Merge remote-tracking branch 'regmap/fix/cache' into regmap-linus
[firefly-linux-kernel-4.4.55.git] / kernel / trace / ring_buffer.c
1 /*
2  * Generic ring buffer
3  *
4  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5  */
6 #include <linux/ftrace_event.h>
7 #include <linux/ring_buffer.h>
8 #include <linux/trace_clock.h>
9 #include <linux/trace_seq.h>
10 #include <linux/spinlock.h>
11 #include <linux/irq_work.h>
12 #include <linux/debugfs.h>
13 #include <linux/uaccess.h>
14 #include <linux/hardirq.h>
15 #include <linux/kthread.h>      /* for self test */
16 #include <linux/kmemcheck.h>
17 #include <linux/module.h>
18 #include <linux/percpu.h>
19 #include <linux/mutex.h>
20 #include <linux/delay.h>
21 #include <linux/slab.h>
22 #include <linux/init.h>
23 #include <linux/hash.h>
24 #include <linux/list.h>
25 #include <linux/cpu.h>
26 #include <linux/fs.h>
27
28 #include <asm/local.h>
29
30 static void update_pages_handler(struct work_struct *work);
31
32 /*
33  * The ring buffer header is special. We must manually up keep it.
34  */
35 int ring_buffer_print_entry_header(struct trace_seq *s)
36 {
37         int ret;
38
39         ret = trace_seq_printf(s, "# compressed entry header\n");
40         ret = trace_seq_printf(s, "\ttype_len    :    5 bits\n");
41         ret = trace_seq_printf(s, "\ttime_delta  :   27 bits\n");
42         ret = trace_seq_printf(s, "\tarray       :   32 bits\n");
43         ret = trace_seq_printf(s, "\n");
44         ret = trace_seq_printf(s, "\tpadding     : type == %d\n",
45                                RINGBUF_TYPE_PADDING);
46         ret = trace_seq_printf(s, "\ttime_extend : type == %d\n",
47                                RINGBUF_TYPE_TIME_EXTEND);
48         ret = trace_seq_printf(s, "\tdata max type_len  == %d\n",
49                                RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
50
51         return ret;
52 }
53
54 /*
55  * The ring buffer is made up of a list of pages. A separate list of pages is
56  * allocated for each CPU. A writer may only write to a buffer that is
57  * associated with the CPU it is currently executing on.  A reader may read
58  * from any per cpu buffer.
59  *
60  * The reader is special. For each per cpu buffer, the reader has its own
61  * reader page. When a reader has read the entire reader page, this reader
62  * page is swapped with another page in the ring buffer.
63  *
64  * Now, as long as the writer is off the reader page, the reader can do what
65  * ever it wants with that page. The writer will never write to that page
66  * again (as long as it is out of the ring buffer).
67  *
68  * Here's some silly ASCII art.
69  *
70  *   +------+
71  *   |reader|          RING BUFFER
72  *   |page  |
73  *   +------+        +---+   +---+   +---+
74  *                   |   |-->|   |-->|   |
75  *                   +---+   +---+   +---+
76  *                     ^               |
77  *                     |               |
78  *                     +---------------+
79  *
80  *
81  *   +------+
82  *   |reader|          RING BUFFER
83  *   |page  |------------------v
84  *   +------+        +---+   +---+   +---+
85  *                   |   |-->|   |-->|   |
86  *                   +---+   +---+   +---+
87  *                     ^               |
88  *                     |               |
89  *                     +---------------+
90  *
91  *
92  *   +------+
93  *   |reader|          RING BUFFER
94  *   |page  |------------------v
95  *   +------+        +---+   +---+   +---+
96  *      ^            |   |-->|   |-->|   |
97  *      |            +---+   +---+   +---+
98  *      |                              |
99  *      |                              |
100  *      +------------------------------+
101  *
102  *
103  *   +------+
104  *   |buffer|          RING BUFFER
105  *   |page  |------------------v
106  *   +------+        +---+   +---+   +---+
107  *      ^            |   |   |   |-->|   |
108  *      |   New      +---+   +---+   +---+
109  *      |  Reader------^               |
110  *      |   page                       |
111  *      +------------------------------+
112  *
113  *
114  * After we make this swap, the reader can hand this page off to the splice
115  * code and be done with it. It can even allocate a new page if it needs to
116  * and swap that into the ring buffer.
117  *
118  * We will be using cmpxchg soon to make all this lockless.
119  *
120  */
121
122 /*
123  * A fast way to enable or disable all ring buffers is to
124  * call tracing_on or tracing_off. Turning off the ring buffers
125  * prevents all ring buffers from being recorded to.
126  * Turning this switch on, makes it OK to write to the
127  * ring buffer, if the ring buffer is enabled itself.
128  *
129  * There's three layers that must be on in order to write
130  * to the ring buffer.
131  *
132  * 1) This global flag must be set.
133  * 2) The ring buffer must be enabled for recording.
134  * 3) The per cpu buffer must be enabled for recording.
135  *
136  * In case of an anomaly, this global flag has a bit set that
137  * will permantly disable all ring buffers.
138  */
139
140 /*
141  * Global flag to disable all recording to ring buffers
142  *  This has two bits: ON, DISABLED
143  *
144  *  ON   DISABLED
145  * ---- ----------
146  *   0      0        : ring buffers are off
147  *   1      0        : ring buffers are on
148  *   X      1        : ring buffers are permanently disabled
149  */
150
151 enum {
152         RB_BUFFERS_ON_BIT       = 0,
153         RB_BUFFERS_DISABLED_BIT = 1,
154 };
155
156 enum {
157         RB_BUFFERS_ON           = 1 << RB_BUFFERS_ON_BIT,
158         RB_BUFFERS_DISABLED     = 1 << RB_BUFFERS_DISABLED_BIT,
159 };
160
161 static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
162
163 /* Used for individual buffers (after the counter) */
164 #define RB_BUFFER_OFF           (1 << 20)
165
166 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
167
168 /**
169  * tracing_off_permanent - permanently disable ring buffers
170  *
171  * This function, once called, will disable all ring buffers
172  * permanently.
173  */
174 void tracing_off_permanent(void)
175 {
176         set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
177 }
178
179 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
180 #define RB_ALIGNMENT            4U
181 #define RB_MAX_SMALL_DATA       (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
182 #define RB_EVNT_MIN_SIZE        8U      /* two 32bit words */
183
184 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
185 # define RB_FORCE_8BYTE_ALIGNMENT       0
186 # define RB_ARCH_ALIGNMENT              RB_ALIGNMENT
187 #else
188 # define RB_FORCE_8BYTE_ALIGNMENT       1
189 # define RB_ARCH_ALIGNMENT              8U
190 #endif
191
192 #define RB_ALIGN_DATA           __aligned(RB_ARCH_ALIGNMENT)
193
194 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
195 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
196
197 enum {
198         RB_LEN_TIME_EXTEND = 8,
199         RB_LEN_TIME_STAMP = 16,
200 };
201
202 #define skip_time_extend(event) \
203         ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
204
205 static inline int rb_null_event(struct ring_buffer_event *event)
206 {
207         return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
208 }
209
210 static void rb_event_set_padding(struct ring_buffer_event *event)
211 {
212         /* padding has a NULL time_delta */
213         event->type_len = RINGBUF_TYPE_PADDING;
214         event->time_delta = 0;
215 }
216
217 static unsigned
218 rb_event_data_length(struct ring_buffer_event *event)
219 {
220         unsigned length;
221
222         if (event->type_len)
223                 length = event->type_len * RB_ALIGNMENT;
224         else
225                 length = event->array[0];
226         return length + RB_EVNT_HDR_SIZE;
227 }
228
229 /*
230  * Return the length of the given event. Will return
231  * the length of the time extend if the event is a
232  * time extend.
233  */
234 static inline unsigned
235 rb_event_length(struct ring_buffer_event *event)
236 {
237         switch (event->type_len) {
238         case RINGBUF_TYPE_PADDING:
239                 if (rb_null_event(event))
240                         /* undefined */
241                         return -1;
242                 return  event->array[0] + RB_EVNT_HDR_SIZE;
243
244         case RINGBUF_TYPE_TIME_EXTEND:
245                 return RB_LEN_TIME_EXTEND;
246
247         case RINGBUF_TYPE_TIME_STAMP:
248                 return RB_LEN_TIME_STAMP;
249
250         case RINGBUF_TYPE_DATA:
251                 return rb_event_data_length(event);
252         default:
253                 BUG();
254         }
255         /* not hit */
256         return 0;
257 }
258
259 /*
260  * Return total length of time extend and data,
261  *   or just the event length for all other events.
262  */
263 static inline unsigned
264 rb_event_ts_length(struct ring_buffer_event *event)
265 {
266         unsigned len = 0;
267
268         if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
269                 /* time extends include the data event after it */
270                 len = RB_LEN_TIME_EXTEND;
271                 event = skip_time_extend(event);
272         }
273         return len + rb_event_length(event);
274 }
275
276 /**
277  * ring_buffer_event_length - return the length of the event
278  * @event: the event to get the length of
279  *
280  * Returns the size of the data load of a data event.
281  * If the event is something other than a data event, it
282  * returns the size of the event itself. With the exception
283  * of a TIME EXTEND, where it still returns the size of the
284  * data load of the data event after it.
285  */
286 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
287 {
288         unsigned length;
289
290         if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
291                 event = skip_time_extend(event);
292
293         length = rb_event_length(event);
294         if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
295                 return length;
296         length -= RB_EVNT_HDR_SIZE;
297         if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
298                 length -= sizeof(event->array[0]);
299         return length;
300 }
301 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
302
303 /* inline for ring buffer fast paths */
304 static void *
305 rb_event_data(struct ring_buffer_event *event)
306 {
307         if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
308                 event = skip_time_extend(event);
309         BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
310         /* If length is in len field, then array[0] has the data */
311         if (event->type_len)
312                 return (void *)&event->array[0];
313         /* Otherwise length is in array[0] and array[1] has the data */
314         return (void *)&event->array[1];
315 }
316
317 /**
318  * ring_buffer_event_data - return the data of the event
319  * @event: the event to get the data from
320  */
321 void *ring_buffer_event_data(struct ring_buffer_event *event)
322 {
323         return rb_event_data(event);
324 }
325 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
326
327 #define for_each_buffer_cpu(buffer, cpu)                \
328         for_each_cpu(cpu, buffer->cpumask)
329
330 #define TS_SHIFT        27
331 #define TS_MASK         ((1ULL << TS_SHIFT) - 1)
332 #define TS_DELTA_TEST   (~TS_MASK)
333
334 /* Flag when events were overwritten */
335 #define RB_MISSED_EVENTS        (1 << 31)
336 /* Missed count stored at end */
337 #define RB_MISSED_STORED        (1 << 30)
338
339 struct buffer_data_page {
340         u64              time_stamp;    /* page time stamp */
341         local_t          commit;        /* write committed index */
342         unsigned char    data[] RB_ALIGN_DATA;  /* data of buffer page */
343 };
344
345 /*
346  * Note, the buffer_page list must be first. The buffer pages
347  * are allocated in cache lines, which means that each buffer
348  * page will be at the beginning of a cache line, and thus
349  * the least significant bits will be zero. We use this to
350  * add flags in the list struct pointers, to make the ring buffer
351  * lockless.
352  */
353 struct buffer_page {
354         struct list_head list;          /* list of buffer pages */
355         local_t          write;         /* index for next write */
356         unsigned         read;          /* index for next read */
357         local_t          entries;       /* entries on this page */
358         unsigned long    real_end;      /* real end of data */
359         struct buffer_data_page *page;  /* Actual data page */
360 };
361
362 /*
363  * The buffer page counters, write and entries, must be reset
364  * atomically when crossing page boundaries. To synchronize this
365  * update, two counters are inserted into the number. One is
366  * the actual counter for the write position or count on the page.
367  *
368  * The other is a counter of updaters. Before an update happens
369  * the update partition of the counter is incremented. This will
370  * allow the updater to update the counter atomically.
371  *
372  * The counter is 20 bits, and the state data is 12.
373  */
374 #define RB_WRITE_MASK           0xfffff
375 #define RB_WRITE_INTCNT         (1 << 20)
376
377 static void rb_init_page(struct buffer_data_page *bpage)
378 {
379         local_set(&bpage->commit, 0);
380 }
381
382 /**
383  * ring_buffer_page_len - the size of data on the page.
384  * @page: The page to read
385  *
386  * Returns the amount of data on the page, including buffer page header.
387  */
388 size_t ring_buffer_page_len(void *page)
389 {
390         return local_read(&((struct buffer_data_page *)page)->commit)
391                 + BUF_PAGE_HDR_SIZE;
392 }
393
394 /*
395  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
396  * this issue out.
397  */
398 static void free_buffer_page(struct buffer_page *bpage)
399 {
400         free_page((unsigned long)bpage->page);
401         kfree(bpage);
402 }
403
404 /*
405  * We need to fit the time_stamp delta into 27 bits.
406  */
407 static inline int test_time_stamp(u64 delta)
408 {
409         if (delta & TS_DELTA_TEST)
410                 return 1;
411         return 0;
412 }
413
414 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
415
416 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
417 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
418
419 int ring_buffer_print_page_header(struct trace_seq *s)
420 {
421         struct buffer_data_page field;
422         int ret;
423
424         ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t"
425                                "offset:0;\tsize:%u;\tsigned:%u;\n",
426                                (unsigned int)sizeof(field.time_stamp),
427                                (unsigned int)is_signed_type(u64));
428
429         ret = trace_seq_printf(s, "\tfield: local_t commit;\t"
430                                "offset:%u;\tsize:%u;\tsigned:%u;\n",
431                                (unsigned int)offsetof(typeof(field), commit),
432                                (unsigned int)sizeof(field.commit),
433                                (unsigned int)is_signed_type(long));
434
435         ret = trace_seq_printf(s, "\tfield: int overwrite;\t"
436                                "offset:%u;\tsize:%u;\tsigned:%u;\n",
437                                (unsigned int)offsetof(typeof(field), commit),
438                                1,
439                                (unsigned int)is_signed_type(long));
440
441         ret = trace_seq_printf(s, "\tfield: char data;\t"
442                                "offset:%u;\tsize:%u;\tsigned:%u;\n",
443                                (unsigned int)offsetof(typeof(field), data),
444                                (unsigned int)BUF_PAGE_SIZE,
445                                (unsigned int)is_signed_type(char));
446
447         return ret;
448 }
449
450 struct rb_irq_work {
451         struct irq_work                 work;
452         wait_queue_head_t               waiters;
453         bool                            waiters_pending;
454 };
455
456 /*
457  * head_page == tail_page && head == tail then buffer is empty.
458  */
459 struct ring_buffer_per_cpu {
460         int                             cpu;
461         atomic_t                        record_disabled;
462         struct ring_buffer              *buffer;
463         raw_spinlock_t                  reader_lock;    /* serialize readers */
464         arch_spinlock_t                 lock;
465         struct lock_class_key           lock_key;
466         unsigned int                    nr_pages;
467         struct list_head                *pages;
468         struct buffer_page              *head_page;     /* read from head */
469         struct buffer_page              *tail_page;     /* write to tail */
470         struct buffer_page              *commit_page;   /* committed pages */
471         struct buffer_page              *reader_page;
472         unsigned long                   lost_events;
473         unsigned long                   last_overrun;
474         local_t                         entries_bytes;
475         local_t                         entries;
476         local_t                         overrun;
477         local_t                         commit_overrun;
478         local_t                         dropped_events;
479         local_t                         committing;
480         local_t                         commits;
481         unsigned long                   read;
482         unsigned long                   read_bytes;
483         u64                             write_stamp;
484         u64                             read_stamp;
485         /* ring buffer pages to update, > 0 to add, < 0 to remove */
486         int                             nr_pages_to_update;
487         struct list_head                new_pages; /* new pages to add */
488         struct work_struct              update_pages_work;
489         struct completion               update_done;
490
491         struct rb_irq_work              irq_work;
492 };
493
494 struct ring_buffer {
495         unsigned                        flags;
496         int                             cpus;
497         atomic_t                        record_disabled;
498         atomic_t                        resize_disabled;
499         cpumask_var_t                   cpumask;
500
501         struct lock_class_key           *reader_lock_key;
502
503         struct mutex                    mutex;
504
505         struct ring_buffer_per_cpu      **buffers;
506
507 #ifdef CONFIG_HOTPLUG_CPU
508         struct notifier_block           cpu_notify;
509 #endif
510         u64                             (*clock)(void);
511
512         struct rb_irq_work              irq_work;
513 };
514
515 struct ring_buffer_iter {
516         struct ring_buffer_per_cpu      *cpu_buffer;
517         unsigned long                   head;
518         struct buffer_page              *head_page;
519         struct buffer_page              *cache_reader_page;
520         unsigned long                   cache_read;
521         u64                             read_stamp;
522 };
523
524 /*
525  * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
526  *
527  * Schedules a delayed work to wake up any task that is blocked on the
528  * ring buffer waiters queue.
529  */
530 static void rb_wake_up_waiters(struct irq_work *work)
531 {
532         struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
533
534         wake_up_all(&rbwork->waiters);
535 }
536
537 /**
538  * ring_buffer_wait - wait for input to the ring buffer
539  * @buffer: buffer to wait on
540  * @cpu: the cpu buffer to wait on
541  *
542  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
543  * as data is added to any of the @buffer's cpu buffers. Otherwise
544  * it will wait for data to be added to a specific cpu buffer.
545  */
546 void ring_buffer_wait(struct ring_buffer *buffer, int cpu)
547 {
548         struct ring_buffer_per_cpu *cpu_buffer;
549         DEFINE_WAIT(wait);
550         struct rb_irq_work *work;
551
552         /*
553          * Depending on what the caller is waiting for, either any
554          * data in any cpu buffer, or a specific buffer, put the
555          * caller on the appropriate wait queue.
556          */
557         if (cpu == RING_BUFFER_ALL_CPUS)
558                 work = &buffer->irq_work;
559         else {
560                 cpu_buffer = buffer->buffers[cpu];
561                 work = &cpu_buffer->irq_work;
562         }
563
564
565         prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
566
567         /*
568          * The events can happen in critical sections where
569          * checking a work queue can cause deadlocks.
570          * After adding a task to the queue, this flag is set
571          * only to notify events to try to wake up the queue
572          * using irq_work.
573          *
574          * We don't clear it even if the buffer is no longer
575          * empty. The flag only causes the next event to run
576          * irq_work to do the work queue wake up. The worse
577          * that can happen if we race with !trace_empty() is that
578          * an event will cause an irq_work to try to wake up
579          * an empty queue.
580          *
581          * There's no reason to protect this flag either, as
582          * the work queue and irq_work logic will do the necessary
583          * synchronization for the wake ups. The only thing
584          * that is necessary is that the wake up happens after
585          * a task has been queued. It's OK for spurious wake ups.
586          */
587         work->waiters_pending = true;
588
589         if ((cpu == RING_BUFFER_ALL_CPUS && ring_buffer_empty(buffer)) ||
590             (cpu != RING_BUFFER_ALL_CPUS && ring_buffer_empty_cpu(buffer, cpu)))
591                 schedule();
592
593         finish_wait(&work->waiters, &wait);
594 }
595
596 /**
597  * ring_buffer_poll_wait - poll on buffer input
598  * @buffer: buffer to wait on
599  * @cpu: the cpu buffer to wait on
600  * @filp: the file descriptor
601  * @poll_table: The poll descriptor
602  *
603  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
604  * as data is added to any of the @buffer's cpu buffers. Otherwise
605  * it will wait for data to be added to a specific cpu buffer.
