1 //===- lib/MC/MCAssembler.cpp - Assembler Backend Implementation ----------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 #include "llvm/MC/MCAssembler.h"
11 #include "llvm/ADT/Statistic.h"
12 #include "llvm/ADT/StringExtras.h"
13 #include "llvm/ADT/Twine.h"
14 #include "llvm/MC/MCAsmBackend.h"
15 #include "llvm/MC/MCAsmInfo.h"
16 #include "llvm/MC/MCAsmLayout.h"
17 #include "llvm/MC/MCCodeEmitter.h"
18 #include "llvm/MC/MCContext.h"
19 #include "llvm/MC/MCDwarf.h"
20 #include "llvm/MC/MCExpr.h"
21 #include "llvm/MC/MCFixupKindInfo.h"
22 #include "llvm/MC/MCObjectWriter.h"
23 #include "llvm/MC/MCSection.h"
24 #include "llvm/MC/MCSectionELF.h"
25 #include "llvm/MC/MCSymbol.h"
26 #include "llvm/MC/MCValue.h"
27 #include "llvm/Support/Debug.h"
28 #include "llvm/Support/ErrorHandling.h"
29 #include "llvm/Support/LEB128.h"
30 #include "llvm/Support/TargetRegistry.h"
31 #include "llvm/Support/raw_ostream.h"
35 #define DEBUG_TYPE "assembler"
39 STATISTIC(EmittedFragments, "Number of emitted assembler fragments - total");
40 STATISTIC(EmittedRelaxableFragments,
41 "Number of emitted assembler fragments - relaxable");
42 STATISTIC(EmittedDataFragments,
43 "Number of emitted assembler fragments - data");
44 STATISTIC(EmittedCompactEncodedInstFragments,
45 "Number of emitted assembler fragments - compact encoded inst");
46 STATISTIC(EmittedAlignFragments,
47 "Number of emitted assembler fragments - align");
48 STATISTIC(EmittedFillFragments,
49 "Number of emitted assembler fragments - fill");
50 STATISTIC(EmittedOrgFragments,
51 "Number of emitted assembler fragments - org");
52 STATISTIC(evaluateFixup, "Number of evaluated fixups");
53 STATISTIC(FragmentLayouts, "Number of fragment layouts");
54 STATISTIC(ObjectBytes, "Number of emitted object file bytes");
55 STATISTIC(RelaxationSteps, "Number of assembler layout and relaxation steps");
56 STATISTIC(RelaxedInstructions, "Number of relaxed instructions");
60 // FIXME FIXME FIXME: There are number of places in this file where we convert
61 // what is a 64-bit assembler value used for computation into a value in the
62 // object file, which may truncate it. We should detect that truncation where
63 // invalid and report errors back.
67 MCAsmLayout::MCAsmLayout(MCAssembler &Asm)
68 : Assembler(Asm), LastValidFragment()
70 // Compute the section layout order. Virtual sections must go last.
71 for (MCAssembler::iterator it = Asm.begin(), ie = Asm.end(); it != ie; ++it)
72 if (!it->isVirtualSection())
73 SectionOrder.push_back(&it->getSectionData());
74 for (MCAssembler::iterator it = Asm.begin(), ie = Asm.end(); it != ie; ++it)
75 if (it->isVirtualSection())
76 SectionOrder.push_back(&it->getSectionData());
79 bool MCAsmLayout::isFragmentValid(const MCFragment *F) const {
80 const MCSectionData &SD = *F->getParent();
81 const MCFragment *LastValid = LastValidFragment.lookup(&SD);
84 assert(LastValid->getParent() == F->getParent());
85 return F->getLayoutOrder() <= LastValid->getLayoutOrder();
88 void MCAsmLayout::invalidateFragmentsFrom(MCFragment *F) {
89 // If this fragment wasn't already valid, we don't need to do anything.
90 if (!isFragmentValid(F))
93 // Otherwise, reset the last valid fragment to the previous fragment
94 // (if this is the first fragment, it will be NULL).
95 const MCSectionData &SD = *F->getParent();
96 LastValidFragment[&SD] = F->getPrevNode();
99 void MCAsmLayout::ensureValid(const MCFragment *F) const {
100 MCSectionData &SD = *F->getParent();
102 MCFragment *Cur = LastValidFragment[&SD];
106 Cur = Cur->getNextNode();
108 // Advance the layout position until the fragment is valid.
109 while (!isFragmentValid(F)) {
110 assert(Cur && "Layout bookkeeping error");
111 const_cast<MCAsmLayout*>(this)->layoutFragment(Cur);
112 Cur = Cur->getNextNode();
116 uint64_t MCAsmLayout::getFragmentOffset(const MCFragment *F) const {
118 assert(F->Offset != ~UINT64_C(0) && "Address not set!");
122 // Simple getSymbolOffset helper for the non-varibale case.
123 static bool getLabelOffset(const MCAsmLayout &Layout, const MCSymbol &S,
124 bool ReportError, uint64_t &Val) {
125 const MCSymbolData &SD = S.getData();
126 if (!SD.getFragment()) {
128 report_fatal_error("unable to evaluate offset to undefined symbol '" +
132 Val = Layout.getFragmentOffset(SD.getFragment()) + SD.getOffset();
136 static bool getSymbolOffsetImpl(const MCAsmLayout &Layout, const MCSymbol &S,
137 bool ReportError, uint64_t &Val) {
139 return getLabelOffset(Layout, S, ReportError, Val);
141 // If SD is a variable, evaluate it.
