImm() == Imm);
436 }
437
438 // If the destination of MI has no uses, delete it as dead.
439 static void eraseIfDead(MachineInstr *MI, const MachineRegisterInfo *MRI) {
440   if (MRI->use_nodbg_empty(MI->getOperand(0).getReg()))
441     MI->eraseFromParent();
442 }
443
444 // Compare compares SrcReg against zero.  Check whether SrcReg contains
445 // the result of an IPM sequence whose input CC survives until Compare,
446 // and whether Compare is therefore redundant.  Delete it and return
447 // true if so.
448 static bool removeIPMBasedCompare(MachineInstr *Compare, unsigned SrcReg,
449                                   const MachineRegisterInfo *MRI,
450                                   const TargetRegisterInfo *TRI) {
451   MachineInstr *LGFR = nullptr;
452   MachineInstr *RLL = getDef(SrcReg, MRI);
453   if (RLL && RLL->getOpcode() == SystemZ::LGFR) {
454     LGFR = RLL;
455     RLL = getDef(LGFR->getOperand(1).getReg(), MRI);
456   }
457   if (!RLL || !isShift(RLL, SystemZ::RLL, 31))
458     return false;
459
460   MachineInstr *SRL = getDef(RLL->getOperand(1).getReg(), MRI);
461   if (!SRL || !isShift(SRL, SystemZ::SRL, SystemZ::IPM_CC))
462     return false;
463
464   MachineInstr *IPM = getDef(SRL->getOperand(1).getReg(), MRI);
465   if (!IPM || IPM->getOpcode() != SystemZ::IPM)
466     return false;
467
468   // Check that there are no assignments to CC between the IPM and Compare,
469   if (IPM->getParent() != Compare->getParent())
470     return false;
471   MachineBasicBlock::iterator MBBI = IPM, MBBE = Compare;
472   for (++MBBI; MBBI != MBBE; ++MBBI) {
473     MachineInstr *MI = MBBI;
474     if (MI->modifiesRegister(SystemZ::CC, TRI))
475       return false;
476   }
477
478   Compare->eraseFromParent();
479   if (LGFR)
480     eraseIfDead(LGFR, MRI);
481   eraseIfDead(RLL, MRI);
482   eraseIfDead(SRL, MRI);
483   eraseIfDead(IPM, MRI);
484
485   return true;
486 }
487
488 bool
489 SystemZInstrInfo::optimizeCompareInstr(MachineInstr *Compare,
490                                        unsigned SrcReg, unsigned SrcReg2,
491                                        int Mask, int Value,
492                                        const MachineRegisterInfo *MRI) const {
493   assert(!SrcReg2 && "Only optimizing constant comparisons so far");
494   bool IsLogical = (Compare->getDesc().TSFlags & SystemZII::IsLogical) != 0;
495   return Value == 0 && !IsLogical &&
496          removeIPMBasedCompare(Compare, SrcReg, MRI, &RI);
497 }
498
499 // If Opcode is a move that has a conditional variant, return that variant,
500 // otherwise return 0.
501 static unsigned getConditionalMove(unsigned Opcode) {
502   switch (Opcode) {
503   case SystemZ::LR:  return SystemZ::LOCR;
504   case SystemZ::LGR: return SystemZ::LOCGR;
505   default:           return 0;
506   }
507 }
508
509 bool SystemZInstrInfo::isPredicable(MachineInstr *MI) const {
510   unsigned Opcode = MI->getOpcode();
511   return STI.hasLoadStoreOnCond() && getConditionalMove(Opcode);
512 }
513
514 bool SystemZInstrInfo::
515 isProfitableToIfCvt(MachineBasicBlock &MBB,
516                     unsigned NumCycles, unsigned ExtraPredCycles,
517                     BranchProbability Probability) const {
518   // For now only convert single instructions.
519   return NumCycles == 1;
520 }
521
522 bool SystemZInstrInfo::
523 isProfitableToIfCvt(MachineBasicBlock &TMBB,
524                     unsigned NumCyclesT, unsigned ExtraPredCyclesT,
525                     MachineBasicBlock &FMBB,
526                     unsigned NumCyclesF, unsigned ExtraPredCyclesF,
527                     BranchProbability Probability) const {
528   // For now avoid converting mutually-exclusive cases.
529   return false;
530 }
531
532 bool SystemZInstrInfo::
533 PredicateInstruction(MachineInstr *MI, ArrayRef<MachineOperand> Pred) const {
534   assert(Pred.size() == 2 && "Invalid condition");
535   unsigned CCValid = Pred[0].getImm();
536   unsigned CCMask = Pred[1].getImm();
537   assert(CCMask > 0 && CCMask < 15 && "Invalid predicate");
538   unsigned Opcode = MI->getOpcode();
539   if (STI.hasLoadStoreOnCond()) {
540     if (unsigned CondOpcode = getConditionalMove(Opcode)) {
541       MI->setDesc(get(CondOpcode));
542       MachineInstrBuilder(*MI->getParent()->getParent(), MI)
543         .addImm(CCValid).addImm(CCMask)
544         .addReg(SystemZ::CC, RegState::Implicit);
545       return true;
546     }
547   }
548   return false;
549 }
550
551 void SystemZInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
552                                    MachineBasicBlock::iterator MBBI,
553                                    DebugLoc DL, unsigned DestReg,
554                                    unsigned SrcReg, bool KillSrc) const {
555   // Split 128-bit GPR moves into two 64-bit moves.  This handles ADDR128 too.