606  *
607  * Returns POLLIN | POLLRDNORM if data exists in the buffers,
608  * zero otherwise.
609  */
610 int ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu,
611                           struct file *filp, poll_table *poll_table)
612 {
613         struct ring_buffer_per_cpu *cpu_buffer;
614         struct rb_irq_work *work;
615
616         if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
617             (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
618                 return POLLIN | POLLRDNORM;
619
620         if (cpu == RING_BUFFER_ALL_CPUS)
621                 work = &buffer->irq_work;
622         else {
623                 if (!cpumask_test_cpu(cpu, buffer->cpumask))
624                         return -EINVAL;
625
626                 cpu_buffer = buffer->buffers[cpu];
627                 work = &cpu_buffer->irq_work;
628         }
629
630         work->waiters_pending = true;
631         poll_wait(filp, &work->waiters, poll_table);
632
633         if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
634             (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
635                 return POLLIN | POLLRDNORM;
636         return 0;
637 }
638
639 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
640 #define RB_WARN_ON(b, cond)                                             \
641         ({                                                              \
642                 int _____ret = unlikely(cond);                          \
643                 if (_____ret) {                                         \
644                         if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
645                                 struct ring_buffer_per_cpu *__b =       \
646                                         (void *)b;                      \
647                                 atomic_inc(&__b->buffer->record_disabled); \
648                         } else                                          \
649                                 atomic_inc(&b->record_disabled);        \
650                         WARN_ON(1);                                     \
651                 }                                                       \
652                 _____ret;                                               \
653         })
654
655 /* Up this if you want to test the TIME_EXTENTS and normalization */
656 #define DEBUG_SHIFT 0
657
658 static inline u64 rb_time_stamp(struct ring_buffer *buffer)
659 {
660         /* shift to debug/test normalization and TIME_EXTENTS */
661         return buffer->clock() << DEBUG_SHIFT;
662 }
663
664 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
665 {
666         u64 time;
667
668         preempt_disable_notrace();
669         time = rb_time_stamp(buffer);
670         preempt_enable_no_resched_notrace();
671
672         return time;
673 }
674 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
675
676 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
677                                       int cpu, u64 *ts)
678 {
679         /* Just stupid testing the normalize function and deltas */
680         *ts >>= DEBUG_SHIFT;
681 }
682 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
683
684 /*
685  * Making the ring buffer lockless makes things tricky.
686  * Although writes only happen on the CPU that they are on,
687  * and they only need to worry about interrupts. Reads can
688  * happen on any CPU.
689  *
690  * The reader page is always off the ring buffer, but when the
691  * reader finishes with a page, it needs to swap its page with
692  * a new one from the buffer. The reader needs to take from
693  * the head (writes go to the tail). But if a writer is in overwrite
694  * mode and wraps, it must push the head page forward.
695  *
696  * Here lies the problem.
697  *
698  * The reader must be careful to replace only the head page, and
699  * not another one. As described at the top of the file in the
700  * ASCII art, the reader sets its old page to point to the next
701  * page after head. It then sets the page after head to point to
702  * the old reader page. But if the writer moves the head page
703  * during this operation, the reader could end up with the tail.
704  *
705  * We use cmpxchg to help prevent this race. We also do something
706  * special with the page before head. We set the LSB to 1.
707  *
708  * When the writer must push the page forward, it will clear the
709  * bit that points to the head page, move the head, and then set
710  * the bit that points to the new head page.
711  *
712  * We also don't want an interrupt coming in and moving the head
713  * page on another writer. Thus we use the second LSB to catch
714  * that too. Thus:
715  *
716  * head->list->prev->next        bit 1          bit 0
717  *                              -------        -------
718  * Normal page                     0              0
719  * Points to head page             0              1
720  * New head page                   1              0
721  *
722  * Note we can not trust the prev pointer of the head page, because:
723  *
724  * +----+       +-----+        +-----+
725  * |    |------>|  T  |---X--->|  N  |
726  * |    |<------|     |        |     |
727  * +----+       +-----+        +-----+
728  *   ^                           ^ |
729  *   |          +-----+          | |
730  *   +----------|  R  |----------+ |
731  *              |     |<-----------+
732  *              +-----+
733  *
734  * Key:  ---X-->  HEAD flag set in pointer
735  *         T      Tail page
736  *         R      Reader page
737  *         N      Next page
738  *
739  * (see __rb_reserve_next() to see where this happens)
740  *
741  *  What the above shows is that the reader just swapped out
742  *  the reader page with a page in the buffer, but before it
743  *  could make the new header point back to the new page added
744  *  it was preempted by a writer. The writer moved forward onto
745  *  the new page added by the reader and is about to move forward
746  *  again.
747  *
748  *  You can see, it is legitimate for the previous pointer of
749  *  the head (or any page) not to point back to itself. But only
750  *  temporarially.
751  */
752
753 #define RB_PAGE_NORMAL          0UL
754 #define RB_PAGE_HEAD            1UL
755 #define RB_PAGE_UPDATE          2UL
756
757
758 #define RB_FLAG_MASK            3UL
759
760 /* PAGE_MOVED is not part of the mask */
761 #define RB_PAGE_MOVED           4UL
762
763 /*
764  * rb_list_head - remove any bit
765  */
766 static struct list_head *rb_list_head(struct list_head *list)
767 {
768         unsigned long val = (unsigned long)list;
769
770         return (struct list_head *)(val & ~RB_FLAG_MASK);
771 }
772
773 /*
774  * rb_is_head_page - test if the given page is the head page
775  *
776  * Because the reader may move the head_page pointer, we can
777  * not trust what the head page is (it may be pointing to
778  * the reader page). But if the next page is a header page,
779  * its flags will be non zero.
780  */
781 static inline int
782 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
783                 struct buffer_page *page, struct list_head *list)
784 {
785         unsigned long val;
786
787         val = (unsigned long)list->next;
788
789         if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
790                 return RB_PAGE_MOVED;
791
792         return val & RB_FLAG_MASK;
793 }
794
795 /*
796  * rb_is_reader_page
797  *
798  * The unique thing about the reader page, is that, if the
799  * writer is ever on it, the previous pointer never points
800  * back to the reader page.
801  */
802 static int rb_is_reader_page(struct buffer_page *page)
803 {
804         struct list_head *list = page->list.prev;
805
806         return rb_list_head(list->next) != &page->list;
807 }
808
809 /*
810  * rb_set_list_to_head - set a list_head to be pointing to head.
811  */
812 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
813                                 struct list_head *list)
814 {
815         unsigned long *ptr;
816
817         ptr = (unsigned long *)&list->next;
818         *ptr |= RB_PAGE_HEAD;
819         *ptr &= ~RB_PAGE_UPDATE;
820 }
821
822 /*
823  * rb_head_page_activate - sets up head page
824  */
825 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
826 {
827         struct buffer_page *head;
828
829         head = cpu_buffer->head_page;
830         if (!head)
831                 return;
832
833         /*
834          * Set the previous list pointer to have the HEAD flag.
835          */
836         rb_set_list_to_head(cpu_buffer, head->list.prev);
837 }
838
839 static void rb_list_head_clear(struct list_head *list)
840 {
841         unsigned long *ptr = (unsigned long *)&list->next;
842
843         *ptr &= ~RB_FLAG_MASK;
844 }
845
846 /*
847  * rb_head_page_dactivate - clears head page ptr (for free list)
848  */
849 static void
850 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
851 {
852         struct list_head *hd;
853
854         /* Go through the whole list and clear any pointers found. */
855         rb_list_head_clear(cpu_buffer->pages);
856
857         list_for_each(hd, cpu_buffer->pages)
858                 rb_list_head_clear(hd);
859 }
860
861 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
862                             struct buffer_page *head,
863                             struct buffer_page *prev,
864                             int old_flag, int new_flag)
865 {
866         struct list_head *list;
867         unsigned long val = (unsigned long)&head->list;
868         unsigned long ret;
869
870         list = &prev->list;
871
872         val &= ~RB_FLAG_MASK;
873
874         ret = cmpxchg((unsigned long *)&list->next,
875                       val | old_flag, val | new_flag);
876
877         /* check if the reader took the page */
878         if ((ret & ~RB_FLAG_MASK) != val)
879                 return RB_PAGE_MOVED;
880
881         return ret & RB_FLAG_MASK;
882 }
883
884 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
885                                    struct buffer_page *head,
886                                    struct buffer_page *prev,
887                                    int old_flag)
888 {
889         return rb_head_page_set(cpu_buffer, head, prev,
890                                 old_flag, RB_PAGE_UPDATE);
891 }
892
893 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
894                                  struct buffer_page *head,
895                                  struct buffer_page *prev,
896                                  int old_flag)
897 {
898         return rb_head_page_set(cpu_buffer, head, prev,
899                                 old_flag, RB_PAGE_HEAD);
900 }
901
902 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
903                                    struct buffer_page *head,
904                                    struct buffer_page *prev,
905                                    int old_flag)
906 {
907         return rb_head_page_set(cpu_buffer, head, prev,
908                                 old_flag, RB_PAGE_NORMAL);
909 }
910
911 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
912                                struct buffer_page **bpage)
913 {
914         struct list_head *p = rb_list_head((*bpage)->list.next);
915
916         *bpage = list_entry(p, struct buffer_page, list);
917 }
918
919 static struct buffer_page *
920 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
921 {
922         struct buffer_page *head;
923         struct buffer_page *page;
924         struct list_head *list;
925         int i;
926
927         if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
928                 return NULL;
929
930         /* sanity check */
931         list = cpu_buffer->pages;
932         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
933                 return NULL;
934
935         page = head = cpu_buffer->head_page;
936         /*
937          * It is possible that the writer moves the header behind
938          * where we started, and we miss in one loop.
939          * A second loop should grab the header, but we'll do
940          * three loops just because I'm paranoid.
941          */
942         for (i = 0; i < 3; i++) {
943                 do {
944                         if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
945                                 cpu_buffer->head_page = page;
946                                 return page;
947                         }
948                         rb_inc_page(cpu_buffer, &page);
949                 } while (page != head);
950         }
951
952         RB_WARN_ON(cpu_buffer, 1);
953
954         return NULL;
955 }
956
957 static int rb_head_page_replace(struct buffer_page *old,
958                                 struct buffer_page *new)
959 {
960         unsigned long *ptr = (unsigned long *)&old->list.prev->next;
961         unsigned long val;
962         unsigned long ret;
963
964         val = *ptr & ~RB_FLAG_MASK;
965         val |= RB_PAGE_HEAD;
966
967         ret = cmpxchg(ptr, val, (unsigned long)&new->list);
968
969         return ret == val;
970 }
971
972 /*
973  * rb_tail_page_update - move the tail page forward
974  *
975  * Returns 1 if moved tail page, 0 if someone else did.
976  */
977 static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
978                                struct buffer_page *tail_page,
979                                struct buffer_page *next_page)
980 {
981         struct buffer_page *old_tail;
982         unsigned long old_entries;
983         unsigned long old_write;
984         int ret = 0;
985
986         /*
987          * The tail page now needs to be moved forward.
988          *
989          * We need to reset the tail page, but without messing
990          * with possible erasing of data brought in by interrupts
991          * that have moved the tail page and are currently on it.
992          *
993          * We add a counter to the write field to denote this.
994          */
995         old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
996         old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
997
998         /*
999          * Just make sure we have seen our old_write and synchronize
1000          * with any interrupts that come in.
1001          */
1002         barrier();
1003
1004         /*
1005          * If the tail page is still the same as what we think
1006          * it is, then it is up to us to update the tail
1007          * pointer.
1008          */
1009         if (tail_page == cpu_buffer->tail_page) {
1010                 /* Zero the write counter */
1011                 unsigned long val = old_write & ~RB_WRITE_MASK;
1012                 unsigned long eval = old_entries & ~RB_WRITE_MASK;
1013
1014                 /*
1015                  * This will only succeed if an interrupt did
1016                  * not come in and change it. In which case, we
1017                  * do not want to modify it.
1018                  *
1019                  * We add (void) to let the compiler know that we do not care
1020                  * about the return value of these functions. We use the
1021                  * cmpxchg to only update if an interrupt did not already
1022                  * do it for us. If the cmpxchg fails, we don't care.
1023                  */
1024                 (void)local_cmpxchg(&next_page->write, old_write, val);
1025                 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
1026
1027                 /*
1028                  * No need to worry about races with clearing out the commit.
1029                  * it only can increment when a commit takes place. But that
1030                  * only happens in the outer most nested commit.
1031                  */
1032                 local_set(&next_page->page->commit, 0);
1033
1034                 old_tail = cmpxchg(&cpu_buffer->tail_page,
1035                                    tail_page, next_page);
1036
1037                 if (old_tail == tail_page)
1038                         ret = 1;
1039         }
1040
1041         return ret;
1042 }
1043
1044 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1045                           struct buffer_page *bpage)
1046 {
1047         unsigned long val = (unsigned long)bpage;
1048
1049         if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1050                 return 1;
1051
1052         return 0;
1053 }
1054
1055 /**
1056  * rb_check_list - make sure a pointer to a list has the last bits zero
1057  */
1058 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1059                          struct list_head *list)
1060 {
1061         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1062                 return 1;
1063         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1064                 return 1;
1065         return 0;
1066 }
1067
1068 /**
1069  * check_pages - integrity check of buffer pages
1070  * @cpu_buffer: CPU buffer with pages to test
1071  *
1072  * As a safety measure we check to make sure the data pages have not
1073  * been corrupted.
1074  */
1075 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1076 {
1077         struct list_head *head = cpu_buffer->pages;
1078         struct buffer_page *bpage, *tmp;
1079
1080         /* Reset the head page if it exists */
1081         if (cpu_buffer->head_page)
1082                 rb_set_head_page(cpu_buffer);
1083
1084         rb_head_page_deactivate(cpu_buffer);
1085
1086         if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1087                 return -1;
1088         if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1089                 return -1;
1090
1091         if (rb_check_list(cpu_buffer, head))
1092                 return -1;
1093
1094         list_for_each_entry_safe(bpage, tmp, head, list) {
1095                 if (RB_WARN_ON(cpu_buffer,
1096                                bpage->list.next->prev != &bpage->list))
1097                         return -1;
1098                 if (RB_WARN_ON(cpu_buffer,
1099                                bpage->list.prev->next != &bpage->list))
1100                         return -1;
1101                 if (rb_check_list(cpu_buffer, &bpage->list))
1102                         return -1;
1103         }
1104
1105         rb_head_page_activate(cpu_buffer);
1106
1107         return 0;
1108 }
1109
1110 static int __rb_allocate_pages(int nr_pages, struct list_head *pages, int cpu)
1111 {
1112         int i;
1113         struct buffer_page *bpage, *tmp;
1114
1115         for (i = 0; i < nr_pages; i++) {
1116                 struct page *page;
1117                 /*
1118                  * __GFP_NORETRY flag makes sure that the allocation fails
1119                  * gracefully without invoking oom-killer and the system is
1120                  * not destabilized.
1121                  */
1122                 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1123                                     GFP_KERNEL | __GFP_NORETRY,
1124                                     cpu_to_node(cpu));
1125                 if (!bpage)
1126                         goto free_pages;
1127
1128                 list_add(&bpage->list, pages);
1129
1130                 page = alloc_pages_node(cpu_to_node(cpu),
1131                                         GFP_KERNEL | __GFP_NORETRY, 0);
1132                 if (!page)
1133                         goto free_pages;
1134                 bpage->page = page_address(page);
1135                 rb_init_page(bpage->page);
1136         }
1137
1138         return 0;
1139
1140 free_pages:
1141         list_for_each_entry_safe(bpage, tmp, pages, list) {
1142                 list_del_init(&bpage->list);
1143                 free_buffer_page(bpage);
1144         }
1145
1146         return -ENOMEM;
1147 }
1148
1149 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1150                              unsigned nr_pages)
1151 {
1152         LIST_HEAD(pages);
1153
1154         WARN_ON(!nr_pages);
1155
1156         if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1157                 return -ENOMEM;
1158
1159         /*
1160          * The ring buffer page list is a circular list that does not
1161          * start and end with a list head. All page list items point to
1162          * other pages.
1163          */
1164         cpu_buffer->pages = pages.next;
1165         list_del(&pages);
1166
1167         cpu_buffer->nr_pages = nr_pages;
1168
1169         rb_check_pages(cpu_buffer);
1170
1171         return 0;
1172 }
1173
1174 static struct ring_buffer_per_cpu *
1175 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int nr_pages, int cpu)
1176 {
1177         struct ring_buffer_per_cpu *cpu_buffer;
1178         struct buffer_page *bpage;
1179         struct page *page;
1180         int ret;
1181
1182         cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1183                                   GFP_KERNEL, cpu_to_node(cpu));
1184         if (!cpu_buffer)
1185                 return NULL;
1186
1187         cpu_buffer->cpu = cpu;
1188         cpu_buffer->buffer = buffer;
1189         raw_spin_lock_init(&cpu_buffer->reader_lock);
1190         lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1191         cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1192         INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1193         init_completion(&cpu_buffer->update_done);
1194         init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1195         init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1196
1197         bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1198                             GFP_KERNEL, cpu_to_node(cpu));
1199         if (!bpage)
1200                 goto fail_free_buffer;
1201
1202         rb_check_bpage(cpu_buffer, bpage);
1203
1204         cpu_buffer->reader_page = bpage;
1205         page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1206         if (!page)
1207                 goto fail_free_reader;
1208         bpage->page = page_address(page);
1209         rb_init_page(bpage->page);
1210
1211         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1212         INIT_LIST_HEAD(&cpu_buffer->new_pages);
1213
1214         ret = rb_allocate_pages(cpu_buffer, nr_pages);
1215         if (ret < 0)
1216                 goto fail_free_reader;
1217
1218         cpu_buffer->head_page
1219                 = list_entry(cpu_buffer->pages, struct buffer_page, list);
1220         cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1221
1222         rb_head_page_activate(cpu_buffer);
1223
1224         return cpu_buffer;
1225
1226  fail_free_reader:
1227         free_buffer_page(cpu_buffer->reader_page);
1228
1229  fail_free_buffer:
1230         kfree(cpu_buffer);
1231         return NULL;
1232 }
1233
1234 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1235 {
1236         struct list_head *head = cpu_buffer->pages;
1237         struct buffer_page *bpage, *tmp;
1238
1239         free_buffer_page(cpu_buffer->reader_page);
1240
1241         rb_head_page_deactivate(cpu_buffer);
1242
1243         if (head) {
1244                 list_for_each_entry_safe(bpage, tmp, head, list) {
1245                         list_del_init(&bpage->list);
1246                         free_buffer_page(bpage);
1247                 }
1248                 bpage = list_entry(head, struct buffer_page, list);
1249                 free_buffer_page(bpage);
1250         }
1251
1252         kfree(cpu_buffer);
1253 }
1254
1255 #ifdef CONFIG_HOTPLUG_CPU
1256 static int rb_cpu_notify(struct notifier_block *self,
1257                          unsigned long action, void *hcpu);
1258 #endif
1259
1260 /**
1261  * ring_buffer_alloc - allocate a new ring_buffer
1262  * @size: the size in bytes per cpu that is needed.