143 if (!S.getVariableValue()->EvaluateAsRelocatable(Target, &Layout, nullptr))
144 report_fatal_error("unable to evaluate offset for variable '" +
147 uint64_t Offset = Target.getConstant();
149 const MCSymbolRefExpr *A = Target.getSymA();
152 if (!getLabelOffset(Layout, A->getSymbol(), ReportError, ValA))
157 const MCSymbolRefExpr *B = Target.getSymB();
160 if (!getLabelOffset(Layout, B->getSymbol(), ReportError, ValB))
169 bool MCAsmLayout::getSymbolOffset(const MCSymbol &S, uint64_t &Val) const {
170 return getSymbolOffsetImpl(*this, S, false, Val);
173 uint64_t MCAsmLayout::getSymbolOffset(const MCSymbol &S) const {
175 getSymbolOffsetImpl(*this, S, true, Val);
179 const MCSymbol *MCAsmLayout::getBaseSymbol(const MCSymbol &Symbol) const {
180 if (!Symbol.isVariable())
183 const MCExpr *Expr = Symbol.getVariableValue();
185 if (!Expr->evaluateAsValue(Value, *this))
186 llvm_unreachable("Invalid Expression");
188 const MCSymbolRefExpr *RefB = Value.getSymB();
190 Assembler.getContext().reportFatalError(
191 SMLoc(), Twine("symbol '") + RefB->getSymbol().getName() +
192 "' could not be evaluated in a subtraction expression");
194 const MCSymbolRefExpr *A = Value.getSymA();
198 const MCSymbol &ASym = A->getSymbol();
199 const MCAssembler &Asm = getAssembler();
200 const MCSymbolData &ASD = Asm.getSymbolData(ASym);
201 if (ASD.isCommon()) {
202 // FIXME: we should probably add a SMLoc to MCExpr.
203 Asm.getContext().reportFatalError(SMLoc(),
204 "Common symbol " + ASym.getName() +
205 " cannot be used in assignment expr");
211 uint64_t MCAsmLayout::getSectionAddressSize(const MCSectionData *SD) const {
212 // The size is the last fragment's end offset.
213 const MCFragment &F = SD->getFragmentList().back();
214 return getFragmentOffset(&F) + getAssembler().computeFragmentSize(*this, F);
217 uint64_t MCAsmLayout::getSectionFileSize(const MCSectionData *SD) const {
218 // Virtual sections have no file size.
219 if (SD->getSection().isVirtualSection())
222 // Otherwise, the file size is the same as the address space size.
223 return getSectionAddressSize(SD);
226 uint64_t llvm::computeBundlePadding(const MCAssembler &Assembler,
228 uint64_t FOffset, uint64_t FSize) {
229 uint64_t BundleSize = Assembler.getBundleAlignSize();
230 assert(BundleSize > 0 &&
231 "computeBundlePadding should only be called if bundling is enabled");
232 uint64_t BundleMask = BundleSize - 1;
233 uint64_t OffsetInBundle = FOffset & BundleMask;
234 uint64_t EndOfFragment = OffsetInBundle + FSize;
236 // There are two kinds of bundling restrictions:
238 // 1) For alignToBundleEnd(), add padding to ensure that the fragment will
239 // *end* on a bundle boundary.
240 // 2) Otherwise, check if the fragment would cross a bundle boundary. If it
241 // would, add padding until the end of the bundle so that the fragment
242 // will start in a new one.
243 if (F->alignToBundleEnd()) {
244 // Three possibilities here:
246 // A) The fragment just happens to end at a bundle boundary, so we're good.
247 // B) The fragment ends before the current bundle boundary: pad it just
248 // enough to reach the boundary.
249 // C) The fragment ends after the current bundle boundary: pad it until it
250 // reaches the end of the next bundle boundary.
252 // Note: this code could be made shorter with some modulo trickery, but it's
253 // intentionally kept in its more explicit form for simplicity.
254 if (EndOfFragment == BundleSize)
256 else if (EndOfFragment < BundleSize)
257 return BundleSize - EndOfFragment;
258 else { // EndOfFragment > BundleSize
259 return 2 * BundleSize - EndOfFragment;
261 } else if (EndOfFragment > BundleSize)
262 return BundleSize - OffsetInBundle;
269 MCFragment::MCFragment() : Kind(FragmentType(~0)) {
272 MCFragment::~MCFragment() {
275 MCFragment::MCFragment(FragmentType Kind, MCSection *Parent)
276 : Kind(Kind), Parent(Parent), Atom(nullptr), Offset(~UINT64_C(0)) {
278 Parent->getFragmentList().push_back(this);
283 MCEncodedFragment::~MCEncodedFragment() {
288 MCEncodedFragmentWithFixups::~MCEncodedFragmentWithFixups() {
293 MCSectionData::MCSectionData(MCSection &Section) : Section(&Section) {}
295 MCSectionData::iterator
296 MCSectionData::getSubsectionInsertionPoint(unsigned Subsection) {
297 if (Subsection == 0 && SubsectionFragmentMap.empty())
300 SmallVectorImpl<std::pair<unsigned, MCFragment *> >::iterator MI =
301 std::lower_bound(SubsectionFragmentMap.begin(), SubsectionFragmentMap.end(),
302 std::make_pair(Subsection, (MCFragment *)nullptr));
303 bool ExactMatch = false;
304 if (MI != SubsectionFragmentMap.end()) {
305 ExactMatch = MI->first == Subsection;
310 if (MI == SubsectionFragmentMap.end())
314 if (!ExactMatch && Subsection != 0) {
315 // The GNU as documentation claims that subsections have an alignment of 4,
316 // although this appears not to be the case.
