Merge tag 'regulator-3.8' of git://git.kernel.org/pub/scm/linux/kernel/git/broonie...
[firefly-linux-kernel-4.4.55.git] / kernel / trace / ring_buffer.c
1 /*
2  * Generic ring buffer
3  *
4  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5  */
6 #include <linux/ring_buffer.h>
7 #include <linux/trace_clock.h>
8 #include <linux/spinlock.h>
9 #include <linux/debugfs.h>
10 #include <linux/uaccess.h>
11 #include <linux/hardirq.h>
12 #include <linux/kmemcheck.h>
13 #include <linux/module.h>
14 #include <linux/percpu.h>
15 #include <linux/mutex.h>
16 #include <linux/slab.h>
17 #include <linux/init.h>
18 #include <linux/hash.h>
19 #include <linux/list.h>
20 #include <linux/cpu.h>
21 #include <linux/fs.h>
22
23 #include <asm/local.h>
24 #include "trace.h"
25
26 static void update_pages_handler(struct work_struct *work);
27
28 /*
29  * The ring buffer header is special. We must manually up keep it.
30  */
31 int ring_buffer_print_entry_header(struct trace_seq *s)
32 {
33         int ret;
34
35         ret = trace_seq_printf(s, "# compressed entry header\n");
36         ret = trace_seq_printf(s, "\ttype_len    :    5 bits\n");
37         ret = trace_seq_printf(s, "\ttime_delta  :   27 bits\n");
38         ret = trace_seq_printf(s, "\tarray       :   32 bits\n");
39         ret = trace_seq_printf(s, "\n");
40         ret = trace_seq_printf(s, "\tpadding     : type == %d\n",
41                                RINGBUF_TYPE_PADDING);
42         ret = trace_seq_printf(s, "\ttime_extend : type == %d\n",
43                                RINGBUF_TYPE_TIME_EXTEND);
44         ret = trace_seq_printf(s, "\tdata max type_len  == %d\n",
45                                RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
46
47         return ret;
48 }
49
50 /*
51  * The ring buffer is made up of a list of pages. A separate list of pages is
52  * allocated for each CPU. A writer may only write to a buffer that is
53  * associated with the CPU it is currently executing on.  A reader may read
54  * from any per cpu buffer.
55  *
56  * The reader is special. For each per cpu buffer, the reader has its own
57  * reader page. When a reader has read the entire reader page, this reader
58  * page is swapped with another page in the ring buffer.
59  *
60  * Now, as long as the writer is off the reader page, the reader can do what
61  * ever it wants with that page. The writer will never write to that page
62  * again (as long as it is out of the ring buffer).
63  *
64  * Here's some silly ASCII art.
65  *
66  *   +------+
67  *   |reader|          RING BUFFER
68  *   |page  |
69  *   +------+        +---+   +---+   +---+
70  *                   |   |-->|   |-->|   |
71  *                   +---+   +---+   +---+
72  *                     ^               |
73  *                     |               |
74  *                     +---------------+
75  *
76  *
77  *   +------+
78  *   |reader|          RING BUFFER
79  *   |page  |------------------v
80  *   +------+        +---+   +---+   +---+
81  *                   |   |-->|   |-->|   |
82  *                   +---+   +---+   +---+
83  *                     ^               |
84  *                     |               |
85  *                     +---------------+
86  *
87  *
88  *   +------+
89  *   |reader|          RING BUFFER
90  *   |page  |------------------v
91  *   +------+        +---+   +---+   +---+
92  *      ^            |   |-->|   |-->|   |
93  *      |            +---+   +---+   +---+
94  *      |                              |
95  *      |                              |
96  *      +------------------------------+
97  *
98  *
99  *   +------+
100  *   |buffer|          RING BUFFER
101  *   |page  |------------------v
102  *   +------+        +---+   +---+   +---+
103  *      ^            |   |   |   |-->|   |
104  *      |   New      +---+   +---+   +---+
105  *      |  Reader------^               |
106  *      |   page                       |
107  *      +------------------------------+
108  *
109  *
110  * After we make this swap, the reader can hand this page off to the splice
111  * code and be done with it. It can even allocate a new page if it needs to
112  * and swap that into the ring buffer.
113  *
114  * We will be using cmpxchg soon to make all this lockless.
115  *
116  */
117
118 /*
119  * A fast way to enable or disable all ring buffers is to
120  * call tracing_on or tracing_off. Turning off the ring buffers
121  * prevents all ring buffers from being recorded to.
122  * Turning this switch on, makes it OK to write to the
123  * ring buffer, if the ring buffer is enabled itself.
124  *
125  * There's three layers that must be on in order to write
126  * to the ring buffer.
127  *
128  * 1) This global flag must be set.
129  * 2) The ring buffer must be enabled for recording.
130  * 3) The per cpu buffer must be enabled for recording.
131  *
132  * In case of an anomaly, this global flag has a bit set that
133  * will permantly disable all ring buffers.
134  */
135
136 /*
137  * Global flag to disable all recording to ring buffers
138  *  This has two bits: ON, DISABLED
139  *
140  *  ON   DISABLED
141  * ---- ----------
142  *   0      0        : ring buffers are off
143  *   1      0        : ring buffers are on
144  *   X      1        : ring buffers are permanently disabled
145  */
146
147 enum {
148         RB_BUFFERS_ON_BIT       = 0,
149         RB_BUFFERS_DISABLED_BIT = 1,
150 };
151
152 enum {
153         RB_BUFFERS_ON           = 1 << RB_BUFFERS_ON_BIT,
154         RB_BUFFERS_DISABLED     = 1 << RB_BUFFERS_DISABLED_BIT,
155 };
156
157 static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
158
159 /* Used for individual buffers (after the counter) */
160 #define RB_BUFFER_OFF           (1 << 20)
161
162 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
163
164 /**
165  * tracing_off_permanent - permanently disable ring buffers
166  *
167  * This function, once called, will disable all ring buffers
168  * permanently.
169  */
170 void tracing_off_permanent(void)
171 {
172         set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
173 }
174
175 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
176 #define RB_ALIGNMENT            4U
177 #define RB_MAX_SMALL_DATA       (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
178 #define RB_EVNT_MIN_SIZE        8U      /* two 32bit words */
179
180 #if !defined(CONFIG_64BIT) || defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
181 # define RB_FORCE_8BYTE_ALIGNMENT       0
182 # define RB_ARCH_ALIGNMENT              RB_ALIGNMENT
183 #else
184 # define RB_FORCE_8BYTE_ALIGNMENT       1
185 # define RB_ARCH_ALIGNMENT              8U
186 #endif
187
188 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
189 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
190
191 enum {
192         RB_LEN_TIME_EXTEND = 8,
193         RB_LEN_TIME_STAMP = 16,
194 };
195
196 #define skip_time_extend(event) \
197         ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
198
199 static inline int rb_null_event(struct ring_buffer_event *event)
200 {
201         return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
202 }
203
204 static void rb_event_set_padding(struct ring_buffer_event *event)
205 {
206         /* padding has a NULL time_delta */
207         event->type_len = RINGBUF_TYPE_PADDING;
208         event->time_delta = 0;
209 }
210
211 static unsigned
212 rb_event_data_length(struct ring_buffer_event *event)
213 {
214         unsigned length;
215
216         if (event->type_len)
217                 length = event->type_len * RB_ALIGNMENT;
218         else
219                 length = event->array[0];
220         return length + RB_EVNT_HDR_SIZE;
221 }
222
223 /*
224  * Return the length of the given event. Will return
225  * the length of the time extend if the event is a
226  * time extend.
227  */
228 static inline unsigned
229 rb_event_length(struct ring_buffer_event *event)
230 {
231         switch (event->type_len) {
232         case RINGBUF_TYPE_PADDING:
233                 if (rb_null_event(event))
234                         /* undefined */
235                         return -1;
236                 return  event->array[0] + RB_EVNT_HDR_SIZE;
237
238         case RINGBUF_TYPE_TIME_EXTEND:
239                 return RB_LEN_TIME_EXTEND;
240
241         case RINGBUF_TYPE_TIME_STAMP:
242                 return RB_LEN_TIME_STAMP;
243
244         case RINGBUF_TYPE_DATA:
245                 return rb_event_data_length(event);
246         default:
247                 BUG();
248         }
249         /* not hit */
250         return 0;
251 }
252
253 /*
254  * Return total length of time extend and data,
255  *   or just the event length for all other events.
256  */
257 static inline unsigned
258 rb_event_ts_length(struct ring_buffer_event *event)
259 {
260         unsigned len = 0;
261
262         if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
263                 /* time extends include the data event after it */
264                 len = RB_LEN_TIME_EXTEND;
265                 event = skip_time_extend(event);
266         }
267         return len + rb_event_length(event);
268 }
269
270 /**
271  * ring_buffer_event_length - return the length of the event
272  * @event: the event to get the length of
273  *
274  * Returns the size of the data load of a data event.
275  * If the event is something other than a data event, it
276  * returns the size of the event itself. With the exception
277  * of a TIME EXTEND, where it still returns the size of the
278  * data load of the data event after it.
279  */
280 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
281 {
282         unsigned length;
283
284         if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
285                 event = skip_time_extend(event);
286
287         length = rb_event_length(event);
288         if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
289                 return length;
290         length -= RB_EVNT_HDR_SIZE;
291         if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
292                 length -= sizeof(event->array[0]);
293         return length;
294 }
295 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
296
297 /* inline for ring buffer fast paths */
298 static void *
299 rb_event_data(struct ring_buffer_event *event)
300 {
301         if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
302                 event = skip_time_extend(event);
303         BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
304         /* If length is in len field, then array[0] has the data */
305         if (event->type_len)
306                 return (void *)&event->array[0];
307         /* Otherwise length is in array[0] and array[1] has the data */
308         return (void *)&event->array[1];
309 }
310
311 /**
312  * ring_buffer_event_data - return the data of the event
313  * @event: the event to get the data from
314  */
315 void *ring_buffer_event_data(struct ring_buffer_event *event)
316 {
317         return rb_event_data(event);
318 }
319 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
320
321 #define for_each_buffer_cpu(buffer, cpu)                \
322         for_each_cpu(cpu, buffer->cpumask)
323
324 #define TS_SHIFT        27
325 #define TS_MASK         ((1ULL << TS_SHIFT) - 1)
326 #define TS_DELTA_TEST   (~TS_MASK)
327
328 /* Flag when events were overwritten */
329 #define RB_MISSED_EVENTS        (1 << 31)
330 /* Missed count stored at end */
331 #define RB_MISSED_STORED        (1 << 30)
332
333 struct buffer_data_page {
334         u64              time_stamp;    /* page time stamp */
335         local_t          commit;        /* write committed index */
336         unsigned char    data[];        /* data of buffer page */
337 };
338
339 /*
340  * Note, the buffer_page list must be first. The buffer pages
341  * are allocated in cache lines, which means that each buffer
342  * page will be at the beginning of a cache line, and thus
343  * the least significant bits will be zero. We use this to
344  * add flags in the list struct pointers, to make the ring buffer
345  * lockless.
346  */
347 struct buffer_page {
348         struct list_head list;          /* list of buffer pages */
349         local_t          write;         /* index for next write */
350         unsigned         read;          /* index for next read */
351         local_t          entries;       /* entries on this page */
352         unsigned long    real_end;      /* real end of data */
353         struct buffer_data_page *page;  /* Actual data page */
354 };
355
356 /*
357  * The buffer page counters, write and entries, must be reset
358  * atomically when crossing page boundaries. To synchronize this
359  * update, two counters are inserted into the number. One is
360  * the actual counter for the write position or count on the page.
361  *
362  * The other is a counter of updaters. Before an update happens
363  * the update partition of the counter is incremented. This will
364  * allow the updater to update the counter atomically.
365  *
366  * The counter is 20 bits, and the state data is 12.
367  */
368 #define RB_WRITE_MASK           0xfffff
369 #define RB_WRITE_INTCNT         (1 << 20)
370
371 static void rb_init_page(struct buffer_data_page *bpage)
372 {
373         local_set(&bpage->commit, 0);
374 }
375
376 /**
377  * ring_buffer_page_len - the size of data on the page.
378  * @page: The page to read
379  *
380  * Returns the amount of data on the page, including buffer page header.
381  */
382 size_t ring_buffer_page_len(void *page)
383 {
384         return local_read(&((struct buffer_data_page *)page)->commit)
385                 + BUF_PAGE_HDR_SIZE;
386 }
387
388 /*
389  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
390  * this issue out.
391  */
392 static void free_buffer_page(struct buffer_page *bpage)
393 {
394         free_page((unsigned long)bpage->page);
395         kfree(bpage);
396 }
397
398 /*
399  * We need to fit the time_stamp delta into 27 bits.
400  */
401 static inline int test_time_stamp(u64 delta)
402 {
403         if (delta & TS_DELTA_TEST)
404                 return 1;
405         return 0;
406 }
407
408 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
409
410 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
411 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
412
413 int ring_buffer_print_page_header(struct trace_seq *s)
414 {
415         struct buffer_data_page field;
416         int ret;
417
418         ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t"
419                                "offset:0;\tsize:%u;\tsigned:%u;\n",
420                                (unsigned int)sizeof(field.time_stamp),
421                                (unsigned int)is_signed_type(u64));
422
423         ret = trace_seq_printf(s, "\tfield: local_t commit;\t"
424                                "offset:%u;\tsize:%u;\tsigned:%u;\n",
425                                (unsigned int)offsetof(typeof(field), commit),
426                                (unsigned int)sizeof(field.commit),
427                                (unsigned int)is_signed_type(long));
428
429         ret = trace_seq_printf(s, "\tfield: int overwrite;\t"
430                                "offset:%u;\tsize:%u;\tsigned:%u;\n",
431                                (unsigned int)offsetof(typeof(field), commit),
432                                1,
433                                (unsigned int)is_signed_type(long));
434
435         ret = trace_seq_printf(s, "\tfield: char data;\t"
436                                "offset:%u;\tsize:%u;\tsigned:%u;\n",
437                                (unsigned int)offsetof(typeof(field), data),
438                                (unsigned int)BUF_PAGE_SIZE,
439                                (unsigned int)is_signed_type(char));
440
441         return ret;
442 }
443
444 /*
445  * head_page == tail_page && head == tail then buffer is empty.
446  */
447 struct ring_buffer_per_cpu {
448         int                             cpu;
449         atomic_t                        record_disabled;
450         struct ring_buffer              *buffer;
451         raw_spinlock_t                  reader_lock;    /* serialize readers */
452         arch_spinlock_t                 lock;
453         struct lock_class_key           lock_key;
454         unsigned int                    nr_pages;
455         struct list_head                *pages;
456         struct buffer_page              *head_page;     /* read from head */
457         struct buffer_page              *tail_page;     /* write to tail */
458         struct buffer_page              *commit_page;   /* committed pages */
459         struct buffer_page              *reader_page;
460         unsigned long                   lost_events;
461         unsigned long                   last_overrun;
462         local_t                         entries_bytes;
463         local_t                         entries;
464         local_t                         overrun;
465         local_t                         commit_overrun;
466         local_t                         dropped_events;
467         local_t                         committing;
468         local_t                         commits;
469         unsigned long                   read;
470         unsigned long                   read_bytes;
471         u64                             write_stamp;
472         u64                             read_stamp;
473         /* ring buffer pages to update, > 0 to add, < 0 to remove */
474         int                             nr_pages_to_update;
475         struct list_head                new_pages; /* new pages to add */
476         struct work_struct              update_pages_work;
477         struct completion               update_done;
478 };
479
480 struct ring_buffer {
481         unsigned                        flags;
482         int                             cpus;
483         atomic_t                        record_disabled;
484         atomic_t                        resize_disabled;
485         cpumask_var_t                   cpumask;
486
487         struct lock_class_key           *reader_lock_key;
488
489         struct mutex                    mutex;
490
491         struct ring_buffer_per_cpu      **buffers;
492
493 #ifdef CONFIG_HOTPLUG_CPU
494         struct notifier_block           cpu_notify;
495 #endif
496         u64                             (*clock)(void);
497 };
498
499 struct ring_buffer_iter {
500         struct ring_buffer_per_cpu      *cpu_buffer;
501         unsigned long                   head;
502         struct buffer_page              *head_page;
503         struct buffer_page              *cache_reader_page;
504         unsigned long                   cache_read;
505         u64                             read_stamp;
506 };
507
508 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
509 #define RB_WARN_ON(b, cond)                                             \
510         ({                                                              \
511                 int _____ret = unlikely(cond);                          \
512                 if (_____ret) {                                         \
513                         if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
514                                 struct ring_buffer_per_cpu *__b =       \
515                                         (void *)b;                      \
516                                 atomic_inc(&__b->buffer->record_disabled); \
517                         } else                                          \
518                                 atomic_inc(&b->record_disabled);        \
519                         WARN_ON(1);                                     \
520                 }                                                       \
521                 _____ret;                                               \
522         })
523
524 /* Up this if you want to test the TIME_EXTENTS and normalization */
525 #define DEBUG_SHIFT 0
526
527 static inline u64 rb_time_stamp(struct ring_buffer *buffer)
528 {
529         /* shift to debug/test normalization and TIME_EXTENTS */
530         return buffer->clock() << DEBUG_SHIFT;
531 }
532
533 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
534 {
535         u64 time;
536
537         preempt_disable_notrace();
538         time = rb_time_stamp(buffer);
539         preempt_enable_no_resched_notrace();
540
541         return time;
542 }
543 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
544
545 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
546                                       int cpu, u64 *ts)
547 {
548         /* Just stupid testing the normalize function and deltas */
549         *ts >>= DEBUG_SHIFT;
550 }
551 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
552
553 /*
554  * Making the ring buffer lockless makes things tricky.
