018b5e5e319a76220cd027fe78ac5265078de0a7
[oota-llvm.git] / lib / CodeGen / TargetInstrInfoImpl.cpp
1 //===-- TargetInstrInfoImpl.cpp - Target Instruction Information ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the TargetInstrInfoImpl class, it just provides default
11 // implementations of various methods.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "llvm/Target/TargetInstrInfo.h"
16 #include "llvm/Target/TargetLowering.h"
17 #include "llvm/Target/TargetMachine.h"
18 #include "llvm/Target/TargetRegisterInfo.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/CodeGen/MachineFrameInfo.h"
21 #include "llvm/CodeGen/MachineInstr.h"
22 #include "llvm/CodeGen/MachineInstrBuilder.h"
23 #include "llvm/CodeGen/MachineMemOperand.h"
24 #include "llvm/CodeGen/MachineRegisterInfo.h"
25 #include "llvm/CodeGen/ScoreboardHazardRecognizer.h"
26 #include "llvm/CodeGen/PseudoSourceValue.h"
27 #include "llvm/MC/MCInstrItineraries.h"
28 #include "llvm/Support/CommandLine.h"
29 #include "llvm/Support/Debug.h"
30 #include "llvm/Support/ErrorHandling.h"
31 #include "llvm/Support/raw_ostream.h"
32 using namespace llvm;
33
34 static cl::opt<bool> DisableHazardRecognizer(
35   "disable-sched-hazard", cl::Hidden, cl::init(false),
36   cl::desc("Disable hazard detection during preRA scheduling"));
37
38 /// ReplaceTailWithBranchTo - Delete the instruction OldInst and everything
39 /// after it, replacing it with an unconditional branch to NewDest.
40 void
41 TargetInstrInfoImpl::ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail,
42                                              MachineBasicBlock *NewDest) const {
43   MachineBasicBlock *MBB = Tail->getParent();
44
45   // Remove all the old successors of MBB from the CFG.
46   while (!MBB->succ_empty())
47     MBB->removeSuccessor(MBB->succ_begin());
48
49   // Remove all the dead instructions from the end of MBB.
50   MBB->erase(Tail, MBB->end());
51
52   // If MBB isn't immediately before MBB, insert a branch to it.
53   if (++MachineFunction::iterator(MBB) != MachineFunction::iterator(NewDest))
54     InsertBranch(*MBB, NewDest, 0, SmallVector<MachineOperand, 0>(),
55                  Tail->getDebugLoc());
56   MBB->addSuccessor(NewDest);
57 }
58
59 // commuteInstruction - The default implementation of this method just exchanges
60 // the two operands returned by findCommutedOpIndices.
61 MachineInstr *TargetInstrInfoImpl::commuteInstruction(MachineInstr *MI,
62                                                       bool NewMI) const {
63   const MCInstrDesc &MCID = MI->getDesc();
64   bool HasDef = MCID.getNumDefs();
65   if (HasDef && !MI->getOperand(0).isReg())
66     // No idea how to commute this instruction. Target should implement its own.
67     return 0;
68   unsigned Idx1, Idx2;
69   if (!findCommutedOpIndices(MI, Idx1, Idx2)) {
70     std::string msg;
71     raw_string_ostream Msg(msg);
72     Msg << "Don't know how to commute: " << *MI;
73     report_fatal_error(Msg.str());
74   }
75
76   assert(MI->getOperand(Idx1).isReg() && MI->getOperand(Idx2).isReg() &&
77          "This only knows how to commute register operands so far");
78   unsigned Reg0 = HasDef ? MI->getOperand(0).getReg() : 0;
79   unsigned Reg1 = MI->getOperand(Idx1).getReg();
80   unsigned Reg2 = MI->getOperand(Idx2).getReg();
81   bool Reg1IsKill = MI->getOperand(Idx1).isKill();
82   bool Reg2IsKill = MI->getOperand(Idx2).isKill();
83   // If destination is tied to either of the commuted source register, then
84   // it must be updated.
