Merge branch 'device-properties'
[firefly-linux-kernel-4.4.55.git] / kernel / trace / ring_buffer.c
1 /*
2  * Generic ring buffer
3  *
4  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5  */
6 #include <linux/ftrace_event.h>
7 #include <linux/ring_buffer.h>
8 #include <linux/trace_clock.h>
9 #include <linux/trace_seq.h>
10 #include <linux/spinlock.h>
11 #include <linux/irq_work.h>
12 #include <linux/debugfs.h>
13 #include <linux/uaccess.h>
14 #include <linux/hardirq.h>
15 #include <linux/kthread.h>      /* for self test */
16 #include <linux/kmemcheck.h>
17 #include <linux/module.h>
18 #include <linux/percpu.h>
19 #include <linux/mutex.h>
20 #include <linux/delay.h>
21 #include <linux/slab.h>
22 #include <linux/init.h>
23 #include <linux/hash.h>
24 #include <linux/list.h>
25 #include <linux/cpu.h>
26 #include <linux/fs.h>
27
28 #include <asm/local.h>
29
30 static void update_pages_handler(struct work_struct *work);
31
32 /*
33  * The ring buffer header is special. We must manually up keep it.
34  */
35 int ring_buffer_print_entry_header(struct trace_seq *s)
36 {
37         int ret;
38
39         ret = trace_seq_puts(s, "# compressed entry header\n");
40         ret = trace_seq_puts(s, "\ttype_len    :    5 bits\n");
41         ret = trace_seq_puts(s, "\ttime_delta  :   27 bits\n");
42         ret = trace_seq_puts(s, "\tarray       :   32 bits\n");
43         ret = trace_seq_putc(s, '\n');
44         ret = trace_seq_printf(s, "\tpadding     : type == %d\n",
45                                RINGBUF_TYPE_PADDING);
46         ret = trace_seq_printf(s, "\ttime_extend : type == %d\n",
47                                RINGBUF_TYPE_TIME_EXTEND);
48         ret = trace_seq_printf(s, "\tdata max type_len  == %d\n",
49                                RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
50
51         return ret;
52 }
53
54 /*
55  * The ring buffer is made up of a list of pages. A separate list of pages is
56  * allocated for each CPU. A writer may only write to a buffer that is
57  * associated with the CPU it is currently executing on.  A reader may read
58  * from any per cpu buffer.
59  *
60  * The reader is special. For each per cpu buffer, the reader has its own
61  * reader page. When a reader has read the entire reader page, this reader
62  * page is swapped with another page in the ring buffer.
63  *
64  * Now, as long as the writer is off the reader page, the reader can do what
65  * ever it wants with that page. The writer will never write to that page
66  * again (as long as it is out of the ring buffer).
67  *
68  * Here's some silly ASCII art.
69  *
70  *   +------+
71  *   |reader|          RING BUFFER
72  *   |page  |
73  *   +------+        +---+   +---+   +---+
74  *                   |   |-->|   |-->|   |
75  *                   +---+   +---+   +---+
76  *                     ^               |
77  *                     |               |
78  *                     +---------------+
79  *
80  *
81  *   +------+
82  *   |reader|          RING BUFFER
83  *   |page  |------------------v
84  *   +------+        +---+   +---+   +---+
85  *                   |   |-->|   |-->|   |
86  *                   +---+   +---+   +---+
87  *                     ^               |
88  *                     |               |
89  *                     +---------------+
90  *
91  *
92  *   +------+
93  *   |reader|          RING BUFFER
94  *   |page  |------------------v
95  *   +------+        +---+   +---+   +---+
96  *      ^            |   |-->|   |-->|   |
97  *      |            +---+   +---+   +---+
98  *      |                              |
99  *      |                              |
100  *      +------------------------------+
101  *
102  *
103  *   +------+
104  *   |buffer|          RING BUFFER
105  *   |page  |------------------v
106  *   +------+        +---+   +---+   +---+
107  *      ^            |   |   |   |-->|   |
108  *      |   New      +---+   +---+   +---+
109  *      |  Reader------^               |
110  *      |   page                       |
111  *      +------------------------------+
112  *
113  *
114  * After we make this swap, the reader can hand this page off to the splice
115  * code and be done with it. It can even allocate a new page if it needs to
116  * and swap that into the ring buffer.
117  *
118  * We will be using cmpxchg soon to make all this lockless.
119  *
120  */
121
122 /*
123  * A fast way to enable or disable all ring buffers is to
124  * call tracing_on or tracing_off. Turning off the ring buffers
125  * prevents all ring buffers from being recorded to.
126  * Turning this switch on, makes it OK to write to the
127  * ring buffer, if the ring buffer is enabled itself.
128  *
129  * There's three layers that must be on in order to write
130  * to the ring buffer.
131  *
132  * 1) This global flag must be set.
133  * 2) The ring buffer must be enabled for recording.
134  * 3) The per cpu buffer must be enabled for recording.
135  *
136  * In case of an anomaly, this global flag has a bit set that
137  * will permantly disable all ring buffers.
138  */
139
140 /*
141  * Global flag to disable all recording to ring buffers
142  *  This has two bits: ON, DISABLED
143  *
144  *  ON   DISABLED
145  * ---- ----------
146  *   0      0        : ring buffers are off
147  *   1      0        : ring buffers are on
148  *   X      1        : ring buffers are permanently disabled
149  */
150
151 enum {
152         RB_BUFFERS_ON_BIT       = 0,
153         RB_BUFFERS_DISABLED_BIT = 1,
154 };
155
156 enum {
157         RB_BUFFERS_ON           = 1 << RB_BUFFERS_ON_BIT,
158         RB_BUFFERS_DISABLED     = 1 << RB_BUFFERS_DISABLED_BIT,
159 };
160
161 static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
162
163 /* Used for individual buffers (after the counter) */
164 #define RB_BUFFER_OFF           (1 << 20)
165
166 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
167
168 /**
169  * tracing_off_permanent - permanently disable ring buffers
170  *
171  * This function, once called, will disable all ring buffers
172  * permanently.
173  */
174 void tracing_off_permanent(void)
175 {
176         set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
177 }
178
179 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
180 #define RB_ALIGNMENT            4U
181 #define RB_MAX_SMALL_DATA       (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
182 #define RB_EVNT_MIN_SIZE        8U      /* two 32bit words */
183
184 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
185 # define RB_FORCE_8BYTE_ALIGNMENT       0
186 # define RB_ARCH_ALIGNMENT              RB_ALIGNMENT
187 #else
188 # define RB_FORCE_8BYTE_ALIGNMENT       1
189 # define RB_ARCH_ALIGNMENT              8U
190 #endif
191
192 #define RB_ALIGN_DATA           __aligned(RB_ARCH_ALIGNMENT)
193
194 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
195 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
196
197 enum {
198         RB_LEN_TIME_EXTEND = 8,
199         RB_LEN_TIME_STAMP = 16,
200 };
201
202 #define skip_time_extend(event) \
203         ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
204
205 static inline int rb_null_event(struct ring_buffer_event *event)
206 {
207         return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
208 }
209
210 static void rb_event_set_padding(struct ring_buffer_event *event)
211 {
212         /* padding has a NULL time_delta */
213         event->type_len = RINGBUF_TYPE_PADDING;
214         event->time_delta = 0;
215 }
216
217 static unsigned
218 rb_event_data_length(struct ring_buffer_event *event)
219 {
220         unsigned length;
221
222         if (event->type_len)
223                 length = event->type_len * RB_ALIGNMENT;
224         else
225                 length = event->array[0];
226         return length + RB_EVNT_HDR_SIZE;
227 }
228
229 /*
230  * Return the length of the given event. Will return
231  * the length of the time extend if the event is a
232  * time extend.
233  */
234 static inline unsigned
235 rb_event_length(struct ring_buffer_event *event)
236 {
237         switch (event->type_len) {
238         case RINGBUF_TYPE_PADDING:
239                 if (rb_null_event(event))
240                         /* undefined */
241                         return -1;
242                 return  event->array[0] + RB_EVNT_HDR_SIZE;
243
244         case RINGBUF_TYPE_TIME_EXTEND:
245                 return RB_LEN_TIME_EXTEND;
246
247         case RINGBUF_TYPE_TIME_STAMP:
248                 return RB_LEN_TIME_STAMP;
249
250         case RINGBUF_TYPE_DATA:
251                 return rb_event_data_length(event);
252         default:
253                 BUG();
254         }
255         /* not hit */
256         return 0;
257 }
258
259 /*
260  * Return total length of time extend and data,
261  *   or just the event length for all other events.
262  */
263 static inline unsigned
264 rb_event_ts_length(struct ring_buffer_event *event)
265 {
266         unsigned len = 0;
267
268         if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
269                 /* time extends include the data event after it */
270                 len = RB_LEN_TIME_EXTEND;
271                 event = skip_time_extend(event);
272         }
273         return len + rb_event_length(event);
274 }
275
276 /**
277  * ring_buffer_event_length - return the length of the event
278  * @event: the event to get the length of
279  *
280  * Returns the size of the data load of a data event.
281  * If the event is something other than a data event, it
282  * returns the size of the event itself. With the exception
283  * of a TIME EXTEND, where it still returns the size of the
284  * data load of the data event after it.
285  */
286 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
287 {
288         unsigned length;
289
290         if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
291                 event = skip_time_extend(event);
292
293         length = rb_event_length(event);
294         if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
295                 return length;
296         length -= RB_EVNT_HDR_SIZE;
297         if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
298                 length -= sizeof(event->array[0]);
299         return length;
300 }
301 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
302
303 /* inline for ring buffer fast paths */
304 static void *
305 rb_event_data(struct ring_buffer_event *event)
306 {
307         if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
308                 event = skip_time_extend(event);
309         BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
310         /* If length is in len field, then array[0] has the data */
311         if (event->type_len)
312                 return (void *)&event->array[0];
313         /* Otherwise length is in array[0] and array[1] has the data */
314         return (void *)&event->array[1];
315 }
316
317 /**
318  * ring_buffer_event_data - return the data of the event
319  * @event: the event to get the data from
320  */
321 void *ring_buffer_event_data(struct ring_buffer_event *event)
322 {
323         return rb_event_data(event);
324 }
325 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
326
327 #define for_each_buffer_cpu(buffer, cpu)                \
328         for_each_cpu(cpu, buffer->cpumask)
329
330 #define TS_SHIFT        27
331 #define TS_MASK         ((1ULL << TS_SHIFT) - 1)
332 #define TS_DELTA_TEST   (~TS_MASK)
333
334 /* Flag when events were overwritten */
335 #define RB_MISSED_EVENTS        (1 << 31)
336 /* Missed count stored at end */
337 #define RB_MISSED_STORED        (1 << 30)
338
339 struct buffer_data_page {
340         u64              time_stamp;    /* page time stamp */
341         local_t          commit;        /* write committed index */
342         unsigned char    data[] RB_ALIGN_DATA;  /* data of buffer page */
343 };
344
345 /*
346  * Note, the buffer_page list must be first. The buffer pages
347  * are allocated in cache lines, which means that each buffer
348  * page will be at the beginning of a cache line, and thus
349  * the least significant bits will be zero. We use this to
350  * add flags in the list struct pointers, to make the ring buffer
351  * lockless.
352  */
353 struct buffer_page {
354         struct list_head list;          /* list of buffer pages */
355         local_t          write;         /* index for next write */
356         unsigned         read;          /* index for next read */
357         local_t          entries;       /* entries on this page */
358         unsigned long    real_end;      /* real end of data */
359         struct buffer_data_page *page;  /* Actual data page */
360 };
361
362 /*
363  * The buffer page counters, write and entries, must be reset
364  * atomically when crossing page boundaries. To synchronize this
365  * update, two counters are inserted into the number. One is
366  * the actual counter for the write position or count on the page.
367  *
368  * The other is a counter of updaters. Before an update happens
369  * the update partition of the counter is incremented. This will
370  * allow the updater to update the counter atomically.
371  *
372  * The counter is 20 bits, and the state data is 12.
373  */
374 #define RB_WRITE_MASK           0xfffff
375 #define RB_WRITE_INTCNT         (1 << 20)
376
377 static void rb_init_page(struct buffer_data_page *bpage)
378 {
379         local_set(&bpage->commit, 0);
380 }
381
382 /**
383  * ring_buffer_page_len - the size of data on the page.