555  * Although writes only happen on the CPU that they are on,
556  * and they only need to worry about interrupts. Reads can
557  * happen on any CPU.
558  *
559  * The reader page is always off the ring buffer, but when the
560  * reader finishes with a page, it needs to swap its page with
561  * a new one from the buffer. The reader needs to take from
562  * the head (writes go to the tail). But if a writer is in overwrite
563  * mode and wraps, it must push the head page forward.
564  *
565  * Here lies the problem.
566  *
567  * The reader must be careful to replace only the head page, and
568  * not another one. As described at the top of the file in the
569  * ASCII art, the reader sets its old page to point to the next
570  * page after head. It then sets the page after head to point to
571  * the old reader page. But if the writer moves the head page
572  * during this operation, the reader could end up with the tail.
573  *
574  * We use cmpxchg to help prevent this race. We also do something
575  * special with the page before head. We set the LSB to 1.
576  *
577  * When the writer must push the page forward, it will clear the
578  * bit that points to the head page, move the head, and then set
579  * the bit that points to the new head page.
580  *
581  * We also don't want an interrupt coming in and moving the head
582  * page on another writer. Thus we use the second LSB to catch
583  * that too. Thus:
584  *
585  * head->list->prev->next        bit 1          bit 0
586  *                              -------        -------
587  * Normal page                     0              0
588  * Points to head page             0              1
589  * New head page                   1              0
590  *
591  * Note we can not trust the prev pointer of the head page, because:
592  *
593  * +----+       +-----+        +-----+
594  * |    |------>|  T  |---X--->|  N  |
595  * |    |<------|     |        |     |
596  * +----+       +-----+        +-----+
597  *   ^                           ^ |
598  *   |          +-----+          | |
599  *   +----------|  R  |----------+ |
600  *              |     |<-----------+
601  *              +-----+
602  *
603  * Key:  ---X-->  HEAD flag set in pointer
604  *         T      Tail page
605  *         R      Reader page
606  *         N      Next page
607  *
608  * (see __rb_reserve_next() to see where this happens)
609  *
610  *  What the above shows is that the reader just swapped out
611  *  the reader page with a page in the buffer, but before it
612  *  could make the new header point back to the new page added
613  *  it was preempted by a writer. The writer moved forward onto
614  *  the new page added by the reader and is about to move forward
615  *  again.
616  *
617  *  You can see, it is legitimate for the previous pointer of
618  *  the head (or any page) not to point back to itself. But only
619  *  temporarially.
620  */
621
622 #define RB_PAGE_NORMAL          0UL
623 #define RB_PAGE_HEAD            1UL
624 #define RB_PAGE_UPDATE          2UL
625
626
627 #define RB_FLAG_MASK            3UL
628
629 /* PAGE_MOVED is not part of the mask */
630 #define RB_PAGE_MOVED           4UL
631
632 /*
633  * rb_list_head - remove any bit
634  */
635 static struct list_head *rb_list_head(struct list_head *list)
636 {
637         unsigned long val = (unsigned long)list;
638
639         return (struct list_head *)(val & ~RB_FLAG_MASK);
640 }
641
642 /*
643  * rb_is_head_page - test if the given page is the head page
644  *
645  * Because the reader may move the head_page pointer, we can
646  * not trust what the head page is (it may be pointing to
647  * the reader page). But if the next page is a header page,
648  * its flags will be non zero.
649  */
650 static inline int
651 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
652                 struct buffer_page *page, struct list_head *list)
653 {
654         unsigned long val;
655
656         val = (unsigned long)list->next;
657
658         if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
659                 return RB_PAGE_MOVED;
660
661         return val & RB_FLAG_MASK;
662 }
663
664 /*
665  * rb_is_reader_page
666  *
667  * The unique thing about the reader page, is that, if the
668  * writer is ever on it, the previous pointer never points
669  * back to the reader page.
670  */
671 static int rb_is_reader_page(struct buffer_page *page)
672 {
673         struct list_head *list = page->list.prev;
674
675         return rb_list_head(list->next) != &page->list;
676 }
677
678 /*
679  * rb_set_list_to_head - set a list_head to be pointing to head.
680  */
681 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
682                                 struct list_head *list)
683 {
684         unsigned long *ptr;
685
686         ptr = (unsigned long *)&list->next;
687         *ptr |= RB_PAGE_HEAD;
688         *ptr &= ~RB_PAGE_UPDATE;
689 }
690
691 /*
692  * rb_head_page_activate - sets up head page
693  */
694 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
695 {
696         struct buffer_page *head;
697
698         head = cpu_buffer->head_page;
699         if (!head)
700                 return;
701
702         /*
703          * Set the previous list pointer to have the HEAD flag.
704          */
705         rb_set_list_to_head(cpu_buffer, head->list.prev);
706 }
707
708 static void rb_list_head_clear(struct list_head *list)
709 {
710         unsigned long *ptr = (unsigned long *)&list->next;
711
712         *ptr &= ~RB_FLAG_MASK;
713 }
714
715 /*
716  * rb_head_page_dactivate - clears head page ptr (for free list)
717  */
718 static void
719 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
720 {
721         struct list_head *hd;
722
723         /* Go through the whole list and clear any pointers found. */
724         rb_list_head_clear(cpu_buffer->pages);
725
726         list_for_each(hd, cpu_buffer->pages)
727                 rb_list_head_clear(hd);
728 }
729
730 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
731                             struct buffer_page *head,
732                             struct buffer_page *prev,
733                             int old_flag, int new_flag)
734 {
735         struct list_head *list;
736         unsigned long val = (unsigned long)&head->list;
737         unsigned long ret;
738
739         list = &prev->list;
740
741         val &= ~RB_FLAG_MASK;
742
743         ret = cmpxchg((unsigned long *)&list->next,
744                       val | old_flag, val | new_flag);
745
746         /* check if the reader took the page */
747         if ((ret & ~RB_FLAG_MASK) != val)
748                 return RB_PAGE_MOVED;
749
750         return ret & RB_FLAG_MASK;
751 }
752
753 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
754                                    struct buffer_page *head,
755                                    struct buffer_page *prev,
756                                    int old_flag)
757 {
758         return rb_head_page_set(cpu_buffer, head, prev,
759                                 old_flag, RB_PAGE_UPDATE);
760 }
761
762 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
763                                  struct buffer_page *head,
764                                  struct buffer_page *prev,
765                                  int old_flag)
766 {
767         return rb_head_page_set(cpu_buffer, head, prev,
768                                 old_flag, RB_PAGE_HEAD);
769 }
770
771 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
772                                    struct buffer_page *head,
773                                    struct buffer_page *prev,
774                                    int old_flag)
775 {
776         return rb_head_page_set(cpu_buffer, head, prev,
777                                 old_flag, RB_PAGE_NORMAL);
778 }
779
780 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
781                                struct buffer_page **bpage)
782 {
783         struct list_head *p = rb_list_head((*bpage)->list.next);
784
785         *bpage = list_entry(p, struct buffer_page, list);
786 }
787
788 static struct buffer_page *
789 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
790 {
791         struct buffer_page *head;
792         struct buffer_page *page;
793         struct list_head *list;
794         int i;
795
796         if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
797                 return NULL;
798
799         /* sanity check */
800         list = cpu_buffer->pages;
801         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
802                 return NULL;
803
804         page = head = cpu_buffer->head_page;
805         /*
806          * It is possible that the writer moves the header behind
807          * where we started, and we miss in one loop.
808          * A second loop should grab the header, but we'll do
809          * three loops just because I'm paranoid.
810          */
811         for (i = 0; i < 3; i++) {
812                 do {
813                         if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
814                                 cpu_buffer->head_page = page;
815                                 return page;
816                         }
817                         rb_inc_page(cpu_buffer, &page);
818                 } while (page != head);
819         }
820
821         RB_WARN_ON(cpu_buffer, 1);
822
823         return NULL;
824 }
825
826 static int rb_head_page_replace(struct buffer_page *old,
827                                 struct buffer_page *new)
828 {
829         unsigned long *ptr = (unsigned long *)&old->list.prev->next;
830         unsigned long val;
831         unsigned long ret;
832
833         val = *ptr & ~RB_FLAG_MASK;
834         val |= RB_PAGE_HEAD;
835
836         ret = cmpxchg(ptr, val, (unsigned long)&new->list);
837
838         return ret == val;
839 }
840
841 /*
842  * rb_tail_page_update - move the tail page forward
843  *
844  * Returns 1 if moved tail page, 0 if someone else did.
845  */
846 static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
847                                struct buffer_page *tail_page,
848                                struct buffer_page *next_page)
849 {
850         struct buffer_page *old_tail;
851         unsigned long old_entries;
852         unsigned long old_write;
853         int ret = 0;
854
855         /*
856          * The tail page now needs to be moved forward.
857          *
858          * We need to reset the tail page, but without messing
859          * with possible erasing of data brought in by interrupts
860          * that have moved the tail page and are currently on it.
861          *
862          * We add a counter to the write field to denote this.
863          */
864         old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
865         old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
866
867         /*
868          * Just make sure we have seen our old_write and synchronize
869          * with any interrupts that come in.
870          */
871         barrier();
872
873         /*
874          * If the tail page is still the same as what we think
875          * it is, then it is up to us to update the tail
876          * pointer.
877          */
878         if (tail_page == cpu_buffer->tail_page) {
879                 /* Zero the write counter */
880                 unsigned long val = old_write & ~RB_WRITE_MASK;
881                 unsigned long eval = old_entries & ~RB_WRITE_MASK;
882
883                 /*
884                  * This will only succeed if an interrupt did
885                  * not come in and change it. In which case, we
886                  * do not want to modify it.
887                  *
888                  * We add (void) to let the compiler know that we do not care
889                  * about the return value of these functions. We use the
890                  * cmpxchg to only update if an interrupt did not already
891                  * do it for us. If the cmpxchg fails, we don't care.
892                  */
893                 (void)local_cmpxchg(&next_page->write, old_write, val);
894                 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
895
896                 /*
897                  * No need to worry about races with clearing out the commit.
898                  * it only can increment when a commit takes place. But that
899                  * only happens in the outer most nested commit.
900                  */
901                 local_set(&next_page->page->commit, 0);
902
903                 old_tail = cmpxchg(&cpu_buffer->tail_page,
904                                    tail_page, next_page);
905
906                 if (old_tail == tail_page)
907                         ret = 1;
908         }
909
910         return ret;
911 }
912
913 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
914                           struct buffer_page *bpage)
915 {
916         unsigned long val = (unsigned long)bpage;
917
918         if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
919                 return 1;
920
921         return 0;
922 }
923
924 /**
925  * rb_check_list - make sure a pointer to a list has the last bits zero
926  */
927 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
928                          struct list_head *list)
929 {
930         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
931                 return 1;
932         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
933                 return 1;
934         return 0;
935 }
936
937 /**
938  * check_pages - integrity check of buffer pages
939  * @cpu_buffer: CPU buffer with pages to test
940  *
941  * As a safety measure we check to make sure the data pages have not
942  * been corrupted.
943  */
944 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
945 {
946         struct list_head *head = cpu_buffer->pages;
947         struct buffer_page *bpage, *tmp;
948
949         /* Reset the head page if it exists */
950         if (cpu_buffer->head_page)
951                 rb_set_head_page(cpu_buffer);
952
953         rb_head_page_deactivate(cpu_buffer);
954
955         if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
956                 return -1;
957         if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
958                 return -1;
959
960         if (rb_check_list(cpu_buffer, head))
961                 return -1;
962
963         list_for_each_entry_safe(bpage, tmp, head, list) {
964                 if (RB_WARN_ON(cpu_buffer,
965                                bpage->list.next->prev != &bpage->list))
966                         return -1;
967                 if (RB_WARN_ON(cpu_buffer,
968                                bpage->list.prev->next != &bpage->list))
969                         return -1;
970                 if (rb_check_list(cpu_buffer, &bpage->list))
971                         return -1;
972         }
973
974         rb_head_page_activate(cpu_buffer);
975
976         return 0;
977 }
978
979 static int __rb_allocate_pages(int nr_pages, struct list_head *pages, int cpu)
980 {
981         int i;
982         struct buffer_page *bpage, *tmp;
983
984         for (i = 0; i < nr_pages; i++) {
985                 struct page *page;
986                 /*
987                  * __GFP_NORETRY flag makes sure that the allocation fails
988                  * gracefully without invoking oom-killer and the system is
989                  * not destabilized.
990                  */
991                 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
992                                     GFP_KERNEL | __GFP_NORETRY,
993                                     cpu_to_node(cpu));
994                 if (!bpage)
995                         goto free_pages;
996
997                 list_add(&bpage->list, pages);
998
999                 page = alloc_pages_node(cpu_to_node(cpu),
1000                                         GFP_KERNEL | __GFP_NORETRY, 0);
1001                 if (!page)
1002                         goto free_pages;
1003                 bpage->page = page_address(page);
1004                 rb_init_page(bpage->page);
1005         }
1006
1007         return 0;
1008
1009 free_pages:
1010         list_for_each_entry_safe(bpage, tmp, pages, list) {
1011                 list_del_init(&bpage->list);
1012                 free_buffer_page(bpage);
1013         }
1014
1015         return -ENOMEM;
1016 }
1017
1018 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1019                              unsigned nr_pages)
1020 {
1021         LIST_HEAD(pages);
1022
1023         WARN_ON(!nr_pages);
1024
1025         if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1026                 return -ENOMEM;
1027
1028         /*
1029          * The ring buffer page list is a circular list that does not
1030          * start and end with a list head. All page list items point to
1031          * other pages.
1032          */
1033         cpu_buffer->pages = pages.next;
1034         list_del(&pages);
1035
1036         cpu_buffer->nr_pages = nr_pages;
1037
1038         rb_check_pages(cpu_buffer);
1039
1040         return 0;
1041 }
1042
1043 static struct ring_buffer_per_cpu *
1044 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int nr_pages, int cpu)
1045 {
1046         struct ring_buffer_per_cpu *cpu_buffer;
1047         struct buffer_page *bpage;
1048         struct page *page;
1049         int ret;
1050
1051         cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1052                                   GFP_KERNEL, cpu_to_node(cpu));
1053         if (!cpu_buffer)
1054                 return NULL;
1055
1056         cpu_buffer->cpu = cpu;
1057         cpu_buffer->buffer = buffer;
1058         raw_spin_lock_init(&cpu_buffer->reader_lock);
1059         lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1060         cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1061         INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1062         init_completion(&cpu_buffer->update_done);
1063
1064         bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1065                             GFP_KERNEL, cpu_to_node(cpu));
1066         if (!bpage)
1067                 goto fail_free_buffer;
1068
1069         rb_check_bpage(cpu_buffer, bpage);
1070
1071         cpu_buffer->reader_page = bpage;
1072         page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1073         if (!page)
1074                 goto fail_free_reader;
1075         bpage->page = page_address(page);
1076         rb_init_page(bpage->page);
1077
1078         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1079         INIT_LIST_HEAD(&cpu_buffer->new_pages);
1080
1081         ret = rb_allocate_pages(cpu_buffer, nr_pages);
1082         if (ret < 0)
1083                 goto fail_free_reader;
1084
1085         cpu_buffer->head_page
1086                 = list_entry(cpu_buffer->pages, struct buffer_page, list);
1087         cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1088
1089         rb_head_page_activate(cpu_buffer);
1090
1091         return cpu_buffer;
1092
1093  fail_free_reader:
1094         free_buffer_page(cpu_buffer->reader_page);
1095
1096  fail_free_buffer:
1097         kfree(cpu_buffer);
1098         return NULL;
1099 }
1100
1101 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1102 {
1103         struct list_head *head = cpu_buffer->pages;
1104         struct buffer_page *bpage, *tmp;
1105
1106         free_buffer_page(cpu_buffer->reader_page);
1107
1108         rb_head_page_deactivate(cpu_buffer);
1109
1110         if (head) {
1111                 list_for_each_entry_safe(bpage, tmp, head, list) {
1112                         list_del_init(&bpage->list);
1113                         free_buffer_page(bpage);
1114                 }
1115                 bpage = list_entry(head, struct buffer_page, list);
1116                 free_buffer_page(bpage);
1117         }
1118
1119         kfree(cpu_buffer);
1120 }
1121
1122 #ifdef CONFIG_HOTPLUG_CPU
1123 static int rb_cpu_notify(struct notifier_block *self,
1124                          unsigned long action, void *hcpu);
1125 #endif
1126
1127 /**
1128  * ring_buffer_alloc - allocate a new ring_buffer
1129  * @size: the size in bytes per cpu that is needed.