1263  * @flags: attributes to set for the ring buffer.
1264  *
1265  * Currently the only flag that is available is the RB_FL_OVERWRITE
1266  * flag. This flag means that the buffer will overwrite old data
1267  * when the buffer wraps. If this flag is not set, the buffer will
1268  * drop data when the tail hits the head.
1269  */
1270 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1271                                         struct lock_class_key *key)
1272 {
1273         struct ring_buffer *buffer;
1274         int bsize;
1275         int cpu, nr_pages;
1276
1277         /* keep it in its own cache line */
1278         buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1279                          GFP_KERNEL);
1280         if (!buffer)
1281                 return NULL;
1282
1283         if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1284                 goto fail_free_buffer;
1285
1286         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1287         buffer->flags = flags;
1288         buffer->clock = trace_clock_local;
1289         buffer->reader_lock_key = key;
1290
1291         init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1292         init_waitqueue_head(&buffer->irq_work.waiters);
1293
1294         /* need at least two pages */
1295         if (nr_pages < 2)
1296                 nr_pages = 2;
1297
1298         /*
1299          * In case of non-hotplug cpu, if the ring-buffer is allocated
1300          * in early initcall, it will not be notified of secondary cpus.
1301          * In that off case, we need to allocate for all possible cpus.
1302          */
1303 #ifdef CONFIG_HOTPLUG_CPU
1304         get_online_cpus();
1305         cpumask_copy(buffer->cpumask, cpu_online_mask);
1306 #else
1307         cpumask_copy(buffer->cpumask, cpu_possible_mask);
1308 #endif
1309         buffer->cpus = nr_cpu_ids;
1310
1311         bsize = sizeof(void *) * nr_cpu_ids;
1312         buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1313                                   GFP_KERNEL);
1314         if (!buffer->buffers)
1315                 goto fail_free_cpumask;
1316
1317         for_each_buffer_cpu(buffer, cpu) {
1318                 buffer->buffers[cpu] =
1319                         rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1320                 if (!buffer->buffers[cpu])
1321                         goto fail_free_buffers;
1322         }
1323
1324 #ifdef CONFIG_HOTPLUG_CPU
1325         buffer->cpu_notify.notifier_call = rb_cpu_notify;
1326         buffer->cpu_notify.priority = 0;
1327         register_cpu_notifier(&buffer->cpu_notify);
1328 #endif
1329
1330         put_online_cpus();
1331         mutex_init(&buffer->mutex);
1332
1333         return buffer;
1334
1335  fail_free_buffers:
1336         for_each_buffer_cpu(buffer, cpu) {
1337                 if (buffer->buffers[cpu])
1338                         rb_free_cpu_buffer(buffer->buffers[cpu]);
1339         }
1340         kfree(buffer->buffers);
1341
1342  fail_free_cpumask:
1343         free_cpumask_var(buffer->cpumask);
1344         put_online_cpus();
1345
1346  fail_free_buffer:
1347         kfree(buffer);
1348         return NULL;
1349 }
1350 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1351
1352 /**
1353  * ring_buffer_free - free a ring buffer.
1354  * @buffer: the buffer to free.
1355  */
1356 void
1357 ring_buffer_free(struct ring_buffer *buffer)
1358 {
1359         int cpu;
1360
1361         get_online_cpus();
1362
1363 #ifdef CONFIG_HOTPLUG_CPU
1364         unregister_cpu_notifier(&buffer->cpu_notify);
1365 #endif
1366
1367         for_each_buffer_cpu(buffer, cpu)
1368                 rb_free_cpu_buffer(buffer->buffers[cpu]);
1369
1370         put_online_cpus();
1371
1372         kfree(buffer->buffers);
1373         free_cpumask_var(buffer->cpumask);
1374
1375         kfree(buffer);
1376 }
1377 EXPORT_SYMBOL_GPL(ring_buffer_free);
1378
1379 void ring_buffer_set_clock(struct ring_buffer *buffer,
1380                            u64 (*clock)(void))
1381 {
1382         buffer->clock = clock;
1383 }
1384
1385 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1386
1387 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1388 {
1389         return local_read(&bpage->entries) & RB_WRITE_MASK;
1390 }
1391
1392 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1393 {
1394         return local_read(&bpage->write) & RB_WRITE_MASK;
1395 }
1396
1397 static int
1398 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned int nr_pages)
1399 {
1400         struct list_head *tail_page, *to_remove, *next_page;
1401         struct buffer_page *to_remove_page, *tmp_iter_page;
1402         struct buffer_page *last_page, *first_page;
1403         unsigned int nr_removed;
1404         unsigned long head_bit;
1405         int page_entries;
1406
1407         head_bit = 0;
1408
1409         raw_spin_lock_irq(&cpu_buffer->reader_lock);
1410         atomic_inc(&cpu_buffer->record_disabled);
1411         /*
1412          * We don't race with the readers since we have acquired the reader
1413          * lock. We also don't race with writers after disabling recording.
1414          * This makes it easy to figure out the first and the last page to be
1415          * removed from the list. We unlink all the pages in between including
1416          * the first and last pages. This is done in a busy loop so that we
1417          * lose the least number of traces.
1418          * The pages are freed after we restart recording and unlock readers.
1419          */
1420         tail_page = &cpu_buffer->tail_page->list;
1421
1422         /*
1423          * tail page might be on reader page, we remove the next page
1424          * from the ring buffer
1425          */
1426         if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1427                 tail_page = rb_list_head(tail_page->next);
1428         to_remove = tail_page;
1429
1430         /* start of pages to remove */
1431         first_page = list_entry(rb_list_head(to_remove->next),
1432                                 struct buffer_page, list);
1433
1434         for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1435                 to_remove = rb_list_head(to_remove)->next;
1436                 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1437         }
1438
1439         next_page = rb_list_head(to_remove)->next;
1440
1441         /*
1442          * Now we remove all pages between tail_page and next_page.
1443          * Make sure that we have head_bit value preserved for the
1444          * next page
1445          */
1446         tail_page->next = (struct list_head *)((unsigned long)next_page |
1447                                                 head_bit);
1448         next_page = rb_list_head(next_page);
1449         next_page->prev = tail_page;
1450
1451         /* make sure pages points to a valid page in the ring buffer */
1452         cpu_buffer->pages = next_page;
1453
1454         /* update head page */
1455         if (head_bit)
1456                 cpu_buffer->head_page = list_entry(next_page,
1457                                                 struct buffer_page, list);
1458
1459         /*
1460          * change read pointer to make sure any read iterators reset
1461          * themselves
1462          */
1463         cpu_buffer->read = 0;
1464
1465         /* pages are removed, resume tracing and then free the pages */
1466         atomic_dec(&cpu_buffer->record_disabled);
1467         raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1468
1469         RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1470
1471         /* last buffer page to remove */
1472         last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1473                                 list);
1474         tmp_iter_page = first_page;
1475
1476         do {
1477                 to_remove_page = tmp_iter_page;
1478                 rb_inc_page(cpu_buffer, &tmp_iter_page);
1479
1480                 /* update the counters */
1481                 page_entries = rb_page_entries(to_remove_page);
1482                 if (page_entries) {
1483                         /*
1484                          * If something was added to this page, it was full
1485                          * since it is not the tail page. So we deduct the
1486                          * bytes consumed in ring buffer from here.
1487                          * Increment overrun to account for the lost events.
1488                          */
1489                         local_add(page_entries, &cpu_buffer->overrun);
1490                         local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1491                 }
1492
1493                 /*
1494                  * We have already removed references to this list item, just
1495                  * free up the buffer_page and its page
1496                  */
1497                 free_buffer_page(to_remove_page);
1498                 nr_removed--;
1499
1500         } while (to_remove_page != last_page);
1501
1502         RB_WARN_ON(cpu_buffer, nr_removed);
1503
1504         return nr_removed == 0;
1505 }
1506
1507 static int
1508 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1509 {
1510         struct list_head *pages = &cpu_buffer->new_pages;
1511         int retries, success;
1512
1513         raw_spin_lock_irq(&cpu_buffer->reader_lock);
1514         /*
1515          * We are holding the reader lock, so the reader page won't be swapped
1516          * in the ring buffer. Now we are racing with the writer trying to
1517          * move head page and the tail page.
1518          * We are going to adapt the reader page update process where:
1519          * 1. We first splice the start and end of list of new pages between
1520          *    the head page and its previous page.
1521          * 2. We cmpxchg the prev_page->next to point from head page to the
1522          *    start of new pages list.
1523          * 3. Finally, we update the head->prev to the end of new list.
1524          *
1525          * We will try this process 10 times, to make sure that we don't keep
1526          * spinning.
1527          */
1528         retries = 10;
1529         success = 0;
1530         while (retries--) {
1531                 struct list_head *head_page, *prev_page, *r;
1532                 struct list_head *last_page, *first_page;
1533                 struct list_head *head_page_with_bit;
1534
1535                 head_page = &rb_set_head_page(cpu_buffer)->list;
1536                 if (!head_page)
1537                         break;
1538                 prev_page = head_page->prev;
1539
1540                 first_page = pages->next;
1541                 last_page  = pages->prev;
1542
1543                 head_page_with_bit = (struct list_head *)
1544                                      ((unsigned long)head_page | RB_PAGE_HEAD);
1545
1546                 last_page->next = head_page_with_bit;
1547                 first_page->prev = prev_page;
1548
1549                 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1550
1551                 if (r == head_page_with_bit) {
1552                         /*
1553                          * yay, we replaced the page pointer to our new list,
1554                          * now, we just have to update to head page's prev
1555                          * pointer to point to end of list
1556                          */
1557                         head_page->prev = last_page;
1558                         success = 1;
1559                         break;
1560                 }
1561         }
1562
1563         if (success)
1564                 INIT_LIST_HEAD(pages);
1565         /*
1566          * If we weren't successful in adding in new pages, warn and stop
1567          * tracing
1568          */
1569         RB_WARN_ON(cpu_buffer, !success);
1570         raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1571
1572         /* free pages if they weren't inserted */
1573         if (!success) {
1574                 struct buffer_page *bpage, *tmp;
1575                 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1576                                          list) {
1577                         list_del_init(&bpage->list);
1578                         free_buffer_page(bpage);
1579                 }
1580         }
1581         return success;
1582 }
1583
1584 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1585 {
1586         int success;
1587
1588         if (cpu_buffer->nr_pages_to_update > 0)
1589                 success = rb_insert_pages(cpu_buffer);
1590         else
1591                 success = rb_remove_pages(cpu_buffer,
1592                                         -cpu_buffer->nr_pages_to_update);
1593
1594         if (success)
1595                 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1596 }
1597
1598 static void update_pages_handler(struct work_struct *work)
1599 {
1600         struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1601                         struct ring_buffer_per_cpu, update_pages_work);
1602         rb_update_pages(cpu_buffer);
1603         complete(&cpu_buffer->update_done);
1604 }
1605
1606 /**
1607  * ring_buffer_resize - resize the ring buffer
1608  * @buffer: the buffer to resize.
1609  * @size: the new size.
1610  *
1611  * Minimum size is 2 * BUF_PAGE_SIZE.
1612  *
1613  * Returns 0 on success and < 0 on failure.
1614  */
1615 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1616                         int cpu_id)
1617 {
1618         struct ring_buffer_per_cpu *cpu_buffer;
1619         unsigned nr_pages;
1620         int cpu, err = 0;
1621
1622         /*
1623          * Always succeed at resizing a non-existent buffer:
1624          */
1625         if (!buffer)
1626                 return size;
1627
1628         /* Make sure the requested buffer exists */
1629         if (cpu_id != RING_BUFFER_ALL_CPUS &&
1630             !cpumask_test_cpu(cpu_id, buffer->cpumask))
1631                 return size;
1632
1633         size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1634         size *= BUF_PAGE_SIZE;
1635
1636         /* we need a minimum of two pages */
1637         if (size < BUF_PAGE_SIZE * 2)
1638                 size = BUF_PAGE_SIZE * 2;
1639
1640         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1641
1642         /*
1643          * Don't succeed if resizing is disabled, as a reader might be
1644          * manipulating the ring buffer and is expecting a sane state while
1645          * this is true.
1646          */
1647         if (atomic_read(&buffer->resize_disabled))
1648                 return -EBUSY;
1649
1650         /* prevent another thread from changing buffer sizes */
1651         mutex_lock(&buffer->mutex);
1652
1653         if (cpu_id == RING_BUFFER_ALL_CPUS) {
1654                 /* calculate the pages to update */
1655                 for_each_buffer_cpu(buffer, cpu) {
1656                         cpu_buffer = buffer->buffers[cpu];
1657
1658                         cpu_buffer->nr_pages_to_update = nr_pages -
1659                                                         cpu_buffer->nr_pages;
1660                         /*
1661                          * nothing more to do for removing pages or no update
1662                          */
1663                         if (cpu_buffer->nr_pages_to_update <= 0)
1664                                 continue;
1665                         /*
1666                          * to add pages, make sure all new pages can be
1667                          * allocated without receiving ENOMEM
1668                          */
1669                         INIT_LIST_HEAD(&cpu_buffer->new_pages);
1670                         if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1671                                                 &cpu_buffer->new_pages, cpu)) {
1672                                 /* not enough memory for new pages */
1673                                 err = -ENOMEM;
1674                                 goto out_err;
1675                         }
1676                 }
1677
1678                 get_online_cpus();
1679                 /*
1680                  * Fire off all the required work handlers
1681                  * We can't schedule on offline CPUs, but it's not necessary
1682                  * since we can change their buffer sizes without any race.
1683                  */
1684                 for_each_buffer_cpu(buffer, cpu) {
1685                         cpu_buffer = buffer->buffers[cpu];
1686                         if (!cpu_buffer->nr_pages_to_update)
1687                                 continue;
1688
1689                         /* The update must run on the CPU that is being updated. */
1690                         preempt_disable();
1691                         if (cpu == smp_processor_id() || !cpu_online(cpu)) {
1692                                 rb_update_pages(cpu_buffer);
1693                                 cpu_buffer->nr_pages_to_update = 0;
1694                         } else {
1695                                 /*
1696                                  * Can not disable preemption for schedule_work_on()
1697                                  * on PREEMPT_RT.
1698                                  */
1699                                 preempt_enable();
1700                                 schedule_work_on(cpu,
1701                                                 &cpu_buffer->update_pages_work);
1702                                 preempt_disable();
1703                         }
1704                         preempt_enable();
1705                 }
1706
1707                 /* wait for all the updates to complete */
1708                 for_each_buffer_cpu(buffer, cpu) {
1709                         cpu_buffer = buffer->buffers[cpu];
1710                         if (!cpu_buffer->nr_pages_to_update)
1711                                 continue;
1712
1713                         if (cpu_online(cpu))
1714                                 wait_for_completion(&cpu_buffer->update_done);
1715                         cpu_buffer->nr_pages_to_update = 0;
1716                 }
1717
1718                 put_online_cpus();
1719         } else {
1720                 /* Make sure this CPU has been intitialized */
1721                 if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1722                         goto out;
1723
1724                 cpu_buffer = buffer->buffers[cpu_id];
1725
1726                 if (nr_pages == cpu_buffer->nr_pages)
1727                         goto out;
1728
1729                 cpu_buffer->nr_pages_to_update = nr_pages -
1730                                                 cpu_buffer->nr_pages;
1731
1732                 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1733                 if (cpu_buffer->nr_pages_to_update > 0 &&
1734                         __rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1735                                             &cpu_buffer->new_pages, cpu_id)) {
1736                         err = -ENOMEM;
1737                         goto out_err;
1738                 }
1739
1740                 get_online_cpus();
1741
1742                 preempt_disable();
1743                 /* The update must run on the CPU that is being updated. */
1744                 if (cpu_id == smp_processor_id() || !cpu_online(cpu_id))
1745                         rb_update_pages(cpu_buffer);
1746                 else {
1747                         /*
1748                          * Can not disable preemption for schedule_work_on()
1749                          * on PREEMPT_RT.
1750                          */
1751                         preempt_enable();
1752                         schedule_work_on(cpu_id,
1753                                          &cpu_buffer->update_pages_work);
1754                         wait_for_completion(&cpu_buffer->update_done);
1755                         preempt_disable();
1756                 }
1757                 preempt_enable();
1758
1759                 cpu_buffer->nr_pages_to_update = 0;
1760                 put_online_cpus();
1761         }
1762
1763  out:
1764         /*
1765          * The ring buffer resize can happen with the ring buffer
1766          * enabled, so that the update disturbs the tracing as little
1767          * as possible. But if the buffer is disabled, we do not need
1768          * to worry about that, and we can take the time to verify
1769          * that the buffer is not corrupt.
1770          */
1771         if (atomic_read(&buffer->record_disabled)) {
1772                 atomic_inc(&buffer->record_disabled);
1773                 /*
1774                  * Even though the buffer was disabled, we must make sure
1775                  * that it is truly disabled before calling rb_check_pages.
1776                  * There could have been a race between checking
1777                  * record_disable and incrementing it.
1778                  */
1779                 synchronize_sched();
1780                 for_each_buffer_cpu(buffer, cpu) {
1781                         cpu_buffer = buffer->buffers[cpu];
1782                         rb_check_pages(cpu_buffer);
1783                 }
1784                 atomic_dec(&buffer->record_disabled);
1785         }
1786
1787         mutex_unlock(&buffer->mutex);
1788         return size;
1789
1790  out_err:
1791         for_each_buffer_cpu(buffer, cpu) {
1792                 struct buffer_page *bpage, *tmp;
1793
1794                 cpu_buffer = buffer->buffers[cpu];
1795                 cpu_buffer->nr_pages_to_update = 0;
1796
1797                 if (list_empty(&cpu_buffer->new_pages))
1798                         continue;
1799
1800                 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1801                                         list) {
1802                         list_del_init(&bpage->list);
1803                         free_buffer_page(bpage);
1804                 }
1805         }
1806         mutex_unlock(&buffer->mutex);
1807         return err;
1808 }
1809 EXPORT_SYMBOL_GPL(ring_buffer_resize);
1810
1811 void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1812 {
1813         mutex_lock(&buffer->mutex);
1814         if (val)
1815                 buffer->flags |= RB_FL_OVERWRITE;
1816         else
1817                 buffer->flags &= ~RB_FL_OVERWRITE;
1818         mutex_unlock(&buffer->mutex);
1819 }
1820 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1821
1822 static inline void *
1823 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
1824 {
1825         return bpage->data + index;
1826 }
1827
1828 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1829 {
1830         return bpage->page->data + index;
1831 }
1832
1833 static inline struct ring_buffer_event *
1834 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1835 {
1836         return __rb_page_index(cpu_buffer->reader_page,
1837                                cpu_buffer->reader_page->read);
1838 }
1839
1840 static inline struct ring_buffer_event *
1841 rb_iter_head_event(struct ring_buffer_iter *iter)
1842 {
1843         return __rb_page_index(iter->head_page, iter->head);
1844 }
1845
1846 static inline unsigned rb_page_commit(struct buffer_page *bpage)
1847 {
1848         return local_read(&bpage->page->commit);
1849 }
1850
1851 /* Size is determined by what has been committed */
1852 static inline unsigned rb_page_size(struct buffer_page *bpage)
1853 {
1854         return rb_page_commit(bpage);
1855 }
1856
1857 static inline unsigned
1858 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1859 {
1860         return rb_page_commit(cpu_buffer->commit_page);
1861 }
1862
1863 static inline unsigned
1864 rb_event_index(struct ring_buffer_event *event)
1865 {
1866         unsigned long addr = (unsigned long)event;
1867
1868         return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1869 }
1870
1871 static inline int
1872 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1873                    struct ring_buffer_event *event)
1874 {
1875         unsigned long addr = (unsigned long)event;
1876         unsigned long index;
1877
1878         index = rb_event_index(event);
1879         addr &= PAGE_MASK;
1880
1881         return cpu_buffer->commit_page->page == (void *)addr &&
1882                 rb_commit_index(cpu_buffer) == index;
1883 }
1884
1885 static void
1886 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
1887 {
1888         unsigned long max_count;
1889
1890         /*
1891          * We only race with interrupts and NMIs on this CPU.