384  * @page: The page to read
385  *
386  * Returns the amount of data on the page, including buffer page header.
387  */
388 size_t ring_buffer_page_len(void *page)
389 {
390         return local_read(&((struct buffer_data_page *)page)->commit)
391                 + BUF_PAGE_HDR_SIZE;
392 }
393
394 /*
395  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
396  * this issue out.
397  */
398 static void free_buffer_page(struct buffer_page *bpage)
399 {
400         free_page((unsigned long)bpage->page);
401         kfree(bpage);
402 }
403
404 /*
405  * We need to fit the time_stamp delta into 27 bits.
406  */
407 static inline int test_time_stamp(u64 delta)
408 {
409         if (delta & TS_DELTA_TEST)
410                 return 1;
411         return 0;
412 }
413
414 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
415
416 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
417 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
418
419 int ring_buffer_print_page_header(struct trace_seq *s)
420 {
421         struct buffer_data_page field;
422         int ret;
423
424         ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t"
425                                "offset:0;\tsize:%u;\tsigned:%u;\n",
426                                (unsigned int)sizeof(field.time_stamp),
427                                (unsigned int)is_signed_type(u64));
428
429         ret = trace_seq_printf(s, "\tfield: local_t commit;\t"
430                                "offset:%u;\tsize:%u;\tsigned:%u;\n",
431                                (unsigned int)offsetof(typeof(field), commit),
432                                (unsigned int)sizeof(field.commit),
433                                (unsigned int)is_signed_type(long));
434
435         ret = trace_seq_printf(s, "\tfield: int overwrite;\t"
436                                "offset:%u;\tsize:%u;\tsigned:%u;\n",
437                                (unsigned int)offsetof(typeof(field), commit),
438                                1,
439                                (unsigned int)is_signed_type(long));
440
441         ret = trace_seq_printf(s, "\tfield: char data;\t"
442                                "offset:%u;\tsize:%u;\tsigned:%u;\n",
443                                (unsigned int)offsetof(typeof(field), data),
444                                (unsigned int)BUF_PAGE_SIZE,
445                                (unsigned int)is_signed_type(char));
446
447         return ret;
448 }
449
450 struct rb_irq_work {
451         struct irq_work                 work;
452         wait_queue_head_t               waiters;
453         bool                            waiters_pending;
454 };
455
456 /*
457  * head_page == tail_page && head == tail then buffer is empty.
458  */
459 struct ring_buffer_per_cpu {
460         int                             cpu;
461         atomic_t                        record_disabled;
462         struct ring_buffer              *buffer;
463         raw_spinlock_t                  reader_lock;    /* serialize readers */
464         arch_spinlock_t                 lock;
465         struct lock_class_key           lock_key;
466         unsigned int                    nr_pages;
467         struct list_head                *pages;
468         struct buffer_page              *head_page;     /* read from head */
469         struct buffer_page              *tail_page;     /* write to tail */
470         struct buffer_page              *commit_page;   /* committed pages */
471         struct buffer_page              *reader_page;
472         unsigned long                   lost_events;
473         unsigned long                   last_overrun;
474         local_t                         entries_bytes;
475         local_t                         entries;
476         local_t                         overrun;
477         local_t                         commit_overrun;
478         local_t                         dropped_events;
479         local_t                         committing;
480         local_t                         commits;
481         unsigned long                   read;
482         unsigned long                   read_bytes;
483         u64                             write_stamp;
484         u64                             read_stamp;
485         /* ring buffer pages to update, > 0 to add, < 0 to remove */
486         int                             nr_pages_to_update;
487         struct list_head                new_pages; /* new pages to add */
488         struct work_struct              update_pages_work;
489         struct completion               update_done;
490
491         struct rb_irq_work              irq_work;
492 };
493
494 struct ring_buffer {
495         unsigned                        flags;
496         int                             cpus;
497         atomic_t                        record_disabled;
498         atomic_t                        resize_disabled;
499         cpumask_var_t                   cpumask;
500
501         struct lock_class_key           *reader_lock_key;
502
503         struct mutex                    mutex;
504
505         struct ring_buffer_per_cpu      **buffers;
506
507 #ifdef CONFIG_HOTPLUG_CPU
508         struct notifier_block           cpu_notify;
509 #endif
510         u64                             (*clock)(void);
511
512         struct rb_irq_work              irq_work;
513 };
514
515 struct ring_buffer_iter {
516         struct ring_buffer_per_cpu      *cpu_buffer;
517         unsigned long                   head;
518         struct buffer_page              *head_page;
519         struct buffer_page              *cache_reader_page;
520         unsigned long                   cache_read;
521         u64                             read_stamp;
522 };
523
524 /*
525  * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
526  *
527  * Schedules a delayed work to wake up any task that is blocked on the
528  * ring buffer waiters queue.
529  */
530 static void rb_wake_up_waiters(struct irq_work *work)
531 {
532         struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
533
534         wake_up_all(&rbwork->waiters);
535 }
536
537 /**
538  * ring_buffer_wait - wait for input to the ring buffer
539  * @buffer: buffer to wait on
540  * @cpu: the cpu buffer to wait on
541  * @full: wait until a full page is available, if @cpu != RING_BUFFER_ALL_CPUS
542  *
543  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
544  * as data is added to any of the @buffer's cpu buffers. Otherwise
545  * it will wait for data to be added to a specific cpu buffer.
546  */
547 int ring_buffer_wait(struct ring_buffer *buffer, int cpu, bool full)
548 {
549         struct ring_buffer_per_cpu *uninitialized_var(cpu_buffer);
550         DEFINE_WAIT(wait);
551         struct rb_irq_work *work;
552         int ret = 0;
553
554         /*
555          * Depending on what the caller is waiting for, either any
556          * data in any cpu buffer, or a specific buffer, put the
557          * caller on the appropriate wait queue.
558          */
559         if (cpu == RING_BUFFER_ALL_CPUS)
560                 work = &buffer->irq_work;
561         else {
562                 if (!cpumask_test_cpu(cpu, buffer->cpumask))
563                         return -ENODEV;
564                 cpu_buffer = buffer->buffers[cpu];
565                 work = &cpu_buffer->irq_work;
566         }
567
568
569         while (true) {
570                 prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
571
572                 /*
573                  * The events can happen in critical sections where
574                  * checking a work queue can cause deadlocks.
575                  * After adding a task to the queue, this flag is set
576                  * only to notify events to try to wake up the queue
577                  * using irq_work.
578                  *
579                  * We don't clear it even if the buffer is no longer
580                  * empty. The flag only causes the next event to run
581                  * irq_work to do the work queue wake up. The worse
582                  * that can happen if we race with !trace_empty() is that
583                  * an event will cause an irq_work to try to wake up
584                  * an empty queue.
585                  *
586                  * There's no reason to protect this flag either, as
587                  * the work queue and irq_work logic will do the necessary
588                  * synchronization for the wake ups. The only thing
589                  * that is necessary is that the wake up happens after
590                  * a task has been queued. It's OK for spurious wake ups.
591                  */
592                 work->waiters_pending = true;
593
594                 if (signal_pending(current)) {
595                         ret = -EINTR;
596                         break;
597                 }
598
599                 if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
600                         break;
601
602                 if (cpu != RING_BUFFER_ALL_CPUS &&
603                     !ring_buffer_empty_cpu(buffer, cpu)) {
604                         unsigned long flags;
605                         bool pagebusy;
606
607                         if (!full)
608                                 break;
609
610                         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
611                         pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
612                         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
613
614                         if (!pagebusy)
615                                 break;
616                 }
617
618                 schedule();
619         }
620
621         finish_wait(&work->waiters, &wait);
622
623         return ret;
624 }
625
626 /**
627  * ring_buffer_poll_wait - poll on buffer input
628  * @buffer: buffer to wait on
629  * @cpu: the cpu buffer to wait on
630  * @filp: the file descriptor
631  * @poll_table: The poll descriptor
632  *
633  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
634  * as data is added to any of the @buffer's cpu buffers. Otherwise
635  * it will wait for data to be added to a specific cpu buffer.
636  *
637  * Returns POLLIN | POLLRDNORM if data exists in the buffers,
638  * zero otherwise.
639  */
640 int ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu,
641                           struct file *filp, poll_table *poll_table)
642 {
643         struct ring_buffer_per_cpu *cpu_buffer;
644         struct rb_irq_work *work;
645
646         if (cpu == RING_BUFFER_ALL_CPUS)
647                 work = &buffer->irq_work;
648         else {
649                 if (!cpumask_test_cpu(cpu, buffer->cpumask))
650                         return -EINVAL;
651
652                 cpu_buffer = buffer->buffers[cpu];
653                 work = &cpu_buffer->irq_work;
654         }
655
656         poll_wait(filp, &work->waiters, poll_table);
657         work->waiters_pending = true;
658         /*
659          * There's a tight race between setting the waiters_pending and
660          * checking if the ring buffer is empty.  Once the waiters_pending bit
661          * is set, the next event will wake the task up, but we can get stuck
662          * if there's only a single event in.
663          *
664          * FIXME: Ideally, we need a memory barrier on the writer side as well,
665          * but adding a memory barrier to all events will cause too much of a
666          * performance hit in the fast path.  We only need a memory barrier when
667          * the buffer goes from empty to having content.  But as this race is
668          * extremely small, and it's not a problem if another event comes in, we
669          * will fix it later.
670          */
671         smp_mb();
672
673         if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
674             (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
675                 return POLLIN | POLLRDNORM;
676         return 0;
677 }
678
679 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
680 #define RB_WARN_ON(b, cond)                                             \
681         ({                                                              \
682                 int _____ret = unlikely(cond);                          \
683                 if (_____ret) {                                         \
684                         if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
685                                 struct ring_buffer_per_cpu *__b =       \
686                                         (void *)b;                      \
687                                 atomic_inc(&__b->buffer->record_disabled); \
688                         } else                                          \
689                                 atomic_inc(&b->record_disabled);        \
690                         WARN_ON(1);                                     \
691                 }                                                       \
692                 _____ret;                                               \
693         })
694
695 /* Up this if you want to test the TIME_EXTENTS and normalization */
696 #define DEBUG_SHIFT 0
697
698 static inline u64 rb_time_stamp(struct ring_buffer *buffer)
699 {
700         /* shift to debug/test normalization and TIME_EXTENTS */
701         return buffer->clock() << DEBUG_SHIFT;
702 }
703
704 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
705 {
706         u64 time;
707
708         preempt_disable_notrace();
709         time = rb_time_stamp(buffer);
710         preempt_enable_no_resched_notrace();
711
712         return time;
713 }
714 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
715
716 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
717                                       int cpu, u64 *ts)
718 {
719         /* Just stupid testing the normalize function and deltas */
720         *ts >>= DEBUG_SHIFT;
721 }
722 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
723
724 /*
725  * Making the ring buffer lockless makes things tricky.
726  * Although writes only happen on the CPU that they are on,
727  * and they only need to worry about interrupts. Reads can
728  * happen on any CPU.
729  *
730  * The reader page is always off the ring buffer, but when the
731  * reader finishes with a page, it needs to swap its page with
732  * a new one from the buffer. The reader needs to take from
733  * the head (writes go to the tail). But if a writer is in overwrite
734  * mode and wraps, it must push the head page forward.
735  *
736  * Here lies the problem.
737  *
738  * The reader must be careful to replace only the head page, and
739  * not another one. As described at the top of the file in the
740  * ASCII art, the reader sets its old page to point to the next
741  * page after head. It then sets the page after head to point to
742  * the old reader page. But if the writer moves the head page
743  * during this operation, the reader could end up with the tail.
744  *
745  * We use cmpxchg to help prevent this race. We also do something
746  * special with the page before head. We set the LSB to 1.
747  *
748  * When the writer must push the page forward, it will clear the
749  * bit that points to the head page, move the head, and then set
750  * the bit that points to the new head page.
