1 //===-- CPPBackend.cpp - Library for converting LLVM code to C++ code -----===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements the writing of the LLVM IR as a set of C++ calls to the
11 // LLVM IR interface. The input module is assumed to be verified.
13 //===----------------------------------------------------------------------===//
15 #include "CPPTargetMachine.h"
16 #include "llvm/CallingConv.h"
17 #include "llvm/Constants.h"
18 #include "llvm/DerivedTypes.h"
19 #include "llvm/InlineAsm.h"
20 #include "llvm/Instruction.h"
21 #include "llvm/Instructions.h"
22 #include "llvm/Module.h"
23 #include "llvm/Pass.h"
24 #include "llvm/PassManager.h"
25 #include "llvm/TypeSymbolTable.h"
26 #include "llvm/ADT/SmallPtrSet.h"
27 #include "llvm/Support/CommandLine.h"
28 #include "llvm/Support/ErrorHandling.h"
29 #include "llvm/Support/FormattedStream.h"
30 #include "llvm/Target/TargetRegistry.h"
31 #include "llvm/ADT/StringExtras.h"
32 #include "llvm/Config/config.h"
38 static cl::opt<std::string>
39 FuncName("cppfname", cl::desc("Specify the name of the generated function"),
40 cl::value_desc("function name"));
53 static cl::opt<WhatToGenerate> GenerationType("cppgen", cl::Optional,
54 cl::desc("Choose what kind of output to generate"),
57 clEnumValN(GenProgram, "program", "Generate a complete program"),
58 clEnumValN(GenModule, "module", "Generate a module definition"),
59 clEnumValN(GenContents, "contents", "Generate contents of a module"),
60 clEnumValN(GenFunction, "function", "Generate a function definition"),
61 clEnumValN(GenFunctions,"functions", "Generate all function definitions"),
62 clEnumValN(GenInline, "inline", "Generate an inline function"),
63 clEnumValN(GenVariable, "variable", "Generate a variable definition"),
64 clEnumValN(GenType, "type", "Generate a type definition"),
69 static cl::opt<std::string> NameToGenerate("cppfor", cl::Optional,
70 cl::desc("Specify the name of the thing to generate"),
73 extern "C" void LLVMInitializeCppBackendTarget() {
74 // Register the target.
75 RegisterTargetMachine<CPPTargetMachine> X(TheCppBackendTarget);
79 typedef std::vector<const Type*> TypeList;
80 typedef std::map<const Type*,std::string> TypeMap;
81 typedef std::map<const Value*,std::string> ValueMap;
82 typedef std::set<std::string> NameSet;
83 typedef std::set<const Type*> TypeSet;
84 typedef std::set<const Value*> ValueSet;
85 typedef std::map<const Value*,std::string> ForwardRefMap;
87 /// CppWriter - This class is the main chunk of code that converts an LLVM
88 /// module to a C++ translation unit.
89 class CppWriter : public ModulePass {
90 formatted_raw_ostream &Out;
91 const Module *TheModule;
95 TypeMap UnresolvedTypes;
99 ValueSet DefinedValues;
100 ForwardRefMap ForwardRefs;
105 explicit CppWriter(formatted_raw_ostream &o) :
106 ModulePass(&ID), Out(o), uniqueNum(0), is_inline(false) {}
108 virtual const char *getPassName() const { return "C++ backend"; }
110 bool runOnModule(Module &M);
112 void printProgram(const std::string& fname, const std::string& modName );
113 void printModule(const std::string& fname, const std::string& modName );
114 void printContents(const std::string& fname, const std::string& modName );
115 void printFunction(const std::string& fname, const std::string& funcName );
116 void printFunctions();
117 void printInline(const std::string& fname, const std::string& funcName );
118 void printVariable(const std::string& fname, const std::string& varName );
119 void printType(const std::string& fname, const std::string& typeName );
121 void error(const std::string& msg);
124 void printLinkageType(GlobalValue::LinkageTypes LT);
125 void printVisibilityType(GlobalValue::VisibilityTypes VisTypes);
126 void printCallingConv(CallingConv::ID cc);
127 void printEscapedString(const std::string& str);
128 void printCFP(const ConstantFP* CFP);
130 std::string getCppName(const Type* val);
131 inline void printCppName(const Type* val);
133 std::string getCppName(const Value* val);
134 inline void printCppName(const Value* val);
136 void printAttributes(const AttrListPtr &PAL, const std::string &name);
137 bool printTypeInternal(const Type* Ty);
138 inline void printType(const Type* Ty);
139 void printTypes(const Module* M);
141 void printConstant(const Constant *CPV);
142 void printConstants(const Module* M);
144 void printVariableUses(const GlobalVariable *GV);
145 void printVariableHead(const GlobalVariable *GV);
146 void printVariableBody(const GlobalVariable *GV);
148 void printFunctionUses(const Function *F);
149 void printFunctionHead(const Function *F);
150 void printFunctionBody(const Function *F);
151 void printInstruction(const Instruction *I, const std::string& bbname);
152 std::string getOpName(Value*);
154 void printModuleBody();
157 static unsigned indent_level = 0;
158 inline formatted_raw_ostream& nl(formatted_raw_ostream& Out, int delta = 0) {
160 if (delta >= 0 || indent_level >= unsigned(-delta))
161 indent_level += delta;
162 for (unsigned i = 0; i < indent_level; ++i)
167 inline void in() { indent_level++; }
168 inline void out() { if (indent_level >0) indent_level--; }
171 sanitize(std::string& str) {
172 for (size_t i = 0; i < str.length(); ++i)
173 if (!isalnum(str[i]) && str[i] != '_')
178 getTypePrefix(const Type* Ty ) {
179 switch (Ty->getTypeID()) {
180 case Type::VoidTyID: return "void_";
181 case Type::IntegerTyID:
182 return std::string("int") + utostr(cast<IntegerType>(Ty)->getBitWidth()) +
184 case Type::FloatTyID: return "float_";
185 case Type::DoubleTyID: return "double_";
186 case Type::LabelTyID: return "label_";
187 case Type::FunctionTyID: return "func_";
188 case Type::StructTyID: return "struct_";
189 case Type::ArrayTyID: return "array_";
190 case Type::PointerTyID: return "ptr_";
191 case Type::VectorTyID: return "packed_";
192 case Type::OpaqueTyID: return "opaque_";
193 default: return "other_";
198 // Looks up the type in the symbol table and returns a pointer to its name or
199 // a null pointer if it wasn't found. Note that this isn't the same as the
200 // Mode::getTypeName function which will return an empty string, not a null
201 // pointer if the name is not found.
202 inline const std::string*
203 findTypeName(const TypeSymbolTable& ST, const Type* Ty) {
204 TypeSymbolTable::const_iterator TI = ST.begin();
205 TypeSymbolTable::const_iterator TE = ST.end();
206 for (;TI != TE; ++TI)
207 if (TI->second == Ty)
212 void CppWriter::error(const std::string& msg) {
213 llvm_report_error(msg);
216 // printCFP - Print a floating point constant .. very carefully :)
217 // This makes sure that conversion to/from floating yields the same binary
218 // result so that we don't lose precision.
219 void CppWriter::printCFP(const ConstantFP *CFP) {
221 APFloat APF = APFloat(CFP->getValueAPF()); // copy
222 if (CFP->getType() == Type::getFloatTy(CFP->getContext()))
223 APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &ignored);
224 Out << "ConstantFP::get(getGlobalContext(), ";
228 sprintf(Buffer, "%A", APF.convertToDouble());
229 if ((!strncmp(Buffer, "0x", 2) ||
230 !strncmp(Buffer, "-0x", 3) ||
231 !strncmp(Buffer, "+0x", 3)) &&
232 APF.bitwiseIsEqual(APFloat(atof(Buffer)))) {
233 if (CFP->getType() == Type::getDoubleTy(CFP->getContext()))
234 Out << "BitsToDouble(" << Buffer << ")";
236 Out << "BitsToFloat((float)" << Buffer << ")";
240 std::string StrVal = ftostr(CFP->getValueAPF());
242 while (StrVal[0] == ' ')
243 StrVal.erase(StrVal.begin());
245 // Check to make sure that the stringized number is not some string like
246 // "Inf" or NaN. Check that the string matches the "[-+]?[0-9]" regex.
247 if (((StrVal[0] >= '0' && StrVal[0] <= '9') ||
248 ((StrVal[0] == '-' || StrVal[0] == '+') &&
249 (StrVal[1] >= '0' && StrVal[1] <= '9'))) &&
250 (CFP->isExactlyValue(atof(StrVal.c_str())))) {
251 if (CFP->getType() == Type::getDoubleTy(CFP->getContext()))
254 Out << StrVal << "f";
255 } else if (CFP->getType() == Type::getDoubleTy(CFP->getContext()))
256 Out << "BitsToDouble(0x"
257 << utohexstr(CFP->getValueAPF().bitcastToAPInt().getZExtValue())
258 << "ULL) /* " << StrVal << " */";
260 Out << "BitsToFloat(0x"
261 << utohexstr((uint32_t)CFP->getValueAPF().
262 bitcastToAPInt().getZExtValue())
263 << "U) /* " << StrVal << " */";
271 void CppWriter::printCallingConv(CallingConv::ID cc){
272 // Print the calling convention.