85   if (HasDef && Reg0 == Reg1 &&
86       MI->getDesc().getOperandConstraint(Idx1, MCOI::TIED_TO) == 0) {
87     Reg2IsKill = false;
88     Reg0 = Reg2;
89   } else if (HasDef && Reg0 == Reg2 &&
90              MI->getDesc().getOperandConstraint(Idx2, MCOI::TIED_TO) == 0) {
91     Reg1IsKill = false;
92     Reg0 = Reg1;
93   }
94
95   if (NewMI) {
96     // Create a new instruction.
97     bool Reg0IsDead = HasDef ? MI->getOperand(0).isDead() : false;
98     MachineFunction &MF = *MI->getParent()->getParent();
99     if (HasDef)
100       return BuildMI(MF, MI->getDebugLoc(), MI->getDesc())
101         .addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead))
102         .addReg(Reg2, getKillRegState(Reg2IsKill))
103         .addReg(Reg1, getKillRegState(Reg2IsKill));
104     else
105       return BuildMI(MF, MI->getDebugLoc(), MI->getDesc())
106         .addReg(Reg2, getKillRegState(Reg2IsKill))
107         .addReg(Reg1, getKillRegState(Reg2IsKill));
108   }
109
110   if (HasDef)
111     MI->getOperand(0).setReg(Reg0);
112   MI->getOperand(Idx2).setReg(Reg1);
113   MI->getOperand(Idx1).setReg(Reg2);
114   MI->getOperand(Idx2).setIsKill(Reg1IsKill);
115   MI->getOperand(Idx1).setIsKill(Reg2IsKill);
116   return MI;
117 }
118
119 /// findCommutedOpIndices - If specified MI is commutable, return the two
120 /// operand indices that would swap value. Return true if the instruction
121 /// is not in a form which this routine understands.
122 bool TargetInstrInfoImpl::findCommutedOpIndices(MachineInstr *MI,
123                                                 unsigned &SrcOpIdx1,
124                                                 unsigned &SrcOpIdx2) const {
125   assert(!MI->isBundle() &&
126          "TargetInstrInfoImpl::findCommutedOpIndices() can't handle bundles");
127
128   const MCInstrDesc &MCID = MI->getDesc();
129   if (!MCID.isCommutable())
130     return false;
131   // This assumes v0 = op v1, v2 and commuting would swap v1 and v2. If this
132   // is not true, then the target must implement this.
133   SrcOpIdx1 = MCID.getNumDefs();
134   SrcOpIdx2 = SrcOpIdx1 + 1;
135   if (!MI->getOperand(SrcOpIdx1).isReg() ||
136       !MI->getOperand(SrcOpIdx2).isReg())
137     // No idea.
138     return false;
139   return true;
140 }
141
142
143 bool
144 TargetInstrInfoImpl::isUnpredicatedTerminator(const MachineInstr *MI) const {
145   if (!MI->isTerminator()) return false;
146
147   // Conditional branch is a special case.