1130  * @flags: attributes to set for the ring buffer.
1131  *
1132  * Currently the only flag that is available is the RB_FL_OVERWRITE
1133  * flag. This flag means that the buffer will overwrite old data
1134  * when the buffer wraps. If this flag is not set, the buffer will
1135  * drop data when the tail hits the head.
1136  */
1137 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1138                                         struct lock_class_key *key)
1139 {
1140         struct ring_buffer *buffer;
1141         int bsize;
1142         int cpu, nr_pages;
1143
1144         /* keep it in its own cache line */
1145         buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1146                          GFP_KERNEL);
1147         if (!buffer)
1148                 return NULL;
1149
1150         if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1151                 goto fail_free_buffer;
1152
1153         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1154         buffer->flags = flags;
1155         buffer->clock = trace_clock_local;
1156         buffer->reader_lock_key = key;
1157
1158         /* need at least two pages */
1159         if (nr_pages < 2)
1160                 nr_pages = 2;
1161
1162         /*
1163          * In case of non-hotplug cpu, if the ring-buffer is allocated
1164          * in early initcall, it will not be notified of secondary cpus.
1165          * In that off case, we need to allocate for all possible cpus.
1166          */
1167 #ifdef CONFIG_HOTPLUG_CPU
1168         get_online_cpus();
1169         cpumask_copy(buffer->cpumask, cpu_online_mask);
1170 #else
1171         cpumask_copy(buffer->cpumask, cpu_possible_mask);
1172 #endif
1173         buffer->cpus = nr_cpu_ids;
1174
1175         bsize = sizeof(void *) * nr_cpu_ids;
1176         buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1177                                   GFP_KERNEL);
1178         if (!buffer->buffers)
1179                 goto fail_free_cpumask;
1180
1181         for_each_buffer_cpu(buffer, cpu) {
1182                 buffer->buffers[cpu] =
1183                         rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1184                 if (!buffer->buffers[cpu])
1185                         goto fail_free_buffers;
1186         }
1187
1188 #ifdef CONFIG_HOTPLUG_CPU
1189         buffer->cpu_notify.notifier_call = rb_cpu_notify;
1190         buffer->cpu_notify.priority = 0;
1191         register_cpu_notifier(&buffer->cpu_notify);
1192 #endif
1193
1194         put_online_cpus();
1195         mutex_init(&buffer->mutex);
1196
1197         return buffer;
1198
1199  fail_free_buffers:
1200         for_each_buffer_cpu(buffer, cpu) {
1201                 if (buffer->buffers[cpu])
1202                         rb_free_cpu_buffer(buffer->buffers[cpu]);
1203         }
1204         kfree(buffer->buffers);
1205
1206  fail_free_cpumask:
1207         free_cpumask_var(buffer->cpumask);
1208         put_online_cpus();
1209
1210  fail_free_buffer:
1211         kfree(buffer);
1212         return NULL;
1213 }
1214 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1215
1216 /**
1217  * ring_buffer_free - free a ring buffer.
1218  * @buffer: the buffer to free.
1219  */
1220 void
1221 ring_buffer_free(struct ring_buffer *buffer)
1222 {
1223         int cpu;
1224
1225         get_online_cpus();
1226
1227 #ifdef CONFIG_HOTPLUG_CPU
1228         unregister_cpu_notifier(&buffer->cpu_notify);
1229 #endif
1230
1231         for_each_buffer_cpu(buffer, cpu)
1232                 rb_free_cpu_buffer(buffer->buffers[cpu]);
1233
1234         put_online_cpus();
1235
1236         kfree(buffer->buffers);
1237         free_cpumask_var(buffer->cpumask);
1238
1239         kfree(buffer);
1240 }
1241 EXPORT_SYMBOL_GPL(ring_buffer_free);
1242
1243 void ring_buffer_set_clock(struct ring_buffer *buffer,
1244                            u64 (*clock)(void))
1245 {
1246         buffer->clock = clock;
1247 }
1248
1249 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1250
1251 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1252 {
1253         return local_read(&bpage->entries) & RB_WRITE_MASK;
1254 }
1255
1256 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1257 {
1258         return local_read(&bpage->write) & RB_WRITE_MASK;
1259 }
1260
1261 static int
1262 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned int nr_pages)
1263 {
1264         struct list_head *tail_page, *to_remove, *next_page;
1265         struct buffer_page *to_remove_page, *tmp_iter_page;
1266         struct buffer_page *last_page, *first_page;
1267         unsigned int nr_removed;
1268         unsigned long head_bit;
1269         int page_entries;
1270
1271         head_bit = 0;
1272
1273         raw_spin_lock_irq(&cpu_buffer->reader_lock);
1274         atomic_inc(&cpu_buffer->record_disabled);
1275         /*
1276          * We don't race with the readers since we have acquired the reader
1277          * lock. We also don't race with writers after disabling recording.
1278          * This makes it easy to figure out the first and the last page to be
1279          * removed from the list. We unlink all the pages in between including
1280          * the first and last pages. This is done in a busy loop so that we
1281          * lose the least number of traces.
1282          * The pages are freed after we restart recording and unlock readers.
1283          */
1284         tail_page = &cpu_buffer->tail_page->list;
1285
1286         /*
1287          * tail page might be on reader page, we remove the next page
1288          * from the ring buffer
1289          */
1290         if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1291                 tail_page = rb_list_head(tail_page->next);
1292         to_remove = tail_page;
1293
1294         /* start of pages to remove */
1295         first_page = list_entry(rb_list_head(to_remove->next),
1296                                 struct buffer_page, list);
1297
1298         for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1299                 to_remove = rb_list_head(to_remove)->next;
1300                 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1301         }
1302
1303         next_page = rb_list_head(to_remove)->next;
1304
1305         /*
1306          * Now we remove all pages between tail_page and next_page.
1307          * Make sure that we have head_bit value preserved for the
1308          * next page
1309          */
1310         tail_page->next = (struct list_head *)((unsigned long)next_page |
1311                                                 head_bit);
1312         next_page = rb_list_head(next_page);
1313         next_page->prev = tail_page;
1314
1315         /* make sure pages points to a valid page in the ring buffer */
1316         cpu_buffer->pages = next_page;
1317
1318         /* update head page */
1319         if (head_bit)
1320                 cpu_buffer->head_page = list_entry(next_page,
1321                                                 struct buffer_page, list);
1322
1323         /*
1324          * change read pointer to make sure any read iterators reset
1325          * themselves
1326          */
1327         cpu_buffer->read = 0;
1328
1329         /* pages are removed, resume tracing and then free the pages */
1330         atomic_dec(&cpu_buffer->record_disabled);
1331         raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1332
1333         RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1334
1335         /* last buffer page to remove */
1336         last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1337                                 list);
1338         tmp_iter_page = first_page;
1339
1340         do {
1341                 to_remove_page = tmp_iter_page;
1342                 rb_inc_page(cpu_buffer, &tmp_iter_page);
1343
1344                 /* update the counters */
1345                 page_entries = rb_page_entries(to_remove_page);
1346                 if (page_entries) {
1347                         /*
1348                          * If something was added to this page, it was full
1349                          * since it is not the tail page. So we deduct the
1350                          * bytes consumed in ring buffer from here.
1351                          * Increment overrun to account for the lost events.
1352                          */
1353                         local_add(page_entries, &cpu_buffer->overrun);
1354                         local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1355                 }
1356
1357                 /*
1358                  * We have already removed references to this list item, just
1359                  * free up the buffer_page and its page
1360                  */
1361                 free_buffer_page(to_remove_page);
1362                 nr_removed--;
1363
1364         } while (to_remove_page != last_page);
1365
1366         RB_WARN_ON(cpu_buffer, nr_removed);
1367
1368         return nr_removed == 0;
1369 }
1370
1371 static int
1372 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1373 {
1374         struct list_head *pages = &cpu_buffer->new_pages;
1375         int retries, success;
1376
1377         raw_spin_lock_irq(&cpu_buffer->reader_lock);
1378         /*
1379          * We are holding the reader lock, so the reader page won't be swapped
1380          * in the ring buffer. Now we are racing with the writer trying to
1381          * move head page and the tail page.
1382          * We are going to adapt the reader page update process where:
1383          * 1. We first splice the start and end of list of new pages between
1384          *    the head page and its previous page.
1385          * 2. We cmpxchg the prev_page->next to point from head page to the
1386          *    start of new pages list.
1387          * 3. Finally, we update the head->prev to the end of new list.
1388          *
1389          * We will try this process 10 times, to make sure that we don't keep
1390          * spinning.
1391          */
1392         retries = 10;
1393         success = 0;
1394         while (retries--) {
1395                 struct list_head *head_page, *prev_page, *r;
1396                 struct list_head *last_page, *first_page;
1397                 struct list_head *head_page_with_bit;
1398
1399                 head_page = &rb_set_head_page(cpu_buffer)->list;
1400                 if (!head_page)
1401                         break;
1402                 prev_page = head_page->prev;
1403
1404                 first_page = pages->next;
1405                 last_page  = pages->prev;
1406
1407                 head_page_with_bit = (struct list_head *)
1408                                      ((unsigned long)head_page | RB_PAGE_HEAD);
1409
1410                 last_page->next = head_page_with_bit;
1411                 first_page->prev = prev_page;
1412
1413                 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1414
1415                 if (r == head_page_with_bit) {
1416                         /*
1417                          * yay, we replaced the page pointer to our new list,
1418                          * now, we just have to update to head page's prev
1419                          * pointer to point to end of list
1420                          */
1421                         head_page->prev = last_page;
1422                         success = 1;
1423                         break;
1424                 }
1425         }
1426
1427         if (success)
1428                 INIT_LIST_HEAD(pages);
1429         /*
1430          * If we weren't successful in adding in new pages, warn and stop
1431          * tracing
1432          */
1433         RB_WARN_ON(cpu_buffer, !success);
1434         raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1435
1436         /* free pages if they weren't inserted */
1437         if (!success) {
1438                 struct buffer_page *bpage, *tmp;
1439                 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1440                                          list) {
1441                         list_del_init(&bpage->list);
1442                         free_buffer_page(bpage);
1443                 }
1444         }
1445         return success;
1446 }
1447
1448 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1449 {
1450         int success;
1451
1452         if (cpu_buffer->nr_pages_to_update > 0)
1453                 success = rb_insert_pages(cpu_buffer);
1454         else
1455                 success = rb_remove_pages(cpu_buffer,
1456                                         -cpu_buffer->nr_pages_to_update);
1457
1458         if (success)
1459                 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1460 }
1461
1462 static void update_pages_handler(struct work_struct *work)
1463 {
1464         struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1465                         struct ring_buffer_per_cpu, update_pages_work);
1466         rb_update_pages(cpu_buffer);
1467         complete(&cpu_buffer->update_done);
1468 }
1469
1470 /**
1471  * ring_buffer_resize - resize the ring buffer
1472  * @buffer: the buffer to resize.
1473  * @size: the new size.
1474  *
1475  * Minimum size is 2 * BUF_PAGE_SIZE.
1476  *
1477  * Returns 0 on success and < 0 on failure.
1478  */
1479 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1480                         int cpu_id)
1481 {
1482         struct ring_buffer_per_cpu *cpu_buffer;
1483         unsigned nr_pages;
1484         int cpu, err = 0;
1485
1486         /*
1487          * Always succeed at resizing a non-existent buffer:
1488          */
1489         if (!buffer)
1490                 return size;
1491
1492         /* Make sure the requested buffer exists */
1493         if (cpu_id != RING_BUFFER_ALL_CPUS &&
1494             !cpumask_test_cpu(cpu_id, buffer->cpumask))
1495                 return size;
1496
1497         size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1498         size *= BUF_PAGE_SIZE;
1499
1500         /* we need a minimum of two pages */
1501         if (size < BUF_PAGE_SIZE * 2)
1502                 size = BUF_PAGE_SIZE * 2;
1503
1504         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1505
1506         /*
1507          * Don't succeed if resizing is disabled, as a reader might be
1508          * manipulating the ring buffer and is expecting a sane state while
1509          * this is true.
1510          */
1511         if (atomic_read(&buffer->resize_disabled))
1512                 return -EBUSY;
1513
1514         /* prevent another thread from changing buffer sizes */
1515         mutex_lock(&buffer->mutex);
1516
1517         if (cpu_id == RING_BUFFER_ALL_CPUS) {
1518                 /* calculate the pages to update */
1519                 for_each_buffer_cpu(buffer, cpu) {
1520                         cpu_buffer = buffer->buffers[cpu];
1521
1522                         cpu_buffer->nr_pages_to_update = nr_pages -
1523                                                         cpu_buffer->nr_pages;
1524                         /*
1525                          * nothing more to do for removing pages or no update
1526                          */
1527                         if (cpu_buffer->nr_pages_to_update <= 0)
1528                                 continue;
1529                         /*
1530                          * to add pages, make sure all new pages can be
1531                          * allocated without receiving ENOMEM
1532                          */
1533                         INIT_LIST_HEAD(&cpu_buffer->new_pages);
1534                         if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1535                                                 &cpu_buffer->new_pages, cpu)) {
1536                                 /* not enough memory for new pages */
1537                                 err = -ENOMEM;
1538                                 goto out_err;
1539                         }
1540                 }
1541
1542                 get_online_cpus();
1543                 /*
1544                  * Fire off all the required work handlers
1545                  * We can't schedule on offline CPUs, but it's not necessary
1546                  * since we can change their buffer sizes without any race.
1547                  */
1548                 for_each_buffer_cpu(buffer, cpu) {
1549                         cpu_buffer = buffer->buffers[cpu];
1550                         if (!cpu_buffer->nr_pages_to_update)
1551                                 continue;
1552
1553                         if (cpu_online(cpu))
1554                                 schedule_work_on(cpu,
1555                                                 &cpu_buffer->update_pages_work);
1556                         else
1557                                 rb_update_pages(cpu_buffer);
1558                 }
1559
1560                 /* wait for all the updates to complete */
1561                 for_each_buffer_cpu(buffer, cpu) {
1562                         cpu_buffer = buffer->buffers[cpu];
1563                         if (!cpu_buffer->nr_pages_to_update)
1564                                 continue;
1565
1566                         if (cpu_online(cpu))
1567                                 wait_for_completion(&cpu_buffer->update_done);
1568                         cpu_buffer->nr_pages_to_update = 0;
1569                 }
1570
1571                 put_online_cpus();
1572         } else {
1573                 /* Make sure this CPU has been intitialized */
1574                 if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1575                         goto out;
1576
1577                 cpu_buffer = buffer->buffers[cpu_id];
1578
1579                 if (nr_pages == cpu_buffer->nr_pages)
1580                         goto out;
1581
1582                 cpu_buffer->nr_pages_to_update = nr_pages -
1583                                                 cpu_buffer->nr_pages;
1584
1585                 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1586                 if (cpu_buffer->nr_pages_to_update > 0 &&
1587                         __rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1588                                             &cpu_buffer->new_pages, cpu_id)) {
1589                         err = -ENOMEM;
1590                         goto out_err;
1591                 }
1592
1593                 get_online_cpus();
1594
1595                 if (cpu_online(cpu_id)) {
1596                         schedule_work_on(cpu_id,
1597                                          &cpu_buffer->update_pages_work);
1598                         wait_for_completion(&cpu_buffer->update_done);
1599                 } else
1600                         rb_update_pages(cpu_buffer);
1601
1602                 cpu_buffer->nr_pages_to_update = 0;
1603                 put_online_cpus();
1604         }
1605
1606  out:
1607         /*
1608          * The ring buffer resize can happen with the ring buffer
1609          * enabled, so that the update disturbs the tracing as little
1610          * as possible. But if the buffer is disabled, we do not need
1611          * to worry about that, and we can take the time to verify
1612          * that the buffer is not corrupt.
1613          */
1614         if (atomic_read(&buffer->record_disabled)) {
1615                 atomic_inc(&buffer->record_disabled);
1616                 /*
1617                  * Even though the buffer was disabled, we must make sure
1618                  * that it is truly disabled before calling rb_check_pages.
1619                  * There could have been a race between checking
1620                  * record_disable and incrementing it.