274 case CallingConv::C: Out << "CallingConv::C"; break;
275 case CallingConv::Fast: Out << "CallingConv::Fast"; break;
276 case CallingConv::Cold: Out << "CallingConv::Cold"; break;
277 case CallingConv::FirstTargetCC: Out << "CallingConv::FirstTargetCC"; break;
278 default: Out << cc; break;
282 void CppWriter::printLinkageType(GlobalValue::LinkageTypes LT) {
284 case GlobalValue::InternalLinkage:
285 Out << "GlobalValue::InternalLinkage"; break;
286 case GlobalValue::PrivateLinkage:
287 Out << "GlobalValue::PrivateLinkage"; break;
288 case GlobalValue::LinkerPrivateLinkage:
289 Out << "GlobalValue::LinkerPrivateLinkage"; break;
290 case GlobalValue::AvailableExternallyLinkage:
291 Out << "GlobalValue::AvailableExternallyLinkage "; break;
292 case GlobalValue::LinkOnceAnyLinkage:
293 Out << "GlobalValue::LinkOnceAnyLinkage "; break;
294 case GlobalValue::LinkOnceODRLinkage:
295 Out << "GlobalValue::LinkOnceODRLinkage "; break;
296 case GlobalValue::WeakAnyLinkage:
297 Out << "GlobalValue::WeakAnyLinkage"; break;
298 case GlobalValue::WeakODRLinkage:
299 Out << "GlobalValue::WeakODRLinkage"; break;
300 case GlobalValue::AppendingLinkage:
301 Out << "GlobalValue::AppendingLinkage"; break;
302 case GlobalValue::ExternalLinkage:
303 Out << "GlobalValue::ExternalLinkage"; break;
304 case GlobalValue::DLLImportLinkage:
305 Out << "GlobalValue::DLLImportLinkage"; break;
306 case GlobalValue::DLLExportLinkage:
307 Out << "GlobalValue::DLLExportLinkage"; break;
308 case GlobalValue::ExternalWeakLinkage:
309 Out << "GlobalValue::ExternalWeakLinkage"; break;
310 case GlobalValue::CommonLinkage:
311 Out << "GlobalValue::CommonLinkage"; break;
315 void CppWriter::printVisibilityType(GlobalValue::VisibilityTypes VisType) {
317 default: llvm_unreachable("Unknown GVar visibility");
318 case GlobalValue::DefaultVisibility:
319 Out << "GlobalValue::DefaultVisibility";
321 case GlobalValue::HiddenVisibility:
322 Out << "GlobalValue::HiddenVisibility";
324 case GlobalValue::ProtectedVisibility:
325 Out << "GlobalValue::ProtectedVisibility";
330 // printEscapedString - Print each character of the specified string, escaping
331 // it if it is not printable or if it is an escape char.
332 void CppWriter::printEscapedString(const std::string &Str) {
333 for (unsigned i = 0, e = Str.size(); i != e; ++i) {
334 unsigned char C = Str[i];
335 if (isprint(C) && C != '"' && C != '\\') {
339 << (char) ((C/16 < 10) ? ( C/16 +'0') : ( C/16 -10+'A'))
340 << (char)(((C&15) < 10) ? ((C&15)+'0') : ((C&15)-10+'A'));
345 std::string CppWriter::getCppName(const Type* Ty) {
346 // First, handle the primitive types .. easy
347 if (Ty->isPrimitiveType() || Ty->isInteger()) {
348 switch (Ty->getTypeID()) {
349 case Type::VoidTyID: return "Type::getVoidTy(getGlobalContext())";
350 case Type::IntegerTyID: {
351 unsigned BitWidth = cast<IntegerType>(Ty)->getBitWidth();
352 return "IntegerType::get(getGlobalContext(), " + utostr(BitWidth) + ")";
354 case Type::X86_FP80TyID: return "Type::getX86_FP80Ty(getGlobalContext())";
355 case Type::FloatTyID: return "Type::getFloatTy(getGlobalContext())";
356 case Type::DoubleTyID: return "Type::getDoubleTy(getGlobalContext())";
357 case Type::LabelTyID: return "Type::getLabelTy(getGlobalContext())";
359 error("Invalid primitive type");
362 // shouldn't be returned, but make it sensible
363 return "Type::getVoidTy(getGlobalContext())";
366 // Now, see if we've seen the type before and return that
367 TypeMap::iterator I = TypeNames.find(Ty);
368 if (I != TypeNames.end())
371 // Okay, let's build a new name for this type. Start with a prefix
372 const char* prefix = 0;
373 switch (Ty->getTypeID()) {
374 case Type::FunctionTyID: prefix = "FuncTy_"; break;
375 case Type::StructTyID: prefix = "StructTy_"; break;
376 case Type::ArrayTyID: prefix = "ArrayTy_"; break;
377 case Type::PointerTyID: prefix = "PointerTy_"; break;
378 case Type::OpaqueTyID: prefix = "OpaqueTy_"; break;
379 case Type::VectorTyID: prefix = "VectorTy_"; break;
380 default: prefix = "OtherTy_"; break; // prevent breakage
383 // See if the type has a name in the symboltable and build accordingly
384 const std::string* tName = findTypeName(TheModule->getTypeSymbolTable(), Ty);
387 name = std::string(prefix) + *tName;
389 name = std::string(prefix) + utostr(uniqueNum++);
393 return TypeNames[Ty] = name;
396 void CppWriter::printCppName(const Type* Ty) {
397 printEscapedString(getCppName(Ty));
400 std::string CppWriter::getCppName(const Value* val) {
402 ValueMap::iterator I = ValueNames.find(val);
403 if (I != ValueNames.end() && I->first == val)
406 if (const GlobalVariable* GV = dyn_cast<GlobalVariable>(val)) {
407 name = std::string("gvar_") +
408 getTypePrefix(GV->getType()->getElementType());
409 } else if (isa<Function>(val)) {
410 name = std::string("func_");
411 } else if (const Constant* C = dyn_cast<Constant>(val)) {
412 name = std::string("const_") + getTypePrefix(C->getType());
413 } else if (const Argument* Arg = dyn_cast<Argument>(val)) {
415 unsigned argNum = std::distance(Arg->getParent()->arg_begin(),
416 Function::const_arg_iterator(Arg)) + 1;
417 name = std::string("arg_") + utostr(argNum);
418 NameSet::iterator NI = UsedNames.find(name);
419 if (NI != UsedNames.end())
420 name += std::string("_") + utostr(uniqueNum++);
421 UsedNames.insert(name);
422 return ValueNames[val] = name;
424 name = getTypePrefix(val->getType());
427 name = getTypePrefix(val->getType());
430 name += val->getName();
432 name += utostr(uniqueNum++);
434 NameSet::iterator NI = UsedNames.find(name);
435 if (NI != UsedNames.end())
436 name += std::string("_") + utostr(uniqueNum++);
437 UsedNames.insert(name);
438 return ValueNames[val] = name;
441 void CppWriter::printCppName(const Value* val) {
442 printEscapedString(getCppName(val));
445 void CppWriter::printAttributes(const AttrListPtr &PAL,
446 const std::string &name) {
447 Out << "AttrListPtr " << name << "_PAL;";
449 if (!PAL.isEmpty()) {
450 Out << '{'; in(); nl(Out);
451 Out << "SmallVector<AttributeWithIndex, 4> Attrs;"; nl(Out);
452 Out << "AttributeWithIndex PAWI;"; nl(Out);
453 for (unsigned i = 0; i < PAL.getNumSlots(); ++i) {
454 unsigned index = PAL.getSlot(i).Index;
455 Attributes attrs = PAL.getSlot(i).Attrs;
456 Out << "PAWI.Index = " << index << "U; PAWI.Attrs = 0 ";
457 #define HANDLE_ATTR(X) \
458 if (attrs & Attribute::X) \
459 Out << " | Attribute::" #X; \
460 attrs &= ~Attribute::X;
464 HANDLE_ATTR(NoReturn);
466 HANDLE_ATTR(StructRet);
467 HANDLE_ATTR(NoUnwind);
468 HANDLE_ATTR(NoAlias);
471 HANDLE_ATTR(ReadNone);
472 HANDLE_ATTR(ReadOnly);
473 HANDLE_ATTR(NoInline);
474 HANDLE_ATTR(AlwaysInline);
475 HANDLE_ATTR(OptimizeForSize);
476 HANDLE_ATTR(StackProtect);
477 HANDLE_ATTR(StackProtectReq);
478 HANDLE_ATTR(NoCapture);
480 assert(attrs == 0 && "Unhandled attribute!");
483 Out << "Attrs.push_back(PAWI);";
486 Out << name << "_PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());";
493 bool CppWriter::printTypeInternal(const Type* Ty) {
494 // We don't print definitions for primitive types
495 if (Ty->isPrimitiveType() || Ty->isInteger())
498 // If we already defined this type, we don't need to define it again.
499 if (DefinedTypes.find(Ty) != DefinedTypes.end())
502 // Everything below needs the name for the type so get it now.
503 std::string typeName(getCppName(Ty));
505 // Search the type stack for recursion. If we find it, then generate this
506 // as an OpaqueType, but make sure not to do this multiple times because
507 // the type could appear in multiple places on the stack. Once the opaque
508 // definition is issued, it must not be re-issued. Consequently we have to
509 // check the UnresolvedTypes list as well.