751  *
752  * We also don't want an interrupt coming in and moving the head
753  * page on another writer. Thus we use the second LSB to catch
754  * that too. Thus:
755  *
756  * head->list->prev->next        bit 1          bit 0
757  *                              -------        -------
758  * Normal page                     0              0
759  * Points to head page             0              1
760  * New head page                   1              0
761  *
762  * Note we can not trust the prev pointer of the head page, because:
763  *
764  * +----+       +-----+        +-----+
765  * |    |------>|  T  |---X--->|  N  |
766  * |    |<------|     |        |     |
767  * +----+       +-----+        +-----+
768  *   ^                           ^ |
769  *   |          +-----+          | |
770  *   +----------|  R  |----------+ |
771  *              |     |<-----------+
772  *              +-----+
773  *
774  * Key:  ---X-->  HEAD flag set in pointer
775  *         T      Tail page
776  *         R      Reader page
777  *         N      Next page
778  *
779  * (see __rb_reserve_next() to see where this happens)
780  *
781  *  What the above shows is that the reader just swapped out
782  *  the reader page with a page in the buffer, but before it
783  *  could make the new header point back to the new page added
784  *  it was preempted by a writer. The writer moved forward onto
785  *  the new page added by the reader and is about to move forward
786  *  again.
787  *
788  *  You can see, it is legitimate for the previous pointer of
789  *  the head (or any page) not to point back to itself. But only
790  *  temporarially.
791  */
792
793 #define RB_PAGE_NORMAL          0UL
794 #define RB_PAGE_HEAD            1UL
795 #define RB_PAGE_UPDATE          2UL
796
797
798 #define RB_FLAG_MASK            3UL
799
800 /* PAGE_MOVED is not part of the mask */
801 #define RB_PAGE_MOVED           4UL
802
803 /*
804  * rb_list_head - remove any bit
805  */
806 static struct list_head *rb_list_head(struct list_head *list)
807 {
808         unsigned long val = (unsigned long)list;
809
810         return (struct list_head *)(val & ~RB_FLAG_MASK);
811 }
812
813 /*
814  * rb_is_head_page - test if the given page is the head page
815  *
816  * Because the reader may move the head_page pointer, we can
817  * not trust what the head page is (it may be pointing to
818  * the reader page). But if the next page is a header page,
819  * its flags will be non zero.
820  */
821 static inline int
822 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
823                 struct buffer_page *page, struct list_head *list)
824 {
825         unsigned long val;
826
827         val = (unsigned long)list->next;
828
829         if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
830                 return RB_PAGE_MOVED;
831
832         return val & RB_FLAG_MASK;
833 }
834
835 /*
836  * rb_is_reader_page
837  *
838  * The unique thing about the reader page, is that, if the
839  * writer is ever on it, the previous pointer never points
840  * back to the reader page.
841  */
842 static int rb_is_reader_page(struct buffer_page *page)
843 {
844         struct list_head *list = page->list.prev;
845
846         return rb_list_head(list->next) != &page->list;
847 }
848
849 /*
850  * rb_set_list_to_head - set a list_head to be pointing to head.
851  */
852 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
853                                 struct list_head *list)
854 {
855         unsigned long *ptr;
856
857         ptr = (unsigned long *)&list->next;
858         *ptr |= RB_PAGE_HEAD;
859         *ptr &= ~RB_PAGE_UPDATE;
860 }
861
862 /*
863  * rb_head_page_activate - sets up head page
864  */
865 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
866 {
867         struct buffer_page *head;
868
869         head = cpu_buffer->head_page;
870         if (!head)
871                 return;
872
873         /*
874          * Set the previous list pointer to have the HEAD flag.
875          */
876         rb_set_list_to_head(cpu_buffer, head->list.prev);
877 }
878
879 static void rb_list_head_clear(struct list_head *list)
880 {
881         unsigned long *ptr = (unsigned long *)&list->next;
882
883         *ptr &= ~RB_FLAG_MASK;
884 }
885
886 /*
887  * rb_head_page_dactivate - clears head page ptr (for free list)
888  */
889 static void
890 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
891 {
892         struct list_head *hd;
893
894         /* Go through the whole list and clear any pointers found. */
895         rb_list_head_clear(cpu_buffer->pages);
896
897         list_for_each(hd, cpu_buffer->pages)
898                 rb_list_head_clear(hd);
899 }
900
901 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
902                             struct buffer_page *head,
903                             struct buffer_page *prev,
904                             int old_flag, int new_flag)
905 {
906         struct list_head *list;
907         unsigned long val = (unsigned long)&head->list;
908         unsigned long ret;
909
910         list = &prev->list;
911
912         val &= ~RB_FLAG_MASK;
913
914         ret = cmpxchg((unsigned long *)&list->next,
915                       val | old_flag, val | new_flag);
916
917         /* check if the reader took the page */
918         if ((ret & ~RB_FLAG_MASK) != val)
919                 return RB_PAGE_MOVED;
920
921         return ret & RB_FLAG_MASK;
922 }
923
924 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
925                                    struct buffer_page *head,
926                                    struct buffer_page *prev,
927                                    int old_flag)
928 {
929         return rb_head_page_set(cpu_buffer, head, prev,
930                                 old_flag, RB_PAGE_UPDATE);
931 }
932
933 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
934                                  struct buffer_page *head,
935                                  struct buffer_page *prev,
936                                  int old_flag)
937 {
938         return rb_head_page_set(cpu_buffer, head, prev,
939                                 old_flag, RB_PAGE_HEAD);
940 }
941
942 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
943                                    struct buffer_page *head,
944                                    struct buffer_page *prev,
945                                    int old_flag)
946 {
947         return rb_head_page_set(cpu_buffer, head, prev,
948                                 old_flag, RB_PAGE_NORMAL);
949 }
950
951 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
952                                struct buffer_page **bpage)
953 {
954         struct list_head *p = rb_list_head((*bpage)->list.next);
955
956         *bpage = list_entry(p, struct buffer_page, list);
957 }
958
959 static struct buffer_page *
960 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
961 {
962         struct buffer_page *head;
963         struct buffer_page *page;
964         struct list_head *list;
965         int i;
966
967         if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
968                 return NULL;
969
970         /* sanity check */
971         list = cpu_buffer->pages;
972         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
973                 return NULL;
974
975         page = head = cpu_buffer->head_page;
976         /*
977          * It is possible that the writer moves the header behind
978          * where we started, and we miss in one loop.
979          * A second loop should grab the header, but we'll do
980          * three loops just because I'm paranoid.
981          */
982         for (i = 0; i < 3; i++) {
983                 do {
984                         if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
985                                 cpu_buffer->head_page = page;
986                                 return page;
987                         }
988                         rb_inc_page(cpu_buffer, &page);
989                 } while (page != head);
990         }
991
992         RB_WARN_ON(cpu_buffer, 1);
993
994         return NULL;
995 }
996
997 static int rb_head_page_replace(struct buffer_page *old,
998                                 struct buffer_page *new)
999 {
1000         unsigned long *ptr = (unsigned long *)&old->list.prev->next;
1001         unsigned long val;
1002         unsigned long ret;
1003
1004         val = *ptr & ~RB_FLAG_MASK;
1005         val |= RB_PAGE_HEAD;
1006
1007         ret = cmpxchg(ptr, val, (unsigned long)&new->list);
1008
1009         return ret == val;
1010 }
1011
1012 /*
1013  * rb_tail_page_update - move the tail page forward
1014  *
1015  * Returns 1 if moved tail page, 0 if someone else did.
1016  */
1017 static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1018                                struct buffer_page *tail_page,
1019                                struct buffer_page *next_page)
1020 {
1021         struct buffer_page *old_tail;
1022         unsigned long old_entries;
1023         unsigned long old_write;
1024         int ret = 0;
1025
1026         /*
1027          * The tail page now needs to be moved forward.
1028          *
1029          * We need to reset the tail page, but without messing
1030          * with possible erasing of data brought in by interrupts
1031          * that have moved the tail page and are currently on it.
1032          *
1033          * We add a counter to the write field to denote this.
1034          */
1035         old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1036         old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1037
1038         /*
1039          * Just make sure we have seen our old_write and synchronize
1040          * with any interrupts that come in.
1041          */
1042         barrier();
1043
1044         /*
1045          * If the tail page is still the same as what we think
1046          * it is, then it is up to us to update the tail
1047          * pointer.
1048          */
1049         if (tail_page == cpu_buffer->tail_page) {
1050                 /* Zero the write counter */
1051                 unsigned long val = old_write & ~RB_WRITE_MASK;
1052                 unsigned long eval = old_entries & ~RB_WRITE_MASK;
1053
1054                 /*
1055                  * This will only succeed if an interrupt did
1056                  * not come in and change it. In which case, we
1057                  * do not want to modify it.
1058                  *
1059                  * We add (void) to let the compiler know that we do not care
1060                  * about the return value of these functions. We use the
1061                  * cmpxchg to only update if an interrupt did not already
1062                  * do it for us. If the cmpxchg fails, we don't care.
1063                  */
1064                 (void)local_cmpxchg(&next_page->write, old_write, val);
1065                 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
1066
1067                 /*
1068                  * No need to worry about races with clearing out the commit.
1069                  * it only can increment when a commit takes place. But that
1070                  * only happens in the outer most nested commit.
1071                  */
1072                 local_set(&next_page->page->commit, 0);
1073
1074                 old_tail = cmpxchg(&cpu_buffer->tail_page,
1075                                    tail_page, next_page);
1076
1077                 if (old_tail == tail_page)
1078                         ret = 1;
1079         }
1080
1081         return ret;
1082 }
1083
1084 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1085                           struct buffer_page *bpage)
1086 {
1087         unsigned long val = (unsigned long)bpage;
1088
1089         if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1090                 return 1;
1091
1092         return 0;
1093 }
1094
1095 /**
1096  * rb_check_list - make sure a pointer to a list has the last bits zero
1097  */
1098 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1099                          struct list_head *list)
1100 {
1101         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1102                 return 1;
1103         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1104                 return 1;
1105         return 0;
1106 }
1107
1108 /**
1109  * rb_check_pages - integrity check of buffer pages
1110  * @cpu_buffer: CPU buffer with pages to test
1111  *
1112  * As a safety measure we check to make sure the data pages have not
1113  * been corrupted.
1114  */
1115 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1116 {
1117         struct list_head *head = cpu_buffer->pages;
1118         struct buffer_page *bpage, *tmp;
1119
1120         /* Reset the head page if it exists */
1121         if (cpu_buffer->head_page)
1122                 rb_set_head_page(cpu_buffer);
1123
1124         rb_head_page_deactivate(cpu_buffer);
1125
1126         if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1127                 return -1;
1128         if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1129                 return -1;
1130
1131         if (rb_check_list(cpu_buffer, head))
1132                 return -1;
1133
1134         list_for_each_entry_safe(bpage, tmp, head, list) {
1135                 if (RB_WARN_ON(cpu_buffer,
1136                                bpage->list.next->prev != &bpage->list))
1137                         return -1;
1138                 if (RB_WARN_ON(cpu_buffer,
1139                                bpage->list.prev->next != &bpage->list))
1140                         return -1;
1141                 if (rb_check_list(cpu_buffer, &bpage->list))
1142                         return -1;
1143         }
1144
1145         rb_head_page_activate(cpu_buffer);
1146
1147         return 0;
1148 }
1149
1150 static int __rb_allocate_pages(int nr_pages, struct list_head *pages, int cpu)
1151 {
1152         int i;
1153         struct buffer_page *bpage, *tmp;
1154
1155         for (i = 0; i < nr_pages; i++) {
1156                 struct page *page;
1157                 /*
1158                  * __GFP_NORETRY flag makes sure that the allocation fails
1159                  * gracefully without invoking oom-killer and the system is
1160                  * not destabilized.
1161                  */
1162                 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1163                                     GFP_KERNEL | __GFP_NORETRY,
1164                                     cpu_to_node(cpu));
1165                 if (!bpage)
1166                         goto free_pages;
1167
1168                 list_add(&bpage->list, pages);
1169
1170                 page = alloc_pages_node(cpu_to_node(cpu),
1171                                         GFP_KERNEL | __GFP_NORETRY, 0);
1172                 if (!page)
1173                         goto free_pages;
1174                 bpage->page = page_address(page);
1175                 rb_init_page(bpage->page);
1176         }
1177
1178         return 0;
1179
1180 free_pages:
1181         list_for_each_entry_safe(bpage, tmp, pages, list) {
1182                 list_del_init(&bpage->list);
1183                 free_buffer_page(bpage);
1184         }
1185
1186         return -ENOMEM;
1187 }
1188
1189 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1190                              unsigned nr_pages)
1191 {
1192         LIST_HEAD(pages);
1193
1194         WARN_ON(!nr_pages);
1195
1196         if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1197                 return -ENOMEM;
1198
1199         /*
1200          * The ring buffer page list is a circular list that does not
1201          * start and end with a list head. All page list items point to
1202          * other pages.
