1 //===-- Constants.cpp - Implement Constant nodes --------------------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements the Constant* classes.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/IR/Constants.h"
15 #include "ConstantFold.h"
16 #include "LLVMContextImpl.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/FoldingSet.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/ADT/StringMap.h"
23 #include "llvm/IR/DerivedTypes.h"
24 #include "llvm/IR/GetElementPtrTypeIterator.h"
25 #include "llvm/IR/GlobalValue.h"
26 #include "llvm/IR/Instructions.h"
27 #include "llvm/IR/Module.h"
28 #include "llvm/IR/Operator.h"
29 #include "llvm/Support/Compiler.h"
30 #include "llvm/Support/Debug.h"
31 #include "llvm/Support/ErrorHandling.h"
32 #include "llvm/Support/ManagedStatic.h"
33 #include "llvm/Support/MathExtras.h"
34 #include "llvm/Support/raw_ostream.h"
39 //===----------------------------------------------------------------------===//
41 //===----------------------------------------------------------------------===//
43 void Constant::anchor() { }
45 bool Constant::isNegativeZeroValue() const {
46 // Floating point values have an explicit -0.0 value.
47 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
48 return CFP->isZero() && CFP->isNegative();
50 // Equivalent for a vector of -0.0's.
51 if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
52 if (ConstantFP *SplatCFP = dyn_cast_or_null<ConstantFP>(CV->getSplatValue()))
53 if (SplatCFP && SplatCFP->isZero() && SplatCFP->isNegative())
56 // We've already handled true FP case; any other FP vectors can't represent -0.0.
57 if (getType()->isFPOrFPVectorTy())
60 // Otherwise, just use +0.0.
64 // Return true iff this constant is positive zero (floating point), negative
65 // zero (floating point), or a null value.
66 bool Constant::isZeroValue() const {
67 // Floating point values have an explicit -0.0 value.
68 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
71 // Otherwise, just use +0.0.
75 bool Constant::isNullValue() const {
77 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
81 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
82 return CFP->isZero() && !CFP->isNegative();
84 // constant zero is zero for aggregates and cpnull is null for pointers.
85 return isa<ConstantAggregateZero>(this) || isa<ConstantPointerNull>(this);
88 bool Constant::isAllOnesValue() const {
89 // Check for -1 integers
90 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
91 return CI->isMinusOne();
93 // Check for FP which are bitcasted from -1 integers
94 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
95 return CFP->getValueAPF().bitcastToAPInt().isAllOnesValue();
97 // Check for constant vectors which are splats of -1 values.
98 if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
99 if (Constant *Splat = CV->getSplatValue())
100 return Splat->isAllOnesValue();
102 // Check for constant vectors which are splats of -1 values.
103 if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
104 if (Constant *Splat = CV->getSplatValue())
105 return Splat->isAllOnesValue();
110 // Constructor to create a '0' constant of arbitrary type...
111 Constant *Constant::getNullValue(Type *Ty) {
112 switch (Ty->getTypeID()) {
113 case Type::IntegerTyID:
114 return ConstantInt::get(Ty, 0);
116 return ConstantFP::get(Ty->getContext(),
117 APFloat::getZero(APFloat::IEEEhalf));
118 case Type::FloatTyID:
119 return ConstantFP::get(Ty->getContext(),
120 APFloat::getZero(APFloat::IEEEsingle));
121 case Type::DoubleTyID:
122 return ConstantFP::get(Ty->getContext(),
123 APFloat::getZero(APFloat::IEEEdouble));
124 case Type::X86_FP80TyID:
125 return ConstantFP::get(Ty->getContext(),
126 APFloat::getZero(APFloat::x87DoubleExtended));
127 case Type::FP128TyID:
128 return ConstantFP::get(Ty->getContext(),
129 APFloat::getZero(APFloat::IEEEquad));
130 case Type::PPC_FP128TyID:
131 return ConstantFP::get(Ty->getContext(),
132 APFloat(APFloat::PPCDoubleDouble,
133 APInt::getNullValue(128)));
134 case Type::PointerTyID:
135 return ConstantPointerNull::get(cast<PointerType>(Ty));
136 case Type::StructTyID:
137 case Type::ArrayTyID:
138 case Type::VectorTyID:
139 return ConstantAggregateZero::get(Ty);
141 // Function, Label, or Opaque type?
142 llvm_unreachable("Cannot create a null constant of that type!");
146 Constant *Constant::getIntegerValue(Type *Ty, const APInt &V) {
147 Type *ScalarTy = Ty->getScalarType();
149 // Create the base integer constant.
150 Constant *C = ConstantInt::get(Ty->getContext(), V);
152 // Convert an integer to a pointer, if necessary.
153 if (PointerType *PTy = dyn_cast<PointerType>(ScalarTy))
154 C = ConstantExpr::getIntToPtr(C, PTy);
156 // Broadcast a scalar to a vector, if necessary.
157 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
158 C = ConstantVector::getSplat(VTy->getNumElements(), C);
163 Constant *Constant::getAllOnesValue(Type *Ty) {
164 if (IntegerType *ITy = dyn_cast<IntegerType>(Ty))
165 return ConstantInt::get(Ty->getContext(),
166 APInt::getAllOnesValue(ITy->getBitWidth()));
168 if (Ty->isFloatingPointTy()) {
169 APFloat FL = APFloat::getAllOnesValue(Ty->getPrimitiveSizeInBits(),
170 !Ty->isPPC_FP128Ty());
171 return ConstantFP::get(Ty->getContext(), FL);
174 VectorType *VTy = cast<VectorType>(Ty);
175 return ConstantVector::getSplat(VTy->getNumElements(),
176 getAllOnesValue(VTy->getElementType()));
179 /// getAggregateElement - For aggregates (struct/array/vector) return the
180 /// constant that corresponds to the specified element if possible, or null if
181 /// not. This can return null if the element index is a ConstantExpr, or if
182 /// 'this' is a constant expr.
183 Constant *Constant::getAggregateElement(unsigned Elt) const {
184 if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(this))
185 return Elt < CS->getNumOperands() ? CS->getOperand(Elt) : nullptr;
187 if (const ConstantArray *CA = dyn_cast<ConstantArray>(this))
188 return Elt < CA->getNumOperands() ? CA->getOperand(Elt) : nullptr;
190 if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
191 return Elt < CV->getNumOperands() ? CV->getOperand(Elt) : nullptr;
193 if (const ConstantAggregateZero *CAZ =dyn_cast<ConstantAggregateZero>(this))
194 return CAZ->getElementValue(Elt);
196 if (const UndefValue *UV = dyn_cast<UndefValue>(this))
197 return UV->getElementValue(Elt);
199 if (const ConstantDataSequential *CDS =dyn_cast<ConstantDataSequential>(this))
200 return Elt < CDS->getNumElements() ? CDS->getElementAsConstant(Elt)
205 Constant *Constant::getAggregateElement(Constant *Elt) const {
206 assert(isa<IntegerType>(Elt->getType()) && "Index must be an integer");
207 if (ConstantInt *CI = dyn_cast<ConstantInt>(Elt))
208 return getAggregateElement(CI->getZExtValue());
213 void Constant::destroyConstantImpl() {
214 // When a Constant is destroyed, there may be lingering
215 // references to the constant by other constants in the constant pool. These
216 // constants are implicitly dependent on the module that is being deleted,
217 // but they don't know that. Because we only find out when the CPV is
218 // deleted, we must now notify all of our users (that should only be
219 // Constants) that they are, in fact, invalid now and should be deleted.
221 while (!use_empty()) {
222 Value *V = user_back();
223 #ifndef NDEBUG // Only in -g mode...
224 if (!isa<Constant>(V)) {
225 dbgs() << "While deleting: " << *this
226 << "\n\nUse still stuck around after Def is destroyed: "
230 assert(isa<Constant>(V) && "References remain to Constant being destroyed");
231 cast<Constant>(V)->destroyConstant();
233 // The constant should remove itself from our use list...
234 assert((use_empty() || user_back() != V) && "Constant not removed!");
237 // Value has no outstanding references it is safe to delete it now...
241 static bool canTrapImpl(const Constant *C,
242 SmallPtrSet<const ConstantExpr *, 4> &NonTrappingOps) {
243 assert(C->getType()->isFirstClassType() && "Cannot evaluate aggregate vals!");
244 // The only thing that could possibly trap are constant exprs.
245 const ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
249 // ConstantExpr traps if any operands can trap.
250 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) {
251 if (ConstantExpr *Op = dyn_cast<ConstantExpr>(CE->getOperand(i))) {
252 if (NonTrappingOps.insert(Op) && canTrapImpl(Op, NonTrappingOps))
257 // Otherwise, only specific operations can trap.
258 switch (CE->getOpcode()) {
261 case Instruction::UDiv:
262 case Instruction::SDiv:
263 case Instruction::FDiv:
264 case Instruction::URem:
265 case Instruction::SRem:
266 case Instruction::FRem:
267 // Div and rem can trap if the RHS is not known to be non-zero.
268 if (!isa<ConstantInt>(CE->getOperand(1)) ||CE->getOperand(1)->isNullValue())
274 /// canTrap - Return true if evaluation of this constant could trap. This is
275 /// true for things like constant expressions that could divide by zero.
276 bool Constant::canTrap() const {
277 SmallPtrSet<const ConstantExpr *, 4> NonTrappingOps;
278 return canTrapImpl(this, NonTrappingOps);
281 /// isThreadDependent - Return true if the value can vary between threads.
282 bool Constant::isThreadDependent() const {
283 SmallPtrSet<const Constant*, 64> Visited;
284 SmallVector<const Constant*, 64> WorkList;
285 WorkList.push_back(this);
286 Visited.insert(this);
288 while (!WorkList.empty()) {
289 const Constant *C = WorkList.pop_back_val();
291 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(C)) {
292 if (GV->isThreadLocal())
296 for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I) {
297 const Constant *D = dyn_cast<Constant>(C->getOperand(I));
300 if (Visited.insert(D))
301 WorkList.push_back(D);
308 /// isConstantUsed - Return true if the constant has users other than constant
309 /// exprs and other dangling things.
310 bool Constant::isConstantUsed() const {
311 for (const User *U : users()) {
312 const Constant *UC = dyn_cast<Constant>(U);
313 if (!UC || isa<GlobalValue>(UC))
316 if (UC->isConstantUsed())
324 /// getRelocationInfo - This method classifies the entry according to
325 /// whether or not it may generate a relocation entry. This must be
326 /// conservative, so if it might codegen to a relocatable entry, it should say
327 /// so. The return values are:
329 /// NoRelocation: This constant pool entry is guaranteed to never have a
330 /// relocation applied to it (because it holds a simple constant like
332 /// LocalRelocation: This entry has relocations, but the entries are
333 /// guaranteed to be resolvable by the static linker, so the dynamic
334 /// linker will never see them.
335 /// GlobalRelocations: This entry may have arbitrary relocations.
337 /// FIXME: This really should not be in IR.
338 Constant::PossibleRelocationsTy Constant::getRelocationInfo() const {
339 if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) {
340 if (GV->hasLocalLinkage() || GV->hasHiddenVisibility())
341 return LocalRelocation; // Local to this file/library.
342 return GlobalRelocations; // Global reference.
345 if (const BlockAddress *BA = dyn_cast<BlockAddress>(this))
346 return BA->getFunction()->getRelocationInfo();
348 // While raw uses of blockaddress need to be relocated, differences between
349 // two of them don't when they are for labels in the same function. This is a
350 // common idiom when creating a table for the indirect goto extension, so we
351 // handle it efficiently here.
352 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(this))
353 if (CE->getOpcode() == Instruction::Sub) {
354 ConstantExpr *LHS = dyn_cast<ConstantExpr>(CE->getOperand(0));
355 ConstantExpr *RHS = dyn_cast<ConstantExpr>(CE->getOperand(1));
357 LHS->getOpcode() == Instruction::PtrToInt &&
358 RHS->getOpcode() == Instruction::PtrToInt &&
359 isa<BlockAddress>(LHS->getOperand(0)) &&
360 isa<BlockAddress>(RHS->getOperand(0)) &&
361 cast<BlockAddress>(LHS->getOperand(0))->getFunction() ==
362 cast<BlockAddress>(RHS->getOperand(0))->getFunction())
366 PossibleRelocationsTy Result = NoRelocation;
367 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
368 Result = std::max(Result,
369 cast<Constant>(getOperand(i))->getRelocationInfo());
374 /// removeDeadUsersOfConstant - If the specified constantexpr is dead, remove
375 /// it. This involves recursively eliminating any dead users of the
377 static bool removeDeadUsersOfConstant(const Constant *C) {
378 if (isa<GlobalValue>(C)) return false; // Cannot remove this
380 while (!C->use_empty()) {
381 const Constant *User = dyn_cast<Constant>(C->user_back());
382 if (!User) return false; // Non-constant usage;
383 if (!removeDeadUsersOfConstant(User))
384 return false; // Constant wasn't dead
387 const_cast<Constant*>(C)->destroyConstant();
392 /// removeDeadConstantUsers - If there are any dead constant users dangling
393 /// off of this constant, remove them. This method is useful for clients
394 /// that want to check to see if a global is unused, but don't want to deal
395 /// with potentially dead constants hanging off of the globals.