317 MCFragment *F = new MCDataFragment();
318 SubsectionFragmentMap.insert(MI, std::make_pair(Subsection, F));
319 getFragmentList().insert(IP, F);
320 F->setParent(&getSection());
328 MCAssembler::MCAssembler(MCContext &Context_, MCAsmBackend &Backend_,
329 MCCodeEmitter &Emitter_, MCObjectWriter &Writer_,
331 : Context(Context_), Backend(Backend_), Emitter(Emitter_), Writer(Writer_),
332 OS(OS_), BundleAlignSize(0), RelaxAll(false),
333 SubsectionsViaSymbols(false), ELFHeaderEFlags(0) {
334 VersionMinInfo.Major = 0; // Major version == 0 for "none specified"
337 MCAssembler::~MCAssembler() {
340 void MCAssembler::reset() {
343 IndirectSymbols.clear();
345 LinkerOptions.clear();
350 SubsectionsViaSymbols = false;
352 LOHContainer.reset();
353 VersionMinInfo.Major = 0;
355 // reset objects owned by us
356 getBackend().reset();
357 getEmitter().reset();
359 getLOHContainer().reset();
362 bool MCAssembler::isThumbFunc(const MCSymbol *Symbol) const {
363 if (ThumbFuncs.count(Symbol))
366 if (!Symbol->isVariable())
369 // FIXME: It looks like gas supports some cases of the form "foo + 2". It
370 // is not clear if that is a bug or a feature.
371 const MCExpr *Expr = Symbol->getVariableValue();
372 const MCSymbolRefExpr *Ref = dyn_cast<MCSymbolRefExpr>(Expr);
376 if (Ref->getKind() != MCSymbolRefExpr::VK_None)
379 const MCSymbol &Sym = Ref->getSymbol();
380 if (!isThumbFunc(&Sym))
383 ThumbFuncs.insert(Symbol); // Cache it.
387 void MCAssembler::addLocalUsedInReloc(const MCSymbol &Sym) {
388 assert(Sym.isTemporary());
389 LocalsUsedInReloc.insert(&Sym);
392 bool MCAssembler::isLocalUsedInReloc(const MCSymbol &Sym) const {
393 assert(Sym.isTemporary());
394 return LocalsUsedInReloc.count(&Sym);
397 bool MCAssembler::isSymbolLinkerVisible(const MCSymbol &Symbol) const {
398 // Non-temporary labels should always be visible to the linker.
399 if (!Symbol.isTemporary())
402 // Absolute temporary labels are never visible.
403 if (!Symbol.isInSection())
406 if (isLocalUsedInReloc(Symbol))
412 const MCSymbol *MCAssembler::getAtom(const MCSymbol &S) const {
413 // Linker visible symbols define atoms.
414 if (isSymbolLinkerVisible(S))
417 // Absolute and undefined symbols have no defining atom.
418 if (!S.getData().getFragment())
421 // Non-linker visible symbols in sections which can't be atomized have no
423 if (!getContext().getAsmInfo()->isSectionAtomizableBySymbols(
424 S.getData().getFragment()->getParent()->getSection()))
427 // Otherwise, return the atom for the containing fragment.
428 return S.getData().getFragment()->getAtom();
431 bool MCAssembler::evaluateFixup(const MCAsmLayout &Layout,
432 const MCFixup &Fixup, const MCFragment *DF,
433 MCValue &Target, uint64_t &Value) const {
434 ++stats::evaluateFixup;
436 // FIXME: This code has some duplication with RecordRelocation. We should
437 // probably merge the two into a single callback that tries to evaluate a
438 // fixup and records a relocation if one is needed.
439 const MCExpr *Expr = Fixup.getValue();
440 if (!Expr->EvaluateAsRelocatable(Target, &Layout, &Fixup))
441 getContext().reportFatalError(Fixup.getLoc(), "expected relocatable expression");
443 bool IsPCRel = Backend.getFixupKindInfo(
444 Fixup.getKind()).Flags & MCFixupKindInfo::FKF_IsPCRel;
448 if (Target.getSymB()) {
450 } else if (!Target.getSymA()) {
453 const MCSymbolRefExpr *A = Target.getSymA();
454 const MCSymbol &SA = A->getSymbol();
455 if (A->getKind() != MCSymbolRefExpr::VK_None || SA.isUndefined()) {
458 IsResolved = getWriter().IsSymbolRefDifferenceFullyResolvedImpl(
459 *this, SA, *DF, false, true);
463 IsResolved = Target.isAbsolute();
466 Value = Target.getConstant();
468 if (const MCSymbolRefExpr *A = Target.getSymA()) {
469 const MCSymbol &Sym = A->getSymbol();
471 Value += Layout.getSymbolOffset(Sym);
473 if (const MCSymbolRefExpr *B = Target.getSymB()) {
474 const MCSymbol &Sym = B->getSymbol();
476 Value -= Layout.getSymbolOffset(Sym);
480 bool ShouldAlignPC = Backend.getFixupKindInfo(Fixup.getKind()).Flags &
481 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits;
482 assert((ShouldAlignPC ? IsPCRel : true) &&
483 "FKF_IsAlignedDownTo32Bits is only allowed on PC-relative fixups!");
486 uint32_t Offset = Layout.getFragmentOffset(DF) + Fixup.getOffset();
488 // A number of ARM fixups in Thumb mode require that the effective PC
489 // address be determined as the 32-bit aligned version of the actual offset.
490 if (ShouldAlignPC) Offset &= ~0x3;
494 // Let the backend adjust the fixup value if necessary, including whether
495 // we need a relocation.