510 TypeList::const_iterator TI = std::find(TypeStack.begin(), TypeStack.end(),
512 if (TI != TypeStack.end()) {
513 TypeMap::const_iterator I = UnresolvedTypes.find(Ty);
514 if (I == UnresolvedTypes.end()) {
515 Out << "PATypeHolder " << typeName;
516 Out << "_fwd = OpaqueType::get(getGlobalContext());";
518 UnresolvedTypes[Ty] = typeName;
523 // We're going to print a derived type which, by definition, contains other
524 // types. So, push this one we're printing onto the type stack to assist with
525 // recursive definitions.
526 TypeStack.push_back(Ty);
528 // Print the type definition
529 switch (Ty->getTypeID()) {
530 case Type::FunctionTyID: {
531 const FunctionType* FT = cast<FunctionType>(Ty);
532 Out << "std::vector<const Type*>" << typeName << "_args;";
534 FunctionType::param_iterator PI = FT->param_begin();
535 FunctionType::param_iterator PE = FT->param_end();
536 for (; PI != PE; ++PI) {
537 const Type* argTy = static_cast<const Type*>(*PI);
538 bool isForward = printTypeInternal(argTy);
539 std::string argName(getCppName(argTy));
540 Out << typeName << "_args.push_back(" << argName;
546 bool isForward = printTypeInternal(FT->getReturnType());
547 std::string retTypeName(getCppName(FT->getReturnType()));
548 Out << "FunctionType* " << typeName << " = FunctionType::get(";
549 in(); nl(Out) << "/*Result=*/" << retTypeName;
553 nl(Out) << "/*Params=*/" << typeName << "_args,";
554 nl(Out) << "/*isVarArg=*/" << (FT->isVarArg() ? "true" : "false") << ");";
559 case Type::StructTyID: {
560 const StructType* ST = cast<StructType>(Ty);
561 Out << "std::vector<const Type*>" << typeName << "_fields;";
563 StructType::element_iterator EI = ST->element_begin();
564 StructType::element_iterator EE = ST->element_end();
565 for (; EI != EE; ++EI) {
566 const Type* fieldTy = static_cast<const Type*>(*EI);
567 bool isForward = printTypeInternal(fieldTy);
568 std::string fieldName(getCppName(fieldTy));
569 Out << typeName << "_fields.push_back(" << fieldName;
575 Out << "StructType* " << typeName << " = StructType::get("
576 << "mod->getContext(), "
577 << typeName << "_fields, /*isPacked=*/"
578 << (ST->isPacked() ? "true" : "false") << ");";
582 case Type::ArrayTyID: {
583 const ArrayType* AT = cast<ArrayType>(Ty);
584 const Type* ET = AT->getElementType();
585 bool isForward = printTypeInternal(ET);
586 std::string elemName(getCppName(ET));
587 Out << "ArrayType* " << typeName << " = ArrayType::get("
588 << elemName << (isForward ? "_fwd" : "")
589 << ", " << utostr(AT->getNumElements()) << ");";
593 case Type::PointerTyID: {
594 const PointerType* PT = cast<PointerType>(Ty);
595 const Type* ET = PT->getElementType();
596 bool isForward = printTypeInternal(ET);
597 std::string elemName(getCppName(ET));
598 Out << "PointerType* " << typeName << " = PointerType::get("
599 << elemName << (isForward ? "_fwd" : "")
600 << ", " << utostr(PT->getAddressSpace()) << ");";
604 case Type::VectorTyID: {
605 const VectorType* PT = cast<VectorType>(Ty);
606 const Type* ET = PT->getElementType();
607 bool isForward = printTypeInternal(ET);
608 std::string elemName(getCppName(ET));
609 Out << "VectorType* " << typeName << " = VectorType::get("
610 << elemName << (isForward ? "_fwd" : "")
611 << ", " << utostr(PT->getNumElements()) << ");";
615 case Type::OpaqueTyID: {
616 Out << "OpaqueType* " << typeName;
617 Out << " = OpaqueType::get(getGlobalContext());";
622 error("Invalid TypeID");
625 // If the type had a name, make sure we recreate it.
626 const std::string* progTypeName =
627 findTypeName(TheModule->getTypeSymbolTable(),Ty);
629 Out << "mod->addTypeName(\"" << *progTypeName << "\", "
634 // Pop us off the type stack
635 TypeStack.pop_back();
637 // Indicate that this type is now defined.
638 DefinedTypes.insert(Ty);
640 // Early resolve as many unresolved types as possible. Search the unresolved
641 // types map for the type we just printed. Now that its definition is complete
642 // we can resolve any previous references to it. This prevents a cascade of
644 TypeMap::iterator I = UnresolvedTypes.find(Ty);
645 if (I != UnresolvedTypes.end()) {
646 Out << "cast<OpaqueType>(" << I->second
647 << "_fwd.get())->refineAbstractTypeTo(" << I->second << ");";
649 Out << I->second << " = cast<";
650 switch (Ty->getTypeID()) {
651 case Type::FunctionTyID: Out << "FunctionType"; break;
652 case Type::ArrayTyID: Out << "ArrayType"; break;
653 case Type::StructTyID: Out << "StructType"; break;
654 case Type::VectorTyID: Out << "VectorType"; break;
655 case Type::PointerTyID: Out << "PointerType"; break;
656 case Type::OpaqueTyID: Out << "OpaqueType"; break;
657 default: Out << "NoSuchDerivedType"; break;
659 Out << ">(" << I->second << "_fwd.get());";
661 UnresolvedTypes.erase(I);
664 // Finally, separate the type definition from other with a newline.
667 // We weren't a recursive type
671 // Prints a type definition. Returns true if it could not resolve all the
672 // types in the definition but had to use a forward reference.
673 void CppWriter::printType(const Type* Ty) {
674 assert(TypeStack.empty());
676 printTypeInternal(Ty);
677 assert(TypeStack.empty());
680 void CppWriter::printTypes(const Module* M) {
681 // Walk the symbol table and print out all its types
682 const TypeSymbolTable& symtab = M->getTypeSymbolTable();
683 for (TypeSymbolTable::const_iterator TI = symtab.begin(), TE = symtab.end();
686 // For primitive types and types already defined, just add a name
687 TypeMap::const_iterator TNI = TypeNames.find(TI->second);
688 if (TI->second->isInteger() || TI->second->isPrimitiveType() ||
689 TNI != TypeNames.end()) {
690 Out << "mod->addTypeName(\"";
691 printEscapedString(TI->first);
692 Out << "\", " << getCppName(TI->second) << ");";
694 // For everything else, define the type
696 printType(TI->second);
700 // Add all of the global variables to the value table...
701 for (Module::const_global_iterator I = TheModule->global_begin(),
702 E = TheModule->global_end(); I != E; ++I) {
703 if (I->hasInitializer())
704 printType(I->getInitializer()->getType());
705 printType(I->getType());
708 // Add all the functions to the table
709 for (Module::const_iterator FI = TheModule->begin(), FE = TheModule->end();
711 printType(FI->getReturnType());
712 printType(FI->getFunctionType());
713 // Add all the function arguments
714 for (Function::const_arg_iterator AI = FI->arg_begin(),
715 AE = FI->arg_end(); AI != AE; ++AI) {
716 printType(AI->getType());
719 // Add all of the basic blocks and instructions
720 for (Function::const_iterator BB = FI->begin(),
721 E = FI->end(); BB != E; ++BB) {
722 printType(BB->getType());
723 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E;
725 printType(I->getType());
726 for (unsigned i = 0; i < I->getNumOperands(); ++i)
727 printType(I->getOperand(i)->getType());
734 // printConstant - Print out a constant pool entry...
735 void CppWriter::printConstant(const Constant *CV) {
736 // First, if the constant is actually a GlobalValue (variable or function)
737 // or its already in the constant list then we've printed it already and we
739 if (isa<GlobalValue>(CV) || ValueNames.find(CV) != ValueNames.end())
742 std::string constName(getCppName(CV));
743 std::string typeName(getCppName(CV->getType()));
745 if (isa<GlobalValue>(CV)) {
746 // Skip variables and functions, we emit them elsewhere
750 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
751 std::string constValue = CI->getValue().toString(10, true);
752 Out << "ConstantInt* " << constName
753 << " = ConstantInt::get(getGlobalContext(), APInt("
754 << cast<IntegerType>(CI->getType())->getBitWidth()
755 << ", StringRef(\"" << constValue << "\"), 10));";
756 } else if (isa<ConstantAggregateZero>(CV)) {
757 Out << "ConstantAggregateZero* " << constName
758 << " = ConstantAggregateZero::get(" << typeName << ");";
759 } else if (isa<ConstantPointerNull>(CV)) {
760 Out << "ConstantPointerNull* " << constName
761 << " = ConstantPointerNull::get(" << typeName << ");";
762 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
763 Out << "ConstantFP* " << constName << " = ";
766 } else if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) {
767 if (CA->isString() &&
768 CA->getType()->getElementType() ==
769 Type::getInt8Ty(CA->getContext())) {
770 Out << "Constant* " << constName <<
771 " = ConstantArray::get(getGlobalContext(), \"";
772 std::string tmp = CA->getAsString();
773 bool nullTerminate = false;
774 if (tmp[tmp.length()-1] == 0) {
775 tmp.erase(tmp.length()-1);
776 nullTerminate = true;
778 printEscapedString(tmp);
779 // Determine if we want null termination or not.