396 void Constant::removeDeadConstantUsers() const {
397 Value::const_user_iterator I = user_begin(), E = user_end();
398 Value::const_user_iterator LastNonDeadUser = E;
400 const Constant *User = dyn_cast<Constant>(*I);
407 if (!removeDeadUsersOfConstant(User)) {
408 // If the constant wasn't dead, remember that this was the last live use
409 // and move on to the next constant.
415 // If the constant was dead, then the iterator is invalidated.
416 if (LastNonDeadUser == E) {
428 //===----------------------------------------------------------------------===//
430 //===----------------------------------------------------------------------===//
432 void ConstantInt::anchor() { }
434 ConstantInt::ConstantInt(IntegerType *Ty, const APInt& V)
435 : Constant(Ty, ConstantIntVal, nullptr, 0), Val(V) {
436 assert(V.getBitWidth() == Ty->getBitWidth() && "Invalid constant for type");
439 ConstantInt *ConstantInt::getTrue(LLVMContext &Context) {
440 LLVMContextImpl *pImpl = Context.pImpl;
441 if (!pImpl->TheTrueVal)
442 pImpl->TheTrueVal = ConstantInt::get(Type::getInt1Ty(Context), 1);
443 return pImpl->TheTrueVal;
446 ConstantInt *ConstantInt::getFalse(LLVMContext &Context) {
447 LLVMContextImpl *pImpl = Context.pImpl;
448 if (!pImpl->TheFalseVal)
449 pImpl->TheFalseVal = ConstantInt::get(Type::getInt1Ty(Context), 0);
450 return pImpl->TheFalseVal;
453 Constant *ConstantInt::getTrue(Type *Ty) {
454 VectorType *VTy = dyn_cast<VectorType>(Ty);
456 assert(Ty->isIntegerTy(1) && "True must be i1 or vector of i1.");
457 return ConstantInt::getTrue(Ty->getContext());
459 assert(VTy->getElementType()->isIntegerTy(1) &&
460 "True must be vector of i1 or i1.");
461 return ConstantVector::getSplat(VTy->getNumElements(),
462 ConstantInt::getTrue(Ty->getContext()));
465 Constant *ConstantInt::getFalse(Type *Ty) {
466 VectorType *VTy = dyn_cast<VectorType>(Ty);
468 assert(Ty->isIntegerTy(1) && "False must be i1 or vector of i1.");
469 return ConstantInt::getFalse(Ty->getContext());
471 assert(VTy->getElementType()->isIntegerTy(1) &&
472 "False must be vector of i1 or i1.");
473 return ConstantVector::getSplat(VTy->getNumElements(),
474 ConstantInt::getFalse(Ty->getContext()));
478 // Get a ConstantInt from an APInt. Note that the value stored in the DenseMap
479 // as the key, is a DenseMapAPIntKeyInfo::KeyTy which has provided the
480 // operator== and operator!= to ensure that the DenseMap doesn't attempt to
481 // compare APInt's of different widths, which would violate an APInt class
482 // invariant which generates an assertion.
483 ConstantInt *ConstantInt::get(LLVMContext &Context, const APInt &V) {
484 // Get the corresponding integer type for the bit width of the value.
485 IntegerType *ITy = IntegerType::get(Context, V.getBitWidth());
486 // get an existing value or the insertion position
487 LLVMContextImpl *pImpl = Context.pImpl;
488 ConstantInt *&Slot = pImpl->IntConstants[DenseMapAPIntKeyInfo::KeyTy(V, ITy)];
489 if (!Slot) Slot = new ConstantInt(ITy, V);
493 Constant *ConstantInt::get(Type *Ty, uint64_t V, bool isSigned) {
494 Constant *C = get(cast<IntegerType>(Ty->getScalarType()), V, isSigned);
496 // For vectors, broadcast the value.
497 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
498 return ConstantVector::getSplat(VTy->getNumElements(), C);
503 ConstantInt *ConstantInt::get(IntegerType *Ty, uint64_t V,
505 return get(Ty->getContext(), APInt(Ty->getBitWidth(), V, isSigned));
508 ConstantInt *ConstantInt::getSigned(IntegerType *Ty, int64_t V) {
509 return get(Ty, V, true);
512 Constant *ConstantInt::getSigned(Type *Ty, int64_t V) {
513 return get(Ty, V, true);
516 Constant *ConstantInt::get(Type *Ty, const APInt& V) {
517 ConstantInt *C = get(Ty->getContext(), V);
518 assert(C->getType() == Ty->getScalarType() &&
519 "ConstantInt type doesn't match the type implied by its value!");
521 // For vectors, broadcast the value.
522 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
523 return ConstantVector::getSplat(VTy->getNumElements(), C);
528 ConstantInt *ConstantInt::get(IntegerType* Ty, StringRef Str,
530 return get(Ty->getContext(), APInt(Ty->getBitWidth(), Str, radix));
533 //===----------------------------------------------------------------------===//
535 //===----------------------------------------------------------------------===//
537 static const fltSemantics *TypeToFloatSemantics(Type *Ty) {
539 return &APFloat::IEEEhalf;
541 return &APFloat::IEEEsingle;
542 if (Ty->isDoubleTy())
543 return &APFloat::IEEEdouble;
544 if (Ty->isX86_FP80Ty())
545 return &APFloat::x87DoubleExtended;
546 else if (Ty->isFP128Ty())
547 return &APFloat::IEEEquad;
549 assert(Ty->isPPC_FP128Ty() && "Unknown FP format");
550 return &APFloat::PPCDoubleDouble;
553 void ConstantFP::anchor() { }
555 /// get() - This returns a constant fp for the specified value in the
556 /// specified type. This should only be used for simple constant values like
557 /// 2.0/1.0 etc, that are known-valid both as double and as the target format.
558 Constant *ConstantFP::get(Type *Ty, double V) {
559 LLVMContext &Context = Ty->getContext();
563 FV.convert(*TypeToFloatSemantics(Ty->getScalarType()),
564 APFloat::rmNearestTiesToEven, &ignored);
565 Constant *C = get(Context, FV);
567 // For vectors, broadcast the value.
568 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
569 return ConstantVector::getSplat(VTy->getNumElements(), C);
575 Constant *ConstantFP::get(Type *Ty, StringRef Str) {
576 LLVMContext &Context = Ty->getContext();
578 APFloat FV(*TypeToFloatSemantics(Ty->getScalarType()), Str);
579 Constant *C = get(Context, FV);
581 // For vectors, broadcast the value.
582 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
583 return ConstantVector::getSplat(VTy->getNumElements(), C);
588 Constant *ConstantFP::getNegativeZero(Type *Ty) {
589 const fltSemantics &Semantics = *TypeToFloatSemantics(Ty->getScalarType());
590 APFloat NegZero = APFloat::getZero(Semantics, /*Negative=*/true);
591 Constant *C = get(Ty->getContext(), NegZero);
593 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
594 return ConstantVector::getSplat(VTy->getNumElements(), C);
600 Constant *ConstantFP::getZeroValueForNegation(Type *Ty) {
601 if (Ty->isFPOrFPVectorTy())
602 return getNegativeZero(Ty);
604 return Constant::getNullValue(Ty);
608 // ConstantFP accessors.
609 ConstantFP* ConstantFP::get(LLVMContext &Context, const APFloat& V) {
610 LLVMContextImpl* pImpl = Context.pImpl;
612 ConstantFP *&Slot = pImpl->FPConstants[DenseMapAPFloatKeyInfo::KeyTy(V)];
616 if (&V.getSemantics() == &APFloat::IEEEhalf)
617 Ty = Type::getHalfTy(Context);
618 else if (&V.getSemantics() == &APFloat::IEEEsingle)
619 Ty = Type::getFloatTy(Context);
620 else if (&V.getSemantics() == &APFloat::IEEEdouble)
621 Ty = Type::getDoubleTy(Context);
622 else if (&V.getSemantics() == &APFloat::x87DoubleExtended)
623 Ty = Type::getX86_FP80Ty(Context);
624 else if (&V.getSemantics() == &APFloat::IEEEquad)
625 Ty = Type::getFP128Ty(Context);
627 assert(&V.getSemantics() == &APFloat::PPCDoubleDouble &&
628 "Unknown FP format");
629 Ty = Type::getPPC_FP128Ty(Context);
631 Slot = new ConstantFP(Ty, V);
637 Constant *ConstantFP::getInfinity(Type *Ty, bool Negative) {
638 const fltSemantics &Semantics = *TypeToFloatSemantics(Ty->getScalarType());
639 Constant *C = get(Ty->getContext(), APFloat::getInf(Semantics, Negative));
641 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
642 return ConstantVector::getSplat(VTy->getNumElements(), C);
647 ConstantFP::ConstantFP(Type *Ty, const APFloat& V)
648 : Constant(Ty, ConstantFPVal, nullptr, 0), Val(V) {
649 assert(&V.getSemantics() == TypeToFloatSemantics(Ty) &&
653 bool ConstantFP::isExactlyValue(const APFloat &V) const {
654 return Val.bitwiseIsEqual(V);
657 //===----------------------------------------------------------------------===//
658 // ConstantAggregateZero Implementation
659 //===----------------------------------------------------------------------===//
661 /// getSequentialElement - If this CAZ has array or vector type, return a zero
662 /// with the right element type.
663 Constant *ConstantAggregateZero::getSequentialElement() const {
664 return Constant::getNullValue(getType()->getSequentialElementType());
667 /// getStructElement - If this CAZ has struct type, return a zero with the
668 /// right element type for the specified element.
669 Constant *ConstantAggregateZero::getStructElement(unsigned Elt) const {
670 return Constant::getNullValue(getType()->getStructElementType(Elt));
673 /// getElementValue - Return a zero of the right value for the specified GEP
674 /// index if we can, otherwise return null (e.g. if C is a ConstantExpr).
675 Constant *ConstantAggregateZero::getElementValue(Constant *C) const {
676 if (isa<SequentialType>(getType()))
677 return getSequentialElement();
678 return getStructElement(cast<ConstantInt>(C)->getZExtValue());
681 /// getElementValue - Return a zero of the right value for the specified GEP
683 Constant *ConstantAggregateZero::getElementValue(unsigned Idx) const {
684 if (isa<SequentialType>(getType()))
685 return getSequentialElement();
686 return getStructElement(Idx);
690 //===----------------------------------------------------------------------===//
691 // UndefValue Implementation
692 //===----------------------------------------------------------------------===//
694 /// getSequentialElement - If this undef has array or vector type, return an
695 /// undef with the right element type.
696 UndefValue *UndefValue::getSequentialElement() const {
697 return UndefValue::get(getType()->getSequentialElementType());
700 /// getStructElement - If this undef has struct type, return a zero with the
701 /// right element type for the specified element.
702 UndefValue *UndefValue::getStructElement(unsigned Elt) const {
703 return UndefValue::get(getType()->getStructElementType(Elt));
706 /// getElementValue - Return an undef of the right value for the specified GEP
707 /// index if we can, otherwise return null (e.g. if C is a ConstantExpr).
708 UndefValue *UndefValue::getElementValue(Constant *C) const {
709 if (isa<SequentialType>(getType()))
710 return getSequentialElement();
711 return getStructElement(cast<ConstantInt>(C)->getZExtValue());
714 /// getElementValue - Return an undef of the right value for the specified GEP
716 UndefValue *UndefValue::getElementValue(unsigned Idx) const {
717 if (isa<SequentialType>(getType()))
718 return getSequentialElement();
719 return getStructElement(Idx);
724 //===----------------------------------------------------------------------===//
725 // ConstantXXX Classes
726 //===----------------------------------------------------------------------===//
728 template <typename ItTy, typename EltTy>
729 static bool rangeOnlyContains(ItTy Start, ItTy End, EltTy Elt) {
730 for (; Start != End; ++Start)
736 ConstantArray::ConstantArray(ArrayType *T, ArrayRef<Constant *> V)
737 : Constant(T, ConstantArrayVal,
738 OperandTraits<ConstantArray>::op_end(this) - V.size(),
740 assert(V.size() == T->getNumElements() &&
741 "Invalid initializer vector for constant array");
742 for (unsigned i = 0, e = V.size(); i != e; ++i)
743 assert(V[i]->getType() == T->getElementType() &&
744 "Initializer for array element doesn't match array element type!");
745 std::copy(V.begin(), V.end(), op_begin());
748 Constant *ConstantArray::get(ArrayType *Ty, ArrayRef<Constant*> V) {
749 // Empty arrays are canonicalized to ConstantAggregateZero.
751 return ConstantAggregateZero::get(Ty);
753 for (unsigned i = 0, e = V.size(); i != e; ++i) {
754 assert(V[i]->getType() == Ty->getElementType() &&
755 "Wrong type in array element initializer");
757 LLVMContextImpl *pImpl = Ty->getContext().pImpl;
759 // If this is an all-zero array, return a ConstantAggregateZero object. If
760 // all undef, return an UndefValue, if "all simple", then return a
761 // ConstantDataArray.
763 if (isa<UndefValue>(C) && rangeOnlyContains(V.begin(), V.end(), C))
764 return UndefValue::get(Ty);
766 if (C->isNullValue() && rangeOnlyContains(V.begin(), V.end(), C))
767 return ConstantAggregateZero::get(Ty);
769 // Check to see if all of the elements are ConstantFP or ConstantInt and if
770 // the element type is compatible with ConstantDataVector. If so, use it.