1621                  */
1622                 synchronize_sched();
1623                 for_each_buffer_cpu(buffer, cpu) {
1624                         cpu_buffer = buffer->buffers[cpu];
1625                         rb_check_pages(cpu_buffer);
1626                 }
1627                 atomic_dec(&buffer->record_disabled);
1628         }
1629
1630         mutex_unlock(&buffer->mutex);
1631         return size;
1632
1633  out_err:
1634         for_each_buffer_cpu(buffer, cpu) {
1635                 struct buffer_page *bpage, *tmp;
1636
1637                 cpu_buffer = buffer->buffers[cpu];
1638                 cpu_buffer->nr_pages_to_update = 0;
1639
1640                 if (list_empty(&cpu_buffer->new_pages))
1641                         continue;
1642
1643                 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1644                                         list) {
1645                         list_del_init(&bpage->list);
1646                         free_buffer_page(bpage);
1647                 }
1648         }
1649         mutex_unlock(&buffer->mutex);
1650         return err;
1651 }
1652 EXPORT_SYMBOL_GPL(ring_buffer_resize);
1653
1654 void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1655 {
1656         mutex_lock(&buffer->mutex);
1657         if (val)
1658                 buffer->flags |= RB_FL_OVERWRITE;
1659         else
1660                 buffer->flags &= ~RB_FL_OVERWRITE;
1661         mutex_unlock(&buffer->mutex);
1662 }
1663 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1664
1665 static inline void *
1666 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
1667 {
1668         return bpage->data + index;
1669 }
1670
1671 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1672 {
1673         return bpage->page->data + index;
1674 }
1675
1676 static inline struct ring_buffer_event *
1677 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1678 {
1679         return __rb_page_index(cpu_buffer->reader_page,
1680                                cpu_buffer->reader_page->read);
1681 }
1682
1683 static inline struct ring_buffer_event *
1684 rb_iter_head_event(struct ring_buffer_iter *iter)
1685 {
1686         return __rb_page_index(iter->head_page, iter->head);
1687 }
1688
1689 static inline unsigned rb_page_commit(struct buffer_page *bpage)
1690 {
1691         return local_read(&bpage->page->commit);
1692 }
1693
1694 /* Size is determined by what has been committed */
1695 static inline unsigned rb_page_size(struct buffer_page *bpage)
1696 {
1697         return rb_page_commit(bpage);
1698 }
1699
1700 static inline unsigned
1701 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1702 {
1703         return rb_page_commit(cpu_buffer->commit_page);
1704 }
1705
1706 static inline unsigned
1707 rb_event_index(struct ring_buffer_event *event)
1708 {
1709         unsigned long addr = (unsigned long)event;
1710
1711         return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1712 }
1713
1714 static inline int
1715 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1716                    struct ring_buffer_event *event)
1717 {
1718         unsigned long addr = (unsigned long)event;
1719         unsigned long index;
1720
1721         index = rb_event_index(event);
1722         addr &= PAGE_MASK;
1723
1724         return cpu_buffer->commit_page->page == (void *)addr &&
1725                 rb_commit_index(cpu_buffer) == index;
1726 }
1727
1728 static void
1729 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
1730 {
1731         unsigned long max_count;
1732
1733         /*
1734          * We only race with interrupts and NMIs on this CPU.
1735          * If we own the commit event, then we can commit
1736          * all others that interrupted us, since the interruptions
1737          * are in stack format (they finish before they come
1738          * back to us). This allows us to do a simple loop to
1739          * assign the commit to the tail.
1740          */
1741  again:
1742         max_count = cpu_buffer->nr_pages * 100;
1743
1744         while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
1745                 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
1746                         return;
1747                 if (RB_WARN_ON(cpu_buffer,
1748                                rb_is_reader_page(cpu_buffer->tail_page)))
1749                         return;
1750                 local_set(&cpu_buffer->commit_page->page->commit,
1751                           rb_page_write(cpu_buffer->commit_page));
1752                 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
1753                 cpu_buffer->write_stamp =
1754                         cpu_buffer->commit_page->page->time_stamp;
1755                 /* add barrier to keep gcc from optimizing too much */
1756                 barrier();
1757         }
1758         while (rb_commit_index(cpu_buffer) !=
1759                rb_page_write(cpu_buffer->commit_page)) {
1760
1761                 local_set(&cpu_buffer->commit_page->page->commit,
1762                           rb_page_write(cpu_buffer->commit_page));
1763                 RB_WARN_ON(cpu_buffer,
1764                            local_read(&cpu_buffer->commit_page->page->commit) &
1765                            ~RB_WRITE_MASK);
1766                 barrier();
1767         }
1768
1769         /* again, keep gcc from optimizing */
1770         barrier();
1771
1772         /*
1773          * If an interrupt came in just after the first while loop
1774          * and pushed the tail page forward, we will be left with
1775          * a dangling commit that will never go forward.
1776          */
1777         if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1778                 goto again;
1779 }
1780
1781 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1782 {
1783         cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
1784         cpu_buffer->reader_page->read = 0;
1785 }
1786
1787 static void rb_inc_iter(struct ring_buffer_iter *iter)
1788 {
1789         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1790
1791         /*
1792          * The iterator could be on the reader page (it starts there).
1793          * But the head could have moved, since the reader was
1794          * found. Check for this case and assign the iterator
1795          * to the head page instead of next.
1796          */
1797         if (iter->head_page == cpu_buffer->reader_page)
1798                 iter->head_page = rb_set_head_page(cpu_buffer);
1799         else
1800                 rb_inc_page(cpu_buffer, &iter->head_page);
1801
1802         iter->read_stamp = iter->head_page->page->time_stamp;
1803         iter->head = 0;
1804 }
1805
1806 /* Slow path, do not inline */
1807 static noinline struct ring_buffer_event *
1808 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
1809 {
1810         event->type_len = RINGBUF_TYPE_TIME_EXTEND;
1811
1812         /* Not the first event on the page? */
1813         if (rb_event_index(event)) {
1814                 event->time_delta = delta & TS_MASK;
1815                 event->array[0] = delta >> TS_SHIFT;
1816         } else {
1817                 /* nope, just zero it */
1818                 event->time_delta = 0;
1819                 event->array[0] = 0;
1820         }
1821
1822         return skip_time_extend(event);
1823 }
1824
1825 /**
1826  * rb_update_event - update event type and data
1827  * @event: the even to update
1828  * @type: the type of event
1829  * @length: the size of the event field in the ring buffer
1830  *
1831  * Update the type and data fields of the event. The length
1832  * is the actual size that is written to the ring buffer,
1833  * and with this, we can determine what to place into the
1834  * data field.
1835  */
1836 static void
1837 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
1838                 struct ring_buffer_event *event, unsigned length,
1839                 int add_timestamp, u64 delta)
1840 {
1841         /* Only a commit updates the timestamp */
1842         if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
1843                 delta = 0;
1844
1845         /*
1846          * If we need to add a timestamp, then we
1847          * add it to the start of the resevered space.
1848          */
1849         if (unlikely(add_timestamp)) {
1850                 event = rb_add_time_stamp(event, delta);
1851                 length -= RB_LEN_TIME_EXTEND;
1852                 delta = 0;
1853         }
1854
1855         event->time_delta = delta;
1856         length -= RB_EVNT_HDR_SIZE;
1857         if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
1858                 event->type_len = 0;
1859                 event->array[0] = length;
1860         } else
1861                 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
1862 }
1863
1864 /*
1865  * rb_handle_head_page - writer hit the head page
1866  *
1867  * Returns: +1 to retry page
1868  *           0 to continue
1869  *          -1 on error
1870  */
1871 static int
1872 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1873                     struct buffer_page *tail_page,
1874                     struct buffer_page *next_page)
1875 {
1876         struct buffer_page *new_head;
1877         int entries;
1878         int type;
1879         int ret;
1880
1881         entries = rb_page_entries(next_page);
1882
1883         /*
1884          * The hard part is here. We need to move the head
1885          * forward, and protect against both readers on
1886          * other CPUs and writers coming in via interrupts.
1887          */
1888         type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
1889                                        RB_PAGE_HEAD);
1890
1891         /*
1892          * type can be one of four:
1893          *  NORMAL - an interrupt already moved it for us
1894          *  HEAD   - we are the first to get here.
1895          *  UPDATE - we are the interrupt interrupting
1896          *           a current move.
1897          *  MOVED  - a reader on another CPU moved the next
1898          *           pointer to its reader page. Give up
1899          *           and try again.
1900          */
1901
1902         switch (type) {
1903         case RB_PAGE_HEAD:
1904                 /*
1905                  * We changed the head to UPDATE, thus
1906                  * it is our responsibility to update
1907                  * the counters.
1908                  */
1909                 local_add(entries, &cpu_buffer->overrun);
1910                 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1911
1912                 /*
1913                  * The entries will be zeroed out when we move the
1914                  * tail page.
1915                  */
1916
1917                 /* still more to do */
1918                 break;
1919
1920         case RB_PAGE_UPDATE:
1921                 /*
1922                  * This is an interrupt that interrupt the
1923                  * previous update. Still more to do.
1924                  */
1925                 break;
1926         case RB_PAGE_NORMAL:
1927                 /*
1928                  * An interrupt came in before the update
1929                  * and processed this for us.
1930                  * Nothing left to do.
1931                  */
1932                 return 1;
1933         case RB_PAGE_MOVED:
1934                 /*
1935                  * The reader is on another CPU and just did
1936                  * a swap with our next_page.
1937                  * Try again.
1938                  */
1939                 return 1;
1940         default:
1941                 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
1942                 return -1;
1943         }
1944
1945         /*
1946          * Now that we are here, the old head pointer is
1947          * set to UPDATE. This will keep the reader from
1948          * swapping the head page with the reader page.
1949          * The reader (on another CPU) will spin till
1950          * we are finished.
1951          *
1952          * We just need to protect against interrupts
1953          * doing the job. We will set the next pointer
1954          * to HEAD. After that, we set the old pointer
1955          * to NORMAL, but only if it was HEAD before.
1956          * otherwise we are an interrupt, and only
1957          * want the outer most commit to reset it.
1958          */
1959         new_head = next_page;
1960         rb_inc_page(cpu_buffer, &new_head);
1961
1962         ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
1963                                     RB_PAGE_NORMAL);
1964
1965         /*
1966          * Valid returns are:
1967          *  HEAD   - an interrupt came in and already set it.
1968          *  NORMAL - One of two things:
1969          *            1) We really set it.
1970          *            2) A bunch of interrupts came in and moved
1971          *               the page forward again.
1972          */
1973         switch (ret) {
1974         case RB_PAGE_HEAD:
1975         case RB_PAGE_NORMAL:
1976                 /* OK */
1977                 break;
1978         default:
1979                 RB_WARN_ON(cpu_buffer, 1);
1980                 return -1;
1981         }
1982
1983         /*
1984          * It is possible that an interrupt came in,
1985          * set the head up, then more interrupts came in
1986          * and moved it again. When we get back here,
1987          * the page would have been set to NORMAL but we
1988          * just set it back to HEAD.
1989          *
1990          * How do you detect this? Well, if that happened
1991          * the tail page would have moved.
1992          */
1993         if (ret == RB_PAGE_NORMAL) {
1994                 /*
1995                  * If the tail had moved passed next, then we need
1996                  * to reset the pointer.
1997                  */
1998                 if (cpu_buffer->tail_page != tail_page &&
1999                     cpu_buffer->tail_page != next_page)
2000                         rb_head_page_set_normal(cpu_buffer, new_head,
2001                                                 next_page,
2002                                                 RB_PAGE_HEAD);
2003         }
2004
2005         /*
2006          * If this was the outer most commit (the one that
2007          * changed the original pointer from HEAD to UPDATE),
2008          * then it is up to us to reset it to NORMAL.
2009          */
2010         if (type == RB_PAGE_HEAD) {
2011                 ret = rb_head_page_set_normal(cpu_buffer, next_page,
2012                                               tail_page,
2013                                               RB_PAGE_UPDATE);
2014                 if (RB_WARN_ON(cpu_buffer,
2015                                ret != RB_PAGE_UPDATE))
2016                         return -1;
2017         }
2018
2019         return 0;
2020 }
2021
2022 static unsigned rb_calculate_event_length(unsigned length)
2023 {
2024         struct ring_buffer_event event; /* Used only for sizeof array */
2025
2026         /* zero length can cause confusions */
2027         if (!length)
2028                 length = 1;
2029
2030         if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2031                 length += sizeof(event.array[0]);
2032
2033         length += RB_EVNT_HDR_SIZE;
2034         length = ALIGN(length, RB_ARCH_ALIGNMENT);
2035
2036         return length;
2037 }
2038
2039 static inline void
2040 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2041               struct buffer_page *tail_page,
2042               unsigned long tail, unsigned long length)
2043 {
2044         struct ring_buffer_event *event;
2045
2046         /*
2047          * Only the event that crossed the page boundary
2048          * must fill the old tail_page with padding.
2049          */
2050         if (tail >= BUF_PAGE_SIZE) {
2051                 /*
2052                  * If the page was filled, then we still need
2053                  * to update the real_end. Reset it to zero
2054                  * and the reader will ignore it.
2055                  */
2056                 if (tail == BUF_PAGE_SIZE)
2057                         tail_page->real_end = 0;
2058
2059                 local_sub(length, &tail_page->write);
2060                 return;
2061         }
2062
2063         event = __rb_page_index(tail_page, tail);
2064         kmemcheck_annotate_bitfield(event, bitfield);
2065
2066         /* account for padding bytes */
2067         local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2068
2069         /*
2070          * Save the original length to the meta data.
2071          * This will be used by the reader to add lost event
2072          * counter.
2073          */
2074         tail_page->real_end = tail;
2075
2076         /*
2077          * If this event is bigger than the minimum size, then
2078          * we need to be careful that we don't subtract the
2079          * write counter enough to allow another writer to slip
2080          * in on this page.
2081          * We put in a discarded commit instead, to make sure
2082          * that this space is not used again.
2083          *
2084          * If we are less than the minimum size, we don't need to
2085          * worry about it.
2086          */
2087         if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2088                 /* No room for any events */
2089
2090                 /* Mark the rest of the page with padding */
2091                 rb_event_set_padding(event);
2092
2093                 /* Set the write back to the previous setting */
2094                 local_sub(length, &tail_page->write);
2095                 return;
2096         }
2097
2098         /* Put in a discarded event */
2099         event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2100         event->type_len = RINGBUF_TYPE_PADDING;
2101         /* time delta must be non zero */
2102         event->time_delta = 1;
2103
2104         /* Set write to end of buffer */
2105         length = (tail + length) - BUF_PAGE_SIZE;
2106         local_sub(length, &tail_page->write);
2107 }
2108
2109 /*
2110  * This is the slow path, force gcc not to inline it.
2111  */
2112 static noinline struct ring_buffer_event *
2113 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2114              unsigned long length, unsigned long tail,
2115              struct buffer_page *tail_page, u64 ts)
2116 {
2117         struct buffer_page *commit_page = cpu_buffer->commit_page;
2118         struct ring_buffer *buffer = cpu_buffer->buffer;
2119         struct buffer_page *next_page;
2120         int ret;
2121
2122         next_page = tail_page;
2123
2124         rb_inc_page(cpu_buffer, &next_page);
2125
2126         /*
2127          * If for some reason, we had an interrupt storm that made
2128          * it all the way around the buffer, bail, and warn
2129          * about it.
2130          */
2131         if (unlikely(next_page == commit_page)) {
2132                 local_inc(&cpu_buffer->commit_overrun);
2133                 goto out_reset;
2134         }
2135
2136         /*
2137          * This is where the fun begins!
2138          *
2139          * We are fighting against races between a reader that
2140          * could be on another CPU trying to swap its reader
2141          * page with the buffer head.
2142          *
2143          * We are also fighting against interrupts coming in and
2144          * moving the head or tail on us as well.
2145          *
2146          * If the next page is the head page then we have filled
2147          * the buffer, unless the commit page is still on the
2148          * reader page.
2149          */
2150         if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2151
2152                 /*
2153                  * If the commit is not on the reader page, then
2154                  * move the header page.
2155                  */
2156                 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2157                         /*
2158                          * If we are not in overwrite mode,
2159                          * this is easy, just stop here.
2160                          */
2161                         if (!(buffer->flags & RB_FL_OVERWRITE)) {
2162                                 local_inc(&cpu_buffer->dropped_events);
2163                                 goto out_reset;
2164                         }
2165
2166                         ret = rb_handle_head_page(cpu_buffer,
2167                                                   tail_page,
2168                                                   next_page);
2169                         if (ret < 0)
2170                                 goto out_reset;
2171                         if (ret)
2172                                 goto out_again;
2173                 } else {
2174                         /*
2175                          * We need to be careful here too. The
2176                          * commit page could still be on the reader
2177                          * page. We could have a small buffer, and
2178                          * have filled up the buffer with events
2179                          * from interrupts and such, and wrapped.
2180                          *
2181                          * Note, if the tail page is also the on the
2182                          * reader_page, we let it move out.
2183                          */
2184                         if (unlikely((cpu_buffer->commit_page !=
2185                                       cpu_buffer->tail_page) &&
2186                                      (cpu_buffer->commit_page ==
2187                                       cpu_buffer->reader_page))) {
2188                                 local_inc(&cpu_buffer->commit_overrun);
2189                                 goto out_reset;
2190                         }
2191                 }
2192         }
2193
2194         ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
2195         if (ret) {
2196                 /*
2197                  * Nested commits always have zero deltas, so
2198                  * just reread the time stamp
2199                  */
2200                 ts = rb_time_stamp(buffer);
2201                 next_page->page->time_stamp = ts;
2202         }
2203
2204  out_again:
2205
2206         rb_reset_tail(cpu_buffer, tail_page, tail, length);
2207
2208         /* fail and let the caller try again */
2209         return ERR_PTR(-EAGAIN);
2210
2211  out_reset:
2212         /* reset write */
2213         rb_reset_tail(cpu_buffer, tail_page, tail, length);
2214
2215         return NULL;
2216 }
2217
2218 static struct ring_buffer_event *
2219 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
2220                   unsigned long length, u64 ts,
2221                   u64 delta, int add_timestamp)
2222 {
2223         struct buffer_page *tail_page;
2224         struct ring_buffer_event *event;
2225         unsigned long tail, write;
2226
2227         /*
2228          * If the time delta since the last event is too big to
2229          * hold in the time field of the event, then we append a
2230          * TIME EXTEND event ahead of the data event.