781 Out << "\", true"; // Indicate that the null terminator should be
784 Out << "\", false";// No null terminator
787 Out << "std::vector<Constant*> " << constName << "_elems;";
789 unsigned N = CA->getNumOperands();
790 for (unsigned i = 0; i < N; ++i) {
791 printConstant(CA->getOperand(i)); // recurse to print operands
792 Out << constName << "_elems.push_back("
793 << getCppName(CA->getOperand(i)) << ");";
796 Out << "Constant* " << constName << " = ConstantArray::get("
797 << typeName << ", " << constName << "_elems);";
799 } else if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) {
800 Out << "std::vector<Constant*> " << constName << "_fields;";
802 unsigned N = CS->getNumOperands();
803 for (unsigned i = 0; i < N; i++) {
804 printConstant(CS->getOperand(i));
805 Out << constName << "_fields.push_back("
806 << getCppName(CS->getOperand(i)) << ");";
809 Out << "Constant* " << constName << " = ConstantStruct::get("
810 << typeName << ", " << constName << "_fields);";
811 } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(CV)) {
812 Out << "std::vector<Constant*> " << constName << "_elems;";
814 unsigned N = CP->getNumOperands();
815 for (unsigned i = 0; i < N; ++i) {
816 printConstant(CP->getOperand(i));
817 Out << constName << "_elems.push_back("
818 << getCppName(CP->getOperand(i)) << ");";
821 Out << "Constant* " << constName << " = ConstantVector::get("
822 << typeName << ", " << constName << "_elems);";
823 } else if (isa<UndefValue>(CV)) {
824 Out << "UndefValue* " << constName << " = UndefValue::get("
826 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
827 if (CE->getOpcode() == Instruction::GetElementPtr) {
828 Out << "std::vector<Constant*> " << constName << "_indices;";
830 printConstant(CE->getOperand(0));
831 for (unsigned i = 1; i < CE->getNumOperands(); ++i ) {
832 printConstant(CE->getOperand(i));
833 Out << constName << "_indices.push_back("
834 << getCppName(CE->getOperand(i)) << ");";
837 Out << "Constant* " << constName
838 << " = ConstantExpr::getGetElementPtr("
839 << getCppName(CE->getOperand(0)) << ", "
840 << "&" << constName << "_indices[0], "
841 << constName << "_indices.size()"
843 } else if (CE->isCast()) {
844 printConstant(CE->getOperand(0));
845 Out << "Constant* " << constName << " = ConstantExpr::getCast(";
846 switch (CE->getOpcode()) {
847 default: llvm_unreachable("Invalid cast opcode");
848 case Instruction::Trunc: Out << "Instruction::Trunc"; break;
849 case Instruction::ZExt: Out << "Instruction::ZExt"; break;
850 case Instruction::SExt: Out << "Instruction::SExt"; break;
851 case Instruction::FPTrunc: Out << "Instruction::FPTrunc"; break;
852 case Instruction::FPExt: Out << "Instruction::FPExt"; break;
853 case Instruction::FPToUI: Out << "Instruction::FPToUI"; break;
854 case Instruction::FPToSI: Out << "Instruction::FPToSI"; break;
855 case Instruction::UIToFP: Out << "Instruction::UIToFP"; break;
856 case Instruction::SIToFP: Out << "Instruction::SIToFP"; break;
857 case Instruction::PtrToInt: Out << "Instruction::PtrToInt"; break;
858 case Instruction::IntToPtr: Out << "Instruction::IntToPtr"; break;
859 case Instruction::BitCast: Out << "Instruction::BitCast"; break;
861 Out << ", " << getCppName(CE->getOperand(0)) << ", "
862 << getCppName(CE->getType()) << ");";
864 unsigned N = CE->getNumOperands();
865 for (unsigned i = 0; i < N; ++i ) {
866 printConstant(CE->getOperand(i));
868 Out << "Constant* " << constName << " = ConstantExpr::";
869 switch (CE->getOpcode()) {
870 case Instruction::Add: Out << "getAdd("; break;
871 case Instruction::FAdd: Out << "getFAdd("; break;
872 case Instruction::Sub: Out << "getSub("; break;
873 case Instruction::FSub: Out << "getFSub("; break;
874 case Instruction::Mul: Out << "getMul("; break;
875 case Instruction::FMul: Out << "getFMul("; break;
876 case Instruction::UDiv: Out << "getUDiv("; break;
877 case Instruction::SDiv: Out << "getSDiv("; break;
878 case Instruction::FDiv: Out << "getFDiv("; break;
879 case Instruction::URem: Out << "getURem("; break;
880 case Instruction::SRem: Out << "getSRem("; break;
881 case Instruction::FRem: Out << "getFRem("; break;
882 case Instruction::And: Out << "getAnd("; break;
883 case Instruction::Or: Out << "getOr("; break;
884 case Instruction::Xor: Out << "getXor("; break;
885 case Instruction::ICmp:
886 Out << "getICmp(ICmpInst::ICMP_";
887 switch (CE->getPredicate()) {
888 case ICmpInst::ICMP_EQ: Out << "EQ"; break;
889 case ICmpInst::ICMP_NE: Out << "NE"; break;
890 case ICmpInst::ICMP_SLT: Out << "SLT"; break;
891 case ICmpInst::ICMP_ULT: Out << "ULT"; break;
892 case ICmpInst::ICMP_SGT: Out << "SGT"; break;
893 case ICmpInst::ICMP_UGT: Out << "UGT"; break;
894 case ICmpInst::ICMP_SLE: Out << "SLE"; break;
895 case ICmpInst::ICMP_ULE: Out << "ULE"; break;
896 case ICmpInst::ICMP_SGE: Out << "SGE"; break;
897 case ICmpInst::ICMP_UGE: Out << "UGE"; break;
898 default: error("Invalid ICmp Predicate");
901 case Instruction::FCmp:
902 Out << "getFCmp(FCmpInst::FCMP_";
903 switch (CE->getPredicate()) {
904 case FCmpInst::FCMP_FALSE: Out << "FALSE"; break;
905 case FCmpInst::FCMP_ORD: Out << "ORD"; break;
906 case FCmpInst::FCMP_UNO: Out << "UNO"; break;
907 case FCmpInst::FCMP_OEQ: Out << "OEQ"; break;
908 case FCmpInst::FCMP_UEQ: Out << "UEQ"; break;
909 case FCmpInst::FCMP_ONE: Out << "ONE"; break;
910 case FCmpInst::FCMP_UNE: Out << "UNE"; break;
911 case FCmpInst::FCMP_OLT: Out << "OLT"; break;
912 case FCmpInst::FCMP_ULT: Out << "ULT"; break;
913 case FCmpInst::FCMP_OGT: Out << "OGT"; break;
914 case FCmpInst::FCMP_UGT: Out << "UGT"; break;
915 case FCmpInst::FCMP_OLE: Out << "OLE"; break;
916 case FCmpInst::FCMP_ULE: Out << "ULE"; break;
917 case FCmpInst::FCMP_OGE: Out << "OGE"; break;
918 case FCmpInst::FCMP_UGE: Out << "UGE"; break;
919 case FCmpInst::FCMP_TRUE: Out << "TRUE"; break;
920 default: error("Invalid FCmp Predicate");
923 case Instruction::Shl: Out << "getShl("; break;
924 case Instruction::LShr: Out << "getLShr("; break;
925 case Instruction::AShr: Out << "getAShr("; break;
926 case Instruction::Select: Out << "getSelect("; break;
927 case Instruction::ExtractElement: Out << "getExtractElement("; break;
928 case Instruction::InsertElement: Out << "getInsertElement("; break;
929 case Instruction::ShuffleVector: Out << "getShuffleVector("; break;
931 error("Invalid constant expression");
934 Out << getCppName(CE->getOperand(0));
935 for (unsigned i = 1; i < CE->getNumOperands(); ++i)
936 Out << ", " << getCppName(CE->getOperand(i));
940 error("Bad Constant");
941 Out << "Constant* " << constName << " = 0; ";
946 void CppWriter::printConstants(const Module* M) {
947 // Traverse all the global variables looking for constant initializers
948 for (Module::const_global_iterator I = TheModule->global_begin(),
949 E = TheModule->global_end(); I != E; ++I)
950 if (I->hasInitializer())
951 printConstant(I->getInitializer());
953 // Traverse the LLVM functions looking for constants
954 for (Module::const_iterator FI = TheModule->begin(), FE = TheModule->end();
956 // Add all of the basic blocks and instructions
957 for (Function::const_iterator BB = FI->begin(),
958 E = FI->end(); BB != E; ++BB) {
959 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E;
961 for (unsigned i = 0; i < I->getNumOperands(); ++i) {
962 if (Constant* C = dyn_cast<Constant>(I->getOperand(i))) {
971 void CppWriter::printVariableUses(const GlobalVariable *GV) {
972 nl(Out) << "// Type Definitions";
974 printType(GV->getType());
975 if (GV->hasInitializer()) {
976 Constant *Init = GV->getInitializer();
977 printType(Init->getType());
978 if (Function *F = dyn_cast<Function>(Init)) {
979 nl(Out)<< "/ Function Declarations"; nl(Out);
980 printFunctionHead(F);
981 } else if (GlobalVariable* gv = dyn_cast<GlobalVariable>(Init)) {
982 nl(Out) << "// Global Variable Declarations"; nl(Out);
983 printVariableHead(gv);
985 nl(Out) << "// Global Variable Definitions"; nl(Out);
986 printVariableBody(gv);
988 nl(Out) << "// Constant Definitions"; nl(Out);
994 void CppWriter::printVariableHead(const GlobalVariable *GV) {
995 nl(Out) << "GlobalVariable* " << getCppName(GV);
997 Out << " = mod->getGlobalVariable(getGlobalContext(), ";
998 printEscapedString(GV->getName());
999 Out << ", " << getCppName(GV->getType()->getElementType()) << ",true)";
1000 nl(Out) << "if (!" << getCppName(GV) << ") {";
1001 in(); nl(Out) << getCppName(GV);
1003 Out << " = new GlobalVariable(/*Module=*/*mod, ";
1004 nl(Out) << "/*Type=*/";
1005 printCppName(GV->getType()->getElementType());
1007 nl(Out) << "/*isConstant=*/" << (GV->isConstant()?"true":"false");
1009 nl(Out) << "/*Linkage=*/";
1010 printLinkageType(GV->getLinkage());
1012 nl(Out) << "/*Initializer=*/0, ";
1013 if (GV->hasInitializer()) {
1014 Out << "// has initializer, specified below";
1016 nl(Out) << "/*Name=*/\"";
1017 printEscapedString(GV->getName());
1021 if (GV->hasSection()) {
1023 Out << "->setSection(\"";
1024 printEscapedString(GV->getSection());
1028 if (GV->getAlignment()) {
1030 Out << "->setAlignment(" << utostr(GV->getAlignment()) << ");";
1033 if (GV->getVisibility() != GlobalValue::DefaultVisibility) {
1035 Out << "->setVisibility(";
1036 printVisibilityType(GV->getVisibility());
1041 out(); Out << "}"; nl(Out);
1045 void CppWriter::printVariableBody(const GlobalVariable *GV) {
1046 if (GV->hasInitializer()) {
1048 Out << "->setInitializer(";
1049 Out << getCppName(GV->getInitializer()) << ");";
1054 std::string CppWriter::getOpName(Value* V) {
1055 if (!isa<Instruction>(V) || DefinedValues.find(V) != DefinedValues.end())
1056 return getCppName(V);
1058 // See if its alread in the map of forward references, if so just return the
1059 // name we already set up for it
1060 ForwardRefMap::const_iterator I = ForwardRefs.find(V);
1061 if (I != ForwardRefs.end())
1064 // This is a new forward reference. Generate a unique name for it
1065 std::string result(std::string("fwdref_") + utostr(uniqueNum++));
1067 // Yes, this is a hack. An Argument is the smallest instantiable value that
1068 // we can make as a placeholder for the real value. We'll replace these
1069 // Argument instances later.