1892          * If we own the commit event, then we can commit
1893          * all others that interrupted us, since the interruptions
1894          * are in stack format (they finish before they come
1895          * back to us). This allows us to do a simple loop to
1896          * assign the commit to the tail.
1897          */
1898  again:
1899         max_count = cpu_buffer->nr_pages * 100;
1900
1901         while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
1902                 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
1903                         return;
1904                 if (RB_WARN_ON(cpu_buffer,
1905                                rb_is_reader_page(cpu_buffer->tail_page)))
1906                         return;
1907                 local_set(&cpu_buffer->commit_page->page->commit,
1908                           rb_page_write(cpu_buffer->commit_page));
1909                 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
1910                 cpu_buffer->write_stamp =
1911                         cpu_buffer->commit_page->page->time_stamp;
1912                 /* add barrier to keep gcc from optimizing too much */
1913                 barrier();
1914         }
1915         while (rb_commit_index(cpu_buffer) !=
1916                rb_page_write(cpu_buffer->commit_page)) {
1917
1918                 local_set(&cpu_buffer->commit_page->page->commit,
1919                           rb_page_write(cpu_buffer->commit_page));
1920                 RB_WARN_ON(cpu_buffer,
1921                            local_read(&cpu_buffer->commit_page->page->commit) &
1922                            ~RB_WRITE_MASK);
1923                 barrier();
1924         }
1925
1926         /* again, keep gcc from optimizing */
1927         barrier();
1928
1929         /*
1930          * If an interrupt came in just after the first while loop
1931          * and pushed the tail page forward, we will be left with
1932          * a dangling commit that will never go forward.
1933          */
1934         if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1935                 goto again;
1936 }
1937
1938 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1939 {
1940         cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
1941         cpu_buffer->reader_page->read = 0;
1942 }
1943
1944 static void rb_inc_iter(struct ring_buffer_iter *iter)
1945 {
1946         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1947
1948         /*
1949          * The iterator could be on the reader page (it starts there).
1950          * But the head could have moved, since the reader was
1951          * found. Check for this case and assign the iterator
1952          * to the head page instead of next.
1953          */
1954         if (iter->head_page == cpu_buffer->reader_page)
1955                 iter->head_page = rb_set_head_page(cpu_buffer);
1956         else
1957                 rb_inc_page(cpu_buffer, &iter->head_page);
1958
1959         iter->read_stamp = iter->head_page->page->time_stamp;
1960         iter->head = 0;
1961 }
1962
1963 /* Slow path, do not inline */
1964 static noinline struct ring_buffer_event *
1965 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
1966 {
1967         event->type_len = RINGBUF_TYPE_TIME_EXTEND;
1968
1969         /* Not the first event on the page? */
1970         if (rb_event_index(event)) {
1971                 event->time_delta = delta & TS_MASK;
1972                 event->array[0] = delta >> TS_SHIFT;
1973         } else {
1974                 /* nope, just zero it */
1975                 event->time_delta = 0;
1976                 event->array[0] = 0;
1977         }
1978
1979         return skip_time_extend(event);
1980 }
1981
1982 /**
1983  * rb_update_event - update event type and data
1984  * @event: the even to update
1985  * @type: the type of event
1986  * @length: the size of the event field in the ring buffer
1987  *
1988  * Update the type and data fields of the event. The length
1989  * is the actual size that is written to the ring buffer,
1990  * and with this, we can determine what to place into the
1991  * data field.
1992  */
1993 static void
1994 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
1995                 struct ring_buffer_event *event, unsigned length,
1996                 int add_timestamp, u64 delta)
1997 {
1998         /* Only a commit updates the timestamp */
1999         if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
2000                 delta = 0;
2001
2002         /*
2003          * If we need to add a timestamp, then we
2004          * add it to the start of the resevered space.
2005          */
2006         if (unlikely(add_timestamp)) {
2007                 event = rb_add_time_stamp(event, delta);
2008                 length -= RB_LEN_TIME_EXTEND;
2009                 delta = 0;
2010         }
2011
2012         event->time_delta = delta;
2013         length -= RB_EVNT_HDR_SIZE;
2014         if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2015                 event->type_len = 0;
2016                 event->array[0] = length;
2017         } else
2018                 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2019 }
2020
2021 /*
2022  * rb_handle_head_page - writer hit the head page
2023  *
2024  * Returns: +1 to retry page
2025  *           0 to continue
2026  *          -1 on error
2027  */
2028 static int
2029 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
2030                     struct buffer_page *tail_page,
2031                     struct buffer_page *next_page)
2032 {
2033         struct buffer_page *new_head;
2034         int entries;
2035         int type;
2036         int ret;
2037
2038         entries = rb_page_entries(next_page);
2039
2040         /*
2041          * The hard part is here. We need to move the head
2042          * forward, and protect against both readers on
2043          * other CPUs and writers coming in via interrupts.
2044          */
2045         type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
2046                                        RB_PAGE_HEAD);
2047
2048         /*
2049          * type can be one of four:
2050          *  NORMAL - an interrupt already moved it for us
2051          *  HEAD   - we are the first to get here.
2052          *  UPDATE - we are the interrupt interrupting
2053          *           a current move.
2054          *  MOVED  - a reader on another CPU moved the next
2055          *           pointer to its reader page. Give up
2056          *           and try again.
2057          */
2058
2059         switch (type) {
2060         case RB_PAGE_HEAD:
2061                 /*
2062                  * We changed the head to UPDATE, thus
2063                  * it is our responsibility to update
2064                  * the counters.
2065                  */
2066                 local_add(entries, &cpu_buffer->overrun);
2067                 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
2068
2069                 /*
2070                  * The entries will be zeroed out when we move the
2071                  * tail page.
2072                  */
2073
2074                 /* still more to do */
2075                 break;
2076
2077         case RB_PAGE_UPDATE:
2078                 /*
2079                  * This is an interrupt that interrupt the
2080                  * previous update. Still more to do.
2081                  */
2082                 break;
2083         case RB_PAGE_NORMAL:
2084                 /*
2085                  * An interrupt came in before the update
2086                  * and processed this for us.
2087                  * Nothing left to do.
2088                  */
2089                 return 1;
2090         case RB_PAGE_MOVED:
2091                 /*
2092                  * The reader is on another CPU and just did
2093                  * a swap with our next_page.
2094                  * Try again.
2095                  */
2096                 return 1;
2097         default:
2098                 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2099                 return -1;
2100         }
2101
2102         /*
2103          * Now that we are here, the old head pointer is
2104          * set to UPDATE. This will keep the reader from
2105          * swapping the head page with the reader page.
2106          * The reader (on another CPU) will spin till
2107          * we are finished.
2108          *
2109          * We just need to protect against interrupts
2110          * doing the job. We will set the next pointer
2111          * to HEAD. After that, we set the old pointer
2112          * to NORMAL, but only if it was HEAD before.
2113          * otherwise we are an interrupt, and only
2114          * want the outer most commit to reset it.
2115          */
2116         new_head = next_page;
2117         rb_inc_page(cpu_buffer, &new_head);
2118
2119         ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2120                                     RB_PAGE_NORMAL);
2121
2122         /*
2123          * Valid returns are:
2124          *  HEAD   - an interrupt came in and already set it.
2125          *  NORMAL - One of two things:
2126          *            1) We really set it.
2127          *            2) A bunch of interrupts came in and moved
2128          *               the page forward again.
2129          */
2130         switch (ret) {
2131         case RB_PAGE_HEAD:
2132         case RB_PAGE_NORMAL:
2133                 /* OK */
2134                 break;
2135         default:
2136                 RB_WARN_ON(cpu_buffer, 1);
2137                 return -1;
2138         }
2139
2140         /*
2141          * It is possible that an interrupt came in,
2142          * set the head up, then more interrupts came in
2143          * and moved it again. When we get back here,
2144          * the page would have been set to NORMAL but we
2145          * just set it back to HEAD.
2146          *
2147          * How do you detect this? Well, if that happened
2148          * the tail page would have moved.
2149          */
2150         if (ret == RB_PAGE_NORMAL) {
2151                 /*
2152                  * If the tail had moved passed next, then we need
2153                  * to reset the pointer.
2154                  */
2155                 if (cpu_buffer->tail_page != tail_page &&
2156                     cpu_buffer->tail_page != next_page)
2157                         rb_head_page_set_normal(cpu_buffer, new_head,
2158                                                 next_page,
2159                                                 RB_PAGE_HEAD);
2160         }
2161
2162         /*
2163          * If this was the outer most commit (the one that
2164          * changed the original pointer from HEAD to UPDATE),
2165          * then it is up to us to reset it to NORMAL.
2166          */
2167         if (type == RB_PAGE_HEAD) {
2168                 ret = rb_head_page_set_normal(cpu_buffer, next_page,
2169                                               tail_page,
2170                                               RB_PAGE_UPDATE);
2171                 if (RB_WARN_ON(cpu_buffer,
2172                                ret != RB_PAGE_UPDATE))
2173                         return -1;
2174         }
2175
2176         return 0;
2177 }
2178
2179 static unsigned rb_calculate_event_length(unsigned length)
2180 {
2181         struct ring_buffer_event event; /* Used only for sizeof array */
2182
2183         /* zero length can cause confusions */
2184         if (!length)
2185                 length = 1;
2186
2187         if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2188                 length += sizeof(event.array[0]);
2189
2190         length += RB_EVNT_HDR_SIZE;
2191         length = ALIGN(length, RB_ARCH_ALIGNMENT);
2192
2193         return length;
2194 }
2195
2196 static inline void
2197 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2198               struct buffer_page *tail_page,
2199               unsigned long tail, unsigned long length)
2200 {
2201         struct ring_buffer_event *event;
2202
2203         /*
2204          * Only the event that crossed the page boundary
2205          * must fill the old tail_page with padding.
2206          */
2207         if (tail >= BUF_PAGE_SIZE) {
2208                 /*
2209                  * If the page was filled, then we still need
2210                  * to update the real_end. Reset it to zero
2211                  * and the reader will ignore it.
2212                  */
2213                 if (tail == BUF_PAGE_SIZE)
2214                         tail_page->real_end = 0;
2215
2216                 local_sub(length, &tail_page->write);
2217                 return;
2218         }
2219
2220         event = __rb_page_index(tail_page, tail);
2221         kmemcheck_annotate_bitfield(event, bitfield);
2222
2223         /* account for padding bytes */
2224         local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2225
2226         /*
2227          * Save the original length to the meta data.
2228          * This will be used by the reader to add lost event
2229          * counter.
2230          */
2231         tail_page->real_end = tail;
2232
2233         /*
2234          * If this event is bigger than the minimum size, then
2235          * we need to be careful that we don't subtract the
2236          * write counter enough to allow another writer to slip
2237          * in on this page.
2238          * We put in a discarded commit instead, to make sure
2239          * that this space is not used again.
2240          *
2241          * If we are less than the minimum size, we don't need to
2242          * worry about it.
2243          */
2244         if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2245                 /* No room for any events */
2246
2247                 /* Mark the rest of the page with padding */
2248                 rb_event_set_padding(event);
2249
2250                 /* Set the write back to the previous setting */
2251                 local_sub(length, &tail_page->write);
2252                 return;
2253         }
2254
2255         /* Put in a discarded event */
2256         event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2257         event->type_len = RINGBUF_TYPE_PADDING;
2258         /* time delta must be non zero */
2259         event->time_delta = 1;
2260
2261         /* Set write to end of buffer */
2262         length = (tail + length) - BUF_PAGE_SIZE;
2263         local_sub(length, &tail_page->write);
2264 }
2265
2266 /*
2267  * This is the slow path, force gcc not to inline it.
2268  */
2269 static noinline struct ring_buffer_event *
2270 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2271              unsigned long length, unsigned long tail,
2272              struct buffer_page *tail_page, u64 ts)
2273 {
2274         struct buffer_page *commit_page = cpu_buffer->commit_page;
2275         struct ring_buffer *buffer = cpu_buffer->buffer;
2276         struct buffer_page *next_page;
2277         int ret;
2278
2279         next_page = tail_page;
2280
2281         rb_inc_page(cpu_buffer, &next_page);
2282
2283         /*
2284          * If for some reason, we had an interrupt storm that made
2285          * it all the way around the buffer, bail, and warn
2286          * about it.
2287          */
2288         if (unlikely(next_page == commit_page)) {
2289                 local_inc(&cpu_buffer->commit_overrun);
2290                 goto out_reset;
2291         }
2292
2293         /*
2294          * This is where the fun begins!
2295          *
2296          * We are fighting against races between a reader that
2297          * could be on another CPU trying to swap its reader
2298          * page with the buffer head.
2299          *
2300          * We are also fighting against interrupts coming in and
2301          * moving the head or tail on us as well.
2302          *
2303          * If the next page is the head page then we have filled
2304          * the buffer, unless the commit page is still on the
2305          * reader page.
2306          */
2307         if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2308
2309                 /*
2310                  * If the commit is not on the reader page, then
2311                  * move the header page.
2312                  */
2313                 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2314                         /*
2315                          * If we are not in overwrite mode,
2316                          * this is easy, just stop here.
2317                          */
2318                         if (!(buffer->flags & RB_FL_OVERWRITE)) {
2319                                 local_inc(&cpu_buffer->dropped_events);
2320                                 goto out_reset;
2321                         }
2322
2323                         ret = rb_handle_head_page(cpu_buffer,
2324                                                   tail_page,
2325                                                   next_page);
2326                         if (ret < 0)
2327                                 goto out_reset;
2328                         if (ret)
2329                                 goto out_again;
2330                 } else {
2331                         /*
2332                          * We need to be careful here too. The
2333                          * commit page could still be on the reader
2334                          * page. We could have a small buffer, and
2335                          * have filled up the buffer with events
2336                          * from interrupts and such, and wrapped.
2337                          *
2338                          * Note, if the tail page is also the on the
2339                          * reader_page, we let it move out.
2340                          */
2341                         if (unlikely((cpu_buffer->commit_page !=
2342                                       cpu_buffer->tail_page) &&
2343                                      (cpu_buffer->commit_page ==
2344                                       cpu_buffer->reader_page))) {
2345                                 local_inc(&cpu_buffer->commit_overrun);
2346                                 goto out_reset;
2347                         }
2348                 }
2349         }
2350
2351         ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
2352         if (ret) {
2353                 /*
2354                  * Nested commits always have zero deltas, so
2355                  * just reread the time stamp
2356                  */
2357                 ts = rb_time_stamp(buffer);
2358                 next_page->page->time_stamp = ts;
2359         }
2360
2361  out_again:
2362
2363         rb_reset_tail(cpu_buffer, tail_page, tail, length);
2364
2365         /* fail and let the caller try again */
2366         return ERR_PTR(-EAGAIN);
2367
2368  out_reset:
2369         /* reset write */
2370         rb_reset_tail(cpu_buffer, tail_page, tail, length);
2371
2372         return NULL;
2373 }
2374
2375 static struct ring_buffer_event *
2376 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
2377                   unsigned long length, u64 ts,
2378                   u64 delta, int add_timestamp)
2379 {
2380         struct buffer_page *tail_page;
2381         struct ring_buffer_event *event;
2382         unsigned long tail, write;
2383
2384         /*
2385          * If the time delta since the last event is too big to
2386          * hold in the time field of the event, then we append a
2387          * TIME EXTEND event ahead of the data event.
2388          */
2389         if (unlikely(add_timestamp))
2390                 length += RB_LEN_TIME_EXTEND;
2391
2392         tail_page = cpu_buffer->tail_page;
2393         write = local_add_return(length, &tail_page->write);
2394
2395         /* set write to only the index of the write */
2396         write &= RB_WRITE_MASK;
2397         tail = write - length;
2398
2399         /* See if we shot pass the end of this buffer page */
2400         if (unlikely(write > BUF_PAGE_SIZE))
2401                 return rb_move_tail(cpu_buffer, length, tail,
2402                                     tail_page, ts);
2403
2404         /* We reserved something on the buffer */
2405
2406         event = __rb_page_index(tail_page, tail);
2407         kmemcheck_annotate_bitfield(event, bitfield);
2408         rb_update_event(cpu_buffer, event, length, add_timestamp, delta);
2409
2410         local_inc(&tail_page->entries);
2411
2412         /*
2413          * If this is the first commit on the page, then update
2414          * its timestamp.
2415          */
2416         if (!tail)
2417                 tail_page->page->time_stamp = ts;
2418
2419         /* account for these added bytes */
2420         local_add(length, &cpu_buffer->entries_bytes);
2421
2422         return event;
2423 }
2424
2425 static inline int
2426 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2427                   struct ring_buffer_event *event)
2428 {
2429         unsigned long new_index, old_index;
2430         struct buffer_page *bpage;
2431         unsigned long index;
2432         unsigned long addr;
2433
2434         new_index = rb_event_index(event);
2435         old_index = new_index + rb_event_ts_length(event);
2436         addr = (unsigned long)event;
2437         addr &= PAGE_MASK;
2438
2439         bpage = cpu_buffer->tail_page;
2440
2441         if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2442                 unsigned long write_mask =
2443                         local_read(&bpage->write) & ~RB_WRITE_MASK;
2444                 unsigned long event_length = rb_event_length(event);
2445                 /*
2446                  * This is on the tail page. It is possible that
2447                  * a write could come in and move the tail page
2448                  * and write to the next page. That is fine
2449                  * because we just shorten what is on this page.
2450                  */
2451                 old_index += write_mask;
2452                 new_index += write_mask;
2453                 index = local_cmpxchg(&bpage->write, old_index, new_index);
2454                 if (index == old_index) {
2455                         /* update counters */
2456                         local_sub(event_length, &cpu_buffer->entries_bytes);
2457                         return 1;
2458                 }
2459         }
2460
2461         /* could not discard */
2462         return 0;
2463 }
2464
2465 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2466 {
2467         local_inc(&cpu_buffer->committing);
2468         local_inc(&cpu_buffer->commits);
2469 }
2470
2471 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2472 {
2473         unsigned long commits;
2474
2475         if (RB_WARN_ON(cpu_buffer,
2476                        !local_read(&cpu_buffer->committing)))
2477                 return;
2478
2479  again:
2480         commits = local_read(&cpu_buffer->commits);
2481         /* synchronize with interrupts */
2482         barrier();
2483         if (local_read(&cpu_buffer->committing) == 1)
2484                 rb_set_commit_to_write(cpu_buffer);
2485
2486         local_dec(&cpu_buffer->committing);
2487
2488         /* synchronize with interrupts */
2489         barrier();
2490
2491         /*
2492          * Need to account for interrupts coming in between the
2493          * updating of the commit page and the clearing of the
2494          * committing counter.