556   if (SystemZ::GR128BitRegClass.contains(DestReg, SrcReg)) {
557     copyPhysReg(MBB, MBBI, DL, RI.getSubReg(DestReg, SystemZ::subreg_h64),
558                 RI.getSubReg(SrcReg, SystemZ::subreg_h64), KillSrc);
559     copyPhysReg(MBB, MBBI, DL, RI.getSubReg(DestReg, SystemZ::subreg_l64),
560                 RI.getSubReg(SrcReg, SystemZ::subreg_l64), KillSrc);
561     return;
562   }
563
564   if (SystemZ::GRX32BitRegClass.contains(DestReg, SrcReg)) {
565     emitGRX32Move(MBB, MBBI, DL, DestReg, SrcReg, SystemZ::LR, 32, KillSrc);
566     return;
567   }
568
569   // Everything else needs only one instruction.
570   unsigned Opcode;
571   if (SystemZ::GR64BitRegClass.contains(DestReg, SrcReg))
572     Opcode = SystemZ::LGR;
573   else if (SystemZ::FP32BitRegClass.contains(DestReg, SrcReg))
574     Opcode = SystemZ::LER;
575   else if (SystemZ::FP64BitRegClass.contains(DestReg, SrcReg))
576     Opcode = SystemZ::LDR;
577   else if (SystemZ::FP128BitRegClass.contains(DestReg, SrcReg))
578     Opcode = SystemZ::LXR;
579   else if (SystemZ::VR32BitRegClass.contains(DestReg, SrcReg))
580     Opcode = SystemZ::VLR32;
581   else if (SystemZ::VR64BitRegClass.contains(DestReg, SrcReg))
582     Opcode = SystemZ::VLR64;
583   else if (SystemZ::VR128BitRegClass.contains(DestReg, SrcReg))
584     Opcode = SystemZ::VLR;
585   else
586     llvm_unreachable("Impossible reg-to-reg copy");
587
588   BuildMI(MBB, MBBI, DL, get(Opcode), DestReg)
589     .addReg(SrcReg, getKillRegState(KillSrc));
590 }
591
592 void SystemZInstrInfo::storeRegToStackSlot(
593     MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, unsigned SrcReg,
594     bool isKill, int FrameIdx, const TargetRegisterClass *RC,
595     const TargetRegisterInfo *TRI) const {
596   DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
597
598   // Callers may expect a single instruction, so keep 128-bit moves
599   // together for now and lower them after register allocation.
600   unsigned LoadOpcode, StoreOpcode;
601   getLoadStoreOpcodes(RC, LoadOpcode, StoreOpcode);
602   addFrameReference(BuildMI(MBB, MBBI, DL, get(StoreOpcode))
603                         .addReg(SrcReg, getKillRegState(isKill)),
604                     FrameIdx);
605 }
606
607 void SystemZInstrInfo::loadRegFromStackSlot(
608     MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, unsigned DestReg,
609     int FrameIdx, const TargetRegisterClass *RC,
610     const TargetRegisterInfo *TRI) const {
611   DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
612
613   // Callers may expect a single instruction, so keep 128-bit moves
614   // together for now and lower them after register allocation.
615   unsigned LoadOpcode, StoreOpcode;
616   getLoadStoreOpcodes(RC, LoadOpcode, StoreOpcode);
617   addFrameReference(BuildMI(MBB, MBBI, DL, get(LoadOpcode), DestReg),
618                     FrameIdx);
619 }
620
621 // Return true if MI is a simple load or store with a 12-bit displacement
622 // and no index.  Flag is SimpleBDXLoad for loads and SimpleBDXStore for stores.
623 static bool isSimpleBD12Move(const MachineInstr *MI, unsigned Flag) {
624   const MCInstrDesc &MCID = MI->getDesc();
625   return ((MCID.TSFlags & Flag) &&
626           isUInt<12>(MI->getOperand(2).getImm()) &&
627           MI->getOperand(3).getReg() == 0);
628 }
629
630 namespace {
631 struct LogicOp {
632   LogicOp() : RegSize(0), ImmLSB(0), ImmSize(0) {}
633   LogicOp(unsigned regSize, unsigned immLSB, unsigned immSize)
634     : RegSize(regSize), ImmLSB(immLSB), ImmSize(immSize) {}
635
636   explicit operator bool() const { return RegSize; }
637
638   unsigned RegSize, ImmLSB, ImmSize;
639 };
640 } // end anonymous namespace
641
642 static LogicOp interpretAndImmediate(unsigned Opcode) {
643   switch (Opcode) {
644   case SystemZ::NILMux: return LogicOp(32,  0, 16);
645   case SystemZ::NIHMux: return LogicOp(32, 16, 16);
646   case SystemZ::NILL64: return LogicOp(64,  0, 16);
647   case SystemZ::NILH64: return LogicOp(64, 16, 16);
648   case SystemZ::NIHL64: return LogicOp(64, 32, 16);
649   case SystemZ::NIHH64: return LogicOp(64, 48, 16);
650   case SystemZ::NIFMux: return LogicOp(32,  0, 32);
651   case SystemZ::NILF64: return LogicOp(64,  0, 32);
652   case SystemZ::NIHF64: return LogicOp(64, 32, 32);
653   default:              return LogicOp();
654   }
655 }
656
657 // Used to return from convertToThreeAddress after replacing two-address
658 // instruction OldMI with three-address instruction NewMI.