496 Backend.processFixupValue(*this, Layout, Fixup, DF, Target, Value,
502 uint64_t MCAssembler::computeFragmentSize(const MCAsmLayout &Layout,
503 const MCFragment &F) const {
504 switch (F.getKind()) {
505 case MCFragment::FT_Data:
506 case MCFragment::FT_Relaxable:
507 case MCFragment::FT_CompactEncodedInst:
508 return cast<MCEncodedFragment>(F).getContents().size();
509 case MCFragment::FT_Fill:
510 return cast<MCFillFragment>(F).getSize();
512 case MCFragment::FT_LEB:
513 return cast<MCLEBFragment>(F).getContents().size();
515 case MCFragment::FT_Align: {
516 const MCAlignFragment &AF = cast<MCAlignFragment>(F);
517 unsigned Offset = Layout.getFragmentOffset(&AF);
518 unsigned Size = OffsetToAlignment(Offset, AF.getAlignment());
519 // If we are padding with nops, force the padding to be larger than the
521 if (Size > 0 && AF.hasEmitNops()) {
522 while (Size % getBackend().getMinimumNopSize())
523 Size += AF.getAlignment();
525 if (Size > AF.getMaxBytesToEmit())
530 case MCFragment::FT_Org: {
531 const MCOrgFragment &OF = cast<MCOrgFragment>(F);
532 int64_t TargetLocation;
533 if (!OF.getOffset().EvaluateAsAbsolute(TargetLocation, Layout))
534 report_fatal_error("expected assembly-time absolute expression");
536 // FIXME: We need a way to communicate this error.
537 uint64_t FragmentOffset = Layout.getFragmentOffset(&OF);
538 int64_t Size = TargetLocation - FragmentOffset;
539 if (Size < 0 || Size >= 0x40000000)
540 report_fatal_error("invalid .org offset '" + Twine(TargetLocation) +
541 "' (at offset '" + Twine(FragmentOffset) + "')");
545 case MCFragment::FT_Dwarf:
546 return cast<MCDwarfLineAddrFragment>(F).getContents().size();
547 case MCFragment::FT_DwarfFrame:
548 return cast<MCDwarfCallFrameFragment>(F).getContents().size();
551 llvm_unreachable("invalid fragment kind");
554 void MCAsmLayout::layoutFragment(MCFragment *F) {
555 MCFragment *Prev = F->getPrevNode();
557 // We should never try to recompute something which is valid.
558 assert(!isFragmentValid(F) && "Attempt to recompute a valid fragment!");
559 // We should never try to compute the fragment layout if its predecessor
561 assert((!Prev || isFragmentValid(Prev)) &&
562 "Attempt to compute fragment before its predecessor!");
564 ++stats::FragmentLayouts;
566 // Compute fragment offset and size.
568 F->Offset = Prev->Offset + getAssembler().computeFragmentSize(*this, *Prev);
571 LastValidFragment[F->getParent()] = F;
573 // If bundling is enabled and this fragment has instructions in it, it has to
574 // obey the bundling restrictions. With padding, we'll have:
579 // -------------------------------------
580 // Prev |##########| F |
581 // -------------------------------------
586 // The fragment's offset will point to after the padding, and its computed
587 // size won't include the padding.
589 // When the -mc-relax-all flag is used, we optimize bundling by writting the
590 // bundle padding directly into fragments when the instructions are emitted
591 // inside the streamer.
593 if (Assembler.isBundlingEnabled() && !Assembler.getRelaxAll() &&
594 F->hasInstructions()) {
595 assert(isa<MCEncodedFragment>(F) &&
596 "Only MCEncodedFragment implementations have instructions");
597 uint64_t FSize = Assembler.computeFragmentSize(*this, *F);
599 if (FSize > Assembler.getBundleAlignSize())
600 report_fatal_error("Fragment can't be larger than a bundle size");
602 uint64_t RequiredBundlePadding = computeBundlePadding(Assembler, F,
604 if (RequiredBundlePadding > UINT8_MAX)
605 report_fatal_error("Padding cannot exceed 255 bytes");
606 F->setBundlePadding(static_cast<uint8_t>(RequiredBundlePadding));
607 F->Offset += RequiredBundlePadding;
611 /// \brief Write the contents of a fragment to the given object writer. Expects
612 /// a MCEncodedFragment.
613 static void writeFragmentContents(const MCFragment &F, MCObjectWriter *OW) {
614 const MCEncodedFragment &EF = cast<MCEncodedFragment>(F);
615 OW->WriteBytes(EF.getContents());
618 void MCAssembler::writeFragmentPadding(const MCFragment &F, uint64_t FSize,
619 MCObjectWriter *OW) const {
620 // Should NOP padding be written out before this fragment?
621 unsigned BundlePadding = F.getBundlePadding();
622 if (BundlePadding > 0) {
623 assert(isBundlingEnabled() &&
624 "Writing bundle padding with disabled bundling");
625 assert(F.hasInstructions() &&
626 "Writing bundle padding for a fragment without instructions");
628 unsigned TotalLength = BundlePadding + static_cast<unsigned>(FSize);
629 if (F.alignToBundleEnd() && TotalLength > getBundleAlignSize()) {
630 // If the padding itself crosses a bundle boundary, it must be emitted
631 // in 2 pieces, since even nop instructions must not cross boundaries.
632 // v--------------v <- BundleAlignSize
633 // v---------v <- BundlePadding
634 // ----------------------------
635 // | Prev |####|####| F |
636 // ----------------------------
637 // ^-------------------^ <- TotalLength
638 unsigned DistanceToBoundary = TotalLength - getBundleAlignSize();
639 if (!getBackend().writeNopData(DistanceToBoundary, OW))
640 report_fatal_error("unable to write NOP sequence of " +
641 Twine(DistanceToBoundary) + " bytes");
642 BundlePadding -= DistanceToBoundary;
644 if (!getBackend().writeNopData(BundlePadding, OW))
645 report_fatal_error("unable to write NOP sequence of " +
646 Twine(BundlePadding) + " bytes");
650 /// \brief Write the fragment \p F to the output file.
651 static void writeFragment(const MCAssembler &Asm, const MCAsmLayout &Layout,
652 const MCFragment &F) {
653 MCObjectWriter *OW = &Asm.getWriter();
655 // FIXME: Embed in fragments instead?
656 uint64_t FragmentSize = Asm.computeFragmentSize(Layout, F);
658 Asm.writeFragmentPadding(F, FragmentSize, OW);
660 // This variable (and its dummy usage) is to participate in the assert at
661 // the end of the function.
