Merge branch 'drm-intel-fixes' of git://people.freedesktop.org/~danvet/drm-intel...
[firefly-linux-kernel-4.4.55.git] / kernel / trace / ring_buffer.c
1 /*
2  * Generic ring buffer
3  *
4  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5  */
6 #include <linux/ring_buffer.h>
7 #include <linux/trace_clock.h>
8 #include <linux/spinlock.h>
9 #include <linux/debugfs.h>
10 #include <linux/uaccess.h>
11 #include <linux/hardirq.h>
12 #include <linux/kmemcheck.h>
13 #include <linux/module.h>
14 #include <linux/percpu.h>
15 #include <linux/mutex.h>
16 #include <linux/slab.h>
17 #include <linux/init.h>
18 #include <linux/hash.h>
19 #include <linux/list.h>
20 #include <linux/cpu.h>
21 #include <linux/fs.h>
22
23 #include <asm/local.h>
24 #include "trace.h"
25
26 static void update_pages_handler(struct work_struct *work);
27
28 /*
29  * The ring buffer header is special. We must manually up keep it.
30  */
31 int ring_buffer_print_entry_header(struct trace_seq *s)
32 {
33         int ret;
34
35         ret = trace_seq_printf(s, "# compressed entry header\n");
36         ret = trace_seq_printf(s, "\ttype_len    :    5 bits\n");
37         ret = trace_seq_printf(s, "\ttime_delta  :   27 bits\n");
38         ret = trace_seq_printf(s, "\tarray       :   32 bits\n");
39         ret = trace_seq_printf(s, "\n");
40         ret = trace_seq_printf(s, "\tpadding     : type == %d\n",
41                                RINGBUF_TYPE_PADDING);
42         ret = trace_seq_printf(s, "\ttime_extend : type == %d\n",
43                                RINGBUF_TYPE_TIME_EXTEND);
44         ret = trace_seq_printf(s, "\tdata max type_len  == %d\n",
45                                RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
46
47         return ret;
48 }
49
50 /*
51  * The ring buffer is made up of a list of pages. A separate list of pages is
52  * allocated for each CPU. A writer may only write to a buffer that is
53  * associated with the CPU it is currently executing on.  A reader may read
54  * from any per cpu buffer.
55  *
56  * The reader is special. For each per cpu buffer, the reader has its own
57  * reader page. When a reader has read the entire reader page, this reader
58  * page is swapped with another page in the ring buffer.
59  *
60  * Now, as long as the writer is off the reader page, the reader can do what
61  * ever it wants with that page. The writer will never write to that page
62  * again (as long as it is out of the ring buffer).
63  *
64  * Here's some silly ASCII art.
65  *
66  *   +------+
67  *   |reader|          RING BUFFER
68  *   |page  |
69  *   +------+        +---+   +---+   +---+
70  *                   |   |-->|   |-->|   |
71  *                   +---+   +---+   +---+
72  *                     ^               |
73  *                     |               |
74  *                     +---------------+
75  *
76  *
77  *   +------+
78  *   |reader|          RING BUFFER
79  *   |page  |------------------v
80  *   +------+        +---+   +---+   +---+
81  *                   |   |-->|   |-->|   |
82  *                   +---+   +---+   +---+
83  *                     ^               |
84  *                     |               |
85  *                     +---------------+
86  *
87  *
88  *   +------+
89  *   |reader|          RING BUFFER
90  *   |page  |------------------v
91  *   +------+        +---+   +---+   +---+
92  *      ^            |   |-->|   |-->|   |
93  *      |            +---+   +---+   +---+
94  *      |                              |
95  *      |                              |
96  *      +------------------------------+
97  *
98  *
99  *   +------+
100  *   |buffer|          RING BUFFER
101  *   |page  |------------------v
102  *   +------+        +---+   +---+   +---+
103  *      ^            |   |   |   |-->|   |
104  *      |   New      +---+   +---+   +---+
105  *      |  Reader------^               |
106  *      |   page                       |
107  *      +------------------------------+
108  *
109  *
110  * After we make this swap, the reader can hand this page off to the splice
111  * code and be done with it. It can even allocate a new page if it needs to
112  * and swap that into the ring buffer.
113  *
114  * We will be using cmpxchg soon to make all this lockless.
115  *
116  */
117
118 /*
119  * A fast way to enable or disable all ring buffers is to
120  * call tracing_on or tracing_off. Turning off the ring buffers
121  * prevents all ring buffers from being recorded to.
122  * Turning this switch on, makes it OK to write to the
123  * ring buffer, if the ring buffer is enabled itself.
124  *
125  * There's three layers that must be on in order to write
126  * to the ring buffer.
127  *
128  * 1) This global flag must be set.
129  * 2) The ring buffer must be enabled for recording.
130  * 3) The per cpu buffer must be enabled for recording.
131  *
132  * In case of an anomaly, this global flag has a bit set that
133  * will permantly disable all ring buffers.
134  */
135
136 /*
137  * Global flag to disable all recording to ring buffers
138  *  This has two bits: ON, DISABLED
139  *
140  *  ON   DISABLED
141  * ---- ----------
142  *   0      0        : ring buffers are off
143  *   1      0        : ring buffers are on
144  *   X      1        : ring buffers are permanently disabled
145  */
146
147 enum {
148         RB_BUFFERS_ON_BIT       = 0,
149         RB_BUFFERS_DISABLED_BIT = 1,
150 };
151
152 enum {
153         RB_BUFFERS_ON           = 1 << RB_BUFFERS_ON_BIT,
154         RB_BUFFERS_DISABLED     = 1 << RB_BUFFERS_DISABLED_BIT,
155 };
156
157 static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
158
159 /* Used for individual buffers (after the counter) */
160 #define RB_BUFFER_OFF           (1 << 20)
161
162 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
163
164 /**
165  * tracing_off_permanent - permanently disable ring buffers
166  *
167  * This function, once called, will disable all ring buffers
168  * permanently.
169  */
170 void tracing_off_permanent(void)
171 {
172         set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
173 }
174
175 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
176 #define RB_ALIGNMENT            4U
177 #define RB_MAX_SMALL_DATA       (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
178 #define RB_EVNT_MIN_SIZE        8U      /* two 32bit words */
179
180 #if !defined(CONFIG_64BIT) || defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
181 # define RB_FORCE_8BYTE_ALIGNMENT       0
182 # define RB_ARCH_ALIGNMENT              RB_ALIGNMENT
183 #else
184 # define RB_FORCE_8BYTE_ALIGNMENT       1
185 # define RB_ARCH_ALIGNMENT              8U
186 #endif
187
188 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
189 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
190
191 enum {
192         RB_LEN_TIME_EXTEND = 8,
193         RB_LEN_TIME_STAMP = 16,
194 };
195
196 #define skip_time_extend(event) \
197         ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
198
199 static inline int rb_null_event(struct ring_buffer_event *event)
200 {
201         return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
202 }
203
204 static void rb_event_set_padding(struct ring_buffer_event *event)
205 {
206         /* padding has a NULL time_delta */
207         event->type_len = RINGBUF_TYPE_PADDING;
208         event->time_delta = 0;
209 }
210
211 static unsigned
212 rb_event_data_length(struct ring_buffer_event *event)
213 {
214         unsigned length;
215
216         if (event->type_len)
217                 length = event->type_len * RB_ALIGNMENT;
218         else
219                 length = event->array[0];
220         return length + RB_EVNT_HDR_SIZE;
221 }
222
223 /*
224  * Return the length of the given event. Will return
225  * the length of the time extend if the event is a
226  * time extend.
227  */
228 static inline unsigned
229 rb_event_length(struct ring_buffer_event *event)
230 {
231         switch (event->type_len) {
232         case RINGBUF_TYPE_PADDING:
233                 if (rb_null_event(event))
234                         /* undefined */
235                         return -1;
236                 return  event->array[0] + RB_EVNT_HDR_SIZE;
237
238         case RINGBUF_TYPE_TIME_EXTEND:
239                 return RB_LEN_TIME_EXTEND;
240
241         case RINGBUF_TYPE_TIME_STAMP:
242                 return RB_LEN_TIME_STAMP;
243
244         case RINGBUF_TYPE_DATA:
245                 return rb_event_data_length(event);
246         default:
247                 BUG();
248         }
249         /* not hit */
250         return 0;
251 }
252
253 /*
254  * Return total length of time extend and data,
255  *   or just the event length for all other events.
256  */
257 static inline unsigned
258 rb_event_ts_length(struct ring_buffer_event *event)
259 {
260         unsigned len = 0;
261
262         if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
263                 /* time extends include the data event after it */
264                 len = RB_LEN_TIME_EXTEND;
265                 event = skip_time_extend(event);
266         }
267         return len + rb_event_length(event);
268 }
269
270 /**
271  * ring_buffer_event_length - return the length of the event
272  * @event: the event to get the length of
273  *
274  * Returns the size of the data load of a data event.
275  * If the event is something other than a data event, it
276  * returns the size of the event itself. With the exception
277  * of a TIME EXTEND, where it still returns the size of the
278  * data load of the data event after it.
279  */
280 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
281 {
282         unsigned length;
283
284         if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
285                 event = skip_time_extend(event);
286
287         length = rb_event_length(event);
288         if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
289                 return length;
290         length -= RB_EVNT_HDR_SIZE;
291         if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
292                 length -= sizeof(event->array[0]);
293         return length;
294 }
295 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
296
297 /* inline for ring buffer fast paths */
298 static void *
299 rb_event_data(struct ring_buffer_event *event)
300 {
301         if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
302                 event = skip_time_extend(event);
303         BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
304         /* If length is in len field, then array[0] has the data */
305         if (event->type_len)
306                 return (void *)&event->array[0];
307         /* Otherwise length is in array[0] and array[1] has the data */
308         return (void *)&event->array[1];
309 }
310
311 /**
312  * ring_buffer_event_data - return the data of the event
313  * @event: the event to get the data from
314  */
315 void *ring_buffer_event_data(struct ring_buffer_event *event)
316 {
317         return rb_event_data(event);
318 }
319 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
320
321 #define for_each_buffer_cpu(buffer, cpu)                \
322         for_each_cpu(cpu, buffer->cpumask)
323
324 #define TS_SHIFT        27
325 #define TS_MASK         ((1ULL << TS_SHIFT) - 1)
326 #define TS_DELTA_TEST   (~TS_MASK)
327
328 /* Flag when events were overwritten */
329 #define RB_MISSED_EVENTS        (1 << 31)
330 /* Missed count stored at end */
331 #define RB_MISSED_STORED        (1 << 30)
332
333 struct buffer_data_page {
334         u64              time_stamp;    /* page time stamp */
335         local_t          commit;        /* write committed index */
336         unsigned char    data[];        /* data of buffer page */
337 };
338
339 /*
340  * Note, the buffer_page list must be first. The buffer pages
341  * are allocated in cache lines, which means that each buffer
342  * page will be at the beginning of a cache line, and thus
343  * the least significant bits will be zero. We use this to
344  * add flags in the list struct pointers, to make the ring buffer
345  * lockless.
346  */
347 struct buffer_page {
348         struct list_head list;          /* list of buffer pages */
349         local_t          write;         /* index for next write */
350         unsigned         read;          /* index for next read */
351         local_t          entries;       /* entries on this page */
352         unsigned long    real_end;      /* real end of data */
353         struct buffer_data_page *page;  /* Actual data page */
354 };
355
356 /*
357  * The buffer page counters, write and entries, must be reset
358  * atomically when crossing page boundaries. To synchronize this
359  * update, two counters are inserted into the number. One is
360  * the actual counter for the write position or count on the page.
361  *
362  * The other is a counter of updaters. Before an update happens
363  * the update partition of the counter is incremented. This will
364  * allow the updater to update the counter atomically.
365  *
366  * The counter is 20 bits, and the state data is 12.
367  */
368 #define RB_WRITE_MASK           0xfffff
369 #define RB_WRITE_INTCNT         (1 << 20)
370
371 static void rb_init_page(struct buffer_data_page *bpage)
372 {
373         local_set(&bpage->commit, 0);
374 }
375
376 /**
377  * ring_buffer_page_len - the size of data on the page.
378  * @page: The page to read
379  *
380  * Returns the amount of data on the page, including buffer page header.
381  */
382 size_t ring_buffer_page_len(void *page)
383 {
384         return local_read(&((struct buffer_data_page *)page)->commit)
385                 + BUF_PAGE_HDR_SIZE;
386 }
387
388 /*
389  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
390  * this issue out.
391  */
392 static void free_buffer_page(struct buffer_page *bpage)
393 {
394         free_page((unsigned long)bpage->page);
395         kfree(bpage);
396 }
397
398 /*
399  * We need to fit the time_stamp delta into 27 bits.
400  */
401 static inline int test_time_stamp(u64 delta)
402 {
403         if (delta & TS_DELTA_TEST)
404                 return 1;
405         return 0;
406 }
407
408 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
409
410 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
411 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
412
413 int ring_buffer_print_page_header(struct trace_seq *s)
414 {
415         struct buffer_data_page field;
416         int ret;
417
418         ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t"
419                                "offset:0;\tsize:%u;\tsigned:%u;\n",
420                                (unsigned int)sizeof(field.time_stamp),
421                                (unsigned int)is_signed_type(u64));
422
423         ret = trace_seq_printf(s, "\tfield: local_t commit;\t"
424                                "offset:%u;\tsize:%u;\tsigned:%u;\n",
425                                (unsigned int)offsetof(typeof(field), commit),
426                                (unsigned int)sizeof(field.commit),
427                                (unsigned int)is_signed_type(long));
428
429         ret = trace_seq_printf(s, "\tfield: int overwrite;\t"
430                                "offset:%u;\tsize:%u;\tsigned:%u;\n",
431                                (unsigned int)offsetof(typeof(field), commit),
432                                1,
433                                (unsigned int)is_signed_type(long));
434
435         ret = trace_seq_printf(s, "\tfield: char data;\t"
436                                "offset:%u;\tsize:%u;\tsigned:%u;\n",
437                                (unsigned int)offsetof(typeof(field), data),
438                                (unsigned int)BUF_PAGE_SIZE,
439                                (unsigned int)is_signed_type(char));
440
441         return ret;
442 }
443
444 /*
445  * head_page == tail_page && head == tail then buffer is empty.
446  */
447 struct ring_buffer_per_cpu {
448         int                             cpu;
449         atomic_t                        record_disabled;
450         struct ring_buffer              *buffer;
451         raw_spinlock_t                  reader_lock;    /* serialize readers */
452         arch_spinlock_t                 lock;
453         struct lock_class_key           lock_key;
454         unsigned int                    nr_pages;
455         struct list_head                *pages;
456         struct buffer_page              *head_page;     /* read from head */
457         struct buffer_page              *tail_page;     /* write to tail */
458         struct buffer_page              *commit_page;   /* committed pages */
459         struct buffer_page              *reader_page;
460         unsigned long                   lost_events;
461         unsigned long                   last_overrun;
462         local_t                         entries_bytes;
463         local_t                         commit_overrun;
464         local_t                         overrun;
465         local_t                         entries;
466         local_t                         committing;
467         local_t                         commits;
468         unsigned long                   read;
469         unsigned long                   read_bytes;
470         u64                             write_stamp;
471         u64                             read_stamp;
472         /* ring buffer pages to update, > 0 to add, < 0 to remove */
473         int                             nr_pages_to_update;
474         struct list_head                new_pages; /* new pages to add */
475         struct work_struct              update_pages_work;
476         struct completion               update_done;
477 };
478
479 struct ring_buffer {
480         unsigned                        flags;
481         int                             cpus;
482         atomic_t                        record_disabled;
483         atomic_t                        resize_disabled;
484         cpumask_var_t                   cpumask;
485
486         struct lock_class_key           *reader_lock_key;
487
488         struct mutex                    mutex;
489
490         struct ring_buffer_per_cpu      **buffers;
491
492 #ifdef CONFIG_HOTPLUG_CPU
493         struct notifier_block           cpu_notify;
494 #endif
495         u64                             (*clock)(void);
496 };
497
498 struct ring_buffer_iter {
499         struct ring_buffer_per_cpu      *cpu_buffer;
500         unsigned long                   head;
501         struct buffer_page              *head_page;
502         struct buffer_page              *cache_reader_page;
503         unsigned long                   cache_read;
504         u64                             read_stamp;
505 };
506
507 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
508 #define RB_WARN_ON(b, cond)                                             \
509         ({                                                              \
510                 int _____ret = unlikely(cond);                          \
511                 if (_____ret) {                                         \
512                         if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
513                                 struct ring_buffer_per_cpu *__b =       \
514                                         (void *)b;                      \
515                                 atomic_inc(&__b->buffer->record_disabled); \
516                         } else                                          \
517                                 atomic_inc(&b->record_disabled);        \
518                         WARN_ON(1);                                     \
519                 }                                                       \
520                 _____ret;                                               \
521         })
522
523 /* Up this if you want to test the TIME_EXTENTS and normalization */
524 #define DEBUG_SHIFT 0
525
526 static inline u64 rb_time_stamp(struct ring_buffer *buffer)
527 {
528         /* shift to debug/test normalization and TIME_EXTENTS */
529         return buffer->clock() << DEBUG_SHIFT;
530 }
531
532 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
533 {
534         u64 time;
535
536         preempt_disable_notrace();
537         time = rb_time_stamp(buffer);
538         preempt_enable_no_resched_notrace();
539
540         return time;
541 }
542 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
543
544 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
545                                       int cpu, u64 *ts)
546 {
547         /* Just stupid testing the normalize function and deltas */
548         *ts >>= DEBUG_SHIFT;
549 }
550 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
551
552 /*
553  * Making the ring buffer lockless makes things tricky.