148   if (MI->isBranch() && !MI->isBarrier())
149     return true;
150   if (!MI->isPredicable())
151     return true;
152   return !isPredicated(MI);
153 }
154
155
156 bool TargetInstrInfoImpl::PredicateInstruction(MachineInstr *MI,
157                             const SmallVectorImpl<MachineOperand> &Pred) const {
158   bool MadeChange = false;
159
160   assert(!MI->isBundle() &&
161          "TargetInstrInfoImpl::PredicateInstruction() can't handle bundles");
162
163   const MCInstrDesc &MCID = MI->getDesc();
164   if (!MI->isPredicable())
165     return false;
166
167   for (unsigned j = 0, i = 0, e = MI->getNumOperands(); i != e; ++i) {
168     if (MCID.OpInfo[i].isPredicate()) {
169       MachineOperand &MO = MI->getOperand(i);
170       if (MO.isReg()) {
171         MO.setReg(Pred[j].getReg());
172         MadeChange = true;
173       } else if (MO.isImm()) {
174         MO.setImm(Pred[j].getImm());
175         MadeChange = true;
176       } else if (MO.isMBB()) {
177         MO.setMBB(Pred[j].getMBB());
178         MadeChange = true;
179       }
180       ++j;
181     }
182   }
183   return MadeChange;
184 }
185
186 bool TargetInstrInfoImpl::hasLoadFromStackSlot(const MachineInstr *MI,
187                                         const MachineMemOperand *&MMO,
188                                         int &FrameIndex) const {
189   for (MachineInstr::mmo_iterator o = MI->memoperands_begin(),
190          oe = MI->memoperands_end();
191        o != oe;
192        ++o) {
193     if ((*o)->isLoad() && (*o)->getValue())
194       if (const FixedStackPseudoSourceValue *Value =
195           dyn_cast<const FixedStackPseudoSourceValue>((*o)->getValue())) {
196         FrameIndex = Value->getFrameIndex();
197         MMO = *o;
198         return true;
199       }
200   }
201   return false;
202 }
203
204 bool TargetInstrInfoImpl::hasStoreToStackSlot(const MachineInstr *MI,
205                                        const MachineMemOperand *&MMO,
206                                        int &FrameIndex) const {
207   for (MachineInstr::mmo_iterator o = MI->memoperands_begin(),
208          oe = MI->memoperands_end();
209        o != oe;
210        ++o) {
211     if ((*o)->isStore() && (*o)->getValue())
212       if (const FixedStackPseudoSourceValue *Value =
213           dyn_cast<const FixedStackPseudoSourceValue>((*o)->getValue())) {
214         FrameIndex = Value->getFrameIndex();
215         MMO = *o;
216         return true;
217       }
218   }
219   return false;
220 }
221
222 void TargetInstrInfoImpl::reMaterialize(MachineBasicBlock &MBB,
223                                         MachineBasicBlock::iterator I,
224                                         unsigned DestReg,
225                                         unsigned SubIdx,
226                                         const MachineInstr *Orig,
227                                         const TargetRegisterInfo &TRI) const {
228   MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig);
229   MI->substituteRegister(MI->getOperand(0).getReg(), DestReg, SubIdx, TRI);
230   MBB.insert(I, MI);
231 }
232
233 bool
234 TargetInstrInfoImpl::produceSameValue(const MachineInstr *MI0,
235                                       const MachineInstr *MI1,
236                                       const MachineRegisterInfo *MRI) const {
237   return MI0->isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs);
238 }
239
240 MachineInstr *TargetInstrInfoImpl::duplicate(MachineInstr *Orig,
241                                              MachineFunction &MF) const {
242   assert(!Orig->isNotDuplicable() &&
243          "Instruction cannot be duplicated");
244   return MF.CloneMachineInstr(Orig);
245 }
246
247 // If the COPY instruction in MI can be folded to a stack operation, return
248 // the register class to use.
249 static const TargetRegisterClass *canFoldCopy(const MachineInstr *MI,
250                                               unsigned FoldIdx) {
251   assert(MI->isCopy() && "MI must be a COPY instruction");
252   if (MI->getNumOperands() != 2)
253     return 0;
254   assert(FoldIdx<2 && "FoldIdx refers no nonexistent operand");
255
256   const MachineOperand &FoldOp = MI->getOperand(FoldIdx);
257   const MachineOperand &LiveOp = MI->getOperand(1-FoldIdx);
258
259   if (FoldOp.getSubReg() || LiveOp.getSubReg())
260     return 0;
261
262   unsigned FoldReg = FoldOp.getReg();
263   unsigned LiveReg = LiveOp.getReg();
264
265   assert(TargetRegisterInfo::isVirtualRegister(FoldReg) &&
266          "Cannot fold physregs");
267
268   const MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
269   const TargetRegisterClass *RC = MRI.getRegClass(FoldReg);
270
271   if (TargetRegisterInfo::isPhysicalRegister(LiveOp.getReg()))
272     return RC->contains(LiveOp.getReg()) ? RC : 0;
273
274   if (RC->hasSubClassEq(MRI.getRegClass(LiveReg)))
275     return RC;
276
277   // FIXME: Allow folding when register classes are memory compatible.