662 uint64_t Start = OW->getStream().tell();
665 ++stats::EmittedFragments;
667 switch (F.getKind()) {
668 case MCFragment::FT_Align: {
669 ++stats::EmittedAlignFragments;
670 const MCAlignFragment &AF = cast<MCAlignFragment>(F);
671 assert(AF.getValueSize() && "Invalid virtual align in concrete fragment!");
673 uint64_t Count = FragmentSize / AF.getValueSize();
675 // FIXME: This error shouldn't actually occur (the front end should emit
676 // multiple .align directives to enforce the semantics it wants), but is
677 // severe enough that we want to report it. How to handle this?
678 if (Count * AF.getValueSize() != FragmentSize)
679 report_fatal_error("undefined .align directive, value size '" +
680 Twine(AF.getValueSize()) +
681 "' is not a divisor of padding size '" +
682 Twine(FragmentSize) + "'");
684 // See if we are aligning with nops, and if so do that first to try to fill
685 // the Count bytes. Then if that did not fill any bytes or there are any
686 // bytes left to fill use the Value and ValueSize to fill the rest.
687 // If we are aligning with nops, ask that target to emit the right data.
688 if (AF.hasEmitNops()) {
689 if (!Asm.getBackend().writeNopData(Count, OW))
690 report_fatal_error("unable to write nop sequence of " +
691 Twine(Count) + " bytes");
695 // Otherwise, write out in multiples of the value size.
696 for (uint64_t i = 0; i != Count; ++i) {
697 switch (AF.getValueSize()) {
698 default: llvm_unreachable("Invalid size!");
699 case 1: OW->Write8 (uint8_t (AF.getValue())); break;
700 case 2: OW->Write16(uint16_t(AF.getValue())); break;
701 case 4: OW->Write32(uint32_t(AF.getValue())); break;
702 case 8: OW->Write64(uint64_t(AF.getValue())); break;
708 case MCFragment::FT_Data:
709 ++stats::EmittedDataFragments;
710 writeFragmentContents(F, OW);
713 case MCFragment::FT_Relaxable:
714 ++stats::EmittedRelaxableFragments;
715 writeFragmentContents(F, OW);
718 case MCFragment::FT_CompactEncodedInst:
719 ++stats::EmittedCompactEncodedInstFragments;
720 writeFragmentContents(F, OW);
723 case MCFragment::FT_Fill: {
724 ++stats::EmittedFillFragments;
725 const MCFillFragment &FF = cast<MCFillFragment>(F);
727 assert(FF.getValueSize() && "Invalid virtual align in concrete fragment!");
729 for (uint64_t i = 0, e = FF.getSize() / FF.getValueSize(); i != e; ++i) {
730 switch (FF.getValueSize()) {
731 default: llvm_unreachable("Invalid size!");
732 case 1: OW->Write8 (uint8_t (FF.getValue())); break;
733 case 2: OW->Write16(uint16_t(FF.getValue())); break;
734 case 4: OW->Write32(uint32_t(FF.getValue())); break;
735 case 8: OW->Write64(uint64_t(FF.getValue())); break;
741 case MCFragment::FT_LEB: {
742 const MCLEBFragment &LF = cast<MCLEBFragment>(F);
743 OW->WriteBytes(LF.getContents());
747 case MCFragment::FT_Org: {
748 ++stats::EmittedOrgFragments;
749 const MCOrgFragment &OF = cast<MCOrgFragment>(F);
751 for (uint64_t i = 0, e = FragmentSize; i != e; ++i)
752 OW->Write8(uint8_t(OF.getValue()));
757 case MCFragment::FT_Dwarf: {
758 const MCDwarfLineAddrFragment &OF = cast<MCDwarfLineAddrFragment>(F);
759 OW->WriteBytes(OF.getContents());
762 case MCFragment::FT_DwarfFrame: {
763 const MCDwarfCallFrameFragment &CF = cast<MCDwarfCallFrameFragment>(F);
764 OW->WriteBytes(CF.getContents());
769 assert(OW->getStream().tell() - Start == FragmentSize &&
770 "The stream should advance by fragment size");
773 void MCAssembler::writeSectionData(const MCSectionData *SD,
774 const MCAsmLayout &Layout) const {
775 // Ignore virtual sections.
776 if (SD->getSection().isVirtualSection()) {
777 assert(Layout.getSectionFileSize(SD) == 0 && "Invalid size for section!");
779 // Check that contents are only things legal inside a virtual section.
780 for (MCSectionData::const_iterator it = SD->begin(),
781 ie = SD->end(); it != ie; ++it) {
782 switch (it->getKind()) {
783 default: llvm_unreachable("Invalid fragment in virtual section!");
784 case MCFragment::FT_Data: {
785 // Check that we aren't trying to write a non-zero contents (or fixups)
786 // into a virtual section. This is to support clients which use standard
787 // directives to fill the contents of virtual sections.
788 const MCDataFragment &DF = cast<MCDataFragment>(*it);
789 assert(DF.fixup_begin() == DF.fixup_end() &&
790 "Cannot have fixups in virtual section!");
791 for (unsigned i = 0, e = DF.getContents().size(); i != e; ++i)
792 if (DF.getContents()[i]) {
793 if (auto *ELFSec = dyn_cast<const MCSectionELF>(&SD->getSection()))
794 report_fatal_error("non-zero initializer found in section '" +
795 ELFSec->getSectionName() + "'");
797 report_fatal_error("non-zero initializer found in virtual section");
801 case MCFragment::FT_Align:
802 // Check that we aren't trying to write a non-zero value into a virtual
804 assert((cast<MCAlignFragment>(it)->getValueSize() == 0 ||
805 cast<MCAlignFragment>(it)->getValue() == 0) &&
806 "Invalid align in virtual section!");
808 case MCFragment::FT_Fill:
809 assert((cast<MCFillFragment>(it)->getValueSize() == 0 ||
810 cast<MCFillFragment>(it)->getValue() == 0) &&
811 "Invalid fill in virtual section!");
819 uint64_t Start = getWriter().getStream().tell();
822 for (MCSectionData::const_iterator it = SD->begin(), ie = SD->end();
824 writeFragment(*this, Layout, *it);
826 assert(getWriter().getStream().tell() - Start ==
827 Layout.getSectionAddressSize(SD));
830 std::pair<uint64_t, bool> MCAssembler::handleFixup(const MCAsmLayout &Layout,
832 const MCFixup &Fixup) {
833 // Evaluate the fixup.