771 if (ConstantDataSequential::isElementTypeCompatible(C->getType())) {
772 // We speculatively build the elements here even if it turns out that there
773 // is a constantexpr or something else weird in the array, since it is so
774 // uncommon for that to happen.
775 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
776 if (CI->getType()->isIntegerTy(8)) {
777 SmallVector<uint8_t, 16> Elts;
778 for (unsigned i = 0, e = V.size(); i != e; ++i)
779 if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
780 Elts.push_back(CI->getZExtValue());
783 if (Elts.size() == V.size())
784 return ConstantDataArray::get(C->getContext(), Elts);
785 } else if (CI->getType()->isIntegerTy(16)) {
786 SmallVector<uint16_t, 16> Elts;
787 for (unsigned i = 0, e = V.size(); i != e; ++i)
788 if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
789 Elts.push_back(CI->getZExtValue());
792 if (Elts.size() == V.size())
793 return ConstantDataArray::get(C->getContext(), Elts);
794 } else if (CI->getType()->isIntegerTy(32)) {
795 SmallVector<uint32_t, 16> Elts;
796 for (unsigned i = 0, e = V.size(); i != e; ++i)
797 if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
798 Elts.push_back(CI->getZExtValue());
801 if (Elts.size() == V.size())
802 return ConstantDataArray::get(C->getContext(), Elts);
803 } else if (CI->getType()->isIntegerTy(64)) {
804 SmallVector<uint64_t, 16> Elts;
805 for (unsigned i = 0, e = V.size(); i != e; ++i)
806 if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
807 Elts.push_back(CI->getZExtValue());
810 if (Elts.size() == V.size())
811 return ConstantDataArray::get(C->getContext(), Elts);
815 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
816 if (CFP->getType()->isFloatTy()) {
817 SmallVector<float, 16> Elts;
818 for (unsigned i = 0, e = V.size(); i != e; ++i)
819 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i]))
820 Elts.push_back(CFP->getValueAPF().convertToFloat());
823 if (Elts.size() == V.size())
824 return ConstantDataArray::get(C->getContext(), Elts);
825 } else if (CFP->getType()->isDoubleTy()) {
826 SmallVector<double, 16> Elts;
827 for (unsigned i = 0, e = V.size(); i != e; ++i)
828 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i]))
829 Elts.push_back(CFP->getValueAPF().convertToDouble());
832 if (Elts.size() == V.size())
833 return ConstantDataArray::get(C->getContext(), Elts);
838 // Otherwise, we really do want to create a ConstantArray.
839 return pImpl->ArrayConstants.getOrCreate(Ty, V);
842 /// getTypeForElements - Return an anonymous struct type to use for a constant
843 /// with the specified set of elements. The list must not be empty.
844 StructType *ConstantStruct::getTypeForElements(LLVMContext &Context,
845 ArrayRef<Constant*> V,
847 unsigned VecSize = V.size();
848 SmallVector<Type*, 16> EltTypes(VecSize);
849 for (unsigned i = 0; i != VecSize; ++i)
850 EltTypes[i] = V[i]->getType();
852 return StructType::get(Context, EltTypes, Packed);
856 StructType *ConstantStruct::getTypeForElements(ArrayRef<Constant*> V,
859 "ConstantStruct::getTypeForElements cannot be called on empty list");
860 return getTypeForElements(V[0]->getContext(), V, Packed);
864 ConstantStruct::ConstantStruct(StructType *T, ArrayRef<Constant *> V)
865 : Constant(T, ConstantStructVal,
866 OperandTraits<ConstantStruct>::op_end(this) - V.size(),
868 assert(V.size() == T->getNumElements() &&
869 "Invalid initializer vector for constant structure");
870 for (unsigned i = 0, e = V.size(); i != e; ++i)
871 assert((T->isOpaque() || V[i]->getType() == T->getElementType(i)) &&
872 "Initializer for struct element doesn't match struct element type!");
873 std::copy(V.begin(), V.end(), op_begin());
876 // ConstantStruct accessors.
877 Constant *ConstantStruct::get(StructType *ST, ArrayRef<Constant*> V) {
878 assert((ST->isOpaque() || ST->getNumElements() == V.size()) &&
879 "Incorrect # elements specified to ConstantStruct::get");
881 // Create a ConstantAggregateZero value if all elements are zeros.
883 bool isUndef = false;
886 isUndef = isa<UndefValue>(V[0]);
887 isZero = V[0]->isNullValue();
888 if (isUndef || isZero) {
889 for (unsigned i = 0, e = V.size(); i != e; ++i) {
890 if (!V[i]->isNullValue())
892 if (!isa<UndefValue>(V[i]))
898 return ConstantAggregateZero::get(ST);
900 return UndefValue::get(ST);
902 return ST->getContext().pImpl->StructConstants.getOrCreate(ST, V);
905 Constant *ConstantStruct::get(StructType *T, ...) {
907 SmallVector<Constant*, 8> Values;
909 while (Constant *Val = va_arg(ap, llvm::Constant*))
910 Values.push_back(Val);
912 return get(T, Values);
915 ConstantVector::ConstantVector(VectorType *T, ArrayRef<Constant *> V)
916 : Constant(T, ConstantVectorVal,
917 OperandTraits<ConstantVector>::op_end(this) - V.size(),
919 for (size_t i = 0, e = V.size(); i != e; i++)
920 assert(V[i]->getType() == T->getElementType() &&
921 "Initializer for vector element doesn't match vector element type!");
922 std::copy(V.begin(), V.end(), op_begin());
925 // ConstantVector accessors.
926 Constant *ConstantVector::get(ArrayRef<Constant*> V) {
927 assert(!V.empty() && "Vectors can't be empty");
928 VectorType *T = VectorType::get(V.front()->getType(), V.size());
929 LLVMContextImpl *pImpl = T->getContext().pImpl;
931 // If this is an all-undef or all-zero vector, return a
932 // ConstantAggregateZero or UndefValue.
934 bool isZero = C->isNullValue();
935 bool isUndef = isa<UndefValue>(C);
937 if (isZero || isUndef) {
938 for (unsigned i = 1, e = V.size(); i != e; ++i)
940 isZero = isUndef = false;
946 return ConstantAggregateZero::get(T);
948 return UndefValue::get(T);
950 // Check to see if all of the elements are ConstantFP or ConstantInt and if
951 // the element type is compatible with ConstantDataVector. If so, use it.
952 if (ConstantDataSequential::isElementTypeCompatible(C->getType())) {
953 // We speculatively build the elements here even if it turns out that there
954 // is a constantexpr or something else weird in the array, since it is so
955 // uncommon for that to happen.
956 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
957 if (CI->getType()->isIntegerTy(8)) {
958 SmallVector<uint8_t, 16> Elts;
959 for (unsigned i = 0, e = V.size(); i != e; ++i)
960 if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
961 Elts.push_back(CI->getZExtValue());
964 if (Elts.size() == V.size())
965 return ConstantDataVector::get(C->getContext(), Elts);
966 } else if (CI->getType()->isIntegerTy(16)) {
967 SmallVector<uint16_t, 16> Elts;
968 for (unsigned i = 0, e = V.size(); i != e; ++i)
969 if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
970 Elts.push_back(CI->getZExtValue());
973 if (Elts.size() == V.size())
974 return ConstantDataVector::get(C->getContext(), Elts);
975 } else if (CI->getType()->isIntegerTy(32)) {
976 SmallVector<uint32_t, 16> Elts;
977 for (unsigned i = 0, e = V.size(); i != e; ++i)
978 if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
979 Elts.push_back(CI->getZExtValue());
982 if (Elts.size() == V.size())
983 return ConstantDataVector::get(C->getContext(), Elts);
984 } else if (CI->getType()->isIntegerTy(64)) {
985 SmallVector<uint64_t, 16> Elts;
986 for (unsigned i = 0, e = V.size(); i != e; ++i)
987 if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
988 Elts.push_back(CI->getZExtValue());
991 if (Elts.size() == V.size())
992 return ConstantDataVector::get(C->getContext(), Elts);
996 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
997 if (CFP->getType()->isFloatTy()) {
998 SmallVector<float, 16> Elts;
999 for (unsigned i = 0, e = V.size(); i != e; ++i)
1000 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i]))
1001 Elts.push_back(CFP->getValueAPF().convertToFloat());
1004 if (Elts.size() == V.size())
1005 return ConstantDataVector::get(C->getContext(), Elts);
1006 } else if (CFP->getType()->isDoubleTy()) {
1007 SmallVector<double, 16> Elts;
1008 for (unsigned i = 0, e = V.size(); i != e; ++i)
1009 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i]))
1010 Elts.push_back(CFP->getValueAPF().convertToDouble());
1013 if (Elts.size() == V.size())
1014 return ConstantDataVector::get(C->getContext(), Elts);
1019 // Otherwise, the element type isn't compatible with ConstantDataVector, or
1020 // the operand list constants a ConstantExpr or something else strange.
1021 return pImpl->VectorConstants.getOrCreate(T, V);
1024 Constant *ConstantVector::getSplat(unsigned NumElts, Constant *V) {
1025 // If this splat is compatible with ConstantDataVector, use it instead of
1027 if ((isa<ConstantFP>(V) || isa<ConstantInt>(V)) &&
1028 ConstantDataSequential::isElementTypeCompatible(V->getType()))
1029 return ConstantDataVector::getSplat(NumElts, V);
1031 SmallVector<Constant*, 32> Elts(NumElts, V);
1036 // Utility function for determining if a ConstantExpr is a CastOp or not. This
1037 // can't be inline because we don't want to #include Instruction.h into
1039 bool ConstantExpr::isCast() const {
1040 return Instruction::isCast(getOpcode());
1043 bool ConstantExpr::isCompare() const {
1044 return getOpcode() == Instruction::ICmp || getOpcode() == Instruction::FCmp;
1047 bool ConstantExpr::isGEPWithNoNotionalOverIndexing() const {
1048 if (getOpcode() != Instruction::GetElementPtr) return false;
1050 gep_type_iterator GEPI = gep_type_begin(this), E = gep_type_end(this);
1051 User::const_op_iterator OI = std::next(this->op_begin());
1053 // Skip the first index, as it has no static limit.
1057 // The remaining indices must be compile-time known integers within the
1058 // bounds of the corresponding notional static array types.
1059 for (; GEPI != E; ++GEPI, ++OI) {
1060 ConstantInt *CI = dyn_cast<ConstantInt>(*OI);
1061 if (!CI) return false;
1062 if (ArrayType *ATy = dyn_cast<ArrayType>(*GEPI))
1063 if (CI->getValue().getActiveBits() > 64 ||
1064 CI->getZExtValue() >= ATy->getNumElements())
1068 // All the indices checked out.
1072 bool ConstantExpr::hasIndices() const {
1073 return getOpcode() == Instruction::ExtractValue ||
1074 getOpcode() == Instruction::InsertValue;
1077 ArrayRef<unsigned> ConstantExpr::getIndices() const {
1078 if (const ExtractValueConstantExpr *EVCE =
1079 dyn_cast<ExtractValueConstantExpr>(this))
1080 return EVCE->Indices;
1082 return cast<InsertValueConstantExpr>(this)->Indices;
1085 unsigned ConstantExpr::getPredicate() const {
1086 assert(isCompare());
1087 return ((const CompareConstantExpr*)this)->predicate;
1090 /// getWithOperandReplaced - Return a constant expression identical to this
1091 /// one, but with the specified operand set to the specified value.
1093 ConstantExpr::getWithOperandReplaced(unsigned OpNo, Constant *Op) const {
1094 assert(Op->getType() == getOperand(OpNo)->getType() &&
1095 "Replacing operand with value of different type!");
1096 if (getOperand(OpNo) == Op)
1097 return const_cast<ConstantExpr*>(this);
1099 SmallVector<Constant*, 8> NewOps;
1100 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
1101 NewOps.push_back(i == OpNo ? Op : getOperand(i));
1103 return getWithOperands(NewOps);
1106 /// getWithOperands - This returns the current constant expression with the
1107 /// operands replaced with the specified values. The specified array must
1108 /// have the same number of operands as our current one.
1109 Constant *ConstantExpr::
1110 getWithOperands(ArrayRef<Constant*> Ops, Type *Ty) const {
1111 assert(Ops.size() == getNumOperands() && "Operand count mismatch!");
1112 bool AnyChange = Ty != getType();
1113 for (unsigned i = 0; i != Ops.size(); ++i)
1114 AnyChange |= Ops[i] != getOperand(i);
1116 if (!AnyChange) // No operands changed, return self.
