91d8533ae8559327674625e3391ae00d0ab27f59
[oota-llvm.git] / lib / CodeGen / RegAllocLinearScan.cpp
1 //===-- RegAllocLinearScan.cpp - Linear Scan register allocator -----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file was developed by the LLVM research group and is distributed under
6 // the University of Illinois Open Source License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements a linear scan register allocator.
11 //
12 //===----------------------------------------------------------------------===//
13 #define DEBUG_TYPE "regalloc"
14 #include "llvm/Function.h"
15 #include "llvm/CodeGen/LiveIntervals.h"
16 #include "llvm/CodeGen/LiveVariables.h"
17 #include "llvm/CodeGen/MachineFrameInfo.h"
18 #include "llvm/CodeGen/MachineFunctionPass.h"
19 #include "llvm/CodeGen/MachineInstr.h"
20 #include "llvm/CodeGen/Passes.h"
21 #include "llvm/CodeGen/SSARegMap.h"
22 #include "llvm/Target/MRegisterInfo.h"
23 #include "llvm/Target/TargetInstrInfo.h"
24 #include "llvm/Target/TargetMachine.h"
25 #include "llvm/Target/TargetRegInfo.h"
26 #include "llvm/Support/CFG.h"
27 #include "Support/Debug.h"
28 #include "Support/DepthFirstIterator.h"
29 #include "Support/Statistic.h"
30 #include "Support/STLExtras.h"
31 #include <iostream>
32
33 using namespace llvm;
34
35 namespace {
36     Statistic<> numSpilled ("ra-linearscan", "Number of registers spilled");
37
38     class RA : public MachineFunctionPass {
39     public:
40         typedef std::vector<const LiveIntervals::Interval*> IntervalPtrs;
41
42     private:
43         MachineFunction* mf_;
44         const TargetMachine* tm_;
45         const MRegisterInfo* mri_;
46         MachineBasicBlock* currentMbb_;
47         MachineBasicBlock::iterator currentInstr_;
48         typedef LiveIntervals::Intervals Intervals;
49         const Intervals* li_;
50         IntervalPtrs active_, inactive_;
51
52         typedef std::vector<unsigned> Regs;
53         Regs tempUseOperands_;
54         Regs tempDefOperands_;
55
56         Regs reserved_;
57
58         typedef LiveIntervals::MachineBasicBlockPtrs MachineBasicBlockPtrs;
59         MachineBasicBlockPtrs mbbs_;
60
61         typedef std::vector<unsigned> Phys2VirtMap;
62         Phys2VirtMap p2vMap_;
63
64         typedef std::map<unsigned, unsigned> Virt2PhysMap;
65         Virt2PhysMap v2pMap_;
66
67         typedef std::map<unsigned, int> Virt2StackSlotMap;
68         Virt2StackSlotMap v2ssMap_;
69
70         int instrAdded_;
71
72     public:
73         virtual const char* getPassName() const {
74             return "Linear Scan Register Allocator";
75         }
76
77         virtual void getAnalysisUsage(AnalysisUsage &AU) const {
78             AU.addRequired<LiveVariables>();
79             AU.addRequired<LiveIntervals>();
80             MachineFunctionPass::getAnalysisUsage(AU);
81         }
82
83     private:
84         /// runOnMachineFunction - register allocate the whole function
85         bool runOnMachineFunction(MachineFunction&);
86
87         /// processActiveIntervals - expire old intervals and move
88         /// non-overlapping ones to the incative list
89         void processActiveIntervals(Intervals::const_iterator cur);
90
91         /// processInactiveIntervals - expire old intervals and move
92         /// overlapping ones to the active list
93         void processInactiveIntervals(Intervals::const_iterator cur);
94
95         /// assignStackSlotAtInterval - choose and spill
96         /// interval. Currently we spill the interval with the last
97         /// end point in the active and inactive lists and the current
98         /// interval
99         void assignStackSlotAtInterval(Intervals::const_iterator cur);
100
101         ///
102         /// register handling helpers
103         ///
104
105         /// reservePhysReg - reserves a physical register and spills
106         /// any value assigned to it if any
107         void reservePhysReg(unsigned reg);
108
109         /// clearReservedPhysReg - marks pysical register as free for
110         /// use
111         void clearReservedPhysReg(unsigned reg);
112
113         /// physRegAvailable - returns true if the specifed physical
114         /// register is available