836 bool IsPCRel = Backend.getFixupKindInfo(Fixup.getKind()).Flags &
837 MCFixupKindInfo::FKF_IsPCRel;
838 if (!evaluateFixup(Layout, Fixup, &F, Target, FixedValue)) {
839 // The fixup was unresolved, we need a relocation. Inform the object
840 // writer of the relocation, and give it an opportunity to adjust the
841 // fixup value if need be.
842 getWriter().RecordRelocation(*this, Layout, &F, Fixup, Target, IsPCRel,
845 return std::make_pair(FixedValue, IsPCRel);
848 void MCAssembler::Finish() {
849 DEBUG_WITH_TYPE("mc-dump", {
850 llvm::errs() << "assembler backend - pre-layout\n--\n";
853 // Create the layout object.
854 MCAsmLayout Layout(*this);
856 // Create dummy fragments and assign section ordinals.
857 unsigned SectionIndex = 0;
858 for (MCAssembler::iterator it = begin(), ie = end(); it != ie; ++it) {
859 // Create dummy fragments to eliminate any empty sections, this simplifies
861 if (it->getFragmentList().empty())
862 new MCDataFragment(&*it);
864 it->setOrdinal(SectionIndex++);
867 // Assign layout order indices to sections and fragments.
868 for (unsigned i = 0, e = Layout.getSectionOrder().size(); i != e; ++i) {
869 MCSectionData *SD = Layout.getSectionOrder()[i];
870 SD->getSection().setLayoutOrder(i);
872 unsigned FragmentIndex = 0;
873 for (MCSectionData::iterator iFrag = SD->begin(), iFragEnd = SD->end();
874 iFrag != iFragEnd; ++iFrag)
875 iFrag->setLayoutOrder(FragmentIndex++);
878 // Layout until everything fits.
879 while (layoutOnce(Layout))
882 DEBUG_WITH_TYPE("mc-dump", {
883 llvm::errs() << "assembler backend - post-relaxation\n--\n";
886 // Finalize the layout, including fragment lowering.
887 finishLayout(Layout);
889 DEBUG_WITH_TYPE("mc-dump", {
890 llvm::errs() << "assembler backend - final-layout\n--\n";
893 uint64_t StartOffset = OS.tell();
895 // Allow the object writer a chance to perform post-layout binding (for
896 // example, to set the index fields in the symbol data).
897 getWriter().ExecutePostLayoutBinding(*this, Layout);
899 // Evaluate and apply the fixups, generating relocation entries as necessary.
900 for (MCAssembler::iterator it = begin(), ie = end(); it != ie; ++it) {
901 for (MCSectionData::iterator it2 = it->begin(),
902 ie2 = it->end(); it2 != ie2; ++it2) {
903 MCEncodedFragmentWithFixups *F =
904 dyn_cast<MCEncodedFragmentWithFixups>(it2);
906 for (MCEncodedFragmentWithFixups::fixup_iterator it3 = F->fixup_begin(),
907 ie3 = F->fixup_end(); it3 != ie3; ++it3) {
908 MCFixup &Fixup = *it3;
911 std::tie(FixedValue, IsPCRel) = handleFixup(Layout, *F, Fixup);
912 getBackend().applyFixup(Fixup, F->getContents().data(),
913 F->getContents().size(), FixedValue, IsPCRel);
919 // Write the object file.
920 getWriter().WriteObject(*this, Layout);
922 stats::ObjectBytes += OS.tell() - StartOffset;
925 bool MCAssembler::fixupNeedsRelaxation(const MCFixup &Fixup,
926 const MCRelaxableFragment *DF,
927 const MCAsmLayout &Layout) const {
928 // If we cannot resolve the fixup value, it requires relaxation.
931 if (!evaluateFixup(Layout, Fixup, DF, Target, Value))
934 return getBackend().fixupNeedsRelaxation(Fixup, Value, DF, Layout);
937 bool MCAssembler::fragmentNeedsRelaxation(const MCRelaxableFragment *F,
938 const MCAsmLayout &Layout) const {
939 // If this inst doesn't ever need relaxation, ignore it. This occurs when we
940 // are intentionally pushing out inst fragments, or because we relaxed a
941 // previous instruction to one that doesn't need relaxation.
942 if (!getBackend().mayNeedRelaxation(F->getInst()))
945 for (MCRelaxableFragment::const_fixup_iterator it = F->fixup_begin(),
946 ie = F->fixup_end(); it != ie; ++it)
947 if (fixupNeedsRelaxation(*it, F, Layout))
953 bool MCAssembler::relaxInstruction(MCAsmLayout &Layout,
954 MCRelaxableFragment &F) {
955 if (!fragmentNeedsRelaxation(&F, Layout))
958 ++stats::RelaxedInstructions;
960 // FIXME-PERF: We could immediately lower out instructions if we can tell
961 // they are fully resolved, to avoid retesting on later passes.
963 // Relax the fragment.
966 getBackend().relaxInstruction(F.getInst(), Relaxed);
968 // Encode the new instruction.
970 // FIXME-PERF: If it matters, we could let the target do this. It can
971 // probably do so more efficiently in many cases.