554  * Although writes only happen on the CPU that they are on,
555  * and they only need to worry about interrupts. Reads can
556  * happen on any CPU.
557  *
558  * The reader page is always off the ring buffer, but when the
559  * reader finishes with a page, it needs to swap its page with
560  * a new one from the buffer. The reader needs to take from
561  * the head (writes go to the tail). But if a writer is in overwrite
562  * mode and wraps, it must push the head page forward.
563  *
564  * Here lies the problem.
565  *
566  * The reader must be careful to replace only the head page, and
567  * not another one. As described at the top of the file in the
568  * ASCII art, the reader sets its old page to point to the next
569  * page after head. It then sets the page after head to point to
570  * the old reader page. But if the writer moves the head page
571  * during this operation, the reader could end up with the tail.
572  *
573  * We use cmpxchg to help prevent this race. We also do something
574  * special with the page before head. We set the LSB to 1.
575  *
576  * When the writer must push the page forward, it will clear the
577  * bit that points to the head page, move the head, and then set
578  * the bit that points to the new head page.
579  *
580  * We also don't want an interrupt coming in and moving the head
581  * page on another writer. Thus we use the second LSB to catch
582  * that too. Thus:
583  *
584  * head->list->prev->next        bit 1          bit 0
585  *                              -------        -------
586  * Normal page                     0              0
587  * Points to head page             0              1
588  * New head page                   1              0
589  *
590  * Note we can not trust the prev pointer of the head page, because:
591  *
592  * +----+       +-----+        +-----+
593  * |    |------>|  T  |---X--->|  N  |
594  * |    |<------|     |        |     |
595  * +----+       +-----+        +-----+
596  *   ^                           ^ |
597  *   |          +-----+          | |
598  *   +----------|  R  |----------+ |
599  *              |     |<-----------+
600  *              +-----+
601  *
602  * Key:  ---X-->  HEAD flag set in pointer
603  *         T      Tail page
604  *         R      Reader page
605  *         N      Next page
606  *
607  * (see __rb_reserve_next() to see where this happens)
608  *
609  *  What the above shows is that the reader just swapped out
610  *  the reader page with a page in the buffer, but before it
611  *  could make the new header point back to the new page added
612  *  it was preempted by a writer. The writer moved forward onto
613  *  the new page added by the reader and is about to move forward
614  *  again.
615  *
616  *  You can see, it is legitimate for the previous pointer of
617  *  the head (or any page) not to point back to itself. But only
618  *  temporarially.
619  */
620
621 #define RB_PAGE_NORMAL          0UL
622 #define RB_PAGE_HEAD            1UL
623 #define RB_PAGE_UPDATE          2UL
624
625
626 #define RB_FLAG_MASK            3UL
627
628 /* PAGE_MOVED is not part of the mask */
629 #define RB_PAGE_MOVED           4UL
630
631 /*
632  * rb_list_head - remove any bit
633  */
634 static struct list_head *rb_list_head(struct list_head *list)
635 {
636         unsigned long val = (unsigned long)list;
637
638         return (struct list_head *)(val & ~RB_FLAG_MASK);
639 }
640
641 /*
642  * rb_is_head_page - test if the given page is the head page
643  *
644  * Because the reader may move the head_page pointer, we can
645  * not trust what the head page is (it may be pointing to
646  * the reader page). But if the next page is a header page,
647  * its flags will be non zero.
648  */
649 static inline int
650 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
651                 struct buffer_page *page, struct list_head *list)
652 {
653         unsigned long val;
654
655         val = (unsigned long)list->next;
656
657         if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
658                 return RB_PAGE_MOVED;
659
660         return val & RB_FLAG_MASK;
661 }
662
663 /*
664  * rb_is_reader_page
665  *
666  * The unique thing about the reader page, is that, if the
667  * writer is ever on it, the previous pointer never points
668  * back to the reader page.
669  */
670 static int rb_is_reader_page(struct buffer_page *page)
671 {
672         struct list_head *list = page->list.prev;
673
674         return rb_list_head(list->next) != &page->list;
675 }
676
677 /*
678  * rb_set_list_to_head - set a list_head to be pointing to head.
679  */
680 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
681                                 struct list_head *list)
682 {
683         unsigned long *ptr;
684
685         ptr = (unsigned long *)&list->next;
686         *ptr |= RB_PAGE_HEAD;
687         *ptr &= ~RB_PAGE_UPDATE;
688 }
689
690 /*
691  * rb_head_page_activate - sets up head page
692  */
693 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
694 {
695         struct buffer_page *head;
696
697         head = cpu_buffer->head_page;
698         if (!head)
699                 return;
700
701         /*
702          * Set the previous list pointer to have the HEAD flag.
703          */
704         rb_set_list_to_head(cpu_buffer, head->list.prev);
705 }
706
707 static void rb_list_head_clear(struct list_head *list)
708 {
709         unsigned long *ptr = (unsigned long *)&list->next;
710
711         *ptr &= ~RB_FLAG_MASK;
712 }
713
714 /*
715  * rb_head_page_dactivate - clears head page ptr (for free list)
716  */
717 static void
718 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
719 {
720         struct list_head *hd;
721
722         /* Go through the whole list and clear any pointers found. */
723         rb_list_head_clear(cpu_buffer->pages);
724
725         list_for_each(hd, cpu_buffer->pages)
726                 rb_list_head_clear(hd);
727 }
728
729 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
730                             struct buffer_page *head,
731                             struct buffer_page *prev,
732                             int old_flag, int new_flag)
733 {
734         struct list_head *list;
735         unsigned long val = (unsigned long)&head->list;
736         unsigned long ret;
737
738         list = &prev->list;
739
740         val &= ~RB_FLAG_MASK;
741
742         ret = cmpxchg((unsigned long *)&list->next,
743                       val | old_flag, val | new_flag);
744
745         /* check if the reader took the page */
746         if ((ret & ~RB_FLAG_MASK) != val)
747                 return RB_PAGE_MOVED;
748
749         return ret & RB_FLAG_MASK;
750 }
751
752 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
753                                    struct buffer_page *head,
754                                    struct buffer_page *prev,
755                                    int old_flag)
756 {
757         return rb_head_page_set(cpu_buffer, head, prev,
758                                 old_flag, RB_PAGE_UPDATE);
759 }
760
761 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
762                                  struct buffer_page *head,
763                                  struct buffer_page *prev,
764                                  int old_flag)
765 {
766         return rb_head_page_set(cpu_buffer, head, prev,
767                                 old_flag, RB_PAGE_HEAD);
768 }
769
770 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
771                                    struct buffer_page *head,
772                                    struct buffer_page *prev,
773                                    int old_flag)
774 {
775         return rb_head_page_set(cpu_buffer, head, prev,
776                                 old_flag, RB_PAGE_NORMAL);
777 }
778
779 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
780                                struct buffer_page **bpage)
781 {
782         struct list_head *p = rb_list_head((*bpage)->list.next);
783
784         *bpage = list_entry(p, struct buffer_page, list);
785 }
786
787 static struct buffer_page *
788 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
789 {
790         struct buffer_page *head;
791         struct buffer_page *page;
792         struct list_head *list;
793         int i;
794
795         if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
796                 return NULL;
797
798         /* sanity check */
799         list = cpu_buffer->pages;
800         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
801                 return NULL;
802
803         page = head = cpu_buffer->head_page;
804         /*
805          * It is possible that the writer moves the header behind
806          * where we started, and we miss in one loop.
807          * A second loop should grab the header, but we'll do
808          * three loops just because I'm paranoid.
809          */
810         for (i = 0; i < 3; i++) {
811                 do {
812                         if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
813                                 cpu_buffer->head_page = page;
814                                 return page;
815                         }
816                         rb_inc_page(cpu_buffer, &page);
817                 } while (page != head);
818         }
819
820         RB_WARN_ON(cpu_buffer, 1);
821
822         return NULL;
823 }
824
825 static int rb_head_page_replace(struct buffer_page *old,
826                                 struct buffer_page *new)
827 {
828         unsigned long *ptr = (unsigned long *)&old->list.prev->next;
829         unsigned long val;
830         unsigned long ret;
831
832         val = *ptr & ~RB_FLAG_MASK;
833         val |= RB_PAGE_HEAD;
834
835         ret = cmpxchg(ptr, val, (unsigned long)&new->list);
836
837         return ret == val;
838 }
839
840 /*
841  * rb_tail_page_update - move the tail page forward
842  *
843  * Returns 1 if moved tail page, 0 if someone else did.
844  */
845 static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
846                                struct buffer_page *tail_page,
847                                struct buffer_page *next_page)
848 {
849         struct buffer_page *old_tail;
850         unsigned long old_entries;
851         unsigned long old_write;
852         int ret = 0;
853
854         /*
855          * The tail page now needs to be moved forward.
856          *
857          * We need to reset the tail page, but without messing
858          * with possible erasing of data brought in by interrupts
859          * that have moved the tail page and are currently on it.
860          *
861          * We add a counter to the write field to denote this.
862          */
863         old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
864         old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
865
866         /*
867          * Just make sure we have seen our old_write and synchronize
868          * with any interrupts that come in.
869          */
870         barrier();
871
872         /*
873          * If the tail page is still the same as what we think
874          * it is, then it is up to us to update the tail
875          * pointer.
876          */
877         if (tail_page == cpu_buffer->tail_page) {
878                 /* Zero the write counter */
879                 unsigned long val = old_write & ~RB_WRITE_MASK;
880                 unsigned long eval = old_entries & ~RB_WRITE_MASK;
881
882                 /*
883                  * This will only succeed if an interrupt did
884                  * not come in and change it. In which case, we
885                  * do not want to modify it.
886                  *
887                  * We add (void) to let the compiler know that we do not care
888                  * about the return value of these functions. We use the
889                  * cmpxchg to only update if an interrupt did not already
890                  * do it for us. If the cmpxchg fails, we don't care.
891                  */
892                 (void)local_cmpxchg(&next_page->write, old_write, val);
893                 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
894
895                 /*
896                  * No need to worry about races with clearing out the commit.
897                  * it only can increment when a commit takes place. But that
898                  * only happens in the outer most nested commit.
899                  */
900                 local_set(&next_page->page->commit, 0);
901
902                 old_tail = cmpxchg(&cpu_buffer->tail_page,
903                                    tail_page, next_page);
904
905                 if (old_tail == tail_page)
906                         ret = 1;
907         }
908
909         return ret;
910 }
911
912 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
913                           struct buffer_page *bpage)
914 {
915         unsigned long val = (unsigned long)bpage;
916
917         if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
918                 return 1;
919
920         return 0;
921 }
922
923 /**
924  * rb_check_list - make sure a pointer to a list has the last bits zero
925  */
926 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
927                          struct list_head *list)
928 {
929         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
930                 return 1;
931         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
932                 return 1;
933         return 0;
934 }
935
936 /**
937  * check_pages - integrity check of buffer pages
938  * @cpu_buffer: CPU buffer with pages to test
939  *
940  * As a safety measure we check to make sure the data pages have not
941  * been corrupted.
942  */
943 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
944 {
945         struct list_head *head = cpu_buffer->pages;
946         struct buffer_page *bpage, *tmp;
947
948         /* Reset the head page if it exists */
949         if (cpu_buffer->head_page)
950                 rb_set_head_page(cpu_buffer);
951
952         rb_head_page_deactivate(cpu_buffer);
953
954         if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
955                 return -1;
956         if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
957                 return -1;
958
959         if (rb_check_list(cpu_buffer, head))
960                 return -1;
961
962         list_for_each_entry_safe(bpage, tmp, head, list) {
963                 if (RB_WARN_ON(cpu_buffer,
964                                bpage->list.next->prev != &bpage->list))
965                         return -1;
966                 if (RB_WARN_ON(cpu_buffer,
967                                bpage->list.prev->next != &bpage->list))
968                         return -1;
969                 if (rb_check_list(cpu_buffer, &bpage->list))
970                         return -1;
971         }
972
973         rb_head_page_activate(cpu_buffer);
974
975         return 0;
976 }
977
978 static int __rb_allocate_pages(int nr_pages, struct list_head *pages, int cpu)
979 {
980         int i;
981         struct buffer_page *bpage, *tmp;
982
983         for (i = 0; i < nr_pages; i++) {
984                 struct page *page;
985                 /*
986                  * __GFP_NORETRY flag makes sure that the allocation fails
987                  * gracefully without invoking oom-killer and the system is
988                  * not destabilized.
989                  */
990                 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
991                                     GFP_KERNEL | __GFP_NORETRY,
992                                     cpu_to_node(cpu));
993                 if (!bpage)
994                         goto free_pages;
995
996                 list_add(&bpage->list, pages);
997
998                 page = alloc_pages_node(cpu_to_node(cpu),
999                                         GFP_KERNEL | __GFP_NORETRY, 0);
1000                 if (!page)
1001                         goto free_pages;
1002                 bpage->page = page_address(page);
1003                 rb_init_page(bpage->page);
1004         }
1005
1006         return 0;
1007
1008 free_pages:
1009         list_for_each_entry_safe(bpage, tmp, pages, list) {
1010                 list_del_init(&bpage->list);
1011                 free_buffer_page(bpage);
1012         }
1013
1014         return -ENOMEM;
1015 }
1016
1017 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1018                              unsigned nr_pages)
1019 {
1020         LIST_HEAD(pages);
1021
1022         WARN_ON(!nr_pages);
1023
1024         if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1025                 return -ENOMEM;
1026
1027         /*
1028          * The ring buffer page list is a circular list that does not
1029          * start and end with a list head. All page list items point to
1030          * other pages.
1031          */
1032         cpu_buffer->pages = pages.next;
1033         list_del(&pages);
1034
1035         cpu_buffer->nr_pages = nr_pages;
1036
1037         rb_check_pages(cpu_buffer);
1038
1039         return 0;
1040 }
1041
1042 static struct ring_buffer_per_cpu *
1043 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int nr_pages, int cpu)
1044 {
1045         struct ring_buffer_per_cpu *cpu_buffer;
1046         struct buffer_page *bpage;
1047         struct page *page;
1048         int ret;
1049
1050         cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1051                                   GFP_KERNEL, cpu_to_node(cpu));
1052         if (!cpu_buffer)
1053                 return NULL;
1054
1055         cpu_buffer->cpu = cpu;
1056         cpu_buffer->buffer = buffer;
1057         raw_spin_lock_init(&cpu_buffer->reader_lock);
1058         lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1059         cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1060         INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1061         init_completion(&cpu_buffer->update_done);
1062
1063         bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1064                             GFP_KERNEL, cpu_to_node(cpu));
1065         if (!bpage)
1066                 goto fail_free_buffer;
1067
1068         rb_check_bpage(cpu_buffer, bpage);
1069
1070         cpu_buffer->reader_page = bpage;
1071         page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1072         if (!page)
1073                 goto fail_free_reader;
1074         bpage->page = page_address(page);
1075         rb_init_page(bpage->page);
1076
1077         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1078
1079         ret = rb_allocate_pages(cpu_buffer, nr_pages);
1080         if (ret < 0)
1081                 goto fail_free_reader;
1082
1083         cpu_buffer->head_page
1084                 = list_entry(cpu_buffer->pages, struct buffer_page, list);
1085         cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1086
1087         rb_head_page_activate(cpu_buffer);
1088
1089         return cpu_buffer;
1090
1091  fail_free_reader:
1092         free_buffer_page(cpu_buffer->reader_page);
1093
1094  fail_free_buffer:
1095         kfree(cpu_buffer);
1096         return NULL;
1097 }
1098
1099 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1100 {
1101         struct list_head *head = cpu_buffer->pages;
1102         struct buffer_page *bpage, *tmp;
1103
1104         free_buffer_page(cpu_buffer->reader_page);
1105
1106         rb_head_page_deactivate(cpu_buffer);
1107
1108         if (head) {
1109                 list_for_each_entry_safe(bpage, tmp, head, list) {
1110                         list_del_init(&bpage->list);
1111                         free_buffer_page(bpage);
1112                 }
1113                 bpage = list_entry(head, struct buffer_page, list);
1114                 free_buffer_page(bpage);
1115         }
1116
1117         kfree(cpu_buffer);
1118 }
1119
1120 #ifdef CONFIG_HOTPLUG_CPU
1121 static int rb_cpu_notify(struct notifier_block *self,
1122                          unsigned long action, void *hcpu);
1123 #endif
1124
1125 /**
1126  * ring_buffer_alloc - allocate a new ring_buffer
1127  * @size: the size in bytes per cpu that is needed.