1117 return const_cast<ConstantExpr*>(this);
1119 switch (getOpcode()) {
1120 case Instruction::Trunc:
1121 case Instruction::ZExt:
1122 case Instruction::SExt:
1123 case Instruction::FPTrunc:
1124 case Instruction::FPExt:
1125 case Instruction::UIToFP:
1126 case Instruction::SIToFP:
1127 case Instruction::FPToUI:
1128 case Instruction::FPToSI:
1129 case Instruction::PtrToInt:
1130 case Instruction::IntToPtr:
1131 case Instruction::BitCast:
1132 case Instruction::AddrSpaceCast:
1133 return ConstantExpr::getCast(getOpcode(), Ops[0], Ty);
1134 case Instruction::Select:
1135 return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]);
1136 case Instruction::InsertElement:
1137 return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]);
1138 case Instruction::ExtractElement:
1139 return ConstantExpr::getExtractElement(Ops[0], Ops[1]);
1140 case Instruction::InsertValue:
1141 return ConstantExpr::getInsertValue(Ops[0], Ops[1], getIndices());
1142 case Instruction::ExtractValue:
1143 return ConstantExpr::getExtractValue(Ops[0], getIndices());
1144 case Instruction::ShuffleVector:
1145 return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2]);
1146 case Instruction::GetElementPtr:
1147 return ConstantExpr::getGetElementPtr(Ops[0], Ops.slice(1),
1148 cast<GEPOperator>(this)->isInBounds());
1149 case Instruction::ICmp:
1150 case Instruction::FCmp:
1151 return ConstantExpr::getCompare(getPredicate(), Ops[0], Ops[1]);
1153 assert(getNumOperands() == 2 && "Must be binary operator?");
1154 return ConstantExpr::get(getOpcode(), Ops[0], Ops[1], SubclassOptionalData);
1159 //===----------------------------------------------------------------------===//
1160 // isValueValidForType implementations
1162 bool ConstantInt::isValueValidForType(Type *Ty, uint64_t Val) {
1163 unsigned NumBits = Ty->getIntegerBitWidth(); // assert okay
1164 if (Ty->isIntegerTy(1))
1165 return Val == 0 || Val == 1;
1167 return true; // always true, has to fit in largest type
1168 uint64_t Max = (1ll << NumBits) - 1;
1172 bool ConstantInt::isValueValidForType(Type *Ty, int64_t Val) {
1173 unsigned NumBits = Ty->getIntegerBitWidth();
1174 if (Ty->isIntegerTy(1))
1175 return Val == 0 || Val == 1 || Val == -1;
1177 return true; // always true, has to fit in largest type
1178 int64_t Min = -(1ll << (NumBits-1));
1179 int64_t Max = (1ll << (NumBits-1)) - 1;
1180 return (Val >= Min && Val <= Max);
1183 bool ConstantFP::isValueValidForType(Type *Ty, const APFloat& Val) {
1184 // convert modifies in place, so make a copy.
1185 APFloat Val2 = APFloat(Val);
1187 switch (Ty->getTypeID()) {
1189 return false; // These can't be represented as floating point!
1191 // FIXME rounding mode needs to be more flexible
1192 case Type::HalfTyID: {
1193 if (&Val2.getSemantics() == &APFloat::IEEEhalf)
1195 Val2.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, &losesInfo);
1198 case Type::FloatTyID: {
1199 if (&Val2.getSemantics() == &APFloat::IEEEsingle)
1201 Val2.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, &losesInfo);
1204 case Type::DoubleTyID: {
1205 if (&Val2.getSemantics() == &APFloat::IEEEhalf ||
1206 &Val2.getSemantics() == &APFloat::IEEEsingle ||
1207 &Val2.getSemantics() == &APFloat::IEEEdouble)
1209 Val2.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &losesInfo);
1212 case Type::X86_FP80TyID:
1213 return &Val2.getSemantics() == &APFloat::IEEEhalf ||
1214 &Val2.getSemantics() == &APFloat::IEEEsingle ||
1215 &Val2.getSemantics() == &APFloat::IEEEdouble ||
1216 &Val2.getSemantics() == &APFloat::x87DoubleExtended;
1217 case Type::FP128TyID:
1218 return &Val2.getSemantics() == &APFloat::IEEEhalf ||
1219 &Val2.getSemantics() == &APFloat::IEEEsingle ||
1220 &Val2.getSemantics() == &APFloat::IEEEdouble ||
1221 &Val2.getSemantics() == &APFloat::IEEEquad;
1222 case Type::PPC_FP128TyID:
1223 return &Val2.getSemantics() == &APFloat::IEEEhalf ||
1224 &Val2.getSemantics() == &APFloat::IEEEsingle ||
1225 &Val2.getSemantics() == &APFloat::IEEEdouble ||
1226 &Val2.getSemantics() == &APFloat::PPCDoubleDouble;
1231 //===----------------------------------------------------------------------===//
1232 // Factory Function Implementation
1234 ConstantAggregateZero *ConstantAggregateZero::get(Type *Ty) {
1235 assert((Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy()) &&
1236 "Cannot create an aggregate zero of non-aggregate type!");
1238 ConstantAggregateZero *&Entry = Ty->getContext().pImpl->CAZConstants[Ty];
1240 Entry = new ConstantAggregateZero(Ty);
1245 /// destroyConstant - Remove the constant from the constant table.
1247 void ConstantAggregateZero::destroyConstant() {
1248 getContext().pImpl->CAZConstants.erase(getType());
1249 destroyConstantImpl();
1252 /// destroyConstant - Remove the constant from the constant table...
1254 void ConstantArray::destroyConstant() {
1255 getType()->getContext().pImpl->ArrayConstants.remove(this);
1256 destroyConstantImpl();
1260 //---- ConstantStruct::get() implementation...
1263 // destroyConstant - Remove the constant from the constant table...
1265 void ConstantStruct::destroyConstant() {
1266 getType()->getContext().pImpl->StructConstants.remove(this);
1267 destroyConstantImpl();
1270 // destroyConstant - Remove the constant from the constant table...
1272 void ConstantVector::destroyConstant() {
1273 getType()->getContext().pImpl->VectorConstants.remove(this);
1274 destroyConstantImpl();
1277 /// getSplatValue - If this is a splat vector constant, meaning that all of
1278 /// the elements have the same value, return that value. Otherwise return 0.
1279 Constant *Constant::getSplatValue() const {
1280 assert(this->getType()->isVectorTy() && "Only valid for vectors!");
1281 if (isa<ConstantAggregateZero>(this))
1282 return getNullValue(this->getType()->getVectorElementType());
1283 if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
1284 return CV->getSplatValue();
1285 if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
1286 return CV->getSplatValue();
1290 /// getSplatValue - If this is a splat constant, where all of the
1291 /// elements have the same value, return that value. Otherwise return null.
1292 Constant *ConstantVector::getSplatValue() const {
1293 // Check out first element.
1294 Constant *Elt = getOperand(0);
1295 // Then make sure all remaining elements point to the same value.
1296 for (unsigned I = 1, E = getNumOperands(); I < E; ++I)
1297 if (getOperand(I) != Elt)
1302 /// If C is a constant integer then return its value, otherwise C must be a
1303 /// vector of constant integers, all equal, and the common value is returned.
1304 const APInt &Constant::getUniqueInteger() const {
1305 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
1306 return CI->getValue();
1307 assert(this->getSplatValue() && "Doesn't contain a unique integer!");
1308 const Constant *C = this->getAggregateElement(0U);
1309 assert(C && isa<ConstantInt>(C) && "Not a vector of numbers!");
1310 return cast<ConstantInt>(C)->getValue();
1314 //---- ConstantPointerNull::get() implementation.
1317 ConstantPointerNull *ConstantPointerNull::get(PointerType *Ty) {
1318 ConstantPointerNull *&Entry = Ty->getContext().pImpl->CPNConstants[Ty];
1320 Entry = new ConstantPointerNull(Ty);
1325 // destroyConstant - Remove the constant from the constant table...
1327 void ConstantPointerNull::destroyConstant() {
1328 getContext().pImpl->CPNConstants.erase(getType());
1329 // Free the constant and any dangling references to it.
1330 destroyConstantImpl();
1334 //---- UndefValue::get() implementation.
1337 UndefValue *UndefValue::get(Type *Ty) {
1338 UndefValue *&Entry = Ty->getContext().pImpl->UVConstants[Ty];
1340 Entry = new UndefValue(Ty);
1345 // destroyConstant - Remove the constant from the constant table.
1347 void UndefValue::destroyConstant() {
1348 // Free the constant and any dangling references to it.
1349 getContext().pImpl->UVConstants.erase(getType());
1350 destroyConstantImpl();
1353 //---- BlockAddress::get() implementation.
1356 BlockAddress *BlockAddress::get(BasicBlock *BB) {
1357 assert(BB->getParent() != 0 && "Block must have a parent");
1358 return get(BB->getParent(), BB);
1361 BlockAddress *BlockAddress::get(Function *F, BasicBlock *BB) {
1363 F->getContext().pImpl->BlockAddresses[std::make_pair(F, BB)];
1365 BA = new BlockAddress(F, BB);
1367 assert(BA->getFunction() == F && "Basic block moved between functions");
1371 BlockAddress::BlockAddress(Function *F, BasicBlock *BB)
1372 : Constant(Type::getInt8PtrTy(F->getContext()), Value::BlockAddressVal,
1376 BB->AdjustBlockAddressRefCount(1);
1379 BlockAddress *BlockAddress::lookup(const BasicBlock *BB) {
1380 if (!BB->hasAddressTaken())
1383 const Function *F = BB->getParent();
1384 assert(F != 0 && "Block must have a parent");
1386 F->getContext().pImpl->BlockAddresses.lookup(std::make_pair(F, BB));
1387 assert(BA && "Refcount and block address map disagree!");
1391 // destroyConstant - Remove the constant from the constant table.
1393 void BlockAddress::destroyConstant() {
1394 getFunction()->getType()->getContext().pImpl
1395 ->BlockAddresses.erase(std::make_pair(getFunction(), getBasicBlock()));
1396 getBasicBlock()->AdjustBlockAddressRefCount(-1);
1397 destroyConstantImpl();
1400 void BlockAddress::replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U) {
1401 // This could be replacing either the Basic Block or the Function. In either
1402 // case, we have to remove the map entry.
1403 Function *NewF = getFunction();
1404 BasicBlock *NewBB = getBasicBlock();
1407 NewF = cast<Function>(To->stripPointerCasts());
1409 NewBB = cast<BasicBlock>(To);
1411 // See if the 'new' entry already exists, if not, just update this in place
1412 // and return early.
1413 BlockAddress *&NewBA =
1414 getContext().pImpl->BlockAddresses[std::make_pair(NewF, NewBB)];
1416 getBasicBlock()->AdjustBlockAddressRefCount(-1);
1418 // Remove the old entry, this can't cause the map to rehash (just a
1419 // tombstone will get added).
1420 getContext().pImpl->BlockAddresses.erase(std::make_pair(getFunction(),
1423 setOperand(0, NewF);
1424 setOperand(1, NewBB);
1425 getBasicBlock()->AdjustBlockAddressRefCount(1);
1429 // Otherwise, I do need to replace this with an existing value.
1430 assert(NewBA != this && "I didn't contain From!");
1432 // Everyone using this now uses the replacement.
1433 replaceAllUsesWith(NewBA);
1438 //---- ConstantExpr::get() implementations.
1441 /// This is a utility function to handle folding of casts and lookup of the
1442 /// cast in the ExprConstants map. It is used by the various get* methods below.
1443 static inline Constant *getFoldedCast(
1444 Instruction::CastOps opc, Constant *C, Type *Ty) {
1445 assert(Ty->isFirstClassType() && "Cannot cast to an aggregate type!");
1446 // Fold a few common cases
1447 if (Constant *FC = ConstantFoldCastInstruction(opc, C, Ty))
1450 LLVMContextImpl *pImpl = Ty->getContext().pImpl;
1452 // Look up the constant in the table first to ensure uniqueness.