115         bool physRegAvailable(unsigned physReg);
116
117         /// getFreePhysReg - return a free physical register for this
118         /// virtual register if we have one, otherwise return 0
119         unsigned getFreePhysReg(unsigned virtReg);
120
121
122         /// tempPhysRegAvailable - returns true if the specifed
123         /// temporary physical register is available
124         bool tempPhysRegAvailable(unsigned physReg);
125
126         /// getFreeTempPhysReg - return a free temprorary physical
127         /// register for this register class if we have one (should
128         /// never return 0)
129         unsigned getFreeTempPhysReg(const TargetRegisterClass* rc);
130
131         /// getFreeTempPhysReg - return a free temprorary physical
132         /// register for this virtual register if we have one (should
133         /// never return 0)
134         unsigned getFreeTempPhysReg(unsigned virtReg) {
135             const TargetRegisterClass* rc =
136                 mf_->getSSARegMap()->getRegClass(virtReg);
137             return getFreeTempPhysReg(rc);
138         }
139
140         /// assignVirt2PhysReg - assigns the free physical register to
141         /// the virtual register passed as arguments
142         void assignVirt2PhysReg(unsigned virtReg, unsigned physReg);
143
144         /// clearVirtReg - free the physical register associated with this
145         /// virtual register and disassociate virtual->physical and
146         /// physical->virtual mappings
147         void clearVirtReg(unsigned virtReg);
148
149         /// assignVirt2StackSlot - assigns this virtual register to a
150         /// stack slot
151         void assignVirt2StackSlot(unsigned virtReg);
152
153         /// findOrCreateStackSlot - returns the offset of the
154         /// specified register on the stack allocating space if
155         /// necessary
156         int findOrCreateStackSlot(unsigned virtReg);
157
158         /// spillVirtReg - spills the virtual register
159         void spillVirtReg(unsigned virtReg);
160
161         /// loadPhysReg - loads to the physical register the value of
162         /// the virtual register specifed. Virtual register must have
163         /// an assigned stack slot
164         void loadVirt2PhysReg(unsigned virtReg, unsigned physReg);
165
166         void printVirt2PhysMap() const {
167             std::cerr << "allocated registers:\n";
168             for (Virt2PhysMap::const_iterator
169                      i = v2pMap_.begin(), e = v2pMap_.end(); i != e; ++i) {
170                 std::cerr << '[' << i->first << ','
171                           << mri_->getName(i->second) << "]\n";
172             }
173             std::cerr << '\n';
174         }
175         void printIntervals(const char* const str,
176                             RA::IntervalPtrs::const_iterator i,
177                             RA::IntervalPtrs::const_iterator e) const {
178             if (str) std::cerr << str << " intervals:\n";
179             for (; i != e; ++i) {
180                 std::cerr << "\t\t" << **i << " -> ";
181                 if ((*i)->reg < MRegisterInfo::FirstVirtualRegister) {
182                     std::cerr << mri_->getName((*i)->reg);
183                 }
184                 else {
185                     std::cerr << mri_->getName(v2pMap_.find((*i)->reg)->second);
186                 }
187                 std::cerr << '\n';
188             }
189         }
190     };
191 }
192
193 bool RA::runOnMachineFunction(MachineFunction &fn) {
194     mf_ = &fn;
195     tm_ = &fn.getTarget();
196     mri_ = tm_->getRegisterInfo();
197     li_ = &getAnalysis<LiveIntervals>().getIntervals();
198     active_.clear();
199     inactive_.clear();
200     mbbs_ = getAnalysis<LiveIntervals>().getOrderedMachineBasicBlockPtrs();
201     p2vMap_.resize(MRegisterInfo::FirstVirtualRegister-1);
202     p2vMap_.clear();
203     v2pMap_.clear();
204     v2ssMap_.clear();
205
206     // FIXME: this will work only for the X86 backend. I need to
207     // device an algorthm to select the minimal (considering register
208     // aliasing) number of temp registers to reserve so that we have 2
209     // registers for each register class available.