2495          */
2496         if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2497             !local_read(&cpu_buffer->committing)) {
2498                 local_inc(&cpu_buffer->committing);
2499                 goto again;
2500         }
2501 }
2502
2503 static struct ring_buffer_event *
2504 rb_reserve_next_event(struct ring_buffer *buffer,
2505                       struct ring_buffer_per_cpu *cpu_buffer,
2506                       unsigned long length)
2507 {
2508         struct ring_buffer_event *event;
2509         u64 ts, delta;
2510         int nr_loops = 0;
2511         int add_timestamp;
2512         u64 diff;
2513
2514         rb_start_commit(cpu_buffer);
2515
2516 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2517         /*
2518          * Due to the ability to swap a cpu buffer from a buffer
2519          * it is possible it was swapped before we committed.
2520          * (committing stops a swap). We check for it here and
2521          * if it happened, we have to fail the write.
2522          */
2523         barrier();
2524         if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2525                 local_dec(&cpu_buffer->committing);
2526                 local_dec(&cpu_buffer->commits);
2527                 return NULL;
2528         }
2529 #endif
2530
2531         length = rb_calculate_event_length(length);
2532  again:
2533         add_timestamp = 0;
2534         delta = 0;
2535
2536         /*
2537          * We allow for interrupts to reenter here and do a trace.
2538          * If one does, it will cause this original code to loop
2539          * back here. Even with heavy interrupts happening, this
2540          * should only happen a few times in a row. If this happens
2541          * 1000 times in a row, there must be either an interrupt
2542          * storm or we have something buggy.
2543          * Bail!
2544          */
2545         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2546                 goto out_fail;
2547
2548         ts = rb_time_stamp(cpu_buffer->buffer);
2549         diff = ts - cpu_buffer->write_stamp;
2550
2551         /* make sure this diff is calculated here */
2552         barrier();
2553
2554         /* Did the write stamp get updated already? */
2555         if (likely(ts >= cpu_buffer->write_stamp)) {
2556                 delta = diff;
2557                 if (unlikely(test_time_stamp(delta))) {
2558                         int local_clock_stable = 1;
2559 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2560                         local_clock_stable = sched_clock_stable;
2561 #endif
2562                         WARN_ONCE(delta > (1ULL << 59),
2563                                   KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2564                                   (unsigned long long)delta,
2565                                   (unsigned long long)ts,
2566                                   (unsigned long long)cpu_buffer->write_stamp,
2567                                   local_clock_stable ? "" :
2568                                   "If you just came from a suspend/resume,\n"
2569                                   "please switch to the trace global clock:\n"
2570                                   "  echo global > /sys/kernel/debug/tracing/trace_clock\n");
2571                         add_timestamp = 1;
2572                 }
2573         }
2574
2575         event = __rb_reserve_next(cpu_buffer, length, ts,
2576                                   delta, add_timestamp);
2577         if (unlikely(PTR_ERR(event) == -EAGAIN))
2578                 goto again;
2579
2580         if (!event)
2581                 goto out_fail;
2582
2583         return event;
2584
2585  out_fail:
2586         rb_end_commit(cpu_buffer);
2587         return NULL;
2588 }
2589
2590 #ifdef CONFIG_TRACING
2591
2592 /*
2593  * The lock and unlock are done within a preempt disable section.
2594  * The current_context per_cpu variable can only be modified
2595  * by the current task between lock and unlock. But it can
2596  * be modified more than once via an interrupt. To pass this
2597  * information from the lock to the unlock without having to
2598  * access the 'in_interrupt()' functions again (which do show
2599  * a bit of overhead in something as critical as function tracing,
2600  * we use a bitmask trick.
2601  *
2602  *  bit 0 =  NMI context
2603  *  bit 1 =  IRQ context
2604  *  bit 2 =  SoftIRQ context
2605  *  bit 3 =  normal context.
2606  *
2607  * This works because this is the order of contexts that can
2608  * preempt other contexts. A SoftIRQ never preempts an IRQ
2609  * context.
2610  *
2611  * When the context is determined, the corresponding bit is
2612  * checked and set (if it was set, then a recursion of that context
2613  * happened).
2614  *
2615  * On unlock, we need to clear this bit. To do so, just subtract
2616  * 1 from the current_context and AND it to itself.
2617  *
2618  * (binary)
2619  *  101 - 1 = 100
2620  *  101 & 100 = 100 (clearing bit zero)
2621  *
2622  *  1010 - 1 = 1001
2623  *  1010 & 1001 = 1000 (clearing bit 1)
2624  *
2625  * The least significant bit can be cleared this way, and it
2626  * just so happens that it is the same bit corresponding to
2627  * the current context.
2628  */
2629 static DEFINE_PER_CPU(unsigned int, current_context);
2630
2631 static __always_inline int trace_recursive_lock(void)
2632 {
2633         unsigned int val = this_cpu_read(current_context);
2634         int bit;
2635
2636         if (in_interrupt()) {
2637                 if (in_nmi())
2638                         bit = 0;
2639                 else if (in_irq())
2640                         bit = 1;
2641                 else
2642                         bit = 2;
2643         } else
2644                 bit = 3;
2645
2646         if (unlikely(val & (1 << bit)))
2647                 return 1;
2648
2649         val |= (1 << bit);
2650         this_cpu_write(current_context, val);
2651
2652         return 0;
2653 }
2654
2655 static __always_inline void trace_recursive_unlock(void)
2656 {
2657         unsigned int val = this_cpu_read(current_context);
2658
2659         val--;
2660         val &= this_cpu_read(current_context);
2661         this_cpu_write(current_context, val);
2662 }
2663
2664 #else
2665
2666 #define trace_recursive_lock()          (0)
2667 #define trace_recursive_unlock()        do { } while (0)
2668
2669 #endif
2670
2671 /**
2672  * ring_buffer_lock_reserve - reserve a part of the buffer
2673  * @buffer: the ring buffer to reserve from
2674  * @length: the length of the data to reserve (excluding event header)
2675  *
2676  * Returns a reseverd event on the ring buffer to copy directly to.
2677  * The user of this interface will need to get the body to write into
2678  * and can use the ring_buffer_event_data() interface.
2679  *
2680  * The length is the length of the data needed, not the event length
2681  * which also includes the event header.
2682  *
2683  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2684  * If NULL is returned, then nothing has been allocated or locked.
2685  */
2686 struct ring_buffer_event *
2687 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2688 {
2689         struct ring_buffer_per_cpu *cpu_buffer;
2690         struct ring_buffer_event *event;
2691         int cpu;
2692
2693         if (ring_buffer_flags != RB_BUFFERS_ON)
2694                 return NULL;
2695
2696         /* If we are tracing schedule, we don't want to recurse */
2697         preempt_disable_notrace();
2698
2699         if (atomic_read(&buffer->record_disabled))
2700                 goto out_nocheck;
2701
2702         if (trace_recursive_lock())
2703                 goto out_nocheck;
2704
2705         cpu = raw_smp_processor_id();
2706
2707         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2708                 goto out;
2709
2710         cpu_buffer = buffer->buffers[cpu];
2711
2712         if (atomic_read(&cpu_buffer->record_disabled))
2713                 goto out;
2714
2715         if (length > BUF_MAX_DATA_SIZE)
2716                 goto out;
2717
2718         event = rb_reserve_next_event(buffer, cpu_buffer, length);
2719         if (!event)
2720                 goto out;
2721
2722         return event;
2723
2724  out:
2725         trace_recursive_unlock();
2726
2727  out_nocheck:
2728         preempt_enable_notrace();
2729         return NULL;
2730 }
2731 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2732
2733 static void
2734 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2735                       struct ring_buffer_event *event)
2736 {
2737         u64 delta;
2738
2739         /*
2740          * The event first in the commit queue updates the
2741          * time stamp.
2742          */
2743         if (rb_event_is_commit(cpu_buffer, event)) {
2744                 /*
2745                  * A commit event that is first on a page
2746                  * updates the write timestamp with the page stamp
2747                  */
2748                 if (!rb_event_index(event))
2749                         cpu_buffer->write_stamp =
2750                                 cpu_buffer->commit_page->page->time_stamp;
2751                 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2752                         delta = event->array[0];
2753                         delta <<= TS_SHIFT;
2754                         delta += event->time_delta;
2755                         cpu_buffer->write_stamp += delta;
2756                 } else
2757                         cpu_buffer->write_stamp += event->time_delta;
2758         }
2759 }
2760
2761 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2762                       struct ring_buffer_event *event)
2763 {
2764         local_inc(&cpu_buffer->entries);
2765         rb_update_write_stamp(cpu_buffer, event);
2766         rb_end_commit(cpu_buffer);
2767 }
2768
2769 static __always_inline void
2770 rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2771 {
2772         if (buffer->irq_work.waiters_pending) {
2773                 buffer->irq_work.waiters_pending = false;
2774                 /* irq_work_queue() supplies it's own memory barriers */
2775                 irq_work_queue(&buffer->irq_work.work);
2776         }
2777
2778         if (cpu_buffer->irq_work.waiters_pending) {
2779                 cpu_buffer->irq_work.waiters_pending = false;
2780                 /* irq_work_queue() supplies it's own memory barriers */
2781                 irq_work_queue(&cpu_buffer->irq_work.work);
2782         }
2783 }
2784
2785 /**
2786  * ring_buffer_unlock_commit - commit a reserved
2787  * @buffer: The buffer to commit to
2788  * @event: The event pointer to commit.
2789  *
2790  * This commits the data to the ring buffer, and releases any locks held.
2791  *
2792  * Must be paired with ring_buffer_lock_reserve.
2793  */
2794 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2795                               struct ring_buffer_event *event)
2796 {
2797         struct ring_buffer_per_cpu *cpu_buffer;
2798         int cpu = raw_smp_processor_id();
2799
2800         cpu_buffer = buffer->buffers[cpu];
2801
2802         rb_commit(cpu_buffer, event);
2803
2804         rb_wakeups(buffer, cpu_buffer);
2805
2806         trace_recursive_unlock();
2807
2808         preempt_enable_notrace();
2809
2810         return 0;
2811 }
2812 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2813
2814 static inline void rb_event_discard(struct ring_buffer_event *event)
2815 {
2816         if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2817                 event = skip_time_extend(event);
2818
2819         /* array[0] holds the actual length for the discarded event */
2820         event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2821         event->type_len = RINGBUF_TYPE_PADDING;
2822         /* time delta must be non zero */
2823         if (!event->time_delta)
2824                 event->time_delta = 1;
2825 }
2826
2827 /*
2828  * Decrement the entries to the page that an event is on.
2829  * The event does not even need to exist, only the pointer
2830  * to the page it is on. This may only be called before the commit
2831  * takes place.
2832  */
2833 static inline void
2834 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2835                    struct ring_buffer_event *event)
2836 {
2837         unsigned long addr = (unsigned long)event;
2838         struct buffer_page *bpage = cpu_buffer->commit_page;
2839         struct buffer_page *start;
2840
2841         addr &= PAGE_MASK;
2842
2843         /* Do the likely case first */
2844         if (likely(bpage->page == (void *)addr)) {
2845                 local_dec(&bpage->entries);
2846                 return;
2847         }
2848
2849         /*
2850          * Because the commit page may be on the reader page we
2851          * start with the next page and check the end loop there.
2852          */
2853         rb_inc_page(cpu_buffer, &bpage);
2854         start = bpage;
2855         do {
2856                 if (bpage->page == (void *)addr) {
2857                         local_dec(&bpage->entries);
2858                         return;
2859                 }
2860                 rb_inc_page(cpu_buffer, &bpage);
2861         } while (bpage != start);
2862
2863         /* commit not part of this buffer?? */
2864         RB_WARN_ON(cpu_buffer, 1);
2865 }
2866
2867 /**
2868  * ring_buffer_commit_discard - discard an event that has not been committed
2869  * @buffer: the ring buffer
2870  * @event: non committed event to discard
2871  *
2872  * Sometimes an event that is in the ring buffer needs to be ignored.
2873  * This function lets the user discard an event in the ring buffer
2874  * and then that event will not be read later.
2875  *
2876  * This function only works if it is called before the the item has been
2877  * committed. It will try to free the event from the ring buffer
2878  * if another event has not been added behind it.
2879  *
2880  * If another event has been added behind it, it will set the event
2881  * up as discarded, and perform the commit.
2882  *
2883  * If this function is called, do not call ring_buffer_unlock_commit on
2884  * the event.
2885  */
2886 void ring_buffer_discard_commit(struct ring_buffer *buffer,
2887                                 struct ring_buffer_event *event)
2888 {
2889         struct ring_buffer_per_cpu *cpu_buffer;
2890         int cpu;
2891
2892         /* The event is discarded regardless */
2893         rb_event_discard(event);
2894
2895         cpu = smp_processor_id();
2896         cpu_buffer = buffer->buffers[cpu];
2897
2898         /*
2899          * This must only be called if the event has not been
2900          * committed yet. Thus we can assume that preemption
2901          * is still disabled.
2902          */
2903         RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
2904
2905         rb_decrement_entry(cpu_buffer, event);
2906         if (rb_try_to_discard(cpu_buffer, event))
2907                 goto out;
2908
2909         /*
2910          * The commit is still visible by the reader, so we
2911          * must still update the timestamp.
2912          */
2913         rb_update_write_stamp(cpu_buffer, event);
2914  out:
2915         rb_end_commit(cpu_buffer);
2916
2917         trace_recursive_unlock();
2918
2919         preempt_enable_notrace();
2920
2921 }
2922 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2923
2924 /**
2925  * ring_buffer_write - write data to the buffer without reserving
2926  * @buffer: The ring buffer to write to.
2927  * @length: The length of the data being written (excluding the event header)
2928  * @data: The data to write to the buffer.
2929  *
2930  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2931  * one function. If you already have the data to write to the buffer, it
2932  * may be easier to simply call this function.
2933  *
2934  * Note, like ring_buffer_lock_reserve, the length is the length of the data
2935  * and not the length of the event which would hold the header.
2936  */
2937 int ring_buffer_write(struct ring_buffer *buffer,
2938                       unsigned long length,
2939                       void *data)
2940 {
2941         struct ring_buffer_per_cpu *cpu_buffer;
2942         struct ring_buffer_event *event;
2943         void *body;
2944         int ret = -EBUSY;
2945         int cpu;
2946
2947         if (ring_buffer_flags != RB_BUFFERS_ON)
2948                 return -EBUSY;
2949
2950         preempt_disable_notrace();
2951
2952         if (atomic_read(&buffer->record_disabled))
2953                 goto out;
2954
2955         cpu = raw_smp_processor_id();
2956
2957         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2958                 goto out;
2959
2960         cpu_buffer = buffer->buffers[cpu];
2961
2962         if (atomic_read(&cpu_buffer->record_disabled))
2963                 goto out;
2964
2965         if (length > BUF_MAX_DATA_SIZE)
2966                 goto out;
2967
2968         event = rb_reserve_next_event(buffer, cpu_buffer, length);
2969         if (!event)
2970                 goto out;
2971
2972         body = rb_event_data(event);
2973
2974         memcpy(body, data, length);
2975
2976         rb_commit(cpu_buffer, event);
2977
2978         rb_wakeups(buffer, cpu_buffer);
2979
2980         ret = 0;
2981  out:
2982         preempt_enable_notrace();
2983
2984         return ret;
2985 }
2986 EXPORT_SYMBOL_GPL(ring_buffer_write);
2987
2988 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
2989 {
2990         struct buffer_page *reader = cpu_buffer->reader_page;
2991         struct buffer_page *head = rb_set_head_page(cpu_buffer);
2992         struct buffer_page *commit = cpu_buffer->commit_page;
2993
2994         /* In case of error, head will be NULL */
2995         if (unlikely(!head))
2996                 return 1;
2997
2998         return reader->read == rb_page_commit(reader) &&
2999                 (commit == reader ||
3000                  (commit == head &&
3001                   head->read == rb_page_commit(commit)));
3002 }
3003
3004 /**
3005  * ring_buffer_record_disable - stop all writes into the buffer
3006  * @buffer: The ring buffer to stop writes to.
3007  *
3008  * This prevents all writes to the buffer. Any attempt to write
3009  * to the buffer after this will fail and return NULL.
3010  *
3011  * The caller should call synchronize_sched() after this.
3012  */
3013 void ring_buffer_record_disable(struct ring_buffer *buffer)
3014 {
3015         atomic_inc(&buffer->record_disabled);
3016 }
3017 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3018
3019 /**
3020  * ring_buffer_record_enable - enable writes to the buffer
3021  * @buffer: The ring buffer to enable writes
3022  *
3023  * Note, multiple disables will need the same number of enables
3024  * to truly enable the writing (much like preempt_disable).
3025  */
3026 void ring_buffer_record_enable(struct ring_buffer *buffer)
3027 {
3028         atomic_dec(&buffer->record_disabled);
3029 }
3030 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
3031
3032 /**
3033  * ring_buffer_record_off - stop all writes into the buffer
3034  * @buffer: The ring buffer to stop writes to.
3035  *
3036  * This prevents all writes to the buffer. Any attempt to write
3037  * to the buffer after this will fail and return NULL.
3038  *
3039  * This is different than ring_buffer_record_disable() as
3040  * it works like an on/off switch, where as the disable() version
3041  * must be paired with a enable().
3042  */
3043 void ring_buffer_record_off(struct ring_buffer *buffer)
3044 {
3045         unsigned int rd;
3046         unsigned int new_rd;
3047
3048         do {
3049                 rd = atomic_read(&buffer->record_disabled);
3050                 new_rd = rd | RB_BUFFER_OFF;
3051         } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3052 }
3053 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3054
3055 /**
3056  * ring_buffer_record_on - restart writes into the buffer
3057  * @buffer: The ring buffer to start writes to.
3058  *
3059  * This enables all writes to the buffer that was disabled by
3060  * ring_buffer_record_off().
3061  *
3062  * This is different than ring_buffer_record_enable() as
3063  * it works like an on/off switch, where as the enable() version
3064  * must be paired with a disable().
3065  */
3066 void ring_buffer_record_on(struct ring_buffer *buffer)
3067 {
3068         unsigned int rd;
3069         unsigned int new_rd;
3070
3071         do {
3072                 rd = atomic_read(&buffer->record_disabled);
3073                 new_rd = rd & ~RB_BUFFER_OFF;
3074         } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3075 }
3076 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3077
3078 /**
3079  * ring_buffer_record_is_on - return true if the ring buffer can write
3080  * @buffer: The ring buffer to see if write is enabled
3081  *
3082  * Returns true if the ring buffer is in a state that it accepts writes.
3083  */
3084 int ring_buffer_record_is_on(struct ring_buffer *buffer)
3085 {
3086         return !atomic_read(&buffer->record_disabled);
3087 }
3088
3089 /**
3090  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3091  * @buffer: The ring buffer to stop writes to.
3092  * @cpu: The CPU buffer to stop
3093  *
3094  * This prevents all writes to the buffer. Any attempt to write
3095  * to the buffer after this will fail and return NULL.
3096  *
3097  * The caller should call synchronize_sched() after this.