1453 ExprMapKeyType Key(opc, C);
1455 return pImpl->ExprConstants.getOrCreate(Ty, Key);
1458 Constant *ConstantExpr::getCast(unsigned oc, Constant *C, Type *Ty) {
1459 Instruction::CastOps opc = Instruction::CastOps(oc);
1460 assert(Instruction::isCast(opc) && "opcode out of range");
1461 assert(C && Ty && "Null arguments to getCast");
1462 assert(CastInst::castIsValid(opc, C, Ty) && "Invalid constantexpr cast!");
1466 llvm_unreachable("Invalid cast opcode");
1467 case Instruction::Trunc: return getTrunc(C, Ty);
1468 case Instruction::ZExt: return getZExt(C, Ty);
1469 case Instruction::SExt: return getSExt(C, Ty);
1470 case Instruction::FPTrunc: return getFPTrunc(C, Ty);
1471 case Instruction::FPExt: return getFPExtend(C, Ty);
1472 case Instruction::UIToFP: return getUIToFP(C, Ty);
1473 case Instruction::SIToFP: return getSIToFP(C, Ty);
1474 case Instruction::FPToUI: return getFPToUI(C, Ty);
1475 case Instruction::FPToSI: return getFPToSI(C, Ty);
1476 case Instruction::PtrToInt: return getPtrToInt(C, Ty);
1477 case Instruction::IntToPtr: return getIntToPtr(C, Ty);
1478 case Instruction::BitCast: return getBitCast(C, Ty);
1479 case Instruction::AddrSpaceCast: return getAddrSpaceCast(C, Ty);
1483 Constant *ConstantExpr::getZExtOrBitCast(Constant *C, Type *Ty) {
1484 if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
1485 return getBitCast(C, Ty);
1486 return getZExt(C, Ty);
1489 Constant *ConstantExpr::getSExtOrBitCast(Constant *C, Type *Ty) {
1490 if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
1491 return getBitCast(C, Ty);
1492 return getSExt(C, Ty);
1495 Constant *ConstantExpr::getTruncOrBitCast(Constant *C, Type *Ty) {
1496 if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
1497 return getBitCast(C, Ty);
1498 return getTrunc(C, Ty);
1501 Constant *ConstantExpr::getPointerCast(Constant *S, Type *Ty) {
1502 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
1503 assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
1506 if (Ty->isIntOrIntVectorTy())
1507 return getPtrToInt(S, Ty);
1509 unsigned SrcAS = S->getType()->getPointerAddressSpace();
1510 if (Ty->isPtrOrPtrVectorTy() && SrcAS != Ty->getPointerAddressSpace())
1511 return getAddrSpaceCast(S, Ty);
1513 return getBitCast(S, Ty);
1516 Constant *ConstantExpr::getPointerBitCastOrAddrSpaceCast(Constant *S,
1518 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
1519 assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast");
1521 if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace())
1522 return getAddrSpaceCast(S, Ty);
1524 return getBitCast(S, Ty);
1527 Constant *ConstantExpr::getIntegerCast(Constant *C, Type *Ty,
1529 assert(C->getType()->isIntOrIntVectorTy() &&
1530 Ty->isIntOrIntVectorTy() && "Invalid cast");
1531 unsigned SrcBits = C->getType()->getScalarSizeInBits();
1532 unsigned DstBits = Ty->getScalarSizeInBits();
1533 Instruction::CastOps opcode =
1534 (SrcBits == DstBits ? Instruction::BitCast :
1535 (SrcBits > DstBits ? Instruction::Trunc :
1536 (isSigned ? Instruction::SExt : Instruction::ZExt)));
1537 return getCast(opcode, C, Ty);
1540 Constant *ConstantExpr::getFPCast(Constant *C, Type *Ty) {
1541 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
1543 unsigned SrcBits = C->getType()->getScalarSizeInBits();
1544 unsigned DstBits = Ty->getScalarSizeInBits();
1545 if (SrcBits == DstBits)
1546 return C; // Avoid a useless cast
1547 Instruction::CastOps opcode =
1548 (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt);
1549 return getCast(opcode, C, Ty);
1552 Constant *ConstantExpr::getTrunc(Constant *C, Type *Ty) {
1554 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1555 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1557 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1558 assert(C->getType()->isIntOrIntVectorTy() && "Trunc operand must be integer");
1559 assert(Ty->isIntOrIntVectorTy() && "Trunc produces only integral");
1560 assert(C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&&
1561 "SrcTy must be larger than DestTy for Trunc!");
1563 return getFoldedCast(Instruction::Trunc, C, Ty);
1566 Constant *ConstantExpr::getSExt(Constant *C, Type *Ty) {
1568 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1569 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1571 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1572 assert(C->getType()->isIntOrIntVectorTy() && "SExt operand must be integral");
1573 assert(Ty->isIntOrIntVectorTy() && "SExt produces only integer");
1574 assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
1575 "SrcTy must be smaller than DestTy for SExt!");
1577 return getFoldedCast(Instruction::SExt, C, Ty);
1580 Constant *ConstantExpr::getZExt(Constant *C, Type *Ty) {
1582 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1583 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1585 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1586 assert(C->getType()->isIntOrIntVectorTy() && "ZEXt operand must be integral");
1587 assert(Ty->isIntOrIntVectorTy() && "ZExt produces only integer");
1588 assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
1589 "SrcTy must be smaller than DestTy for ZExt!");
1591 return getFoldedCast(Instruction::ZExt, C, Ty);
1594 Constant *ConstantExpr::getFPTrunc(Constant *C, Type *Ty) {
1596 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1597 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1599 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1600 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
1601 C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&&
1602 "This is an illegal floating point truncation!");
1603 return getFoldedCast(Instruction::FPTrunc, C, Ty);
1606 Constant *ConstantExpr::getFPExtend(Constant *C, Type *Ty) {
1608 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1609 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1611 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1612 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
1613 C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
1614 "This is an illegal floating point extension!");
1615 return getFoldedCast(Instruction::FPExt, C, Ty);
1618 Constant *ConstantExpr::getUIToFP(Constant *C, Type *Ty) {
1620 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1621 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1623 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1624 assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() &&
1625 "This is an illegal uint to floating point cast!");
1626 return getFoldedCast(Instruction::UIToFP, C, Ty);
1629 Constant *ConstantExpr::getSIToFP(Constant *C, Type *Ty) {
1631 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1632 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1634 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1635 assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() &&
1636 "This is an illegal sint to floating point cast!");
1637 return getFoldedCast(Instruction::SIToFP, C, Ty);
1640 Constant *ConstantExpr::getFPToUI(Constant *C, Type *Ty) {
1642 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1643 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1645 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1646 assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() &&
1647 "This is an illegal floating point to uint cast!");
1648 return getFoldedCast(Instruction::FPToUI, C, Ty);
1651 Constant *ConstantExpr::getFPToSI(Constant *C, Type *Ty) {
1653 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1654 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1656 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1657 assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() &&
1658 "This is an illegal floating point to sint cast!");
1659 return getFoldedCast(Instruction::FPToSI, C, Ty);
1662 Constant *ConstantExpr::getPtrToInt(Constant *C, Type *DstTy) {
1663 assert(C->getType()->getScalarType()->isPointerTy() &&
1664 "PtrToInt source must be pointer or pointer vector");
1665 assert(DstTy->getScalarType()->isIntegerTy() &&
1666 "PtrToInt destination must be integer or integer vector");
1667 assert(isa<VectorType>(C->getType()) == isa<VectorType>(DstTy));
1668 if (isa<VectorType>(C->getType()))
1669 assert(C->getType()->getVectorNumElements()==DstTy->getVectorNumElements()&&
1670 "Invalid cast between a different number of vector elements");
1671 return getFoldedCast(Instruction::PtrToInt, C, DstTy);
1674 Constant *ConstantExpr::getIntToPtr(Constant *C, Type *DstTy) {
1675 assert(C->getType()->getScalarType()->isIntegerTy() &&
1676 "IntToPtr source must be integer or integer vector");
1677 assert(DstTy->getScalarType()->isPointerTy() &&
1678 "IntToPtr destination must be a pointer or pointer vector");
1679 assert(isa<VectorType>(C->getType()) == isa<VectorType>(DstTy));
1680 if (isa<VectorType>(C->getType()))
1681 assert(C->getType()->getVectorNumElements()==DstTy->getVectorNumElements()&&
1682 "Invalid cast between a different number of vector elements");
1683 return getFoldedCast(Instruction::IntToPtr, C, DstTy);
1686 Constant *ConstantExpr::getBitCast(Constant *C, Type *DstTy) {
1687 assert(CastInst::castIsValid(Instruction::BitCast, C, DstTy) &&
1688 "Invalid constantexpr bitcast!");
1690 // It is common to ask for a bitcast of a value to its own type, handle this
1692 if (C->getType() == DstTy) return C;
1694 return getFoldedCast(Instruction::BitCast, C, DstTy);
1697 Constant *ConstantExpr::getAddrSpaceCast(Constant *C, Type *DstTy) {
1698 assert(CastInst::castIsValid(Instruction::AddrSpaceCast, C, DstTy) &&
1699 "Invalid constantexpr addrspacecast!");
1701 return getFoldedCast(Instruction::AddrSpaceCast, C, DstTy);
1704 Constant *ConstantExpr::get(unsigned Opcode, Constant *C1, Constant *C2,
1706 // Check the operands for consistency first.
1707 assert(Opcode >= Instruction::BinaryOpsBegin &&
1708 Opcode < Instruction::BinaryOpsEnd &&
1709 "Invalid opcode in binary constant expression");
1710 assert(C1->getType() == C2->getType() &&
1711 "Operand types in binary constant expression should match");
1715 case Instruction::Add:
1716 case Instruction::Sub:
1717 case Instruction::Mul:
1718 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1719 assert(C1->getType()->isIntOrIntVectorTy() &&
1720 "Tried to create an integer operation on a non-integer type!");
1722 case Instruction::FAdd:
1723 case Instruction::FSub:
1724 case Instruction::FMul:
1725 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1726 assert(C1->getType()->isFPOrFPVectorTy() &&
1727 "Tried to create a floating-point operation on a "
1728 "non-floating-point type!");
1730 case Instruction::UDiv:
1731 case Instruction::SDiv:
1732 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1733 assert(C1->getType()->isIntOrIntVectorTy() &&
1734 "Tried to create an arithmetic operation on a non-arithmetic type!");
1736 case Instruction::FDiv:
1737 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1738 assert(C1->getType()->isFPOrFPVectorTy() &&
1739 "Tried to create an arithmetic operation on a non-arithmetic type!");
1741 case Instruction::URem:
1742 case Instruction::SRem:
1743 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1744 assert(C1->getType()->isIntOrIntVectorTy() &&
1745 "Tried to create an arithmetic operation on a non-arithmetic type!");
1747 case Instruction::FRem:
1748 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1749 assert(C1->getType()->isFPOrFPVectorTy() &&
1750 "Tried to create an arithmetic operation on a non-arithmetic type!");
1752 case Instruction::And:
1753 case Instruction::Or:
1754 case Instruction::Xor:
1755 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1756 assert(C1->getType()->isIntOrIntVectorTy() &&
1757 "Tried to create a logical operation on a non-integral type!");
1759 case Instruction::Shl:
1760 case Instruction::LShr:
1761 case Instruction::AShr:
1762 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1763 assert(C1->getType()->isIntOrIntVectorTy() &&
1764 "Tried to create a shift operation on a non-integer type!");
1771 if (Constant *FC = ConstantFoldBinaryInstruction(Opcode, C1, C2))
1772 return FC; // Fold a few common cases.
1774 Constant *ArgVec[] = { C1, C2 };
1775 ExprMapKeyType Key(Opcode, ArgVec, 0, Flags);
1777 LLVMContextImpl *pImpl = C1->getContext().pImpl;
1778 return pImpl->ExprConstants.getOrCreate(C1->getType(), Key);
1781 Constant *ConstantExpr::getSizeOf(Type* Ty) {
1782 // sizeof is implemented as: (i64) gep (Ty*)null, 1
1783 // Note that a non-inbounds gep is used, as null isn't within any object.
1784 Constant *GEPIdx = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1);
1785 Constant *GEP = getGetElementPtr(
1786 Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx);
1787 return getPtrToInt(GEP,
1788 Type::getInt64Ty(Ty->getContext()));
1791 Constant *ConstantExpr::getAlignOf(Type* Ty) {
1792 // alignof is implemented as: (i64) gep ({i1,Ty}*)null, 0, 1
1793 // Note that a non-inbounds gep is used, as null isn't within any object.
1795 StructType::get(Type::getInt1Ty(Ty->getContext()), Ty, NULL);
1796 Constant *NullPtr = Constant::getNullValue(AligningTy->getPointerTo());
1797 Constant *Zero = ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0);
1798 Constant *One = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1);
1799 Constant *Indices[2] = { Zero, One };
1800 Constant *GEP = getGetElementPtr(NullPtr, Indices);
1801 return getPtrToInt(GEP,
1802 Type::getInt64Ty(Ty->getContext()));
1805 Constant *ConstantExpr::getOffsetOf(StructType* STy, unsigned FieldNo) {
1806 return getOffsetOf(STy, ConstantInt::get(Type::getInt32Ty(STy->getContext()),
1810 Constant *ConstantExpr::getOffsetOf(Type* Ty, Constant *FieldNo) {
1811 // offsetof is implemented as: (i64) gep (Ty*)null, 0, FieldNo
1812 // Note that a non-inbounds gep is used, as null isn't within any object.
1813 Constant *GEPIdx[] = {
1814 ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0),
1817 Constant *GEP = getGetElementPtr(
1818 Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx);
1819 return getPtrToInt(GEP,
1820 Type::getInt64Ty(Ty->getContext()));
1823 Constant *ConstantExpr::getCompare(unsigned short Predicate,
1824 Constant *C1, Constant *C2) {
1825 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1827 switch (Predicate) {
1828 default: llvm_unreachable("Invalid CmpInst predicate");
1829 case CmpInst::FCMP_FALSE: case CmpInst::FCMP_OEQ: case CmpInst::FCMP_OGT:
1830 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLT: case CmpInst::FCMP_OLE:
1831 case CmpInst::FCMP_ONE: case CmpInst::FCMP_ORD: case CmpInst::FCMP_UNO:
1832 case CmpInst::FCMP_UEQ: case CmpInst::FCMP_UGT: case CmpInst::FCMP_UGE:
1833 case CmpInst::FCMP_ULT: case CmpInst::FCMP_ULE: case CmpInst::FCMP_UNE:
1834 case CmpInst::FCMP_TRUE:
1835 return getFCmp(Predicate, C1, C2);
1837 case CmpInst::ICMP_EQ: case CmpInst::ICMP_NE: case CmpInst::ICMP_UGT:
1838 case CmpInst::ICMP_UGE: case CmpInst::ICMP_ULT: case CmpInst::ICMP_ULE:
1839 case CmpInst::ICMP_SGT: case CmpInst::ICMP_SGE: case CmpInst::ICMP_SLT:
1840 case CmpInst::ICMP_SLE:
1841 return getICmp(Predicate, C1, C2);
1845 Constant *ConstantExpr::getSelect(Constant *C, Constant *V1, Constant *V2) {
1846 assert(!SelectInst::areInvalidOperands(C, V1, V2)&&"Invalid select operands");
1848 if (Constant *SC = ConstantFoldSelectInstruction(C, V1, V2))
1849 return SC; // Fold common cases
1851 Constant *ArgVec[] = { C, V1, V2 };
1852 ExprMapKeyType Key(Instruction::Select, ArgVec);
1854 LLVMContextImpl *pImpl = C->getContext().pImpl;
1855 return pImpl->ExprConstants.getOrCreate(V1->getType(), Key);
1858 Constant *ConstantExpr::getGetElementPtr(Constant *C, ArrayRef<Value *> Idxs,
1860 assert(C->getType()->isPtrOrPtrVectorTy() &&
1861 "Non-pointer type for constant GetElementPtr expression");
1863 if (Constant *FC = ConstantFoldGetElementPtr(C, InBounds, Idxs))
1864 return FC; // Fold a few common cases.