210
211     // reserve R32: EDI, EBX,
212     //         R16:  DI,  BX,
213     //         R8:   DH,  BH,
214     //         RFP: FP5, FP6
215     reserved_.push_back(19); /* EDI */
216     reserved_.push_back(17); /* EBX */
217     reserved_.push_back(12); /*  DI */
218     reserved_.push_back( 7); /*  BX */
219     reserved_.push_back(11); /*  DH */
220     reserved_.push_back( 4); /*  BH */
221     reserved_.push_back(28); /* FP5 */
222     reserved_.push_back(29); /* FP6 */
223
224     // liner scan algorithm
225     for (Intervals::const_iterator
226              i = li_->begin(), e = li_->end(); i != e; ++i) {
227         DEBUG(std::cerr << "processing current interval: " << *i << '\n');
228
229         DEBUG(printIntervals("\tactive", active_.begin(), active_.end()));
230         DEBUG(printIntervals("\tinactive", inactive_.begin(), inactive_.end()));
231
232         processActiveIntervals(i);
233         // processInactiveIntervals(i);
234
235         // if this register is preallocated, look for an interval that
236         // overlaps with it and assign it to a memory location
237         if (i->reg < MRegisterInfo::FirstVirtualRegister) {
238             for (IntervalPtrs::iterator
239                      ai = active_.begin(), ae = active_.end(); ai != ae; ++ai) {
240                 unsigned virtReg = (*ai)->reg;
241                 Virt2PhysMap::const_iterator it = v2pMap_.find(virtReg);
242                 if (it != v2pMap_.end() && it->second == i->reg) {
243                     active_.erase(ai);
244                     clearVirtReg(virtReg);
245                     break;
246                 }
247             }
248             reservePhysReg(i->reg);
249             active_.push_back(&*i);
250         }
251         // otherwise we are allocating a virtual register. try to find
252         // a free physical register or spill an interval in order to
253         // assign it one (we could spill the current though).
254         else {
255             unsigned physReg = getFreePhysReg(i->reg);
256             if (!physReg) {
257                 assignStackSlotAtInterval(i);
258             }
259             else {
260                 assignVirt2PhysReg(i->reg, physReg);
261                 active_.push_back(&*i);
262             }
263         }
264     }
265     DEBUG(std::cerr << "finished register allocation\n");
266     DEBUG(printVirt2PhysMap());
267
268     DEBUG(std::cerr << "Rewrite machine code:\n");
269     for (MachineBasicBlockPtrs::iterator
270              mbbi = mbbs_.begin(), mbbe = mbbs_.end(); mbbi != mbbe; ++mbbi) {
271         instrAdded_ = 0;
272         currentMbb_ = *mbbi;
273
274         for (currentInstr_ = currentMbb_->begin();
275              currentInstr_ != currentMbb_->end(); ++currentInstr_) {
276
277             DEBUG(std::cerr << "\tinstruction: ";
278                   (*currentInstr_)->print(std::cerr, *tm_););
279             DEBUG(std::cerr << "\t\tspilling temporarily defined operands "
280                   "of previous instruction:\n");
281             for (unsigned i = 0, e = tempDefOperands_.size(); i != e; ++i) {
282                 spillVirtReg(tempDefOperands_[i]);
283             }
284             tempDefOperands_.clear();
285
286             // use our current mapping and actually replace and
287             // virtual register with its allocated physical registers
288             DEBUG(std::cerr << "\t\treplacing virtual registers with mapped "
289                   "physical registers:\n");
290             for (unsigned i = 0, e = (*currentInstr_)->getNumOperands();
291                  i != e; ++i) {
292                 MachineOperand& op = (*currentInstr_)->getOperand(i);
293                 if (op.isVirtualRegister()) {
294                     unsigned virtReg = op.getAllocatedRegNum();
295                     unsigned physReg = v2pMap_[virtReg];