659 static MachineInstr *finishConvertToThreeAddress(MachineInstr *OldMI,
660                                                  MachineInstr *NewMI,
661                                                  LiveVariables *LV) {
662   if (LV) {
663     unsigned NumOps = OldMI->getNumOperands();
664     for (unsigned I = 1; I < NumOps; ++I) {
665       MachineOperand &Op = OldMI->getOperand(I);
666       if (Op.isReg() && Op.isKill())
667         LV->replaceKillInstruction(Op.getReg(), OldMI, NewMI);
668     }
669   }
670   return NewMI;
671 }
672
673 MachineInstr *
674 SystemZInstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
675                                         MachineBasicBlock::iterator &MBBI,
676                                         LiveVariables *LV) const {
677   MachineInstr *MI = MBBI;
678   MachineBasicBlock *MBB = MI->getParent();
679   MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
680
681   unsigned Opcode = MI->getOpcode();
682   unsigned NumOps = MI->getNumOperands();
683
684   // Try to convert something like SLL into SLLK, if supported.
685   // We prefer to keep the two-operand form where possible both
686   // because it tends to be shorter and because some instructions
687   // have memory forms that can be used during spilling.
688   if (STI.hasDistinctOps()) {
689     MachineOperand &Dest = MI->getOperand(0);
690     MachineOperand &Src = MI->getOperand(1);
691     unsigned DestReg = Dest.getReg();
692     unsigned SrcReg = Src.getReg();
693     // AHIMux is only really a three-operand instruction when both operands
694     // are low registers.  Try to constrain both operands to be low if
695     // possible.
696     if (Opcode == SystemZ::AHIMux &&
697         TargetRegisterInfo::isVirtualRegister(DestReg) &&
698         TargetRegisterInfo::isVirtualRegister(SrcReg) &&
699         MRI.getRegClass(DestReg)->contains(SystemZ::R1L) &&
700         MRI.getRegClass(SrcReg)->contains(SystemZ::R1L)) {
701       MRI.constrainRegClass(DestReg, &SystemZ::GR32BitRegClass);
702       MRI.constrainRegClass(SrcReg, &SystemZ::GR32BitRegClass);
703     }
704     int ThreeOperandOpcode = SystemZ::getThreeOperandOpcode(Opcode);
705     if (ThreeOperandOpcode >= 0) {
706       MachineInstrBuilder MIB =
707         BuildMI(*MBB, MBBI, MI->getDebugLoc(), get(ThreeOperandOpcode))
708         .addOperand(Dest);
709       // Keep the kill state, but drop the tied flag.
710       MIB.addReg(Src.getReg(), getKillRegState(Src.isKill()), Src.getSubReg());
711       // Keep the remaining operands as-is.
712       for (unsigned I = 2; I < NumOps; ++I)
713         MIB.addOperand(MI->getOperand(I));
714       return finishConvertToThreeAddress(MI, MIB, LV);
715     }
716   }
717
718   // Try to convert an AND into an RISBG-type instruction.
719   if (LogicOp And = interpretAndImmediate(Opcode)) {
720     uint64_t Imm = MI->getOperand(2).getImm() << And.ImmLSB;
721     // AND IMMEDIATE leaves the other bits of the register unchanged.
722     Imm |= allOnes(And.RegSize) & ~(allOnes(And.ImmSize) << And.ImmLSB);
723     unsigned Start, End;
724     if (isRxSBGMask(Imm, And.RegSize, Start, End)) {
725       unsigned NewOpcode;
726       if (And.RegSize == 64) {
727         NewOpcode = SystemZ::RISBG;
728         // Prefer RISBGN if available, since it does not clobber CC.