1128  * @flags: attributes to set for the ring buffer.
1129  *
1130  * Currently the only flag that is available is the RB_FL_OVERWRITE
1131  * flag. This flag means that the buffer will overwrite old data
1132  * when the buffer wraps. If this flag is not set, the buffer will
1133  * drop data when the tail hits the head.
1134  */
1135 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1136                                         struct lock_class_key *key)
1137 {
1138         struct ring_buffer *buffer;
1139         int bsize;
1140         int cpu, nr_pages;
1141
1142         /* keep it in its own cache line */
1143         buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1144                          GFP_KERNEL);
1145         if (!buffer)
1146                 return NULL;
1147
1148         if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1149                 goto fail_free_buffer;
1150
1151         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1152         buffer->flags = flags;
1153         buffer->clock = trace_clock_local;
1154         buffer->reader_lock_key = key;
1155
1156         /* need at least two pages */
1157         if (nr_pages < 2)
1158                 nr_pages = 2;
1159
1160         /*
1161          * In case of non-hotplug cpu, if the ring-buffer is allocated
1162          * in early initcall, it will not be notified of secondary cpus.
1163          * In that off case, we need to allocate for all possible cpus.
1164          */
1165 #ifdef CONFIG_HOTPLUG_CPU
1166         get_online_cpus();
1167         cpumask_copy(buffer->cpumask, cpu_online_mask);
1168 #else
1169         cpumask_copy(buffer->cpumask, cpu_possible_mask);
1170 #endif
1171         buffer->cpus = nr_cpu_ids;
1172
1173         bsize = sizeof(void *) * nr_cpu_ids;
1174         buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1175                                   GFP_KERNEL);
1176         if (!buffer->buffers)
1177                 goto fail_free_cpumask;
1178
1179         for_each_buffer_cpu(buffer, cpu) {
1180                 buffer->buffers[cpu] =
1181                         rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1182                 if (!buffer->buffers[cpu])
1183                         goto fail_free_buffers;
1184         }
1185
1186 #ifdef CONFIG_HOTPLUG_CPU
1187         buffer->cpu_notify.notifier_call = rb_cpu_notify;
1188         buffer->cpu_notify.priority = 0;
1189         register_cpu_notifier(&buffer->cpu_notify);
1190 #endif
1191
1192         put_online_cpus();
1193         mutex_init(&buffer->mutex);
1194
1195         return buffer;
1196
1197  fail_free_buffers:
1198         for_each_buffer_cpu(buffer, cpu) {
1199                 if (buffer->buffers[cpu])
1200                         rb_free_cpu_buffer(buffer->buffers[cpu]);
1201         }
1202         kfree(buffer->buffers);
1203
1204  fail_free_cpumask:
1205         free_cpumask_var(buffer->cpumask);
1206         put_online_cpus();
1207
1208  fail_free_buffer:
1209         kfree(buffer);
1210         return NULL;
1211 }
1212 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1213
1214 /**
1215  * ring_buffer_free - free a ring buffer.
1216  * @buffer: the buffer to free.
1217  */
1218 void
1219 ring_buffer_free(struct ring_buffer *buffer)
1220 {
1221         int cpu;
1222
1223         get_online_cpus();
1224
1225 #ifdef CONFIG_HOTPLUG_CPU
1226         unregister_cpu_notifier(&buffer->cpu_notify);
1227 #endif
1228
1229         for_each_buffer_cpu(buffer, cpu)
1230                 rb_free_cpu_buffer(buffer->buffers[cpu]);
1231
1232         put_online_cpus();
1233
1234         kfree(buffer->buffers);
1235         free_cpumask_var(buffer->cpumask);
1236
1237         kfree(buffer);
1238 }
1239 EXPORT_SYMBOL_GPL(ring_buffer_free);
1240
1241 void ring_buffer_set_clock(struct ring_buffer *buffer,
1242                            u64 (*clock)(void))
1243 {
1244         buffer->clock = clock;
1245 }
1246
1247 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1248
1249 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1250 {
1251         return local_read(&bpage->entries) & RB_WRITE_MASK;
1252 }
1253
1254 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1255 {
1256         return local_read(&bpage->write) & RB_WRITE_MASK;
1257 }
1258
1259 static int
1260 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned int nr_pages)
1261 {
1262         struct list_head *tail_page, *to_remove, *next_page;
1263         struct buffer_page *to_remove_page, *tmp_iter_page;
1264         struct buffer_page *last_page, *first_page;
1265         unsigned int nr_removed;
1266         unsigned long head_bit;
1267         int page_entries;
1268
1269         head_bit = 0;
1270
1271         raw_spin_lock_irq(&cpu_buffer->reader_lock);
1272         atomic_inc(&cpu_buffer->record_disabled);
1273         /*
1274          * We don't race with the readers since we have acquired the reader
1275          * lock. We also don't race with writers after disabling recording.
1276          * This makes it easy to figure out the first and the last page to be
1277          * removed from the list. We unlink all the pages in between including
1278          * the first and last pages. This is done in a busy loop so that we
1279          * lose the least number of traces.
1280          * The pages are freed after we restart recording and unlock readers.
1281          */
1282         tail_page = &cpu_buffer->tail_page->list;
1283
1284         /*
1285          * tail page might be on reader page, we remove the next page
1286          * from the ring buffer
1287          */
1288         if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1289                 tail_page = rb_list_head(tail_page->next);
1290         to_remove = tail_page;
1291
1292         /* start of pages to remove */
1293         first_page = list_entry(rb_list_head(to_remove->next),
1294                                 struct buffer_page, list);
1295
1296         for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1297                 to_remove = rb_list_head(to_remove)->next;
1298                 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1299         }
1300
1301         next_page = rb_list_head(to_remove)->next;
1302
1303         /*
1304          * Now we remove all pages between tail_page and next_page.
1305          * Make sure that we have head_bit value preserved for the
1306          * next page
1307          */
1308         tail_page->next = (struct list_head *)((unsigned long)next_page |
1309                                                 head_bit);
1310         next_page = rb_list_head(next_page);
1311         next_page->prev = tail_page;
1312
1313         /* make sure pages points to a valid page in the ring buffer */
1314         cpu_buffer->pages = next_page;
1315
1316         /* update head page */
1317         if (head_bit)
1318                 cpu_buffer->head_page = list_entry(next_page,
1319                                                 struct buffer_page, list);
1320
1321         /*
1322          * change read pointer to make sure any read iterators reset
1323          * themselves
1324          */
1325         cpu_buffer->read = 0;
1326
1327         /* pages are removed, resume tracing and then free the pages */
1328         atomic_dec(&cpu_buffer->record_disabled);
1329         raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1330
1331         RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1332
1333         /* last buffer page to remove */
1334         last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1335                                 list);
1336         tmp_iter_page = first_page;
1337
1338         do {
1339                 to_remove_page = tmp_iter_page;
1340                 rb_inc_page(cpu_buffer, &tmp_iter_page);
1341
1342                 /* update the counters */
1343                 page_entries = rb_page_entries(to_remove_page);
1344                 if (page_entries) {
1345                         /*
1346                          * If something was added to this page, it was full
1347                          * since it is not the tail page. So we deduct the
1348                          * bytes consumed in ring buffer from here.
1349                          * No need to update overruns, since this page is
1350                          * deleted from ring buffer and its entries are
1351                          * already accounted for.
1352                          */
1353                         local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1354                 }
1355
1356                 /*
1357                  * We have already removed references to this list item, just
1358                  * free up the buffer_page and its page
1359                  */
1360                 free_buffer_page(to_remove_page);
1361                 nr_removed--;
1362
1363         } while (to_remove_page != last_page);
1364
1365         RB_WARN_ON(cpu_buffer, nr_removed);
1366
1367         return nr_removed == 0;
1368 }
1369
1370 static int
1371 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1372 {
1373         struct list_head *pages = &cpu_buffer->new_pages;
1374         int retries, success;
1375
1376         raw_spin_lock_irq(&cpu_buffer->reader_lock);
1377         /*
1378          * We are holding the reader lock, so the reader page won't be swapped
1379          * in the ring buffer. Now we are racing with the writer trying to
1380          * move head page and the tail page.
1381          * We are going to adapt the reader page update process where:
1382          * 1. We first splice the start and end of list of new pages between
1383          *    the head page and its previous page.
1384          * 2. We cmpxchg the prev_page->next to point from head page to the
1385          *    start of new pages list.
1386          * 3. Finally, we update the head->prev to the end of new list.
1387          *
1388          * We will try this process 10 times, to make sure that we don't keep
1389          * spinning.
1390          */
1391         retries = 10;
1392         success = 0;
1393         while (retries--) {
1394                 struct list_head *head_page, *prev_page, *r;
1395                 struct list_head *last_page, *first_page;
1396                 struct list_head *head_page_with_bit;
1397
1398                 head_page = &rb_set_head_page(cpu_buffer)->list;
1399                 prev_page = head_page->prev;
1400
1401                 first_page = pages->next;
1402                 last_page  = pages->prev;
1403
1404                 head_page_with_bit = (struct list_head *)
1405                                      ((unsigned long)head_page | RB_PAGE_HEAD);
1406
1407                 last_page->next = head_page_with_bit;
1408                 first_page->prev = prev_page;
1409
1410                 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1411
1412                 if (r == head_page_with_bit) {
1413                         /*
1414                          * yay, we replaced the page pointer to our new list,
1415                          * now, we just have to update to head page's prev
1416                          * pointer to point to end of list
1417                          */
1418                         head_page->prev = last_page;
1419                         success = 1;
1420                         break;
1421                 }
1422         }
1423
1424         if (success)
1425                 INIT_LIST_HEAD(pages);
1426         /*
1427          * If we weren't successful in adding in new pages, warn and stop
1428          * tracing
1429          */
1430         RB_WARN_ON(cpu_buffer, !success);
1431         raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1432
1433         /* free pages if they weren't inserted */
1434         if (!success) {
1435                 struct buffer_page *bpage, *tmp;
1436                 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1437                                          list) {
1438                         list_del_init(&bpage->list);
1439                         free_buffer_page(bpage);
1440                 }
1441         }
1442         return success;
1443 }
1444
1445 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1446 {
1447         int success;
1448
1449         if (cpu_buffer->nr_pages_to_update > 0)
1450                 success = rb_insert_pages(cpu_buffer);
1451         else
1452                 success = rb_remove_pages(cpu_buffer,
1453                                         -cpu_buffer->nr_pages_to_update);
1454
1455         if (success)
1456                 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1457 }
1458
1459 static void update_pages_handler(struct work_struct *work)
1460 {
1461         struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1462                         struct ring_buffer_per_cpu, update_pages_work);
1463         rb_update_pages(cpu_buffer);
1464         complete(&cpu_buffer->update_done);
1465 }
1466
1467 /**
1468  * ring_buffer_resize - resize the ring buffer
1469  * @buffer: the buffer to resize.
1470  * @size: the new size.
1471  *
1472  * Minimum size is 2 * BUF_PAGE_SIZE.
1473  *
1474  * Returns 0 on success and < 0 on failure.
1475  */
1476 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1477                         int cpu_id)
1478 {
1479         struct ring_buffer_per_cpu *cpu_buffer;
1480         unsigned nr_pages;
1481         int cpu, err = 0;
1482
1483         /*
1484          * Always succeed at resizing a non-existent buffer:
1485          */
1486         if (!buffer)
1487                 return size;
1488
1489         size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1490         size *= BUF_PAGE_SIZE;
1491
1492         /* we need a minimum of two pages */
1493         if (size < BUF_PAGE_SIZE * 2)
1494                 size = BUF_PAGE_SIZE * 2;
1495
1496         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1497
1498         /*
1499          * Don't succeed if resizing is disabled, as a reader might be
1500          * manipulating the ring buffer and is expecting a sane state while
1501          * this is true.
1502          */
1503         if (atomic_read(&buffer->resize_disabled))
1504                 return -EBUSY;
1505
1506         /* prevent another thread from changing buffer sizes */
1507         mutex_lock(&buffer->mutex);
1508
1509         if (cpu_id == RING_BUFFER_ALL_CPUS) {
1510                 /* calculate the pages to update */
1511                 for_each_buffer_cpu(buffer, cpu) {
1512                         cpu_buffer = buffer->buffers[cpu];
1513
1514                         cpu_buffer->nr_pages_to_update = nr_pages -
1515                                                         cpu_buffer->nr_pages;
1516                         /*
1517                          * nothing more to do for removing pages or no update
1518                          */
1519                         if (cpu_buffer->nr_pages_to_update <= 0)
1520                                 continue;
1521                         /*
1522                          * to add pages, make sure all new pages can be
1523                          * allocated without receiving ENOMEM
1524                          */
1525                         INIT_LIST_HEAD(&cpu_buffer->new_pages);
1526                         if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1527                                                 &cpu_buffer->new_pages, cpu)) {
1528                                 /* not enough memory for new pages */
1529                                 err = -ENOMEM;
1530                                 goto out_err;
1531                         }
1532                 }
1533
1534                 get_online_cpus();
1535                 /*
1536                  * Fire off all the required work handlers
1537                  * We can't schedule on offline CPUs, but it's not necessary
1538                  * since we can change their buffer sizes without any race.
1539                  */
1540                 for_each_buffer_cpu(buffer, cpu) {
1541                         cpu_buffer = buffer->buffers[cpu];
1542                         if (!cpu_buffer->nr_pages_to_update)
1543                                 continue;
1544
1545                         if (cpu_online(cpu))
1546                                 schedule_work_on(cpu,
1547                                                 &cpu_buffer->update_pages_work);
1548                         else
1549                                 rb_update_pages(cpu_buffer);
1550                 }
1551
1552                 /* wait for all the updates to complete */
1553                 for_each_buffer_cpu(buffer, cpu) {
1554                         cpu_buffer = buffer->buffers[cpu];
1555                         if (!cpu_buffer->nr_pages_to_update)
1556                                 continue;
1557
1558                         if (cpu_online(cpu))
1559                                 wait_for_completion(&cpu_buffer->update_done);
1560                         cpu_buffer->nr_pages_to_update = 0;
1561                 }
1562
1563                 put_online_cpus();
1564         } else {
1565                 cpu_buffer = buffer->buffers[cpu_id];
1566
1567                 if (nr_pages == cpu_buffer->nr_pages)
1568                         goto out;
1569
1570                 cpu_buffer->nr_pages_to_update = nr_pages -
1571                                                 cpu_buffer->nr_pages;
1572
1573                 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1574                 if (cpu_buffer->nr_pages_to_update > 0 &&
1575                         __rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1576                                             &cpu_buffer->new_pages, cpu_id)) {
1577                         err = -ENOMEM;
1578                         goto out_err;
1579                 }
1580
1581                 get_online_cpus();
1582
1583                 if (cpu_online(cpu_id)) {
1584                         schedule_work_on(cpu_id,
1585                                          &cpu_buffer->update_pages_work);
1586                         wait_for_completion(&cpu_buffer->update_done);
1587                 } else
1588                         rb_update_pages(cpu_buffer);
1589
1590                 cpu_buffer->nr_pages_to_update = 0;
1591                 put_online_cpus();
1592         }
1593
1594  out:
1595         /*
1596          * The ring buffer resize can happen with the ring buffer
1597          * enabled, so that the update disturbs the tracing as little
1598          * as possible. But if the buffer is disabled, we do not need
1599          * to worry about that, and we can take the time to verify
1600          * that the buffer is not corrupt.
1601          */
1602         if (atomic_read(&buffer->record_disabled)) {
1603                 atomic_inc(&buffer->record_disabled);
1604                 /*
1605                  * Even though the buffer was disabled, we must make sure
1606                  * that it is truly disabled before calling rb_check_pages.
1607                  * There could have been a race between checking
1608                  * record_disable and incrementing it.