1070 Out << "Argument* " << result << " = new Argument("
1071 << getCppName(V->getType()) << ");";
1073 ForwardRefs[V] = result;
1077 // printInstruction - This member is called for each Instruction in a function.
1078 void CppWriter::printInstruction(const Instruction *I,
1079 const std::string& bbname) {
1080 std::string iName(getCppName(I));
1082 // Before we emit this instruction, we need to take care of generating any
1083 // forward references. So, we get the names of all the operands in advance
1084 std::string* opNames = new std::string[I->getNumOperands()];
1085 for (unsigned i = 0; i < I->getNumOperands(); i++) {
1086 opNames[i] = getOpName(I->getOperand(i));
1089 switch (I->getOpcode()) {
1091 error("Invalid instruction");
1094 case Instruction::Ret: {
1095 const ReturnInst* ret = cast<ReturnInst>(I);
1096 Out << "ReturnInst::Create(getGlobalContext(), "
1097 << (ret->getReturnValue() ? opNames[0] + ", " : "") << bbname << ");";
1100 case Instruction::Br: {
1101 const BranchInst* br = cast<BranchInst>(I);
1102 Out << "BranchInst::Create(" ;
1103 if (br->getNumOperands() == 3 ) {
1104 Out << opNames[2] << ", "
1105 << opNames[1] << ", "
1106 << opNames[0] << ", ";
1108 } else if (br->getNumOperands() == 1) {
1109 Out << opNames[0] << ", ";
1111 error("Branch with 2 operands?");
1113 Out << bbname << ");";
1116 case Instruction::Switch: {
1117 const SwitchInst *SI = cast<SwitchInst>(I);
1118 Out << "SwitchInst* " << iName << " = SwitchInst::Create("
1119 << opNames[0] << ", "
1120 << opNames[1] << ", "
1121 << SI->getNumCases() << ", " << bbname << ");";
1123 for (unsigned i = 2; i != SI->getNumOperands(); i += 2) {
1124 Out << iName << "->addCase("
1125 << opNames[i] << ", "
1126 << opNames[i+1] << ");";
1131 case Instruction::IndirectBr: {
1132 const IndirectBrInst *IBI = cast<IndirectBrInst>(I);
1133 Out << "IndirectBrInst *" << iName << " = IndirectBrInst::Create("
1134 << opNames[0] << ", " << IBI->getNumDestinations() << ");";
1136 for (unsigned i = 1; i != IBI->getNumOperands(); ++i) {
1137 Out << iName << "->addDestination(" << opNames[i] << ");";
1142 case Instruction::Invoke: {
1143 const InvokeInst* inv = cast<InvokeInst>(I);
1144 Out << "std::vector<Value*> " << iName << "_params;";
1146 for (unsigned i = 3; i < inv->getNumOperands(); ++i) {
1147 Out << iName << "_params.push_back("
1148 << opNames[i] << ");";
1151 Out << "InvokeInst *" << iName << " = InvokeInst::Create("
1152 << opNames[0] << ", "
1153 << opNames[1] << ", "
1154 << opNames[2] << ", "
1155 << iName << "_params.begin(), " << iName << "_params.end(), \"";
1156 printEscapedString(inv->getName());
1157 Out << "\", " << bbname << ");";
1158 nl(Out) << iName << "->setCallingConv(";
1159 printCallingConv(inv->getCallingConv());
1161 printAttributes(inv->getAttributes(), iName);
1162 Out << iName << "->setAttributes(" << iName << "_PAL);";
1166 case Instruction::Unwind: {
1167 Out << "new UnwindInst("
1171 case Instruction::Unreachable: {
1172 Out << "new UnreachableInst("
1173 << "getGlobalContext(), "
1177 case Instruction::Add:
1178 case Instruction::FAdd:
1179 case Instruction::Sub:
1180 case Instruction::FSub:
1181 case Instruction::Mul:
1182 case Instruction::FMul:
1183 case Instruction::UDiv:
1184 case Instruction::SDiv:
1185 case Instruction::FDiv:
1186 case Instruction::URem:
1187 case Instruction::SRem:
1188 case Instruction::FRem:
1189 case Instruction::And:
1190 case Instruction::Or:
1191 case Instruction::Xor:
1192 case Instruction::Shl:
1193 case Instruction::LShr:
1194 case Instruction::AShr:{
1195 Out << "BinaryOperator* " << iName << " = BinaryOperator::Create(";
1196 switch (I->getOpcode()) {
1197 case Instruction::Add: Out << "Instruction::Add"; break;
1198 case Instruction::FAdd: Out << "Instruction::FAdd"; break;
1199 case Instruction::Sub: Out << "Instruction::Sub"; break;
1200 case Instruction::FSub: Out << "Instruction::FSub"; break;
1201 case Instruction::Mul: Out << "Instruction::Mul"; break;
1202 case Instruction::FMul: Out << "Instruction::FMul"; break;
1203 case Instruction::UDiv:Out << "Instruction::UDiv"; break;
1204 case Instruction::SDiv:Out << "Instruction::SDiv"; break;
1205 case Instruction::FDiv:Out << "Instruction::FDiv"; break;
1206 case Instruction::URem:Out << "Instruction::URem"; break;
1207 case Instruction::SRem:Out << "Instruction::SRem"; break;
1208 case Instruction::FRem:Out << "Instruction::FRem"; break;
1209 case Instruction::And: Out << "Instruction::And"; break;
1210 case Instruction::Or: Out << "Instruction::Or"; break;
1211 case Instruction::Xor: Out << "Instruction::Xor"; break;
1212 case Instruction::Shl: Out << "Instruction::Shl"; break;
1213 case Instruction::LShr:Out << "Instruction::LShr"; break;
1214 case Instruction::AShr:Out << "Instruction::AShr"; break;
1215 default: Out << "Instruction::BadOpCode"; break;
1217 Out << ", " << opNames[0] << ", " << opNames[1] << ", \"";
1218 printEscapedString(I->getName());
1219 Out << "\", " << bbname << ");";
1222 case Instruction::FCmp: {
1223 Out << "FCmpInst* " << iName << " = new FCmpInst(*" << bbname << ", ";
1224 switch (cast<FCmpInst>(I)->getPredicate()) {
1225 case FCmpInst::FCMP_FALSE: Out << "FCmpInst::FCMP_FALSE"; break;
1226 case FCmpInst::FCMP_OEQ : Out << "FCmpInst::FCMP_OEQ"; break;
1227 case FCmpInst::FCMP_OGT : Out << "FCmpInst::FCMP_OGT"; break;
1228 case FCmpInst::FCMP_OGE : Out << "FCmpInst::FCMP_OGE"; break;
1229 case FCmpInst::FCMP_OLT : Out << "FCmpInst::FCMP_OLT"; break;
1230 case FCmpInst::FCMP_OLE : Out << "FCmpInst::FCMP_OLE"; break;
1231 case FCmpInst::FCMP_ONE : Out << "FCmpInst::FCMP_ONE"; break;
1232 case FCmpInst::FCMP_ORD : Out << "FCmpInst::FCMP_ORD"; break;
1233 case FCmpInst::FCMP_UNO : Out << "FCmpInst::FCMP_UNO"; break;
1234 case FCmpInst::FCMP_UEQ : Out << "FCmpInst::FCMP_UEQ"; break;
1235 case FCmpInst::FCMP_UGT : Out << "FCmpInst::FCMP_UGT"; break;
1236 case FCmpInst::FCMP_UGE : Out << "FCmpInst::FCMP_UGE"; break;
1237 case FCmpInst::FCMP_ULT : Out << "FCmpInst::FCMP_ULT"; break;
1238 case FCmpInst::FCMP_ULE : Out << "FCmpInst::FCMP_ULE"; break;
1239 case FCmpInst::FCMP_UNE : Out << "FCmpInst::FCMP_UNE"; break;
1240 case FCmpInst::FCMP_TRUE : Out << "FCmpInst::FCMP_TRUE"; break;
1241 default: Out << "FCmpInst::BAD_ICMP_PREDICATE"; break;
1243 Out << ", " << opNames[0] << ", " << opNames[1] << ", \"";
1244 printEscapedString(I->getName());
1248 case Instruction::ICmp: {