729         if (STI.hasMiscellaneousExtensions())
730           NewOpcode = SystemZ::RISBGN;
731       } else {
732         NewOpcode = SystemZ::RISBMux;
733         Start &= 31;
734         End &= 31;
735       }
736       MachineOperand &Dest = MI->getOperand(0);
737       MachineOperand &Src = MI->getOperand(1);
738       MachineInstrBuilder MIB =
739         BuildMI(*MBB, MI, MI->getDebugLoc(), get(NewOpcode))
740         .addOperand(Dest).addReg(0)
741         .addReg(Src.getReg(), getKillRegState(Src.isKill()), Src.getSubReg())
742         .addImm(Start).addImm(End + 128).addImm(0);
743       return finishConvertToThreeAddress(MI, MIB, LV);
744     }
745   }
746   return nullptr;
747 }
748
749 MachineInstr *SystemZInstrInfo::foldMemoryOperandImpl(
750     MachineFunction &MF, MachineInstr *MI, ArrayRef<unsigned> Ops,
751     MachineBasicBlock::iterator InsertPt, int FrameIndex) const {
752   const MachineFrameInfo *MFI = MF.getFrameInfo();
753   unsigned Size = MFI->getObjectSize(FrameIndex);
754   unsigned Opcode = MI->getOpcode();
755
756   if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
757     if ((Opcode == SystemZ::LA || Opcode == SystemZ::LAY) &&
758         isInt<8>(MI->getOperand(2).getImm()) &&
759         !MI->getOperand(3).getReg()) {
760       // LA(Y) %reg, CONST(%reg) -> AGSI %mem, CONST
761       return BuildMI(*InsertPt->getParent(), InsertPt, MI->getDebugLoc(),
762                      get(SystemZ::AGSI))
763           .addFrameIndex(FrameIndex)
764           .addImm(0)
765           .addImm(MI->getOperand(2).getImm());
766     }
767     return nullptr;
768   }
769
770   // All other cases require a single operand.
771   if (Ops.size() != 1)
772     return nullptr;
773
774   unsigned OpNum = Ops[0];
775   assert(Size == MF.getRegInfo()
776          .getRegClass(MI->getOperand(OpNum).getReg())->getSize() &&
777          "Invalid size combination");
778
779   if ((Opcode == SystemZ::AHI || Opcode == SystemZ::AGHI) &&
780       OpNum == 0 &&
781       isInt<8>(MI->getOperand(2).getImm())) {
782     // A(G)HI %reg, CONST -> A(G)SI %mem, CONST
783     Opcode = (Opcode == SystemZ::AHI ? SystemZ::ASI : SystemZ::AGSI);
784     return BuildMI(*InsertPt->getParent(), InsertPt, MI->getDebugLoc(),
785                    get(Opcode))
786         .addFrameIndex(FrameIndex)
787         .addImm(0)
788         .addImm(MI->getOperand(2).getImm());
789   }
790
791   if (Opcode == SystemZ::LGDR || Opcode == SystemZ::LDGR) {
792     bool Op0IsGPR = (Opcode == SystemZ::LGDR);
793     bool Op1IsGPR = (Opcode == SystemZ::LDGR);
794     // If we're spilling the destination of an LDGR or LGDR, store the
795     // source register instead.
796     if (OpNum == 0) {
797       unsigned StoreOpcode = Op1IsGPR ? SystemZ::STG : SystemZ::STD;
798       return BuildMI(*InsertPt->getParent(), InsertPt, MI->getDebugLoc(),
799                      get(StoreOpcode))
800           .addOperand(MI->getOperand(1))
801           .addFrameIndex(FrameIndex)
802           .addImm(0)
803           .addReg(0);
804     }
805     // If we're spilling the source of an LDGR or LGDR, load the
806     // destination register instead.
807     if (OpNum == 1) {
808       unsigned LoadOpcode = Op0IsGPR ? SystemZ::LG : SystemZ::LD;
809       unsigned Dest = MI->getOperand(0).getReg();
810       return BuildMI(*InsertPt->getParent(), InsertPt, MI->getDebugLoc(),
811                      get(LoadOpcode), Dest)
812           .addFrameIndex(FrameIndex)
813           .addImm(0)
814           .addReg(0);
815     }
816   }
817
818   // Look for cases where the source of a simple store or the destination
819   // of a simple load is being spilled.  Try to use MVC instead.
820   //
821   // Although MVC is in practice a fast choice in these cases, it is still
822   // logically a bytewise copy.  This means that we cannot use it if the
823   // load or store is volatile.  We also wouldn't be able to use MVC if
824   // the two memories partially overlap, but that case cannot occur here,
825   // because we know that one of the memories is a full frame index.
826   //
827   // For performance reasons, we also want to avoid using MVC if the addresses
828   // might be equal.  We don't worry about that case here, because spill slot
829   // coloring happens later, and because we have special code to remove
830   // MVCs that turn out to be redundant.
831   if (OpNum == 0 && MI->hasOneMemOperand()) {
832     MachineMemOperand *MMO = *MI->memoperands_begin();
833     if (MMO->getSize() == Size && !MMO->isVolatile()) {
834       // Handle conversion of loads.
835       if (isSimpleBD12Move(MI, SystemZII::SimpleBDXLoad)) {
836         return BuildMI(*InsertPt->getParent(), InsertPt, MI->getDebugLoc(),
837                        get(SystemZ::MVC))
838             .addFrameIndex(FrameIndex)
839             .addImm(0)
840             .addImm(Size)
841             .addOperand(MI->getOperand(1))
842             .addImm(MI->getOperand(2).getImm())
843             .addMemOperand(MMO);
844       }
845       // Handle conversion of stores.
