f81ad1cc6b9f89e056b6520bc3d9d2984cb665bf
[oota-llvm.git] / lib / CodeGen / LiveVariables.cpp
1 //===-- LiveVariables.cpp - Live Variable Analysis for Machine Code -------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the LiveVariable analysis pass.  For each machine
11 // instruction in the function, this pass calculates the set of registers that
12 // are immediately dead after the instruction (i.e., the instruction calculates
13 // the value, but it is never used) and the set of registers that are used by
14 // the instruction, but are never used after the instruction (i.e., they are
15 // killed).
16 //
17 // This class computes live variables using a sparse implementation based on
18 // the machine code SSA form.  This class computes live variable information for
19 // each virtual and _register allocatable_ physical register in a function.  It
20 // uses the dominance properties of SSA form to efficiently compute live
21 // variables for virtual registers, and assumes that physical registers are only
22 // live within a single basic block (allowing it to do a single local analysis
23 // to resolve physical register lifetimes in each basic block).  If a physical
24 // register is not register allocatable, it is not tracked.  This is useful for
25 // things like the stack pointer and condition codes.
26 //
27 //===----------------------------------------------------------------------===//
28
29 #include "llvm/CodeGen/LiveVariables.h"
30 #include "llvm/ADT/DepthFirstIterator.h"
31 #include "llvm/ADT/STLExtras.h"
32 #include "llvm/ADT/SmallPtrSet.h"
33 #include "llvm/ADT/SmallSet.h"
34 #include "llvm/CodeGen/MachineInstr.h"
35 #include "llvm/CodeGen/MachineRegisterInfo.h"
36 #include "llvm/CodeGen/Passes.h"
37 #include "llvm/Support/Debug.h"
38 #include "llvm/Support/ErrorHandling.h"
39 #include "llvm/Target/TargetInstrInfo.h"
40 #include "llvm/Target/TargetMachine.h"
41 #include <algorithm>
42 using namespace llvm;
43
44 char LiveVariables::ID = 0;
45 char &llvm::LiveVariablesID = LiveVariables::ID;
46 INITIALIZE_PASS_BEGIN(LiveVariables, "livevars",
47                 "Live Variable Analysis", false, false)
48 INITIALIZE_PASS_DEPENDENCY(UnreachableMachineBlockElim)
49 INITIALIZE_PASS_END(LiveVariables, "livevars",
50                 "Live Variable Analysis", false, false)
51
52
53 void LiveVariables::getAnalysisUsage(AnalysisUsage &AU) const {
54   AU.addRequiredID(UnreachableMachineBlockElimID);
55   AU.setPreservesAll();
56   MachineFunctionPass::getAnalysisUsage(AU);
57 }
58
59 MachineInstr *
60 LiveVariables::VarInfo::findKill(const MachineBasicBlock *MBB) const {
61   for (unsigned i = 0, e = Kills.size(); i != e; ++i)
62     if (Kills[i]->getParent() == MBB)
63       return Kills[i];
64   return NULL;
65 }
66
67 void LiveVariables::VarInfo::dump() const {
68 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
69   dbgs() << "  Alive in blocks: ";
70   for (SparseBitVector<>::iterator I = AliveBlocks.begin(),
71            E = AliveBlocks.end(); I != E; ++I)
72     dbgs() << *I << ", ";
73   dbgs() << "\n  Killed by:";
74   if (Kills.empty())
75     dbgs() << " No instructions.\n";
76   else {
77     for (unsigned i = 0, e = Kills.size(); i != e; ++i)
78       dbgs() << "\n    #" << i << ": " << *Kills[i];
79     dbgs() << "\n";
80   }
81 #endif
82 }
83
84 /// getVarInfo - Get (possibly creating) a VarInfo object for the given vreg.
85 LiveVariables::VarInfo &LiveVariables::getVarInfo(unsigned RegIdx) {
86   assert(TargetRegisterInfo::isVirtualRegister(RegIdx) &&
87          "getVarInfo: not a virtual register!");
88   VirtRegInfo.grow(RegIdx);
89   return VirtRegInfo[RegIdx];
90 }
91
92 void LiveVariables::MarkVirtRegAliveInBlock(VarInfo& VRInfo,
93                                             MachineBasicBlock *DefBlock,
94                                             MachineBasicBlock *MBB,
95                                     std::vector<MachineBasicBlock*> &WorkList) {
96   unsigned BBNum = MBB->getNumber();
97
98   // Check to see if this basic block is one of the killing blocks.  If so,
99   // remove it.