1609                  */
1610                 synchronize_sched();
1611                 for_each_buffer_cpu(buffer, cpu) {
1612                         cpu_buffer = buffer->buffers[cpu];
1613                         rb_check_pages(cpu_buffer);
1614                 }
1615                 atomic_dec(&buffer->record_disabled);
1616         }
1617
1618         mutex_unlock(&buffer->mutex);
1619         return size;
1620
1621  out_err:
1622         for_each_buffer_cpu(buffer, cpu) {
1623                 struct buffer_page *bpage, *tmp;
1624
1625                 cpu_buffer = buffer->buffers[cpu];
1626                 cpu_buffer->nr_pages_to_update = 0;
1627
1628                 if (list_empty(&cpu_buffer->new_pages))
1629                         continue;
1630
1631                 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1632                                         list) {
1633                         list_del_init(&bpage->list);
1634                         free_buffer_page(bpage);
1635                 }
1636         }
1637         mutex_unlock(&buffer->mutex);
1638         return err;
1639 }
1640 EXPORT_SYMBOL_GPL(ring_buffer_resize);
1641
1642 void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1643 {
1644         mutex_lock(&buffer->mutex);
1645         if (val)
1646                 buffer->flags |= RB_FL_OVERWRITE;
1647         else
1648                 buffer->flags &= ~RB_FL_OVERWRITE;
1649         mutex_unlock(&buffer->mutex);
1650 }
1651 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1652
1653 static inline void *
1654 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
1655 {
1656         return bpage->data + index;
1657 }
1658
1659 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1660 {
1661         return bpage->page->data + index;
1662 }
1663
1664 static inline struct ring_buffer_event *
1665 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1666 {
1667         return __rb_page_index(cpu_buffer->reader_page,
1668                                cpu_buffer->reader_page->read);
1669 }
1670
1671 static inline struct ring_buffer_event *
1672 rb_iter_head_event(struct ring_buffer_iter *iter)
1673 {
1674         return __rb_page_index(iter->head_page, iter->head);
1675 }
1676
1677 static inline unsigned rb_page_commit(struct buffer_page *bpage)
1678 {
1679         return local_read(&bpage->page->commit);
1680 }
1681
1682 /* Size is determined by what has been committed */
1683 static inline unsigned rb_page_size(struct buffer_page *bpage)
1684 {
1685         return rb_page_commit(bpage);
1686 }
1687
1688 static inline unsigned
1689 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1690 {
1691         return rb_page_commit(cpu_buffer->commit_page);
1692 }
1693
1694 static inline unsigned
1695 rb_event_index(struct ring_buffer_event *event)
1696 {
1697         unsigned long addr = (unsigned long)event;
1698
1699         return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1700 }
1701
1702 static inline int
1703 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1704                    struct ring_buffer_event *event)
1705 {
1706         unsigned long addr = (unsigned long)event;
1707         unsigned long index;
1708
1709         index = rb_event_index(event);
1710         addr &= PAGE_MASK;
1711
1712         return cpu_buffer->commit_page->page == (void *)addr &&
1713                 rb_commit_index(cpu_buffer) == index;
1714 }
1715
1716 static void
1717 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
1718 {
1719         unsigned long max_count;
1720
1721         /*
1722          * We only race with interrupts and NMIs on this CPU.
1723          * If we own the commit event, then we can commit
1724          * all others that interrupted us, since the interruptions
1725          * are in stack format (they finish before they come
1726          * back to us). This allows us to do a simple loop to
1727          * assign the commit to the tail.
1728          */
1729  again:
1730         max_count = cpu_buffer->nr_pages * 100;
1731
1732         while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
1733                 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
1734                         return;
1735                 if (RB_WARN_ON(cpu_buffer,
1736                                rb_is_reader_page(cpu_buffer->tail_page)))
1737                         return;
1738                 local_set(&cpu_buffer->commit_page->page->commit,
1739                           rb_page_write(cpu_buffer->commit_page));
1740                 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
1741                 cpu_buffer->write_stamp =
1742                         cpu_buffer->commit_page->page->time_stamp;
1743                 /* add barrier to keep gcc from optimizing too much */
1744                 barrier();
1745         }
1746         while (rb_commit_index(cpu_buffer) !=
1747                rb_page_write(cpu_buffer->commit_page)) {
1748
1749                 local_set(&cpu_buffer->commit_page->page->commit,
1750                           rb_page_write(cpu_buffer->commit_page));
1751                 RB_WARN_ON(cpu_buffer,
1752                            local_read(&cpu_buffer->commit_page->page->commit) &
1753                            ~RB_WRITE_MASK);
1754                 barrier();
1755         }
1756
1757         /* again, keep gcc from optimizing */
1758         barrier();
1759
1760         /*
1761          * If an interrupt came in just after the first while loop
1762          * and pushed the tail page forward, we will be left with
1763          * a dangling commit that will never go forward.
1764          */
1765         if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1766                 goto again;
1767 }
1768
1769 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1770 {
1771         cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
1772         cpu_buffer->reader_page->read = 0;
1773 }
1774
1775 static void rb_inc_iter(struct ring_buffer_iter *iter)
1776 {
1777         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1778
1779         /*
1780          * The iterator could be on the reader page (it starts there).
1781          * But the head could have moved, since the reader was
1782          * found. Check for this case and assign the iterator
1783          * to the head page instead of next.
1784          */
1785         if (iter->head_page == cpu_buffer->reader_page)
1786                 iter->head_page = rb_set_head_page(cpu_buffer);
1787         else
1788                 rb_inc_page(cpu_buffer, &iter->head_page);
1789
1790         iter->read_stamp = iter->head_page->page->time_stamp;
1791         iter->head = 0;
1792 }
1793
1794 /* Slow path, do not inline */
1795 static noinline struct ring_buffer_event *
1796 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
1797 {
1798         event->type_len = RINGBUF_TYPE_TIME_EXTEND;
1799
1800         /* Not the first event on the page? */
1801         if (rb_event_index(event)) {
1802                 event->time_delta = delta & TS_MASK;
1803                 event->array[0] = delta >> TS_SHIFT;
1804         } else {
1805                 /* nope, just zero it */
1806                 event->time_delta = 0;
1807                 event->array[0] = 0;
1808         }
1809
1810         return skip_time_extend(event);
1811 }
1812
1813 /**
1814  * ring_buffer_update_event - update event type and data
1815  * @event: the even to update
1816  * @type: the type of event
1817  * @length: the size of the event field in the ring buffer
1818  *
1819  * Update the type and data fields of the event. The length
1820  * is the actual size that is written to the ring buffer,
1821  * and with this, we can determine what to place into the
1822  * data field.
1823  */
1824 static void
1825 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
1826                 struct ring_buffer_event *event, unsigned length,
1827                 int add_timestamp, u64 delta)
1828 {
1829         /* Only a commit updates the timestamp */
1830         if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
1831                 delta = 0;
1832
1833         /*
1834          * If we need to add a timestamp, then we
1835          * add it to the start of the resevered space.
1836          */
1837         if (unlikely(add_timestamp)) {
1838                 event = rb_add_time_stamp(event, delta);
1839                 length -= RB_LEN_TIME_EXTEND;
1840                 delta = 0;
1841         }
1842
1843         event->time_delta = delta;
1844         length -= RB_EVNT_HDR_SIZE;
1845         if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
1846                 event->type_len = 0;
1847                 event->array[0] = length;
1848         } else
1849                 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
1850 }
1851
1852 /*
1853  * rb_handle_head_page - writer hit the head page
1854  *
1855  * Returns: +1 to retry page
1856  *           0 to continue
1857  *          -1 on error
1858  */
1859 static int
1860 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1861                     struct buffer_page *tail_page,
1862                     struct buffer_page *next_page)
1863 {
1864         struct buffer_page *new_head;
1865         int entries;
1866         int type;
1867         int ret;
1868
1869         entries = rb_page_entries(next_page);
1870
1871         /*
1872          * The hard part is here. We need to move the head
1873          * forward, and protect against both readers on
1874          * other CPUs and writers coming in via interrupts.
1875          */
1876         type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
1877                                        RB_PAGE_HEAD);
1878
1879         /*
1880          * type can be one of four:
1881          *  NORMAL - an interrupt already moved it for us
1882          *  HEAD   - we are the first to get here.
1883          *  UPDATE - we are the interrupt interrupting
1884          *           a current move.
1885          *  MOVED  - a reader on another CPU moved the next
1886          *           pointer to its reader page. Give up
1887          *           and try again.
1888          */
1889
1890         switch (type) {
1891         case RB_PAGE_HEAD:
1892                 /*
1893                  * We changed the head to UPDATE, thus
1894                  * it is our responsibility to update
1895                  * the counters.
1896                  */
1897                 local_add(entries, &cpu_buffer->overrun);
1898                 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1899
1900                 /*
1901                  * The entries will be zeroed out when we move the
1902                  * tail page.
1903                  */
1904
1905                 /* still more to do */
1906                 break;
1907
1908         case RB_PAGE_UPDATE:
1909                 /*
1910                  * This is an interrupt that interrupt the
1911                  * previous update. Still more to do.
1912                  */
1913                 break;
1914         case RB_PAGE_NORMAL:
1915                 /*
1916                  * An interrupt came in before the update
1917                  * and processed this for us.
1918                  * Nothing left to do.
1919                  */
1920                 return 1;
1921         case RB_PAGE_MOVED:
1922                 /*
1923                  * The reader is on another CPU and just did
1924                  * a swap with our next_page.
1925                  * Try again.
1926                  */
1927                 return 1;
1928         default:
1929                 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
1930                 return -1;
1931         }
1932
1933         /*
1934          * Now that we are here, the old head pointer is
1935          * set to UPDATE. This will keep the reader from
1936          * swapping the head page with the reader page.
1937          * The reader (on another CPU) will spin till
1938          * we are finished.
1939          *
1940          * We just need to protect against interrupts
1941          * doing the job. We will set the next pointer
1942          * to HEAD. After that, we set the old pointer
1943          * to NORMAL, but only if it was HEAD before.
1944          * otherwise we are an interrupt, and only
1945          * want the outer most commit to reset it.
1946          */
1947         new_head = next_page;
1948         rb_inc_page(cpu_buffer, &new_head);
1949
1950         ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
1951                                     RB_PAGE_NORMAL);
1952
1953         /*
1954          * Valid returns are:
1955          *  HEAD   - an interrupt came in and already set it.
1956          *  NORMAL - One of two things:
1957          *            1) We really set it.
1958          *            2) A bunch of interrupts came in and moved
1959          *               the page forward again.
1960          */
1961         switch (ret) {
1962         case RB_PAGE_HEAD:
1963         case RB_PAGE_NORMAL:
1964                 /* OK */
1965                 break;
1966         default:
1967                 RB_WARN_ON(cpu_buffer, 1);
1968                 return -1;
1969         }
1970
1971         /*
1972          * It is possible that an interrupt came in,
1973          * set the head up, then more interrupts came in
1974          * and moved it again. When we get back here,
1975          * the page would have been set to NORMAL but we
1976          * just set it back to HEAD.
1977          *
1978          * How do you detect this? Well, if that happened
1979          * the tail page would have moved.
1980          */
1981         if (ret == RB_PAGE_NORMAL) {
1982                 /*
1983                  * If the tail had moved passed next, then we need
1984                  * to reset the pointer.
1985                  */
1986                 if (cpu_buffer->tail_page != tail_page &&
1987                     cpu_buffer->tail_page != next_page)
1988                         rb_head_page_set_normal(cpu_buffer, new_head,
1989                                                 next_page,
1990                                                 RB_PAGE_HEAD);
1991         }
1992
1993         /*
1994          * If this was the outer most commit (the one that
1995          * changed the original pointer from HEAD to UPDATE),
1996          * then it is up to us to reset it to NORMAL.
1997          */
1998         if (type == RB_PAGE_HEAD) {
1999                 ret = rb_head_page_set_normal(cpu_buffer, next_page,
2000                                               tail_page,
2001                                               RB_PAGE_UPDATE);
2002                 if (RB_WARN_ON(cpu_buffer,
2003                                ret != RB_PAGE_UPDATE))
2004                         return -1;
2005         }
2006
2007         return 0;
2008 }
2009
2010 static unsigned rb_calculate_event_length(unsigned length)
2011 {
2012         struct ring_buffer_event event; /* Used only for sizeof array */
2013
2014         /* zero length can cause confusions */
2015         if (!length)
2016                 length = 1;
2017
2018         if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2019                 length += sizeof(event.array[0]);
2020
2021         length += RB_EVNT_HDR_SIZE;
2022         length = ALIGN(length, RB_ARCH_ALIGNMENT);
2023
2024         return length;
2025 }
2026
2027 static inline void
2028 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2029               struct buffer_page *tail_page,
2030               unsigned long tail, unsigned long length)
2031 {
2032         struct ring_buffer_event *event;
2033
2034         /*
2035          * Only the event that crossed the page boundary
2036          * must fill the old tail_page with padding.
2037          */
2038         if (tail >= BUF_PAGE_SIZE) {
2039                 /*
2040                  * If the page was filled, then we still need
2041                  * to update the real_end. Reset it to zero
2042                  * and the reader will ignore it.
2043                  */
2044                 if (tail == BUF_PAGE_SIZE)
2045                         tail_page->real_end = 0;
2046
2047                 local_sub(length, &tail_page->write);
2048                 return;
2049         }
2050
2051         event = __rb_page_index(tail_page, tail);
2052         kmemcheck_annotate_bitfield(event, bitfield);
2053
2054         /* account for padding bytes */
2055         local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2056
2057         /*
2058          * Save the original length to the meta data.
2059          * This will be used by the reader to add lost event
2060          * counter.
2061          */
2062         tail_page->real_end = tail;
2063
2064         /*
2065          * If this event is bigger than the minimum size, then
2066          * we need to be careful that we don't subtract the
2067          * write counter enough to allow another writer to slip
2068          * in on this page.
2069          * We put in a discarded commit instead, to make sure
2070          * that this space is not used again.
2071          *
2072          * If we are less than the minimum size, we don't need to
2073          * worry about it.
2074          */
2075         if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2076                 /* No room for any events */
2077
2078                 /* Mark the rest of the page with padding */
2079                 rb_event_set_padding(event);
2080
2081                 /* Set the write back to the previous setting */
2082                 local_sub(length, &tail_page->write);
2083                 return;
2084         }
2085
2086         /* Put in a discarded event */
2087         event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2088         event->type_len = RINGBUF_TYPE_PADDING;
2089         /* time delta must be non zero */
2090         event->time_delta = 1;
2091
2092         /* Set write to end of buffer */
2093         length = (tail + length) - BUF_PAGE_SIZE;
2094         local_sub(length, &tail_page->write);
2095 }
2096
2097 /*
2098  * This is the slow path, force gcc not to inline it.
2099  */
2100 static noinline struct ring_buffer_event *
2101 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2102              unsigned long length, unsigned long tail,
2103              struct buffer_page *tail_page, u64 ts)
2104 {
2105         struct buffer_page *commit_page = cpu_buffer->commit_page;
2106         struct ring_buffer *buffer = cpu_buffer->buffer;
2107         struct buffer_page *next_page;
2108         int ret;
2109
2110         next_page = tail_page;
2111
2112         rb_inc_page(cpu_buffer, &next_page);
2113
2114         /*
2115          * If for some reason, we had an interrupt storm that made
2116          * it all the way around the buffer, bail, and warn
2117          * about it.
2118          */
2119         if (unlikely(next_page == commit_page)) {
2120                 local_inc(&cpu_buffer->commit_overrun);
2121                 goto out_reset;
2122         }
2123
2124         /*
2125          * This is where the fun begins!
2126          *
2127          * We are fighting against races between a reader that
2128          * could be on another CPU trying to swap its reader
2129          * page with the buffer head.
2130          *
2131          * We are also fighting against interrupts coming in and
2132          * moving the head or tail on us as well.
2133          *
2134          * If the next page is the head page then we have filled
2135          * the buffer, unless the commit page is still on the
2136          * reader page.
2137          */
2138         if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2139
2140                 /*
2141                  * If the commit is not on the reader page, then
2142                  * move the header page.
2143                  */
2144                 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2145                         /*
2146                          * If we are not in overwrite mode,
2147                          * this is easy, just stop here.
2148                          */
2149                         if (!(buffer->flags & RB_FL_OVERWRITE))
2150                                 goto out_reset;
2151
2152                         ret = rb_handle_head_page(cpu_buffer,
2153                                                   tail_page,
2154                                                   next_page);
2155                         if (ret < 0)
2156                                 goto out_reset;
2157                         if (ret)
2158                                 goto out_again;
2159                 } else {
2160                         /*
2161                          * We need to be careful here too. The
2162                          * commit page could still be on the reader
2163                          * page. We could have a small buffer, and
2164                          * have filled up the buffer with events
2165                          * from interrupts and such, and wrapped.
2166                          *
2167                          * Note, if the tail page is also the on the
2168                          * reader_page, we let it move out.