1866 // Get the result type of the getelementptr!
1867 Type *Ty = GetElementPtrInst::getIndexedType(C->getType(), Idxs);
1868 assert(Ty && "GEP indices invalid!");
1869 unsigned AS = C->getType()->getPointerAddressSpace();
1870 Type *ReqTy = Ty->getPointerTo(AS);
1871 if (VectorType *VecTy = dyn_cast<VectorType>(C->getType()))
1872 ReqTy = VectorType::get(ReqTy, VecTy->getNumElements());
1874 // Look up the constant in the table first to ensure uniqueness
1875 std::vector<Constant*> ArgVec;
1876 ArgVec.reserve(1 + Idxs.size());
1877 ArgVec.push_back(C);
1878 for (unsigned i = 0, e = Idxs.size(); i != e; ++i) {
1879 assert(Idxs[i]->getType()->isVectorTy() == ReqTy->isVectorTy() &&
1880 "getelementptr index type missmatch");
1881 assert((!Idxs[i]->getType()->isVectorTy() ||
1882 ReqTy->getVectorNumElements() ==
1883 Idxs[i]->getType()->getVectorNumElements()) &&
1884 "getelementptr index type missmatch");
1885 ArgVec.push_back(cast<Constant>(Idxs[i]));
1887 const ExprMapKeyType Key(Instruction::GetElementPtr, ArgVec, 0,
1888 InBounds ? GEPOperator::IsInBounds : 0);
1890 LLVMContextImpl *pImpl = C->getContext().pImpl;
1891 return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
1895 ConstantExpr::getICmp(unsigned short pred, Constant *LHS, Constant *RHS) {
1896 assert(LHS->getType() == RHS->getType());
1897 assert(pred >= ICmpInst::FIRST_ICMP_PREDICATE &&
1898 pred <= ICmpInst::LAST_ICMP_PREDICATE && "Invalid ICmp Predicate");
1900 if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS))
1901 return FC; // Fold a few common cases...
1903 // Look up the constant in the table first to ensure uniqueness
1904 Constant *ArgVec[] = { LHS, RHS };
1905 // Get the key type with both the opcode and predicate
1906 const ExprMapKeyType Key(Instruction::ICmp, ArgVec, pred);
1908 Type *ResultTy = Type::getInt1Ty(LHS->getContext());
1909 if (VectorType *VT = dyn_cast<VectorType>(LHS->getType()))
1910 ResultTy = VectorType::get(ResultTy, VT->getNumElements());
1912 LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl;
1913 return pImpl->ExprConstants.getOrCreate(ResultTy, Key);
1917 ConstantExpr::getFCmp(unsigned short pred, Constant *LHS, Constant *RHS) {
1918 assert(LHS->getType() == RHS->getType());
1919 assert(pred <= FCmpInst::LAST_FCMP_PREDICATE && "Invalid FCmp Predicate");
1921 if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS))
1922 return FC; // Fold a few common cases...
1924 // Look up the constant in the table first to ensure uniqueness
1925 Constant *ArgVec[] = { LHS, RHS };
1926 // Get the key type with both the opcode and predicate
1927 const ExprMapKeyType Key(Instruction::FCmp, ArgVec, pred);
1929 Type *ResultTy = Type::getInt1Ty(LHS->getContext());
1930 if (VectorType *VT = dyn_cast<VectorType>(LHS->getType()))
1931 ResultTy = VectorType::get(ResultTy, VT->getNumElements());
1933 LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl;
1934 return pImpl->ExprConstants.getOrCreate(ResultTy, Key);
1937 Constant *ConstantExpr::getExtractElement(Constant *Val, Constant *Idx) {
1938 assert(Val->getType()->isVectorTy() &&
1939 "Tried to create extractelement operation on non-vector type!");
1940 assert(Idx->getType()->isIntegerTy(32) &&
1941 "Extractelement index must be i32 type!");
1943 if (Constant *FC = ConstantFoldExtractElementInstruction(Val, Idx))
1944 return FC; // Fold a few common cases.
1946 // Look up the constant in the table first to ensure uniqueness
1947 Constant *ArgVec[] = { Val, Idx };
1948 const ExprMapKeyType Key(Instruction::ExtractElement, ArgVec);
1950 LLVMContextImpl *pImpl = Val->getContext().pImpl;
1951 Type *ReqTy = Val->getType()->getVectorElementType();
1952 return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
1955 Constant *ConstantExpr::getInsertElement(Constant *Val, Constant *Elt,
1957 assert(Val->getType()->isVectorTy() &&
1958 "Tried to create insertelement operation on non-vector type!");
1959 assert(Elt->getType() == Val->getType()->getVectorElementType() &&
1960 "Insertelement types must match!");
1961 assert(Idx->getType()->isIntegerTy(32) &&
1962 "Insertelement index must be i32 type!");
1964 if (Constant *FC = ConstantFoldInsertElementInstruction(Val, Elt, Idx))
1965 return FC; // Fold a few common cases.
1966 // Look up the constant in the table first to ensure uniqueness
1967 Constant *ArgVec[] = { Val, Elt, Idx };
1968 const ExprMapKeyType Key(Instruction::InsertElement, ArgVec);
1970 LLVMContextImpl *pImpl = Val->getContext().pImpl;
1971 return pImpl->ExprConstants.getOrCreate(Val->getType(), Key);
1974 Constant *ConstantExpr::getShuffleVector(Constant *V1, Constant *V2,
1976 assert(ShuffleVectorInst::isValidOperands(V1, V2, Mask) &&
1977 "Invalid shuffle vector constant expr operands!");
1979 if (Constant *FC = ConstantFoldShuffleVectorInstruction(V1, V2, Mask))
1980 return FC; // Fold a few common cases.
1982 unsigned NElts = Mask->getType()->getVectorNumElements();
1983 Type *EltTy = V1->getType()->getVectorElementType();
1984 Type *ShufTy = VectorType::get(EltTy, NElts);
1986 // Look up the constant in the table first to ensure uniqueness
1987 Constant *ArgVec[] = { V1, V2, Mask };
1988 const ExprMapKeyType Key(Instruction::ShuffleVector, ArgVec);
1990 LLVMContextImpl *pImpl = ShufTy->getContext().pImpl;
1991 return pImpl->ExprConstants.getOrCreate(ShufTy, Key);
1994 Constant *ConstantExpr::getInsertValue(Constant *Agg, Constant *Val,
1995 ArrayRef<unsigned> Idxs) {
1996 assert(Agg->getType()->isFirstClassType() &&
1997 "Non-first-class type for constant insertvalue expression");
1999 assert(ExtractValueInst::getIndexedType(Agg->getType(),
2000 Idxs) == Val->getType() &&
2001 "insertvalue indices invalid!");
2002 Type *ReqTy = Val->getType();
2004 if (Constant *FC = ConstantFoldInsertValueInstruction(Agg, Val, Idxs))
2007 Constant *ArgVec[] = { Agg, Val };
2008 const ExprMapKeyType Key(Instruction::InsertValue, ArgVec, 0, 0, Idxs);
2010 LLVMContextImpl *pImpl = Agg->getContext().pImpl;
2011 return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
2014 Constant *ConstantExpr::getExtractValue(Constant *Agg,
2015 ArrayRef<unsigned> Idxs) {
2016 assert(Agg->getType()->isFirstClassType() &&
2017 "Tried to create extractelement operation on non-first-class type!");
2019 Type *ReqTy = ExtractValueInst::getIndexedType(Agg->getType(), Idxs);
2021 assert(ReqTy && "extractvalue indices invalid!");
2023 assert(Agg->getType()->isFirstClassType() &&
2024 "Non-first-class type for constant extractvalue expression");
2025 if (Constant *FC = ConstantFoldExtractValueInstruction(Agg, Idxs))
2028 Constant *ArgVec[] = { Agg };
2029 const ExprMapKeyType Key(Instruction::ExtractValue, ArgVec, 0, 0, Idxs);
2031 LLVMContextImpl *pImpl = Agg->getContext().pImpl;
2032 return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
2035 Constant *ConstantExpr::getNeg(Constant *C, bool HasNUW, bool HasNSW) {
2036 assert(C->getType()->isIntOrIntVectorTy() &&
2037 "Cannot NEG a nonintegral value!");
2038 return getSub(ConstantFP::getZeroValueForNegation(C->getType()),
2042 Constant *ConstantExpr::getFNeg(Constant *C) {
2043 assert(C->getType()->isFPOrFPVectorTy() &&
2044 "Cannot FNEG a non-floating-point value!");
2045 return getFSub(ConstantFP::getZeroValueForNegation(C->getType()), C);
2048 Constant *ConstantExpr::getNot(Constant *C) {
2049 assert(C->getType()->isIntOrIntVectorTy() &&
2050 "Cannot NOT a nonintegral value!");
2051 return get(Instruction::Xor, C, Constant::getAllOnesValue(C->getType()));
2054 Constant *ConstantExpr::getAdd(Constant *C1, Constant *C2,
2055 bool HasNUW, bool HasNSW) {
2056 unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2057 (HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0);
2058 return get(Instruction::Add, C1, C2, Flags);
2061 Constant *ConstantExpr::getFAdd(Constant *C1, Constant *C2) {
2062 return get(Instruction::FAdd, C1, C2);
2065 Constant *ConstantExpr::getSub(Constant *C1, Constant *C2,
2066 bool HasNUW, bool HasNSW) {
2067 unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2068 (HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0);
2069 return get(Instruction::Sub, C1, C2, Flags);
2072 Constant *ConstantExpr::getFSub(Constant *C1, Constant *C2) {
2073 return get(Instruction::FSub, C1, C2);
2076 Constant *ConstantExpr::getMul(Constant *C1, Constant *C2,
2077 bool HasNUW, bool HasNSW) {
2078 unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2079 (HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0);
2080 return get(Instruction::Mul, C1, C2, Flags);
2083 Constant *ConstantExpr::getFMul(Constant *C1, Constant *C2) {
2084 return get(Instruction::FMul, C1, C2);
2087 Constant *ConstantExpr::getUDiv(Constant *C1, Constant *C2, bool isExact) {
2088 return get(Instruction::UDiv, C1, C2,
2089 isExact ? PossiblyExactOperator::IsExact : 0);
2092 Constant *ConstantExpr::getSDiv(Constant *C1, Constant *C2, bool isExact) {
2093 return get(Instruction::SDiv, C1, C2,
2094 isExact ? PossiblyExactOperator::IsExact : 0);
2097 Constant *ConstantExpr::getFDiv(Constant *C1, Constant *C2) {
2098 return get(Instruction::FDiv, C1, C2);
2101 Constant *ConstantExpr::getURem(Constant *C1, Constant *C2) {
2102 return get(Instruction::URem, C1, C2);
2105 Constant *ConstantExpr::getSRem(Constant *C1, Constant *C2) {
2106 return get(Instruction::SRem, C1, C2);
2109 Constant *ConstantExpr::getFRem(Constant *C1, Constant *C2) {
2110 return get(Instruction::FRem, C1, C2);
2113 Constant *ConstantExpr::getAnd(Constant *C1, Constant *C2) {
2114 return get(Instruction::And, C1, C2);
2117 Constant *ConstantExpr::getOr(Constant *C1, Constant *C2) {
2118 return get(Instruction::Or, C1, C2);
2121 Constant *ConstantExpr::getXor(Constant *C1, Constant *C2) {
2122 return get(Instruction::Xor, C1, C2);
2125 Constant *ConstantExpr::getShl(Constant *C1, Constant *C2,
2126 bool HasNUW, bool HasNSW) {
2127 unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2128 (HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0);
2129 return get(Instruction::Shl, C1, C2, Flags);
2132 Constant *ConstantExpr::getLShr(Constant *C1, Constant *C2, bool isExact) {
2133 return get(Instruction::LShr, C1, C2,
2134 isExact ? PossiblyExactOperator::IsExact : 0);
2137 Constant *ConstantExpr::getAShr(Constant *C1, Constant *C2, bool isExact) {
2138 return get(Instruction::AShr, C1, C2,
2139 isExact ? PossiblyExactOperator::IsExact : 0);
2142 /// getBinOpIdentity - Return the identity for the given binary operation,
2143 /// i.e. a constant C such that X op C = X and C op X = X for every X. It
2144 /// returns null if the operator doesn't have an identity.
2145 Constant *ConstantExpr::getBinOpIdentity(unsigned Opcode, Type *Ty) {
2148 // Doesn't have an identity.