278   return 0;
279 }
280
281 bool TargetInstrInfoImpl::
282 canFoldMemoryOperand(const MachineInstr *MI,
283                      const SmallVectorImpl<unsigned> &Ops) const {
284   return MI->isCopy() && Ops.size() == 1 && canFoldCopy(MI, Ops[0]);
285 }
286
287 /// foldMemoryOperand - Attempt to fold a load or store of the specified stack
288 /// slot into the specified machine instruction for the specified operand(s).
289 /// If this is possible, a new instruction is returned with the specified
290 /// operand folded, otherwise NULL is returned. The client is responsible for
291 /// removing the old instruction and adding the new one in the instruction
292 /// stream.
293 MachineInstr*
294 TargetInstrInfo::foldMemoryOperand(MachineBasicBlock::iterator MI,
295                                    const SmallVectorImpl<unsigned> &Ops,
296                                    int FI) const {
297   unsigned Flags = 0;
298   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
299     if (MI->getOperand(Ops[i]).isDef())
300       Flags |= MachineMemOperand::MOStore;
301     else
302       Flags |= MachineMemOperand::MOLoad;
303
304   MachineBasicBlock *MBB = MI->getParent();
305   assert(MBB && "foldMemoryOperand needs an inserted instruction");
306   MachineFunction &MF = *MBB->getParent();
307
308   // Ask the target to do the actual folding.
309   if (MachineInstr *NewMI = foldMemoryOperandImpl(MF, MI, Ops, FI)) {
310     // Add a memory operand, foldMemoryOperandImpl doesn't do that.
311     assert((!(Flags & MachineMemOperand::MOStore) ||
312             NewMI->mayStore()) &&
313            "Folded a def to a non-store!");
314     assert((!(Flags & MachineMemOperand::MOLoad) ||
315             NewMI->mayLoad()) &&
316            "Folded a use to a non-load!");
317     const MachineFrameInfo &MFI = *MF.getFrameInfo();
318     assert(MFI.getObjectOffset(FI) != -1);
319     MachineMemOperand *MMO =
320       MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FI),
321                               Flags, MFI.getObjectSize(FI),
322                               MFI.getObjectAlignment(FI));
323     NewMI->addMemOperand(MF, MMO);
324
325     // FIXME: change foldMemoryOperandImpl semantics to also insert NewMI.
326     return MBB->insert(MI, NewMI);
327   }
328
329   // Straight COPY may fold as load/store.
330   if (!MI->isCopy() || Ops.size() != 1)
331     return 0;
332
333   const TargetRegisterClass *RC = canFoldCopy(MI, Ops[0]);
334   if (!RC)
335     return 0;
336
337   const MachineOperand &MO = MI->getOperand(1-Ops[0]);
338   MachineBasicBlock::iterator Pos = MI;
339   const TargetRegisterInfo *TRI = MF.getTarget().getRegisterInfo();
340
341   if (Flags == MachineMemOperand::MOStore)
342     storeRegToStackSlot(*MBB, Pos, MO.getReg(), MO.isKill(), FI, RC, TRI);
343   else
344     loadRegFromStackSlot(*MBB, Pos, MO.getReg(), FI, RC, TRI);
345   return --Pos;
346 }
347
348 /// foldMemoryOperand - Same as the previous version except it allows folding
349 /// of any load and store from / to any address, not just from a specific
350 /// stack slot.