296                     // if this virtual registers lives on the stack,
297                     // load it to a temporary physical register
298                     if (physReg) {
299                         DEBUG(std::cerr << "\t\t\t%reg" << virtReg
300                               << " -> " << mri_->getName(physReg) << '\n');
301                         (*currentInstr_)->SetMachineOperandReg(i, physReg);
302                     }
303                 }
304             }
305
306             DEBUG(std::cerr << "\t\tloading temporarily used operands to "
307                   "registers:\n");
308             for (unsigned i = 0, e = (*currentInstr_)->getNumOperands();
309                  i != e; ++i) {
310                 MachineOperand& op = (*currentInstr_)->getOperand(i);
311                 if (op.isVirtualRegister() && op.opIsUse()) {
312                     unsigned virtReg = op.getAllocatedRegNum();
313                     unsigned physReg = v2pMap_[virtReg];
314                     if (!physReg) {
315                         physReg = getFreeTempPhysReg(virtReg);
316                     }
317                     loadVirt2PhysReg(virtReg, physReg);
318                     tempUseOperands_.push_back(virtReg);
319                     (*currentInstr_)->SetMachineOperandReg(i, physReg);
320                 }
321             }
322
323             DEBUG(std::cerr << "\t\tclearing temporarily used operands:\n");
324             for (unsigned i = 0, e = tempUseOperands_.size(); i != e; ++i) {
325                 clearVirtReg(tempUseOperands_[i]);
326             }
327             tempUseOperands_.clear();
328
329             DEBUG(std::cerr << "\t\tassigning temporarily defined operands to "
330                   "registers:\n");
331             for (unsigned i = 0, e = (*currentInstr_)->getNumOperands();
332                  i != e; ++i) {
333                 MachineOperand& op = (*currentInstr_)->getOperand(i);
334                 if (op.isVirtualRegister() && !op.opIsUse()) {
335                     unsigned virtReg = op.getAllocatedRegNum();
336                     unsigned physReg = v2pMap_[virtReg];
337                     if (!physReg) {
338                         physReg = getFreeTempPhysReg(virtReg);
339                     }
340                     if (op.opIsDefAndUse()) {
341                         loadVirt2PhysReg(virtReg, physReg);
342                     }
343                     else {
344                         assignVirt2PhysReg(virtReg, physReg);
345                     }
346                     tempDefOperands_.push_back(virtReg);
347                     (*currentInstr_)->SetMachineOperandReg(i, physReg);
348                 }
349             }
350
351
352             // if the instruction is a two address instruction and the
353             // source operands are not identical we need to insert
354             // extra instructions.
355
356             unsigned opcode = (*currentInstr_)->getOpcode();
357             if (tm_->getInstrInfo().isTwoAddrInstr(opcode) &&
358                 (*currentInstr_)->getOperand(0).getAllocatedRegNum() !=
359                 (*currentInstr_)->getOperand(1).getAllocatedRegNum()) {
360                 assert((*currentInstr_)->getOperand(1).isRegister() &&
361                        (*currentInstr_)->getOperand(1).getAllocatedRegNum() &&
362                        (*currentInstr_)->getOperand(1).opIsUse() &&
363                        "Two address instruction invalid");
364
365                 unsigned regA =
366                     (*currentInstr_)->getOperand(0).getAllocatedRegNum();
367                 unsigned regB =
368                     (*currentInstr_)->getOperand(1).getAllocatedRegNum();
369                 unsigned regC =
370                     ((*currentInstr_)->getNumOperands() > 2 &&
371                      (*currentInstr_)->getOperand(2).isRegister()) ?