100   for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i)
101     if (VRInfo.Kills[i]->getParent() == MBB) {
102       VRInfo.Kills.erase(VRInfo.Kills.begin()+i);  // Erase entry
103       break;
104     }
105
106   if (MBB == DefBlock) return;  // Terminate recursion
107
108   if (VRInfo.AliveBlocks.test(BBNum))
109     return;  // We already know the block is live
110
111   // Mark the variable known alive in this bb
112   VRInfo.AliveBlocks.set(BBNum);
113
114   assert(MBB != &MF->front() && "Can't find reaching def for virtreg");
115   WorkList.insert(WorkList.end(), MBB->pred_rbegin(), MBB->pred_rend());
116 }
117
118 void LiveVariables::MarkVirtRegAliveInBlock(VarInfo &VRInfo,
119                                             MachineBasicBlock *DefBlock,
120                                             MachineBasicBlock *MBB) {
121   std::vector<MachineBasicBlock*> WorkList;
122   MarkVirtRegAliveInBlock(VRInfo, DefBlock, MBB, WorkList);
123
124   while (!WorkList.empty()) {
125     MachineBasicBlock *Pred = WorkList.back();
126     WorkList.pop_back();
127     MarkVirtRegAliveInBlock(VRInfo, DefBlock, Pred, WorkList);
128   }
129 }
130
131 void LiveVariables::HandleVirtRegUse(unsigned reg, MachineBasicBlock *MBB,
132                                      MachineInstr *MI) {
133   assert(MRI->getVRegDef(reg) && "Register use before def!");
134
135   unsigned BBNum = MBB->getNumber();
136
137   VarInfo& VRInfo = getVarInfo(reg);
138
139   // Check to see if this basic block is already a kill block.
140   if (!VRInfo.Kills.empty() && VRInfo.Kills.back()->getParent() == MBB) {
141     // Yes, this register is killed in this basic block already. Increase the
142     // live range by updating the kill instruction.
143     VRInfo.Kills.back() = MI;
144     return;
145   }
146
147 #ifndef NDEBUG
148   for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i)
149     assert(VRInfo.Kills[i]->getParent() != MBB && "entry should be at end!");
150 #endif
151
152   // This situation can occur:
153   //
154   //     ,------.
155   //     |      |
156   //     |      v
157   //     |   t2 = phi ... t1 ...
158   //     |      |
159   //     |      v
160   //     |   t1 = ...
161   //     |  ... = ... t1 ...
162   //     |      |
163   //     `------'
164   //
165   // where there is a use in a PHI node that's a predecessor to the defining
166   // block. We don't want to mark all predecessors as having the value "alive"
167   // in this case.
168   if (MBB == MRI->getVRegDef(reg)->getParent()) return;
169
170   // Add a new kill entry for this basic block. If this virtual register is
171   // already marked as alive in this basic block, that means it is alive in at
172   // least one of the successor blocks, it's not a kill.
173   if (!VRInfo.AliveBlocks.test(BBNum))
174     VRInfo.Kills.push_back(MI);
175
176   // Update all dominating blocks to mark them as "known live".
177   for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
178          E = MBB->pred_end(); PI != E; ++PI)
179     MarkVirtRegAliveInBlock(VRInfo, MRI->getVRegDef(reg)->getParent(), *PI);
180 }
181
182 void LiveVariables::HandleVirtRegDef(unsigned Reg, MachineInstr *MI) {
183   VarInfo &VRInfo = getVarInfo(Reg);
184
185   if (VRInfo.AliveBlocks.empty())
186     // If vr is not alive in any block, then defaults to dead.
187     VRInfo.Kills.push_back(MI);
188 }
189
190 /// FindLastPartialDef - Return the last partial def of the specified register.
191 /// Also returns the sub-registers that're defined by the instruction.
192 MachineInstr *LiveVariables::FindLastPartialDef(unsigned Reg,
193                                             SmallSet<unsigned,4> &PartDefRegs) {
194   unsigned LastDefReg = 0;
195   unsigned LastDefDist = 0;
196   MachineInstr *LastDef = NULL;
197   for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) {
198     unsigned SubReg = *SubRegs;
199     MachineInstr *Def = PhysRegDef[SubReg];
200     if (!Def)
201       continue;
202     unsigned Dist = DistanceMap[Def];
203     if (Dist > LastDefDist) {
204       LastDefReg  = SubReg;
205       LastDef     = Def;
206       LastDefDist = Dist;
207     }
208   }
209
210   if (!LastDef)
211     return 0;
212
213   PartDefRegs.insert(LastDefReg);
214   for (unsigned i = 0, e = LastDef->getNumOperands(); i != e; ++i) {
215     MachineOperand &MO = LastDef->getOperand(i);
216     if (!MO.isReg() || !MO.isDef() || MO.getReg() == 0)
217       continue;
218     unsigned DefReg = MO.getReg();
219     if (TRI->isSubRegister(Reg, DefReg)) {
220       PartDefRegs.insert(DefReg);
221       for (MCSubRegIterator SubRegs(DefReg, TRI); SubRegs.isValid(); ++SubRegs)
222         PartDefRegs.insert(*SubRegs);
223     }
224   }
225   return LastDef;
226 }
227
228 /// HandlePhysRegUse - Turn previous partial def's into read/mod/writes. Add
229 /// implicit defs to a machine instruction if there was an earlier def of its
230 /// super-register.