2169                          */
2170                         if (unlikely((cpu_buffer->commit_page !=
2171                                       cpu_buffer->tail_page) &&
2172                                      (cpu_buffer->commit_page ==
2173                                       cpu_buffer->reader_page))) {
2174                                 local_inc(&cpu_buffer->commit_overrun);
2175                                 goto out_reset;
2176                         }
2177                 }
2178         }
2179
2180         ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
2181         if (ret) {
2182                 /*
2183                  * Nested commits always have zero deltas, so
2184                  * just reread the time stamp
2185                  */
2186                 ts = rb_time_stamp(buffer);
2187                 next_page->page->time_stamp = ts;
2188         }
2189
2190  out_again:
2191
2192         rb_reset_tail(cpu_buffer, tail_page, tail, length);
2193
2194         /* fail and let the caller try again */
2195         return ERR_PTR(-EAGAIN);
2196
2197  out_reset:
2198         /* reset write */
2199         rb_reset_tail(cpu_buffer, tail_page, tail, length);
2200
2201         return NULL;
2202 }
2203
2204 static struct ring_buffer_event *
2205 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
2206                   unsigned long length, u64 ts,
2207                   u64 delta, int add_timestamp)
2208 {
2209         struct buffer_page *tail_page;
2210         struct ring_buffer_event *event;
2211         unsigned long tail, write;
2212
2213         /*
2214          * If the time delta since the last event is too big to
2215          * hold in the time field of the event, then we append a
2216          * TIME EXTEND event ahead of the data event.
2217          */
2218         if (unlikely(add_timestamp))
2219                 length += RB_LEN_TIME_EXTEND;
2220
2221         tail_page = cpu_buffer->tail_page;
2222         write = local_add_return(length, &tail_page->write);
2223
2224         /* set write to only the index of the write */
2225         write &= RB_WRITE_MASK;
2226         tail = write - length;
2227
2228         /* See if we shot pass the end of this buffer page */
2229         if (unlikely(write > BUF_PAGE_SIZE))
2230                 return rb_move_tail(cpu_buffer, length, tail,
2231                                     tail_page, ts);
2232
2233         /* We reserved something on the buffer */
2234
2235         event = __rb_page_index(tail_page, tail);
2236         kmemcheck_annotate_bitfield(event, bitfield);
2237         rb_update_event(cpu_buffer, event, length, add_timestamp, delta);
2238
2239         local_inc(&tail_page->entries);
2240
2241         /*
2242          * If this is the first commit on the page, then update
2243          * its timestamp.
2244          */
2245         if (!tail)
2246                 tail_page->page->time_stamp = ts;
2247
2248         /* account for these added bytes */
2249         local_add(length, &cpu_buffer->entries_bytes);
2250
2251         return event;
2252 }
2253
2254 static inline int
2255 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2256                   struct ring_buffer_event *event)
2257 {
2258         unsigned long new_index, old_index;
2259         struct buffer_page *bpage;
2260         unsigned long index;
2261         unsigned long addr;
2262
2263         new_index = rb_event_index(event);
2264         old_index = new_index + rb_event_ts_length(event);
2265         addr = (unsigned long)event;
2266         addr &= PAGE_MASK;
2267
2268         bpage = cpu_buffer->tail_page;
2269
2270         if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2271                 unsigned long write_mask =
2272                         local_read(&bpage->write) & ~RB_WRITE_MASK;
2273                 unsigned long event_length = rb_event_length(event);
2274                 /*
2275                  * This is on the tail page. It is possible that
2276                  * a write could come in and move the tail page
2277                  * and write to the next page. That is fine
2278                  * because we just shorten what is on this page.
2279                  */
2280                 old_index += write_mask;
2281                 new_index += write_mask;
2282                 index = local_cmpxchg(&bpage->write, old_index, new_index);
2283                 if (index == old_index) {
2284                         /* update counters */
2285                         local_sub(event_length, &cpu_buffer->entries_bytes);
2286                         return 1;
2287                 }
2288         }
2289
2290         /* could not discard */
2291         return 0;
2292 }
2293
2294 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2295 {
2296         local_inc(&cpu_buffer->committing);
2297         local_inc(&cpu_buffer->commits);
2298 }
2299
2300 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2301 {
2302         unsigned long commits;
2303
2304         if (RB_WARN_ON(cpu_buffer,
2305                        !local_read(&cpu_buffer->committing)))
2306                 return;
2307
2308  again:
2309         commits = local_read(&cpu_buffer->commits);
2310         /* synchronize with interrupts */
2311         barrier();
2312         if (local_read(&cpu_buffer->committing) == 1)
2313                 rb_set_commit_to_write(cpu_buffer);
2314
2315         local_dec(&cpu_buffer->committing);
2316
2317         /* synchronize with interrupts */
2318         barrier();
2319
2320         /*
2321          * Need to account for interrupts coming in between the
2322          * updating of the commit page and the clearing of the
2323          * committing counter.
2324          */
2325         if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2326             !local_read(&cpu_buffer->committing)) {
2327                 local_inc(&cpu_buffer->committing);
2328                 goto again;
2329         }
2330 }
2331
2332 static struct ring_buffer_event *
2333 rb_reserve_next_event(struct ring_buffer *buffer,
2334                       struct ring_buffer_per_cpu *cpu_buffer,
2335                       unsigned long length)
2336 {
2337         struct ring_buffer_event *event;
2338         u64 ts, delta;
2339         int nr_loops = 0;
2340         int add_timestamp;
2341         u64 diff;
2342
2343         rb_start_commit(cpu_buffer);
2344
2345 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2346         /*
2347          * Due to the ability to swap a cpu buffer from a buffer
2348          * it is possible it was swapped before we committed.
2349          * (committing stops a swap). We check for it here and
2350          * if it happened, we have to fail the write.
2351          */
2352         barrier();
2353         if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2354                 local_dec(&cpu_buffer->committing);
2355                 local_dec(&cpu_buffer->commits);
2356                 return NULL;
2357         }
2358 #endif
2359
2360         length = rb_calculate_event_length(length);
2361  again:
2362         add_timestamp = 0;
2363         delta = 0;
2364
2365         /*
2366          * We allow for interrupts to reenter here and do a trace.
2367          * If one does, it will cause this original code to loop
2368          * back here. Even with heavy interrupts happening, this
2369          * should only happen a few times in a row. If this happens
2370          * 1000 times in a row, there must be either an interrupt
2371          * storm or we have something buggy.
2372          * Bail!
2373          */
2374         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2375                 goto out_fail;
2376
2377         ts = rb_time_stamp(cpu_buffer->buffer);
2378         diff = ts - cpu_buffer->write_stamp;
2379
2380         /* make sure this diff is calculated here */
2381         barrier();
2382
2383         /* Did the write stamp get updated already? */
2384         if (likely(ts >= cpu_buffer->write_stamp)) {
2385                 delta = diff;
2386                 if (unlikely(test_time_stamp(delta))) {
2387                         int local_clock_stable = 1;
2388 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2389                         local_clock_stable = sched_clock_stable;
2390 #endif
2391                         WARN_ONCE(delta > (1ULL << 59),
2392                                   KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2393                                   (unsigned long long)delta,
2394                                   (unsigned long long)ts,
2395                                   (unsigned long long)cpu_buffer->write_stamp,
2396                                   local_clock_stable ? "" :
2397                                   "If you just came from a suspend/resume,\n"
2398                                   "please switch to the trace global clock:\n"
2399                                   "  echo global > /sys/kernel/debug/tracing/trace_clock\n");
2400                         add_timestamp = 1;
2401                 }
2402         }
2403
2404         event = __rb_reserve_next(cpu_buffer, length, ts,
2405                                   delta, add_timestamp);
2406         if (unlikely(PTR_ERR(event) == -EAGAIN))
2407                 goto again;
2408
2409         if (!event)
2410                 goto out_fail;
2411
2412         return event;
2413
2414  out_fail:
2415         rb_end_commit(cpu_buffer);
2416         return NULL;
2417 }
2418
2419 #ifdef CONFIG_TRACING
2420
2421 #define TRACE_RECURSIVE_DEPTH 16
2422
2423 /* Keep this code out of the fast path cache */
2424 static noinline void trace_recursive_fail(void)
2425 {
2426         /* Disable all tracing before we do anything else */
2427         tracing_off_permanent();
2428
2429         printk_once(KERN_WARNING "Tracing recursion: depth[%ld]:"
2430                     "HC[%lu]:SC[%lu]:NMI[%lu]\n",
2431                     trace_recursion_buffer(),
2432                     hardirq_count() >> HARDIRQ_SHIFT,
2433                     softirq_count() >> SOFTIRQ_SHIFT,
2434                     in_nmi());
2435
2436         WARN_ON_ONCE(1);
2437 }
2438
2439 static inline int trace_recursive_lock(void)
2440 {
2441         trace_recursion_inc();
2442
2443         if (likely(trace_recursion_buffer() < TRACE_RECURSIVE_DEPTH))
2444                 return 0;
2445
2446         trace_recursive_fail();
2447
2448         return -1;
2449 }
2450
2451 static inline void trace_recursive_unlock(void)
2452 {
2453         WARN_ON_ONCE(!trace_recursion_buffer());
2454
2455         trace_recursion_dec();
2456 }
2457
2458 #else
2459
2460 #define trace_recursive_lock()          (0)
2461 #define trace_recursive_unlock()        do { } while (0)
2462
2463 #endif
2464
2465 /**
2466  * ring_buffer_lock_reserve - reserve a part of the buffer
2467  * @buffer: the ring buffer to reserve from
2468  * @length: the length of the data to reserve (excluding event header)
2469  *
2470  * Returns a reseverd event on the ring buffer to copy directly to.
2471  * The user of this interface will need to get the body to write into
2472  * and can use the ring_buffer_event_data() interface.
2473  *
2474  * The length is the length of the data needed, not the event length
2475  * which also includes the event header.
2476  *
2477  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2478  * If NULL is returned, then nothing has been allocated or locked.
2479  */
2480 struct ring_buffer_event *
2481 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2482 {
2483         struct ring_buffer_per_cpu *cpu_buffer;
2484         struct ring_buffer_event *event;
2485         int cpu;
2486
2487         if (ring_buffer_flags != RB_BUFFERS_ON)
2488                 return NULL;
2489
2490         /* If we are tracing schedule, we don't want to recurse */
2491         preempt_disable_notrace();
2492
2493         if (atomic_read(&buffer->record_disabled))
2494                 goto out_nocheck;
2495
2496         if (trace_recursive_lock())
2497                 goto out_nocheck;
2498
2499         cpu = raw_smp_processor_id();
2500
2501         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2502                 goto out;
2503
2504         cpu_buffer = buffer->buffers[cpu];
2505
2506         if (atomic_read(&cpu_buffer->record_disabled))
2507                 goto out;
2508
2509         if (length > BUF_MAX_DATA_SIZE)
2510                 goto out;
2511
2512         event = rb_reserve_next_event(buffer, cpu_buffer, length);
2513         if (!event)
2514                 goto out;
2515
2516         return event;
2517
2518  out:
2519         trace_recursive_unlock();
2520
2521  out_nocheck:
2522         preempt_enable_notrace();
2523         return NULL;
2524 }
2525 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2526
2527 static void
2528 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2529                       struct ring_buffer_event *event)
2530 {
2531         u64 delta;
2532
2533         /*
2534          * The event first in the commit queue updates the
2535          * time stamp.
2536          */
2537         if (rb_event_is_commit(cpu_buffer, event)) {
2538                 /*
2539                  * A commit event that is first on a page
2540                  * updates the write timestamp with the page stamp
2541                  */
2542                 if (!rb_event_index(event))
2543                         cpu_buffer->write_stamp =
2544                                 cpu_buffer->commit_page->page->time_stamp;
2545                 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2546                         delta = event->array[0];
2547                         delta <<= TS_SHIFT;
2548                         delta += event->time_delta;
2549                         cpu_buffer->write_stamp += delta;
2550                 } else
2551                         cpu_buffer->write_stamp += event->time_delta;
2552         }
2553 }
2554
2555 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2556                       struct ring_buffer_event *event)
2557 {
2558         local_inc(&cpu_buffer->entries);
2559         rb_update_write_stamp(cpu_buffer, event);
2560         rb_end_commit(cpu_buffer);
2561 }
2562
2563 /**
2564  * ring_buffer_unlock_commit - commit a reserved
2565  * @buffer: The buffer to commit to
2566  * @event: The event pointer to commit.
2567  *
2568  * This commits the data to the ring buffer, and releases any locks held.
2569  *
2570  * Must be paired with ring_buffer_lock_reserve.
2571  */
2572 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2573                               struct ring_buffer_event *event)
2574 {
2575         struct ring_buffer_per_cpu *cpu_buffer;
2576         int cpu = raw_smp_processor_id();
2577
2578         cpu_buffer = buffer->buffers[cpu];
2579
2580         rb_commit(cpu_buffer, event);
2581
2582         trace_recursive_unlock();
2583
2584         preempt_enable_notrace();
2585
2586         return 0;
2587 }
2588 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2589
2590 static inline void rb_event_discard(struct ring_buffer_event *event)
2591 {
2592         if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2593                 event = skip_time_extend(event);
2594
2595         /* array[0] holds the actual length for the discarded event */
2596         event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2597         event->type_len = RINGBUF_TYPE_PADDING;
2598         /* time delta must be non zero */
2599         if (!event->time_delta)
2600                 event->time_delta = 1;
2601 }
2602
2603 /*
2604  * Decrement the entries to the page that an event is on.
2605  * The event does not even need to exist, only the pointer
2606  * to the page it is on. This may only be called before the commit
2607  * takes place.
2608  */
2609 static inline void
2610 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2611                    struct ring_buffer_event *event)
2612 {
2613         unsigned long addr = (unsigned long)event;
2614         struct buffer_page *bpage = cpu_buffer->commit_page;
2615         struct buffer_page *start;
2616
2617         addr &= PAGE_MASK;
2618
2619         /* Do the likely case first */
2620         if (likely(bpage->page == (void *)addr)) {
2621                 local_dec(&bpage->entries);
2622                 return;
2623         }
2624
2625         /*
2626          * Because the commit page may be on the reader page we
2627          * start with the next page and check the end loop there.
2628          */
2629         rb_inc_page(cpu_buffer, &bpage);
2630         start = bpage;
2631         do {
2632                 if (bpage->page == (void *)addr) {
2633                         local_dec(&bpage->entries);
2634                         return;
2635                 }
2636                 rb_inc_page(cpu_buffer, &bpage);
2637         } while (bpage != start);
2638
2639         /* commit not part of this buffer?? */
2640         RB_WARN_ON(cpu_buffer, 1);
2641 }
2642
2643 /**
2644  * ring_buffer_commit_discard - discard an event that has not been committed
2645  * @buffer: the ring buffer
2646  * @event: non committed event to discard
2647  *
2648  * Sometimes an event that is in the ring buffer needs to be ignored.
2649  * This function lets the user discard an event in the ring buffer
2650  * and then that event will not be read later.
2651  *
2652  * This function only works if it is called before the the item has been
2653  * committed. It will try to free the event from the ring buffer
2654  * if another event has not been added behind it.
2655  *
2656  * If another event has been added behind it, it will set the event
2657  * up as discarded, and perform the commit.
2658  *
2659  * If this function is called, do not call ring_buffer_unlock_commit on
2660  * the event.
2661  */
2662 void ring_buffer_discard_commit(struct ring_buffer *buffer,
2663                                 struct ring_buffer_event *event)
2664 {
2665         struct ring_buffer_per_cpu *cpu_buffer;
2666         int cpu;
2667
2668         /* The event is discarded regardless */
2669         rb_event_discard(event);
2670
2671         cpu = smp_processor_id();
2672         cpu_buffer = buffer->buffers[cpu];
2673
2674         /*
2675          * This must only be called if the event has not been
2676          * committed yet. Thus we can assume that preemption
2677          * is still disabled.
2678          */
2679         RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
2680
2681         rb_decrement_entry(cpu_buffer, event);
2682         if (rb_try_to_discard(cpu_buffer, event))
2683                 goto out;
2684
2685         /*
2686          * The commit is still visible by the reader, so we
2687          * must still update the timestamp.
2688          */
2689         rb_update_write_stamp(cpu_buffer, event);
2690  out:
2691         rb_end_commit(cpu_buffer);
2692
2693         trace_recursive_unlock();
2694
2695         preempt_enable_notrace();
2696
2697 }
2698 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2699
2700 /**
2701  * ring_buffer_write - write data to the buffer without reserving
2702  * @buffer: The ring buffer to write to.
2703  * @length: The length of the data being written (excluding the event header)
2704  * @data: The data to write to the buffer.
2705  *
2706  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2707  * one function. If you already have the data to write to the buffer, it
2708  * may be easier to simply call this function.
2709  *
2710  * Note, like ring_buffer_lock_reserve, the length is the length of the data
2711  * and not the length of the event which would hold the header.