1249 Out << "ICmpInst* " << iName << " = new ICmpInst(*" << bbname << ", ";
1250 switch (cast<ICmpInst>(I)->getPredicate()) {
1251 case ICmpInst::ICMP_EQ: Out << "ICmpInst::ICMP_EQ"; break;
1252 case ICmpInst::ICMP_NE: Out << "ICmpInst::ICMP_NE"; break;
1253 case ICmpInst::ICMP_ULE: Out << "ICmpInst::ICMP_ULE"; break;
1254 case ICmpInst::ICMP_SLE: Out << "ICmpInst::ICMP_SLE"; break;
1255 case ICmpInst::ICMP_UGE: Out << "ICmpInst::ICMP_UGE"; break;
1256 case ICmpInst::ICMP_SGE: Out << "ICmpInst::ICMP_SGE"; break;
1257 case ICmpInst::ICMP_ULT: Out << "ICmpInst::ICMP_ULT"; break;
1258 case ICmpInst::ICMP_SLT: Out << "ICmpInst::ICMP_SLT"; break;
1259 case ICmpInst::ICMP_UGT: Out << "ICmpInst::ICMP_UGT"; break;
1260 case ICmpInst::ICMP_SGT: Out << "ICmpInst::ICMP_SGT"; break;
1261 default: Out << "ICmpInst::BAD_ICMP_PREDICATE"; break;
1263 Out << ", " << opNames[0] << ", " << opNames[1] << ", \"";
1264 printEscapedString(I->getName());
1268 case Instruction::Alloca: {
1269 const AllocaInst* allocaI = cast<AllocaInst>(I);
1270 Out << "AllocaInst* " << iName << " = new AllocaInst("
1271 << getCppName(allocaI->getAllocatedType()) << ", ";
1272 if (allocaI->isArrayAllocation())
1273 Out << opNames[0] << ", ";
1275 printEscapedString(allocaI->getName());
1276 Out << "\", " << bbname << ");";
1277 if (allocaI->getAlignment())
1278 nl(Out) << iName << "->setAlignment("
1279 << allocaI->getAlignment() << ");";
1282 case Instruction::Load:{
1283 const LoadInst* load = cast<LoadInst>(I);
1284 Out << "LoadInst* " << iName << " = new LoadInst("
1285 << opNames[0] << ", \"";
1286 printEscapedString(load->getName());
1287 Out << "\", " << (load->isVolatile() ? "true" : "false" )
1288 << ", " << bbname << ");";
1291 case Instruction::Store: {
1292 const StoreInst* store = cast<StoreInst>(I);
1293 Out << " new StoreInst("
1294 << opNames[0] << ", "
1295 << opNames[1] << ", "
1296 << (store->isVolatile() ? "true" : "false")
1297 << ", " << bbname << ");";
1300 case Instruction::GetElementPtr: {
1301 const GetElementPtrInst* gep = cast<GetElementPtrInst>(I);
1302 if (gep->getNumOperands() <= 2) {
1303 Out << "GetElementPtrInst* " << iName << " = GetElementPtrInst::Create("
1305 if (gep->getNumOperands() == 2)
1306 Out << ", " << opNames[1];
1308 Out << "std::vector<Value*> " << iName << "_indices;";
1310 for (unsigned i = 1; i < gep->getNumOperands(); ++i ) {
1311 Out << iName << "_indices.push_back("
1312 << opNames[i] << ");";
1315 Out << "Instruction* " << iName << " = GetElementPtrInst::Create("
1316 << opNames[0] << ", " << iName << "_indices.begin(), "
1317 << iName << "_indices.end()";
1320 printEscapedString(gep->getName());
1321 Out << "\", " << bbname << ");";
1324 case Instruction::PHI: {
1325 const PHINode* phi = cast<PHINode>(I);
1327 Out << "PHINode* " << iName << " = PHINode::Create("
1328 << getCppName(phi->getType()) << ", \"";
1329 printEscapedString(phi->getName());
1330 Out << "\", " << bbname << ");";
1331 nl(Out) << iName << "->reserveOperandSpace("
1332 << phi->getNumIncomingValues()
1335 for (unsigned i = 0; i < phi->getNumOperands(); i+=2) {
1336 Out << iName << "->addIncoming("
1337 << opNames[i] << ", " << opNames[i+1] << ");";
1342 case Instruction::Trunc:
1343 case Instruction::ZExt:
1344 case Instruction::SExt:
1345 case Instruction::FPTrunc:
1346 case Instruction::FPExt:
1347 case Instruction::FPToUI:
1348 case Instruction::FPToSI:
1349 case Instruction::UIToFP:
1350 case Instruction::SIToFP:
1351 case Instruction::PtrToInt:
1352 case Instruction::IntToPtr:
1353 case Instruction::BitCast: {
1354 const CastInst* cst = cast<CastInst>(I);
1355 Out << "CastInst* " << iName << " = new ";
1356 switch (I->getOpcode()) {
1357 case Instruction::Trunc: Out << "TruncInst"; break;
1358 case Instruction::ZExt: Out << "ZExtInst"; break;
1359 case Instruction::SExt: Out << "SExtInst"; break;
1360 case Instruction::FPTrunc: Out << "FPTruncInst"; break;
1361 case Instruction::FPExt: Out << "FPExtInst"; break;
1362 case Instruction::FPToUI: Out << "FPToUIInst"; break;
1363 case Instruction::FPToSI: Out << "FPToSIInst"; break;
1364 case Instruction::UIToFP: Out << "UIToFPInst"; break;
1365 case Instruction::SIToFP: Out << "SIToFPInst"; break;
1366 case Instruction::PtrToInt: Out << "PtrToIntInst"; break;
1367 case Instruction::IntToPtr: Out << "IntToPtrInst"; break;
1368 case Instruction::BitCast: Out << "BitCastInst"; break;
1369 default: assert(!"Unreachable"); break;
1371 Out << "(" << opNames[0] << ", "
1372 << getCppName(cst->getType()) << ", \"";
1373 printEscapedString(cst->getName());
1374 Out << "\", " << bbname << ");";
1377 case Instruction::Call:{
1378 const CallInst* call = cast<CallInst>(I);
1379 if (const InlineAsm* ila = dyn_cast<InlineAsm>(call->getCalledValue())) {
1380 Out << "InlineAsm* " << getCppName(ila) << " = InlineAsm::get("
1381 << getCppName(ila->getFunctionType()) << ", \""
1382 << ila->getAsmString() << "\", \""
1383 << ila->getConstraintString() << "\","
1384 << (ila->hasSideEffects() ? "true" : "false") << ");";
1387 if (call->getNumOperands() > 2) {
1388 Out << "std::vector<Value*> " << iName << "_params;";
1390 for (unsigned i = 1; i < call->getNumOperands(); ++i) {
1391 Out << iName << "_params.push_back(" << opNames[i] << ");";
1394 Out << "CallInst* " << iName << " = CallInst::Create("
1395 << opNames[0] << ", " << iName << "_params.begin(), "
1396 << iName << "_params.end(), \"";
1397 } else if (call->getNumOperands() == 2) {
1398 Out << "CallInst* " << iName << " = CallInst::Create("
1399 << opNames[0] << ", " << opNames[1] << ", \"";
1401 Out << "CallInst* " << iName << " = CallInst::Create(" << opNames[0]
1404 printEscapedString(call->getName());
1405 Out << "\", " << bbname << ");";
1406 nl(Out) << iName << "->setCallingConv(";
1407 printCallingConv(call->getCallingConv());
1409 nl(Out) << iName << "->setTailCall("
1410 << (call->isTailCall() ? "true":"false");
1412 printAttributes(call->getAttributes(), iName);
1413 Out << iName << "->setAttributes(" << iName << "_PAL);";
1417 case Instruction::Select: {
1418 const SelectInst* sel = cast<SelectInst>(I);
1419 Out << "SelectInst* " << getCppName(sel) << " = SelectInst::Create(";
1420 Out << opNames[0] << ", " << opNames[1] << ", " << opNames[2] << ", \"";
1421 printEscapedString(sel->getName());
1422 Out << "\", " << bbname << ");";
1425 case Instruction::UserOp1:
1427 case Instruction::UserOp2: {
1428 /// FIXME: What should be done here?