2231          */
2232         if (unlikely(add_timestamp))
2233                 length += RB_LEN_TIME_EXTEND;
2234
2235         tail_page = cpu_buffer->tail_page;
2236         write = local_add_return(length, &tail_page->write);
2237
2238         /* set write to only the index of the write */
2239         write &= RB_WRITE_MASK;
2240         tail = write - length;
2241
2242         /* See if we shot pass the end of this buffer page */
2243         if (unlikely(write > BUF_PAGE_SIZE))
2244                 return rb_move_tail(cpu_buffer, length, tail,
2245                                     tail_page, ts);
2246
2247         /* We reserved something on the buffer */
2248
2249         event = __rb_page_index(tail_page, tail);
2250         kmemcheck_annotate_bitfield(event, bitfield);
2251         rb_update_event(cpu_buffer, event, length, add_timestamp, delta);
2252
2253         local_inc(&tail_page->entries);
2254
2255         /*
2256          * If this is the first commit on the page, then update
2257          * its timestamp.
2258          */
2259         if (!tail)
2260                 tail_page->page->time_stamp = ts;
2261
2262         /* account for these added bytes */
2263         local_add(length, &cpu_buffer->entries_bytes);
2264
2265         return event;
2266 }
2267
2268 static inline int
2269 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2270                   struct ring_buffer_event *event)
2271 {
2272         unsigned long new_index, old_index;
2273         struct buffer_page *bpage;
2274         unsigned long index;
2275         unsigned long addr;
2276
2277         new_index = rb_event_index(event);
2278         old_index = new_index + rb_event_ts_length(event);
2279         addr = (unsigned long)event;
2280         addr &= PAGE_MASK;
2281
2282         bpage = cpu_buffer->tail_page;
2283
2284         if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2285                 unsigned long write_mask =
2286                         local_read(&bpage->write) & ~RB_WRITE_MASK;
2287                 unsigned long event_length = rb_event_length(event);
2288                 /*
2289                  * This is on the tail page. It is possible that
2290                  * a write could come in and move the tail page
2291                  * and write to the next page. That is fine
2292                  * because we just shorten what is on this page.
2293                  */
2294                 old_index += write_mask;
2295                 new_index += write_mask;
2296                 index = local_cmpxchg(&bpage->write, old_index, new_index);
2297                 if (index == old_index) {
2298                         /* update counters */
2299                         local_sub(event_length, &cpu_buffer->entries_bytes);
2300                         return 1;
2301                 }
2302         }
2303
2304         /* could not discard */
2305         return 0;
2306 }
2307
2308 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2309 {
2310         local_inc(&cpu_buffer->committing);
2311         local_inc(&cpu_buffer->commits);
2312 }
2313
2314 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2315 {
2316         unsigned long commits;
2317
2318         if (RB_WARN_ON(cpu_buffer,
2319                        !local_read(&cpu_buffer->committing)))
2320                 return;
2321
2322  again:
2323         commits = local_read(&cpu_buffer->commits);
2324         /* synchronize with interrupts */
2325         barrier();
2326         if (local_read(&cpu_buffer->committing) == 1)
2327                 rb_set_commit_to_write(cpu_buffer);
2328
2329         local_dec(&cpu_buffer->committing);
2330
2331         /* synchronize with interrupts */
2332         barrier();
2333
2334         /*
2335          * Need to account for interrupts coming in between the
2336          * updating of the commit page and the clearing of the
2337          * committing counter.
2338          */
2339         if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2340             !local_read(&cpu_buffer->committing)) {
2341                 local_inc(&cpu_buffer->committing);
2342                 goto again;
2343         }
2344 }
2345
2346 static struct ring_buffer_event *
2347 rb_reserve_next_event(struct ring_buffer *buffer,
2348                       struct ring_buffer_per_cpu *cpu_buffer,
2349                       unsigned long length)
2350 {
2351         struct ring_buffer_event *event;
2352         u64 ts, delta;
2353         int nr_loops = 0;
2354         int add_timestamp;
2355         u64 diff;
2356
2357         rb_start_commit(cpu_buffer);
2358
2359 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2360         /*
2361          * Due to the ability to swap a cpu buffer from a buffer
2362          * it is possible it was swapped before we committed.
2363          * (committing stops a swap). We check for it here and
2364          * if it happened, we have to fail the write.
2365          */
2366         barrier();
2367         if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2368                 local_dec(&cpu_buffer->committing);
2369                 local_dec(&cpu_buffer->commits);
2370                 return NULL;
2371         }
2372 #endif
2373
2374         length = rb_calculate_event_length(length);
2375  again:
2376         add_timestamp = 0;
2377         delta = 0;
2378
2379         /*
2380          * We allow for interrupts to reenter here and do a trace.
2381          * If one does, it will cause this original code to loop
2382          * back here. Even with heavy interrupts happening, this
2383          * should only happen a few times in a row. If this happens
2384          * 1000 times in a row, there must be either an interrupt
2385          * storm or we have something buggy.
2386          * Bail!
2387          */
2388         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2389                 goto out_fail;
2390
2391         ts = rb_time_stamp(cpu_buffer->buffer);
2392         diff = ts - cpu_buffer->write_stamp;
2393
2394         /* make sure this diff is calculated here */
2395         barrier();
2396
2397         /* Did the write stamp get updated already? */
2398         if (likely(ts >= cpu_buffer->write_stamp)) {
2399                 delta = diff;
2400                 if (unlikely(test_time_stamp(delta))) {
2401                         int local_clock_stable = 1;
2402 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2403                         local_clock_stable = sched_clock_stable;
2404 #endif
2405                         WARN_ONCE(delta > (1ULL << 59),
2406                                   KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2407                                   (unsigned long long)delta,
2408                                   (unsigned long long)ts,
2409                                   (unsigned long long)cpu_buffer->write_stamp,
2410                                   local_clock_stable ? "" :
2411                                   "If you just came from a suspend/resume,\n"
2412                                   "please switch to the trace global clock:\n"
2413                                   "  echo global > /sys/kernel/debug/tracing/trace_clock\n");
2414                         add_timestamp = 1;
2415                 }
2416         }
2417
2418         event = __rb_reserve_next(cpu_buffer, length, ts,
2419                                   delta, add_timestamp);
2420         if (unlikely(PTR_ERR(event) == -EAGAIN))
2421                 goto again;
2422
2423         if (!event)
2424                 goto out_fail;
2425
2426         return event;
2427
2428  out_fail:
2429         rb_end_commit(cpu_buffer);
2430         return NULL;
2431 }
2432
2433 #ifdef CONFIG_TRACING
2434
2435 #define TRACE_RECURSIVE_DEPTH 16
2436
2437 /* Keep this code out of the fast path cache */
2438 static noinline void trace_recursive_fail(void)
2439 {
2440         /* Disable all tracing before we do anything else */
2441         tracing_off_permanent();
2442
2443         printk_once(KERN_WARNING "Tracing recursion: depth[%ld]:"
2444                     "HC[%lu]:SC[%lu]:NMI[%lu]\n",
2445                     trace_recursion_buffer(),
2446                     hardirq_count() >> HARDIRQ_SHIFT,
2447                     softirq_count() >> SOFTIRQ_SHIFT,
2448                     in_nmi());
2449
2450         WARN_ON_ONCE(1);
2451 }
2452
2453 static inline int trace_recursive_lock(void)
2454 {
2455         trace_recursion_inc();
2456
2457         if (likely(trace_recursion_buffer() < TRACE_RECURSIVE_DEPTH))
2458                 return 0;
2459
2460         trace_recursive_fail();
2461
2462         return -1;
2463 }
2464
2465 static inline void trace_recursive_unlock(void)
2466 {
2467         WARN_ON_ONCE(!trace_recursion_buffer());
2468
2469         trace_recursion_dec();
2470 }
2471
2472 #else
2473
2474 #define trace_recursive_lock()          (0)
2475 #define trace_recursive_unlock()        do { } while (0)
2476
2477 #endif
2478
2479 /**
2480  * ring_buffer_lock_reserve - reserve a part of the buffer
2481  * @buffer: the ring buffer to reserve from
2482  * @length: the length of the data to reserve (excluding event header)
2483  *
2484  * Returns a reseverd event on the ring buffer to copy directly to.
2485  * The user of this interface will need to get the body to write into
2486  * and can use the ring_buffer_event_data() interface.
2487  *
2488  * The length is the length of the data needed, not the event length
2489  * which also includes the event header.
2490  *
2491  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2492  * If NULL is returned, then nothing has been allocated or locked.
2493  */
2494 struct ring_buffer_event *
2495 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2496 {
2497         struct ring_buffer_per_cpu *cpu_buffer;
2498         struct ring_buffer_event *event;
2499         int cpu;
2500
2501         if (ring_buffer_flags != RB_BUFFERS_ON)
2502                 return NULL;
2503
2504         /* If we are tracing schedule, we don't want to recurse */
2505         preempt_disable_notrace();
2506
2507         if (atomic_read(&buffer->record_disabled))
2508                 goto out_nocheck;
2509
2510         if (trace_recursive_lock())
2511                 goto out_nocheck;
2512
2513         cpu = raw_smp_processor_id();
2514
2515         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2516                 goto out;
2517
2518         cpu_buffer = buffer->buffers[cpu];
2519
2520         if (atomic_read(&cpu_buffer->record_disabled))
2521                 goto out;
2522
2523         if (length > BUF_MAX_DATA_SIZE)
2524                 goto out;
2525
2526         event = rb_reserve_next_event(buffer, cpu_buffer, length);
2527         if (!event)
2528                 goto out;
2529
2530         return event;
2531
2532  out:
2533         trace_recursive_unlock();
2534
2535  out_nocheck:
2536         preempt_enable_notrace();
2537         return NULL;
2538 }
2539 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2540
2541 static void
2542 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2543                       struct ring_buffer_event *event)
2544 {
2545         u64 delta;
2546
2547         /*
2548          * The event first in the commit queue updates the
2549          * time stamp.
2550          */
2551         if (rb_event_is_commit(cpu_buffer, event)) {
2552                 /*
2553                  * A commit event that is first on a page
2554                  * updates the write timestamp with the page stamp
2555                  */
2556                 if (!rb_event_index(event))
2557                         cpu_buffer->write_stamp =
2558                                 cpu_buffer->commit_page->page->time_stamp;
2559                 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2560                         delta = event->array[0];
2561                         delta <<= TS_SHIFT;
2562                         delta += event->time_delta;
2563                         cpu_buffer->write_stamp += delta;
2564                 } else
2565                         cpu_buffer->write_stamp += event->time_delta;
2566         }
2567 }
2568
2569 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2570                       struct ring_buffer_event *event)
2571 {
2572         local_inc(&cpu_buffer->entries);
2573         rb_update_write_stamp(cpu_buffer, event);
2574         rb_end_commit(cpu_buffer);
2575 }
2576
2577 /**
2578  * ring_buffer_unlock_commit - commit a reserved
2579  * @buffer: The buffer to commit to
2580  * @event: The event pointer to commit.
2581  *
2582  * This commits the data to the ring buffer, and releases any locks held.
2583  *
2584  * Must be paired with ring_buffer_lock_reserve.
2585  */
2586 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2587                               struct ring_buffer_event *event)
2588 {
2589         struct ring_buffer_per_cpu *cpu_buffer;
2590         int cpu = raw_smp_processor_id();
2591
2592         cpu_buffer = buffer->buffers[cpu];
2593
2594         rb_commit(cpu_buffer, event);
2595
2596         trace_recursive_unlock();
2597
2598         preempt_enable_notrace();
2599
2600         return 0;
2601 }
2602 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2603
2604 static inline void rb_event_discard(struct ring_buffer_event *event)
2605 {
2606         if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2607                 event = skip_time_extend(event);
2608
2609         /* array[0] holds the actual length for the discarded event */
2610         event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2611         event->type_len = RINGBUF_TYPE_PADDING;
2612         /* time delta must be non zero */
2613         if (!event->time_delta)
2614                 event->time_delta = 1;
2615 }
2616
2617 /*
2618  * Decrement the entries to the page that an event is on.
2619  * The event does not even need to exist, only the pointer
2620  * to the page it is on. This may only be called before the commit
2621  * takes place.
2622  */
2623 static inline void
2624 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2625                    struct ring_buffer_event *event)
2626 {
2627         unsigned long addr = (unsigned long)event;
2628         struct buffer_page *bpage = cpu_buffer->commit_page;
2629         struct buffer_page *start;
2630
2631         addr &= PAGE_MASK;
2632
2633         /* Do the likely case first */
2634         if (likely(bpage->page == (void *)addr)) {
2635                 local_dec(&bpage->entries);
2636                 return;
2637         }
2638
2639         /*
2640          * Because the commit page may be on the reader page we
2641          * start with the next page and check the end loop there.
2642          */
2643         rb_inc_page(cpu_buffer, &bpage);
2644         start = bpage;
2645         do {
2646                 if (bpage->page == (void *)addr) {
2647                         local_dec(&bpage->entries);
2648                         return;
2649                 }
2650                 rb_inc_page(cpu_buffer, &bpage);
2651         } while (bpage != start);
2652
2653         /* commit not part of this buffer?? */
2654         RB_WARN_ON(cpu_buffer, 1);
2655 }
2656
2657 /**
2658  * ring_buffer_commit_discard - discard an event that has not been committed
2659  * @buffer: the ring buffer
2660  * @event: non committed event to discard
2661  *
2662  * Sometimes an event that is in the ring buffer needs to be ignored.
2663  * This function lets the user discard an event in the ring buffer
2664  * and then that event will not be read later.
2665  *
2666  * This function only works if it is called before the the item has been
2667  * committed. It will try to free the event from the ring buffer
2668  * if another event has not been added behind it.
2669  *
2670  * If another event has been added behind it, it will set the event
2671  * up as discarded, and perform the commit.
2672  *
2673  * If this function is called, do not call ring_buffer_unlock_commit on
2674  * the event.
2675  */
2676 void ring_buffer_discard_commit(struct ring_buffer *buffer,
2677                                 struct ring_buffer_event *event)
2678 {
2679         struct ring_buffer_per_cpu *cpu_buffer;
2680         int cpu;
2681
2682         /* The event is discarded regardless */
2683         rb_event_discard(event);
2684
2685         cpu = smp_processor_id();
2686         cpu_buffer = buffer->buffers[cpu];
2687
2688         /*
2689          * This must only be called if the event has not been
2690          * committed yet. Thus we can assume that preemption
2691          * is still disabled.
2692          */
2693         RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
2694
2695         rb_decrement_entry(cpu_buffer, event);
2696         if (rb_try_to_discard(cpu_buffer, event))
2697                 goto out;
2698
2699         /*
2700          * The commit is still visible by the reader, so we
2701          * must still update the timestamp.
2702          */
2703         rb_update_write_stamp(cpu_buffer, event);
2704  out:
2705         rb_end_commit(cpu_buffer);
2706
2707         trace_recursive_unlock();
2708
2709         preempt_enable_notrace();
2710
2711 }
2712 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2713
2714 /**
2715  * ring_buffer_write - write data to the buffer without reserving
2716  * @buffer: The ring buffer to write to.
2717  * @length: The length of the data being written (excluding the event header)
2718  * @data: The data to write to the buffer.
2719  *
2720  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2721  * one function. If you already have the data to write to the buffer, it
2722  * may be easier to simply call this function.
2723  *
2724  * Note, like ring_buffer_lock_reserve, the length is the length of the data
2725  * and not the length of the event which would hold the header.
2726  */
2727 int ring_buffer_write(struct ring_buffer *buffer,
2728                       unsigned long length,
2729                       void *data)
2730 {
2731         struct ring_buffer_per_cpu *cpu_buffer;
2732         struct ring_buffer_event *event;
2733         void *body;
2734         int ret = -EBUSY;
2735         int cpu;
2736
2737         if (ring_buffer_flags != RB_BUFFERS_ON)
2738                 return -EBUSY;
2739
2740         preempt_disable_notrace();
2741
2742         if (atomic_read(&buffer->record_disabled))
2743                 goto out;
2744
2745         cpu = raw_smp_processor_id();
2746
2747         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2748                 goto out;
2749
2750         cpu_buffer = buffer->buffers[cpu];
2751
2752         if (atomic_read(&cpu_buffer->record_disabled))
2753                 goto out;
2754
2755         if (length > BUF_MAX_DATA_SIZE)
2756                 goto out;
2757
2758         event = rb_reserve_next_event(buffer, cpu_buffer, length);
2759         if (!event)
2760                 goto out;
2761
2762         body = rb_event_data(event);
2763
2764         memcpy(body, data, length);
2765
2766         rb_commit(cpu_buffer, event);
2767
2768         ret = 0;
2769  out:
2770         preempt_enable_notrace();
2771
2772         return ret;
2773 }
2774 EXPORT_SYMBOL_GPL(ring_buffer_write);
2775
2776 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
2777 {
2778         struct buffer_page *reader = cpu_buffer->reader_page;
2779         struct buffer_page *head = rb_set_head_page(cpu_buffer);
2780         struct buffer_page *commit = cpu_buffer->commit_page;
2781
2782         /* In case of error, head will be NULL */
2783         if (unlikely(!head))
2784                 return 1;
2785
2786         return reader->read == rb_page_commit(reader) &&
2787                 (commit == reader ||
2788                  (commit == head &&
2789                   head->read == rb_page_commit(commit)));
2790 }
2791
2792 /**
2793  * ring_buffer_record_disable - stop all writes into the buffer
2794  * @buffer: The ring buffer to stop writes to.
2795  *
2796  * This prevents all writes to the buffer. Any attempt to write
2797  * to the buffer after this will fail and return NULL.
2798  *
2799  * The caller should call synchronize_sched() after this.
2800  */
2801 void ring_buffer_record_disable(struct ring_buffer *buffer)
2802 {
2803         atomic_inc(&buffer->record_disabled);
2804 }
2805 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
2806
2807 /**
2808  * ring_buffer_record_enable - enable writes to the buffer
2809  * @buffer: The ring buffer to enable writes
2810  *
2811  * Note, multiple disables will need the same number of enables
2812  * to truly enable the writing (much like preempt_disable).
2813  */
2814 void ring_buffer_record_enable(struct ring_buffer *buffer)
2815 {
2816         atomic_dec(&buffer->record_disabled);
2817 }
2818 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
2819
2820 /**
2821  * ring_buffer_record_off - stop all writes into the buffer
2822  * @buffer: The ring buffer to stop writes to.
2823  *
2824  * This prevents all writes to the buffer. Any attempt to write
2825  * to the buffer after this will fail and return NULL.
2826  *
2827  * This is different than ring_buffer_record_disable() as
2828  * it works like an on/off switch, where as the disable() version
2829  * must be paired with a enable().
2830  */
2831 void ring_buffer_record_off(struct ring_buffer *buffer)
2832 {
2833         unsigned int rd;
2834         unsigned int new_rd;
2835
2836         do {
2837                 rd = atomic_read(&buffer->record_disabled);
2838                 new_rd = rd | RB_BUFFER_OFF;
2839         } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
2840 }
2841 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
2842
2843 /**
2844  * ring_buffer_record_on - restart writes into the buffer
2845  * @buffer: The ring buffer to start writes to.
2846  *
2847  * This enables all writes to the buffer that was disabled by
2848  * ring_buffer_record_off().
2849  *
2850  * This is different than ring_buffer_record_enable() as
2851  * it works like an on/off switch, where as the enable() version
2852  * must be paired with a disable().
2853  */
2854 void ring_buffer_record_on(struct ring_buffer *buffer)
2855 {
2856         unsigned int rd;
2857         unsigned int new_rd;
2858
2859         do {
2860                 rd = atomic_read(&buffer->record_disabled);
2861                 new_rd = rd & ~RB_BUFFER_OFF;
2862         } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
2863 }
2864 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
2865
2866 /**
2867  * ring_buffer_record_is_on - return true if the ring buffer can write
2868  * @buffer: The ring buffer to see if write is enabled
2869  *
2870  * Returns true if the ring buffer is in a state that it accepts writes.
2871  */
2872 int ring_buffer_record_is_on(struct ring_buffer *buffer)
2873 {
2874         return !atomic_read(&buffer->record_disabled);
2875 }
2876
2877 /**
2878  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
2879  * @buffer: The ring buffer to stop writes to.
2880  * @cpu: The CPU buffer to stop
2881  *
2882  * This prevents all writes to the buffer. Any attempt to write
2883  * to the buffer after this will fail and return NULL.
2884  *
2885  * The caller should call synchronize_sched() after this.
2886  */
2887 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
2888 {
2889         struct ring_buffer_per_cpu *cpu_buffer;
2890
2891         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2892                 return;
2893
2894         cpu_buffer = buffer->buffers[cpu];
2895         atomic_inc(&cpu_buffer->record_disabled);
2896 }
2897 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
2898
2899 /**
2900  * ring_buffer_record_enable_cpu - enable writes to the buffer
2901  * @buffer: The ring buffer to enable writes
2902  * @cpu: The CPU to enable.
2903  *
2904  * Note, multiple disables will need the same number of enables
2905  * to truly enable the writing (much like preempt_disable).
2906  */
2907 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
2908 {
2909         struct ring_buffer_per_cpu *cpu_buffer;
2910
2911         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2912                 return;
2913
2914         cpu_buffer = buffer->buffers[cpu];
2915         atomic_dec(&cpu_buffer->record_disabled);
2916 }
2917 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
2918
2919 /*
2920  * The total entries in the ring buffer is the running counter
2921  * of entries entered into the ring buffer, minus the sum of
2922  * the entries read from the ring buffer and the number of
2923  * entries that were overwritten.
2924  */
2925 static inline unsigned long
2926 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
2927 {
2928         return local_read(&cpu_buffer->entries) -
2929                 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
2930 }
2931
2932 /**
2933  * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
2934  * @buffer: The ring buffer
2935  * @cpu: The per CPU buffer to read from.
2936  */
2937 u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
2938 {
2939         unsigned long flags;
2940         struct ring_buffer_per_cpu *cpu_buffer;
2941         struct buffer_page *bpage;
2942         u64 ret = 0;
2943
2944         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2945                 return 0;
2946
2947         cpu_buffer = buffer->buffers[cpu];
2948         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2949         /*
2950          * if the tail is on reader_page, oldest time stamp is on the reader
2951          * page
2952          */
2953         if (cpu_buffer->tail_page == cpu_buffer->reader_page)
2954                 bpage = cpu_buffer->reader_page;
2955         else
2956                 bpage = rb_set_head_page(cpu_buffer);
2957         if (bpage)
2958                 ret = bpage->page->time_stamp;
2959         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2960
2961         return ret;
2962 }
2963 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
2964
2965 /**
2966  * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
2967  * @buffer: The ring buffer
2968  * @cpu: The per CPU buffer to read from.
2969  */
2970 unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
2971 {
2972         struct ring_buffer_per_cpu *cpu_buffer;
2973         unsigned long ret;
2974
2975         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2976                 return 0;
2977
2978         cpu_buffer = buffer->buffers[cpu];
2979         ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
2980
2981         return ret;
2982 }
2983 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
2984
2985 /**
2986  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
2987  * @buffer: The ring buffer
2988  * @cpu: The per CPU buffer to get the entries from.
2989  */
2990 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
2991 {
2992         struct ring_buffer_per_cpu *cpu_buffer;
2993
2994         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2995                 return 0;
2996
2997         cpu_buffer = buffer->buffers[cpu];
2998
2999         return rb_num_of_entries(cpu_buffer);
3000 }
3001 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
3002
3003 /**
3004  * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3005  * buffer wrapping around (only if RB_FL_OVERWRITE is on).
3006  * @buffer: The ring buffer
3007  * @cpu: The per CPU buffer to get the number of overruns from
3008  */
3009 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
3010 {
3011         struct ring_buffer_per_cpu *cpu_buffer;
3012         unsigned long ret;
3013
3014         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3015                 return 0;
3016
3017         cpu_buffer = buffer->buffers[cpu];
3018         ret = local_read(&cpu_buffer->overrun);
3019
3020         return ret;
3021 }
3022 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
3023
3024 /**
3025  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3026  * commits failing due to the buffer wrapping around while there are uncommitted
3027  * events, such as during an interrupt storm.
3028  * @buffer: The ring buffer
3029  * @cpu: The per CPU buffer to get the number of overruns from
3030  */
3031 unsigned long
3032 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3033 {
3034         struct ring_buffer_per_cpu *cpu_buffer;
3035         unsigned long ret;
3036
3037         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3038                 return 0;
3039
3040         cpu_buffer = buffer->buffers[cpu];
3041         ret = local_read(&cpu_buffer->commit_overrun);
3042
3043         return ret;
3044 }
3045 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3046
3047 /**
3048  * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3049  * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3050  * @buffer: The ring buffer
3051  * @cpu: The per CPU buffer to get the number of overruns from
3052  */
3053 unsigned long
3054 ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu)
3055 {
3056         struct ring_buffer_per_cpu *cpu_buffer;
3057         unsigned long ret;
3058
3059         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3060                 return 0;
3061
3062         cpu_buffer = buffer->buffers[cpu];
3063         ret = local_read(&cpu_buffer->dropped_events);
3064
3065         return ret;
3066 }
3067 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3068
3069 /**
3070  * ring_buffer_entries - get the number of entries in a buffer
3071  * @buffer: The ring buffer
3072  *
3073  * Returns the total number of entries in the ring buffer
3074  * (all CPU entries)
3075  */
3076 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3077 {
3078         struct ring_buffer_per_cpu *cpu_buffer;
3079         unsigned long entries = 0;
3080         int cpu;
3081
3082         /* if you care about this being correct, lock the buffer */
3083         for_each_buffer_cpu(buffer, cpu) {
3084                 cpu_buffer = buffer->buffers[cpu];
3085                 entries += rb_num_of_entries(cpu_buffer);
3086         }
3087
3088         return entries;
3089 }
3090 EXPORT_SYMBOL_GPL(ring_buffer_entries);
3091
3092 /**
3093  * ring_buffer_overruns - get the number of overruns in buffer
3094  * @buffer: The ring buffer
3095  *
3096  * Returns the total number of overruns in the ring buffer
3097  * (all CPU entries)
3098  */
3099 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3100 {
3101         struct ring_buffer_per_cpu *cpu_buffer;
3102         unsigned long overruns = 0;
3103         int cpu;
3104
3105         /* if you care about this being correct, lock the buffer */
3106         for_each_buffer_cpu(buffer, cpu) {
3107                 cpu_buffer = buffer->buffers[cpu];
3108                 overruns += local_read(&cpu_buffer->overrun);
3109         }
3110
3111         return overruns;
3112 }
3113 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
3114
3115 static void rb_iter_reset(struct ring_buffer_iter *iter)
3116 {
3117         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3118
3119         /* Iterator usage is expected to have record disabled */
3120         if (list_empty(&cpu_buffer->reader_page->list)) {
3121                 iter->head_page = rb_set_head_page(cpu_buffer);
3122                 if (unlikely(!iter->head_page))
3123                         return;
3124                 iter->head = iter->head_page->read;
3125         } else {
3126                 iter->head_page = cpu_buffer->reader_page;
3127                 iter->head = cpu_buffer->reader_page->read;
3128         }
3129         if (iter->head)
3130                 iter->read_stamp = cpu_buffer->read_stamp;
3131         else
3132                 iter->read_stamp = iter->head_page->page->time_stamp;
3133         iter->cache_reader_page = cpu_buffer->reader_page;
3134         iter->cache_read = cpu_buffer->read;
3135 }
3136
3137 /**
3138  * ring_buffer_iter_reset - reset an iterator
3139  * @iter: The iterator to reset
3140  *
3141  * Resets the iterator, so that it will start from the beginning
3142  * again.
3143  */
3144 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3145 {
3146         struct ring_buffer_per_cpu *cpu_buffer;
3147         unsigned long flags;
3148
3149         if (!iter)
3150                 return;
3151
3152         cpu_buffer = iter->cpu_buffer;
3153
3154         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3155         rb_iter_reset(iter);
3156         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3157 }
3158 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
3159
3160 /**
3161  * ring_buffer_iter_empty - check if an iterator has no more to read
3162  * @iter: The iterator to check
3163  */
3164 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3165 {
3166         struct ring_buffer_per_cpu *cpu_buffer;
3167
3168         cpu_buffer = iter->cpu_buffer;
3169
3170         return iter->head_page == cpu_buffer->commit_page &&
3171                 iter->head == rb_commit_index(cpu_buffer);
3172 }
3173 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
3174
3175 static void
3176 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3177                      struct ring_buffer_event *event)
3178 {
3179         u64 delta;
3180
3181         switch (event->type_len) {
3182         case RINGBUF_TYPE_PADDING:
3183                 return;
3184
3185         case RINGBUF_TYPE_TIME_EXTEND:
3186                 delta = event->array[0];
3187                 delta <<= TS_SHIFT;
3188                 delta += event->time_delta;
3189                 cpu_buffer->read_stamp += delta;
3190                 return;
3191
3192         case RINGBUF_TYPE_TIME_STAMP:
3193                 /* FIXME: not implemented */
3194                 return;
3195
3196         case RINGBUF_TYPE_DATA:
3197                 cpu_buffer->read_stamp += event->time_delta;
3198                 return;
3199
3200         default:
3201                 BUG();
3202         }
3203         return;
3204 }
3205
3206 static void
3207 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3208                           struct ring_buffer_event *event)
3209 {
3210         u64 delta;
3211
3212         switch (event->type_len) {
3213         case RINGBUF_TYPE_PADDING:
3214                 return;
3215
3216         case RINGBUF_TYPE_TIME_EXTEND:
3217                 delta = event->array[0];
3218                 delta <<= TS_SHIFT;
3219                 delta += event->time_delta;
3220                 iter->read_stamp += delta;
3221                 return;
3222
3223         case RINGBUF_TYPE_TIME_STAMP:
3224                 /* FIXME: not implemented */
3225                 return;
3226
3227         case RINGBUF_TYPE_DATA:
3228                 iter->read_stamp += event->time_delta;
3229                 return;
3230
3231         default:
3232                 BUG();
3233         }
3234         return;
3235 }
3236
3237 static struct buffer_page *
3238 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
3239 {
3240         struct buffer_page *reader = NULL;
3241         unsigned long overwrite;
3242         unsigned long flags;
3243         int nr_loops = 0;
3244         int ret;
3245
3246         local_irq_save(flags);
3247         arch_spin_lock(&cpu_buffer->lock);
3248
3249  again:
3250         /*
3251          * This should normally only loop twice. But because the
3252          * start of the reader inserts an empty page, it causes
3253          * a case where we will loop three times. There should be no
3254          * reason to loop four times (that I know of).
3255          */
3256         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
3257                 reader = NULL;
3258                 goto out;
3259         }
3260
3261         reader = cpu_buffer->reader_page;
3262
3263         /* If there's more to read, return this page */
3264         if (cpu_buffer->reader_page->read < rb_page_size(reader))
3265                 goto out;
3266
3267         /* Never should we have an index greater than the size */
3268         if (RB_WARN_ON(cpu_buffer,
3269                        cpu_buffer->reader_page->read > rb_page_size(reader)))
3270                 goto out;
3271
3272         /* check if we caught up to the tail */
3273         reader = NULL;
3274         if (cpu_buffer->commit_page == cpu_buffer->reader_page)
3275                 goto out;
3276
3277         /* Don't bother swapping if the ring buffer is empty */
3278         if (rb_num_of_entries(cpu_buffer) == 0)
3279                 goto out;
3280
3281         /*
3282          * Reset the reader page to size zero.
3283          */
3284         local_set(&cpu_buffer->reader_page->write, 0);
3285         local_set(&cpu_buffer->reader_page->entries, 0);
3286         local_set(&cpu_buffer->reader_page->page->commit, 0);
3287         cpu_buffer->reader_page->real_end = 0;
3288
3289  spin:
3290         /*
3291          * Splice the empty reader page into the list around the head.
3292          */
3293         reader = rb_set_head_page(cpu_buffer);
3294         if (!reader)
3295                 goto out;
3296         cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
3297         cpu_buffer->reader_page->list.prev = reader->list.prev;
3298
3299         /*
3300          * cpu_buffer->pages just needs to point to the buffer, it
3301          *  has no specific buffer page to point to. Lets move it out
3302          *  of our way so we don't accidentally swap it.
3303          */
3304         cpu_buffer->pages = reader->list.prev;
3305
3306         /* The reader page will be pointing to the new head */
3307         rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
3308
3309         /*
3310          * We want to make sure we read the overruns after we set up our
3311          * pointers to the next object. The writer side does a
3312          * cmpxchg to cross pages which acts as the mb on the writer
3313          * side. Note, the reader will constantly fail the swap
3314          * while the writer is updating the pointers, so this
3315          * guarantees that the overwrite recorded here is the one we
3316          * want to compare with the last_overrun.
3317          */
3318         smp_mb();
3319         overwrite = local_read(&(cpu_buffer->overrun));
3320
3321         /*
3322          * Here's the tricky part.
3323          *
3324          * We need to move the pointer past the header page.
3325          * But we can only do that if a writer is not currently
3326          * moving it. The page before the header page has the
3327          * flag bit '1' set if it is pointing to the page we want.
3328          * but if the writer is in the process of moving it
3329          * than it will be '2' or already moved '0'.
3330          */
3331
3332         ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
3333
3334         /*
3335          * If we did not convert it, then we must try again.