846       if (isSimpleBD12Move(MI, SystemZII::SimpleBDXStore)) {
847         return BuildMI(*InsertPt->getParent(), InsertPt, MI->getDebugLoc(),
848                        get(SystemZ::MVC))
849             .addOperand(MI->getOperand(1))
850             .addImm(MI->getOperand(2).getImm())
851             .addImm(Size)
852             .addFrameIndex(FrameIndex)
853             .addImm(0)
854             .addMemOperand(MMO);
855       }
856     }
857   }
858
859   // If the spilled operand is the final one, try to change <INSN>R
860   // into <INSN>.
861   int MemOpcode = SystemZ::getMemOpcode(Opcode);
862   if (MemOpcode >= 0) {
863     unsigned NumOps = MI->getNumExplicitOperands();
864     if (OpNum == NumOps - 1) {
865       const MCInstrDesc &MemDesc = get(MemOpcode);
866       uint64_t AccessBytes = SystemZII::getAccessSize(MemDesc.TSFlags);
867       assert(AccessBytes != 0 && "Size of access should be known");
868       assert(AccessBytes <= Size && "Access outside the frame index");
869       uint64_t Offset = Size - AccessBytes;
870       MachineInstrBuilder MIB = BuildMI(*InsertPt->getParent(), InsertPt,
871                                         MI->getDebugLoc(), get(MemOpcode));
872       for (unsigned I = 0; I < OpNum; ++I)
873         MIB.addOperand(MI->getOperand(I));
874       MIB.addFrameIndex(FrameIndex).addImm(Offset);
875       if (MemDesc.TSFlags & SystemZII::HasIndex)
876         MIB.addReg(0);
877       return MIB;
878     }
879   }
880
881   return nullptr;
882 }
883
884 MachineInstr *SystemZInstrInfo::foldMemoryOperandImpl(
885     MachineFunction &MF, MachineInstr *MI, ArrayRef<unsigned> Ops,
886     MachineBasicBlock::iterator InsertPt, MachineInstr *LoadMI) const {
887   return nullptr;
888 }
889
890 bool
891 SystemZInstrInfo::expandPostRAPseudo(MachineBasicBlock::iterator MI) const {
892   switch (MI->getOpcode()) {
893   case SystemZ::L128:
894     splitMove(MI, SystemZ::LG);
895     return true;
896
897   case SystemZ::ST128:
898     splitMove(MI, SystemZ::STG);
899     return true;
900
901   case SystemZ::LX:
902     splitMove(MI, SystemZ::LD);
903     return true;
904
905   case SystemZ::STX:
906     splitMove(MI, SystemZ::STD);
907     return true;
908
909   case SystemZ::LBMux:
910     expandRXYPseudo(MI, SystemZ::LB, SystemZ::LBH);
911     return true;
912
913   case SystemZ::LHMux:
914     expandRXYPseudo(MI, SystemZ::LH, SystemZ::LHH);
915     return true;
916
917   case SystemZ::LLCRMux:
918     expandZExtPseudo(MI, SystemZ::LLCR, 8);
919     return true;
920
921   case SystemZ::LLHRMux:
922     expandZExtPseudo(MI, SystemZ::LLHR, 16);
923     return true;
924
925   case SystemZ::LLCMux:
926     expandRXYPseudo(MI, SystemZ::LLC, SystemZ::LLCH);
927     return true;
928
929   case SystemZ::LLHMux:
930     expandRXYPseudo(MI, SystemZ::LLH, SystemZ::LLHH);
931     return true;
932
933   case SystemZ::LMux:
934     expandRXYPseudo(MI, SystemZ::L, SystemZ::LFH);
935     return true;
936
937   case SystemZ::STCMux:
938     expandRXYPseudo(MI, SystemZ::STC, SystemZ::STCH);
939     return true;
940
941   case SystemZ::STHMux:
942     expandRXYPseudo(MI, SystemZ::STH, SystemZ::STHH);
943     return true;
944
945   case SystemZ::STMux:
946     expandRXYPseudo(MI, SystemZ::ST, SystemZ::STFH);
947     return true;
948
949   case SystemZ::LHIMux:
950     expandRIPseudo(MI, SystemZ::LHI, SystemZ::IIHF, true);
951     return true;
952
953   case SystemZ::IIFMux:
954     expandRIPseudo(MI, SystemZ::IILF, SystemZ::IIHF, false);
955     return true;
956
957   case SystemZ::IILMux:
958     expandRIPseudo(MI, SystemZ::IILL, SystemZ::IIHL, false);
959     return true;
960
961   case SystemZ::IIHMux:
962     expandRIPseudo(MI, SystemZ::IILH, SystemZ::IIHH, false);
963     return true;
964
965   case SystemZ::NIFMux:
966     expandRIPseudo(MI, SystemZ::NILF, SystemZ::NIHF, false);
967     return true;
968
969   case SystemZ::NILMux:
970     expandRIPseudo(MI, SystemZ::NILL, SystemZ::NIHL, false);
971     return true;
972
973   case SystemZ::NIHMux:
974     expandRIPseudo(MI, SystemZ::NILH, SystemZ::NIHH, false);
975     return true;
976
977   case SystemZ::OIFMux:
978     expandRIPseudo(MI, SystemZ::OILF, SystemZ::OIHF, false);
979     return true;
980
981   case SystemZ::OILMux:
982     expandRIPseudo(MI, SystemZ::OILL, SystemZ::OIHL, false);
983     return true;
984
985   case SystemZ::OIHMux:
986     expandRIPseudo(MI, SystemZ::OILH, SystemZ::OIHH, false);
987     return true;
988
989   case SystemZ::XIFMux:
990     expandRIPseudo(MI, SystemZ::XILF, SystemZ::XIHF, false);
991     return true;
992
993   case SystemZ::TMLMux:
994     expandRIPseudo(MI, SystemZ::TMLL, SystemZ::TMHL, false);
995     return true;
996
997   case SystemZ::TMHMux:
998     expandRIPseudo(MI, SystemZ::TMLH, SystemZ::TMHH, false);
999     return true;
1000
1001   case SystemZ::AHIMux:
1002     expandRIPseudo(MI, SystemZ::AHI, SystemZ::AIH, false);
1003     return true;
1004
1005   case SystemZ::AHIMuxK:
1006     expandRIEPseudo(MI, SystemZ::AHI, SystemZ::AHIK, SystemZ::AIH);
1007     return true;
1008
1009   case SystemZ::AFIMux:
1010     expandRIPseudo(MI, SystemZ::AFI, SystemZ::AIH, false);
1011     return true;
1012
1013   case SystemZ::CFIMux:
1014     expandRIPseudo(MI, SystemZ::CFI, SystemZ::CIH, false);
1015     return true;
1016
1017   case SystemZ::CLFIMux:
1018     expandRIPseudo(MI, SystemZ::CLFI, SystemZ::CLIH, false);
1019     return true;
1020
1021   case SystemZ::CMux:
1022     expandRXYPseudo(MI, SystemZ::C, SystemZ::CHF);
1023     return true;
1024
1025   case SystemZ::CLMux:
1026     expandRXYPseudo(MI, SystemZ::CL, SystemZ::CLHF);
1027     return true;
1028
1029   case SystemZ::RISBMux: {
1030     bool DestIsHigh = isHighReg(MI->getOperand(0).getReg());
1031     bool SrcIsHigh = isHighReg(MI->getOperand(2).getReg());
1032     if (SrcIsHigh == DestIsHigh)
1033       MI->setDesc(get(DestIsHigh ? SystemZ::RISBHH : SystemZ::RISBLL));
1034     else {
1035       MI->setDesc(get(DestIsHigh ? SystemZ::RISBHL : SystemZ::RISBLH));
1036       MI->getOperand(5).setImm(MI->getOperand(5).getImm() ^ 32);
1037     }
1038     return true;
1039   }
1040
1041   case SystemZ::ADJDYNALLOC:
1042     splitAdjDynAlloc(MI);
1043     return true;
1044
1045   default:
1046     return false;
1047   }
1048 }
1049
1050 uint64_t SystemZInstrInfo::getInstSizeInBytes(const MachineInstr *MI) const {
1051   if (MI->getOpcode() == TargetOpcode::INLINEASM) {
1052     const MachineFunction *MF = MI->getParent()->getParent();
1053     const char *AsmStr = MI->getOperand(0).getSymbolName();
1054     return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo());
1055   }
1056   return MI->getDesc().getSize();
1057 }
1058
1059 SystemZII::Branch
1060 SystemZInstrInfo::getBranchInfo(const MachineInstr *MI) const {
1061   switch (MI->getOpcode()) {
1062   case SystemZ::BR:
1063   case SystemZ::J:
1064   case SystemZ::JG:
1065     return SystemZII::Branch(SystemZII::BranchNormal, SystemZ::CCMASK_ANY,
1066                              SystemZ::CCMASK_ANY, &MI->getOperand(0));
1067
1068   case SystemZ::BRC:
1069   case SystemZ::BRCL:
1070     return SystemZII::Branch(SystemZII::BranchNormal,
1071                              MI->getOperand(0).getImm(),
1072                              MI->getOperand(1).getImm(), &MI->getOperand(2));
1073
1074   case SystemZ::BRCT:
1075     return SystemZII::Branch(SystemZII::BranchCT, SystemZ::CCMASK_ICMP,
1076                              SystemZ::CCMASK_CMP_NE, &MI->getOperand(2));
1077
1078   case SystemZ::BRCTG:
1079     return SystemZII::Branch(SystemZII::BranchCTG, SystemZ::CCMASK_ICMP,
1080                              SystemZ::CCMASK_CMP_NE, &MI->getOperand(2));
1081
1082   case SystemZ::CIJ:
1083   case SystemZ::CRJ:
1084     return SystemZII::Branch(SystemZII::BranchC, SystemZ::CCMASK_ICMP,
1085                              MI->getOperand(2).getImm(), &MI->getOperand(3));
1086
1087   case SystemZ::CLIJ:
1088   case SystemZ::CLRJ:
1089     return SystemZII::Branch(SystemZII::BranchCL, SystemZ::CCMASK_ICMP,
1090                              MI->getOperand(2).getImm(), &MI->getOperand(3));
1091
1092   case SystemZ::CGIJ:
1093   case SystemZ::CGRJ:
1094     return SystemZII::Branch(SystemZII::BranchCG, SystemZ::CCMASK_ICMP,
1095                              MI->getOperand(2).getImm(), &MI->getOperand(3));
1096
1097   case SystemZ::CLGIJ:
1098   case SystemZ::CLGRJ:
1099     return SystemZII::Branch(SystemZII::BranchCLG, SystemZ::CCMASK_ICMP,
1100                              MI->getOperand(2).getImm(), &MI->getOperand(3));
1101
1102   default:
1103     llvm_unreachable("Unrecognized branch opcode");
1104   }
1105 }
1106
1107 void SystemZInstrInfo::getLoadStoreOpcodes(const TargetRegisterClass *RC,
1108                                            unsigned &LoadOpcode,
1109                                            unsigned &StoreOpcode) const {
1110   if (RC == &SystemZ::GR32BitRegClass || RC == &SystemZ::ADDR32BitRegClass) {
1111     LoadOpcode = SystemZ::L;
1112     StoreOpcode = SystemZ::ST;
1113   } else if (RC == &SystemZ::GRH32BitRegClass) {
1114     LoadOpcode = SystemZ::LFH;
1115     StoreOpcode = SystemZ::STFH;
1116   } else if (RC == &SystemZ::GRX32BitRegClass) {
1117     LoadOpcode = SystemZ::LMux;
1118     StoreOpcode = SystemZ::STMux;
1119   } else if (RC == &SystemZ::GR64BitRegClass ||
1120              RC == &SystemZ::ADDR64BitRegClass) {
1121     LoadOpcode = SystemZ::LG;
1122     StoreOpcode = SystemZ::STG;
1123   } else if (RC == &SystemZ::GR128BitRegClass ||
1124              RC == &SystemZ::ADDR128BitRegClass) {
1125     LoadOpcode = SystemZ::L128;
1126     StoreOpcode = SystemZ::ST128;
1127   } else if (RC == &SystemZ::FP32BitRegClass) {
1128     LoadOpcode = SystemZ::LE;
1129     StoreOpcode = SystemZ::STE;
1130   } else if (RC == &SystemZ::FP64BitRegClass) {
1131     LoadOpcode = SystemZ::LD;
1132     StoreOpcode = SystemZ::STD;
1133   } else if (RC == &SystemZ::FP128BitRegClass) {
1134     LoadOpcode = SystemZ::LX;
1135     StoreOpcode = SystemZ::STX;
1136   } else if (RC == &SystemZ::VR32BitRegClass) {
1137     LoadOpcode = SystemZ::VL32;
1138     StoreOpcode = SystemZ::VST32;
1139   } else if (RC == &SystemZ::VR64BitRegClass) {
1140     LoadOpcode = SystemZ::VL64;
1141     StoreOpcode = SystemZ::VST64;
1142   } else if (RC == &SystemZ::VF128BitRegClass ||
1143              RC == &SystemZ::VR128BitRegClass) {
1144     LoadOpcode = SystemZ::VL;
1145     StoreOpcode = SystemZ::VST;
1146   } else
1147     llvm_unreachable("Unsupported regclass to load or store");
1148 }
1149
1150 unsigned SystemZInstrInfo::getOpcodeForOffset(unsigned Opcode,
1151                                               int64_t Offset) const {
1152   const MCInstrDesc &MCID = get(Opcode);
1153   int64_t Offset2 = (MCID.TSFlags & SystemZII::Is128Bit ? Offset + 8 : Offset);
1154   if (isUInt<12>(Offset) && isUInt<12>(Offset2)) {
1155     // Get the instruction to use for unsigned 12-bit displacements.
1156     int Disp12Opcode = SystemZ::getDisp12Opcode(Opcode);
1157     if (Disp12Opcode >= 0)
1158       return Disp12Opcode;
1159
1160     // All address-related instructions can use unsigned 12-bit
1161     // displacements.
1162     return Opcode;
1163   }
1164   if (isInt<20>(Offset) && isInt<20>(Offset2)) {
1165     // Get the instruction to use for signed 20-bit displacements.
1166     int Disp20Opcode = SystemZ::getDisp20Opcode(Opcode);
1167     if (Disp20Opcode >= 0)
1168       return Disp20Opcode;
1169
1170     // Check whether Opcode allows signed 20-bit displacements.
1171     if (MCID.TSFlags & SystemZII::Has20BitOffset)
1172       return Opcode;
1173   }
1174   return 0;
1175 }
1176
1177 unsigned SystemZInstrInfo::getLoadAndTest(unsigned Opcode) const {
1178   switch (Opcode) {
1179   case SystemZ::L:      return SystemZ::LT;
1180   case SystemZ::LY:     return SystemZ::LT;
1181   case SystemZ::LG:     return SystemZ::LTG;
1182   case SystemZ::LGF:    return SystemZ::LTGF;
1183   case SystemZ::LR:     return SystemZ::LTR;
1184   case SystemZ::LGFR:   return SystemZ::LTGFR;
1185   case SystemZ::LGR:    return SystemZ::LTGR;
1186   case SystemZ::LER:    return SystemZ::LTEBR;
1187   case SystemZ::LDR:    return SystemZ::LTDBR;
1188   case SystemZ::LXR:    return SystemZ::LTXBR;
1189   case SystemZ::LCDFR:  return SystemZ::LCDBR;
1190   case SystemZ::LPDFR:  return SystemZ::LPDBR;
1191   case SystemZ::LNDFR:  return SystemZ::LNDBR;
1192   case SystemZ::LCDFR_32:  return SystemZ::LCEBR;
1193   case SystemZ::LPDFR_32:  return SystemZ::LPEBR;
1194   case SystemZ::LNDFR_32:  return SystemZ::LNEBR;
1195   // On zEC12 we prefer to use RISBGN.  But if there is a chance to
1196   // actually use the condition code, we may turn it back into RISGB.
1197   // Note that RISBG is not really a "load-and-test" instruction,
1198   // but sets the same condition code values, so is OK to use here.
1199   case SystemZ::RISBGN: return SystemZ::RISBG;
1200   default:              return 0;
1201   }
1202 }
1203
1204 // Return true if Mask matches the regexp 0*1+0*, given that zero masks
1205 // have already been filtered out.  Store the first set bit in LSB and
1206 // the number of set bits in Length if so.
1207 static bool isStringOfOnes(uint64_t Mask, unsigned &LSB, unsigned &Length) {
1208   unsigned First = findFirstSet(Mask);
1209   uint64_t Top = (Mask >> First) + 1;
1210   if ((Top & -Top) == Top) {
1211     LSB = First;
1212     Length = findFirstSet(Top);
1213     return true;
1214   }
1215   return false;
1216 }
1217
1218 bool SystemZInstrInfo::isRxSBGMask(uint64_t Mask, unsigned BitSize,
1219                                    unsigned &Start, unsigned &End) const {
1220   // Reject trivial all-zero masks.
1221   Mask &= allOnes(BitSize);
1222   if (Mask == 0)
1223     return false;
1224
1225   // Handle the 1+0+ or 0+1+0* cases.  Start then specifies the index of
1226   // the msb and End specifies the index of the lsb.
1227   unsigned LSB, Length;
1228   if (isStringOfOnes(Mask, LSB, Length)) {
1229     Start = 63 - (LSB + Length - 1);
1230     End = 63 - LSB;
1231     return true;
1232   }
1233
1234   // Handle the wrap-around 1+0+1+ cases.  Start then specifies the msb
1235   // of the low 1s and End specifies the lsb of the high 1s.
1236   if (isStringOfOnes(Mask ^ allOnes(BitSize), LSB, Length)) {
1237     assert(LSB > 0 && "Bottom bit must be set");
1238     assert(LSB + Length < BitSize && "Top bit must be set");
1239     Start = 63 - (LSB - 1);
1240     End = 63 - (LSB + Length);
1241     return true;
1242   }
1243
1244   return false;
1245 }
1246
1247 unsigned SystemZInstrInfo::getCompareAndBranch(unsigned Opcode,
1248                                                const MachineInstr *MI) const {
1249   switch (Opcode) {
1250   case SystemZ::CR:
1251     return SystemZ::CRJ;
1252   case SystemZ::CGR:
1253     return SystemZ::CGRJ;
1254   case SystemZ::CHI:
1255     return MI && isInt<8>(MI->getOperand(1).getImm()) ? SystemZ::CIJ : 0;
1256   case SystemZ::CGHI:
1257     return MI && isInt<8>(MI->getOperand(1).getImm()) ? SystemZ::CGIJ : 0;
1258   case SystemZ::CLR:
1259     return SystemZ::CLRJ;
1260   case SystemZ::CLGR:
1261     return SystemZ::CLGRJ;
1262   case SystemZ::CLFI:
1263     return MI && isUInt<8>(MI->getOperand(1).getImm()) ? SystemZ::CLIJ : 0;
1264   case SystemZ::CLGFI:
1265     return MI && isUInt<8>(MI->getOperand(1).getImm()) ? SystemZ::CLGIJ : 0;
1266   default:
1267     return 0;
1268   }
1269 }
1270
1271 void SystemZInstrInfo::loadImmediate(MachineBasicBlock &MBB,
1272                                      MachineBasicBlock::iterator MBBI,
1273                                      unsigned Reg, uint64_t Value) const {
1274   DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
1275   unsigned Opcode;
1276   if (isInt<16>(Value))
1277     Opcode = SystemZ::LGHI;
1278   else if (SystemZ::isImmLL(Value))
1279     Opcode = SystemZ::LLILL;
1280   else if (SystemZ::isImmLH(Value)) {
1281     Opcode = SystemZ::LLILH;
1282     Value >>= 16;
1283   } else {
1284     assert(isInt<32>(Value) && "Huge values not handled yet");
1285     Opcode = SystemZ::LGFI;
1286   }
1287   BuildMI(MBB, MBBI, DL, get(Opcode), Reg).addImm(Value);
1288 }