1431 case Instruction::VAArg: {
1432 const VAArgInst* va = cast<VAArgInst>(I);
1433 Out << "VAArgInst* " << getCppName(va) << " = new VAArgInst("
1434 << opNames[0] << ", " << getCppName(va->getType()) << ", \"";
1435 printEscapedString(va->getName());
1436 Out << "\", " << bbname << ");";
1439 case Instruction::ExtractElement: {
1440 const ExtractElementInst* eei = cast<ExtractElementInst>(I);
1441 Out << "ExtractElementInst* " << getCppName(eei)
1442 << " = new ExtractElementInst(" << opNames[0]
1443 << ", " << opNames[1] << ", \"";
1444 printEscapedString(eei->getName());
1445 Out << "\", " << bbname << ");";
1448 case Instruction::InsertElement: {
1449 const InsertElementInst* iei = cast<InsertElementInst>(I);
1450 Out << "InsertElementInst* " << getCppName(iei)
1451 << " = InsertElementInst::Create(" << opNames[0]
1452 << ", " << opNames[1] << ", " << opNames[2] << ", \"";
1453 printEscapedString(iei->getName());
1454 Out << "\", " << bbname << ");";
1457 case Instruction::ShuffleVector: {
1458 const ShuffleVectorInst* svi = cast<ShuffleVectorInst>(I);
1459 Out << "ShuffleVectorInst* " << getCppName(svi)
1460 << " = new ShuffleVectorInst(" << opNames[0]
1461 << ", " << opNames[1] << ", " << opNames[2] << ", \"";
1462 printEscapedString(svi->getName());
1463 Out << "\", " << bbname << ");";
1466 case Instruction::ExtractValue: {
1467 const ExtractValueInst *evi = cast<ExtractValueInst>(I);
1468 Out << "std::vector<unsigned> " << iName << "_indices;";
1470 for (unsigned i = 0; i < evi->getNumIndices(); ++i) {
1471 Out << iName << "_indices.push_back("
1472 << evi->idx_begin()[i] << ");";
1475 Out << "ExtractValueInst* " << getCppName(evi)
1476 << " = ExtractValueInst::Create(" << opNames[0]
1478 << iName << "_indices.begin(), " << iName << "_indices.end(), \"";
1479 printEscapedString(evi->getName());
1480 Out << "\", " << bbname << ");";
1483 case Instruction::InsertValue: {
1484 const InsertValueInst *ivi = cast<InsertValueInst>(I);
1485 Out << "std::vector<unsigned> " << iName << "_indices;";
1487 for (unsigned i = 0; i < ivi->getNumIndices(); ++i) {
1488 Out << iName << "_indices.push_back("
1489 << ivi->idx_begin()[i] << ");";
1492 Out << "InsertValueInst* " << getCppName(ivi)
1493 << " = InsertValueInst::Create(" << opNames[0]
1494 << ", " << opNames[1] << ", "
1495 << iName << "_indices.begin(), " << iName << "_indices.end(), \"";
1496 printEscapedString(ivi->getName());
1497 Out << "\", " << bbname << ");";
1501 DefinedValues.insert(I);
1506 // Print out the types, constants and declarations needed by one function
1507 void CppWriter::printFunctionUses(const Function* F) {
1508 nl(Out) << "// Type Definitions"; nl(Out);
1510 // Print the function's return type
1511 printType(F->getReturnType());
1513 // Print the function's function type
1514 printType(F->getFunctionType());
1516 // Print the types of each of the function's arguments
1517 for (Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end();
1519 printType(AI->getType());
1523 // Print type definitions for every type referenced by an instruction and
1524 // make a note of any global values or constants that are referenced
1525 SmallPtrSet<GlobalValue*,64> gvs;
1526 SmallPtrSet<Constant*,64> consts;
1527 for (Function::const_iterator BB = F->begin(), BE = F->end();
1529 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
1531 // Print the type of the instruction itself
1532 printType(I->getType());
1534 // Print the type of each of the instruction's operands
1535 for (unsigned i = 0; i < I->getNumOperands(); ++i) {
1536 Value* operand = I->getOperand(i);
1537 printType(operand->getType());
1539 // If the operand references a GVal or Constant, make a note of it
1540 if (GlobalValue* GV = dyn_cast<GlobalValue>(operand)) {
1542 if (GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
1543 if (GVar->hasInitializer())
1544 consts.insert(GVar->getInitializer());
1545 } else if (Constant* C = dyn_cast<Constant>(operand))
1551 // Print the function declarations for any functions encountered
1552 nl(Out) << "// Function Declarations"; nl(Out);
1553 for (SmallPtrSet<GlobalValue*,64>::iterator I = gvs.begin(), E = gvs.end();
1555 if (Function* Fun = dyn_cast<Function>(*I)) {
1556 if (!is_inline || Fun != F)
1557 printFunctionHead(Fun);
1561 // Print the global variable declarations for any variables encountered
1562 nl(Out) << "// Global Variable Declarations"; nl(Out);
1563 for (SmallPtrSet<GlobalValue*,64>::iterator I = gvs.begin(), E = gvs.end();
1565 if (GlobalVariable* F = dyn_cast<GlobalVariable>(*I))
1566 printVariableHead(F);
1569 // Print the constants found
1570 nl(Out) << "// Constant Definitions"; nl(Out);
1571 for (SmallPtrSet<Constant*,64>::iterator I = consts.begin(),
1572 E = consts.end(); I != E; ++I) {
1576 // Process the global variables definitions now that all the constants have
1577 // been emitted. These definitions just couple the gvars with their constant
1579 nl(Out) << "// Global Variable Definitions"; nl(Out);
1580 for (SmallPtrSet<GlobalValue*,64>::iterator I = gvs.begin(), E = gvs.end();
1582 if (GlobalVariable* GV = dyn_cast<GlobalVariable>(*I))
1583 printVariableBody(GV);
1587 void CppWriter::printFunctionHead(const Function* F) {
1588 nl(Out) << "Function* " << getCppName(F);
1590 Out << " = mod->getFunction(\"";
1591 printEscapedString(F->getName());
1592 Out << "\", " << getCppName(F->getFunctionType()) << ");";
1593 nl(Out) << "if (!" << getCppName(F) << ") {";
1594 nl(Out) << getCppName(F);
1596 Out<< " = Function::Create(";
1597 nl(Out,1) << "/*Type=*/" << getCppName(F->getFunctionType()) << ",";
1598 nl(Out) << "/*Linkage=*/";
1599 printLinkageType(F->getLinkage());
1601 nl(Out) << "/*Name=*/\"";
1602 printEscapedString(F->getName());
1603 Out << "\", mod); " << (F->isDeclaration()? "// (external, no body)" : "");
1606 Out << "->setCallingConv(";
1607 printCallingConv(F->getCallingConv());
1610 if (F->hasSection()) {
1612 Out << "->setSection(\"" << F->getSection() << "\");";
1615 if (F->getAlignment()) {
1617 Out << "->setAlignment(" << F->getAlignment() << ");";
1620 if (F->getVisibility() != GlobalValue::DefaultVisibility) {
1622 Out << "->setVisibility(";
1623 printVisibilityType(F->getVisibility());
1629 Out << "->setGC(\"" << F->getGC() << "\");";
1636 printAttributes(F->getAttributes(), getCppName(F));
1638 Out << "->setAttributes(" << getCppName(F) << "_PAL);";
1642 void CppWriter::printFunctionBody(const Function *F) {
1643 if (F->isDeclaration())
1644 return; // external functions have no bodies.
1646 // Clear the DefinedValues and ForwardRefs maps because we can't have
1647 // cross-function forward refs
1648 ForwardRefs.clear();
1649 DefinedValues.clear();
1651 // Create all the argument values
1653 if (!F->arg_empty()) {
1654 Out << "Function::arg_iterator args = " << getCppName(F)
1655 << "->arg_begin();";
1658 for (Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end();
1660 Out << "Value* " << getCppName(AI) << " = args++;";
1662 if (AI->hasName()) {
1663 Out << getCppName(AI) << "->setName(\"" << AI->getName() << "\");";
1669 // Create all the basic blocks
1671 for (Function::const_iterator BI = F->begin(), BE = F->end();
1673 std::string bbname(getCppName(BI));
1674 Out << "BasicBlock* " << bbname <<
1675 " = BasicBlock::Create(getGlobalContext(), \"";
1677 printEscapedString(BI->getName());
1678 Out << "\"," << getCppName(BI->getParent()) << ",0);";
1682 // Output all of its basic blocks... for the function
1683 for (Function::const_iterator BI = F->begin(), BE = F->end();
1685 std::string bbname(getCppName(BI));
1686 nl(Out) << "// Block " << BI->getName() << " (" << bbname << ")";
1689 // Output all of the instructions in the basic block...