1203          */
1204         cpu_buffer->pages = pages.next;
1205         list_del(&pages);
1206
1207         cpu_buffer->nr_pages = nr_pages;
1208
1209         rb_check_pages(cpu_buffer);
1210
1211         return 0;
1212 }
1213
1214 static struct ring_buffer_per_cpu *
1215 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int nr_pages, int cpu)
1216 {
1217         struct ring_buffer_per_cpu *cpu_buffer;
1218         struct buffer_page *bpage;
1219         struct page *page;
1220         int ret;
1221
1222         cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1223                                   GFP_KERNEL, cpu_to_node(cpu));
1224         if (!cpu_buffer)
1225                 return NULL;
1226
1227         cpu_buffer->cpu = cpu;
1228         cpu_buffer->buffer = buffer;
1229         raw_spin_lock_init(&cpu_buffer->reader_lock);
1230         lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1231         cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1232         INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1233         init_completion(&cpu_buffer->update_done);
1234         init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1235         init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1236
1237         bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1238                             GFP_KERNEL, cpu_to_node(cpu));
1239         if (!bpage)
1240                 goto fail_free_buffer;
1241
1242         rb_check_bpage(cpu_buffer, bpage);
1243
1244         cpu_buffer->reader_page = bpage;
1245         page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1246         if (!page)
1247                 goto fail_free_reader;
1248         bpage->page = page_address(page);
1249         rb_init_page(bpage->page);
1250
1251         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1252         INIT_LIST_HEAD(&cpu_buffer->new_pages);
1253
1254         ret = rb_allocate_pages(cpu_buffer, nr_pages);
1255         if (ret < 0)
1256                 goto fail_free_reader;
1257
1258         cpu_buffer->head_page
1259                 = list_entry(cpu_buffer->pages, struct buffer_page, list);
1260         cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1261
1262         rb_head_page_activate(cpu_buffer);
1263
1264         return cpu_buffer;
1265
1266  fail_free_reader:
1267         free_buffer_page(cpu_buffer->reader_page);
1268
1269  fail_free_buffer:
1270         kfree(cpu_buffer);
1271         return NULL;
1272 }
1273
1274 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1275 {
1276         struct list_head *head = cpu_buffer->pages;
1277         struct buffer_page *bpage, *tmp;
1278
1279         free_buffer_page(cpu_buffer->reader_page);
1280
1281         rb_head_page_deactivate(cpu_buffer);
1282
1283         if (head) {
1284                 list_for_each_entry_safe(bpage, tmp, head, list) {
1285                         list_del_init(&bpage->list);
1286                         free_buffer_page(bpage);
1287                 }
1288                 bpage = list_entry(head, struct buffer_page, list);
1289                 free_buffer_page(bpage);
1290         }
1291
1292         kfree(cpu_buffer);
1293 }
1294
1295 #ifdef CONFIG_HOTPLUG_CPU
1296 static int rb_cpu_notify(struct notifier_block *self,
1297                          unsigned long action, void *hcpu);
1298 #endif
1299
1300 /**
1301  * __ring_buffer_alloc - allocate a new ring_buffer
1302  * @size: the size in bytes per cpu that is needed.
1303  * @flags: attributes to set for the ring buffer.
1304  *
1305  * Currently the only flag that is available is the RB_FL_OVERWRITE
1306  * flag. This flag means that the buffer will overwrite old data
1307  * when the buffer wraps. If this flag is not set, the buffer will
1308  * drop data when the tail hits the head.
1309  */
1310 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1311                                         struct lock_class_key *key)
1312 {
1313         struct ring_buffer *buffer;
1314         int bsize;
1315         int cpu, nr_pages;
1316
1317         /* keep it in its own cache line */
1318         buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1319                          GFP_KERNEL);
1320         if (!buffer)
1321                 return NULL;
1322
1323         if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1324                 goto fail_free_buffer;
1325
1326         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1327         buffer->flags = flags;
1328         buffer->clock = trace_clock_local;
1329         buffer->reader_lock_key = key;
1330
1331         init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1332         init_waitqueue_head(&buffer->irq_work.waiters);
1333
1334         /* need at least two pages */
1335         if (nr_pages < 2)
1336                 nr_pages = 2;
1337
1338         /*
1339          * In case of non-hotplug cpu, if the ring-buffer is allocated
1340          * in early initcall, it will not be notified of secondary cpus.
1341          * In that off case, we need to allocate for all possible cpus.
1342          */
1343 #ifdef CONFIG_HOTPLUG_CPU
1344         cpu_notifier_register_begin();
1345         cpumask_copy(buffer->cpumask, cpu_online_mask);
1346 #else
1347         cpumask_copy(buffer->cpumask, cpu_possible_mask);
1348 #endif
1349         buffer->cpus = nr_cpu_ids;
1350
1351         bsize = sizeof(void *) * nr_cpu_ids;
1352         buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1353                                   GFP_KERNEL);
1354         if (!buffer->buffers)
1355                 goto fail_free_cpumask;
1356
1357         for_each_buffer_cpu(buffer, cpu) {
1358                 buffer->buffers[cpu] =
1359                         rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1360                 if (!buffer->buffers[cpu])
1361                         goto fail_free_buffers;
1362         }
1363
1364 #ifdef CONFIG_HOTPLUG_CPU
1365         buffer->cpu_notify.notifier_call = rb_cpu_notify;
1366         buffer->cpu_notify.priority = 0;
1367         __register_cpu_notifier(&buffer->cpu_notify);
1368         cpu_notifier_register_done();
1369 #endif
1370
1371         mutex_init(&buffer->mutex);
1372
1373         return buffer;
1374
1375  fail_free_buffers:
1376         for_each_buffer_cpu(buffer, cpu) {
1377                 if (buffer->buffers[cpu])
1378                         rb_free_cpu_buffer(buffer->buffers[cpu]);
1379         }
1380         kfree(buffer->buffers);
1381
1382  fail_free_cpumask:
1383         free_cpumask_var(buffer->cpumask);
1384 #ifdef CONFIG_HOTPLUG_CPU
1385         cpu_notifier_register_done();
1386 #endif
1387
1388  fail_free_buffer:
1389         kfree(buffer);
1390         return NULL;
1391 }
1392 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1393
1394 /**
1395  * ring_buffer_free - free a ring buffer.
1396  * @buffer: the buffer to free.
1397  */
1398 void
1399 ring_buffer_free(struct ring_buffer *buffer)
1400 {
1401         int cpu;
1402
1403 #ifdef CONFIG_HOTPLUG_CPU
1404         cpu_notifier_register_begin();
1405         __unregister_cpu_notifier(&buffer->cpu_notify);
1406 #endif
1407
1408         for_each_buffer_cpu(buffer, cpu)
1409                 rb_free_cpu_buffer(buffer->buffers[cpu]);
1410
1411 #ifdef CONFIG_HOTPLUG_CPU
1412         cpu_notifier_register_done();
1413 #endif
1414
1415         kfree(buffer->buffers);
1416         free_cpumask_var(buffer->cpumask);
1417
1418         kfree(buffer);
1419 }
1420 EXPORT_SYMBOL_GPL(ring_buffer_free);
1421
1422 void ring_buffer_set_clock(struct ring_buffer *buffer,
1423                            u64 (*clock)(void))
1424 {
1425         buffer->clock = clock;
1426 }
1427
1428 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1429
1430 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1431 {
1432         return local_read(&bpage->entries) & RB_WRITE_MASK;
1433 }
1434
1435 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1436 {
1437         return local_read(&bpage->write) & RB_WRITE_MASK;
1438 }
1439
1440 static int
1441 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned int nr_pages)
1442 {
1443         struct list_head *tail_page, *to_remove, *next_page;
1444         struct buffer_page *to_remove_page, *tmp_iter_page;
1445         struct buffer_page *last_page, *first_page;
1446         unsigned int nr_removed;
1447         unsigned long head_bit;
1448         int page_entries;
1449
1450         head_bit = 0;
1451
1452         raw_spin_lock_irq(&cpu_buffer->reader_lock);
1453         atomic_inc(&cpu_buffer->record_disabled);
1454         /*
1455          * We don't race with the readers since we have acquired the reader
1456          * lock. We also don't race with writers after disabling recording.
1457          * This makes it easy to figure out the first and the last page to be
1458          * removed from the list. We unlink all the pages in between including
1459          * the first and last pages. This is done in a busy loop so that we
1460          * lose the least number of traces.
1461          * The pages are freed after we restart recording and unlock readers.
1462          */
1463         tail_page = &cpu_buffer->tail_page->list;
1464
1465         /*
1466          * tail page might be on reader page, we remove the next page
1467          * from the ring buffer
1468          */
1469         if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1470                 tail_page = rb_list_head(tail_page->next);
1471         to_remove = tail_page;
1472
1473         /* start of pages to remove */
1474         first_page = list_entry(rb_list_head(to_remove->next),
1475                                 struct buffer_page, list);
1476
1477         for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1478                 to_remove = rb_list_head(to_remove)->next;
1479                 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1480         }
1481
1482         next_page = rb_list_head(to_remove)->next;
1483
1484         /*
1485          * Now we remove all pages between tail_page and next_page.
1486          * Make sure that we have head_bit value preserved for the
1487          * next page
1488          */
1489         tail_page->next = (struct list_head *)((unsigned long)next_page |
1490                                                 head_bit);
1491         next_page = rb_list_head(next_page);
1492         next_page->prev = tail_page;
1493
1494         /* make sure pages points to a valid page in the ring buffer */
1495         cpu_buffer->pages = next_page;
1496
1497         /* update head page */
1498         if (head_bit)
1499                 cpu_buffer->head_page = list_entry(next_page,
1500                                                 struct buffer_page, list);
1501
1502         /*
1503          * change read pointer to make sure any read iterators reset
1504          * themselves
1505          */
1506         cpu_buffer->read = 0;
1507
1508         /* pages are removed, resume tracing and then free the pages */
1509         atomic_dec(&cpu_buffer->record_disabled);
1510         raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1511
1512         RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1513
1514         /* last buffer page to remove */
1515         last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1516                                 list);
1517         tmp_iter_page = first_page;
1518
1519         do {
1520                 to_remove_page = tmp_iter_page;
1521                 rb_inc_page(cpu_buffer, &tmp_iter_page);
1522
1523                 /* update the counters */
1524                 page_entries = rb_page_entries(to_remove_page);
1525                 if (page_entries) {
1526                         /*
1527                          * If something was added to this page, it was full
1528                          * since it is not the tail page. So we deduct the
1529                          * bytes consumed in ring buffer from here.
1530                          * Increment overrun to account for the lost events.
1531                          */
1532                         local_add(page_entries, &cpu_buffer->overrun);
1533                         local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1534                 }
1535
1536                 /*
1537                  * We have already removed references to this list item, just
1538                  * free up the buffer_page and its page
1539                  */
1540                 free_buffer_page(to_remove_page);
1541                 nr_removed--;
1542
1543         } while (to_remove_page != last_page);
1544
1545         RB_WARN_ON(cpu_buffer, nr_removed);
1546
1547         return nr_removed == 0;
1548 }
1549
1550 static int
1551 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1552 {
1553         struct list_head *pages = &cpu_buffer->new_pages;
1554         int retries, success;
1555
1556         raw_spin_lock_irq(&cpu_buffer->reader_lock);
1557         /*
1558          * We are holding the reader lock, so the reader page won't be swapped
1559          * in the ring buffer. Now we are racing with the writer trying to
1560          * move head page and the tail page.
1561          * We are going to adapt the reader page update process where:
1562          * 1. We first splice the start and end of list of new pages between
1563          *    the head page and its previous page.