351 MachineInstr*
352 TargetInstrInfo::foldMemoryOperand(MachineBasicBlock::iterator MI,
353                                    const SmallVectorImpl<unsigned> &Ops,
354                                    MachineInstr* LoadMI) const {
355   assert(LoadMI->canFoldAsLoad() && "LoadMI isn't foldable!");
356 #ifndef NDEBUG
357   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
358     assert(MI->getOperand(Ops[i]).isUse() && "Folding load into def!");
359 #endif
360   MachineBasicBlock &MBB = *MI->getParent();
361   MachineFunction &MF = *MBB.getParent();
362
363   // Ask the target to do the actual folding.
364   MachineInstr *NewMI = foldMemoryOperandImpl(MF, MI, Ops, LoadMI);
365   if (!NewMI) return 0;
366
367   NewMI = MBB.insert(MI, NewMI);
368
369   // Copy the memoperands from the load to the folded instruction.
370   NewMI->setMemRefs(LoadMI->memoperands_begin(),
371                     LoadMI->memoperands_end());
372
373   return NewMI;
374 }
375
376 bool TargetInstrInfo::
377 isReallyTriviallyReMaterializableGeneric(const MachineInstr *MI,
378                                          AliasAnalysis *AA) const {
379   const MachineFunction &MF = *MI->getParent()->getParent();
380   const MachineRegisterInfo &MRI = MF.getRegInfo();
381   const TargetMachine &TM = MF.getTarget();
382   const TargetInstrInfo &TII = *TM.getInstrInfo();
383   const TargetRegisterInfo &TRI = *TM.getRegisterInfo();
384
385   // Remat clients assume operand 0 is the defined register.
386   if (!MI->getNumOperands() || !MI->getOperand(0).isReg())
387     return false;
388   unsigned DefReg = MI->getOperand(0).getReg();
389
390   // A sub-register definition can only be rematerialized if the instruction
391   // doesn't read the other parts of the register.  Otherwise it is really a
392   // read-modify-write operation on the full virtual register which cannot be
393   // moved safely.
394   if (TargetRegisterInfo::isVirtualRegister(DefReg) &&
395       MI->getOperand(0).getSubReg() && MI->readsVirtualRegister(DefReg))
396     return false;
397
398   // A load from a fixed stack slot can be rematerialized. This may be
399   // redundant with subsequent checks, but it's target-independent,
400   // simple, and a common case.
401   int FrameIdx = 0;
402   if (TII.isLoadFromStackSlot(MI, FrameIdx) &&
403       MF.getFrameInfo()->isImmutableObjectIndex(FrameIdx))
404     return true;
405
406   // Avoid instructions obviously unsafe for remat.
407   if (MI->isNotDuplicable() || MI->mayStore() ||
408       MI->hasUnmodeledSideEffects())
409     return false;
410
411   // Don't remat inline asm. We have no idea how expensive it is
412   // even if it's side effect free.
413   if (MI->isInlineAsm())
414     return false;
415
416   // Avoid instructions which load from potentially varying memory.
417   if (MI->mayLoad() && !MI->isInvariantLoad(AA))
418     return false;
419
420   // If any of the registers accessed are non-constant, conservatively assume
421   // the instruction is not rematerializable.
422   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
423     const MachineOperand &MO = MI->getOperand(i);
424     if (!MO.isReg()) continue;
425     unsigned Reg = MO.getReg();
426     if (Reg == 0)
427       continue;
428
429     // Check for a well-behaved physical register.
430     if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
431       if (MO.isUse()) {
432         // If the physreg has no defs anywhere, it's just an ambient register
433         // and we can freely move its uses. Alternatively, if it's allocatable,
434         // it could get allocated to something with a def during allocation.
435         if (!MRI.def_empty(Reg))
436           return false;
437         BitVector AllocatableRegs = TRI.getAllocatableSet(MF, 0);
438         if (AllocatableRegs.test(Reg))
439           return false;
440         // Check for a def among the register's aliases too.