2151 case Instruction::Add:
2152 case Instruction::Or:
2153 case Instruction::Xor:
2154 return Constant::getNullValue(Ty);
2156 case Instruction::Mul:
2157 return ConstantInt::get(Ty, 1);
2159 case Instruction::And:
2160 return Constant::getAllOnesValue(Ty);
2164 /// getBinOpAbsorber - Return the absorbing element for the given binary
2165 /// operation, i.e. a constant C such that X op C = C and C op X = C for
2166 /// every X. For example, this returns zero for integer multiplication.
2167 /// It returns null if the operator doesn't have an absorbing element.
2168 Constant *ConstantExpr::getBinOpAbsorber(unsigned Opcode, Type *Ty) {
2171 // Doesn't have an absorber.
2174 case Instruction::Or:
2175 return Constant::getAllOnesValue(Ty);
2177 case Instruction::And:
2178 case Instruction::Mul:
2179 return Constant::getNullValue(Ty);
2183 // destroyConstant - Remove the constant from the constant table...
2185 void ConstantExpr::destroyConstant() {
2186 getType()->getContext().pImpl->ExprConstants.remove(this);
2187 destroyConstantImpl();
2190 const char *ConstantExpr::getOpcodeName() const {
2191 return Instruction::getOpcodeName(getOpcode());
2196 GetElementPtrConstantExpr::
2197 GetElementPtrConstantExpr(Constant *C, ArrayRef<Constant*> IdxList,
2199 : ConstantExpr(DestTy, Instruction::GetElementPtr,
2200 OperandTraits<GetElementPtrConstantExpr>::op_end(this)
2201 - (IdxList.size()+1), IdxList.size()+1) {
2203 for (unsigned i = 0, E = IdxList.size(); i != E; ++i)
2204 OperandList[i+1] = IdxList[i];
2207 //===----------------------------------------------------------------------===//
2208 // ConstantData* implementations
2210 void ConstantDataArray::anchor() {}
2211 void ConstantDataVector::anchor() {}
2213 /// getElementType - Return the element type of the array/vector.
2214 Type *ConstantDataSequential::getElementType() const {
2215 return getType()->getElementType();
2218 StringRef ConstantDataSequential::getRawDataValues() const {
2219 return StringRef(DataElements, getNumElements()*getElementByteSize());
2222 /// isElementTypeCompatible - Return true if a ConstantDataSequential can be
2223 /// formed with a vector or array of the specified element type.
2224 /// ConstantDataArray only works with normal float and int types that are
2225 /// stored densely in memory, not with things like i42 or x86_f80.
2226 bool ConstantDataSequential::isElementTypeCompatible(const Type *Ty) {
2227 if (Ty->isFloatTy() || Ty->isDoubleTy()) return true;
2228 if (const IntegerType *IT = dyn_cast<IntegerType>(Ty)) {
2229 switch (IT->getBitWidth()) {
2241 /// getNumElements - Return the number of elements in the array or vector.
2242 unsigned ConstantDataSequential::getNumElements() const {
2243 if (ArrayType *AT = dyn_cast<ArrayType>(getType()))
2244 return AT->getNumElements();
2245 return getType()->getVectorNumElements();
2249 /// getElementByteSize - Return the size in bytes of the elements in the data.
2250 uint64_t ConstantDataSequential::getElementByteSize() const {
2251 return getElementType()->getPrimitiveSizeInBits()/8;
2254 /// getElementPointer - Return the start of the specified element.
2255 const char *ConstantDataSequential::getElementPointer(unsigned Elt) const {
2256 assert(Elt < getNumElements() && "Invalid Elt");
2257 return DataElements+Elt*getElementByteSize();
2261 /// isAllZeros - return true if the array is empty or all zeros.
2262 static bool isAllZeros(StringRef Arr) {
2263 for (StringRef::iterator I = Arr.begin(), E = Arr.end(); I != E; ++I)
2269 /// getImpl - This is the underlying implementation of all of the
2270 /// ConstantDataSequential::get methods. They all thunk down to here, providing
2271 /// the correct element type. We take the bytes in as a StringRef because
2272 /// we *want* an underlying "char*" to avoid TBAA type punning violations.
2273 Constant *ConstantDataSequential::getImpl(StringRef Elements, Type *Ty) {
2274 assert(isElementTypeCompatible(Ty->getSequentialElementType()));
2275 // If the elements are all zero or there are no elements, return a CAZ, which
2276 // is more dense and canonical.
2277 if (isAllZeros(Elements))
2278 return ConstantAggregateZero::get(Ty);
2280 // Do a lookup to see if we have already formed one of these.
2281 StringMap<ConstantDataSequential*>::MapEntryTy &Slot =
2282 Ty->getContext().pImpl->CDSConstants.GetOrCreateValue(Elements);
2284 // The bucket can point to a linked list of different CDS's that have the same
2285 // body but different types. For example, 0,0,0,1 could be a 4 element array
2286 // of i8, or a 1-element array of i32. They'll both end up in the same
2287 /// StringMap bucket, linked up by their Next pointers. Walk the list.
2288 ConstantDataSequential **Entry = &Slot.getValue();
2289 for (ConstantDataSequential *Node = *Entry; Node;
2290 Entry = &Node->Next, Node = *Entry)
2291 if (Node->getType() == Ty)
2294 // Okay, we didn't get a hit. Create a node of the right class, link it in,
2296 if (isa<ArrayType>(Ty))
2297 return *Entry = new ConstantDataArray(Ty, Slot.getKeyData());
2299 assert(isa<VectorType>(Ty));
2300 return *Entry = new ConstantDataVector(Ty, Slot.getKeyData());
2303 void ConstantDataSequential::destroyConstant() {
2304 // Remove the constant from the StringMap.
2305 StringMap<ConstantDataSequential*> &CDSConstants =
2306 getType()->getContext().pImpl->CDSConstants;
2308 StringMap<ConstantDataSequential*>::iterator Slot =
2309 CDSConstants.find(getRawDataValues());
2311 assert(Slot != CDSConstants.end() && "CDS not found in uniquing table");
2313 ConstantDataSequential **Entry = &Slot->getValue();
2315 // Remove the entry from the hash table.
2316 if (!(*Entry)->Next) {
2317 // If there is only one value in the bucket (common case) it must be this
2318 // entry, and removing the entry should remove the bucket completely.
2319 assert((*Entry) == this && "Hash mismatch in ConstantDataSequential");
2320 getContext().pImpl->CDSConstants.erase(Slot);
2322 // Otherwise, there are multiple entries linked off the bucket, unlink the
2323 // node we care about but keep the bucket around.
2324 for (ConstantDataSequential *Node = *Entry; ;
2325 Entry = &Node->Next, Node = *Entry) {
2326 assert(Node && "Didn't find entry in its uniquing hash table!");
2327 // If we found our entry, unlink it from the list and we're done.
2329 *Entry = Node->Next;
2335 // If we were part of a list, make sure that we don't delete the list that is
2336 // still owned by the uniquing map.
2339 // Finally, actually delete it.
2340 destroyConstantImpl();
2343 /// get() constructors - Return a constant with array type with an element
2344 /// count and element type matching the ArrayRef passed in. Note that this
2345 /// can return a ConstantAggregateZero object.
2346 Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint8_t> Elts) {
2347 Type *Ty = ArrayType::get(Type::getInt8Ty(Context), Elts.size());
2348 const char *Data = reinterpret_cast<const char *>(Elts.data());
2349 return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*1), Ty);
2351 Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint16_t> Elts){
2352 Type *Ty = ArrayType::get(Type::getInt16Ty(Context), Elts.size());
2353 const char *Data = reinterpret_cast<const char *>(Elts.data());
2354 return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*2), Ty);
2356 Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint32_t> Elts){
2357 Type *Ty = ArrayType::get(Type::getInt32Ty(Context), Elts.size());
2358 const char *Data = reinterpret_cast<const char *>(Elts.data());
2359 return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty);
2361 Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint64_t> Elts){
2362 Type *Ty = ArrayType::get(Type::getInt64Ty(Context), Elts.size());
2363 const char *Data = reinterpret_cast<const char *>(Elts.data());
2364 return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*8), Ty);
2366 Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<float> Elts) {
2367 Type *Ty = ArrayType::get(Type::getFloatTy(Context), Elts.size());
2368 const char *Data = reinterpret_cast<const char *>(Elts.data());
2369 return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty);
2371 Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<double> Elts) {
2372 Type *Ty = ArrayType::get(Type::getDoubleTy(Context), Elts.size());
2373 const char *Data = reinterpret_cast<const char *>(Elts.data());
2374 return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*8), Ty);
2377 /// getString - This method constructs a CDS and initializes it with a text
2378 /// string. The default behavior (AddNull==true) causes a null terminator to
2379 /// be placed at the end of the array (increasing the length of the string by
2380 /// one more than the StringRef would normally indicate. Pass AddNull=false
2381 /// to disable this behavior.
2382 Constant *ConstantDataArray::getString(LLVMContext &Context,
2383 StringRef Str, bool AddNull) {
2385 const uint8_t *Data = reinterpret_cast<const uint8_t *>(Str.data());
2386 return get(Context, ArrayRef<uint8_t>(const_cast<uint8_t *>(Data),
2390 SmallVector<uint8_t, 64> ElementVals;
2391 ElementVals.append(Str.begin(), Str.end());
2392 ElementVals.push_back(0);
2393 return get(Context, ElementVals);
2396 /// get() constructors - Return a constant with vector type with an element
2397 /// count and element type matching the ArrayRef passed in. Note that this
2398 /// can return a ConstantAggregateZero object.
2399 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint8_t> Elts){
2400 Type *Ty = VectorType::get(Type::getInt8Ty(Context), Elts.size());
2401 const char *Data = reinterpret_cast<const char *>(Elts.data());
2402 return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*1), Ty);
2404 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint16_t> Elts){
2405 Type *Ty = VectorType::get(Type::getInt16Ty(Context), Elts.size());
2406 const char *Data = reinterpret_cast<const char *>(Elts.data());
2407 return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*2), Ty);
2409 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint32_t> Elts){
2410 Type *Ty = VectorType::get(Type::getInt32Ty(Context), Elts.size());
2411 const char *Data = reinterpret_cast<const char *>(Elts.data());
2412 return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty);
2414 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint64_t> Elts){
2415 Type *Ty = VectorType::get(Type::getInt64Ty(Context), Elts.size());
2416 const char *Data = reinterpret_cast<const char *>(Elts.data());
2417 return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*8), Ty);
2419 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<float> Elts) {
2420 Type *Ty = VectorType::get(Type::getFloatTy(Context), Elts.size());
2421 const char *Data = reinterpret_cast<const char *>(Elts.data());
2422 return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty);
2424 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<double> Elts) {
2425 Type *Ty = VectorType::get(Type::getDoubleTy(Context), Elts.size());
2426 const char *Data = reinterpret_cast<const char *>(Elts.data());
2427 return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*8), Ty);
2430 Constant *ConstantDataVector::getSplat(unsigned NumElts, Constant *V) {
2431 assert(isElementTypeCompatible(V->getType()) &&
2432 "Element type not compatible with ConstantData");
2433 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
2434 if (CI->getType()->isIntegerTy(8)) {
2435 SmallVector<uint8_t, 16> Elts(NumElts, CI->getZExtValue());
2436 return get(V->getContext(), Elts);
2438 if (CI->getType()->isIntegerTy(16)) {
2439 SmallVector<uint16_t, 16> Elts(NumElts, CI->getZExtValue());
2440 return get(V->getContext(), Elts);
2442 if (CI->getType()->isIntegerTy(32)) {
2443 SmallVector<uint32_t, 16> Elts(NumElts, CI->getZExtValue());
2444 return get(V->getContext(), Elts);
2446 assert(CI->getType()->isIntegerTy(64) && "Unsupported ConstantData type");
2447 SmallVector<uint64_t, 16> Elts(NumElts, CI->getZExtValue());
2448 return get(V->getContext(), Elts);
2451 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
2452 if (CFP->getType()->isFloatTy()) {
2453 SmallVector<float, 16> Elts(NumElts, CFP->getValueAPF().convertToFloat());
2454 return get(V->getContext(), Elts);
2456 if (CFP->getType()->isDoubleTy()) {
2457 SmallVector<double, 16> Elts(NumElts,
2458 CFP->getValueAPF().convertToDouble());
2459 return get(V->getContext(), Elts);
2462 return ConstantVector::getSplat(NumElts, V);
2466 /// getElementAsInteger - If this is a sequential container of integers (of
2467 /// any size), return the specified element in the low bits of a uint64_t.
2468 uint64_t ConstantDataSequential::getElementAsInteger(unsigned Elt) const {
2469 assert(isa<IntegerType>(getElementType()) &&
2470 "Accessor can only be used when element is an integer");
2471 const char *EltPtr = getElementPointer(Elt);
2473 // The data is stored in host byte order, make sure to cast back to the right
2474 // type to load with the right endianness.
2475 switch (getElementType()->getIntegerBitWidth()) {
2476 default: llvm_unreachable("Invalid bitwidth for CDS");
2478 return *const_cast<uint8_t *>(reinterpret_cast<const uint8_t *>(EltPtr));
2480 return *const_cast<uint16_t *>(reinterpret_cast<const uint16_t *>(EltPtr));
2482 return *const_cast<uint32_t *>(reinterpret_cast<const uint32_t *>(EltPtr));
2484 return *const_cast<uint64_t *>(reinterpret_cast<const uint64_t *>(EltPtr));
2488 /// getElementAsAPFloat - If this is a sequential container of floating point
2489 /// type, return the specified element as an APFloat.