1564          * 2. We cmpxchg the prev_page->next to point from head page to the
1565          *    start of new pages list.
1566          * 3. Finally, we update the head->prev to the end of new list.
1567          *
1568          * We will try this process 10 times, to make sure that we don't keep
1569          * spinning.
1570          */
1571         retries = 10;
1572         success = 0;
1573         while (retries--) {
1574                 struct list_head *head_page, *prev_page, *r;
1575                 struct list_head *last_page, *first_page;
1576                 struct list_head *head_page_with_bit;
1577
1578                 head_page = &rb_set_head_page(cpu_buffer)->list;
1579                 if (!head_page)
1580                         break;
1581                 prev_page = head_page->prev;
1582
1583                 first_page = pages->next;
1584                 last_page  = pages->prev;
1585
1586                 head_page_with_bit = (struct list_head *)
1587                                      ((unsigned long)head_page | RB_PAGE_HEAD);
1588
1589                 last_page->next = head_page_with_bit;
1590                 first_page->prev = prev_page;
1591
1592                 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1593
1594                 if (r == head_page_with_bit) {
1595                         /*
1596                          * yay, we replaced the page pointer to our new list,
1597                          * now, we just have to update to head page's prev
1598                          * pointer to point to end of list
1599                          */
1600                         head_page->prev = last_page;
1601                         success = 1;
1602                         break;
1603                 }
1604         }
1605
1606         if (success)
1607                 INIT_LIST_HEAD(pages);
1608         /*
1609          * If we weren't successful in adding in new pages, warn and stop
1610          * tracing
1611          */
1612         RB_WARN_ON(cpu_buffer, !success);
1613         raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1614
1615         /* free pages if they weren't inserted */
1616         if (!success) {
1617                 struct buffer_page *bpage, *tmp;
1618                 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1619                                          list) {
1620                         list_del_init(&bpage->list);
1621                         free_buffer_page(bpage);
1622                 }
1623         }
1624         return success;
1625 }
1626
1627 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1628 {
1629         int success;
1630
1631         if (cpu_buffer->nr_pages_to_update > 0)
1632                 success = rb_insert_pages(cpu_buffer);
1633         else
1634                 success = rb_remove_pages(cpu_buffer,
1635                                         -cpu_buffer->nr_pages_to_update);
1636
1637         if (success)
1638                 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1639 }
1640
1641 static void update_pages_handler(struct work_struct *work)
1642 {
1643         struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1644                         struct ring_buffer_per_cpu, update_pages_work);
1645         rb_update_pages(cpu_buffer);
1646         complete(&cpu_buffer->update_done);
1647 }
1648
1649 /**
1650  * ring_buffer_resize - resize the ring buffer
1651  * @buffer: the buffer to resize.
1652  * @size: the new size.
1653  * @cpu_id: the cpu buffer to resize
1654  *
1655  * Minimum size is 2 * BUF_PAGE_SIZE.
1656  *
1657  * Returns 0 on success and < 0 on failure.
1658  */
1659 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1660                         int cpu_id)
1661 {
1662         struct ring_buffer_per_cpu *cpu_buffer;
1663         unsigned nr_pages;
1664         int cpu, err = 0;
1665
1666         /*
1667          * Always succeed at resizing a non-existent buffer:
1668          */
1669         if (!buffer)
1670                 return size;
1671
1672         /* Make sure the requested buffer exists */
1673         if (cpu_id != RING_BUFFER_ALL_CPUS &&
1674             !cpumask_test_cpu(cpu_id, buffer->cpumask))
1675                 return size;
1676
1677         size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1678         size *= BUF_PAGE_SIZE;
1679
1680         /* we need a minimum of two pages */
1681         if (size < BUF_PAGE_SIZE * 2)
1682                 size = BUF_PAGE_SIZE * 2;
1683
1684         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1685
1686         /*
1687          * Don't succeed if resizing is disabled, as a reader might be
1688          * manipulating the ring buffer and is expecting a sane state while
1689          * this is true.
1690          */
1691         if (atomic_read(&buffer->resize_disabled))
1692                 return -EBUSY;
1693
1694         /* prevent another thread from changing buffer sizes */
1695         mutex_lock(&buffer->mutex);
1696
1697         if (cpu_id == RING_BUFFER_ALL_CPUS) {
1698                 /* calculate the pages to update */
1699                 for_each_buffer_cpu(buffer, cpu) {
1700                         cpu_buffer = buffer->buffers[cpu];
1701
1702                         cpu_buffer->nr_pages_to_update = nr_pages -
1703                                                         cpu_buffer->nr_pages;
1704                         /*
1705                          * nothing more to do for removing pages or no update
1706                          */
1707                         if (cpu_buffer->nr_pages_to_update <= 0)
1708                                 continue;
1709                         /*
1710                          * to add pages, make sure all new pages can be
1711                          * allocated without receiving ENOMEM
1712                          */
1713                         INIT_LIST_HEAD(&cpu_buffer->new_pages);
1714                         if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1715                                                 &cpu_buffer->new_pages, cpu)) {
1716                                 /* not enough memory for new pages */
1717                                 err = -ENOMEM;
1718                                 goto out_err;
1719                         }
1720                 }
1721
1722                 get_online_cpus();
1723                 /*
1724                  * Fire off all the required work handlers
1725                  * We can't schedule on offline CPUs, but it's not necessary
1726                  * since we can change their buffer sizes without any race.
1727                  */
1728                 for_each_buffer_cpu(buffer, cpu) {
1729                         cpu_buffer = buffer->buffers[cpu];
1730                         if (!cpu_buffer->nr_pages_to_update)
1731                                 continue;
1732
1733                         /* Can't run something on an offline CPU. */
1734                         if (!cpu_online(cpu)) {
1735                                 rb_update_pages(cpu_buffer);
1736                                 cpu_buffer->nr_pages_to_update = 0;
1737                         } else {
1738                                 schedule_work_on(cpu,
1739                                                 &cpu_buffer->update_pages_work);
1740                         }
1741                 }
1742
1743                 /* wait for all the updates to complete */
1744                 for_each_buffer_cpu(buffer, cpu) {
1745                         cpu_buffer = buffer->buffers[cpu];
1746                         if (!cpu_buffer->nr_pages_to_update)
1747                                 continue;
1748
1749                         if (cpu_online(cpu))
1750                                 wait_for_completion(&cpu_buffer->update_done);
1751                         cpu_buffer->nr_pages_to_update = 0;
1752                 }
1753
1754                 put_online_cpus();
1755         } else {
1756                 /* Make sure this CPU has been intitialized */
1757                 if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1758                         goto out;
1759
1760                 cpu_buffer = buffer->buffers[cpu_id];
1761
1762                 if (nr_pages == cpu_buffer->nr_pages)
1763                         goto out;
1764
1765                 cpu_buffer->nr_pages_to_update = nr_pages -
1766                                                 cpu_buffer->nr_pages;
1767
1768                 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1769                 if (cpu_buffer->nr_pages_to_update > 0 &&
1770                         __rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1771                                             &cpu_buffer->new_pages, cpu_id)) {
1772                         err = -ENOMEM;
1773                         goto out_err;
1774                 }
1775
1776                 get_online_cpus();
1777
1778                 /* Can't run something on an offline CPU. */
1779                 if (!cpu_online(cpu_id))
1780                         rb_update_pages(cpu_buffer);
1781                 else {
1782                         schedule_work_on(cpu_id,
1783                                          &cpu_buffer->update_pages_work);
1784                         wait_for_completion(&cpu_buffer->update_done);
1785                 }
1786
1787                 cpu_buffer->nr_pages_to_update = 0;
1788                 put_online_cpus();
1789         }
1790
1791  out:
1792         /*
1793          * The ring buffer resize can happen with the ring buffer
1794          * enabled, so that the update disturbs the tracing as little
1795          * as possible. But if the buffer is disabled, we do not need
1796          * to worry about that, and we can take the time to verify
1797          * that the buffer is not corrupt.
1798          */
1799         if (atomic_read(&buffer->record_disabled)) {
1800                 atomic_inc(&buffer->record_disabled);
1801                 /*
1802                  * Even though the buffer was disabled, we must make sure
1803                  * that it is truly disabled before calling rb_check_pages.
1804                  * There could have been a race between checking
1805                  * record_disable and incrementing it.
1806                  */
1807                 synchronize_sched();
1808                 for_each_buffer_cpu(buffer, cpu) {
1809                         cpu_buffer = buffer->buffers[cpu];
1810                         rb_check_pages(cpu_buffer);
1811                 }
1812                 atomic_dec(&buffer->record_disabled);
1813         }
1814
1815         mutex_unlock(&buffer->mutex);
1816         return size;
1817
1818  out_err:
1819         for_each_buffer_cpu(buffer, cpu) {
1820                 struct buffer_page *bpage, *tmp;
1821
1822                 cpu_buffer = buffer->buffers[cpu];
1823                 cpu_buffer->nr_pages_to_update = 0;
1824
1825                 if (list_empty(&cpu_buffer->new_pages))
1826                         continue;
1827
1828                 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1829                                         list) {
1830                         list_del_init(&bpage->list);
1831                         free_buffer_page(bpage);
1832                 }
1833         }
1834         mutex_unlock(&buffer->mutex);
1835         return err;
1836 }
1837 EXPORT_SYMBOL_GPL(ring_buffer_resize);
1838
1839 void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1840 {
1841         mutex_lock(&buffer->mutex);
1842         if (val)
1843                 buffer->flags |= RB_FL_OVERWRITE;
1844         else
1845                 buffer->flags &= ~RB_FL_OVERWRITE;
1846         mutex_unlock(&buffer->mutex);
1847 }
1848 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1849
1850 static inline void *
1851 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
1852 {
1853         return bpage->data + index;
1854 }
1855
1856 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1857 {
1858         return bpage->page->data + index;
1859 }
1860
1861 static inline struct ring_buffer_event *
1862 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1863 {
1864         return __rb_page_index(cpu_buffer->reader_page,
1865                                cpu_buffer->reader_page->read);
1866 }
1867
1868 static inline struct ring_buffer_event *
1869 rb_iter_head_event(struct ring_buffer_iter *iter)
1870 {
1871         return __rb_page_index(iter->head_page, iter->head);
1872 }
1873
1874 static inline unsigned rb_page_commit(struct buffer_page *bpage)
1875 {
1876         return local_read(&bpage->page->commit);
1877 }
1878
1879 /* Size is determined by what has been committed */
1880 static inline unsigned rb_page_size(struct buffer_page *bpage)
1881 {
1882         return rb_page_commit(bpage);
1883 }
1884
1885 static inline unsigned
1886 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1887 {
1888         return rb_page_commit(cpu_buffer->commit_page);
1889 }
1890
1891 static inline unsigned
1892 rb_event_index(struct ring_buffer_event *event)
1893 {
1894         unsigned long addr = (unsigned long)event;
1895
1896         return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1897 }
1898
1899 static inline int
1900 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1901                    struct ring_buffer_event *event)
1902 {
1903         unsigned long addr = (unsigned long)event;
1904         unsigned long index;
1905
1906         index = rb_event_index(event);
1907         addr &= PAGE_MASK;
1908
1909         return cpu_buffer->commit_page->page == (void *)addr &&
1910                 rb_commit_index(cpu_buffer) == index;
1911 }
1912
1913 static void
1914 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
1915 {
1916         unsigned long max_count;
1917
1918         /*
1919          * We only race with interrupts and NMIs on this CPU.
1920          * If we own the commit event, then we can commit
1921          * all others that interrupted us, since the interruptions
1922          * are in stack format (they finish before they come
1923          * back to us). This allows us to do a simple loop to
1924          * assign the commit to the tail.