3098  */
3099 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
3100 {
3101         struct ring_buffer_per_cpu *cpu_buffer;
3102
3103         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3104                 return;
3105
3106         cpu_buffer = buffer->buffers[cpu];
3107         atomic_inc(&cpu_buffer->record_disabled);
3108 }
3109 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
3110
3111 /**
3112  * ring_buffer_record_enable_cpu - enable writes to the buffer
3113  * @buffer: The ring buffer to enable writes
3114  * @cpu: The CPU to enable.
3115  *
3116  * Note, multiple disables will need the same number of enables
3117  * to truly enable the writing (much like preempt_disable).
3118  */
3119 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
3120 {
3121         struct ring_buffer_per_cpu *cpu_buffer;
3122
3123         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3124                 return;
3125
3126         cpu_buffer = buffer->buffers[cpu];
3127         atomic_dec(&cpu_buffer->record_disabled);
3128 }
3129 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
3130
3131 /*
3132  * The total entries in the ring buffer is the running counter
3133  * of entries entered into the ring buffer, minus the sum of
3134  * the entries read from the ring buffer and the number of
3135  * entries that were overwritten.
3136  */
3137 static inline unsigned long
3138 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3139 {
3140         return local_read(&cpu_buffer->entries) -
3141                 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3142 }
3143
3144 /**
3145  * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3146  * @buffer: The ring buffer
3147  * @cpu: The per CPU buffer to read from.
3148  */
3149 u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
3150 {
3151         unsigned long flags;
3152         struct ring_buffer_per_cpu *cpu_buffer;
3153         struct buffer_page *bpage;
3154         u64 ret = 0;
3155
3156         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3157                 return 0;
3158
3159         cpu_buffer = buffer->buffers[cpu];
3160         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3161         /*
3162          * if the tail is on reader_page, oldest time stamp is on the reader
3163          * page
3164          */
3165         if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3166                 bpage = cpu_buffer->reader_page;
3167         else
3168                 bpage = rb_set_head_page(cpu_buffer);
3169         if (bpage)
3170                 ret = bpage->page->time_stamp;
3171         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3172
3173         return ret;
3174 }
3175 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3176
3177 /**
3178  * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3179  * @buffer: The ring buffer
3180  * @cpu: The per CPU buffer to read from.
3181  */
3182 unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
3183 {
3184         struct ring_buffer_per_cpu *cpu_buffer;
3185         unsigned long ret;
3186
3187         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3188                 return 0;
3189
3190         cpu_buffer = buffer->buffers[cpu];
3191         ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3192
3193         return ret;
3194 }
3195 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3196
3197 /**
3198  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3199  * @buffer: The ring buffer
3200  * @cpu: The per CPU buffer to get the entries from.
3201  */
3202 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
3203 {
3204         struct ring_buffer_per_cpu *cpu_buffer;
3205
3206         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3207                 return 0;
3208
3209         cpu_buffer = buffer->buffers[cpu];
3210
3211         return rb_num_of_entries(cpu_buffer);
3212 }
3213 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
3214
3215 /**
3216  * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3217  * buffer wrapping around (only if RB_FL_OVERWRITE is on).
3218  * @buffer: The ring buffer
3219  * @cpu: The per CPU buffer to get the number of overruns from
3220  */
3221 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
3222 {
3223         struct ring_buffer_per_cpu *cpu_buffer;
3224         unsigned long ret;
3225
3226         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3227                 return 0;
3228
3229         cpu_buffer = buffer->buffers[cpu];
3230         ret = local_read(&cpu_buffer->overrun);
3231
3232         return ret;
3233 }
3234 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
3235
3236 /**
3237  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3238  * commits failing due to the buffer wrapping around while there are uncommitted
3239  * events, such as during an interrupt storm.
3240  * @buffer: The ring buffer
3241  * @cpu: The per CPU buffer to get the number of overruns from
3242  */
3243 unsigned long
3244 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3245 {
3246         struct ring_buffer_per_cpu *cpu_buffer;
3247         unsigned long ret;
3248
3249         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3250                 return 0;
3251
3252         cpu_buffer = buffer->buffers[cpu];
3253         ret = local_read(&cpu_buffer->commit_overrun);
3254
3255         return ret;
3256 }
3257 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3258
3259 /**
3260  * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3261  * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3262  * @buffer: The ring buffer
3263  * @cpu: The per CPU buffer to get the number of overruns from
3264  */
3265 unsigned long
3266 ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu)
3267 {
3268         struct ring_buffer_per_cpu *cpu_buffer;
3269         unsigned long ret;
3270
3271         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3272                 return 0;
3273
3274         cpu_buffer = buffer->buffers[cpu];
3275         ret = local_read(&cpu_buffer->dropped_events);
3276
3277         return ret;
3278 }
3279 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3280
3281 /**
3282  * ring_buffer_read_events_cpu - get the number of events successfully read
3283  * @buffer: The ring buffer
3284  * @cpu: The per CPU buffer to get the number of events read
3285  */
3286 unsigned long
3287 ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu)
3288 {
3289         struct ring_buffer_per_cpu *cpu_buffer;
3290
3291         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3292                 return 0;
3293
3294         cpu_buffer = buffer->buffers[cpu];
3295         return cpu_buffer->read;
3296 }
3297 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3298
3299 /**
3300  * ring_buffer_entries - get the number of entries in a buffer
3301  * @buffer: The ring buffer
3302  *
3303  * Returns the total number of entries in the ring buffer
3304  * (all CPU entries)
3305  */
3306 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3307 {
3308         struct ring_buffer_per_cpu *cpu_buffer;
3309         unsigned long entries = 0;
3310         int cpu;
3311
3312         /* if you care about this being correct, lock the buffer */
3313         for_each_buffer_cpu(buffer, cpu) {
3314                 cpu_buffer = buffer->buffers[cpu];
3315                 entries += rb_num_of_entries(cpu_buffer);
3316         }
3317
3318         return entries;
3319 }
3320 EXPORT_SYMBOL_GPL(ring_buffer_entries);
3321
3322 /**
3323  * ring_buffer_overruns - get the number of overruns in buffer
3324  * @buffer: The ring buffer
3325  *
3326  * Returns the total number of overruns in the ring buffer
3327  * (all CPU entries)
3328  */
3329 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3330 {
3331         struct ring_buffer_per_cpu *cpu_buffer;
3332         unsigned long overruns = 0;
3333         int cpu;
3334
3335         /* if you care about this being correct, lock the buffer */
3336         for_each_buffer_cpu(buffer, cpu) {
3337                 cpu_buffer = buffer->buffers[cpu];
3338                 overruns += local_read(&cpu_buffer->overrun);
3339         }
3340
3341         return overruns;
3342 }
3343 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
3344
3345 static void rb_iter_reset(struct ring_buffer_iter *iter)
3346 {
3347         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3348
3349         /* Iterator usage is expected to have record disabled */
3350         if (list_empty(&cpu_buffer->reader_page->list)) {
3351                 iter->head_page = rb_set_head_page(cpu_buffer);
3352                 if (unlikely(!iter->head_page))
3353                         return;
3354                 iter->head = iter->head_page->read;
3355         } else {
3356                 iter->head_page = cpu_buffer->reader_page;
3357                 iter->head = cpu_buffer->reader_page->read;
3358         }
3359         if (iter->head)
3360                 iter->read_stamp = cpu_buffer->read_stamp;
3361         else
3362                 iter->read_stamp = iter->head_page->page->time_stamp;
3363         iter->cache_reader_page = cpu_buffer->reader_page;
3364         iter->cache_read = cpu_buffer->read;
3365 }
3366
3367 /**
3368  * ring_buffer_iter_reset - reset an iterator
3369  * @iter: The iterator to reset
3370  *
3371  * Resets the iterator, so that it will start from the beginning
3372  * again.
3373  */
3374 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3375 {
3376         struct ring_buffer_per_cpu *cpu_buffer;
3377         unsigned long flags;
3378
3379         if (!iter)
3380                 return;
3381
3382         cpu_buffer = iter->cpu_buffer;
3383
3384         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3385         rb_iter_reset(iter);
3386         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3387 }
3388 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
3389
3390 /**
3391  * ring_buffer_iter_empty - check if an iterator has no more to read
3392  * @iter: The iterator to check
3393  */
3394 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3395 {
3396         struct ring_buffer_per_cpu *cpu_buffer;
3397
3398         cpu_buffer = iter->cpu_buffer;
3399
3400         return iter->head_page == cpu_buffer->commit_page &&
3401                 iter->head == rb_commit_index(cpu_buffer);
3402 }
3403 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
3404
3405 static void
3406 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3407                      struct ring_buffer_event *event)
3408 {
3409         u64 delta;
3410
3411         switch (event->type_len) {
3412         case RINGBUF_TYPE_PADDING:
3413                 return;
3414
3415         case RINGBUF_TYPE_TIME_EXTEND:
3416                 delta = event->array[0];
3417                 delta <<= TS_SHIFT;
3418                 delta += event->time_delta;
3419                 cpu_buffer->read_stamp += delta;
3420                 return;
3421
3422         case RINGBUF_TYPE_TIME_STAMP:
3423                 /* FIXME: not implemented */
3424                 return;
3425
3426         case RINGBUF_TYPE_DATA:
3427                 cpu_buffer->read_stamp += event->time_delta;
3428                 return;
3429
3430         default:
3431                 BUG();
3432         }
3433         return;
3434 }
3435
3436 static void
3437 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3438                           struct ring_buffer_event *event)
3439 {
3440         u64 delta;
3441
3442         switch (event->type_len) {
3443         case RINGBUF_TYPE_PADDING:
3444                 return;
3445
3446         case RINGBUF_TYPE_TIME_EXTEND:
3447                 delta = event->array[0];
3448                 delta <<= TS_SHIFT;
3449                 delta += event->time_delta;
3450                 iter->read_stamp += delta;
3451                 return;
3452
3453         case RINGBUF_TYPE_TIME_STAMP:
3454                 /* FIXME: not implemented */
3455                 return;
3456
3457         case RINGBUF_TYPE_DATA:
3458                 iter->read_stamp += event->time_delta;
3459                 return;
3460
3461         default:
3462                 BUG();
3463         }
3464         return;
3465 }
3466
3467 static struct buffer_page *
3468 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
3469 {
3470         struct buffer_page *reader = NULL;
3471         unsigned long overwrite;
3472         unsigned long flags;
3473         int nr_loops = 0;
3474         int ret;
3475
3476         local_irq_save(flags);
3477         arch_spin_lock(&cpu_buffer->lock);
3478
3479  again:
3480         /*
3481          * This should normally only loop twice. But because the
3482          * start of the reader inserts an empty page, it causes
3483          * a case where we will loop three times. There should be no
3484          * reason to loop four times (that I know of).
3485          */
3486         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
3487                 reader = NULL;
3488                 goto out;
3489         }
3490
3491         reader = cpu_buffer->reader_page;
3492
3493         /* If there's more to read, return this page */
3494         if (cpu_buffer->reader_page->read < rb_page_size(reader))
3495                 goto out;
3496
3497         /* Never should we have an index greater than the size */
3498         if (RB_WARN_ON(cpu_buffer,
3499                        cpu_buffer->reader_page->read > rb_page_size(reader)))
3500                 goto out;
3501
3502         /* check if we caught up to the tail */
3503         reader = NULL;
3504         if (cpu_buffer->commit_page == cpu_buffer->reader_page)
3505                 goto out;
3506
3507         /* Don't bother swapping if the ring buffer is empty */
3508         if (rb_num_of_entries(cpu_buffer) == 0)
3509                 goto out;
3510
3511         /*
3512          * Reset the reader page to size zero.
3513          */
3514         local_set(&cpu_buffer->reader_page->write, 0);
3515         local_set(&cpu_buffer->reader_page->entries, 0);
3516         local_set(&cpu_buffer->reader_page->page->commit, 0);
3517         cpu_buffer->reader_page->real_end = 0;
3518
3519  spin:
3520         /*
3521          * Splice the empty reader page into the list around the head.
3522          */
3523         reader = rb_set_head_page(cpu_buffer);
3524         if (!reader)
3525                 goto out;
3526         cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
3527         cpu_buffer->reader_page->list.prev = reader->list.prev;
3528
3529         /*
3530          * cpu_buffer->pages just needs to point to the buffer, it
3531          *  has no specific buffer page to point to. Lets move it out
3532          *  of our way so we don't accidentally swap it.
3533          */
3534         cpu_buffer->pages = reader->list.prev;
3535
3536         /* The reader page will be pointing to the new head */
3537         rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
3538
3539         /*
3540          * We want to make sure we read the overruns after we set up our
3541          * pointers to the next object. The writer side does a
3542          * cmpxchg to cross pages which acts as the mb on the writer
3543          * side. Note, the reader will constantly fail the swap
3544          * while the writer is updating the pointers, so this
3545          * guarantees that the overwrite recorded here is the one we
3546          * want to compare with the last_overrun.
3547          */
3548         smp_mb();
3549         overwrite = local_read(&(cpu_buffer->overrun));
3550
3551         /*
3552          * Here's the tricky part.
3553          *
3554          * We need to move the pointer past the header page.
3555          * But we can only do that if a writer is not currently
3556          * moving it. The page before the header page has the
3557          * flag bit '1' set if it is pointing to the page we want.
3558          * but if the writer is in the process of moving it
3559          * than it will be '2' or already moved '0'.
3560          */
3561
3562         ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
3563
3564         /*
3565          * If we did not convert it, then we must try again.
3566          */
3567         if (!ret)
3568                 goto spin;
3569
3570         /*
3571          * Yeah! We succeeded in replacing the page.
3572          *
3573          * Now make the new head point back to the reader page.
3574          */
3575         rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
3576         rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
3577
3578         /* Finally update the reader page to the new head */
3579         cpu_buffer->reader_page = reader;
3580         rb_reset_reader_page(cpu_buffer);
3581
3582         if (overwrite != cpu_buffer->last_overrun) {
3583                 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3584                 cpu_buffer->last_overrun = overwrite;
3585         }
3586
3587         goto again;
3588
3589  out:
3590         arch_spin_unlock(&cpu_buffer->lock);
3591         local_irq_restore(flags);
3592
3593         return reader;
3594 }
3595
3596 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3597 {
3598         struct ring_buffer_event *event;
3599         struct buffer_page *reader;
3600         unsigned length;
3601
3602         reader = rb_get_reader_page(cpu_buffer);
3603
3604         /* This function should not be called when buffer is empty */
3605         if (RB_WARN_ON(cpu_buffer, !reader))
3606                 return;
3607
3608         event = rb_reader_event(cpu_buffer);
3609
3610         if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
3611                 cpu_buffer->read++;
3612
3613         rb_update_read_stamp(cpu_buffer, event);
3614
3615         length = rb_event_length(event);
3616         cpu_buffer->reader_page->read += length;
3617 }
3618
3619 static void rb_advance_iter(struct ring_buffer_iter *iter)
3620 {
3621         struct ring_buffer_per_cpu *cpu_buffer;
3622         struct ring_buffer_event *event;
3623         unsigned length;
3624
3625         cpu_buffer = iter->cpu_buffer;
3626
3627         /*
3628          * Check if we are at the end of the buffer.
3629          */
3630         if (iter->head >= rb_page_size(iter->head_page)) {
3631                 /* discarded commits can make the page empty */
3632                 if (iter->head_page == cpu_buffer->commit_page)
3633                         return;
3634                 rb_inc_iter(iter);
3635                 return;
3636         }
3637
3638         event = rb_iter_head_event(iter);
3639
3640         length = rb_event_length(event);
3641
3642         /*
3643          * This should not be called to advance the header if we are
3644          * at the tail of the buffer.
3645          */
3646         if (RB_WARN_ON(cpu_buffer,
3647                        (iter->head_page == cpu_buffer->commit_page) &&
3648                        (iter->head + length > rb_commit_index(cpu_buffer))))
3649                 return;
3650
3651         rb_update_iter_read_stamp(iter, event);
3652
3653         iter->head += length;
3654
3655         /* check for end of page padding */
3656         if ((iter->head >= rb_page_size(iter->head_page)) &&
3657             (iter->head_page != cpu_buffer->commit_page))
3658                 rb_inc_iter(iter);
3659 }
3660
3661 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3662 {
3663         return cpu_buffer->lost_events;
3664 }
3665
3666 static struct ring_buffer_event *
3667 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3668                unsigned long *lost_events)
3669 {
3670         struct ring_buffer_event *event;
3671         struct buffer_page *reader;
3672         int nr_loops = 0;
3673
3674  again:
3675         /*
3676          * We repeat when a time extend is encountered.
3677          * Since the time extend is always attached to a data event,
3678          * we should never loop more than once.
3679          * (We never hit the following condition more than twice).
3680          */
3681         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3682                 return NULL;
3683
3684         reader = rb_get_reader_page(cpu_buffer);
3685         if (!reader)
3686                 return NULL;
3687
3688         event = rb_reader_event(cpu_buffer);
3689
3690         switch (event->type_len) {
3691         case RINGBUF_TYPE_PADDING:
3692                 if (rb_null_event(event))
3693                         RB_WARN_ON(cpu_buffer, 1);
3694                 /*
3695                  * Because the writer could be discarding every
3696                  * event it creates (which would probably be bad)
3697                  * if we were to go back to "again" then we may never
3698                  * catch up, and will trigger the warn on, or lock
3699                  * the box. Return the padding, and we will release
3700                  * the current locks, and try again.
3701                  */
3702                 return event;
3703
3704         case RINGBUF_TYPE_TIME_EXTEND:
3705                 /* Internal data, OK to advance */
3706                 rb_advance_reader(cpu_buffer);
3707                 goto again;
3708
3709         case RINGBUF_TYPE_TIME_STAMP:
3710                 /* FIXME: not implemented */
3711                 rb_advance_reader(cpu_buffer);
3712                 goto again;
3713
3714         case RINGBUF_TYPE_DATA:
3715                 if (ts) {
3716                         *ts = cpu_buffer->read_stamp + event->time_delta;
3717                         ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3718                                                          cpu_buffer->cpu, ts);
3719                 }
3720                 if (lost_events)
3721                         *lost_events = rb_lost_events(cpu_buffer);
3722                 return event;
3723
3724         default:
3725                 BUG();
3726         }
3727
3728         return NULL;
3729 }
3730 EXPORT_SYMBOL_GPL(ring_buffer_peek);
3731
3732 static struct ring_buffer_event *
3733 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3734 {
3735         struct ring_buffer *buffer;
3736         struct ring_buffer_per_cpu *cpu_buffer;
3737         struct ring_buffer_event *event;
3738         int nr_loops = 0;
3739
3740         cpu_buffer = iter->cpu_buffer;
3741         buffer = cpu_buffer->buffer;
3742
3743         /*
3744          * Check if someone performed a consuming read to
3745          * the buffer. A consuming read invalidates the iterator
3746          * and we need to reset the iterator in this case.
3747          */
3748         if (unlikely(iter->cache_read != cpu_buffer->read ||
3749                      iter->cache_reader_page != cpu_buffer->reader_page))
3750                 rb_iter_reset(iter);
3751
3752  again:
3753         if (ring_buffer_iter_empty(iter))
3754                 return NULL;
3755
3756         /*
3757          * We repeat when a time extend is encountered.
3758          * Since the time extend is always attached to a data event,
3759          * we should never loop more than once.
3760          * (We never hit the following condition more than twice).