972 SmallVector<MCFixup, 4> Fixups;
973 SmallString<256> Code;
974 raw_svector_ostream VecOS(Code);
975 getEmitter().encodeInstruction(Relaxed, VecOS, Fixups, F.getSubtargetInfo());
978 // Update the fragment.
980 F.getContents() = Code;
981 F.getFixups() = Fixups;
986 bool MCAssembler::relaxLEB(MCAsmLayout &Layout, MCLEBFragment &LF) {
987 uint64_t OldSize = LF.getContents().size();
989 bool Abs = LF.getValue().evaluateKnownAbsolute(Value, Layout);
991 report_fatal_error("sleb128 and uleb128 expressions must be absolute");
992 SmallString<8> &Data = LF.getContents();
994 raw_svector_ostream OSE(Data);
996 encodeSLEB128(Value, OSE);
998 encodeULEB128(Value, OSE);
1000 return OldSize != LF.getContents().size();
1003 bool MCAssembler::relaxDwarfLineAddr(MCAsmLayout &Layout,
1004 MCDwarfLineAddrFragment &DF) {
1005 MCContext &Context = Layout.getAssembler().getContext();
1006 uint64_t OldSize = DF.getContents().size();
1008 bool Abs = DF.getAddrDelta().evaluateKnownAbsolute(AddrDelta, Layout);
1009 assert(Abs && "We created a line delta with an invalid expression");
1012 LineDelta = DF.getLineDelta();
1013 SmallString<8> &Data = DF.getContents();
1015 raw_svector_ostream OSE(Data);
1016 MCDwarfLineAddr::Encode(Context, LineDelta, AddrDelta, OSE);
1018 return OldSize != Data.size();
1021 bool MCAssembler::relaxDwarfCallFrameFragment(MCAsmLayout &Layout,
1022 MCDwarfCallFrameFragment &DF) {
1023 MCContext &Context = Layout.getAssembler().getContext();
1024 uint64_t OldSize = DF.getContents().size();
1026 bool Abs = DF.getAddrDelta().evaluateKnownAbsolute(AddrDelta, Layout);
1027 assert(Abs && "We created call frame with an invalid expression");
1029 SmallString<8> &Data = DF.getContents();
1031 raw_svector_ostream OSE(Data);
1032 MCDwarfFrameEmitter::EncodeAdvanceLoc(Context, AddrDelta, OSE);
1034 return OldSize != Data.size();
1037 bool MCAssembler::layoutSectionOnce(MCAsmLayout &Layout, MCSectionData &SD) {
1038 // Holds the first fragment which needed relaxing during this layout. It will
1039 // remain NULL if none were relaxed.
1040 // When a fragment is relaxed, all the fragments following it should get
1041 // invalidated because their offset is going to change.
1042 MCFragment *FirstRelaxedFragment = nullptr;
1044 // Attempt to relax all the fragments in the section.
1045 for (MCSectionData::iterator I = SD.begin(), IE = SD.end(); I != IE; ++I) {
1046 // Check if this is a fragment that needs relaxation.
1047 bool RelaxedFrag = false;
1048 switch(I->getKind()) {
1051 case MCFragment::FT_Relaxable:
1052 assert(!getRelaxAll() &&
1053 "Did not expect a MCRelaxableFragment in RelaxAll mode");
1054 RelaxedFrag = relaxInstruction(Layout, *cast<MCRelaxableFragment>(I));
1056 case MCFragment::FT_Dwarf:
1057 RelaxedFrag = relaxDwarfLineAddr(Layout,
1058 *cast<MCDwarfLineAddrFragment>(I));
1060 case MCFragment::FT_DwarfFrame:
1062 relaxDwarfCallFrameFragment(Layout,
1063 *cast<MCDwarfCallFrameFragment>(I));
1065 case MCFragment::FT_LEB:
1066 RelaxedFrag = relaxLEB(Layout, *cast<MCLEBFragment>(I));
1069 if (RelaxedFrag && !FirstRelaxedFragment)
1070 FirstRelaxedFragment = I;
1072 if (FirstRelaxedFragment) {
1073 Layout.invalidateFragmentsFrom(FirstRelaxedFragment);
1079 bool MCAssembler::layoutOnce(MCAsmLayout &Layout) {
1080 ++stats::RelaxationSteps;
1082 bool WasRelaxed = false;
1083 for (iterator it = begin(), ie = end(); it != ie; ++it) {
1084 MCSection &Sec = *it;
1085 while (layoutSectionOnce(Layout, Sec.getSectionData()))
1092 void MCAssembler::finishLayout(MCAsmLayout &Layout) {
1093 // The layout is done. Mark every fragment as valid.