441         for (const unsigned *Alias = TRI.getAliasSet(Reg); *Alias; ++Alias) {
442           unsigned AliasReg = *Alias;
443           if (!MRI.def_empty(AliasReg))
444             return false;
445           if (AllocatableRegs.test(AliasReg))
446             return false;
447         }
448       } else {
449         // A physreg def. We can't remat it.
450         return false;
451       }
452       continue;
453     }
454
455     // Only allow one virtual-register def.  There may be multiple defs of the
456     // same virtual register, though.
457     if (MO.isDef() && Reg != DefReg)
458       return false;
459
460     // Don't allow any virtual-register uses. Rematting an instruction with
461     // virtual register uses would length the live ranges of the uses, which
462     // is not necessarily a good idea, certainly not "trivial".
463     if (MO.isUse())
464       return false;
465   }
466
467   // Everything checked out.
468   return true;
469 }
470
471 /// isSchedulingBoundary - Test if the given instruction should be
472 /// considered a scheduling boundary. This primarily includes labels
473 /// and terminators.
474 bool TargetInstrInfoImpl::isSchedulingBoundary(const MachineInstr *MI,
475                                                const MachineBasicBlock *MBB,
476                                                const MachineFunction &MF) const{
477   // Terminators and labels can't be scheduled around.
478   if (MI->isTerminator() || MI->isLabel())
479     return true;
480
481   // Don't attempt to schedule around any instruction that defines
482   // a stack-oriented pointer, as it's unlikely to be profitable. This
483   // saves compile time, because it doesn't require every single
484   // stack slot reference to depend on the instruction that does the
485   // modification.
486   const TargetLowering &TLI = *MF.getTarget().getTargetLowering();
487   if (MI->definesRegister(TLI.getStackPointerRegisterToSaveRestore()))
488     return true;
489
490   return false;
491 }
492
493 // Provide a global flag for disabling the PreRA hazard recognizer that targets
494 // may choose to honor.
495 bool TargetInstrInfoImpl::usePreRAHazardRecognizer() const {
496   return !DisableHazardRecognizer;
497 }
498
499 // Default implementation of CreateTargetRAHazardRecognizer.
500 ScheduleHazardRecognizer *TargetInstrInfoImpl::
501 CreateTargetHazardRecognizer(const TargetMachine *TM,
502                              const ScheduleDAG *DAG) const {
503   // Dummy hazard recognizer allows all instructions to issue.
504   return new ScheduleHazardRecognizer();
505 }
506
507 // Default implementation of CreateTargetPostRAHazardRecognizer.
508 ScheduleHazardRecognizer *TargetInstrInfoImpl::
509 CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
510                                    const ScheduleDAG *DAG) const {
511   return (ScheduleHazardRecognizer *)
512     new ScoreboardHazardRecognizer(II, DAG, "post-RA-sched");
513 }
514
515 int
516 TargetInstrInfoImpl::getOperandLatency(const InstrItineraryData *ItinData,
517                                        SDNode *DefNode, unsigned DefIdx,
518                                        SDNode *UseNode, unsigned UseIdx) const {
519   if (!ItinData || ItinData->isEmpty())
520     return -1;
521
522   if (!DefNode->isMachineOpcode())
523     return -1;
524
525   unsigned DefClass = get(DefNode->getMachineOpcode()).getSchedClass();
526   if (!UseNode->isMachineOpcode())
527     return ItinData->getOperandCycle(DefClass, DefIdx);
528   unsigned UseClass = get(UseNode->getMachineOpcode()).getSchedClass();
529   return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
530 }
531
532 int TargetInstrInfoImpl::getInstrLatency(const InstrItineraryData *ItinData,
533                                          SDNode *N) const {
534   if (!ItinData || ItinData->isEmpty())
535     return 1;
536
537   if (!N->isMachineOpcode())
538     return 1;
539
540   return ItinData->getStageLatency(get(N->getMachineOpcode()).getSchedClass());
541 }
542