3761          */
3762         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3763                 return NULL;
3764
3765         if (rb_per_cpu_empty(cpu_buffer))
3766                 return NULL;
3767
3768         if (iter->head >= local_read(&iter->head_page->page->commit)) {
3769                 rb_inc_iter(iter);
3770                 goto again;
3771         }
3772
3773         event = rb_iter_head_event(iter);
3774
3775         switch (event->type_len) {
3776         case RINGBUF_TYPE_PADDING:
3777                 if (rb_null_event(event)) {
3778                         rb_inc_iter(iter);
3779                         goto again;
3780                 }
3781                 rb_advance_iter(iter);
3782                 return event;
3783
3784         case RINGBUF_TYPE_TIME_EXTEND:
3785                 /* Internal data, OK to advance */
3786                 rb_advance_iter(iter);
3787                 goto again;
3788
3789         case RINGBUF_TYPE_TIME_STAMP:
3790                 /* FIXME: not implemented */
3791                 rb_advance_iter(iter);
3792                 goto again;
3793
3794         case RINGBUF_TYPE_DATA:
3795                 if (ts) {
3796                         *ts = iter->read_stamp + event->time_delta;
3797                         ring_buffer_normalize_time_stamp(buffer,
3798                                                          cpu_buffer->cpu, ts);
3799                 }
3800                 return event;
3801
3802         default:
3803                 BUG();
3804         }
3805
3806         return NULL;
3807 }
3808 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3809
3810 static inline int rb_ok_to_lock(void)
3811 {
3812         /*
3813          * If an NMI die dumps out the content of the ring buffer
3814          * do not grab locks. We also permanently disable the ring
3815          * buffer too. A one time deal is all you get from reading
3816          * the ring buffer from an NMI.
3817          */
3818         if (likely(!in_nmi()))
3819                 return 1;
3820
3821         tracing_off_permanent();
3822         return 0;
3823 }
3824
3825 /**
3826  * ring_buffer_peek - peek at the next event to be read
3827  * @buffer: The ring buffer to read
3828  * @cpu: The cpu to peak at
3829  * @ts: The timestamp counter of this event.
3830  * @lost_events: a variable to store if events were lost (may be NULL)
3831  *
3832  * This will return the event that will be read next, but does
3833  * not consume the data.
3834  */
3835 struct ring_buffer_event *
3836 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3837                  unsigned long *lost_events)
3838 {
3839         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3840         struct ring_buffer_event *event;
3841         unsigned long flags;
3842         int dolock;
3843
3844         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3845                 return NULL;
3846
3847         dolock = rb_ok_to_lock();
3848  again:
3849         local_irq_save(flags);
3850         if (dolock)
3851                 raw_spin_lock(&cpu_buffer->reader_lock);
3852         event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3853         if (event && event->type_len == RINGBUF_TYPE_PADDING)
3854                 rb_advance_reader(cpu_buffer);
3855         if (dolock)
3856                 raw_spin_unlock(&cpu_buffer->reader_lock);
3857         local_irq_restore(flags);
3858
3859         if (event && event->type_len == RINGBUF_TYPE_PADDING)
3860                 goto again;
3861
3862         return event;
3863 }
3864
3865 /**
3866  * ring_buffer_iter_peek - peek at the next event to be read
3867  * @iter: The ring buffer iterator
3868  * @ts: The timestamp counter of this event.
3869  *
3870  * This will return the event that will be read next, but does
3871  * not increment the iterator.
3872  */
3873 struct ring_buffer_event *
3874 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3875 {
3876         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3877         struct ring_buffer_event *event;
3878         unsigned long flags;
3879
3880  again:
3881         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3882         event = rb_iter_peek(iter, ts);
3883         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3884
3885         if (event && event->type_len == RINGBUF_TYPE_PADDING)
3886                 goto again;
3887
3888         return event;
3889 }
3890
3891 /**
3892  * ring_buffer_consume - return an event and consume it
3893  * @buffer: The ring buffer to get the next event from
3894  * @cpu: the cpu to read the buffer from
3895  * @ts: a variable to store the timestamp (may be NULL)
3896  * @lost_events: a variable to store if events were lost (may be NULL)
3897  *
3898  * Returns the next event in the ring buffer, and that event is consumed.
3899  * Meaning, that sequential reads will keep returning a different event,
3900  * and eventually empty the ring buffer if the producer is slower.
3901  */
3902 struct ring_buffer_event *
3903 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3904                     unsigned long *lost_events)
3905 {
3906         struct ring_buffer_per_cpu *cpu_buffer;
3907         struct ring_buffer_event *event = NULL;
3908         unsigned long flags;
3909         int dolock;
3910
3911         dolock = rb_ok_to_lock();
3912
3913  again:
3914         /* might be called in atomic */
3915         preempt_disable();
3916
3917         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3918                 goto out;
3919
3920         cpu_buffer = buffer->buffers[cpu];
3921         local_irq_save(flags);
3922         if (dolock)
3923                 raw_spin_lock(&cpu_buffer->reader_lock);
3924
3925         event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3926         if (event) {
3927                 cpu_buffer->lost_events = 0;
3928                 rb_advance_reader(cpu_buffer);
3929         }
3930
3931         if (dolock)
3932                 raw_spin_unlock(&cpu_buffer->reader_lock);
3933         local_irq_restore(flags);
3934
3935  out:
3936         preempt_enable();
3937
3938         if (event && event->type_len == RINGBUF_TYPE_PADDING)
3939                 goto again;
3940
3941         return event;
3942 }
3943 EXPORT_SYMBOL_GPL(ring_buffer_consume);
3944
3945 /**
3946  * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
3947  * @buffer: The ring buffer to read from
3948  * @cpu: The cpu buffer to iterate over
3949  *
3950  * This performs the initial preparations necessary to iterate
3951  * through the buffer.  Memory is allocated, buffer recording
3952  * is disabled, and the iterator pointer is returned to the caller.
3953  *
3954  * Disabling buffer recordng prevents the reading from being
3955  * corrupted. This is not a consuming read, so a producer is not
3956  * expected.
3957  *
3958  * After a sequence of ring_buffer_read_prepare calls, the user is
3959  * expected to make at least one call to ring_buffer_prepare_sync.
3960  * Afterwards, ring_buffer_read_start is invoked to get things going
3961  * for real.
3962  *
3963  * This overall must be paired with ring_buffer_finish.
3964  */
3965 struct ring_buffer_iter *
3966 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
3967 {
3968         struct ring_buffer_per_cpu *cpu_buffer;
3969         struct ring_buffer_iter *iter;
3970
3971         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3972                 return NULL;
3973
3974         iter = kmalloc(sizeof(*iter), GFP_KERNEL);
3975         if (!iter)
3976                 return NULL;
3977
3978         cpu_buffer = buffer->buffers[cpu];
3979
3980         iter->cpu_buffer = cpu_buffer;
3981
3982         atomic_inc(&buffer->resize_disabled);
3983         atomic_inc(&cpu_buffer->record_disabled);
3984
3985         return iter;
3986 }
3987 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
3988
3989 /**
3990  * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
3991  *
3992  * All previously invoked ring_buffer_read_prepare calls to prepare
3993  * iterators will be synchronized.  Afterwards, read_buffer_read_start
3994  * calls on those iterators are allowed.
3995  */
3996 void
3997 ring_buffer_read_prepare_sync(void)
3998 {
3999         synchronize_sched();
4000 }
4001 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4002
4003 /**
4004  * ring_buffer_read_start - start a non consuming read of the buffer
4005  * @iter: The iterator returned by ring_buffer_read_prepare
4006  *
4007  * This finalizes the startup of an iteration through the buffer.
4008  * The iterator comes from a call to ring_buffer_read_prepare and
4009  * an intervening ring_buffer_read_prepare_sync must have been
4010  * performed.
4011  *
4012  * Must be paired with ring_buffer_finish.
4013  */
4014 void
4015 ring_buffer_read_start(struct ring_buffer_iter *iter)
4016 {
4017         struct ring_buffer_per_cpu *cpu_buffer;
4018         unsigned long flags;
4019
4020         if (!iter)
4021                 return;
4022
4023         cpu_buffer = iter->cpu_buffer;
4024
4025         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4026         arch_spin_lock(&cpu_buffer->lock);
4027         rb_iter_reset(iter);
4028         arch_spin_unlock(&cpu_buffer->lock);
4029         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4030 }
4031 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
4032
4033 /**
4034  * ring_buffer_finish - finish reading the iterator of the buffer
4035  * @iter: The iterator retrieved by ring_buffer_start
4036  *
4037  * This re-enables the recording to the buffer, and frees the
4038  * iterator.
4039  */
4040 void
4041 ring_buffer_read_finish(struct ring_buffer_iter *iter)
4042 {
4043         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4044         unsigned long flags;
4045
4046         /*
4047          * Ring buffer is disabled from recording, here's a good place
4048          * to check the integrity of the ring buffer.
4049          * Must prevent readers from trying to read, as the check
4050          * clears the HEAD page and readers require it.
4051          */
4052         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4053         rb_check_pages(cpu_buffer);
4054         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4055
4056         atomic_dec(&cpu_buffer->record_disabled);
4057         atomic_dec(&cpu_buffer->buffer->resize_disabled);
4058         kfree(iter);
4059 }
4060 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
4061
4062 /**
4063  * ring_buffer_read - read the next item in the ring buffer by the iterator
4064  * @iter: The ring buffer iterator
4065  * @ts: The time stamp of the event read.
4066  *
4067  * This reads the next event in the ring buffer and increments the iterator.
4068  */
4069 struct ring_buffer_event *
4070 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
4071 {
4072         struct ring_buffer_event *event;
4073         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4074         unsigned long flags;
4075
4076         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4077  again:
4078         event = rb_iter_peek(iter, ts);
4079         if (!event)
4080                 goto out;
4081
4082         if (event->type_len == RINGBUF_TYPE_PADDING)
4083                 goto again;
4084
4085         rb_advance_iter(iter);
4086  out:
4087         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4088
4089         return event;
4090 }
4091 EXPORT_SYMBOL_GPL(ring_buffer_read);
4092
4093 /**
4094  * ring_buffer_size - return the size of the ring buffer (in bytes)
4095  * @buffer: The ring buffer.
4096  */
4097 unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
4098 {
4099         /*
4100          * Earlier, this method returned
4101          *      BUF_PAGE_SIZE * buffer->nr_pages
4102          * Since the nr_pages field is now removed, we have converted this to
4103          * return the per cpu buffer value.
4104          */
4105         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4106                 return 0;
4107
4108         return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
4109 }
4110 EXPORT_SYMBOL_GPL(ring_buffer_size);
4111
4112 static void
4113 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4114 {
4115         rb_head_page_deactivate(cpu_buffer);
4116
4117         cpu_buffer->head_page
4118                 = list_entry(cpu_buffer->pages, struct buffer_page, list);
4119         local_set(&cpu_buffer->head_page->write, 0);
4120         local_set(&cpu_buffer->head_page->entries, 0);
4121         local_set(&cpu_buffer->head_page->page->commit, 0);
4122
4123         cpu_buffer->head_page->read = 0;
4124
4125         cpu_buffer->tail_page = cpu_buffer->head_page;
4126         cpu_buffer->commit_page = cpu_buffer->head_page;
4127
4128         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
4129         INIT_LIST_HEAD(&cpu_buffer->new_pages);
4130         local_set(&cpu_buffer->reader_page->write, 0);
4131         local_set(&cpu_buffer->reader_page->entries, 0);
4132         local_set(&cpu_buffer->reader_page->page->commit, 0);
4133         cpu_buffer->reader_page->read = 0;
4134
4135         local_set(&cpu_buffer->entries_bytes, 0);
4136         local_set(&cpu_buffer->overrun, 0);
4137         local_set(&cpu_buffer->commit_overrun, 0);
4138         local_set(&cpu_buffer->dropped_events, 0);
4139         local_set(&cpu_buffer->entries, 0);
4140         local_set(&cpu_buffer->committing, 0);
4141         local_set(&cpu_buffer->commits, 0);
4142         cpu_buffer->read = 0;
4143         cpu_buffer->read_bytes = 0;
4144
4145         cpu_buffer->write_stamp = 0;
4146         cpu_buffer->read_stamp = 0;
4147
4148         cpu_buffer->lost_events = 0;
4149         cpu_buffer->last_overrun = 0;
4150
4151         rb_head_page_activate(cpu_buffer);
4152 }
4153
4154 /**
4155  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4156  * @buffer: The ring buffer to reset a per cpu buffer of
4157  * @cpu: The CPU buffer to be reset
4158  */
4159 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
4160 {
4161         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4162         unsigned long flags;
4163
4164         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4165                 return;
4166
4167         atomic_inc(&buffer->resize_disabled);
4168         atomic_inc(&cpu_buffer->record_disabled);
4169
4170         /* Make sure all commits have finished */
4171         synchronize_sched();
4172
4173         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4174
4175         if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4176                 goto out;
4177
4178         arch_spin_lock(&cpu_buffer->lock);
4179
4180         rb_reset_cpu(cpu_buffer);
4181
4182         arch_spin_unlock(&cpu_buffer->lock);
4183
4184  out:
4185         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4186
4187         atomic_dec(&cpu_buffer->record_disabled);
4188         atomic_dec(&buffer->resize_disabled);
4189 }
4190 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
4191
4192 /**
4193  * ring_buffer_reset - reset a ring buffer
4194  * @buffer: The ring buffer to reset all cpu buffers
4195  */
4196 void ring_buffer_reset(struct ring_buffer *buffer)
4197 {
4198         int cpu;
4199
4200         for_each_buffer_cpu(buffer, cpu)
4201                 ring_buffer_reset_cpu(buffer, cpu);
4202 }
4203 EXPORT_SYMBOL_GPL(ring_buffer_reset);
4204
4205 /**
4206  * rind_buffer_empty - is the ring buffer empty?
4207  * @buffer: The ring buffer to test
4208  */
4209 int ring_buffer_empty(struct ring_buffer *buffer)
4210 {
4211         struct ring_buffer_per_cpu *cpu_buffer;
4212         unsigned long flags;
4213         int dolock;
4214         int cpu;
4215         int ret;
4216
4217         dolock = rb_ok_to_lock();
4218
4219         /* yes this is racy, but if you don't like the race, lock the buffer */
4220         for_each_buffer_cpu(buffer, cpu) {
4221                 cpu_buffer = buffer->buffers[cpu];
4222                 local_irq_save(flags);
4223                 if (dolock)
4224                         raw_spin_lock(&cpu_buffer->reader_lock);
4225                 ret = rb_per_cpu_empty(cpu_buffer);
4226                 if (dolock)
4227                         raw_spin_unlock(&cpu_buffer->reader_lock);
4228                 local_irq_restore(flags);
4229
4230                 if (!ret)
4231                         return 0;
4232         }
4233
4234         return 1;
4235 }
4236 EXPORT_SYMBOL_GPL(ring_buffer_empty);
4237
4238 /**
4239  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4240  * @buffer: The ring buffer
4241  * @cpu: The CPU buffer to test
4242  */
4243 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
4244 {
4245         struct ring_buffer_per_cpu *cpu_buffer;
4246         unsigned long flags;
4247         int dolock;
4248         int ret;
4249
4250         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4251                 return 1;
4252
4253         dolock = rb_ok_to_lock();
4254
4255         cpu_buffer = buffer->buffers[cpu];
4256         local_irq_save(flags);
4257         if (dolock)
4258                 raw_spin_lock(&cpu_buffer->reader_lock);
4259         ret = rb_per_cpu_empty(cpu_buffer);
4260         if (dolock)
4261                 raw_spin_unlock(&cpu_buffer->reader_lock);
4262         local_irq_restore(flags);
4263
4264         return ret;
4265 }
4266 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
4267
4268 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4269 /**
4270  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4271  * @buffer_a: One buffer to swap with
4272  * @buffer_b: The other buffer to swap with
4273  *
4274  * This function is useful for tracers that want to take a "snapshot"
4275  * of a CPU buffer and has another back up buffer lying around.
4276  * it is expected that the tracer handles the cpu buffer not being
4277  * used at the moment.
4278  */
4279 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4280                          struct ring_buffer *buffer_b, int cpu)
4281 {
4282         struct ring_buffer_per_cpu *cpu_buffer_a;
4283         struct ring_buffer_per_cpu *cpu_buffer_b;
4284         int ret = -EINVAL;
4285
4286         if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4287             !cpumask_test_cpu(cpu, buffer_b->cpumask))
4288                 goto out;
4289
4290         cpu_buffer_a = buffer_a->buffers[cpu];
4291         cpu_buffer_b = buffer_b->buffers[cpu];
4292
4293         /* At least make sure the two buffers are somewhat the same */
4294         if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
4295                 goto out;
4296
4297         ret = -EAGAIN;
4298
4299         if (ring_buffer_flags != RB_BUFFERS_ON)
4300                 goto out;
4301
4302         if (atomic_read(&buffer_a->record_disabled))
4303                 goto out;
4304
4305         if (atomic_read(&buffer_b->record_disabled))
4306                 goto out;
4307
4308         if (atomic_read(&cpu_buffer_a->record_disabled))
4309                 goto out;
4310
4311         if (atomic_read(&cpu_buffer_b->record_disabled))
4312                 goto out;
4313
4314         /*
4315          * We can't do a synchronize_sched here because this
4316          * function can be called in atomic context.
4317          * Normally this will be called from the same CPU as cpu.
4318          * If not it's up to the caller to protect this.
4319          */
4320         atomic_inc(&cpu_buffer_a->record_disabled);
4321         atomic_inc(&cpu_buffer_b->record_disabled);
4322
4323         ret = -EBUSY;
4324         if (local_read(&cpu_buffer_a->committing))
4325                 goto out_dec;
4326         if (local_read(&cpu_buffer_b->committing))
4327                 goto out_dec;
4328
4329         buffer_a->buffers[cpu] = cpu_buffer_b;
4330         buffer_b->buffers[cpu] = cpu_buffer_a;
4331
4332         cpu_buffer_b->buffer = buffer_a;
4333         cpu_buffer_a->buffer = buffer_b;
4334
4335         ret = 0;
4336
4337 out_dec:
4338         atomic_dec(&cpu_buffer_a->record_disabled);
4339         atomic_dec(&cpu_buffer_b->record_disabled);
4340 out:
4341         return ret;
4342 }
4343 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
4344 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
4345
4346 /**
4347  * ring_buffer_alloc_read_page - allocate a page to read from buffer
4348  * @buffer: the buffer to allocate for.
4349  *
4350  * This function is used in conjunction with ring_buffer_read_page.
4351  * When reading a full page from the ring buffer, these functions
4352  * can be used to speed up the process. The calling function should
4353  * allocate a few pages first with this function. Then when it
4354  * needs to get pages from the ring buffer, it passes the result
4355  * of this function into ring_buffer_read_page, which will swap
4356  * the page that was allocated, with the read page of the buffer.
4357  *
4358  * Returns:
4359  *  The page allocated, or NULL on error.