1094 for (unsigned int i = 0, n = Layout.getSectionOrder().size(); i != n; ++i) {
1095 Layout.getFragmentOffset(&*Layout.getSectionOrder()[i]->rbegin());
1099 // Debugging methods
1103 raw_ostream &operator<<(raw_ostream &OS, const MCFixup &AF) {
1104 OS << "<MCFixup" << " Offset:" << AF.getOffset()
1105 << " Value:" << *AF.getValue()
1106 << " Kind:" << AF.getKind() << ">";
1112 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1113 void MCFragment::dump() {
1114 raw_ostream &OS = llvm::errs();
1117 switch (getKind()) {
1118 case MCFragment::FT_Align: OS << "MCAlignFragment"; break;
1119 case MCFragment::FT_Data: OS << "MCDataFragment"; break;
1120 case MCFragment::FT_CompactEncodedInst:
1121 OS << "MCCompactEncodedInstFragment"; break;
1122 case MCFragment::FT_Fill: OS << "MCFillFragment"; break;
1123 case MCFragment::FT_Relaxable: OS << "MCRelaxableFragment"; break;
1124 case MCFragment::FT_Org: OS << "MCOrgFragment"; break;
1125 case MCFragment::FT_Dwarf: OS << "MCDwarfFragment"; break;
1126 case MCFragment::FT_DwarfFrame: OS << "MCDwarfCallFrameFragment"; break;
1127 case MCFragment::FT_LEB: OS << "MCLEBFragment"; break;
1130 OS << "<MCFragment " << (void*) this << " LayoutOrder:" << LayoutOrder
1131 << " Offset:" << Offset
1132 << " HasInstructions:" << hasInstructions()
1133 << " BundlePadding:" << static_cast<unsigned>(getBundlePadding()) << ">";
1135 switch (getKind()) {
1136 case MCFragment::FT_Align: {
1137 const MCAlignFragment *AF = cast<MCAlignFragment>(this);
1138 if (AF->hasEmitNops())
1139 OS << " (emit nops)";
1141 OS << " Alignment:" << AF->getAlignment()
1142 << " Value:" << AF->getValue() << " ValueSize:" << AF->getValueSize()
1143 << " MaxBytesToEmit:" << AF->getMaxBytesToEmit() << ">";
1146 case MCFragment::FT_Data: {
1147 const MCDataFragment *DF = cast<MCDataFragment>(this);
1149 OS << " Contents:[";
1150 const SmallVectorImpl<char> &Contents = DF->getContents();
1151 for (unsigned i = 0, e = Contents.size(); i != e; ++i) {
1153 OS << hexdigit((Contents[i] >> 4) & 0xF) << hexdigit(Contents[i] & 0xF);
1155 OS << "] (" << Contents.size() << " bytes)";
1157 if (DF->fixup_begin() != DF->fixup_end()) {
1160 for (MCDataFragment::const_fixup_iterator it = DF->fixup_begin(),
1161 ie = DF->fixup_end(); it != ie; ++it) {
1162 if (it != DF->fixup_begin()) OS << ",\n ";
1169 case MCFragment::FT_CompactEncodedInst: {
1170 const MCCompactEncodedInstFragment *CEIF =
1171 cast<MCCompactEncodedInstFragment>(this);
1173 OS << " Contents:[";
1174 const SmallVectorImpl<char> &Contents = CEIF->getContents();
1175 for (unsigned i = 0, e = Contents.size(); i != e; ++i) {
1177 OS << hexdigit((Contents[i] >> 4) & 0xF) << hexdigit(Contents[i] & 0xF);
1179 OS << "] (" << Contents.size() << " bytes)";
1182 case MCFragment::FT_Fill: {
1183 const MCFillFragment *FF = cast<MCFillFragment>(this);
1184 OS << " Value:" << FF->getValue() << " ValueSize:" << FF->getValueSize()
1185 << " Size:" << FF->getSize();
1188 case MCFragment::FT_Relaxable: {
1189 const MCRelaxableFragment *F = cast<MCRelaxableFragment>(this);
1192 F->getInst().dump_pretty(OS);
1195 case MCFragment::FT_Org: {
1196 const MCOrgFragment *OF = cast<MCOrgFragment>(this);
1198 OS << " Offset:" << OF->getOffset() << " Value:" << OF->getValue();
1201 case MCFragment::FT_Dwarf: {
1202 const MCDwarfLineAddrFragment *OF = cast<MCDwarfLineAddrFragment>(this);
1204 OS << " AddrDelta:" << OF->getAddrDelta()
1205 << " LineDelta:" << OF->getLineDelta();
1208 case MCFragment::FT_DwarfFrame: {
1209 const MCDwarfCallFrameFragment *CF = cast<MCDwarfCallFrameFragment>(this);
1211 OS << " AddrDelta:" << CF->getAddrDelta();
1214 case MCFragment::FT_LEB: {
1215 const MCLEBFragment *LF = cast<MCLEBFragment>(this);
1217 OS << " Value:" << LF->getValue() << " Signed:" << LF->isSigned();
1224 void MCSectionData::dump() {
1225 raw_ostream &OS = llvm::errs();
1227 OS << "<MCSectionData";
1228 OS << " Fragments:[\n ";
1229 for (iterator it = begin(), ie = end(); it != ie; ++it) {
1230 if (it != begin()) OS << ",\n ";
1236 void MCSymbolData::dump() const {
1237 raw_ostream &OS = llvm::errs();
1239 OS << "<MCSymbolData"
1240 << " Fragment:" << getFragment();
1242 OS << " Offset:" << getOffset();
1243 OS << " Flags:" << getFlags();
1245 OS << " (common, size:" << getCommonSize()
1246 << " align: " << getCommonAlignment() << ")";
1248 OS << " (external)";
1249 if (isPrivateExtern())
1250 OS << " (private extern)";
1254 void MCAssembler::dump() {
1255 raw_ostream &OS = llvm::errs();
1257 OS << "<MCAssembler\n";
1258 OS << " Sections:[\n ";
1259 for (iterator it = begin(), ie = end(); it != ie; ++it) {
1260 if (it != begin()) OS << ",\n ";
1261 it->getSectionData().dump();
1266 for (symbol_iterator it = symbol_begin(), ie = symbol_end(); it != ie; ++it) {
1267 if (it != symbol_begin()) OS << ",\n ";
1270 OS << ", Index:" << it->getIndex() << ", ";
1271 it->getData().dump();
1278 // anchors for MC*Fragment vtables
1279 void MCEncodedFragment::anchor() { }
1280 void MCEncodedFragmentWithFixups::anchor() { }
1281 void MCDataFragment::anchor() { }
1282 void MCCompactEncodedInstFragment::anchor() { }
1283 void MCRelaxableFragment::anchor() { }
1284 void MCAlignFragment::anchor() { }
1285 void MCFillFragment::anchor() { }
1286 void MCOrgFragment::anchor() { }
1287 void MCLEBFragment::anchor() { }
1288 void MCDwarfLineAddrFragment::anchor() { }
1289 void MCDwarfCallFrameFragment::anchor() { }