231 void LiveVariables::HandlePhysRegUse(unsigned Reg, MachineInstr *MI) {
232   MachineInstr *LastDef = PhysRegDef[Reg];
233   // If there was a previous use or a "full" def all is well.
234   if (!LastDef && !PhysRegUse[Reg]) {
235     // Otherwise, the last sub-register def implicitly defines this register.
236     // e.g.
237     // AH =
238     // AL = ... <imp-def EAX>, <imp-kill AH>
239     //    = AH
240     // ...
241     //    = EAX
242     // All of the sub-registers must have been defined before the use of Reg!
243     SmallSet<unsigned, 4> PartDefRegs;
244     MachineInstr *LastPartialDef = FindLastPartialDef(Reg, PartDefRegs);
245     // If LastPartialDef is NULL, it must be using a livein register.
246     if (LastPartialDef) {
247       LastPartialDef->addOperand(MachineOperand::CreateReg(Reg, true/*IsDef*/,
248                                                            true/*IsImp*/));
249       PhysRegDef[Reg] = LastPartialDef;
250       SmallSet<unsigned, 8> Processed;
251       for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) {
252         unsigned SubReg = *SubRegs;
253         if (Processed.count(SubReg))
254           continue;
255         if (PartDefRegs.count(SubReg))
256           continue;
257         // This part of Reg was defined before the last partial def. It's killed
258         // here.
259         LastPartialDef->addOperand(MachineOperand::CreateReg(SubReg,
260                                                              false/*IsDef*/,
261                                                              true/*IsImp*/));
262         PhysRegDef[SubReg] = LastPartialDef;
263         for (MCSubRegIterator SS(SubReg, TRI); SS.isValid(); ++SS)
264           Processed.insert(*SS);
265       }
266     }
267   } else if (LastDef && !PhysRegUse[Reg] &&
268              !LastDef->findRegisterDefOperand(Reg))
269     // Last def defines the super register, add an implicit def of reg.
270     LastDef->addOperand(MachineOperand::CreateReg(Reg, true/*IsDef*/,
271                                                   true/*IsImp*/));
272
273   // Remember this use.
274   PhysRegUse[Reg]  = MI;
275   for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs)
276     PhysRegUse[*SubRegs] =  MI;
277 }
278
279 /// FindLastRefOrPartRef - Return the last reference or partial reference of
280 /// the specified register.
281 MachineInstr *LiveVariables::FindLastRefOrPartRef(unsigned Reg) {
282   MachineInstr *LastDef = PhysRegDef[Reg];
283   MachineInstr *LastUse = PhysRegUse[Reg];
284   if (!LastDef && !LastUse)
285     return 0;
286
287   MachineInstr *LastRefOrPartRef = LastUse ? LastUse : LastDef;
288   unsigned LastRefOrPartRefDist = DistanceMap[LastRefOrPartRef];
289   unsigned LastPartDefDist = 0;
290   for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) {
291     unsigned SubReg = *SubRegs;
292     MachineInstr *Def = PhysRegDef[SubReg];
293     if (Def && Def != LastDef) {
294       // There was a def of this sub-register in between. This is a partial
295       // def, keep track of the last one.
296       unsigned Dist = DistanceMap[Def];
297       if (Dist > LastPartDefDist)
298         LastPartDefDist = Dist;
299     } else if (MachineInstr *Use = PhysRegUse[SubReg]) {
300       unsigned Dist = DistanceMap[Use];
301       if (Dist > LastRefOrPartRefDist) {
302         LastRefOrPartRefDist = Dist;
303         LastRefOrPartRef = Use;
304       }
305     }
306   }
307
308   return LastRefOrPartRef;
309 }
310
311 bool LiveVariables::HandlePhysRegKill(unsigned Reg, MachineInstr *MI) {
312   MachineInstr *LastDef = PhysRegDef[Reg];
313   MachineInstr *LastUse = PhysRegUse[Reg];
314   if (!LastDef && !LastUse)
315     return false;
316
317   MachineInstr *LastRefOrPartRef = LastUse ? LastUse : LastDef;
318   unsigned LastRefOrPartRefDist = DistanceMap[LastRefOrPartRef];
319   // The whole register is used.
320   // AL =
321   // AH =
322   //
323   //    = AX
324   //    = AL, AX<imp-use, kill>
325   // AX =
326   //
327   // Or whole register is defined, but not used at all.
328   // AX<dead> =
329   // ...
330   // AX =
331   //
332   // Or whole register is defined, but only partly used.
333   // AX<dead> = AL<imp-def>
334   //    = AL<kill>
335   // AX =
336   MachineInstr *LastPartDef = 0;
337   unsigned LastPartDefDist = 0;
338   SmallSet<unsigned, 8> PartUses;
339   for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) {
340     unsigned SubReg = *SubRegs;
341     MachineInstr *Def = PhysRegDef[SubReg];
342     if (Def && Def != LastDef) {
343       // There was a def of this sub-register in between. This is a partial
344       // def, keep track of the last one.
345       unsigned Dist = DistanceMap[Def];
346       if (Dist > LastPartDefDist) {
347         LastPartDefDist = Dist;
348         LastPartDef = Def;
349       }
350       continue;
351     }
352     if (MachineInstr *Use = PhysRegUse[SubReg]) {
353       PartUses.insert(SubReg);
354       for (MCSubRegIterator SS(SubReg, TRI); SS.isValid(); ++SS)
355         PartUses.insert(*SS);
356       unsigned Dist = DistanceMap[Use];
357       if (Dist > LastRefOrPartRefDist) {
358         LastRefOrPartRefDist = Dist;
359         LastRefOrPartRef = Use;
360       }
361     }
362   }
363
364   if (!PhysRegUse[Reg]) {
365     // Partial uses. Mark register def dead and add implicit def of
366     // sub-registers which are used.
367     // EAX<dead>  = op  AL<imp-def>
368     // That is, EAX def is dead but AL def extends pass it.
369     PhysRegDef[Reg]->addRegisterDead(Reg, TRI, true);
370     for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) {
371       unsigned SubReg = *SubRegs;
372       if (!PartUses.count(SubReg))
373         continue;
374       bool NeedDef = true;
375       if (PhysRegDef[Reg] == PhysRegDef[SubReg]) {
376         MachineOperand *MO = PhysRegDef[Reg]->findRegisterDefOperand(SubReg);
377         if (MO) {
378           NeedDef = false;
379           assert(!MO->isDead());
380         }
381       }
382       if (NeedDef)
383         PhysRegDef[Reg]->addOperand(MachineOperand::CreateReg(SubReg,
384                                                  true/*IsDef*/, true/*IsImp*/));
385       MachineInstr *LastSubRef = FindLastRefOrPartRef(SubReg);
386       if (LastSubRef)
387         LastSubRef->addRegisterKilled(SubReg, TRI, true);
388       else {
389         LastRefOrPartRef->addRegisterKilled(SubReg, TRI, true);
390         PhysRegUse[SubReg] = LastRefOrPartRef;
391         for (MCSubRegIterator SS(SubReg, TRI); SS.isValid(); ++SS)
392           PhysRegUse[*SS] = LastRefOrPartRef;
393       }
394       for (MCSubRegIterator SS(SubReg, TRI); SS.isValid(); ++SS)
395         PartUses.erase(*SS);
396     }
397   } else if (LastRefOrPartRef == PhysRegDef[Reg] && LastRefOrPartRef != MI) {
398     if (LastPartDef)
399       // The last partial def kills the register.
400       LastPartDef->addOperand(MachineOperand::CreateReg(Reg, false/*IsDef*/,
401                                                 true/*IsImp*/, true/*IsKill*/));
402     else {
403       MachineOperand *MO =
404         LastRefOrPartRef->findRegisterDefOperand(Reg, false, TRI);
405       bool NeedEC = MO->isEarlyClobber() && MO->getReg() != Reg;
406       // If the last reference is the last def, then it's not used at all.
407       // That is, unless we are currently processing the last reference itself.
408       LastRefOrPartRef->addRegisterDead(Reg, TRI, true);
409       if (NeedEC) {
410         // If we are adding a subreg def and the superreg def is marked early
411         // clobber, add an early clobber marker to the subreg def.
412         MO = LastRefOrPartRef->findRegisterDefOperand(Reg);
413         if (MO)
414           MO->setIsEarlyClobber();
415       }
416     }
417   } else
418     LastRefOrPartRef->addRegisterKilled(Reg, TRI, true);
419   return true;
420 }
421
422 void LiveVariables::HandleRegMask(const MachineOperand &MO) {
423   // Call HandlePhysRegKill() for all live registers clobbered by Mask.
424   // Clobbered registers are always dead, sp there is no need to use
425   // HandlePhysRegDef().
426   for (unsigned Reg = 1, NumRegs = TRI->getNumRegs(); Reg != NumRegs; ++Reg) {
427     // Skip dead regs.
428     if (!PhysRegDef[Reg] && !PhysRegUse[Reg])
429       continue;
430     // Skip mask-preserved regs.
431     if (!MO.clobbersPhysReg(Reg))
432       continue;
433     // Kill the largest clobbered super-register.
434     // This avoids needless implicit operands.
435     unsigned Super = Reg;
436     for (MCSuperRegIterator SR(Reg, TRI); SR.isValid(); ++SR)
437       if ((PhysRegDef[*SR] || PhysRegUse[*SR]) && MO.clobbersPhysReg(*SR))
438         Super = *SR;
439     HandlePhysRegKill(Super, 0);
440   }
441 }
442
443 void LiveVariables::HandlePhysRegDef(unsigned Reg, MachineInstr *MI,
444                                      SmallVector<unsigned, 4> &Defs) {
445   // What parts of the register are previously defined?
446   SmallSet<unsigned, 32> Live;
447   if (PhysRegDef[Reg] || PhysRegUse[Reg]) {
448     Live.insert(Reg);
449     for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs)
450       Live.insert(*SubRegs);
451   } else {
452     for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) {
453       unsigned SubReg = *SubRegs;
454       // If a register isn't itself defined, but all parts that make up of it
455       // are defined, then consider it also defined.
456       // e.g.
457       // AL =
458       // AH =
459       //    = AX
460       if (Live.count(SubReg))
461         continue;
462       if (PhysRegDef[SubReg] || PhysRegUse[SubReg]) {
463         Live.insert(SubReg);
464         for (MCSubRegIterator SS(SubReg, TRI); SS.isValid(); ++SS)
465           Live.insert(*SS);
466       }
467     }
468   }
469
470   // Start from the largest piece, find the last time any part of the register
471   // is referenced.
472   HandlePhysRegKill(Reg, MI);
473   // Only some of the sub-registers are used.
474   for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) {
475     unsigned SubReg = *SubRegs;
476     if (!Live.count(SubReg))
477       // Skip if this sub-register isn't defined.
478       continue;
479     HandlePhysRegKill(SubReg, MI);
480   }
481
482   if (MI)
483     Defs.push_back(Reg);  // Remember this def.
484 }
485
486 void LiveVariables::UpdatePhysRegDefs(MachineInstr *MI,
487                                       SmallVector<unsigned, 4> &Defs) {
488   while (!Defs.empty()) {
489     unsigned Reg = Defs.back();
490     Defs.pop_back();
491     PhysRegDef[Reg]  = MI;
492     PhysRegUse[Reg]  = NULL;
493     for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) {
494       unsigned SubReg = *SubRegs;
495       PhysRegDef[SubReg]  = MI;
496       PhysRegUse[SubReg]  = NULL;
497     }
498   }
499 }
500
501 bool LiveVariables::runOnMachineFunction(MachineFunction &mf) {
502   MF = &mf;
503   MRI = &mf.getRegInfo();
504   TRI = MF->getTarget().getRegisterInfo();
505
506   unsigned NumRegs = TRI->getNumRegs();
507   PhysRegDef  = new MachineInstr*[NumRegs];
508   PhysRegUse  = new MachineInstr*[NumRegs];
509   PHIVarInfo = new SmallVector<unsigned, 4>[MF->getNumBlockIDs()];
510   std::fill(PhysRegDef,  PhysRegDef  + NumRegs, (MachineInstr*)0);
511   std::fill(PhysRegUse,  PhysRegUse  + NumRegs, (MachineInstr*)0);
512   PHIJoins.clear();
513
514   // FIXME: LiveIntervals will be updated to remove its dependence on
515   // LiveVariables to improve compilation time and eliminate bizarre pass
516   // dependencies. Until then, we can't change much in -O0.
517   if (!MRI->isSSA())
518     report_fatal_error("regalloc=... not currently supported with -O0");
519
520   analyzePHINodes(mf);
521
522   // Calculate live variable information in depth first order on the CFG of the
523   // function.  This guarantees that we will see the definition of a virtual
524   // register before its uses due to dominance properties of SSA (except for PHI
525   // nodes, which are treated as a special case).
526   MachineBasicBlock *Entry = MF->begin();
527   SmallPtrSet<MachineBasicBlock*,16> Visited;
528
529   for (df_ext_iterator<MachineBasicBlock*, SmallPtrSet<MachineBasicBlock*,16> >
530          DFI = df_ext_begin(Entry, Visited), E = df_ext_end(Entry, Visited);
531        DFI != E; ++DFI) {
532     MachineBasicBlock *MBB = *DFI;
533
534     // Mark live-in registers as live-in.
535     SmallVector<unsigned, 4> Defs;
536     for (MachineBasicBlock::livein_iterator II = MBB->livein_begin(),
537            EE = MBB->livein_end(); II != EE; ++II) {
538       assert(TargetRegisterInfo::isPhysicalRegister(*II) &&
539              "Cannot have a live-in virtual register!");
540       HandlePhysRegDef(*II, 0, Defs);
541     }
542
543     // Loop over all of the instructions, processing them.
544     DistanceMap.clear();
545     unsigned Dist = 0;
546     for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end();
547          I != E; ++I) {
548       MachineInstr *MI = I;
549       if (MI->isDebugValue())
550         continue;
551       DistanceMap.insert(std::make_pair(MI, Dist++));
552
553       // Process all of the operands of the instruction...
554       unsigned NumOperandsToProcess = MI->getNumOperands();
555
556       // Unless it is a PHI node.  In this case, ONLY process the DEF, not any
557       // of the uses.  They will be handled in other basic blocks.
558       if (MI->isPHI())
559         NumOperandsToProcess = 1;
560
561       // Clear kill and dead markers. LV will recompute them.
562       SmallVector<unsigned, 4> UseRegs;
563       SmallVector<unsigned, 4> DefRegs;
564       SmallVector<unsigned, 1> RegMasks;
565       for (unsigned i = 0; i != NumOperandsToProcess; ++i) {
566         MachineOperand &MO = MI->getOperand(i);
567         if (MO.isRegMask()) {
568           RegMasks.push_back(i);
569           continue;
570         }
571         if (!MO.isReg() || MO.getReg() == 0)
572           continue;
573         unsigned MOReg = MO.getReg();
574         if (MO.isUse()) {
575           MO.setIsKill(false);
576           if (MO.readsReg())
577             UseRegs.push_back(MOReg);
578         } else /*MO.isDef()*/ {
579           MO.setIsDead(false);
580           DefRegs.push_back(MOReg);
581         }
582       }
583
584       // Process all uses.
585       for (unsigned i = 0, e = UseRegs.size(); i != e; ++i) {
586         unsigned MOReg = UseRegs[i];
587         if (TargetRegisterInfo::isVirtualRegister(MOReg))
588           HandleVirtRegUse(MOReg, MBB, MI);
589         else if (!MRI->isReserved(MOReg))
590           HandlePhysRegUse(MOReg, MI);
591       }
592
593       // Process all masked registers. (Call clobbers).
594       for (unsigned i = 0, e = RegMasks.size(); i != e; ++i)
595         HandleRegMask(MI->getOperand(RegMasks[i]));
596
597       // Process all defs.
598       for (unsigned i = 0, e = DefRegs.size(); i != e; ++i) {
599         unsigned MOReg = DefRegs[i];
600         if (TargetRegisterInfo::isVirtualRegister(MOReg))
601           HandleVirtRegDef(MOReg, MI);
602         else if (!MRI->isReserved(MOReg))
603           HandlePhysRegDef(MOReg, MI, Defs);
604       }
605       UpdatePhysRegDefs(MI, Defs);
606     }
607
608     // Handle any virtual assignments from PHI nodes which might be at the
609     // bottom of this basic block.  We check all of our successor blocks to see
610     // if they have PHI nodes, and if so, we simulate an assignment at the end
611     // of the current block.
612     if (!PHIVarInfo[MBB->getNumber()].empty()) {
613       SmallVector<unsigned, 4>& VarInfoVec = PHIVarInfo[MBB->getNumber()];
614
615       for (SmallVector<unsigned, 4>::iterator I = VarInfoVec.begin(),
616              E = VarInfoVec.end(); I != E; ++I)
617         // Mark it alive only in the block we are representing.
618         MarkVirtRegAliveInBlock(getVarInfo(*I),MRI->getVRegDef(*I)->getParent(),
619                                 MBB);
620     }
621
622     // Finally, if the last instruction in the block is a return, make sure to
623     // mark it as using all of the live-out values in the function.
624     // Things marked both call and return are tail calls; do not do this for
625     // them.  The tail callee need not take the same registers as input
626     // that it produces as output, and there are dependencies for its input
627     // registers elsewhere.
628     if (!MBB->empty() && MBB->back().isReturn()
629         && !MBB->back().isCall()) {
630       MachineInstr *Ret = &MBB->back();
631
632       for (MachineRegisterInfo::liveout_iterator
633            I = MF->getRegInfo().liveout_begin(),
634            E = MF->getRegInfo().liveout_end(); I != E; ++I) {
635         assert(TargetRegisterInfo::isPhysicalRegister(*I) &&
636                "Cannot have a live-out virtual register!");
637         HandlePhysRegUse(*I, Ret);
638
639         // Add live-out registers as implicit uses.
640         if (!Ret->readsRegister(*I))
641           Ret->addOperand(MachineOperand::CreateReg(*I, false, true));
642       }
643     }
644
645     // MachineCSE may CSE instructions which write to non-allocatable physical
646     // registers across MBBs. Remember if any reserved register is liveout.
647     SmallSet<unsigned, 4> LiveOuts;
648     for (MachineBasicBlock::const_succ_iterator SI = MBB->succ_begin(),
649            SE = MBB->succ_end(); SI != SE; ++SI) {
650       MachineBasicBlock *SuccMBB = *SI;
651       if (SuccMBB->isLandingPad())
652         continue;
653       for (MachineBasicBlock::livein_iterator LI = SuccMBB->livein_begin(),
654              LE = SuccMBB->livein_end(); LI != LE; ++LI) {
655         unsigned LReg = *LI;
656         if (!TRI->isInAllocatableClass(LReg))
657           // Ignore other live-ins, e.g. those that are live into landing pads.
658           LiveOuts.insert(LReg);
659       }
660     }
661
662     // Loop over PhysRegDef / PhysRegUse, killing any registers that are
663     // available at the end of the basic block.
664     for (unsigned i = 0; i != NumRegs; ++i)
665       if ((PhysRegDef[i] || PhysRegUse[i]) && !LiveOuts.count(i))
666         HandlePhysRegDef(i, 0, Defs);
667
668     std::fill(PhysRegDef,  PhysRegDef  + NumRegs, (MachineInstr*)0);
669     std::fill(PhysRegUse,  PhysRegUse  + NumRegs, (MachineInstr*)0);
670   }
671
672   // Convert and transfer the dead / killed information we have gathered into
673   // VirtRegInfo onto MI's.
674   for (unsigned i = 0, e1 = VirtRegInfo.size(); i != e1; ++i) {
675     const unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
676     for (unsigned j = 0, e2 = VirtRegInfo[Reg].Kills.size(); j != e2; ++j)
677       if (VirtRegInfo[Reg].Kills[j] == MRI->getVRegDef(Reg))
678         VirtRegInfo[Reg].Kills[j]->addRegisterDead(Reg, TRI);
679       else
680         VirtRegInfo[Reg].Kills[j]->addRegisterKilled(Reg, TRI);
681   }
682
683   // Check to make sure there are no unreachable blocks in the MC CFG for the
684   // function.  If so, it is due to a bug in the instruction selector or some
685   // other part of the code generator if this happens.
686 #ifndef NDEBUG
687   for(MachineFunction::iterator i = MF->begin(), e = MF->end(); i != e; ++i)
688     assert(Visited.count(&*i) != 0 && "unreachable basic block found");
689 #endif
690
691   delete[] PhysRegDef;
692   delete[] PhysRegUse;
693   delete[] PHIVarInfo;
694
695   return false;
696 }
697
698 /// replaceKillInstruction - Update register kill info by replacing a kill
699 /// instruction with a new one.
700 void LiveVariables::replaceKillInstruction(unsigned Reg, MachineInstr *OldMI,
701                                            MachineInstr *NewMI) {
702   VarInfo &VI = getVarInfo(Reg);
703   std::replace(VI.Kills.begin(), VI.Kills.end(), OldMI, NewMI);
704 }
705
706 /// removeVirtualRegistersKilled - Remove all killed info for the specified
707 /// instruction.
708 void LiveVariables::removeVirtualRegistersKilled(MachineInstr *MI) {
709   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
710     MachineOperand &MO = MI->getOperand(i);
711     if (MO.isReg() && MO.isKill()) {
712       MO.setIsKill(false);
713       unsigned Reg = MO.getReg();
714       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
715         bool removed = getVarInfo(Reg).removeKill(MI);
716         assert(removed && "kill not in register's VarInfo?");
717         (void)removed;
718       }
719     }
720   }
721 }
722
723 /// analyzePHINodes - Gather information about the PHI nodes in here. In
724 /// particular, we want to map the variable information of a virtual register
725 /// which is used in a PHI node. We map that to the BB the vreg is coming from.
726 ///
727 void LiveVariables::analyzePHINodes(const MachineFunction& Fn) {
728   for (MachineFunction::const_iterator I = Fn.begin(), E = Fn.end();
729        I != E; ++I)
730     for (MachineBasicBlock::const_iterator BBI = I->begin(), BBE = I->end();
731          BBI != BBE && BBI->isPHI(); ++BBI)
732       for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2)
733         if (BBI->getOperand(i).readsReg())
734           PHIVarInfo[BBI->getOperand(i + 1).getMBB()->getNumber()]
735             .push_back(BBI->getOperand(i).getReg());
736 }
737
738 bool LiveVariables::VarInfo::isLiveIn(const MachineBasicBlock &MBB,
739                                       unsigned Reg,
740                                       MachineRegisterInfo &MRI) {
741   unsigned Num = MBB.getNumber();
742
743   // Reg is live-through.
744   if (AliveBlocks.test(Num))
745     return true;
746
747   // Registers defined in MBB cannot be live in.
748   const MachineInstr *Def = MRI.getVRegDef(Reg);
749   if (Def && Def->getParent() == &MBB)
750     return false;
751
752  // Reg was not defined in MBB, was it killed here?
753   return findKill(&MBB);
754 }
755
756 bool LiveVariables::isLiveOut(unsigned Reg, const MachineBasicBlock &MBB) {
757   LiveVariables::VarInfo &VI = getVarInfo(Reg);
758
759   // Loop over all of the successors of the basic block, checking to see if
760   // the value is either live in the block, or if it is killed in the block.
761   SmallVector<MachineBasicBlock*, 8> OpSuccBlocks;
762   for (MachineBasicBlock::const_succ_iterator SI = MBB.succ_begin(),
763          E = MBB.succ_end(); SI != E; ++SI) {
764     MachineBasicBlock *SuccMBB = *SI;
765
766     // Is it alive in this successor?
767     unsigned SuccIdx = SuccMBB->getNumber();
768     if (VI.AliveBlocks.test(SuccIdx))
769       return true;
770     OpSuccBlocks.push_back(SuccMBB);
771   }
772
773   // Check to see if this value is live because there is a use in a successor
774   // that kills it.
775   switch (OpSuccBlocks.size()) {
776   case 1: {
777     MachineBasicBlock *SuccMBB = OpSuccBlocks[0];
778     for (unsigned i = 0, e = VI.Kills.size(); i != e; ++i)
779       if (VI.Kills[i]->getParent() == SuccMBB)
780         return true;
781     break;
782   }
783   case 2: {
784     MachineBasicBlock *SuccMBB1 = OpSuccBlocks[0], *SuccMBB2 = OpSuccBlocks[1];
785     for (unsigned i = 0, e = VI.Kills.size(); i != e; ++i)
786       if (VI.Kills[i]->getParent() == SuccMBB1 ||
787           VI.Kills[i]->getParent() == SuccMBB2)
788         return true;
789     break;
790   }
791   default:
792     std::sort(OpSuccBlocks.begin(), OpSuccBlocks.end());
793     for (unsigned i = 0, e = VI.Kills.size(); i != e; ++i)
794       if (std::binary_search(OpSuccBlocks.begin(), OpSuccBlocks.end(),
795                              VI.Kills[i]->getParent()))
796         return true;
797   }
798   return false;
799 }
800
801 /// addNewBlock - Add a new basic block BB as an empty succcessor to DomBB. All
802 /// variables that are live out of DomBB will be marked as passing live through
803 /// BB.
804 void LiveVariables::addNewBlock(MachineBasicBlock *BB,
805                                 MachineBasicBlock *DomBB,
806                                 MachineBasicBlock *SuccBB) {
807   const unsigned NumNew = BB->getNumber();
808
809   SmallSet<unsigned, 16> Defs, Kills;
810
811   MachineBasicBlock::iterator BBI = SuccBB->begin(), BBE = SuccBB->end();
812   for (; BBI != BBE && BBI->isPHI(); ++BBI) {
813     // Record the def of the PHI node.
814     Defs.insert(BBI->getOperand(0).getReg());
815
816     // All registers used by PHI nodes in SuccBB must be live through BB.
817     for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2)
818       if (BBI->getOperand(i+1).getMBB() == BB)
819         getVarInfo(BBI->getOperand(i).getReg()).AliveBlocks.set(NumNew);
820   }
821
822   // Record all vreg defs and kills of all instructions in SuccBB.
823   for (; BBI != BBE; ++BBI) {
824     for (MachineInstr::mop_iterator I = BBI->operands_begin(),
825          E = BBI->operands_end(); I != E; ++I) {
826       if (I->isReg() && TargetRegisterInfo::isVirtualRegister(I->getReg())) {
827         if (I->isDef())
828           Defs.insert(I->getReg());
829         else if (I->isKill())
830           Kills.insert(I->getReg());
831       }
832     }
833   }
834
835   // Update info for all live variables
836   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
837     unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
838
839     // If the Defs is defined in the successor it can't be live in BB.
840     if (Defs.count(Reg))
841       continue;
842
843     // If the register is either killed in or live through SuccBB it's also live
844     // through BB.
845     VarInfo &VI = getVarInfo(Reg);
846     if (Kills.count(Reg) || VI.AliveBlocks.test(SuccBB->getNumber()))
847       VI.AliveBlocks.set(NumNew);
848   }
849 }