4360  */
4361 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
4362 {
4363         struct buffer_data_page *bpage;
4364         struct page *page;
4365
4366         page = alloc_pages_node(cpu_to_node(cpu),
4367                                 GFP_KERNEL | __GFP_NORETRY, 0);
4368         if (!page)
4369                 return NULL;
4370
4371         bpage = page_address(page);
4372
4373         rb_init_page(bpage);
4374
4375         return bpage;
4376 }
4377 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
4378
4379 /**
4380  * ring_buffer_free_read_page - free an allocated read page
4381  * @buffer: the buffer the page was allocate for
4382  * @data: the page to free
4383  *
4384  * Free a page allocated from ring_buffer_alloc_read_page.
4385  */
4386 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
4387 {
4388         free_page((unsigned long)data);
4389 }
4390 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
4391
4392 /**
4393  * ring_buffer_read_page - extract a page from the ring buffer
4394  * @buffer: buffer to extract from
4395  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
4396  * @len: amount to extract
4397  * @cpu: the cpu of the buffer to extract
4398  * @full: should the extraction only happen when the page is full.
4399  *
4400  * This function will pull out a page from the ring buffer and consume it.
4401  * @data_page must be the address of the variable that was returned
4402  * from ring_buffer_alloc_read_page. This is because the page might be used
4403  * to swap with a page in the ring buffer.
4404  *
4405  * for example:
4406  *      rpage = ring_buffer_alloc_read_page(buffer);
4407  *      if (!rpage)
4408  *              return error;
4409  *      ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
4410  *      if (ret >= 0)
4411  *              process_page(rpage, ret);
4412  *
4413  * When @full is set, the function will not return true unless
4414  * the writer is off the reader page.
4415  *
4416  * Note: it is up to the calling functions to handle sleeps and wakeups.
4417  *  The ring buffer can be used anywhere in the kernel and can not
4418  *  blindly call wake_up. The layer that uses the ring buffer must be
4419  *  responsible for that.
4420  *
4421  * Returns:
4422  *  >=0 if data has been transferred, returns the offset of consumed data.
4423  *  <0 if no data has been transferred.
4424  */
4425 int ring_buffer_read_page(struct ring_buffer *buffer,
4426                           void **data_page, size_t len, int cpu, int full)
4427 {
4428         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4429         struct ring_buffer_event *event;
4430         struct buffer_data_page *bpage;
4431         struct buffer_page *reader;
4432         unsigned long missed_events;
4433         unsigned long flags;
4434         unsigned int commit;
4435         unsigned int read;
4436         u64 save_timestamp;
4437         int ret = -1;
4438
4439         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4440                 goto out;
4441
4442         /*
4443          * If len is not big enough to hold the page header, then
4444          * we can not copy anything.
4445          */
4446         if (len <= BUF_PAGE_HDR_SIZE)
4447                 goto out;
4448
4449         len -= BUF_PAGE_HDR_SIZE;
4450
4451         if (!data_page)
4452                 goto out;
4453
4454         bpage = *data_page;
4455         if (!bpage)
4456                 goto out;
4457
4458         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4459
4460         reader = rb_get_reader_page(cpu_buffer);
4461         if (!reader)
4462                 goto out_unlock;
4463
4464         event = rb_reader_event(cpu_buffer);
4465
4466         read = reader->read;
4467         commit = rb_page_commit(reader);
4468
4469         /* Check if any events were dropped */
4470         missed_events = cpu_buffer->lost_events;
4471
4472         /*
4473          * If this page has been partially read or
4474          * if len is not big enough to read the rest of the page or
4475          * a writer is still on the page, then
4476          * we must copy the data from the page to the buffer.
4477          * Otherwise, we can simply swap the page with the one passed in.
4478          */
4479         if (read || (len < (commit - read)) ||
4480             cpu_buffer->reader_page == cpu_buffer->commit_page) {
4481                 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
4482                 unsigned int rpos = read;
4483                 unsigned int pos = 0;
4484                 unsigned int size;
4485
4486                 if (full)
4487                         goto out_unlock;
4488
4489                 if (len > (commit - read))
4490                         len = (commit - read);
4491
4492                 /* Always keep the time extend and data together */
4493                 size = rb_event_ts_length(event);
4494
4495                 if (len < size)
4496                         goto out_unlock;
4497
4498                 /* save the current timestamp, since the user will need it */
4499                 save_timestamp = cpu_buffer->read_stamp;
4500
4501                 /* Need to copy one event at a time */
4502                 do {
4503                         /* We need the size of one event, because
4504                          * rb_advance_reader only advances by one event,
4505                          * whereas rb_event_ts_length may include the size of
4506                          * one or two events.
4507                          * We have already ensured there's enough space if this
4508                          * is a time extend. */
4509                         size = rb_event_length(event);
4510                         memcpy(bpage->data + pos, rpage->data + rpos, size);
4511
4512                         len -= size;
4513
4514                         rb_advance_reader(cpu_buffer);
4515                         rpos = reader->read;
4516                         pos += size;
4517
4518                         if (rpos >= commit)
4519                                 break;
4520
4521                         event = rb_reader_event(cpu_buffer);
4522                         /* Always keep the time extend and data together */
4523                         size = rb_event_ts_length(event);
4524                 } while (len >= size);
4525
4526                 /* update bpage */
4527                 local_set(&bpage->commit, pos);
4528                 bpage->time_stamp = save_timestamp;
4529
4530                 /* we copied everything to the beginning */
4531                 read = 0;
4532         } else {
4533                 /* update the entry counter */
4534                 cpu_buffer->read += rb_page_entries(reader);
4535                 cpu_buffer->read_bytes += BUF_PAGE_SIZE;
4536
4537                 /* swap the pages */
4538                 rb_init_page(bpage);
4539                 bpage = reader->page;
4540                 reader->page = *data_page;
4541                 local_set(&reader->write, 0);
4542                 local_set(&reader->entries, 0);
4543                 reader->read = 0;
4544                 *data_page = bpage;
4545
4546                 /*
4547                  * Use the real_end for the data size,
4548                  * This gives us a chance to store the lost events
4549                  * on the page.
4550                  */
4551                 if (reader->real_end)
4552                         local_set(&bpage->commit, reader->real_end);
4553         }
4554         ret = read;
4555
4556         cpu_buffer->lost_events = 0;
4557
4558         commit = local_read(&bpage->commit);
4559         /*
4560          * Set a flag in the commit field if we lost events
4561          */
4562         if (missed_events) {
4563                 /* If there is room at the end of the page to save the
4564                  * missed events, then record it there.
4565                  */
4566                 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4567                         memcpy(&bpage->data[commit], &missed_events,
4568                                sizeof(missed_events));
4569                         local_add(RB_MISSED_STORED, &bpage->commit);
4570                         commit += sizeof(missed_events);
4571                 }
4572                 local_add(RB_MISSED_EVENTS, &bpage->commit);
4573         }
4574
4575         /*
4576          * This page may be off to user land. Zero it out here.
4577          */
4578         if (commit < BUF_PAGE_SIZE)
4579                 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4580
4581  out_unlock:
4582         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4583
4584  out:
4585         return ret;
4586 }
4587 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
4588
4589 #ifdef CONFIG_HOTPLUG_CPU
4590 static int rb_cpu_notify(struct notifier_block *self,
4591                          unsigned long action, void *hcpu)
4592 {
4593         struct ring_buffer *buffer =
4594                 container_of(self, struct ring_buffer, cpu_notify);
4595         long cpu = (long)hcpu;
4596         int cpu_i, nr_pages_same;
4597         unsigned int nr_pages;
4598
4599         switch (action) {
4600         case CPU_UP_PREPARE:
4601         case CPU_UP_PREPARE_FROZEN:
4602                 if (cpumask_test_cpu(cpu, buffer->cpumask))
4603                         return NOTIFY_OK;
4604
4605                 nr_pages = 0;
4606                 nr_pages_same = 1;
4607                 /* check if all cpu sizes are same */
4608                 for_each_buffer_cpu(buffer, cpu_i) {
4609                         /* fill in the size from first enabled cpu */
4610                         if (nr_pages == 0)
4611                                 nr_pages = buffer->buffers[cpu_i]->nr_pages;
4612                         if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4613                                 nr_pages_same = 0;
4614                                 break;
4615                         }
4616                 }
4617                 /* allocate minimum pages, user can later expand it */
4618                 if (!nr_pages_same)
4619                         nr_pages = 2;
4620                 buffer->buffers[cpu] =
4621                         rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
4622                 if (!buffer->buffers[cpu]) {
4623                         WARN(1, "failed to allocate ring buffer on CPU %ld\n",
4624                              cpu);
4625                         return NOTIFY_OK;
4626                 }
4627                 smp_wmb();
4628                 cpumask_set_cpu(cpu, buffer->cpumask);
4629                 break;
4630         case CPU_DOWN_PREPARE:
4631         case CPU_DOWN_PREPARE_FROZEN:
4632                 /*
4633                  * Do nothing.
4634                  *  If we were to free the buffer, then the user would
4635                  *  lose any trace that was in the buffer.
4636                  */
4637                 break;
4638         default:
4639                 break;
4640         }
4641         return NOTIFY_OK;
4642 }
4643 #endif
4644
4645 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
4646 /*
4647  * This is a basic integrity check of the ring buffer.
4648  * Late in the boot cycle this test will run when configured in.
4649  * It will kick off a thread per CPU that will go into a loop
4650  * writing to the per cpu ring buffer various sizes of data.
4651  * Some of the data will be large items, some small.
4652  *
4653  * Another thread is created that goes into a spin, sending out
4654  * IPIs to the other CPUs to also write into the ring buffer.
4655  * this is to test the nesting ability of the buffer.
4656  *
4657  * Basic stats are recorded and reported. If something in the
4658  * ring buffer should happen that's not expected, a big warning
4659  * is displayed and all ring buffers are disabled.
4660  */
4661 static struct task_struct *rb_threads[NR_CPUS] __initdata;
4662
4663 struct rb_test_data {
4664         struct ring_buffer      *buffer;
4665         unsigned long           events;
4666         unsigned long           bytes_written;
4667         unsigned long           bytes_alloc;
4668         unsigned long           bytes_dropped;
4669         unsigned long           events_nested;
4670         unsigned long           bytes_written_nested;
4671         unsigned long           bytes_alloc_nested;
4672         unsigned long           bytes_dropped_nested;
4673         int                     min_size_nested;
4674         int                     max_size_nested;
4675         int                     max_size;
4676         int                     min_size;
4677         int                     cpu;
4678         int                     cnt;
4679 };
4680
4681 static struct rb_test_data rb_data[NR_CPUS] __initdata;
4682
4683 /* 1 meg per cpu */
4684 #define RB_TEST_BUFFER_SIZE     1048576
4685
4686 static char rb_string[] __initdata =
4687         "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
4688         "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
4689         "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
4690
4691 static bool rb_test_started __initdata;
4692
4693 struct rb_item {
4694         int size;
4695         char str[];
4696 };
4697
4698 static __init int rb_write_something(struct rb_test_data *data, bool nested)
4699 {
4700         struct ring_buffer_event *event;
4701         struct rb_item *item;
4702         bool started;
4703         int event_len;
4704         int size;
4705         int len;
4706         int cnt;
4707
4708         /* Have nested writes different that what is written */
4709         cnt = data->cnt + (nested ? 27 : 0);
4710
4711         /* Multiply cnt by ~e, to make some unique increment */
4712         size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1);
4713
4714         len = size + sizeof(struct rb_item);
4715
4716         started = rb_test_started;
4717         /* read rb_test_started before checking buffer enabled */
4718         smp_rmb();
4719
4720         event = ring_buffer_lock_reserve(data->buffer, len);
4721         if (!event) {
4722                 /* Ignore dropped events before test starts. */
4723                 if (started) {
4724                         if (nested)
4725                                 data->bytes_dropped += len;
4726                         else
4727                                 data->bytes_dropped_nested += len;
4728                 }
4729                 return len;
4730         }
4731
4732         event_len = ring_buffer_event_length(event);
4733
4734         if (RB_WARN_ON(data->buffer, event_len < len))
4735                 goto out;
4736
4737         item = ring_buffer_event_data(event);
4738         item->size = size;
4739         memcpy(item->str, rb_string, size);
4740
4741         if (nested) {
4742                 data->bytes_alloc_nested += event_len;
4743                 data->bytes_written_nested += len;
4744                 data->events_nested++;
4745                 if (!data->min_size_nested || len < data->min_size_nested)
4746                         data->min_size_nested = len;
4747                 if (len > data->max_size_nested)
4748                         data->max_size_nested = len;
4749         } else {
4750                 data->bytes_alloc += event_len;
4751                 data->bytes_written += len;
4752                 data->events++;
4753                 if (!data->min_size || len < data->min_size)
4754                         data->max_size = len;
4755                 if (len > data->max_size)
4756                         data->max_size = len;
4757         }
4758
4759  out:
4760         ring_buffer_unlock_commit(data->buffer, event);
4761
4762         return 0;
4763 }
4764
4765 static __init int rb_test(void *arg)
4766 {
4767         struct rb_test_data *data = arg;
4768
4769         while (!kthread_should_stop()) {
4770                 rb_write_something(data, false);
4771                 data->cnt++;
4772
4773                 set_current_state(TASK_INTERRUPTIBLE);
4774                 /* Now sleep between a min of 100-300us and a max of 1ms */
4775                 usleep_range(((data->cnt % 3) + 1) * 100, 1000);
4776         }
4777
4778         return 0;
4779 }
4780
4781 static __init void rb_ipi(void *ignore)
4782 {
4783         struct rb_test_data *data;
4784         int cpu = smp_processor_id();
4785
4786         data = &rb_data[cpu];
4787         rb_write_something(data, true);
4788 }
4789
4790 static __init int rb_hammer_test(void *arg)
4791 {
4792         while (!kthread_should_stop()) {
4793
4794                 /* Send an IPI to all cpus to write data! */
4795                 smp_call_function(rb_ipi, NULL, 1);
4796                 /* No sleep, but for non preempt, let others run */
4797                 schedule();
4798         }
4799
4800         return 0;
4801 }
4802
4803 static __init int test_ringbuffer(void)
4804 {
4805         struct task_struct *rb_hammer;
4806         struct ring_buffer *buffer;
4807         int cpu;
4808         int ret = 0;
4809
4810         pr_info("Running ring buffer tests...\n");
4811
4812         buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
4813         if (WARN_ON(!buffer))
4814                 return 0;
4815
4816         /* Disable buffer so that threads can't write to it yet */
4817         ring_buffer_record_off(buffer);
4818
4819         for_each_online_cpu(cpu) {
4820                 rb_data[cpu].buffer = buffer;
4821                 rb_data[cpu].cpu = cpu;
4822                 rb_data[cpu].cnt = cpu;
4823                 rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
4824                                                  "rbtester/%d", cpu);
4825                 if (WARN_ON(!rb_threads[cpu])) {
4826                         pr_cont("FAILED\n");
4827                         ret = -1;
4828                         goto out_free;
4829                 }
4830
4831                 kthread_bind(rb_threads[cpu], cpu);
4832                 wake_up_process(rb_threads[cpu]);
4833         }
4834
4835         /* Now create the rb hammer! */
4836         rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
4837         if (WARN_ON(!rb_hammer)) {
4838                 pr_cont("FAILED\n");
4839                 ret = -1;
4840                 goto out_free;
4841         }
4842
4843         ring_buffer_record_on(buffer);
4844         /*
4845          * Show buffer is enabled before setting rb_test_started.
4846          * Yes there's a small race window where events could be
4847          * dropped and the thread wont catch it. But when a ring
4848          * buffer gets enabled, there will always be some kind of
4849          * delay before other CPUs see it. Thus, we don't care about
4850          * those dropped events. We care about events dropped after
4851          * the threads see that the buffer is active.
4852          */
4853         smp_wmb();
4854         rb_test_started = true;
4855
4856         set_current_state(TASK_INTERRUPTIBLE);
4857         /* Just run for 10 seconds */;
4858         schedule_timeout(10 * HZ);
4859
4860         kthread_stop(rb_hammer);
4861
4862  out_free:
4863         for_each_online_cpu(cpu) {
4864                 if (!rb_threads[cpu])
4865                         break;
4866                 kthread_stop(rb_threads[cpu]);
4867         }
4868         if (ret) {
4869                 ring_buffer_free(buffer);
4870                 return ret;
4871         }
4872
4873         /* Report! */
4874         pr_info("finished\n");
4875         for_each_online_cpu(cpu) {
4876                 struct ring_buffer_event *event;
4877                 struct rb_test_data *data = &rb_data[cpu];
4878                 struct rb_item *item;
4879                 unsigned long total_events;
4880                 unsigned long total_dropped;
4881                 unsigned long total_written;
4882                 unsigned long total_alloc;
4883                 unsigned long total_read = 0;
4884                 unsigned long total_size = 0;
4885                 unsigned long total_len = 0;
4886                 unsigned long total_lost = 0;
4887                 unsigned long lost;
4888                 int big_event_size;
4889                 int small_event_size;
4890
4891                 ret = -1;
4892
4893                 total_events = data->events + data->events_nested;
4894                 total_written = data->bytes_written + data->bytes_written_nested;
4895                 total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
4896                 total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
4897
4898                 big_event_size = data->max_size + data->max_size_nested;
4899                 small_event_size = data->min_size + data->min_size_nested;
4900
4901                 pr_info("CPU %d:\n", cpu);
4902                 pr_info("              events:    %ld\n", total_events);
4903                 pr_info("       dropped bytes:    %ld\n", total_dropped);
4904                 pr_info("       alloced bytes:    %ld\n", total_alloc);
4905                 pr_info("       written bytes:    %ld\n", total_written);
4906                 pr_info("       biggest event:    %d\n", big_event_size);
4907                 pr_info("      smallest event:    %d\n", small_event_size);
4908
4909                 if (RB_WARN_ON(buffer, total_dropped))
4910                         break;
4911
4912                 ret = 0;
4913
4914                 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
4915                         total_lost += lost;
4916                         item = ring_buffer_event_data(event);
4917                         total_len += ring_buffer_event_length(event);
4918                         total_size += item->size + sizeof(struct rb_item);
4919                         if (memcmp(&item->str[0], rb_string, item->size) != 0) {
4920                                 pr_info("FAILED!\n");
4921                                 pr_info("buffer had: %.*s\n", item->size, item->str);
4922                                 pr_info("expected:   %.*s\n", item->size, rb_string);
4923                                 RB_WARN_ON(buffer, 1);
4924                                 ret = -1;
4925                                 break;
4926                         }
4927                         total_read++;
4928                 }
4929                 if (ret)
4930                         break;
4931
4932                 ret = -1;
4933
4934                 pr_info("         read events:   %ld\n", total_read);
4935                 pr_info("         lost events:   %ld\n", total_lost);
4936                 pr_info("        total events:   %ld\n", total_lost + total_read);
4937                 pr_info("  recorded len bytes:   %ld\n", total_len);
4938                 pr_info(" recorded size bytes:   %ld\n", total_size);
4939                 if (total_lost)
4940                         pr_info(" With dropped events, record len and size may not match\n"
4941                                 " alloced and written from above\n");
4942                 if (!total_lost) {
4943                         if (RB_WARN_ON(buffer, total_len != total_alloc ||
4944                                        total_size != total_written))
4945                                 break;
4946                 }
4947                 if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
4948                         break;
4949
4950                 ret = 0;
4951         }
4952         if (!ret)
4953                 pr_info("Ring buffer PASSED!\n");
4954
4955         ring_buffer_free(buffer);
4956         return 0;
4957 }
4958
4959 late_initcall(test_ringbuffer);
4960 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */