896461fd194b52936db2b67755f419337cf91cfe
[oota-llvm.git] / lib / CodeGen / MachineCSE.cpp
1 //===-- MachineCSE.cpp - Machine Common Subexpression Elimination Pass ----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass performs global common subexpression elimination on machine
11 // instructions using a scoped hash table based value numbering scheme. It
12 // must be run while the machine function is still in SSA form.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #define DEBUG_TYPE "machine-cse"
17 #include "llvm/CodeGen/Passes.h"
18 #include "llvm/CodeGen/MachineDominators.h"
19 #include "llvm/CodeGen/MachineInstr.h"
20 #include "llvm/CodeGen/MachineRegisterInfo.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/Target/TargetInstrInfo.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/ScopedHashTable.h"
25 #include "llvm/ADT/SmallSet.h"
26 #include "llvm/ADT/Statistic.h"
27 #include "llvm/Support/Debug.h"
28 #include "llvm/Support/RecyclingAllocator.h"
29 using namespace llvm;
30
31 STATISTIC(NumCoalesces, "Number of copies coalesced");
32 STATISTIC(NumCSEs,      "Number of common subexpression eliminated");
33 STATISTIC(NumPhysCSEs,
34           "Number of physreg referencing common subexpr eliminated");
35 STATISTIC(NumCrossBBCSEs,
36           "Number of cross-MBB physreg referencing CS eliminated");
37 STATISTIC(NumCommutes,  "Number of copies coalesced after commuting");
38
39 namespace {
40   class MachineCSE : public MachineFunctionPass {
41     const TargetInstrInfo *TII;
42     const TargetRegisterInfo *TRI;
43     AliasAnalysis *AA;
44     MachineDominatorTree *DT;
45     MachineRegisterInfo *MRI;
46   public:
47     static char ID; // Pass identification
48     MachineCSE() : MachineFunctionPass(ID), LookAheadLimit(5), CurrVN(0) {
49       initializeMachineCSEPass(*PassRegistry::getPassRegistry());
50     }
51
52     virtual bool runOnMachineFunction(MachineFunction &MF);
53
54     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
55       AU.setPreservesCFG();
56       MachineFunctionPass::getAnalysisUsage(AU);
57       AU.addRequired<AliasAnalysis>();
58       AU.addPreservedID(MachineLoopInfoID);
59       AU.addRequired<MachineDominatorTree>();
60       AU.addPreserved<MachineDominatorTree>();
61     }
62
63     virtual void releaseMemory() {
64       ScopeMap.clear();
65       Exps.clear();
66       AllocatableRegs.clear();
67       ReservedRegs.clear();
68     }
69
70   private:
71     const unsigned LookAheadLimit;
72     typedef RecyclingAllocator<BumpPtrAllocator,
73         ScopedHashTableVal<MachineInstr*, unsigned> > AllocatorTy;
74     typedef ScopedHashTable<MachineInstr*, unsigned,
75         MachineInstrExpressionTrait, AllocatorTy> ScopedHTType;
76     typedef ScopedHTType::ScopeTy ScopeType;
77     DenseMap<MachineBasicBlock*, ScopeType*> ScopeMap;
78     ScopedHTType VNT;
79     SmallVector<MachineInstr*, 64> Exps;
80     unsigned CurrVN;
81     BitVector AllocatableRegs;
82     BitVector ReservedRegs;
83
84     bool PerformTrivialCoalescing(MachineInstr *MI, MachineBasicBlock *MBB);
85     bool isPhysDefTriviallyDead(unsigned Reg,
86                                 MachineBasicBlock::const_iterator I,
87                                 MachineBasicBlock::const_iterator E) const;
88     bool hasLivePhysRegDefUses(const MachineInstr *MI,
89                                const MachineBasicBlock *MBB,
90                                SmallSet<unsigned,8> &PhysRefs,
91                                SmallVector<unsigned,2> &PhysDefs) const;
92     bool PhysRegDefsReach(MachineInstr *CSMI, MachineInstr *MI,
93                           SmallSet<unsigned,8> &PhysRefs,
94                           SmallVector<unsigned,2> &PhysDefs,
95                           bool &NonLocal) const;
96     bool isCSECandidate(MachineInstr *MI);
97     bool isProfitableToCSE(unsigned CSReg, unsigned Reg,
98                            MachineInstr *CSMI, MachineInstr *MI);
99     void EnterScope(MachineBasicBlock *MBB);
100     void ExitScope(MachineBasicBlock *MBB);
101     bool ProcessBlock(MachineBasicBlock *MBB);
102     void ExitScopeIfDone(MachineDomTreeNode *Node,
103                          DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren);
104     bool PerformCSE(MachineDomTreeNode *Node);
105   };
106 } // end anonymous namespace
107
108 char MachineCSE::ID = 0;
109 char &llvm::MachineCSEID = MachineCSE::ID;
110 INITIALIZE_PASS_BEGIN(MachineCSE, "machine-cse",
111                 "Machine Common Subexpression Elimination", false, false)
112 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
113 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
114 INITIALIZE_PASS_END(MachineCSE, "machine-cse",
115                 "Machine Common Subexpression Elimination", false, false)
116
117 bool MachineCSE::PerformTrivialCoalescing(MachineInstr *MI,
118                                           MachineBasicBlock *MBB) {
119   bool Changed = false;
120   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
121     MachineOperand &MO = MI->getOperand(i);
122     if (!MO.isReg() || !MO.isUse())
123       continue;
124     unsigned Reg = MO.getReg();
125     if (!TargetRegisterInfo::isVirtualRegister(Reg))
126       continue;
127     if (!MRI->hasOneNonDBGUse(Reg))
128       // Only coalesce single use copies. This ensure the copy will be
129       // deleted.
130       continue;
131     MachineInstr *DefMI = MRI->getVRegDef(Reg);
132     if (DefMI->getParent() != MBB)
133       continue;
134     if (!DefMI->isCopy())
135       continue;
136     unsigned SrcReg = DefMI->getOperand(1).getReg();
137     if (!TargetRegisterInfo::isVirtualRegister(SrcReg))
138       continue;
139     if (DefMI->getOperand(0).getSubReg() || DefMI->getOperand(1).getSubReg())
140       continue;
141     if (!MRI->constrainRegClass(SrcReg, MRI->getRegClass(Reg)))
142       continue;
143     DEBUG(dbgs() << "Coalescing: " << *DefMI);
144     DEBUG(dbgs() << "***     to: " << *MI);
145     MO.setReg(SrcReg);
146     MRI->clearKillFlags(SrcReg);
147     DefMI->eraseFromParent();
148     ++NumCoalesces;
149     Changed = true;
150   }
151
152   return Changed;
153 }
154
155 bool
156 MachineCSE::isPhysDefTriviallyDead(unsigned Reg,
157                                    MachineBasicBlock::const_iterator I,
158                                    MachineBasicBlock::const_iterator E) const {
159   unsigned LookAheadLeft = LookAheadLimit;
160   while (LookAheadLeft) {
161     // Skip over dbg_value's.
162     while (I != E && I->isDebugValue())
163       ++I;
164
165     if (I == E)
166       // Reached end of block, register is obviously dead.
167       return true;
168
169     bool SeenDef = false;
170     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
171       const MachineOperand &MO = I->getOperand(i);
172       if (MO.isRegMask() && MO.clobbersPhysReg(Reg))
173         SeenDef = true;
174       if (!MO.isReg() || !MO.getReg())
175         continue;
176       if (!TRI->regsOverlap(MO.getReg(), Reg))
177         continue;
178       if (MO.isUse())
179         // Found a use!
180         return false;
181       SeenDef = true;
182     }
183     if (SeenDef)
184       // See a def of Reg (or an alias) before encountering any use, it's
185       // trivially dead.
186       return true;
187
188     --LookAheadLeft;
189     ++I;
190   }
191   return false;
192 }
193
194 /// hasLivePhysRegDefUses - Return true if the specified instruction read/write
195 /// physical registers (except for dead defs of physical registers). It also
196 /// returns the physical register def by reference if it's the only one and the
197 /// instruction does not uses a physical register.
198 bool MachineCSE::hasLivePhysRegDefUses(const MachineInstr *MI,
199                                        const MachineBasicBlock *MBB,
200                                        SmallSet<unsigned,8> &PhysRefs,
201                                        SmallVector<unsigned,2> &PhysDefs) const{
202   MachineBasicBlock::const_iterator I = MI; I = llvm::next(I);
203   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
204     const MachineOperand &MO = MI->getOperand(i);
205     if (!MO.isReg())
206       continue;
207     unsigned Reg = MO.getReg();
208     if (!Reg)
209       continue;
210     if (TargetRegisterInfo::isVirtualRegister(Reg))
211       continue;
212     // If the def is dead, it's ok. But the def may not marked "dead". That's
213     // common since this pass is run before livevariables. We can scan
214     // forward a few instructions and check if it is obviously dead.
215     if (MO.isDef() &&
216         (MO.isDead() || isPhysDefTriviallyDead(Reg, I, MBB->end())))
217       continue;
218     // Reading constant physregs is ok.
219     if (!MRI->isConstantPhysReg(Reg, *MBB->getParent()))
220       for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
221         PhysRefs.insert(*AI);
222     if (MO.isDef())
223       PhysDefs.push_back(Reg);
224   }
225
226   return !PhysRefs.empty();
227 }
228
229 bool MachineCSE::PhysRegDefsReach(MachineInstr *CSMI, MachineInstr *MI,
230                                   SmallSet<unsigned,8> &PhysRefs,
231                                   SmallVector<unsigned,2> &PhysDefs,
232                                   bool &NonLocal) const {
233   // For now conservatively returns false if the common subexpression is
234   // not in the same basic block as the given instruction. The only exception
235   // is if the common subexpression is in the sole predecessor block.
236   const MachineBasicBlock *MBB = MI->getParent();
237   const MachineBasicBlock *CSMBB = CSMI->getParent();
238
239   bool CrossMBB = false;
240   if (CSMBB != MBB) {
241     if (MBB->pred_size() != 1 || *MBB->pred_begin() != CSMBB)
242       return false;
243
244     for (unsigned i = 0, e = PhysDefs.size(); i != e; ++i) {
245       if (AllocatableRegs.test(PhysDefs[i]) || ReservedRegs.test(PhysDefs[i]))
246         // Avoid extending live range of physical registers if they are
247         //allocatable or reserved.
248         return false;
249     }
250     CrossMBB = true;
251   }
252   MachineBasicBlock::const_iterator I = CSMI; I = llvm::next(I);
253   MachineBasicBlock::const_iterator E = MI;
254   MachineBasicBlock::const_iterator EE = CSMBB->end();
255   unsigned LookAheadLeft = LookAheadLimit;
256   while (LookAheadLeft) {
257     // Skip over dbg_value's.
258     while (I != E && I != EE && I->isDebugValue())
259       ++I;
260
261     if (I == EE) {
262       assert(CrossMBB && "Reaching end-of-MBB without finding MI?");
263       (void)CrossMBB;
264       CrossMBB = false;
265       NonLocal = true;
266       I = MBB->begin();
267       EE = MBB->end();
268       continue;
269     }
270
271     if (I == E)
272       return true;
273
274     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
275       const MachineOperand &MO = I->getOperand(i);
276       // RegMasks go on instructions like calls that clobber lots of physregs.
277       // Don't attempt to CSE across such an instruction.
278       if (MO.isRegMask())
279         return false;
280       if (!MO.isReg() || !MO.isDef())
281         continue;
282       unsigned MOReg = MO.getReg();
283       if (TargetRegisterInfo::isVirtualRegister(MOReg))
284         continue;
285       if (PhysRefs.count(MOReg))
286         return false;
287     }
288
289     --LookAheadLeft;
290     ++I;
291   }
292
293   return false;
294 }
295
296 bool MachineCSE::isCSECandidate(MachineInstr *MI) {
297   if (MI->isLabel() || MI->isPHI() || MI->isImplicitDef() ||
298       MI->isKill() || MI->isInlineAsm() || MI->isDebugValue())
299     return false;
300
301   // Ignore copies.
302   if (MI->isCopyLike())
303     return false;
304
305   // Ignore stuff that we obviously can't move.
306   if (MI->mayStore() || MI->isCall() || MI->isTerminator() ||
307       MI->hasUnmodeledSideEffects())
308     return false;
309
310   if (MI->mayLoad()) {
311     // Okay, this instruction does a load. As a refinement, we allow the target
312     // to decide whether the loaded value is actually a constant. If so, we can
313     // actually use it as a load.
314     if (!MI->isInvariantLoad(AA))
315       // FIXME: we should be able to hoist loads with no other side effects if
316       // there are no other instructions which can change memory in this loop.
317       // This is a trivial form of alias analysis.
318       return false;
319   }
320   return true;
321 }
322
323 /// isProfitableToCSE - Return true if it's profitable to eliminate MI with a
324 /// common expression that defines Reg.
325 bool MachineCSE::isProfitableToCSE(unsigned CSReg, unsigned Reg,
326                                    MachineInstr *CSMI, MachineInstr *MI) {
327   // FIXME: Heuristics that works around the lack the live range splitting.
328
329   // If CSReg is used at all uses of Reg, CSE should not increase register
330   // pressure of CSReg.
331   bool MayIncreasePressure = true;
332   if (TargetRegisterInfo::isVirtualRegister(CSReg) &&
333       TargetRegisterInfo::isVirtualRegister(Reg)) {
334     MayIncreasePressure = false;
335     SmallPtrSet<MachineInstr*, 8> CSUses;
336     for (MachineRegisterInfo::use_nodbg_iterator I =MRI->use_nodbg_begin(CSReg),
337          E = MRI->use_nodbg_end(); I != E; ++I) {
338       MachineInstr *Use = &*I;
339       CSUses.insert(Use);
340     }
341     for (MachineRegisterInfo::use_nodbg_iterator I = MRI->use_nodbg_begin(Reg),
342          E = MRI->use_nodbg_end(); I != E; ++I) {
343       MachineInstr *Use = &*I;
344       if (!CSUses.count(Use)) {
345         MayIncreasePressure = true;
346         break;
347       }
348     }
349   }
350   if (!MayIncreasePressure) return true;
351
352   // Heuristics #1: Don't CSE "cheap" computation if the def is not local or in
353   // an immediate predecessor. We don't want to increase register pressure and
354   // end up causing other computation to be spilled.
355   if (MI->isAsCheapAsAMove()) {
356     MachineBasicBlock *CSBB = CSMI->getParent();
357     MachineBasicBlock *BB = MI->getParent();
358     if (CSBB != BB && !CSBB->isSuccessor(BB))
359       return false;
360   }
361
362   // Heuristics #2: If the expression doesn't not use a vr and the only use
363   // of the redundant computation are copies, do not cse.
364   bool HasVRegUse = false;
365   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
366     const MachineOperand &MO = MI->getOperand(i);
367     if (MO.isReg() && MO.isUse() &&
368         TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
369       HasVRegUse = true;
370       break;
371     }
372   }
373   if (!HasVRegUse) {
374     bool HasNonCopyUse = false;
375     for (MachineRegisterInfo::use_nodbg_iterator I =  MRI->use_nodbg_begin(Reg),
376            E = MRI->use_nodbg_end(); I != E; ++I) {
377       MachineInstr *Use = &*I;
378       // Ignore copies.
379       if (!Use->isCopyLike()) {
380         HasNonCopyUse = true;
381         break;
382       }
383     }
384     if (!HasNonCopyUse)
385       return false;
386   }
387
388   // Heuristics #3: If the common subexpression is used by PHIs, do not reuse
389   // it unless the defined value is already used in the BB of the new use.
390   bool HasPHI = false;
391   SmallPtrSet<MachineBasicBlock*, 4> CSBBs;
392   for (MachineRegisterInfo::use_nodbg_iterator I =  MRI->use_nodbg_begin(CSReg),
393        E = MRI->use_nodbg_end(); I != E; ++I) {
394     MachineInstr *Use = &*I;
395     HasPHI |= Use->isPHI();
396     CSBBs.insert(Use->getParent());
397   }
398
399   if (!HasPHI)
400     return true;
401   return CSBBs.count(MI->getParent());
402 }
403
404 void MachineCSE::EnterScope(MachineBasicBlock *MBB) {
405   DEBUG(dbgs() << "Entering: " << MBB->getName() << '\n');
406   ScopeType *Scope = new ScopeType(VNT);
407   ScopeMap[MBB] = Scope;
408 }
409
410 void MachineCSE::ExitScope(MachineBasicBlock *MBB) {
411   DEBUG(dbgs() << "Exiting: " << MBB->getName() << '\n');
412   DenseMap<MachineBasicBlock*, ScopeType*>::iterator SI = ScopeMap.find(MBB);
413   assert(SI != ScopeMap.end());
414   ScopeMap.erase(SI);
415   delete SI->second;
416 }
417
418 bool MachineCSE::ProcessBlock(MachineBasicBlock *MBB) {
419   bool Changed = false;
420
421   SmallVector<std::pair<unsigned, unsigned>, 8> CSEPairs;
422   SmallVector<unsigned, 2> ImplicitDefsToUpdate;
423   for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E; ) {
424     MachineInstr *MI = &*I;
425     ++I;
426
427     if (!isCSECandidate(MI))
428       continue;
429
430     bool FoundCSE = VNT.count(MI);
431     if (!FoundCSE) {
432       // Look for trivial copy coalescing opportunities.
433       if (PerformTrivialCoalescing(MI, MBB)) {
434         Changed = true;
435
436         // After coalescing MI itself may become a copy.
437         if (MI->isCopyLike())
438           continue;
439         FoundCSE = VNT.count(MI);
440       }
441     }
442
443     // Commute commutable instructions.
444     bool Commuted = false;
445     if (!FoundCSE && MI->isCommutable()) {
446       MachineInstr *NewMI = TII->commuteInstruction(MI);
447       if (NewMI) {
448         Commuted = true;
449         FoundCSE = VNT.count(NewMI);
450         if (NewMI != MI) {
451           // New instruction. It doesn't need to be kept.
452           NewMI->eraseFromParent();
453           Changed = true;
454         } else if (!FoundCSE)
455           // MI was changed but it didn't help, commute it back!
456           (void)TII->commuteInstruction(MI);
457       }
458     }
459
460     // If the instruction defines physical registers and the values *may* be
461     // used, then it's not safe to replace it with a common subexpression.
462     // It's also not safe if the instruction uses physical registers.
463     bool CrossMBBPhysDef = false;
464     SmallSet<unsigned, 8> PhysRefs;
465     SmallVector<unsigned, 2> PhysDefs;
466     if (FoundCSE && hasLivePhysRegDefUses(MI, MBB, PhysRefs, PhysDefs)) {
467       FoundCSE = false;
468
469       // ... Unless the CS is local or is in the sole predecessor block
470       // and it also defines the physical register which is not clobbered
471       // in between and the physical register uses were not clobbered.
472       unsigned CSVN = VNT.lookup(MI);
473       MachineInstr *CSMI = Exps[CSVN];
474       if (PhysRegDefsReach(CSMI, MI, PhysRefs, PhysDefs, CrossMBBPhysDef))
475         FoundCSE = true;
476     }
477
478     if (!FoundCSE) {
479       VNT.insert(MI, CurrVN++);
480       Exps.push_back(MI);
481       continue;
482     }
483
484     // Found a common subexpression, eliminate it.
485     unsigned CSVN = VNT.lookup(MI);
486     MachineInstr *CSMI = Exps[CSVN];
487     DEBUG(dbgs() << "Examining: " << *MI);
488     DEBUG(dbgs() << "*** Found a common subexpression: " << *CSMI);
489
490     // Check if it's profitable to perform this CSE.
491     bool DoCSE = true;
492     unsigned NumDefs = MI->getDesc().getNumDefs() +
493                        MI->getDesc().getNumImplicitDefs();
494     
495     for (unsigned i = 0, e = MI->getNumOperands(); NumDefs && i != e; ++i) {
496       MachineOperand &MO = MI->getOperand(i);
497       if (!MO.isReg() || !MO.isDef())
498         continue;
499       unsigned OldReg = MO.getReg();
500       unsigned NewReg = CSMI->getOperand(i).getReg();
501
502       // Go through implicit defs of CSMI and MI, if a def is not dead at MI,
503       // we should make sure it is not dead at CSMI.
504       if (MO.isImplicit() && !MO.isDead() && CSMI->getOperand(i).isDead())
505         ImplicitDefsToUpdate.push_back(i);
506       if (OldReg == NewReg) {
507         --NumDefs;
508         continue;
509       }
510
511       assert(TargetRegisterInfo::isVirtualRegister(OldReg) &&
512              TargetRegisterInfo::isVirtualRegister(NewReg) &&
513              "Do not CSE physical register defs!");
514
515       if (!isProfitableToCSE(NewReg, OldReg, CSMI, MI)) {
516         DEBUG(dbgs() << "*** Not profitable, avoid CSE!\n");
517         DoCSE = false;
518         break;
519       }
520
521       // Don't perform CSE if the result of the old instruction cannot exist
522       // within the register class of the new instruction.
523       const TargetRegisterClass *OldRC = MRI->getRegClass(OldReg);
524       if (!MRI->constrainRegClass(NewReg, OldRC)) {
525         DEBUG(dbgs() << "*** Not the same register class, avoid CSE!\n");
526         DoCSE = false;
527         break;
528       }
529
530       CSEPairs.push_back(std::make_pair(OldReg, NewReg));
531       --NumDefs;
532     }
533
534     // Actually perform the elimination.
535     if (DoCSE) {
536       for (unsigned i = 0, e = CSEPairs.size(); i != e; ++i) {
537         MRI->replaceRegWith(CSEPairs[i].first, CSEPairs[i].second);
538         MRI->clearKillFlags(CSEPairs[i].second);
539       }
540
541       // Go through implicit defs of CSMI and MI, if a def is not dead at MI,
542       // we should make sure it is not dead at CSMI.
543       for (unsigned i = 0, e = ImplicitDefsToUpdate.size(); i != e; ++i)
544         CSMI->getOperand(ImplicitDefsToUpdate[i]).setIsDead(false);
545
546       if (CrossMBBPhysDef) {
547         // Add physical register defs now coming in from a predecessor to MBB
548         // livein list.
549         while (!PhysDefs.empty()) {
550           unsigned LiveIn = PhysDefs.pop_back_val();
551           if (!MBB->isLiveIn(LiveIn))
552             MBB->addLiveIn(LiveIn);
553         }
554         ++NumCrossBBCSEs;
555       }
556
557       MI->eraseFromParent();
558       ++NumCSEs;
559       if (!PhysRefs.empty())
560         ++NumPhysCSEs;
561       if (Commuted)
562         ++NumCommutes;
563       Changed = true;
564     } else {
565       VNT.insert(MI, CurrVN++);
566       Exps.push_back(MI);
567     }
568     CSEPairs.clear();
569     ImplicitDefsToUpdate.clear();
570   }
571
572   return Changed;
573 }
574
575 /// ExitScopeIfDone - Destroy scope for the MBB that corresponds to the given
576 /// dominator tree node if its a leaf or all of its children are done. Walk
577 /// up the dominator tree to destroy ancestors which are now done.
578 void
579 MachineCSE::ExitScopeIfDone(MachineDomTreeNode *Node,
580                         DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren) {
581   if (OpenChildren[Node])
582     return;
583
584   // Pop scope.
585   ExitScope(Node->getBlock());
586
587   // Now traverse upwards to pop ancestors whose offsprings are all done.
588   while (MachineDomTreeNode *Parent = Node->getIDom()) {
589     unsigned Left = --OpenChildren[Parent];
590     if (Left != 0)
591       break;
592     ExitScope(Parent->getBlock());
593     Node = Parent;
594   }
595 }
596
597 bool MachineCSE::PerformCSE(MachineDomTreeNode *Node) {
598   SmallVector<MachineDomTreeNode*, 32> Scopes;
599   SmallVector<MachineDomTreeNode*, 8> WorkList;
600   DenseMap<MachineDomTreeNode*, unsigned> OpenChildren;
601
602   CurrVN = 0;
603
604   // Perform a DFS walk to determine the order of visit.
605   WorkList.push_back(Node);
606   do {
607     Node = WorkList.pop_back_val();
608     Scopes.push_back(Node);
609     const std::vector<MachineDomTreeNode*> &Children = Node->getChildren();
610     unsigned NumChildren = Children.size();
611     OpenChildren[Node] = NumChildren;
612     for (unsigned i = 0; i != NumChildren; ++i) {
613       MachineDomTreeNode *Child = Children[i];
614       WorkList.push_back(Child);
615     }
616   } while (!WorkList.empty());
617
618   // Now perform CSE.
619   bool Changed = false;
620   for (unsigned i = 0, e = Scopes.size(); i != e; ++i) {
621     MachineDomTreeNode *Node = Scopes[i];
622     MachineBasicBlock *MBB = Node->getBlock();
623     EnterScope(MBB);
624     Changed |= ProcessBlock(MBB);
625     // If it's a leaf node, it's done. Traverse upwards to pop ancestors.
626     ExitScopeIfDone(Node, OpenChildren);
627   }
628
629   return Changed;
630 }
631
632 bool MachineCSE::runOnMachineFunction(MachineFunction &MF) {
633   TII = MF.getTarget().getInstrInfo();
634   TRI = MF.getTarget().getRegisterInfo();
635   MRI = &MF.getRegInfo();
636   AA = &getAnalysis<AliasAnalysis>();
637   DT = &getAnalysis<MachineDominatorTree>();
638   AllocatableRegs = TRI->getAllocatableSet(MF);
639   ReservedRegs = TRI->getReservedRegs(MF);
640   return PerformCSE(DT->getRootNode());
641 }