1925          */
1926  again:
1927         max_count = cpu_buffer->nr_pages * 100;
1928
1929         while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
1930                 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
1931                         return;
1932                 if (RB_WARN_ON(cpu_buffer,
1933                                rb_is_reader_page(cpu_buffer->tail_page)))
1934                         return;
1935                 local_set(&cpu_buffer->commit_page->page->commit,
1936                           rb_page_write(cpu_buffer->commit_page));
1937                 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
1938                 cpu_buffer->write_stamp =
1939                         cpu_buffer->commit_page->page->time_stamp;
1940                 /* add barrier to keep gcc from optimizing too much */
1941                 barrier();
1942         }
1943         while (rb_commit_index(cpu_buffer) !=
1944                rb_page_write(cpu_buffer->commit_page)) {
1945
1946                 local_set(&cpu_buffer->commit_page->page->commit,
1947                           rb_page_write(cpu_buffer->commit_page));
1948                 RB_WARN_ON(cpu_buffer,
1949                            local_read(&cpu_buffer->commit_page->page->commit) &
1950                            ~RB_WRITE_MASK);
1951                 barrier();
1952         }
1953
1954         /* again, keep gcc from optimizing */
1955         barrier();
1956
1957         /*
1958          * If an interrupt came in just after the first while loop
1959          * and pushed the tail page forward, we will be left with
1960          * a dangling commit that will never go forward.
1961          */
1962         if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1963                 goto again;
1964 }
1965
1966 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1967 {
1968         cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
1969         cpu_buffer->reader_page->read = 0;
1970 }
1971
1972 static void rb_inc_iter(struct ring_buffer_iter *iter)
1973 {
1974         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1975
1976         /*
1977          * The iterator could be on the reader page (it starts there).
1978          * But the head could have moved, since the reader was
1979          * found. Check for this case and assign the iterator
1980          * to the head page instead of next.
1981          */
1982         if (iter->head_page == cpu_buffer->reader_page)
1983                 iter->head_page = rb_set_head_page(cpu_buffer);
1984         else
1985                 rb_inc_page(cpu_buffer, &iter->head_page);
1986
1987         iter->read_stamp = iter->head_page->page->time_stamp;
1988         iter->head = 0;
1989 }
1990
1991 /* Slow path, do not inline */
1992 static noinline struct ring_buffer_event *
1993 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
1994 {
1995         event->type_len = RINGBUF_TYPE_TIME_EXTEND;
1996
1997         /* Not the first event on the page? */
1998         if (rb_event_index(event)) {
1999                 event->time_delta = delta & TS_MASK;
2000                 event->array[0] = delta >> TS_SHIFT;
2001         } else {
2002                 /* nope, just zero it */
2003                 event->time_delta = 0;
2004                 event->array[0] = 0;
2005         }
2006
2007         return skip_time_extend(event);
2008 }
2009
2010 /**
2011  * rb_update_event - update event type and data
2012  * @event: the event to update
2013  * @type: the type of event
2014  * @length: the size of the event field in the ring buffer
2015  *
2016  * Update the type and data fields of the event. The length
2017  * is the actual size that is written to the ring buffer,
2018  * and with this, we can determine what to place into the
2019  * data field.
2020  */
2021 static void
2022 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2023                 struct ring_buffer_event *event, unsigned length,
2024                 int add_timestamp, u64 delta)
2025 {
2026         /* Only a commit updates the timestamp */
2027         if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
2028                 delta = 0;
2029
2030         /*
2031          * If we need to add a timestamp, then we
2032          * add it to the start of the resevered space.
2033          */
2034         if (unlikely(add_timestamp)) {
2035                 event = rb_add_time_stamp(event, delta);
2036                 length -= RB_LEN_TIME_EXTEND;
2037                 delta = 0;
2038         }
2039
2040         event->time_delta = delta;
2041         length -= RB_EVNT_HDR_SIZE;
2042         if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2043                 event->type_len = 0;
2044                 event->array[0] = length;
2045         } else
2046                 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2047 }
2048
2049 /*
2050  * rb_handle_head_page - writer hit the head page
2051  *
2052  * Returns: +1 to retry page
2053  *           0 to continue
2054  *          -1 on error
2055  */
2056 static int
2057 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
2058                     struct buffer_page *tail_page,
2059                     struct buffer_page *next_page)
2060 {
2061         struct buffer_page *new_head;
2062         int entries;
2063         int type;
2064         int ret;
2065
2066         entries = rb_page_entries(next_page);
2067
2068         /*
2069          * The hard part is here. We need to move the head
2070          * forward, and protect against both readers on
2071          * other CPUs and writers coming in via interrupts.
2072          */
2073         type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
2074                                        RB_PAGE_HEAD);
2075
2076         /*
2077          * type can be one of four:
2078          *  NORMAL - an interrupt already moved it for us
2079          *  HEAD   - we are the first to get here.
2080          *  UPDATE - we are the interrupt interrupting
2081          *           a current move.
2082          *  MOVED  - a reader on another CPU moved the next
2083          *           pointer to its reader page. Give up
2084          *           and try again.
2085          */
2086
2087         switch (type) {
2088         case RB_PAGE_HEAD:
2089                 /*
2090                  * We changed the head to UPDATE, thus
2091                  * it is our responsibility to update
2092                  * the counters.
2093                  */
2094                 local_add(entries, &cpu_buffer->overrun);
2095                 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
2096
2097                 /*
2098                  * The entries will be zeroed out when we move the
2099                  * tail page.
2100                  */
2101
2102                 /* still more to do */
2103                 break;
2104
2105         case RB_PAGE_UPDATE:
2106                 /*
2107                  * This is an interrupt that interrupt the
2108                  * previous update. Still more to do.
2109                  */
2110                 break;
2111         case RB_PAGE_NORMAL:
2112                 /*
2113                  * An interrupt came in before the update
2114                  * and processed this for us.
2115                  * Nothing left to do.
2116                  */
2117                 return 1;
2118         case RB_PAGE_MOVED:
2119                 /*
2120                  * The reader is on another CPU and just did
2121                  * a swap with our next_page.
2122                  * Try again.
2123                  */
2124                 return 1;
2125         default:
2126                 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2127                 return -1;
2128         }
2129
2130         /*
2131          * Now that we are here, the old head pointer is
2132          * set to UPDATE. This will keep the reader from
2133          * swapping the head page with the reader page.
2134          * The reader (on another CPU) will spin till
2135          * we are finished.
2136          *
2137          * We just need to protect against interrupts
2138          * doing the job. We will set the next pointer
2139          * to HEAD. After that, we set the old pointer
2140          * to NORMAL, but only if it was HEAD before.
2141          * otherwise we are an interrupt, and only
2142          * want the outer most commit to reset it.
2143          */
2144         new_head = next_page;
2145         rb_inc_page(cpu_buffer, &new_head);
2146
2147         ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2148                                     RB_PAGE_NORMAL);
2149
2150         /*
2151          * Valid returns are:
2152          *  HEAD   - an interrupt came in and already set it.
2153          *  NORMAL - One of two things:
2154          *            1) We really set it.
2155          *            2) A bunch of interrupts came in and moved
2156          *               the page forward again.
2157          */
2158         switch (ret) {
2159         case RB_PAGE_HEAD:
2160         case RB_PAGE_NORMAL:
2161                 /* OK */
2162                 break;
2163         default:
2164                 RB_WARN_ON(cpu_buffer, 1);
2165                 return -1;
2166         }
2167
2168         /*
2169          * It is possible that an interrupt came in,
2170          * set the head up, then more interrupts came in
2171          * and moved it again. When we get back here,
2172          * the page would have been set to NORMAL but we
2173          * just set it back to HEAD.
2174          *
2175          * How do you detect this? Well, if that happened
2176          * the tail page would have moved.
2177          */
2178         if (ret == RB_PAGE_NORMAL) {
2179                 /*
2180                  * If the tail had moved passed next, then we need
2181                  * to reset the pointer.
2182                  */
2183                 if (cpu_buffer->tail_page != tail_page &&
2184                     cpu_buffer->tail_page != next_page)
2185                         rb_head_page_set_normal(cpu_buffer, new_head,
2186                                                 next_page,
2187                                                 RB_PAGE_HEAD);
2188         }
2189
2190         /*
2191          * If this was the outer most commit (the one that
2192          * changed the original pointer from HEAD to UPDATE),
2193          * then it is up to us to reset it to NORMAL.
2194          */
2195         if (type == RB_PAGE_HEAD) {
2196                 ret = rb_head_page_set_normal(cpu_buffer, next_page,
2197                                               tail_page,
2198                                               RB_PAGE_UPDATE);
2199                 if (RB_WARN_ON(cpu_buffer,
2200                                ret != RB_PAGE_UPDATE))
2201                         return -1;
2202         }
2203
2204         return 0;
2205 }
2206
2207 static unsigned rb_calculate_event_length(unsigned length)
2208 {
2209         struct ring_buffer_event event; /* Used only for sizeof array */
2210
2211         /* zero length can cause confusions */
2212         if (!length)
2213                 length = 1;
2214
2215         if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2216                 length += sizeof(event.array[0]);
2217
2218         length += RB_EVNT_HDR_SIZE;
2219         length = ALIGN(length, RB_ARCH_ALIGNMENT);
2220
2221         return length;
2222 }
2223
2224 static inline void
2225 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2226               struct buffer_page *tail_page,
2227               unsigned long tail, unsigned long length)
2228 {
2229         struct ring_buffer_event *event;
2230
2231         /*
2232          * Only the event that crossed the page boundary
2233          * must fill the old tail_page with padding.
2234          */
2235         if (tail >= BUF_PAGE_SIZE) {
2236                 /*
2237                  * If the page was filled, then we still need
2238                  * to update the real_end. Reset it to zero
2239                  * and the reader will ignore it.
2240                  */
2241                 if (tail == BUF_PAGE_SIZE)
2242                         tail_page->real_end = 0;
2243
2244                 local_sub(length, &tail_page->write);
2245                 return;
2246         }
2247
2248         event = __rb_page_index(tail_page, tail);
2249         kmemcheck_annotate_bitfield(event, bitfield);
2250
2251         /* account for padding bytes */
2252         local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2253
2254         /*
2255          * Save the original length to the meta data.
2256          * This will be used by the reader to add lost event
2257          * counter.
2258          */
2259         tail_page->real_end = tail;
2260
2261         /*
2262          * If this event is bigger than the minimum size, then
2263          * we need to be careful that we don't subtract the
2264          * write counter enough to allow another writer to slip
2265          * in on this page.
2266          * We put in a discarded commit instead, to make sure
2267          * that this space is not used again.
2268          *
2269          * If we are less than the minimum size, we don't need to
2270          * worry about it.
2271          */
2272         if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2273                 /* No room for any events */
2274
2275                 /* Mark the rest of the page with padding */
2276                 rb_event_set_padding(event);
2277
2278                 /* Set the write back to the previous setting */
2279                 local_sub(length, &tail_page->write);
2280                 return;
2281         }
2282
2283         /* Put in a discarded event */
2284         event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2285         event->type_len = RINGBUF_TYPE_PADDING;
2286         /* time delta must be non zero */
2287         event->time_delta = 1;
2288
2289         /* Set write to end of buffer */
2290         length = (tail + length) - BUF_PAGE_SIZE;
2291         local_sub(length, &tail_page->write);
2292 }
2293
2294 /*
2295  * This is the slow path, force gcc not to inline it.
2296  */
2297 static noinline struct ring_buffer_event *
2298 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2299              unsigned long length, unsigned long tail,
2300              struct buffer_page *tail_page, u64 ts)
2301 {
2302         struct buffer_page *commit_page = cpu_buffer->commit_page;
2303         struct ring_buffer *buffer = cpu_buffer->buffer;
2304         struct buffer_page *next_page;
2305         int ret;
2306
2307         next_page = tail_page;
2308
2309         rb_inc_page(cpu_buffer, &next_page);
2310
2311         /*
2312          * If for some reason, we had an interrupt storm that made
2313          * it all the way around the buffer, bail, and warn
2314          * about it.
2315          */
2316         if (unlikely(next_page == commit_page)) {
2317                 local_inc(&cpu_buffer->commit_overrun);
2318                 goto out_reset;
2319         }
2320
2321         /*
2322          * This is where the fun begins!
2323          *
2324          * We are fighting against races between a reader that
2325          * could be on another CPU trying to swap its reader
2326          * page with the buffer head.
2327          *
2328          * We are also fighting against interrupts coming in and
2329          * moving the head or tail on us as well.
2330          *
2331          * If the next page is the head page then we have filled
2332          * the buffer, unless the commit page is still on the
2333          * reader page.
2334          */
2335         if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2336
2337                 /*
2338                  * If the commit is not on the reader page, then
2339                  * move the header page.