3336          */
3337         if (!ret)
3338                 goto spin;
3339
3340         /*
3341          * Yeah! We succeeded in replacing the page.
3342          *
3343          * Now make the new head point back to the reader page.
3344          */
3345         rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
3346         rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
3347
3348         /* Finally update the reader page to the new head */
3349         cpu_buffer->reader_page = reader;
3350         rb_reset_reader_page(cpu_buffer);
3351
3352         if (overwrite != cpu_buffer->last_overrun) {
3353                 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3354                 cpu_buffer->last_overrun = overwrite;
3355         }
3356
3357         goto again;
3358
3359  out:
3360         arch_spin_unlock(&cpu_buffer->lock);
3361         local_irq_restore(flags);
3362
3363         return reader;
3364 }
3365
3366 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3367 {
3368         struct ring_buffer_event *event;
3369         struct buffer_page *reader;
3370         unsigned length;
3371
3372         reader = rb_get_reader_page(cpu_buffer);
3373
3374         /* This function should not be called when buffer is empty */
3375         if (RB_WARN_ON(cpu_buffer, !reader))
3376                 return;
3377
3378         event = rb_reader_event(cpu_buffer);
3379
3380         if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
3381                 cpu_buffer->read++;
3382
3383         rb_update_read_stamp(cpu_buffer, event);
3384
3385         length = rb_event_length(event);
3386         cpu_buffer->reader_page->read += length;
3387 }
3388
3389 static void rb_advance_iter(struct ring_buffer_iter *iter)
3390 {
3391         struct ring_buffer_per_cpu *cpu_buffer;
3392         struct ring_buffer_event *event;
3393         unsigned length;
3394
3395         cpu_buffer = iter->cpu_buffer;
3396
3397         /*
3398          * Check if we are at the end of the buffer.
3399          */
3400         if (iter->head >= rb_page_size(iter->head_page)) {
3401                 /* discarded commits can make the page empty */
3402                 if (iter->head_page == cpu_buffer->commit_page)
3403                         return;
3404                 rb_inc_iter(iter);
3405                 return;
3406         }
3407
3408         event = rb_iter_head_event(iter);
3409
3410         length = rb_event_length(event);
3411
3412         /*
3413          * This should not be called to advance the header if we are
3414          * at the tail of the buffer.
3415          */
3416         if (RB_WARN_ON(cpu_buffer,
3417                        (iter->head_page == cpu_buffer->commit_page) &&
3418                        (iter->head + length > rb_commit_index(cpu_buffer))))
3419                 return;
3420
3421         rb_update_iter_read_stamp(iter, event);
3422
3423         iter->head += length;
3424
3425         /* check for end of page padding */
3426         if ((iter->head >= rb_page_size(iter->head_page)) &&
3427             (iter->head_page != cpu_buffer->commit_page))
3428                 rb_advance_iter(iter);
3429 }
3430
3431 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3432 {
3433         return cpu_buffer->lost_events;
3434 }
3435
3436 static struct ring_buffer_event *
3437 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3438                unsigned long *lost_events)
3439 {
3440         struct ring_buffer_event *event;
3441         struct buffer_page *reader;
3442         int nr_loops = 0;
3443
3444  again:
3445         /*
3446          * We repeat when a time extend is encountered.
3447          * Since the time extend is always attached to a data event,
3448          * we should never loop more than once.
3449          * (We never hit the following condition more than twice).
3450          */
3451         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3452                 return NULL;
3453
3454         reader = rb_get_reader_page(cpu_buffer);
3455         if (!reader)
3456                 return NULL;
3457
3458         event = rb_reader_event(cpu_buffer);
3459
3460         switch (event->type_len) {
3461         case RINGBUF_TYPE_PADDING:
3462                 if (rb_null_event(event))
3463                         RB_WARN_ON(cpu_buffer, 1);
3464                 /*
3465                  * Because the writer could be discarding every
3466                  * event it creates (which would probably be bad)
3467                  * if we were to go back to "again" then we may never
3468                  * catch up, and will trigger the warn on, or lock
3469                  * the box. Return the padding, and we will release
3470                  * the current locks, and try again.
3471                  */
3472                 return event;
3473
3474         case RINGBUF_TYPE_TIME_EXTEND:
3475                 /* Internal data, OK to advance */
3476                 rb_advance_reader(cpu_buffer);
3477                 goto again;
3478
3479         case RINGBUF_TYPE_TIME_STAMP:
3480                 /* FIXME: not implemented */
3481                 rb_advance_reader(cpu_buffer);
3482                 goto again;
3483
3484         case RINGBUF_TYPE_DATA:
3485                 if (ts) {
3486                         *ts = cpu_buffer->read_stamp + event->time_delta;
3487                         ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3488                                                          cpu_buffer->cpu, ts);
3489                 }
3490                 if (lost_events)
3491                         *lost_events = rb_lost_events(cpu_buffer);
3492                 return event;
3493
3494         default:
3495                 BUG();
3496         }
3497
3498         return NULL;
3499 }
3500 EXPORT_SYMBOL_GPL(ring_buffer_peek);
3501
3502 static struct ring_buffer_event *
3503 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3504 {
3505         struct ring_buffer *buffer;
3506         struct ring_buffer_per_cpu *cpu_buffer;
3507         struct ring_buffer_event *event;
3508         int nr_loops = 0;
3509
3510         cpu_buffer = iter->cpu_buffer;
3511         buffer = cpu_buffer->buffer;
3512
3513         /*
3514          * Check if someone performed a consuming read to
3515          * the buffer. A consuming read invalidates the iterator
3516          * and we need to reset the iterator in this case.
3517          */
3518         if (unlikely(iter->cache_read != cpu_buffer->read ||
3519                      iter->cache_reader_page != cpu_buffer->reader_page))
3520                 rb_iter_reset(iter);
3521
3522  again:
3523         if (ring_buffer_iter_empty(iter))
3524                 return NULL;
3525
3526         /*
3527          * We repeat when a time extend is encountered.
3528          * Since the time extend is always attached to a data event,
3529          * we should never loop more than once.
3530          * (We never hit the following condition more than twice).
3531          */
3532         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3533                 return NULL;
3534
3535         if (rb_per_cpu_empty(cpu_buffer))
3536                 return NULL;
3537
3538         if (iter->head >= local_read(&iter->head_page->page->commit)) {
3539                 rb_inc_iter(iter);
3540                 goto again;
3541         }
3542
3543         event = rb_iter_head_event(iter);
3544
3545         switch (event->type_len) {
3546         case RINGBUF_TYPE_PADDING:
3547                 if (rb_null_event(event)) {
3548                         rb_inc_iter(iter);
3549                         goto again;
3550                 }
3551                 rb_advance_iter(iter);
3552                 return event;
3553
3554         case RINGBUF_TYPE_TIME_EXTEND:
3555                 /* Internal data, OK to advance */
3556                 rb_advance_iter(iter);
3557                 goto again;
3558
3559         case RINGBUF_TYPE_TIME_STAMP:
3560                 /* FIXME: not implemented */
3561                 rb_advance_iter(iter);
3562                 goto again;
3563
3564         case RINGBUF_TYPE_DATA:
3565                 if (ts) {
3566                         *ts = iter->read_stamp + event->time_delta;
3567                         ring_buffer_normalize_time_stamp(buffer,
3568                                                          cpu_buffer->cpu, ts);
3569                 }
3570                 return event;
3571
3572         default:
3573                 BUG();
3574         }
3575
3576         return NULL;
3577 }
3578 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3579
3580 static inline int rb_ok_to_lock(void)
3581 {
3582         /*
3583          * If an NMI die dumps out the content of the ring buffer
3584          * do not grab locks. We also permanently disable the ring
3585          * buffer too. A one time deal is all you get from reading
3586          * the ring buffer from an NMI.
3587          */
3588         if (likely(!in_nmi()))
3589                 return 1;
3590
3591         tracing_off_permanent();
3592         return 0;
3593 }
3594
3595 /**
3596  * ring_buffer_peek - peek at the next event to be read
3597  * @buffer: The ring buffer to read
3598  * @cpu: The cpu to peak at
3599  * @ts: The timestamp counter of this event.
3600  * @lost_events: a variable to store if events were lost (may be NULL)
3601  *
3602  * This will return the event that will be read next, but does
3603  * not consume the data.
3604  */
3605 struct ring_buffer_event *
3606 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3607                  unsigned long *lost_events)
3608 {
3609         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3610         struct ring_buffer_event *event;
3611         unsigned long flags;
3612         int dolock;
3613
3614         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3615                 return NULL;
3616
3617         dolock = rb_ok_to_lock();
3618  again:
3619         local_irq_save(flags);
3620         if (dolock)
3621                 raw_spin_lock(&cpu_buffer->reader_lock);
3622         event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3623         if (event && event->type_len == RINGBUF_TYPE_PADDING)
3624                 rb_advance_reader(cpu_buffer);
3625         if (dolock)
3626                 raw_spin_unlock(&cpu_buffer->reader_lock);
3627         local_irq_restore(flags);
3628
3629         if (event && event->type_len == RINGBUF_TYPE_PADDING)
3630                 goto again;
3631
3632         return event;
3633 }
3634
3635 /**
3636  * ring_buffer_iter_peek - peek at the next event to be read
3637  * @iter: The ring buffer iterator
3638  * @ts: The timestamp counter of this event.
3639  *
3640  * This will return the event that will be read next, but does
3641  * not increment the iterator.
3642  */
3643 struct ring_buffer_event *
3644 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3645 {
3646         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3647         struct ring_buffer_event *event;
3648         unsigned long flags;
3649
3650  again:
3651         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3652         event = rb_iter_peek(iter, ts);
3653         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3654
3655         if (event && event->type_len == RINGBUF_TYPE_PADDING)
3656                 goto again;
3657
3658         return event;
3659 }
3660
3661 /**
3662  * ring_buffer_consume - return an event and consume it
3663  * @buffer: The ring buffer to get the next event from
3664  * @cpu: the cpu to read the buffer from
3665  * @ts: a variable to store the timestamp (may be NULL)
3666  * @lost_events: a variable to store if events were lost (may be NULL)
3667  *
3668  * Returns the next event in the ring buffer, and that event is consumed.
3669  * Meaning, that sequential reads will keep returning a different event,
3670  * and eventually empty the ring buffer if the producer is slower.
3671  */
3672 struct ring_buffer_event *
3673 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3674                     unsigned long *lost_events)
3675 {
3676         struct ring_buffer_per_cpu *cpu_buffer;
3677         struct ring_buffer_event *event = NULL;
3678         unsigned long flags;
3679         int dolock;
3680
3681         dolock = rb_ok_to_lock();
3682
3683  again:
3684         /* might be called in atomic */
3685         preempt_disable();
3686
3687         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3688                 goto out;
3689
3690         cpu_buffer = buffer->buffers[cpu];
3691         local_irq_save(flags);
3692         if (dolock)
3693                 raw_spin_lock(&cpu_buffer->reader_lock);
3694
3695         event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3696         if (event) {
3697                 cpu_buffer->lost_events = 0;
3698                 rb_advance_reader(cpu_buffer);
3699         }
3700
3701         if (dolock)
3702                 raw_spin_unlock(&cpu_buffer->reader_lock);
3703         local_irq_restore(flags);
3704
3705  out:
3706         preempt_enable();
3707
3708         if (event && event->type_len == RINGBUF_TYPE_PADDING)
3709                 goto again;
3710
3711         return event;
3712 }
3713 EXPORT_SYMBOL_GPL(ring_buffer_consume);
3714
3715 /**
3716  * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
3717  * @buffer: The ring buffer to read from
3718  * @cpu: The cpu buffer to iterate over
3719  *
3720  * This performs the initial preparations necessary to iterate
3721  * through the buffer.  Memory is allocated, buffer recording
3722  * is disabled, and the iterator pointer is returned to the caller.
3723  *
3724  * Disabling buffer recordng prevents the reading from being
3725  * corrupted. This is not a consuming read, so a producer is not
3726  * expected.
3727  *
3728  * After a sequence of ring_buffer_read_prepare calls, the user is
3729  * expected to make at least one call to ring_buffer_prepare_sync.
3730  * Afterwards, ring_buffer_read_start is invoked to get things going
3731  * for real.
3732  *
3733  * This overall must be paired with ring_buffer_finish.
3734  */
3735 struct ring_buffer_iter *
3736 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
3737 {
3738         struct ring_buffer_per_cpu *cpu_buffer;
3739         struct ring_buffer_iter *iter;
3740
3741         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3742                 return NULL;
3743
3744         iter = kmalloc(sizeof(*iter), GFP_KERNEL);
3745         if (!iter)
3746                 return NULL;
3747
3748         cpu_buffer = buffer->buffers[cpu];
3749
3750         iter->cpu_buffer = cpu_buffer;
3751
3752         atomic_inc(&buffer->resize_disabled);
3753         atomic_inc(&cpu_buffer->record_disabled);
3754
3755         return iter;
3756 }
3757 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
3758
3759 /**
3760  * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
3761  *
3762  * All previously invoked ring_buffer_read_prepare calls to prepare
3763  * iterators will be synchronized.  Afterwards, read_buffer_read_start
3764  * calls on those iterators are allowed.
3765  */
3766 void
3767 ring_buffer_read_prepare_sync(void)
3768 {
3769         synchronize_sched();
3770 }
3771 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
3772
3773 /**
3774  * ring_buffer_read_start - start a non consuming read of the buffer
3775  * @iter: The iterator returned by ring_buffer_read_prepare
3776  *
3777  * This finalizes the startup of an iteration through the buffer.
3778  * The iterator comes from a call to ring_buffer_read_prepare and
3779  * an intervening ring_buffer_read_prepare_sync must have been
3780  * performed.
3781  *
3782  * Must be paired with ring_buffer_finish.
3783  */
3784 void
3785 ring_buffer_read_start(struct ring_buffer_iter *iter)
3786 {
3787         struct ring_buffer_per_cpu *cpu_buffer;
3788         unsigned long flags;
3789
3790         if (!iter)
3791                 return;
3792
3793         cpu_buffer = iter->cpu_buffer;
3794
3795         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3796         arch_spin_lock(&cpu_buffer->lock);
3797         rb_iter_reset(iter);
3798         arch_spin_unlock(&cpu_buffer->lock);
3799         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3800 }
3801 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
3802
3803 /**
3804  * ring_buffer_finish - finish reading the iterator of the buffer
3805  * @iter: The iterator retrieved by ring_buffer_start
3806  *
3807  * This re-enables the recording to the buffer, and frees the
3808  * iterator.
3809  */
3810 void
3811 ring_buffer_read_finish(struct ring_buffer_iter *iter)
3812 {
3813         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3814         unsigned long flags;
3815
3816         /*
3817          * Ring buffer is disabled from recording, here's a good place
3818          * to check the integrity of the ring buffer.
3819          * Must prevent readers from trying to read, as the check
3820          * clears the HEAD page and readers require it.
3821          */
3822         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3823         rb_check_pages(cpu_buffer);
3824         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3825
3826         atomic_dec(&cpu_buffer->record_disabled);
3827         atomic_dec(&cpu_buffer->buffer->resize_disabled);
3828         kfree(iter);
3829 }
3830 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
3831
3832 /**
3833  * ring_buffer_read - read the next item in the ring buffer by the iterator
3834  * @iter: The ring buffer iterator
3835  * @ts: The time stamp of the event read.
3836  *
3837  * This reads the next event in the ring buffer and increments the iterator.
3838  */
3839 struct ring_buffer_event *
3840 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
3841 {
3842         struct ring_buffer_event *event;
3843         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3844         unsigned long flags;
3845
3846         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3847  again:
3848         event = rb_iter_peek(iter, ts);
3849         if (!event)
3850                 goto out;
3851
3852         if (event->type_len == RINGBUF_TYPE_PADDING)
3853                 goto again;
3854
3855         rb_advance_iter(iter);
3856  out:
3857         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3858
3859         return event;
3860 }
3861 EXPORT_SYMBOL_GPL(ring_buffer_read);
3862
3863 /**
3864  * ring_buffer_size - return the size of the ring buffer (in bytes)
3865  * @buffer: The ring buffer.
3866  */
3867 unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
3868 {
3869         /*
3870          * Earlier, this method returned
3871          *      BUF_PAGE_SIZE * buffer->nr_pages
3872          * Since the nr_pages field is now removed, we have converted this to
3873          * return the per cpu buffer value.
3874          */
3875         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3876                 return 0;
3877
3878         return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
3879 }
3880 EXPORT_SYMBOL_GPL(ring_buffer_size);
3881
3882 static void
3883 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
3884 {
3885         rb_head_page_deactivate(cpu_buffer);
3886
3887         cpu_buffer->head_page
3888                 = list_entry(cpu_buffer->pages, struct buffer_page, list);
3889         local_set(&cpu_buffer->head_page->write, 0);
3890         local_set(&cpu_buffer->head_page->entries, 0);
3891         local_set(&cpu_buffer->head_page->page->commit, 0);
3892
3893         cpu_buffer->head_page->read = 0;
3894
3895         cpu_buffer->tail_page = cpu_buffer->head_page;
3896         cpu_buffer->commit_page = cpu_buffer->head_page;
3897
3898         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
3899         INIT_LIST_HEAD(&cpu_buffer->new_pages);
3900         local_set(&cpu_buffer->reader_page->write, 0);
3901         local_set(&cpu_buffer->reader_page->entries, 0);
3902         local_set(&cpu_buffer->reader_page->page->commit, 0);
3903         cpu_buffer->reader_page->read = 0;
3904
3905         local_set(&cpu_buffer->entries_bytes, 0);
3906         local_set(&cpu_buffer->overrun, 0);
3907         local_set(&cpu_buffer->commit_overrun, 0);
3908         local_set(&cpu_buffer->dropped_events, 0);
3909         local_set(&cpu_buffer->entries, 0);
3910         local_set(&cpu_buffer->committing, 0);
3911         local_set(&cpu_buffer->commits, 0);
3912         cpu_buffer->read = 0;
3913         cpu_buffer->read_bytes = 0;
3914
3915         cpu_buffer->write_stamp = 0;
3916         cpu_buffer->read_stamp = 0;
3917
3918         cpu_buffer->lost_events = 0;
3919         cpu_buffer->last_overrun = 0;
3920
3921         rb_head_page_activate(cpu_buffer);
3922 }
3923
3924 /**
3925  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
3926  * @buffer: The ring buffer to reset a per cpu buffer of
3927  * @cpu: The CPU buffer to be reset
3928  */
3929 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
3930 {
3931         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3932         unsigned long flags;
3933
3934         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3935                 return;
3936
3937         atomic_inc(&buffer->resize_disabled);
3938         atomic_inc(&cpu_buffer->record_disabled);
3939
3940         /* Make sure all commits have finished */
3941         synchronize_sched();
3942
3943         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3944
3945         if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
3946                 goto out;
3947
3948         arch_spin_lock(&cpu_buffer->lock);
3949
3950         rb_reset_cpu(cpu_buffer);
3951
3952         arch_spin_unlock(&cpu_buffer->lock);
3953
3954  out:
3955         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3956
3957         atomic_dec(&cpu_buffer->record_disabled);
3958         atomic_dec(&buffer->resize_disabled);
3959 }
3960 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
3961
3962 /**
3963  * ring_buffer_reset - reset a ring buffer
3964  * @buffer: The ring buffer to reset all cpu buffers
3965  */
3966 void ring_buffer_reset(struct ring_buffer *buffer)
3967 {
3968         int cpu;
3969
3970         for_each_buffer_cpu(buffer, cpu)
3971                 ring_buffer_reset_cpu(buffer, cpu);
3972 }
3973 EXPORT_SYMBOL_GPL(ring_buffer_reset);
3974
3975 /**
3976  * rind_buffer_empty - is the ring buffer empty?
3977  * @buffer: The ring buffer to test
3978  */
3979 int ring_buffer_empty(struct ring_buffer *buffer)
3980 {
3981         struct ring_buffer_per_cpu *cpu_buffer;
3982         unsigned long flags;
3983         int dolock;
3984         int cpu;
3985         int ret;
3986
3987         dolock = rb_ok_to_lock();
3988
3989         /* yes this is racy, but if you don't like the race, lock the buffer */
3990         for_each_buffer_cpu(buffer, cpu) {
3991                 cpu_buffer = buffer->buffers[cpu];
3992                 local_irq_save(flags);
3993                 if (dolock)
3994                         raw_spin_lock(&cpu_buffer->reader_lock);
3995                 ret = rb_per_cpu_empty(cpu_buffer);
3996                 if (dolock)
3997                         raw_spin_unlock(&cpu_buffer->reader_lock);
3998                 local_irq_restore(flags);
3999
4000                 if (!ret)
4001                         return 0;
4002         }
4003
4004         return 1;
4005 }
4006 EXPORT_SYMBOL_GPL(ring_buffer_empty);
4007
4008 /**
4009  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4010  * @buffer: The ring buffer
4011  * @cpu: The CPU buffer to test
4012  */
4013 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
4014 {
4015         struct ring_buffer_per_cpu *cpu_buffer;
4016         unsigned long flags;
4017         int dolock;
4018         int ret;
4019
4020         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4021                 return 1;
4022
4023         dolock = rb_ok_to_lock();
4024
4025         cpu_buffer = buffer->buffers[cpu];
4026         local_irq_save(flags);
4027         if (dolock)
4028                 raw_spin_lock(&cpu_buffer->reader_lock);
4029         ret = rb_per_cpu_empty(cpu_buffer);
4030         if (dolock)
4031                 raw_spin_unlock(&cpu_buffer->reader_lock);
4032         local_irq_restore(flags);
4033
4034         return ret;
4035 }
4036 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
4037
4038 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4039 /**
4040  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4041  * @buffer_a: One buffer to swap with
4042  * @buffer_b: The other buffer to swap with
4043  *
4044  * This function is useful for tracers that want to take a "snapshot"
4045  * of a CPU buffer and has another back up buffer lying around.
4046  * it is expected that the tracer handles the cpu buffer not being
4047  * used at the moment.
4048  */
4049 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4050                          struct ring_buffer *buffer_b, int cpu)
4051 {
4052         struct ring_buffer_per_cpu *cpu_buffer_a;
4053         struct ring_buffer_per_cpu *cpu_buffer_b;
4054         int ret = -EINVAL;
4055
4056         if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4057             !cpumask_test_cpu(cpu, buffer_b->cpumask))
4058                 goto out;
4059
4060         cpu_buffer_a = buffer_a->buffers[cpu];
4061         cpu_buffer_b = buffer_b->buffers[cpu];
4062
4063         /* At least make sure the two buffers are somewhat the same */
4064         if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
4065                 goto out;
4066
4067         ret = -EAGAIN;
4068
4069         if (ring_buffer_flags != RB_BUFFERS_ON)
4070                 goto out;
4071
4072         if (atomic_read(&buffer_a->record_disabled))
4073                 goto out;
4074
4075         if (atomic_read(&buffer_b->record_disabled))
4076                 goto out;
4077
4078         if (atomic_read(&cpu_buffer_a->record_disabled))
4079                 goto out;
4080
4081         if (atomic_read(&cpu_buffer_b->record_disabled))
4082                 goto out;
4083
4084         /*
4085          * We can't do a synchronize_sched here because this
4086          * function can be called in atomic context.
4087          * Normally this will be called from the same CPU as cpu.
4088          * If not it's up to the caller to protect this.
4089          */
4090         atomic_inc(&cpu_buffer_a->record_disabled);
4091         atomic_inc(&cpu_buffer_b->record_disabled);
4092
4093         ret = -EBUSY;
4094         if (local_read(&cpu_buffer_a->committing))
4095                 goto out_dec;
4096         if (local_read(&cpu_buffer_b->committing))
4097                 goto out_dec;
4098
4099         buffer_a->buffers[cpu] = cpu_buffer_b;
4100         buffer_b->buffers[cpu] = cpu_buffer_a;
4101
4102         cpu_buffer_b->buffer = buffer_a;
4103         cpu_buffer_a->buffer = buffer_b;
4104
4105         ret = 0;
4106
4107 out_dec:
4108         atomic_dec(&cpu_buffer_a->record_disabled);
4109         atomic_dec(&cpu_buffer_b->record_disabled);
4110 out:
4111         return ret;
4112 }
4113 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
4114 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
4115
4116 /**
4117  * ring_buffer_alloc_read_page - allocate a page to read from buffer
4118  * @buffer: the buffer to allocate for.
4119  *
4120  * This function is used in conjunction with ring_buffer_read_page.
4121  * When reading a full page from the ring buffer, these functions
4122  * can be used to speed up the process. The calling function should
4123  * allocate a few pages first with this function. Then when it
4124  * needs to get pages from the ring buffer, it passes the result
4125  * of this function into ring_buffer_read_page, which will swap
4126  * the page that was allocated, with the read page of the buffer.
4127  *
4128  * Returns:
4129  *  The page allocated, or NULL on error.
4130  */
4131 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
4132 {
4133         struct buffer_data_page *bpage;
4134         struct page *page;
4135
4136         page = alloc_pages_node(cpu_to_node(cpu),
4137                                 GFP_KERNEL | __GFP_NORETRY, 0);
4138         if (!page)
4139                 return NULL;
4140
4141         bpage = page_address(page);
4142
4143         rb_init_page(bpage);
4144
4145         return bpage;
4146 }
4147 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
4148
4149 /**
4150  * ring_buffer_free_read_page - free an allocated read page
4151  * @buffer: the buffer the page was allocate for
4152  * @data: the page to free
4153  *
4154  * Free a page allocated from ring_buffer_alloc_read_page.
4155  */
4156 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
4157 {
4158         free_page((unsigned long)data);
4159 }
4160 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
4161
4162 /**
4163  * ring_buffer_read_page - extract a page from the ring buffer
4164  * @buffer: buffer to extract from
4165  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
4166  * @len: amount to extract
4167  * @cpu: the cpu of the buffer to extract
4168  * @full: should the extraction only happen when the page is full.
4169  *
4170  * This function will pull out a page from the ring buffer and consume it.
4171  * @data_page must be the address of the variable that was returned
4172  * from ring_buffer_alloc_read_page. This is because the page might be used
4173  * to swap with a page in the ring buffer.
4174  *
4175  * for example:
4176  *      rpage = ring_buffer_alloc_read_page(buffer);
4177  *      if (!rpage)
4178  *              return error;
4179  *      ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
4180  *      if (ret >= 0)
4181  *              process_page(rpage, ret);
4182  *
4183  * When @full is set, the function will not return true unless
4184  * the writer is off the reader page.
4185  *
4186  * Note: it is up to the calling functions to handle sleeps and wakeups.
4187  *  The ring buffer can be used anywhere in the kernel and can not
4188  *  blindly call wake_up. The layer that uses the ring buffer must be
4189  *  responsible for that.
4190  *
4191  * Returns:
4192  *  >=0 if data has been transferred, returns the offset of consumed data.
4193  *  <0 if no data has been transferred.
4194  */
4195 int ring_buffer_read_page(struct ring_buffer *buffer,
4196                           void **data_page, size_t len, int cpu, int full)
4197 {
4198         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4199         struct ring_buffer_event *event;
4200         struct buffer_data_page *bpage;
4201         struct buffer_page *reader;
4202         unsigned long missed_events;
4203         unsigned long flags;
4204         unsigned int commit;
4205         unsigned int read;
4206         u64 save_timestamp;
4207         int ret = -1;
4208
4209         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4210                 goto out;
4211
4212         /*
4213          * If len is not big enough to hold the page header, then
4214          * we can not copy anything.
4215          */
4216         if (len <= BUF_PAGE_HDR_SIZE)
4217                 goto out;
4218
4219         len -= BUF_PAGE_HDR_SIZE;
4220
4221         if (!data_page)
4222                 goto out;
4223
4224         bpage = *data_page;
4225         if (!bpage)
4226                 goto out;
4227
4228         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4229
4230         reader = rb_get_reader_page(cpu_buffer);
4231         if (!reader)
4232                 goto out_unlock;
4233
4234         event = rb_reader_event(cpu_buffer);
4235
4236         read = reader->read;
4237         commit = rb_page_commit(reader);
4238
4239         /* Check if any events were dropped */
4240         missed_events = cpu_buffer->lost_events;
4241
4242         /*
4243          * If this page has been partially read or
4244          * if len is not big enough to read the rest of the page or
4245          * a writer is still on the page, then
4246          * we must copy the data from the page to the buffer.
4247          * Otherwise, we can simply swap the page with the one passed in.
4248          */
4249         if (read || (len < (commit - read)) ||
4250             cpu_buffer->reader_page == cpu_buffer->commit_page) {
4251                 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
4252                 unsigned int rpos = read;
4253                 unsigned int pos = 0;
4254                 unsigned int size;
4255
4256                 if (full)
4257                         goto out_unlock;
4258
4259                 if (len > (commit - read))
4260                         len = (commit - read);
4261
4262                 /* Always keep the time extend and data together */
4263                 size = rb_event_ts_length(event);
4264
4265                 if (len < size)
4266                         goto out_unlock;
4267
4268                 /* save the current timestamp, since the user will need it */
4269                 save_timestamp = cpu_buffer->read_stamp;
4270
4271                 /* Need to copy one event at a time */
4272                 do {
4273                         /* We need the size of one event, because
4274                          * rb_advance_reader only advances by one event,
4275                          * whereas rb_event_ts_length may include the size of
4276                          * one or two events.
4277                          * We have already ensured there's enough space if this
4278                          * is a time extend. */
4279                         size = rb_event_length(event);
4280                         memcpy(bpage->data + pos, rpage->data + rpos, size);
4281
4282                         len -= size;
4283
4284                         rb_advance_reader(cpu_buffer);
4285                         rpos = reader->read;
4286                         pos += size;
4287
4288                         if (rpos >= commit)
4289                                 break;
4290
4291                         event = rb_reader_event(cpu_buffer);
4292                         /* Always keep the time extend and data together */
4293                         size = rb_event_ts_length(event);
4294                 } while (len >= size);
4295
4296                 /* update bpage */
4297                 local_set(&bpage->commit, pos);
4298                 bpage->time_stamp = save_timestamp;
4299
4300                 /* we copied everything to the beginning */
4301                 read = 0;
4302         } else {
4303                 /* update the entry counter */
4304                 cpu_buffer->read += rb_page_entries(reader);
4305                 cpu_buffer->read_bytes += BUF_PAGE_SIZE;
4306
4307                 /* swap the pages */
4308                 rb_init_page(bpage);
4309                 bpage = reader->page;
4310                 reader->page = *data_page;
4311                 local_set(&reader->write, 0);
4312                 local_set(&reader->entries, 0);
4313                 reader->read = 0;
4314                 *data_page = bpage;
4315
4316                 /*
4317                  * Use the real_end for the data size,
4318                  * This gives us a chance to store the lost events
4319                  * on the page.
4320                  */
4321                 if (reader->real_end)
4322                         local_set(&bpage->commit, reader->real_end);
4323         }
4324         ret = read;
4325
4326         cpu_buffer->lost_events = 0;
4327
4328         commit = local_read(&bpage->commit);
4329         /*
4330          * Set a flag in the commit field if we lost events
4331          */
4332         if (missed_events) {
4333                 /* If there is room at the end of the page to save the
4334                  * missed events, then record it there.
4335                  */
4336                 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4337                         memcpy(&bpage->data[commit], &missed_events,
4338                                sizeof(missed_events));
4339                         local_add(RB_MISSED_STORED, &bpage->commit);
4340                         commit += sizeof(missed_events);
4341                 }
4342                 local_add(RB_MISSED_EVENTS, &bpage->commit);
4343         }
4344
4345         /*
4346          * This page may be off to user land. Zero it out here.
4347          */
4348         if (commit < BUF_PAGE_SIZE)
4349                 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4350
4351  out_unlock:
4352         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4353
4354  out:
4355         return ret;
4356 }
4357 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
4358
4359 #ifdef CONFIG_HOTPLUG_CPU
4360 static int rb_cpu_notify(struct notifier_block *self,
4361                          unsigned long action, void *hcpu)
4362 {
4363         struct ring_buffer *buffer =
4364                 container_of(self, struct ring_buffer, cpu_notify);
4365         long cpu = (long)hcpu;
4366         int cpu_i, nr_pages_same;
4367         unsigned int nr_pages;
4368
4369         switch (action) {
4370         case CPU_UP_PREPARE:
4371         case CPU_UP_PREPARE_FROZEN:
4372                 if (cpumask_test_cpu(cpu, buffer->cpumask))
4373                         return NOTIFY_OK;
4374
4375                 nr_pages = 0;
4376                 nr_pages_same = 1;
4377                 /* check if all cpu sizes are same */
4378                 for_each_buffer_cpu(buffer, cpu_i) {
4379                         /* fill in the size from first enabled cpu */
4380                         if (nr_pages == 0)
4381                                 nr_pages = buffer->buffers[cpu_i]->nr_pages;
4382                         if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4383                                 nr_pages_same = 0;
4384                                 break;
4385                         }
4386                 }
4387                 /* allocate minimum pages, user can later expand it */
4388                 if (!nr_pages_same)
4389                         nr_pages = 2;
4390                 buffer->buffers[cpu] =
4391                         rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
4392                 if (!buffer->buffers[cpu]) {
4393                         WARN(1, "failed to allocate ring buffer on CPU %ld\n",
4394                              cpu);
4395                         return NOTIFY_OK;
4396                 }
4397                 smp_wmb();
4398                 cpumask_set_cpu(cpu, buffer->cpumask);
4399                 break;
4400         case CPU_DOWN_PREPARE:
4401         case CPU_DOWN_PREPARE_FROZEN:
4402                 /*
4403                  * Do nothing.
4404                  *  If we were to free the buffer, then the user would
4405                  *  lose any trace that was in the buffer.
4406                  */
4407                 break;
4408         default:
4409                 break;
4410         }
4411         return NOTIFY_OK;
4412 }
4413 #endif