2712  */
2713 int ring_buffer_write(struct ring_buffer *buffer,
2714                         unsigned long length,
2715                         void *data)
2716 {
2717         struct ring_buffer_per_cpu *cpu_buffer;
2718         struct ring_buffer_event *event;
2719         void *body;
2720         int ret = -EBUSY;
2721         int cpu;
2722
2723         if (ring_buffer_flags != RB_BUFFERS_ON)
2724                 return -EBUSY;
2725
2726         preempt_disable_notrace();
2727
2728         if (atomic_read(&buffer->record_disabled))
2729                 goto out;
2730
2731         cpu = raw_smp_processor_id();
2732
2733         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2734                 goto out;
2735
2736         cpu_buffer = buffer->buffers[cpu];
2737
2738         if (atomic_read(&cpu_buffer->record_disabled))
2739                 goto out;
2740
2741         if (length > BUF_MAX_DATA_SIZE)
2742                 goto out;
2743
2744         event = rb_reserve_next_event(buffer, cpu_buffer, length);
2745         if (!event)
2746                 goto out;
2747
2748         body = rb_event_data(event);
2749
2750         memcpy(body, data, length);
2751
2752         rb_commit(cpu_buffer, event);
2753
2754         ret = 0;
2755  out:
2756         preempt_enable_notrace();
2757
2758         return ret;
2759 }
2760 EXPORT_SYMBOL_GPL(ring_buffer_write);
2761
2762 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
2763 {
2764         struct buffer_page *reader = cpu_buffer->reader_page;
2765         struct buffer_page *head = rb_set_head_page(cpu_buffer);
2766         struct buffer_page *commit = cpu_buffer->commit_page;
2767
2768         /* In case of error, head will be NULL */
2769         if (unlikely(!head))
2770                 return 1;
2771
2772         return reader->read == rb_page_commit(reader) &&
2773                 (commit == reader ||
2774                  (commit == head &&
2775                   head->read == rb_page_commit(commit)));
2776 }
2777
2778 /**
2779  * ring_buffer_record_disable - stop all writes into the buffer
2780  * @buffer: The ring buffer to stop writes to.
2781  *
2782  * This prevents all writes to the buffer. Any attempt to write
2783  * to the buffer after this will fail and return NULL.
2784  *
2785  * The caller should call synchronize_sched() after this.
2786  */
2787 void ring_buffer_record_disable(struct ring_buffer *buffer)
2788 {
2789         atomic_inc(&buffer->record_disabled);
2790 }
2791 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
2792
2793 /**
2794  * ring_buffer_record_enable - enable writes to the buffer
2795  * @buffer: The ring buffer to enable writes
2796  *
2797  * Note, multiple disables will need the same number of enables
2798  * to truly enable the writing (much like preempt_disable).
2799  */
2800 void ring_buffer_record_enable(struct ring_buffer *buffer)
2801 {
2802         atomic_dec(&buffer->record_disabled);
2803 }
2804 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
2805
2806 /**
2807  * ring_buffer_record_off - stop all writes into the buffer
2808  * @buffer: The ring buffer to stop writes to.
2809  *
2810  * This prevents all writes to the buffer. Any attempt to write
2811  * to the buffer after this will fail and return NULL.
2812  *
2813  * This is different than ring_buffer_record_disable() as
2814  * it works like an on/off switch, where as the disable() verison
2815  * must be paired with a enable().
2816  */
2817 void ring_buffer_record_off(struct ring_buffer *buffer)
2818 {
2819         unsigned int rd;
2820         unsigned int new_rd;
2821
2822         do {
2823                 rd = atomic_read(&buffer->record_disabled);
2824                 new_rd = rd | RB_BUFFER_OFF;
2825         } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
2826 }
2827 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
2828
2829 /**
2830  * ring_buffer_record_on - restart writes into the buffer
2831  * @buffer: The ring buffer to start writes to.
2832  *
2833  * This enables all writes to the buffer that was disabled by
2834  * ring_buffer_record_off().
2835  *
2836  * This is different than ring_buffer_record_enable() as
2837  * it works like an on/off switch, where as the enable() verison
2838  * must be paired with a disable().
2839  */
2840 void ring_buffer_record_on(struct ring_buffer *buffer)
2841 {
2842         unsigned int rd;
2843         unsigned int new_rd;
2844
2845         do {
2846                 rd = atomic_read(&buffer->record_disabled);
2847                 new_rd = rd & ~RB_BUFFER_OFF;
2848         } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
2849 }
2850 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
2851
2852 /**
2853  * ring_buffer_record_is_on - return true if the ring buffer can write
2854  * @buffer: The ring buffer to see if write is enabled
2855  *
2856  * Returns true if the ring buffer is in a state that it accepts writes.
2857  */
2858 int ring_buffer_record_is_on(struct ring_buffer *buffer)
2859 {
2860         return !atomic_read(&buffer->record_disabled);
2861 }
2862
2863 /**
2864  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
2865  * @buffer: The ring buffer to stop writes to.
2866  * @cpu: The CPU buffer to stop
2867  *
2868  * This prevents all writes to the buffer. Any attempt to write
2869  * to the buffer after this will fail and return NULL.
2870  *
2871  * The caller should call synchronize_sched() after this.
2872  */
2873 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
2874 {
2875         struct ring_buffer_per_cpu *cpu_buffer;
2876
2877         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2878                 return;
2879
2880         cpu_buffer = buffer->buffers[cpu];
2881         atomic_inc(&cpu_buffer->record_disabled);
2882 }
2883 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
2884
2885 /**
2886  * ring_buffer_record_enable_cpu - enable writes to the buffer
2887  * @buffer: The ring buffer to enable writes
2888  * @cpu: The CPU to enable.
2889  *
2890  * Note, multiple disables will need the same number of enables
2891  * to truly enable the writing (much like preempt_disable).
2892  */
2893 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
2894 {
2895         struct ring_buffer_per_cpu *cpu_buffer;
2896
2897         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2898                 return;
2899
2900         cpu_buffer = buffer->buffers[cpu];
2901         atomic_dec(&cpu_buffer->record_disabled);
2902 }
2903 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
2904
2905 /*
2906  * The total entries in the ring buffer is the running counter
2907  * of entries entered into the ring buffer, minus the sum of
2908  * the entries read from the ring buffer and the number of
2909  * entries that were overwritten.
2910  */
2911 static inline unsigned long
2912 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
2913 {
2914         return local_read(&cpu_buffer->entries) -
2915                 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
2916 }
2917
2918 /**
2919  * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
2920  * @buffer: The ring buffer
2921  * @cpu: The per CPU buffer to read from.
2922  */
2923 unsigned long ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
2924 {
2925         unsigned long flags;
2926         struct ring_buffer_per_cpu *cpu_buffer;
2927         struct buffer_page *bpage;
2928         unsigned long ret;
2929
2930         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2931                 return 0;
2932
2933         cpu_buffer = buffer->buffers[cpu];
2934         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2935         /*
2936          * if the tail is on reader_page, oldest time stamp is on the reader
2937          * page
2938          */
2939         if (cpu_buffer->tail_page == cpu_buffer->reader_page)
2940                 bpage = cpu_buffer->reader_page;
2941         else
2942                 bpage = rb_set_head_page(cpu_buffer);
2943         ret = bpage->page->time_stamp;
2944         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2945
2946         return ret;
2947 }
2948 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
2949
2950 /**
2951  * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
2952  * @buffer: The ring buffer
2953  * @cpu: The per CPU buffer to read from.
2954  */
2955 unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
2956 {
2957         struct ring_buffer_per_cpu *cpu_buffer;
2958         unsigned long ret;
2959
2960         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2961                 return 0;
2962
2963         cpu_buffer = buffer->buffers[cpu];
2964         ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
2965
2966         return ret;
2967 }
2968 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
2969
2970 /**
2971  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
2972  * @buffer: The ring buffer
2973  * @cpu: The per CPU buffer to get the entries from.
2974  */
2975 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
2976 {
2977         struct ring_buffer_per_cpu *cpu_buffer;
2978
2979         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2980                 return 0;
2981
2982         cpu_buffer = buffer->buffers[cpu];
2983
2984         return rb_num_of_entries(cpu_buffer);
2985 }
2986 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
2987
2988 /**
2989  * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
2990  * @buffer: The ring buffer
2991  * @cpu: The per CPU buffer to get the number of overruns from
2992  */
2993 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
2994 {
2995         struct ring_buffer_per_cpu *cpu_buffer;
2996         unsigned long ret;
2997
2998         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2999                 return 0;
3000
3001         cpu_buffer = buffer->buffers[cpu];
3002         ret = local_read(&cpu_buffer->overrun);
3003
3004         return ret;
3005 }
3006 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
3007
3008 /**
3009  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by commits
3010  * @buffer: The ring buffer
3011  * @cpu: The per CPU buffer to get the number of overruns from
3012  */
3013 unsigned long
3014 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3015 {
3016         struct ring_buffer_per_cpu *cpu_buffer;
3017         unsigned long ret;
3018
3019         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3020                 return 0;
3021
3022         cpu_buffer = buffer->buffers[cpu];
3023         ret = local_read(&cpu_buffer->commit_overrun);
3024
3025         return ret;
3026 }
3027 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3028
3029 /**
3030  * ring_buffer_entries - get the number of entries in a buffer
3031  * @buffer: The ring buffer
3032  *
3033  * Returns the total number of entries in the ring buffer
3034  * (all CPU entries)
3035  */
3036 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3037 {
3038         struct ring_buffer_per_cpu *cpu_buffer;
3039         unsigned long entries = 0;
3040         int cpu;
3041
3042         /* if you care about this being correct, lock the buffer */
3043         for_each_buffer_cpu(buffer, cpu) {
3044                 cpu_buffer = buffer->buffers[cpu];
3045                 entries += rb_num_of_entries(cpu_buffer);
3046         }
3047
3048         return entries;
3049 }
3050 EXPORT_SYMBOL_GPL(ring_buffer_entries);
3051
3052 /**
3053  * ring_buffer_overruns - get the number of overruns in buffer
3054  * @buffer: The ring buffer
3055  *
3056  * Returns the total number of overruns in the ring buffer
3057  * (all CPU entries)
3058  */
3059 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3060 {
3061         struct ring_buffer_per_cpu *cpu_buffer;
3062         unsigned long overruns = 0;
3063         int cpu;
3064
3065         /* if you care about this being correct, lock the buffer */
3066         for_each_buffer_cpu(buffer, cpu) {
3067                 cpu_buffer = buffer->buffers[cpu];
3068                 overruns += local_read(&cpu_buffer->overrun);
3069         }
3070
3071         return overruns;
3072 }
3073 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
3074
3075 static void rb_iter_reset(struct ring_buffer_iter *iter)
3076 {
3077         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3078
3079         /* Iterator usage is expected to have record disabled */
3080         if (list_empty(&cpu_buffer->reader_page->list)) {
3081                 iter->head_page = rb_set_head_page(cpu_buffer);
3082                 if (unlikely(!iter->head_page))
3083                         return;
3084                 iter->head = iter->head_page->read;
3085         } else {
3086                 iter->head_page = cpu_buffer->reader_page;
3087                 iter->head = cpu_buffer->reader_page->read;
3088         }
3089         if (iter->head)
3090                 iter->read_stamp = cpu_buffer->read_stamp;
3091         else
3092                 iter->read_stamp = iter->head_page->page->time_stamp;
3093         iter->cache_reader_page = cpu_buffer->reader_page;
3094         iter->cache_read = cpu_buffer->read;
3095 }
3096
3097 /**
3098  * ring_buffer_iter_reset - reset an iterator
3099  * @iter: The iterator to reset
3100  *
3101  * Resets the iterator, so that it will start from the beginning
3102  * again.
3103  */
3104 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3105 {
3106         struct ring_buffer_per_cpu *cpu_buffer;
3107         unsigned long flags;
3108
3109         if (!iter)
3110                 return;
3111
3112         cpu_buffer = iter->cpu_buffer;
3113
3114         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3115         rb_iter_reset(iter);
3116         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3117 }
3118 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
3119
3120 /**
3121  * ring_buffer_iter_empty - check if an iterator has no more to read
3122  * @iter: The iterator to check
3123  */
3124 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3125 {
3126         struct ring_buffer_per_cpu *cpu_buffer;
3127
3128         cpu_buffer = iter->cpu_buffer;
3129
3130         return iter->head_page == cpu_buffer->commit_page &&
3131                 iter->head == rb_commit_index(cpu_buffer);
3132 }
3133 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
3134
3135 static void
3136 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3137                      struct ring_buffer_event *event)
3138 {
3139         u64 delta;
3140
3141         switch (event->type_len) {
3142         case RINGBUF_TYPE_PADDING:
3143                 return;
3144
3145         case RINGBUF_TYPE_TIME_EXTEND:
3146                 delta = event->array[0];
3147                 delta <<= TS_SHIFT;
3148                 delta += event->time_delta;
3149                 cpu_buffer->read_stamp += delta;
3150                 return;
3151
3152         case RINGBUF_TYPE_TIME_STAMP:
3153                 /* FIXME: not implemented */
3154                 return;
3155
3156         case RINGBUF_TYPE_DATA:
3157                 cpu_buffer->read_stamp += event->time_delta;
3158                 return;
3159
3160         default:
3161                 BUG();
3162         }
3163         return;
3164 }
3165
3166 static void
3167 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3168                           struct ring_buffer_event *event)
3169 {
3170         u64 delta;
3171
3172         switch (event->type_len) {
3173         case RINGBUF_TYPE_PADDING:
3174                 return;
3175
3176         case RINGBUF_TYPE_TIME_EXTEND:
3177                 delta = event->array[0];
3178                 delta <<= TS_SHIFT;
3179                 delta += event->time_delta;
3180                 iter->read_stamp += delta;
3181                 return;
3182
3183         case RINGBUF_TYPE_TIME_STAMP:
3184                 /* FIXME: not implemented */
3185                 return;
3186
3187         case RINGBUF_TYPE_DATA:
3188                 iter->read_stamp += event->time_delta;
3189                 return;
3190
3191         default:
3192                 BUG();
3193         }
3194         return;
3195 }
3196
3197 static struct buffer_page *
3198 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
3199 {
3200         struct buffer_page *reader = NULL;
3201         unsigned long overwrite;
3202         unsigned long flags;
3203         int nr_loops = 0;
3204         int ret;
3205
3206         local_irq_save(flags);
3207         arch_spin_lock(&cpu_buffer->lock);
3208
3209  again:
3210         /*
3211          * This should normally only loop twice. But because the
3212          * start of the reader inserts an empty page, it causes
3213          * a case where we will loop three times. There should be no
3214          * reason to loop four times (that I know of).
3215          */
3216         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
3217                 reader = NULL;
3218                 goto out;
3219         }
3220
3221         reader = cpu_buffer->reader_page;
3222
3223         /* If there's more to read, return this page */
3224         if (cpu_buffer->reader_page->read < rb_page_size(reader))
3225                 goto out;
3226
3227         /* Never should we have an index greater than the size */
3228         if (RB_WARN_ON(cpu_buffer,
3229                        cpu_buffer->reader_page->read > rb_page_size(reader)))
3230                 goto out;
3231
3232         /* check if we caught up to the tail */
3233         reader = NULL;
3234         if (cpu_buffer->commit_page == cpu_buffer->reader_page)
3235                 goto out;
3236
3237         /*
3238          * Reset the reader page to size zero.
3239          */
3240         local_set(&cpu_buffer->reader_page->write, 0);
3241         local_set(&cpu_buffer->reader_page->entries, 0);
3242         local_set(&cpu_buffer->reader_page->page->commit, 0);
3243         cpu_buffer->reader_page->real_end = 0;
3244
3245  spin:
3246         /*
3247          * Splice the empty reader page into the list around the head.
3248          */
3249         reader = rb_set_head_page(cpu_buffer);
3250         cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
3251         cpu_buffer->reader_page->list.prev = reader->list.prev;
3252
3253         /*
3254          * cpu_buffer->pages just needs to point to the buffer, it
3255          *  has no specific buffer page to point to. Lets move it out
3256          *  of our way so we don't accidentally swap it.
3257          */
3258         cpu_buffer->pages = reader->list.prev;
3259
3260         /* The reader page will be pointing to the new head */
3261         rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
3262
3263         /*
3264          * We want to make sure we read the overruns after we set up our
3265          * pointers to the next object. The writer side does a
3266          * cmpxchg to cross pages which acts as the mb on the writer
3267          * side. Note, the reader will constantly fail the swap
3268          * while the writer is updating the pointers, so this
3269          * guarantees that the overwrite recorded here is the one we
3270          * want to compare with the last_overrun.
3271          */
3272         smp_mb();
3273         overwrite = local_read(&(cpu_buffer->overrun));
3274
3275         /*
3276          * Here's the tricky part.
3277          *
3278          * We need to move the pointer past the header page.
3279          * But we can only do that if a writer is not currently
3280          * moving it. The page before the header page has the
3281          * flag bit '1' set if it is pointing to the page we want.
3282          * but if the writer is in the process of moving it
3283          * than it will be '2' or already moved '0'.
3284          */
3285
3286         ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
3287
3288         /*
3289          * If we did not convert it, then we must try again.
3290          */
3291         if (!ret)
3292                 goto spin;
3293
3294         /*
3295          * Yeah! We succeeded in replacing the page.
3296          *
3297          * Now make the new head point back to the reader page.
3298          */
3299         rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
3300         rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
3301
3302         /* Finally update the reader page to the new head */
3303         cpu_buffer->reader_page = reader;
3304         rb_reset_reader_page(cpu_buffer);
3305
3306         if (overwrite != cpu_buffer->last_overrun) {
3307                 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3308                 cpu_buffer->last_overrun = overwrite;
3309         }
3310
3311         goto again;
3312
3313  out:
3314         arch_spin_unlock(&cpu_buffer->lock);
3315         local_irq_restore(flags);
3316
3317         return reader;
3318 }
3319
3320 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3321 {
3322         struct ring_buffer_event *event;
3323         struct buffer_page *reader;
3324         unsigned length;
3325
3326         reader = rb_get_reader_page(cpu_buffer);
3327
3328         /* This function should not be called when buffer is empty */
3329         if (RB_WARN_ON(cpu_buffer, !reader))
3330                 return;
3331
3332         event = rb_reader_event(cpu_buffer);
3333
3334         if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
3335                 cpu_buffer->read++;
3336
3337         rb_update_read_stamp(cpu_buffer, event);
3338
3339         length = rb_event_length(event);
3340         cpu_buffer->reader_page->read += length;
3341 }
3342
3343 static void rb_advance_iter(struct ring_buffer_iter *iter)
3344 {
3345         struct ring_buffer_per_cpu *cpu_buffer;
3346         struct ring_buffer_event *event;
3347         unsigned length;
3348
3349         cpu_buffer = iter->cpu_buffer;
3350
3351         /*
3352          * Check if we are at the end of the buffer.
3353          */
3354         if (iter->head >= rb_page_size(iter->head_page)) {
3355                 /* discarded commits can make the page empty */
3356                 if (iter->head_page == cpu_buffer->commit_page)
3357                         return;
3358                 rb_inc_iter(iter);
3359                 return;
3360         }
3361
3362         event = rb_iter_head_event(iter);
3363
3364         length = rb_event_length(event);
3365
3366         /*
3367          * This should not be called to advance the header if we are
3368          * at the tail of the buffer.
3369          */
3370         if (RB_WARN_ON(cpu_buffer,
3371                        (iter->head_page == cpu_buffer->commit_page) &&
3372                        (iter->head + length > rb_commit_index(cpu_buffer))))
3373                 return;
3374
3375         rb_update_iter_read_stamp(iter, event);
3376
3377         iter->head += length;
3378
3379         /* check for end of page padding */
3380         if ((iter->head >= rb_page_size(iter->head_page)) &&
3381             (iter->head_page != cpu_buffer->commit_page))
3382                 rb_advance_iter(iter);
3383 }
3384
3385 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3386 {
3387         return cpu_buffer->lost_events;
3388 }
3389
3390 static struct ring_buffer_event *
3391 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3392                unsigned long *lost_events)
3393 {
3394         struct ring_buffer_event *event;
3395         struct buffer_page *reader;
3396         int nr_loops = 0;
3397
3398  again:
3399         /*
3400          * We repeat when a time extend is encountered.
3401          * Since the time extend is always attached to a data event,
3402          * we should never loop more than once.
3403          * (We never hit the following condition more than twice).
3404          */
3405         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3406                 return NULL;
3407
3408         reader = rb_get_reader_page(cpu_buffer);
3409         if (!reader)
3410                 return NULL;
3411
3412         event = rb_reader_event(cpu_buffer);
3413
3414         switch (event->type_len) {
3415         case RINGBUF_TYPE_PADDING:
3416                 if (rb_null_event(event))
3417                         RB_WARN_ON(cpu_buffer, 1);
3418                 /*
3419                  * Because the writer could be discarding every
3420                  * event it creates (which would probably be bad)
3421                  * if we were to go back to "again" then we may never
3422                  * catch up, and will trigger the warn on, or lock
3423                  * the box. Return the padding, and we will release
3424                  * the current locks, and try again.
3425                  */
3426                 return event;
3427
3428         case RINGBUF_TYPE_TIME_EXTEND:
3429                 /* Internal data, OK to advance */
3430                 rb_advance_reader(cpu_buffer);
3431                 goto again;
3432
3433         case RINGBUF_TYPE_TIME_STAMP:
3434                 /* FIXME: not implemented */
3435                 rb_advance_reader(cpu_buffer);
3436                 goto again;
3437
3438         case RINGBUF_TYPE_DATA:
3439                 if (ts) {
3440                         *ts = cpu_buffer->read_stamp + event->time_delta;
3441                         ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3442                                                          cpu_buffer->cpu, ts);
3443                 }
3444                 if (lost_events)
3445                         *lost_events = rb_lost_events(cpu_buffer);
3446                 return event;
3447
3448         default:
3449                 BUG();
3450         }
3451
3452         return NULL;
3453 }
3454 EXPORT_SYMBOL_GPL(ring_buffer_peek);
3455
3456 static struct ring_buffer_event *
3457 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3458 {
3459         struct ring_buffer *buffer;
3460         struct ring_buffer_per_cpu *cpu_buffer;
3461         struct ring_buffer_event *event;
3462         int nr_loops = 0;
3463
3464         cpu_buffer = iter->cpu_buffer;
3465         buffer = cpu_buffer->buffer;
3466
3467         /*
3468          * Check if someone performed a consuming read to
3469          * the buffer. A consuming read invalidates the iterator
3470          * and we need to reset the iterator in this case.
3471          */
3472         if (unlikely(iter->cache_read != cpu_buffer->read ||
3473                      iter->cache_reader_page != cpu_buffer->reader_page))
3474                 rb_iter_reset(iter);
3475
3476  again:
3477         if (ring_buffer_iter_empty(iter))
3478                 return NULL;
3479
3480         /*
3481          * We repeat when a time extend is encountered.
3482          * Since the time extend is always attached to a data event,
3483          * we should never loop more than once.
3484          * (We never hit the following condition more than twice).
3485          */
3486         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3487                 return NULL;
3488
3489         if (rb_per_cpu_empty(cpu_buffer))
3490                 return NULL;
3491
3492         if (iter->head >= local_read(&iter->head_page->page->commit)) {
3493                 rb_inc_iter(iter);
3494                 goto again;
3495         }
3496
3497         event = rb_iter_head_event(iter);
3498
3499         switch (event->type_len) {
3500         case RINGBUF_TYPE_PADDING:
3501                 if (rb_null_event(event)) {
3502                         rb_inc_iter(iter);
3503                         goto again;
3504                 }
3505                 rb_advance_iter(iter);
3506                 return event;
3507
3508         case RINGBUF_TYPE_TIME_EXTEND:
3509                 /* Internal data, OK to advance */
3510                 rb_advance_iter(iter);
3511                 goto again;
3512
3513         case RINGBUF_TYPE_TIME_STAMP:
3514                 /* FIXME: not implemented */
3515                 rb_advance_iter(iter);
3516                 goto again;
3517
3518         case RINGBUF_TYPE_DATA:
3519                 if (ts) {
3520                         *ts = iter->read_stamp + event->time_delta;
3521                         ring_buffer_normalize_time_stamp(buffer,
3522                                                          cpu_buffer->cpu, ts);
3523                 }
3524                 return event;
3525
3526         default:
3527                 BUG();
3528         }
3529
3530         return NULL;
3531 }
3532 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3533
3534 static inline int rb_ok_to_lock(void)
3535 {
3536         /*
3537          * If an NMI die dumps out the content of the ring buffer
3538          * do not grab locks. We also permanently disable the ring
3539          * buffer too. A one time deal is all you get from reading
3540          * the ring buffer from an NMI.
3541          */
3542         if (likely(!in_nmi()))
3543                 return 1;
3544
3545         tracing_off_permanent();
3546         return 0;
3547 }
3548
3549 /**
3550  * ring_buffer_peek - peek at the next event to be read
3551  * @buffer: The ring buffer to read
3552  * @cpu: The cpu to peak at
3553  * @ts: The timestamp counter of this event.
3554  * @lost_events: a variable to store if events were lost (may be NULL)
3555  *
3556  * This will return the event that will be read next, but does
3557  * not consume the data.
3558  */
3559 struct ring_buffer_event *
3560 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3561                  unsigned long *lost_events)
3562 {
3563         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3564         struct ring_buffer_event *event;
3565         unsigned long flags;
3566         int dolock;
3567
3568         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3569                 return NULL;
3570
3571         dolock = rb_ok_to_lock();
3572  again:
3573         local_irq_save(flags);
3574         if (dolock)
3575                 raw_spin_lock(&cpu_buffer->reader_lock);
3576         event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3577         if (event && event->type_len == RINGBUF_TYPE_PADDING)
3578                 rb_advance_reader(cpu_buffer);
3579         if (dolock)
3580                 raw_spin_unlock(&cpu_buffer->reader_lock);
3581         local_irq_restore(flags);
3582
3583         if (event && event->type_len == RINGBUF_TYPE_PADDING)
3584                 goto again;
3585
3586         return event;
3587 }
3588
3589 /**
3590  * ring_buffer_iter_peek - peek at the next event to be read
3591  * @iter: The ring buffer iterator
3592  * @ts: The timestamp counter of this event.
3593  *
3594  * This will return the event that will be read next, but does
3595  * not increment the iterator.
3596  */
3597 struct ring_buffer_event *
3598 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3599 {
3600         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3601         struct ring_buffer_event *event;
3602         unsigned long flags;
3603
3604  again:
3605         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3606         event = rb_iter_peek(iter, ts);
3607         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3608
3609         if (event && event->type_len == RINGBUF_TYPE_PADDING)
3610                 goto again;
3611
3612         return event;
3613 }
3614
3615 /**
3616  * ring_buffer_consume - return an event and consume it
3617  * @buffer: The ring buffer to get the next event from
3618  * @cpu: the cpu to read the buffer from
3619  * @ts: a variable to store the timestamp (may be NULL)
3620  * @lost_events: a variable to store if events were lost (may be NULL)
3621  *
3622  * Returns the next event in the ring buffer, and that event is consumed.
3623  * Meaning, that sequential reads will keep returning a different event,
3624  * and eventually empty the ring buffer if the producer is slower.
3625  */
3626 struct ring_buffer_event *
3627 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3628                     unsigned long *lost_events)
3629 {
3630         struct ring_buffer_per_cpu *cpu_buffer;
3631         struct ring_buffer_event *event = NULL;
3632         unsigned long flags;
3633         int dolock;
3634
3635         dolock = rb_ok_to_lock();
3636
3637  again:
3638         /* might be called in atomic */
3639         preempt_disable();
3640
3641         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3642                 goto out;
3643
3644         cpu_buffer = buffer->buffers[cpu];
3645         local_irq_save(flags);
3646         if (dolock)
3647                 raw_spin_lock(&cpu_buffer->reader_lock);
3648
3649         event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3650         if (event) {
3651                 cpu_buffer->lost_events = 0;
3652                 rb_advance_reader(cpu_buffer);
3653         }
3654
3655         if (dolock)
3656                 raw_spin_unlock(&cpu_buffer->reader_lock);
3657         local_irq_restore(flags);
3658
3659  out:
3660         preempt_enable();
3661
3662         if (event && event->type_len == RINGBUF_TYPE_PADDING)
3663                 goto again;
3664
3665         return event;
3666 }
3667 EXPORT_SYMBOL_GPL(ring_buffer_consume);
3668
3669 /**
3670  * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
3671  * @buffer: The ring buffer to read from
3672  * @cpu: The cpu buffer to iterate over
3673  *
3674  * This performs the initial preparations necessary to iterate
3675  * through the buffer.  Memory is allocated, buffer recording
3676  * is disabled, and the iterator pointer is returned to the caller.
3677  *
3678  * Disabling buffer recordng prevents the reading from being
3679  * corrupted. This is not a consuming read, so a producer is not
3680  * expected.
3681  *
3682  * After a sequence of ring_buffer_read_prepare calls, the user is
3683  * expected to make at least one call to ring_buffer_prepare_sync.
3684  * Afterwards, ring_buffer_read_start is invoked to get things going
3685  * for real.
3686  *
3687  * This overall must be paired with ring_buffer_finish.
3688  */
3689 struct ring_buffer_iter *
3690 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
3691 {
3692         struct ring_buffer_per_cpu *cpu_buffer;
3693         struct ring_buffer_iter *iter;
3694
3695         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3696                 return NULL;
3697
3698         iter = kmalloc(sizeof(*iter), GFP_KERNEL);
3699         if (!iter)
3700                 return NULL;
3701
3702         cpu_buffer = buffer->buffers[cpu];
3703
3704         iter->cpu_buffer = cpu_buffer;
3705
3706         atomic_inc(&buffer->resize_disabled);
3707         atomic_inc(&cpu_buffer->record_disabled);
3708
3709         return iter;
3710 }
3711 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
3712
3713 /**
3714  * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
3715  *
3716  * All previously invoked ring_buffer_read_prepare calls to prepare
3717  * iterators will be synchronized.  Afterwards, read_buffer_read_start
3718  * calls on those iterators are allowed.
3719  */
3720 void
3721 ring_buffer_read_prepare_sync(void)
3722 {
3723         synchronize_sched();
3724 }
3725 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
3726
3727 /**
3728  * ring_buffer_read_start - start a non consuming read of the buffer
3729  * @iter: The iterator returned by ring_buffer_read_prepare
3730  *
3731  * This finalizes the startup of an iteration through the buffer.
3732  * The iterator comes from a call to ring_buffer_read_prepare and
3733  * an intervening ring_buffer_read_prepare_sync must have been
3734  * performed.
3735  *
3736  * Must be paired with ring_buffer_finish.
3737  */
3738 void
3739 ring_buffer_read_start(struct ring_buffer_iter *iter)
3740 {
3741         struct ring_buffer_per_cpu *cpu_buffer;
3742         unsigned long flags;
3743
3744         if (!iter)
3745                 return;
3746
3747         cpu_buffer = iter->cpu_buffer;
3748
3749         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3750         arch_spin_lock(&cpu_buffer->lock);
3751         rb_iter_reset(iter);
3752         arch_spin_unlock(&cpu_buffer->lock);
3753         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3754 }
3755 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
3756
3757 /**
3758  * ring_buffer_finish - finish reading the iterator of the buffer
3759  * @iter: The iterator retrieved by ring_buffer_start
3760  *
3761  * This re-enables the recording to the buffer, and frees the
3762  * iterator.
3763  */
3764 void
3765 ring_buffer_read_finish(struct ring_buffer_iter *iter)
3766 {
3767         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3768
3769         /*
3770          * Ring buffer is disabled from recording, here's a good place
3771          * to check the integrity of the ring buffer. 
3772          */
3773         rb_check_pages(cpu_buffer);
3774
3775         atomic_dec(&cpu_buffer->record_disabled);
3776         atomic_dec(&cpu_buffer->buffer->resize_disabled);
3777         kfree(iter);
3778 }
3779 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
3780
3781 /**
3782  * ring_buffer_read - read the next item in the ring buffer by the iterator
3783  * @iter: The ring buffer iterator
3784  * @ts: The time stamp of the event read.
3785  *
3786  * This reads the next event in the ring buffer and increments the iterator.
3787  */
3788 struct ring_buffer_event *
3789 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
3790 {
3791         struct ring_buffer_event *event;
3792         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3793         unsigned long flags;
3794
3795         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3796  again:
3797         event = rb_iter_peek(iter, ts);
3798         if (!event)
3799                 goto out;
3800
3801         if (event->type_len == RINGBUF_TYPE_PADDING)
3802                 goto again;
3803
3804         rb_advance_iter(iter);
3805  out:
3806         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3807
3808         return event;
3809 }
3810 EXPORT_SYMBOL_GPL(ring_buffer_read);
3811
3812 /**
3813  * ring_buffer_size - return the size of the ring buffer (in bytes)
3814  * @buffer: The ring buffer.
3815  */
3816 unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
3817 {
3818         /*
3819          * Earlier, this method returned
3820          *      BUF_PAGE_SIZE * buffer->nr_pages
3821          * Since the nr_pages field is now removed, we have converted this to
3822          * return the per cpu buffer value.
3823          */
3824         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3825                 return 0;
3826
3827         return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
3828 }
3829 EXPORT_SYMBOL_GPL(ring_buffer_size);
3830
3831 static void
3832 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
3833 {
3834         rb_head_page_deactivate(cpu_buffer);
3835
3836         cpu_buffer->head_page
3837                 = list_entry(cpu_buffer->pages, struct buffer_page, list);
3838         local_set(&cpu_buffer->head_page->write, 0);
3839         local_set(&cpu_buffer->head_page->entries, 0);
3840         local_set(&cpu_buffer->head_page->page->commit, 0);
3841
3842         cpu_buffer->head_page->read = 0;
3843
3844         cpu_buffer->tail_page = cpu_buffer->head_page;
3845         cpu_buffer->commit_page = cpu_buffer->head_page;
3846
3847         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
3848         INIT_LIST_HEAD(&cpu_buffer->new_pages);
3849         local_set(&cpu_buffer->reader_page->write, 0);
3850         local_set(&cpu_buffer->reader_page->entries, 0);
3851         local_set(&cpu_buffer->reader_page->page->commit, 0);
3852         cpu_buffer->reader_page->read = 0;
3853
3854         local_set(&cpu_buffer->commit_overrun, 0);
3855         local_set(&cpu_buffer->entries_bytes, 0);
3856         local_set(&cpu_buffer->overrun, 0);
3857         local_set(&cpu_buffer->entries, 0);
3858         local_set(&cpu_buffer->committing, 0);
3859         local_set(&cpu_buffer->commits, 0);
3860         cpu_buffer->read = 0;
3861         cpu_buffer->read_bytes = 0;
3862
3863         cpu_buffer->write_stamp = 0;
3864         cpu_buffer->read_stamp = 0;
3865
3866         cpu_buffer->lost_events = 0;
3867         cpu_buffer->last_overrun = 0;
3868
3869         rb_head_page_activate(cpu_buffer);
3870 }
3871
3872 /**
3873  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
3874  * @buffer: The ring buffer to reset a per cpu buffer of
3875  * @cpu: The CPU buffer to be reset
3876  */
3877 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
3878 {
3879         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3880         unsigned long flags;
3881
3882         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3883                 return;
3884
3885         atomic_inc(&buffer->resize_disabled);
3886         atomic_inc(&cpu_buffer->record_disabled);
3887
3888         /* Make sure all commits have finished */
3889         synchronize_sched();
3890
3891         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3892
3893         if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
3894                 goto out;
3895
3896         arch_spin_lock(&cpu_buffer->lock);
3897
3898         rb_reset_cpu(cpu_buffer);
3899
3900         arch_spin_unlock(&cpu_buffer->lock);
3901
3902  out:
3903         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3904
3905         atomic_dec(&cpu_buffer->record_disabled);
3906         atomic_dec(&buffer->resize_disabled);
3907 }
3908 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
3909
3910 /**
3911  * ring_buffer_reset - reset a ring buffer
3912  * @buffer: The ring buffer to reset all cpu buffers
3913  */
3914 void ring_buffer_reset(struct ring_buffer *buffer)
3915 {
3916         int cpu;
3917
3918         for_each_buffer_cpu(buffer, cpu)
3919                 ring_buffer_reset_cpu(buffer, cpu);
3920 }
3921 EXPORT_SYMBOL_GPL(ring_buffer_reset);
3922
3923 /**
3924  * rind_buffer_empty - is the ring buffer empty?
3925  * @buffer: The ring buffer to test
3926  */
3927 int ring_buffer_empty(struct ring_buffer *buffer)
3928 {
3929         struct ring_buffer_per_cpu *cpu_buffer;
3930         unsigned long flags;
3931         int dolock;
3932         int cpu;
3933         int ret;
3934
3935         dolock = rb_ok_to_lock();
3936
3937         /* yes this is racy, but if you don't like the race, lock the buffer */
3938         for_each_buffer_cpu(buffer, cpu) {
3939                 cpu_buffer = buffer->buffers[cpu];
3940                 local_irq_save(flags);
3941                 if (dolock)
3942                         raw_spin_lock(&cpu_buffer->reader_lock);
3943                 ret = rb_per_cpu_empty(cpu_buffer);
3944                 if (dolock)
3945                         raw_spin_unlock(&cpu_buffer->reader_lock);
3946                 local_irq_restore(flags);
3947
3948                 if (!ret)
3949                         return 0;
3950         }
3951
3952         return 1;
3953 }
3954 EXPORT_SYMBOL_GPL(ring_buffer_empty);
3955
3956 /**
3957  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
3958  * @buffer: The ring buffer
3959  * @cpu: The CPU buffer to test
3960  */
3961 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
3962 {
3963         struct ring_buffer_per_cpu *cpu_buffer;
3964         unsigned long flags;
3965         int dolock;
3966         int ret;
3967
3968         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3969                 return 1;
3970
3971         dolock = rb_ok_to_lock();
3972
3973         cpu_buffer = buffer->buffers[cpu];
3974         local_irq_save(flags);
3975         if (dolock)
3976                 raw_spin_lock(&cpu_buffer->reader_lock);
3977         ret = rb_per_cpu_empty(cpu_buffer);
3978         if (dolock)
3979                 raw_spin_unlock(&cpu_buffer->reader_lock);
3980         local_irq_restore(flags);
3981
3982         return ret;
3983 }
3984 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
3985
3986 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
3987 /**
3988  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
3989  * @buffer_a: One buffer to swap with
3990  * @buffer_b: The other buffer to swap with
3991  *
3992  * This function is useful for tracers that want to take a "snapshot"
3993  * of a CPU buffer and has another back up buffer lying around.
3994  * it is expected that the tracer handles the cpu buffer not being
3995  * used at the moment.
3996  */
3997 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
3998                          struct ring_buffer *buffer_b, int cpu)
3999 {
4000         struct ring_buffer_per_cpu *cpu_buffer_a;
4001         struct ring_buffer_per_cpu *cpu_buffer_b;
4002         int ret = -EINVAL;
4003
4004         if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4005             !cpumask_test_cpu(cpu, buffer_b->cpumask))
4006                 goto out;
4007
4008         cpu_buffer_a = buffer_a->buffers[cpu];
4009         cpu_buffer_b = buffer_b->buffers[cpu];
4010
4011         /* At least make sure the two buffers are somewhat the same */
4012         if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
4013                 goto out;
4014
4015         ret = -EAGAIN;
4016
4017         if (ring_buffer_flags != RB_BUFFERS_ON)
4018                 goto out;
4019
4020         if (atomic_read(&buffer_a->record_disabled))
4021                 goto out;
4022
4023         if (atomic_read(&buffer_b->record_disabled))
4024                 goto out;
4025
4026         if (atomic_read(&cpu_buffer_a->record_disabled))
4027                 goto out;
4028
4029         if (atomic_read(&cpu_buffer_b->record_disabled))
4030                 goto out;
4031
4032         /*
4033          * We can't do a synchronize_sched here because this
4034          * function can be called in atomic context.
4035          * Normally this will be called from the same CPU as cpu.
4036          * If not it's up to the caller to protect this.
4037          */
4038         atomic_inc(&cpu_buffer_a->record_disabled);
4039         atomic_inc(&cpu_buffer_b->record_disabled);
4040
4041         ret = -EBUSY;
4042         if (local_read(&cpu_buffer_a->committing))
4043                 goto out_dec;
4044         if (local_read(&cpu_buffer_b->committing))
4045                 goto out_dec;
4046
4047         buffer_a->buffers[cpu] = cpu_buffer_b;
4048         buffer_b->buffers[cpu] = cpu_buffer_a;
4049
4050         cpu_buffer_b->buffer = buffer_a;
4051         cpu_buffer_a->buffer = buffer_b;
4052
4053         ret = 0;
4054
4055 out_dec:
4056         atomic_dec(&cpu_buffer_a->record_disabled);
4057         atomic_dec(&cpu_buffer_b->record_disabled);
4058 out:
4059         return ret;
4060 }
4061 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
4062 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
4063
4064 /**
4065  * ring_buffer_alloc_read_page - allocate a page to read from buffer
4066  * @buffer: the buffer to allocate for.
4067  *
4068  * This function is used in conjunction with ring_buffer_read_page.
4069  * When reading a full page from the ring buffer, these functions
4070  * can be used to speed up the process. The calling function should
4071  * allocate a few pages first with this function. Then when it
4072  * needs to get pages from the ring buffer, it passes the result
4073  * of this function into ring_buffer_read_page, which will swap
4074  * the page that was allocated, with the read page of the buffer.
4075  *
4076  * Returns:
4077  *  The page allocated, or NULL on error.
4078  */
4079 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
4080 {
4081         struct buffer_data_page *bpage;
4082         struct page *page;
4083
4084         page = alloc_pages_node(cpu_to_node(cpu),
4085                                 GFP_KERNEL | __GFP_NORETRY, 0);
4086         if (!page)
4087                 return NULL;
4088
4089         bpage = page_address(page);
4090
4091         rb_init_page(bpage);
4092
4093         return bpage;
4094 }
4095 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
4096
4097 /**
4098  * ring_buffer_free_read_page - free an allocated read page
4099  * @buffer: the buffer the page was allocate for
4100  * @data: the page to free
4101  *
4102  * Free a page allocated from ring_buffer_alloc_read_page.
4103  */
4104 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
4105 {
4106         free_page((unsigned long)data);
4107 }
4108 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
4109
4110 /**
4111  * ring_buffer_read_page - extract a page from the ring buffer
4112  * @buffer: buffer to extract from
4113  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
4114  * @len: amount to extract
4115  * @cpu: the cpu of the buffer to extract
4116  * @full: should the extraction only happen when the page is full.
4117  *
4118  * This function will pull out a page from the ring buffer and consume it.
4119  * @data_page must be the address of the variable that was returned
4120  * from ring_buffer_alloc_read_page. This is because the page might be used
4121  * to swap with a page in the ring buffer.
4122  *
4123  * for example:
4124  *      rpage = ring_buffer_alloc_read_page(buffer);
4125  *      if (!rpage)
4126  *              return error;
4127  *      ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
4128  *      if (ret >= 0)
4129  *              process_page(rpage, ret);
4130  *
4131  * When @full is set, the function will not return true unless
4132  * the writer is off the reader page.
4133  *
4134  * Note: it is up to the calling functions to handle sleeps and wakeups.
4135  *  The ring buffer can be used anywhere in the kernel and can not
4136  *  blindly call wake_up. The layer that uses the ring buffer must be
4137  *  responsible for that.
4138  *
4139  * Returns:
4140  *  >=0 if data has been transferred, returns the offset of consumed data.
4141  *  <0 if no data has been transferred.
4142  */
4143 int ring_buffer_read_page(struct ring_buffer *buffer,
4144                           void **data_page, size_t len, int cpu, int full)
4145 {
4146         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4147         struct ring_buffer_event *event;
4148         struct buffer_data_page *bpage;
4149         struct buffer_page *reader;
4150         unsigned long missed_events;
4151         unsigned long flags;
4152         unsigned int commit;
4153         unsigned int read;
4154         u64 save_timestamp;
4155         int ret = -1;
4156
4157         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4158                 goto out;
4159
4160         /*
4161          * If len is not big enough to hold the page header, then
4162          * we can not copy anything.
4163          */
4164         if (len <= BUF_PAGE_HDR_SIZE)
4165                 goto out;
4166
4167         len -= BUF_PAGE_HDR_SIZE;
4168
4169         if (!data_page)
4170                 goto out;
4171
4172         bpage = *data_page;
4173         if (!bpage)
4174                 goto out;
4175
4176         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4177
4178         reader = rb_get_reader_page(cpu_buffer);
4179         if (!reader)
4180                 goto out_unlock;
4181
4182         event = rb_reader_event(cpu_buffer);
4183
4184         read = reader->read;
4185         commit = rb_page_commit(reader);
4186
4187         /* Check if any events were dropped */
4188         missed_events = cpu_buffer->lost_events;
4189
4190         /*
4191          * If this page has been partially read or
4192          * if len is not big enough to read the rest of the page or
4193          * a writer is still on the page, then
4194          * we must copy the data from the page to the buffer.
4195          * Otherwise, we can simply swap the page with the one passed in.
4196          */
4197         if (read || (len < (commit - read)) ||
4198             cpu_buffer->reader_page == cpu_buffer->commit_page) {
4199                 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
4200                 unsigned int rpos = read;
4201                 unsigned int pos = 0;
4202                 unsigned int size;
4203
4204                 if (full)
4205                         goto out_unlock;
4206
4207                 if (len > (commit - read))
4208                         len = (commit - read);
4209
4210                 /* Always keep the time extend and data together */
4211                 size = rb_event_ts_length(event);
4212
4213                 if (len < size)
4214                         goto out_unlock;
4215
4216                 /* save the current timestamp, since the user will need it */
4217                 save_timestamp = cpu_buffer->read_stamp;
4218
4219                 /* Need to copy one event at a time */
4220                 do {
4221                         /* We need the size of one event, because
4222                          * rb_advance_reader only advances by one event,
4223                          * whereas rb_event_ts_length may include the size of
4224                          * one or two events.
4225                          * We have already ensured there's enough space if this
4226                          * is a time extend. */
4227                         size = rb_event_length(event);
4228                         memcpy(bpage->data + pos, rpage->data + rpos, size);
4229
4230                         len -= size;
4231
4232                         rb_advance_reader(cpu_buffer);
4233                         rpos = reader->read;
4234                         pos += size;
4235
4236                         if (rpos >= commit)
4237                                 break;
4238
4239                         event = rb_reader_event(cpu_buffer);
4240                         /* Always keep the time extend and data together */
4241                         size = rb_event_ts_length(event);
4242                 } while (len >= size);
4243
4244                 /* update bpage */
4245                 local_set(&bpage->commit, pos);
4246                 bpage->time_stamp = save_timestamp;
4247
4248                 /* we copied everything to the beginning */
4249                 read = 0;
4250         } else {
4251                 /* update the entry counter */
4252                 cpu_buffer->read += rb_page_entries(reader);
4253                 cpu_buffer->read_bytes += BUF_PAGE_SIZE;
4254
4255                 /* swap the pages */
4256                 rb_init_page(bpage);
4257                 bpage = reader->page;
4258                 reader->page = *data_page;
4259                 local_set(&reader->write, 0);
4260                 local_set(&reader->entries, 0);
4261                 reader->read = 0;
4262                 *data_page = bpage;
4263
4264                 /*
4265                  * Use the real_end for the data size,
4266                  * This gives us a chance to store the lost events
4267                  * on the page.
4268                  */
4269                 if (reader->real_end)
4270                         local_set(&bpage->commit, reader->real_end);
4271         }
4272         ret = read;
4273
4274         cpu_buffer->lost_events = 0;
4275
4276         commit = local_read(&bpage->commit);
4277         /*
4278          * Set a flag in the commit field if we lost events
4279          */
4280         if (missed_events) {
4281                 /* If there is room at the end of the page to save the
4282                  * missed events, then record it there.
4283                  */
4284                 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4285                         memcpy(&bpage->data[commit], &missed_events,
4286                                sizeof(missed_events));
4287                         local_add(RB_MISSED_STORED, &bpage->commit);
4288                         commit += sizeof(missed_events);
4289                 }
4290                 local_add(RB_MISSED_EVENTS, &bpage->commit);
4291         }
4292
4293         /*
4294          * This page may be off to user land. Zero it out here.
4295          */
4296         if (commit < BUF_PAGE_SIZE)
4297                 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4298
4299  out_unlock:
4300         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4301
4302  out:
4303         return ret;
4304 }
4305 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
4306
4307 #ifdef CONFIG_HOTPLUG_CPU
4308 static int rb_cpu_notify(struct notifier_block *self,
4309                          unsigned long action, void *hcpu)
4310 {
4311         struct ring_buffer *buffer =
4312                 container_of(self, struct ring_buffer, cpu_notify);
4313         long cpu = (long)hcpu;
4314         int cpu_i, nr_pages_same;
4315         unsigned int nr_pages;
4316
4317         switch (action) {
4318         case CPU_UP_PREPARE:
4319         case CPU_UP_PREPARE_FROZEN:
4320                 if (cpumask_test_cpu(cpu, buffer->cpumask))
4321                         return NOTIFY_OK;
4322
4323                 nr_pages = 0;
4324                 nr_pages_same = 1;
4325                 /* check if all cpu sizes are same */
4326                 for_each_buffer_cpu(buffer, cpu_i) {
4327                         /* fill in the size from first enabled cpu */
4328                         if (nr_pages == 0)
4329                                 nr_pages = buffer->buffers[cpu_i]->nr_pages;
4330                         if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4331                                 nr_pages_same = 0;
4332                                 break;
4333                         }
4334                 }
4335                 /* allocate minimum pages, user can later expand it */
4336                 if (!nr_pages_same)
4337                         nr_pages = 2;
4338                 buffer->buffers[cpu] =
4339                         rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
4340                 if (!buffer->buffers[cpu]) {
4341                         WARN(1, "failed to allocate ring buffer on CPU %ld\n",
4342                              cpu);
4343                         return NOTIFY_OK;
4344                 }
4345                 smp_wmb();
4346                 cpumask_set_cpu(cpu, buffer->cpumask);
4347                 break;
4348         case CPU_DOWN_PREPARE:
4349         case CPU_DOWN_PREPARE_FROZEN:
4350                 /*
4351                  * Do nothing.
4352                  *  If we were to free the buffer, then the user would
4353                  *  lose any trace that was in the buffer.
4354                  */
4355                 break;
4356         default:
4357                 break;
4358         }
4359         return NOTIFY_OK;
4360 }
4361 #endif