2340                  */
2341                 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2342                         /*
2343                          * If we are not in overwrite mode,
2344                          * this is easy, just stop here.
2345                          */
2346                         if (!(buffer->flags & RB_FL_OVERWRITE)) {
2347                                 local_inc(&cpu_buffer->dropped_events);
2348                                 goto out_reset;
2349                         }
2350
2351                         ret = rb_handle_head_page(cpu_buffer,
2352                                                   tail_page,
2353                                                   next_page);
2354                         if (ret < 0)
2355                                 goto out_reset;
2356                         if (ret)
2357                                 goto out_again;
2358                 } else {
2359                         /*
2360                          * We need to be careful here too. The
2361                          * commit page could still be on the reader
2362                          * page. We could have a small buffer, and
2363                          * have filled up the buffer with events
2364                          * from interrupts and such, and wrapped.
2365                          *
2366                          * Note, if the tail page is also the on the
2367                          * reader_page, we let it move out.
2368                          */
2369                         if (unlikely((cpu_buffer->commit_page !=
2370                                       cpu_buffer->tail_page) &&
2371                                      (cpu_buffer->commit_page ==
2372                                       cpu_buffer->reader_page))) {
2373                                 local_inc(&cpu_buffer->commit_overrun);
2374                                 goto out_reset;
2375                         }
2376                 }
2377         }
2378
2379         ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
2380         if (ret) {
2381                 /*
2382                  * Nested commits always have zero deltas, so
2383                  * just reread the time stamp
2384                  */
2385                 ts = rb_time_stamp(buffer);
2386                 next_page->page->time_stamp = ts;
2387         }
2388
2389  out_again:
2390
2391         rb_reset_tail(cpu_buffer, tail_page, tail, length);
2392
2393         /* fail and let the caller try again */
2394         return ERR_PTR(-EAGAIN);
2395
2396  out_reset:
2397         /* reset write */
2398         rb_reset_tail(cpu_buffer, tail_page, tail, length);
2399
2400         return NULL;
2401 }
2402
2403 static struct ring_buffer_event *
2404 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
2405                   unsigned long length, u64 ts,
2406                   u64 delta, int add_timestamp)
2407 {
2408         struct buffer_page *tail_page;
2409         struct ring_buffer_event *event;
2410         unsigned long tail, write;
2411
2412         /*
2413          * If the time delta since the last event is too big to
2414          * hold in the time field of the event, then we append a
2415          * TIME EXTEND event ahead of the data event.
2416          */
2417         if (unlikely(add_timestamp))
2418                 length += RB_LEN_TIME_EXTEND;
2419
2420         tail_page = cpu_buffer->tail_page;
2421         write = local_add_return(length, &tail_page->write);
2422
2423         /* set write to only the index of the write */
2424         write &= RB_WRITE_MASK;
2425         tail = write - length;
2426
2427         /*
2428          * If this is the first commit on the page, then it has the same
2429          * timestamp as the page itself.
2430          */
2431         if (!tail)
2432                 delta = 0;
2433
2434         /* See if we shot pass the end of this buffer page */
2435         if (unlikely(write > BUF_PAGE_SIZE))
2436                 return rb_move_tail(cpu_buffer, length, tail,
2437                                     tail_page, ts);
2438
2439         /* We reserved something on the buffer */
2440
2441         event = __rb_page_index(tail_page, tail);
2442         kmemcheck_annotate_bitfield(event, bitfield);
2443         rb_update_event(cpu_buffer, event, length, add_timestamp, delta);
2444
2445         local_inc(&tail_page->entries);
2446
2447         /*
2448          * If this is the first commit on the page, then update
2449          * its timestamp.
2450          */
2451         if (!tail)
2452                 tail_page->page->time_stamp = ts;
2453
2454         /* account for these added bytes */
2455         local_add(length, &cpu_buffer->entries_bytes);
2456
2457         return event;
2458 }
2459
2460 static inline int
2461 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2462                   struct ring_buffer_event *event)
2463 {
2464         unsigned long new_index, old_index;
2465         struct buffer_page *bpage;
2466         unsigned long index;
2467         unsigned long addr;
2468
2469         new_index = rb_event_index(event);
2470         old_index = new_index + rb_event_ts_length(event);
2471         addr = (unsigned long)event;
2472         addr &= PAGE_MASK;
2473
2474         bpage = cpu_buffer->tail_page;
2475
2476         if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2477                 unsigned long write_mask =
2478                         local_read(&bpage->write) & ~RB_WRITE_MASK;
2479                 unsigned long event_length = rb_event_length(event);
2480                 /*
2481                  * This is on the tail page. It is possible that
2482                  * a write could come in and move the tail page
2483                  * and write to the next page. That is fine
2484                  * because we just shorten what is on this page.
2485                  */
2486                 old_index += write_mask;
2487                 new_index += write_mask;
2488                 index = local_cmpxchg(&bpage->write, old_index, new_index);
2489                 if (index == old_index) {
2490                         /* update counters */
2491                         local_sub(event_length, &cpu_buffer->entries_bytes);
2492                         return 1;
2493                 }
2494         }
2495
2496         /* could not discard */
2497         return 0;
2498 }
2499
2500 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2501 {
2502         local_inc(&cpu_buffer->committing);
2503         local_inc(&cpu_buffer->commits);
2504 }
2505
2506 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2507 {
2508         unsigned long commits;
2509
2510         if (RB_WARN_ON(cpu_buffer,
2511                        !local_read(&cpu_buffer->committing)))
2512                 return;
2513
2514  again:
2515         commits = local_read(&cpu_buffer->commits);
2516         /* synchronize with interrupts */
2517         barrier();
2518         if (local_read(&cpu_buffer->committing) == 1)
2519                 rb_set_commit_to_write(cpu_buffer);
2520
2521         local_dec(&cpu_buffer->committing);
2522
2523         /* synchronize with interrupts */
2524         barrier();
2525
2526         /*
2527          * Need to account for interrupts coming in between the
2528          * updating of the commit page and the clearing of the
2529          * committing counter.
2530          */
2531         if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2532             !local_read(&cpu_buffer->committing)) {
2533                 local_inc(&cpu_buffer->committing);
2534                 goto again;
2535         }
2536 }
2537
2538 static struct ring_buffer_event *
2539 rb_reserve_next_event(struct ring_buffer *buffer,
2540                       struct ring_buffer_per_cpu *cpu_buffer,
2541                       unsigned long length)
2542 {
2543         struct ring_buffer_event *event;
2544         u64 ts, delta;
2545         int nr_loops = 0;
2546         int add_timestamp;
2547         u64 diff;
2548
2549         rb_start_commit(cpu_buffer);
2550
2551 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2552         /*
2553          * Due to the ability to swap a cpu buffer from a buffer
2554          * it is possible it was swapped before we committed.
2555          * (committing stops a swap). We check for it here and
2556          * if it happened, we have to fail the write.
2557          */
2558         barrier();
2559         if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2560                 local_dec(&cpu_buffer->committing);
2561                 local_dec(&cpu_buffer->commits);
2562                 return NULL;
2563         }
2564 #endif
2565
2566         length = rb_calculate_event_length(length);
2567  again:
2568         add_timestamp = 0;
2569         delta = 0;
2570
2571         /*
2572          * We allow for interrupts to reenter here and do a trace.
2573          * If one does, it will cause this original code to loop
2574          * back here. Even with heavy interrupts happening, this
2575          * should only happen a few times in a row. If this happens
2576          * 1000 times in a row, there must be either an interrupt
2577          * storm or we have something buggy.
2578          * Bail!
2579          */
2580         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2581                 goto out_fail;
2582
2583         ts = rb_time_stamp(cpu_buffer->buffer);
2584         diff = ts - cpu_buffer->write_stamp;
2585
2586         /* make sure this diff is calculated here */
2587         barrier();
2588
2589         /* Did the write stamp get updated already? */
2590         if (likely(ts >= cpu_buffer->write_stamp)) {
2591                 delta = diff;
2592                 if (unlikely(test_time_stamp(delta))) {
2593                         int local_clock_stable = 1;
2594 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2595                         local_clock_stable = sched_clock_stable();
2596 #endif
2597                         WARN_ONCE(delta > (1ULL << 59),
2598                                   KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2599                                   (unsigned long long)delta,
2600                                   (unsigned long long)ts,
2601                                   (unsigned long long)cpu_buffer->write_stamp,
2602                                   local_clock_stable ? "" :
2603                                   "If you just came from a suspend/resume,\n"
2604                                   "please switch to the trace global clock:\n"
2605                                   "  echo global > /sys/kernel/debug/tracing/trace_clock\n");
2606                         add_timestamp = 1;
2607                 }
2608         }
2609
2610         event = __rb_reserve_next(cpu_buffer, length, ts,
2611                                   delta, add_timestamp);
2612         if (unlikely(PTR_ERR(event) == -EAGAIN))
2613                 goto again;
2614
2615         if (!event)
2616                 goto out_fail;
2617
2618         return event;
2619
2620  out_fail:
2621         rb_end_commit(cpu_buffer);
2622         return NULL;
2623 }
2624
2625 #ifdef CONFIG_TRACING
2626
2627 /*
2628  * The lock and unlock are done within a preempt disable section.
2629  * The current_context per_cpu variable can only be modified
2630  * by the current task between lock and unlock. But it can
2631  * be modified more than once via an interrupt. To pass this
2632  * information from the lock to the unlock without having to
2633  * access the 'in_interrupt()' functions again (which do show
2634  * a bit of overhead in something as critical as function tracing,
2635  * we use a bitmask trick.
2636  *
2637  *  bit 0 =  NMI context
2638  *  bit 1 =  IRQ context
2639  *  bit 2 =  SoftIRQ context
2640  *  bit 3 =  normal context.
2641  *
2642  * This works because this is the order of contexts that can
2643  * preempt other contexts. A SoftIRQ never preempts an IRQ
2644  * context.
2645  *
2646  * When the context is determined, the corresponding bit is
2647  * checked and set (if it was set, then a recursion of that context
2648  * happened).
2649  *
2650  * On unlock, we need to clear this bit. To do so, just subtract
2651  * 1 from the current_context and AND it to itself.
2652  *
2653  * (binary)
2654  *  101 - 1 = 100
2655  *  101 & 100 = 100 (clearing bit zero)
2656  *
2657  *  1010 - 1 = 1001
2658  *  1010 & 1001 = 1000 (clearing bit 1)
2659  *
2660  * The least significant bit can be cleared this way, and it
2661  * just so happens that it is the same bit corresponding to
2662  * the current context.
2663  */
2664 static DEFINE_PER_CPU(unsigned int, current_context);
2665
2666 static __always_inline int trace_recursive_lock(void)
2667 {
2668         unsigned int val = this_cpu_read(current_context);
2669         int bit;
2670
2671         if (in_interrupt()) {
2672                 if (in_nmi())
2673                         bit = 0;
2674                 else if (in_irq())
2675                         bit = 1;
2676                 else
2677                         bit = 2;
2678         } else
2679                 bit = 3;
2680
2681         if (unlikely(val & (1 << bit)))
2682                 return 1;
2683
2684         val |= (1 << bit);
2685         this_cpu_write(current_context, val);
2686
2687         return 0;
2688 }
2689
2690 static __always_inline void trace_recursive_unlock(void)
2691 {
2692         unsigned int val = this_cpu_read(current_context);
2693
2694         val--;
2695         val &= this_cpu_read(current_context);
2696         this_cpu_write(current_context, val);
2697 }
2698
2699 #else
2700
2701 #define trace_recursive_lock()          (0)
2702 #define trace_recursive_unlock()        do { } while (0)
2703
2704 #endif
2705
2706 /**
2707  * ring_buffer_lock_reserve - reserve a part of the buffer
2708  * @buffer: the ring buffer to reserve from
2709  * @length: the length of the data to reserve (excluding event header)
2710  *
2711  * Returns a reseverd event on the ring buffer to copy directly to.
2712  * The user of this interface will need to get the body to write into
2713  * and can use the ring_buffer_event_data() interface.
2714  *
2715  * The length is the length of the data needed, not the event length
2716  * which also includes the event header.
2717  *
2718  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2719  * If NULL is returned, then nothing has been allocated or locked.