2490 APFloat ConstantDataSequential::getElementAsAPFloat(unsigned Elt) const {
2491 const char *EltPtr = getElementPointer(Elt);
2493 switch (getElementType()->getTypeID()) {
2495 llvm_unreachable("Accessor can only be used when element is float/double!");
2496 case Type::FloatTyID: {
2497 const float *FloatPrt = reinterpret_cast<const float *>(EltPtr);
2498 return APFloat(*const_cast<float *>(FloatPrt));
2500 case Type::DoubleTyID: {
2501 const double *DoublePtr = reinterpret_cast<const double *>(EltPtr);
2502 return APFloat(*const_cast<double *>(DoublePtr));
2507 /// getElementAsFloat - If this is an sequential container of floats, return
2508 /// the specified element as a float.
2509 float ConstantDataSequential::getElementAsFloat(unsigned Elt) const {
2510 assert(getElementType()->isFloatTy() &&
2511 "Accessor can only be used when element is a 'float'");
2512 const float *EltPtr = reinterpret_cast<const float *>(getElementPointer(Elt));
2513 return *const_cast<float *>(EltPtr);
2516 /// getElementAsDouble - If this is an sequential container of doubles, return
2517 /// the specified element as a float.
2518 double ConstantDataSequential::getElementAsDouble(unsigned Elt) const {
2519 assert(getElementType()->isDoubleTy() &&
2520 "Accessor can only be used when element is a 'float'");
2521 const double *EltPtr =
2522 reinterpret_cast<const double *>(getElementPointer(Elt));
2523 return *const_cast<double *>(EltPtr);
2526 /// getElementAsConstant - Return a Constant for a specified index's element.
2527 /// Note that this has to compute a new constant to return, so it isn't as
2528 /// efficient as getElementAsInteger/Float/Double.
2529 Constant *ConstantDataSequential::getElementAsConstant(unsigned Elt) const {
2530 if (getElementType()->isFloatTy() || getElementType()->isDoubleTy())
2531 return ConstantFP::get(getContext(), getElementAsAPFloat(Elt));
2533 return ConstantInt::get(getElementType(), getElementAsInteger(Elt));
2536 /// isString - This method returns true if this is an array of i8.
2537 bool ConstantDataSequential::isString() const {
2538 return isa<ArrayType>(getType()) && getElementType()->isIntegerTy(8);
2541 /// isCString - This method returns true if the array "isString", ends with a
2542 /// nul byte, and does not contains any other nul bytes.
2543 bool ConstantDataSequential::isCString() const {
2547 StringRef Str = getAsString();
2549 // The last value must be nul.
2550 if (Str.back() != 0) return false;
2552 // Other elements must be non-nul.
2553 return Str.drop_back().find(0) == StringRef::npos;
2556 /// getSplatValue - If this is a splat constant, meaning that all of the
2557 /// elements have the same value, return that value. Otherwise return NULL.
2558 Constant *ConstantDataVector::getSplatValue() const {
2559 const char *Base = getRawDataValues().data();
2561 // Compare elements 1+ to the 0'th element.
2562 unsigned EltSize = getElementByteSize();
2563 for (unsigned i = 1, e = getNumElements(); i != e; ++i)
2564 if (memcmp(Base, Base+i*EltSize, EltSize))
2567 // If they're all the same, return the 0th one as a representative.
2568 return getElementAsConstant(0);
2571 //===----------------------------------------------------------------------===//
2572 // replaceUsesOfWithOnConstant implementations
2574 /// replaceUsesOfWithOnConstant - Update this constant array to change uses of
2575 /// 'From' to be uses of 'To'. This must update the uniquing data structures
2578 /// Note that we intentionally replace all uses of From with To here. Consider
2579 /// a large array that uses 'From' 1000 times. By handling this case all here,
2580 /// ConstantArray::replaceUsesOfWithOnConstant is only invoked once, and that
2581 /// single invocation handles all 1000 uses. Handling them one at a time would
2582 /// work, but would be really slow because it would have to unique each updated
2585 void ConstantArray::replaceUsesOfWithOnConstant(Value *From, Value *To,
2587 assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
2588 Constant *ToC = cast<Constant>(To);
2590 LLVMContextImpl *pImpl = getType()->getContext().pImpl;
2592 SmallVector<Constant*, 8> Values;
2593 LLVMContextImpl::ArrayConstantsTy::LookupKey Lookup;
2594 Lookup.first = cast<ArrayType>(getType());
2595 Values.reserve(getNumOperands()); // Build replacement array.
2597 // Fill values with the modified operands of the constant array. Also,
2598 // compute whether this turns into an all-zeros array.
2599 unsigned NumUpdated = 0;
2601 // Keep track of whether all the values in the array are "ToC".
2602 bool AllSame = true;
2603 for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
2604 Constant *Val = cast<Constant>(O->get());
2609 Values.push_back(Val);
2610 AllSame &= Val == ToC;
2613 Constant *Replacement = nullptr;
2614 if (AllSame && ToC->isNullValue()) {
2615 Replacement = ConstantAggregateZero::get(getType());
2616 } else if (AllSame && isa<UndefValue>(ToC)) {
2617 Replacement = UndefValue::get(getType());
2619 // Check to see if we have this array type already.
2620 Lookup.second = makeArrayRef(Values);
2621 LLVMContextImpl::ArrayConstantsTy::MapTy::iterator I =
2622 pImpl->ArrayConstants.find(Lookup);
2624 if (I != pImpl->ArrayConstants.map_end()) {
2625 Replacement = I->first;
2627 // Okay, the new shape doesn't exist in the system yet. Instead of
2628 // creating a new constant array, inserting it, replaceallusesof'ing the
2629 // old with the new, then deleting the old... just update the current one
2631 pImpl->ArrayConstants.remove(this);
2633 // Update to the new value. Optimize for the case when we have a single
2634 // operand that we're changing, but handle bulk updates efficiently.
2635 if (NumUpdated == 1) {
2636 unsigned OperandToUpdate = U - OperandList;
2637 assert(getOperand(OperandToUpdate) == From &&
2638 "ReplaceAllUsesWith broken!");
2639 setOperand(OperandToUpdate, ToC);
2641 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
2642 if (getOperand(i) == From)
2645 pImpl->ArrayConstants.insert(this);
2650 // Otherwise, I do need to replace this with an existing value.
2651 assert(Replacement != this && "I didn't contain From!");
2653 // Everyone using this now uses the replacement.
2654 replaceAllUsesWith(Replacement);
2656 // Delete the old constant!
2660 void ConstantStruct::replaceUsesOfWithOnConstant(Value *From, Value *To,
2662 assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
2663 Constant *ToC = cast<Constant>(To);
2665 unsigned OperandToUpdate = U-OperandList;
2666 assert(getOperand(OperandToUpdate) == From && "ReplaceAllUsesWith broken!");
2668 SmallVector<Constant*, 8> Values;
2669 LLVMContextImpl::StructConstantsTy::LookupKey Lookup;
2670 Lookup.first = cast<StructType>(getType());
2671 Values.reserve(getNumOperands()); // Build replacement struct.
2673 // Fill values with the modified operands of the constant struct. Also,
2674 // compute whether this turns into an all-zeros struct.
2675 bool isAllZeros = false;
2676 bool isAllUndef = false;
2677 if (ToC->isNullValue()) {
2679 for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
2680 Constant *Val = cast<Constant>(O->get());
2681 Values.push_back(Val);
2682 if (isAllZeros) isAllZeros = Val->isNullValue();
2684 } else if (isa<UndefValue>(ToC)) {
2686 for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
2687 Constant *Val = cast<Constant>(O->get());
2688 Values.push_back(Val);
2689 if (isAllUndef) isAllUndef = isa<UndefValue>(Val);
2692 for (Use *O = OperandList, *E = OperandList + getNumOperands(); O != E; ++O)
2693 Values.push_back(cast<Constant>(O->get()));
2695 Values[OperandToUpdate] = ToC;
2697 LLVMContextImpl *pImpl = getContext().pImpl;
2699 Constant *Replacement = nullptr;
2701 Replacement = ConstantAggregateZero::get(getType());
2702 } else if (isAllUndef) {
2703 Replacement = UndefValue::get(getType());
2705 // Check to see if we have this struct type already.
2706 Lookup.second = makeArrayRef(Values);
2707 LLVMContextImpl::StructConstantsTy::MapTy::iterator I =
2708 pImpl->StructConstants.find(Lookup);
2710 if (I != pImpl->StructConstants.map_end()) {
2711 Replacement = I->first;
2713 // Okay, the new shape doesn't exist in the system yet. Instead of
2714 // creating a new constant struct, inserting it, replaceallusesof'ing the
2715 // old with the new, then deleting the old... just update the current one
2717 pImpl->StructConstants.remove(this);
2719 // Update to the new value.
2720 setOperand(OperandToUpdate, ToC);
2721 pImpl->StructConstants.insert(this);
2726 assert(Replacement != this && "I didn't contain From!");
2728 // Everyone using this now uses the replacement.
2729 replaceAllUsesWith(Replacement);
2731 // Delete the old constant!
2735 void ConstantVector::replaceUsesOfWithOnConstant(Value *From, Value *To,
2737 assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
2739 SmallVector<Constant*, 8> Values;
2740 Values.reserve(getNumOperands()); // Build replacement array...
2741 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
2742 Constant *Val = getOperand(i);
2743 if (Val == From) Val = cast<Constant>(To);
2744 Values.push_back(Val);
2747 Constant *Replacement = get(Values);
2748 assert(Replacement != this && "I didn't contain From!");
2750 // Everyone using this now uses the replacement.
2751 replaceAllUsesWith(Replacement);
2753 // Delete the old constant!
2757 void ConstantExpr::replaceUsesOfWithOnConstant(Value *From, Value *ToV,
2759 assert(isa<Constant>(ToV) && "Cannot make Constant refer to non-constant!");
2760 Constant *To = cast<Constant>(ToV);
2762 SmallVector<Constant*, 8> NewOps;
2763 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
2764 Constant *Op = getOperand(i);
2765 NewOps.push_back(Op == From ? To : Op);
2768 Constant *Replacement = getWithOperands(NewOps);
2769 assert(Replacement != this && "I didn't contain From!");
2771 // Everyone using this now uses the replacement.
2772 replaceAllUsesWith(Replacement);
2774 // Delete the old constant!
2778 Instruction *ConstantExpr::getAsInstruction() {
2779 SmallVector<Value*,4> ValueOperands;
2780 for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
2781 ValueOperands.push_back(cast<Value>(I));
2783 ArrayRef<Value*> Ops(ValueOperands);
2785 switch (getOpcode()) {
2786 case Instruction::Trunc:
2787 case Instruction::ZExt:
2788 case Instruction::SExt:
2789 case Instruction::FPTrunc:
2790 case Instruction::FPExt:
2791 case Instruction::UIToFP:
2792 case Instruction::SIToFP:
2793 case Instruction::FPToUI:
2794 case Instruction::FPToSI:
2795 case Instruction::PtrToInt:
2796 case Instruction::IntToPtr:
2797 case Instruction::BitCast:
2798 case Instruction::AddrSpaceCast:
2799 return CastInst::Create((Instruction::CastOps)getOpcode(),
2801 case Instruction::Select:
2802 return SelectInst::Create(Ops[0], Ops[1], Ops[2]);
2803 case Instruction::InsertElement:
2804 return InsertElementInst::Create(Ops[0], Ops[1], Ops[2]);
2805 case Instruction::ExtractElement:
2806 return ExtractElementInst::Create(Ops[0], Ops[1]);
2807 case Instruction::InsertValue:
2808 return InsertValueInst::Create(Ops[0], Ops[1], getIndices());
2809 case Instruction::ExtractValue:
2810 return ExtractValueInst::Create(Ops[0], getIndices());
2811 case Instruction::ShuffleVector:
2812 return new ShuffleVectorInst(Ops[0], Ops[1], Ops[2]);
2814 case Instruction::GetElementPtr:
2815 if (cast<GEPOperator>(this)->isInBounds())
2816 return GetElementPtrInst::CreateInBounds(Ops[0], Ops.slice(1));
2818 return GetElementPtrInst::Create(Ops[0], Ops.slice(1));
2820 case Instruction::ICmp:
2821 case Instruction::FCmp:
2822 return CmpInst::Create((Instruction::OtherOps)getOpcode(),
2823 getPredicate(), Ops[0], Ops[1]);
2826 assert(getNumOperands() == 2 && "Must be binary operator?");
2827 BinaryOperator *BO =
2828 BinaryOperator::Create((Instruction::BinaryOps)getOpcode(),
2830 if (isa<OverflowingBinaryOperator>(BO)) {
2831 BO->setHasNoUnsignedWrap(SubclassOptionalData &
2832 OverflowingBinaryOperator::NoUnsignedWrap);
2833 BO->setHasNoSignedWrap(SubclassOptionalData &
2834 OverflowingBinaryOperator::NoSignedWrap);
2836 if (isa<PossiblyExactOperator>(BO))
2837 BO->setIsExact(SubclassOptionalData & PossiblyExactOperator::IsExact);