1690 for (BasicBlock::const_iterator I = BI->begin(), E = BI->end();
1692 printInstruction(I,bbname);
1696 // Loop over the ForwardRefs and resolve them now that all instructions
1698 if (!ForwardRefs.empty()) {
1699 nl(Out) << "// Resolve Forward References";
1703 while (!ForwardRefs.empty()) {
1704 ForwardRefMap::iterator I = ForwardRefs.begin();
1705 Out << I->second << "->replaceAllUsesWith("
1706 << getCppName(I->first) << "); delete " << I->second << ";";
1708 ForwardRefs.erase(I);
1712 void CppWriter::printInline(const std::string& fname,
1713 const std::string& func) {
1714 const Function* F = TheModule->getFunction(func);
1716 error(std::string("Function '") + func + "' not found in input module");
1719 if (F->isDeclaration()) {
1720 error(std::string("Function '") + func + "' is external!");
1723 nl(Out) << "BasicBlock* " << fname << "(Module* mod, Function *"
1725 unsigned arg_count = 1;
1726 for (Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end();
1728 Out << ", Value* arg_" << arg_count;
1733 printFunctionUses(F);
1734 printFunctionBody(F);
1736 Out << "return " << getCppName(F->begin()) << ";";
1741 void CppWriter::printModuleBody() {
1742 // Print out all the type definitions
1743 nl(Out) << "// Type Definitions"; nl(Out);
1744 printTypes(TheModule);
1746 // Functions can call each other and global variables can reference them so
1747 // define all the functions first before emitting their function bodies.
1748 nl(Out) << "// Function Declarations"; nl(Out);
1749 for (Module::const_iterator I = TheModule->begin(), E = TheModule->end();
1751 printFunctionHead(I);
1753 // Process the global variables declarations. We can't initialze them until
1754 // after the constants are printed so just print a header for each global
1755 nl(Out) << "// Global Variable Declarations\n"; nl(Out);
1756 for (Module::const_global_iterator I = TheModule->global_begin(),
1757 E = TheModule->global_end(); I != E; ++I) {
1758 printVariableHead(I);
1761 // Print out all the constants definitions. Constants don't recurse except
1762 // through GlobalValues. All GlobalValues have been declared at this point
1763 // so we can proceed to generate the constants.
1764 nl(Out) << "// Constant Definitions"; nl(Out);
1765 printConstants(TheModule);
1767 // Process the global variables definitions now that all the constants have
1768 // been emitted. These definitions just couple the gvars with their constant
1770 nl(Out) << "// Global Variable Definitions"; nl(Out);
1771 for (Module::const_global_iterator I = TheModule->global_begin(),
1772 E = TheModule->global_end(); I != E; ++I) {
1773 printVariableBody(I);
1776 // Finally, we can safely put out all of the function bodies.
1777 nl(Out) << "// Function Definitions"; nl(Out);
1778 for (Module::const_iterator I = TheModule->begin(), E = TheModule->end();
1780 if (!I->isDeclaration()) {
1781 nl(Out) << "// Function: " << I->getName() << " (" << getCppName(I)
1785 printFunctionBody(I);
1792 void CppWriter::printProgram(const std::string& fname,
1793 const std::string& mName) {
1794 Out << "#include <llvm/LLVMContext.h>\n";
1795 Out << "#include <llvm/Module.h>\n";
1796 Out << "#include <llvm/DerivedTypes.h>\n";
1797 Out << "#include <llvm/Constants.h>\n";
1798 Out << "#include <llvm/GlobalVariable.h>\n";
1799 Out << "#include <llvm/Function.h>\n";
1800 Out << "#include <llvm/CallingConv.h>\n";
1801 Out << "#include <llvm/BasicBlock.h>\n";
1802 Out << "#include <llvm/Instructions.h>\n";
1803 Out << "#include <llvm/InlineAsm.h>\n";
1804 Out << "#include <llvm/Support/FormattedStream.h>\n";
1805 Out << "#include <llvm/Support/MathExtras.h>\n";
1806 Out << "#include <llvm/Pass.h>\n";
1807 Out << "#include <llvm/PassManager.h>\n";
1808 Out << "#include <llvm/ADT/SmallVector.h>\n";
1809 Out << "#include <llvm/Analysis/Verifier.h>\n";
1810 Out << "#include <llvm/Assembly/PrintModulePass.h>\n";
1811 Out << "#include <algorithm>\n";
1812 Out << "using namespace llvm;\n\n";
1813 Out << "Module* " << fname << "();\n\n";
1814 Out << "int main(int argc, char**argv) {\n";
1815 Out << " Module* Mod = " << fname << "();\n";
1816 Out << " verifyModule(*Mod, PrintMessageAction);\n";
1817 Out << " PassManager PM;\n";
1818 Out << " PM.add(createPrintModulePass(&outs()));\n";
1819 Out << " PM.run(*Mod);\n";
1820 Out << " return 0;\n";
1822 printModule(fname,mName);
1825 void CppWriter::printModule(const std::string& fname,
1826 const std::string& mName) {
1827 nl(Out) << "Module* " << fname << "() {";
1828 nl(Out,1) << "// Module Construction";
1829 nl(Out) << "Module* mod = new Module(\"";
1830 printEscapedString(mName);
1831 Out << "\", getGlobalContext());";
1832 if (!TheModule->getTargetTriple().empty()) {
1833 nl(Out) << "mod->setDataLayout(\"" << TheModule->getDataLayout() << "\");";
1835 if (!TheModule->getTargetTriple().empty()) {
1836 nl(Out) << "mod->setTargetTriple(\"" << TheModule->getTargetTriple()
1840 if (!TheModule->getModuleInlineAsm().empty()) {
1841 nl(Out) << "mod->setModuleInlineAsm(\"";
1842 printEscapedString(TheModule->getModuleInlineAsm());
1847 // Loop over the dependent libraries and emit them.
1848 Module::lib_iterator LI = TheModule->lib_begin();
1849 Module::lib_iterator LE = TheModule->lib_end();
1851 Out << "mod->addLibrary(\"" << *LI << "\");";
1856 nl(Out) << "return mod;";
1861 void CppWriter::printContents(const std::string& fname,
1862 const std::string& mName) {
1863 Out << "\nModule* " << fname << "(Module *mod) {\n";
1864 Out << "\nmod->setModuleIdentifier(\"";
1865 printEscapedString(mName);
1868 Out << "\nreturn mod;\n";
1872 void CppWriter::printFunction(const std::string& fname,
1873 const std::string& funcName) {
1874 const Function* F = TheModule->getFunction(funcName);
1876 error(std::string("Function '") + funcName + "' not found in input module");
1879 Out << "\nFunction* " << fname << "(Module *mod) {\n";
1880 printFunctionUses(F);
1881 printFunctionHead(F);
1882 printFunctionBody(F);
1883 Out << "return " << getCppName(F) << ";\n";
1887 void CppWriter::printFunctions() {
1888 const Module::FunctionListType &funcs = TheModule->getFunctionList();
1889 Module::const_iterator I = funcs.begin();
1890 Module::const_iterator IE = funcs.end();
1892 for (; I != IE; ++I) {
1893 const Function &func = *I;
1894 if (!func.isDeclaration()) {
1895 std::string name("define_");
1896 name += func.getName();
1897 printFunction(name, func.getName());
1902 void CppWriter::printVariable(const std::string& fname,
1903 const std::string& varName) {
1904 const GlobalVariable* GV = TheModule->getNamedGlobal(varName);
1907 error(std::string("Variable '") + varName + "' not found in input module");
1910 Out << "\nGlobalVariable* " << fname << "(Module *mod) {\n";
1911 printVariableUses(GV);
1912 printVariableHead(GV);
1913 printVariableBody(GV);
1914 Out << "return " << getCppName(GV) << ";\n";
1918 void CppWriter::printType(const std::string& fname,
1919 const std::string& typeName) {
1920 const Type* Ty = TheModule->getTypeByName(typeName);
1922 error(std::string("Type '") + typeName + "' not found in input module");
1925 Out << "\nType* " << fname << "(Module *mod) {\n";
1927 Out << "return " << getCppName(Ty) << ";\n";
1931 bool CppWriter::runOnModule(Module &M) {
1935 Out << "// Generated by llvm2cpp - DO NOT MODIFY!\n\n";
1937 // Get the name of the function we're supposed to generate
1938 std::string fname = FuncName.getValue();
1940 // Get the name of the thing we are to generate
1941 std::string tgtname = NameToGenerate.getValue();
1942 if (GenerationType == GenModule ||
1943 GenerationType == GenContents ||
1944 GenerationType == GenProgram ||
1945 GenerationType == GenFunctions) {
1946 if (tgtname == "!bad!") {
1947 if (M.getModuleIdentifier() == "-")
1948 tgtname = "<stdin>";
1950 tgtname = M.getModuleIdentifier();
1952 } else if (tgtname == "!bad!")
1953 error("You must use the -for option with -gen-{function,variable,type}");
1955 switch (WhatToGenerate(GenerationType)) {
1958 fname = "makeLLVMModule";
1959 printProgram(fname,tgtname);
1963 fname = "makeLLVMModule";
1964 printModule(fname,tgtname);
1968 fname = "makeLLVMModuleContents";
1969 printContents(fname,tgtname);
1973 fname = "makeLLVMFunction";
1974 printFunction(fname,tgtname);
1981 fname = "makeLLVMInline";
1982 printInline(fname,tgtname);
1986 fname = "makeLLVMVariable";
1987 printVariable(fname,tgtname);
1991 fname = "makeLLVMType";
1992 printType(fname,tgtname);
1995 error("Invalid generation option");
2002 char CppWriter::ID = 0;
2004 //===----------------------------------------------------------------------===//
2005 // External Interface declaration
2006 //===----------------------------------------------------------------------===//
2008 bool CPPTargetMachine::addPassesToEmitWholeFile(PassManager &PM,
2009 formatted_raw_ostream &o,
2010 CodeGenFileType FileType,
2011 CodeGenOpt::Level OptLevel) {
2012 if (FileType != TargetMachine::AssemblyFile) return true;
2013 PM.add(new CppWriter(o));