372                     (*currentInstr_)->getOperand(2).getAllocatedRegNum() :
373                     0;
374
375                 const TargetRegisterClass* rc = mri_->getRegClass(regA);
376
377                 // special case: "a = b op a". If b is a temporary
378                 // reserved register rewrite as: "b = b op a; a = b"
379                 // otherwise use a temporary reserved register t and
380                 // rewrite as: "t = b; t = t op a; a = t"
381                 if (regC && regA == regC) {
382                     // b is a temp reserved register
383                     if (find(reserved_.begin(), reserved_.end(),
384                              regB) != reserved_.end()) {
385                         (*currentInstr_)->SetMachineOperandReg(0, regB);
386                         ++currentInstr_;
387                         instrAdded_ += mri_->copyRegToReg(*currentMbb_,
388                                                           currentInstr_,
389                                                           regA,
390                                                           regB,
391                                                           rc);
392                         --currentInstr_;
393                     }
394                     // b is just a normal register
395                     else {
396                         unsigned tempReg = getFreeTempPhysReg(rc);
397                         assert (tempReg &&
398                                 "no free temp reserved physical register?");
399                         instrAdded_ += mri_->copyRegToReg(*currentMbb_,
400                                                           currentInstr_,
401                                                           tempReg,
402                                                           regB,
403                                                           rc);
404                         (*currentInstr_)->SetMachineOperandReg(0, tempReg);
405                         (*currentInstr_)->SetMachineOperandReg(1, tempReg);
406                         ++currentInstr_;
407                         instrAdded_ += mri_->copyRegToReg(*currentMbb_,
408                                                           currentInstr_,
409                                                           regA,
410                                                           tempReg,
411                                                           rc);
412                         --currentInstr_;
413                     }
414                 }
415                 // "a = b op c" gets rewritten to "a = b; a = a op c"
416                 else {
417                     instrAdded_ += mri_->copyRegToReg(*currentMbb_,
418                                                       currentInstr_,
419                                                       regA,
420                                                       regB,
421                                                       rc);
422                     (*currentInstr_)->SetMachineOperandReg(1, regA);
423                 }
424             }
425         }
426
427         for (unsigned i = 0, e = p2vMap_.size(); i != e; ++i) {
428             assert(p2vMap_[i] != i &&
429                    "reserved physical registers at end of basic block?");
430         }
431     }
432
433     return true;
434 }
435
436 void RA::processActiveIntervals(Intervals::const_iterator cur)
437 {
438     DEBUG(std::cerr << "\tprocessing active intervals:\n");
439     for (IntervalPtrs::iterator i = active_.begin(); i != active_.end();) {
440         unsigned reg = (*i)->reg;
441         // remove expired intervals. we expire earlier because this if
442         // an interval expires this is going to be the last use. in
443         // this case we can reuse the register for a def in the same
444         // instruction
445         if ((*i)->expired(cur->start() + 1)) {
446             DEBUG(std::cerr << "\t\tinterval " << **i << " expired\n");
447             if (reg < MRegisterInfo::FirstVirtualRegister) {
448                 clearReservedPhysReg(reg);
449             }
450             else {
451                 p2vMap_[v2pMap_[reg]] = 0;
452             }
453             // remove interval from active
454             i = active_.erase(i);
455         }
456         // move not active intervals to inactive list
457 //         else if (!(*i)->overlaps(curIndex)) {
458 //             DEBUG(std::cerr << "\t\t\tinterval " << **i << " inactive\n");
459 //             unmarkReg(virtReg);
460 //             // add interval to inactive
461 //             inactive_.push_back(*i);
462 //             // remove interval from active
463 //             i = active_.erase(i);
464 //         }
465         else {
466             ++i;
467         }
468     }
469 }
470
471 void RA::processInactiveIntervals(Intervals::const_iterator cur)
472 {
473 //     DEBUG(std::cerr << "\tprocessing inactive intervals:\n");
474 //     for (IntervalPtrs::iterator i = inactive_.begin(); i != inactive_.end();) {
475 //         unsigned virtReg = (*i)->reg;
476 //         // remove expired intervals
477 //         if ((*i)->expired(curIndex)) {
478 //             DEBUG(std::cerr << "\t\t\tinterval " << **i << " expired\n");
479 //             freePhysReg(virtReg);
480 //             // remove from inactive
481 //             i = inactive_.erase(i);
482 //         }
483 //         // move re-activated intervals in active list
484 //         else if ((*i)->overlaps(curIndex)) {
485 //             DEBUG(std::cerr << "\t\t\tinterval " << **i << " active\n");
486 //             markReg(virtReg);
487 //             // add to active
488 //             active_.push_back(*i);
489 //             // remove from inactive
490 //             i = inactive_.erase(i);
491 //         }
492 //         else {
493 //             ++i;
494 //         }
495 //     }
496 }
497
498 void RA::assignStackSlotAtInterval(Intervals::const_iterator cur)
499 {
500     DEBUG(std::cerr << "\t\tassigning stack slot at interval "
501           << *cur << ":\n");
502     assert(!active_.empty() &&
503            "active set cannot be empty when choosing a register to spill");
504     const TargetRegisterClass* rcCur =
505         mf_->getSSARegMap()->getRegClass(cur->reg);
506
507     // find the interval for a virtual register that ends last in
508     // active and belongs to the same register class as the current
509     // interval
510     IntervalPtrs::iterator lastEndActive = active_.begin();
511     for (IntervalPtrs::iterator e = active_.end();
512          lastEndActive != e; ++lastEndActive) {
513         if ((*lastEndActive)->reg >= MRegisterInfo::FirstVirtualRegister) {
514             const TargetRegisterClass* rc =
515                 mri_->getRegClass(v2pMap_[(*lastEndActive)->reg]);
516             if (rcCur == rc) {
517                 break;
518             }
519         }
520     }
521     for (IntervalPtrs::iterator i = lastEndActive, e = active_.end();
522          i != e; ++i) {
523         if ((*i)->reg >= MRegisterInfo::FirstVirtualRegister) {
524             const TargetRegisterClass* rc =
525                 mri_->getRegClass(v2pMap_[(*i)->reg]);
526             if (rcCur == rc &&
527                 (*lastEndActive)->end() < (*i)->end()) {
528                 lastEndActive = i;
529             }
530         }
531     }
532
533     // find the interval for a virtual register that ends last in
534     // inactive and belongs to the same register class as the current
535     // interval
536     IntervalPtrs::iterator lastEndInactive = inactive_.begin();
537     for (IntervalPtrs::iterator e = inactive_.end();
538          lastEndInactive != e; ++lastEndInactive) {
539         if ((*lastEndInactive)->reg >= MRegisterInfo::FirstVirtualRegister) {
540             const TargetRegisterClass* rc =
541                 mri_->getRegClass(v2pMap_[(*lastEndInactive)->reg]);
542             if (rcCur == rc) {
543                 break;
544             }
545         }
546     }
547     for (IntervalPtrs::iterator i = lastEndInactive, e = inactive_.end();
548          i != e; ++i) {
549         if ((*i)->reg >= MRegisterInfo::FirstVirtualRegister) {
550             const TargetRegisterClass* rc =
551                 mri_->getRegClass(v2pMap_[(*i)->reg]);
552             if (rcCur == rc &&
553                 (*lastEndInactive)->end() < (*i)->end()) {
554                 lastEndInactive = i;
555             }
556         }
557     }
558
559     unsigned lastEndActiveInactive = 0;
560     if (lastEndActive != active_.end() &&
561         lastEndActiveInactive < (*lastEndActive)->end()) {
562         lastEndActiveInactive = (*lastEndActive)->end();
563     }
564     if (lastEndInactive != inactive_.end() &&
565         lastEndActiveInactive < (*lastEndInactive)->end()) {
566         lastEndActiveInactive = (*lastEndInactive)->end();
567     }
568
569     if (lastEndActiveInactive > cur->end()) {
570         if (lastEndInactive == inactive_.end() ||
571             (*lastEndActive)->end() > (*lastEndInactive)->end()) {
572             assignVirt2StackSlot((*lastEndActive)->reg);
573             active_.erase(lastEndActive);
574         }
575         else {
576             assignVirt2StackSlot((*lastEndInactive)->reg);
577             inactive_.erase(lastEndInactive);
578         }
579         unsigned physReg = getFreePhysReg(cur->reg);
580         assert(physReg && "no free physical register after spill?");
581         assignVirt2PhysReg(cur->reg, physReg);
582         active_.push_back(&*cur);
583     }
584     else {
585         assignVirt2StackSlot(cur->reg);
586     }
587 }
588
589 void RA::reservePhysReg(unsigned physReg)
590 {
591     DEBUG(std::cerr << "\t\t\treserving physical physical register: "
592           << mri_->getName(physReg) << '\n');
593     // if this register holds a value spill it
594     unsigned virtReg = p2vMap_[physReg];
595     if (virtReg != 0) {
596         assert(virtReg != physReg && "reserving an already reserved phus reg?");
597         // remove interval from active
598         for (IntervalPtrs::iterator i = active_.begin(), e = active_.end();
599              i != e; ++i) {
600             if ((*i)->reg == virtReg) {
601                 active_.erase(i);
602                 break;
603             }
604         }
605         spillVirtReg(virtReg);
606     }
607     p2vMap_[physReg] = physReg; // this denotes a reserved physical register
608 }
609
610 void RA::clearReservedPhysReg(unsigned physReg)
611 {
612     DEBUG(std::cerr << "\t\t\tclearing reserved physical physical register: "
613           << mri_->getName(physReg) << '\n');
614     assert(p2vMap_[physReg] == physReg &&
615            "attempt to clear a non reserved physical register");
616     p2vMap_[physReg] = 0;
617 }
618
619 bool RA::physRegAvailable(unsigned physReg)
620 {
621     if (p2vMap_[physReg]) {
622         return false;
623     }
624
625     // if it aliases other registers it is still not free
626     for (const unsigned* as = mri_->getAliasSet(physReg); *as; ++as) {
627         if (p2vMap_[*as]) {
628             return false;
629         }
630     }
631
632     // if it is one of the reserved registers it is still not free
633     if (find(reserved_.begin(), reserved_.end(), physReg) != reserved_.end()) {
634         return false;
635     }
636
637     return true;
638 }
639
640 unsigned RA::getFreePhysReg(unsigned virtReg)
641 {
642     DEBUG(std::cerr << "\t\tgetting free physical register: ");
643     const TargetRegisterClass* rc = mf_->getSSARegMap()->getRegClass(virtReg);
644     TargetRegisterClass::iterator reg = rc->allocation_order_begin(*mf_);
645     TargetRegisterClass::iterator regEnd = rc->allocation_order_end(*mf_);
646
647     for (; reg != regEnd; ++reg) {
648         if (physRegAvailable(*reg)) {
649             assert(*reg != 0 && "Cannot use register!");
650             DEBUG(std::cerr << mri_->getName(*reg) << '\n');
651             return *reg; // Found an unused register!
652         }
653     }
654
655     DEBUG(std::cerr << "no free register\n");
656     return 0;
657 }
658
659 bool RA::tempPhysRegAvailable(unsigned physReg)
660 {
661     assert(find(reserved_.begin(), reserved_.end(), physReg) != reserved_.end()
662            && "cannot call this method with a non reserved temp register");
663
664     if (p2vMap_[physReg]) {
665         return false;
666     }
667
668     // if it aliases other registers it is still not free
669     for (const unsigned* as = mri_->getAliasSet(physReg); *as; ++as) {
670         if (p2vMap_[*as]) {
671             return false;
672         }
673     }
674
675     return true;
676 }
677
678 unsigned RA::getFreeTempPhysReg(const TargetRegisterClass* rc)
679 {
680     DEBUG(std::cerr << "\t\tgetting free temporary physical register: ");
681
682     for (Regs::const_iterator
683              reg = reserved_.begin(), regEnd = reserved_.end();
684          reg != regEnd; ++reg) {
685         if (rc == mri_->getRegClass(*reg) && tempPhysRegAvailable(*reg)) {
686             assert(*reg != 0 && "Cannot use register!");
687             DEBUG(std::cerr << mri_->getName(*reg) << '\n');
688             return *reg; // Found an unused register!
689         }
690     }
691     assert(0 && "no free temporary physical register?");
692     return 0;
693 }
694
695 void RA::assignVirt2PhysReg(unsigned virtReg, unsigned physReg)
696 {
697     assert((physRegAvailable(physReg) ||
698             find(reserved_.begin(),
699                  reserved_.end(),
700                  physReg) != reserved_.end()) &&
701            "attempt to allocate to a not available physical register");
702     v2pMap_[virtReg] = physReg;
703     p2vMap_[physReg] = virtReg;
704 }
705
706 void RA::clearVirtReg(unsigned virtReg)
707 {
708     Virt2PhysMap::iterator it = v2pMap_.find(virtReg);
709     assert(it != v2pMap_.end() &&
710            "attempting to clear a not allocated virtual register");
711     unsigned physReg = it->second;
712     p2vMap_[physReg] = 0;
713     v2pMap_[virtReg] = 0; // this marks that this virtual register
714                           // lives on the stack
715     DEBUG(std::cerr << "\t\t\tcleared register " << mri_->getName(physReg)
716           << "\n");
717 }
718
719 void RA::assignVirt2StackSlot(unsigned virtReg)
720 {
721     const TargetRegisterClass* rc = mf_->getSSARegMap()->getRegClass(virtReg);
722     int frameIndex = mf_->getFrameInfo()->CreateStackObject(rc);
723
724     bool inserted = v2ssMap_.insert(std::make_pair(virtReg, frameIndex)).second;
725     assert(inserted &&
726            "attempt to assign stack slot to already assigned register?");
727     // if the virtual register was previously assigned clear the mapping
728     // and free the virtual register
729     if (v2pMap_.find(virtReg) != v2pMap_.end()) {
730         clearVirtReg(virtReg);
731     }
732 }
733
734 int RA::findOrCreateStackSlot(unsigned virtReg)
735 {
736     // use lower_bound so that we can do a possibly O(1) insert later
737     // if necessary
738     Virt2StackSlotMap::iterator it = v2ssMap_.lower_bound(virtReg);
739     if (it != v2ssMap_.end() && it->first == virtReg) {
740         return it->second;
741     }
742     const TargetRegisterClass* rc = mf_->getSSARegMap()->getRegClass(virtReg);
743     int frameIndex = mf_->getFrameInfo()->CreateStackObject(rc);
744
745     v2ssMap_.insert(it, std::make_pair(virtReg, frameIndex));
746
747     return frameIndex;
748 }
749
750 void RA::spillVirtReg(unsigned virtReg)
751 {
752     DEBUG(std::cerr << "\t\t\tspilling register: " << virtReg);
753     const TargetRegisterClass* rc = mf_->getSSARegMap()->getRegClass(virtReg);
754     int frameIndex = findOrCreateStackSlot(virtReg);
755     DEBUG(std::cerr << " to stack slot #" << frameIndex << '\n');
756     ++numSpilled;
757     instrAdded_ += mri_->storeRegToStackSlot(*currentMbb_, currentInstr_,
758                                              v2pMap_[virtReg], frameIndex, rc);
759     clearVirtReg(virtReg);
760 }
761
762 void RA::loadVirt2PhysReg(unsigned virtReg, unsigned physReg)
763 {
764     DEBUG(std::cerr << "\t\t\tloading register: " << virtReg);
765     const TargetRegisterClass* rc = mf_->getSSARegMap()->getRegClass(virtReg);
766     int frameIndex = findOrCreateStackSlot(virtReg);
767     DEBUG(std::cerr << " from stack slot #" << frameIndex << '\n');
768     instrAdded_ += mri_->loadRegFromStackSlot(*currentMbb_, currentInstr_,
769                                               physReg, frameIndex, rc);
770     assignVirt2PhysReg(virtReg, physReg);
771 }
772
773 FunctionPass* llvm::createLinearScanRegisterAllocator() {
774     return new RA();
775 }