2720  */
2721 struct ring_buffer_event *
2722 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2723 {
2724         struct ring_buffer_per_cpu *cpu_buffer;
2725         struct ring_buffer_event *event;
2726         int cpu;
2727
2728         if (ring_buffer_flags != RB_BUFFERS_ON)
2729                 return NULL;
2730
2731         /* If we are tracing schedule, we don't want to recurse */
2732         preempt_disable_notrace();
2733
2734         if (atomic_read(&buffer->record_disabled))
2735                 goto out_nocheck;
2736
2737         if (trace_recursive_lock())
2738                 goto out_nocheck;
2739
2740         cpu = raw_smp_processor_id();
2741
2742         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2743                 goto out;
2744
2745         cpu_buffer = buffer->buffers[cpu];
2746
2747         if (atomic_read(&cpu_buffer->record_disabled))
2748                 goto out;
2749
2750         if (length > BUF_MAX_DATA_SIZE)
2751                 goto out;
2752
2753         event = rb_reserve_next_event(buffer, cpu_buffer, length);
2754         if (!event)
2755                 goto out;
2756
2757         return event;
2758
2759  out:
2760         trace_recursive_unlock();
2761
2762  out_nocheck:
2763         preempt_enable_notrace();
2764         return NULL;
2765 }
2766 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2767
2768 static void
2769 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2770                       struct ring_buffer_event *event)
2771 {
2772         u64 delta;
2773
2774         /*
2775          * The event first in the commit queue updates the
2776          * time stamp.
2777          */
2778         if (rb_event_is_commit(cpu_buffer, event)) {
2779                 /*
2780                  * A commit event that is first on a page
2781                  * updates the write timestamp with the page stamp
2782                  */
2783                 if (!rb_event_index(event))
2784                         cpu_buffer->write_stamp =
2785                                 cpu_buffer->commit_page->page->time_stamp;
2786                 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2787                         delta = event->array[0];
2788                         delta <<= TS_SHIFT;
2789                         delta += event->time_delta;
2790                         cpu_buffer->write_stamp += delta;
2791                 } else
2792                         cpu_buffer->write_stamp += event->time_delta;
2793         }
2794 }
2795
2796 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2797                       struct ring_buffer_event *event)
2798 {
2799         local_inc(&cpu_buffer->entries);
2800         rb_update_write_stamp(cpu_buffer, event);
2801         rb_end_commit(cpu_buffer);
2802 }
2803
2804 static __always_inline void
2805 rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2806 {
2807         if (buffer->irq_work.waiters_pending) {
2808                 buffer->irq_work.waiters_pending = false;
2809                 /* irq_work_queue() supplies it's own memory barriers */
2810                 irq_work_queue(&buffer->irq_work.work);
2811         }
2812
2813         if (cpu_buffer->irq_work.waiters_pending) {
2814                 cpu_buffer->irq_work.waiters_pending = false;
2815                 /* irq_work_queue() supplies it's own memory barriers */
2816                 irq_work_queue(&cpu_buffer->irq_work.work);
2817         }
2818 }
2819
2820 /**
2821  * ring_buffer_unlock_commit - commit a reserved
2822  * @buffer: The buffer to commit to
2823  * @event: The event pointer to commit.
2824  *
2825  * This commits the data to the ring buffer, and releases any locks held.
2826  *
2827  * Must be paired with ring_buffer_lock_reserve.
2828  */
2829 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2830                               struct ring_buffer_event *event)
2831 {
2832         struct ring_buffer_per_cpu *cpu_buffer;
2833         int cpu = raw_smp_processor_id();
2834
2835         cpu_buffer = buffer->buffers[cpu];
2836
2837         rb_commit(cpu_buffer, event);
2838
2839         rb_wakeups(buffer, cpu_buffer);
2840
2841         trace_recursive_unlock();
2842
2843         preempt_enable_notrace();
2844
2845         return 0;
2846 }
2847 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2848
2849 static inline void rb_event_discard(struct ring_buffer_event *event)
2850 {
2851         if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2852                 event = skip_time_extend(event);
2853
2854         /* array[0] holds the actual length for the discarded event */
2855         event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2856         event->type_len = RINGBUF_TYPE_PADDING;
2857         /* time delta must be non zero */
2858         if (!event->time_delta)
2859                 event->time_delta = 1;
2860 }
2861
2862 /*
2863  * Decrement the entries to the page that an event is on.
2864  * The event does not even need to exist, only the pointer
2865  * to the page it is on. This may only be called before the commit
2866  * takes place.
2867  */
2868 static inline void
2869 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2870                    struct ring_buffer_event *event)
2871 {
2872         unsigned long addr = (unsigned long)event;
2873         struct buffer_page *bpage = cpu_buffer->commit_page;
2874         struct buffer_page *start;
2875
2876         addr &= PAGE_MASK;
2877
2878         /* Do the likely case first */
2879         if (likely(bpage->page == (void *)addr)) {
2880                 local_dec(&bpage->entries);
2881                 return;
2882         }
2883
2884         /*
2885          * Because the commit page may be on the reader page we
2886          * start with the next page and check the end loop there.
2887          */
2888         rb_inc_page(cpu_buffer, &bpage);
2889         start = bpage;
2890         do {
2891                 if (bpage->page == (void *)addr) {
2892                         local_dec(&bpage->entries);
2893                         return;
2894                 }
2895                 rb_inc_page(cpu_buffer, &bpage);
2896         } while (bpage != start);
2897
2898         /* commit not part of this buffer?? */
2899         RB_WARN_ON(cpu_buffer, 1);
2900 }
2901
2902 /**
2903  * ring_buffer_commit_discard - discard an event that has not been committed
2904  * @buffer: the ring buffer
2905  * @event: non committed event to discard
2906  *
2907  * Sometimes an event that is in the ring buffer needs to be ignored.
2908  * This function lets the user discard an event in the ring buffer
2909  * and then that event will not be read later.
2910  *
2911  * This function only works if it is called before the the item has been
2912  * committed. It will try to free the event from the ring buffer
2913  * if another event has not been added behind it.
2914  *
2915  * If another event has been added behind it, it will set the event
2916  * up as discarded, and perform the commit.
2917  *
2918  * If this function is called, do not call ring_buffer_unlock_commit on
2919  * the event.
2920  */
2921 void ring_buffer_discard_commit(struct ring_buffer *buffer,
2922                                 struct ring_buffer_event *event)
2923 {
2924         struct ring_buffer_per_cpu *cpu_buffer;
2925         int cpu;
2926
2927         /* The event is discarded regardless */
2928         rb_event_discard(event);
2929
2930         cpu = smp_processor_id();
2931         cpu_buffer = buffer->buffers[cpu];
2932
2933         /*
2934          * This must only be called if the event has not been
2935          * committed yet. Thus we can assume that preemption
2936          * is still disabled.
2937          */
2938         RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
2939
2940         rb_decrement_entry(cpu_buffer, event);
2941         if (rb_try_to_discard(cpu_buffer, event))
2942                 goto out;
2943
2944         /*
2945          * The commit is still visible by the reader, so we
2946          * must still update the timestamp.
2947          */
2948         rb_update_write_stamp(cpu_buffer, event);
2949  out:
2950         rb_end_commit(cpu_buffer);
2951
2952         trace_recursive_unlock();
2953
2954         preempt_enable_notrace();
2955
2956 }
2957 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2958
2959 /**
2960  * ring_buffer_write - write data to the buffer without reserving
2961  * @buffer: The ring buffer to write to.
2962  * @length: The length of the data being written (excluding the event header)
2963  * @data: The data to write to the buffer.
2964  *
2965  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2966  * one function. If you already have the data to write to the buffer, it
2967  * may be easier to simply call this function.
2968  *
2969  * Note, like ring_buffer_lock_reserve, the length is the length of the data
2970  * and not the length of the event which would hold the header.
2971  */
2972 int ring_buffer_write(struct ring_buffer *buffer,
2973                       unsigned long length,
2974                       void *data)
2975 {
2976         struct ring_buffer_per_cpu *cpu_buffer;
2977         struct ring_buffer_event *event;
2978         void *body;
2979         int ret = -EBUSY;
2980         int cpu;
2981
2982         if (ring_buffer_flags != RB_BUFFERS_ON)
2983                 return -EBUSY;
2984
2985         preempt_disable_notrace();
2986
2987         if (atomic_read(&buffer->record_disabled))
2988                 goto out;
2989
2990         cpu = raw_smp_processor_id();
2991
2992         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2993                 goto out;
2994
2995         cpu_buffer = buffer->buffers[cpu];
2996
2997         if (atomic_read(&cpu_buffer->record_disabled))
2998                 goto out;
2999
3000         if (length > BUF_MAX_DATA_SIZE)
3001                 goto out;
3002
3003         event = rb_reserve_next_event(buffer, cpu_buffer, length);
3004         if (!event)
3005                 goto out;
3006
3007         body = rb_event_data(event);
3008
3009         memcpy(body, data, length);
3010
3011         rb_commit(cpu_buffer, event);
3012
3013         rb_wakeups(buffer, cpu_buffer);
3014
3015         ret = 0;
3016  out:
3017         preempt_enable_notrace();
3018
3019         return ret;
3020 }
3021 EXPORT_SYMBOL_GPL(ring_buffer_write);
3022
3023 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
3024 {
3025         struct buffer_page *reader = cpu_buffer->reader_page;
3026         struct buffer_page *head = rb_set_head_page(cpu_buffer);
3027         struct buffer_page *commit = cpu_buffer->commit_page;
3028
3029         /* In case of error, head will be NULL */
3030         if (unlikely(!head))
3031                 return 1;
3032
3033         return reader->read == rb_page_commit(reader) &&
3034                 (commit == reader ||
3035                  (commit == head &&
3036                   head->read == rb_page_commit(commit)));
3037 }
3038
3039 /**
3040  * ring_buffer_record_disable - stop all writes into the buffer
3041  * @buffer: The ring buffer to stop writes to.
3042  *
3043  * This prevents all writes to the buffer. Any attempt to write
3044  * to the buffer after this will fail and return NULL.
3045  *
3046  * The caller should call synchronize_sched() after this.
3047  */
3048 void ring_buffer_record_disable(struct ring_buffer *buffer)
3049 {
3050         atomic_inc(&buffer->record_disabled);
3051 }
3052 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3053
3054 /**
3055  * ring_buffer_record_enable - enable writes to the buffer
3056  * @buffer: The ring buffer to enable writes
3057  *
3058  * Note, multiple disables will need the same number of enables
3059  * to truly enable the writing (much like preempt_disable).
3060  */
3061 void ring_buffer_record_enable(struct ring_buffer *buffer)
3062 {
3063         atomic_dec(&buffer->record_disabled);
3064 }
3065 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
3066
3067 /**
3068  * ring_buffer_record_off - stop all writes into the buffer
3069  * @buffer: The ring buffer to stop writes to.
3070  *
3071  * This prevents all writes to the buffer. Any attempt to write
3072  * to the buffer after this will fail and return NULL.
3073  *
3074  * This is different than ring_buffer_record_disable() as
3075  * it works like an on/off switch, where as the disable() version
3076  * must be paired with a enable().
3077  */
3078 void ring_buffer_record_off(struct ring_buffer *buffer)
3079 {
3080         unsigned int rd;
3081         unsigned int new_rd;
3082
3083         do {
3084                 rd = atomic_read(&buffer->record_disabled);
3085                 new_rd = rd | RB_BUFFER_OFF;
3086         } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3087 }
3088 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3089
3090 /**
3091  * ring_buffer_record_on - restart writes into the buffer
3092  * @buffer: The ring buffer to start writes to.
3093  *
3094  * This enables all writes to the buffer that was disabled by
3095  * ring_buffer_record_off().
3096  *
3097  * This is different than ring_buffer_record_enable() as
3098  * it works like an on/off switch, where as the enable() version
3099  * must be paired with a disable().
3100  */
3101 void ring_buffer_record_on(struct ring_buffer *buffer)
3102 {
3103         unsigned int rd;
3104         unsigned int new_rd;
3105
3106         do {
3107                 rd = atomic_read(&buffer->record_disabled);
3108                 new_rd = rd & ~RB_BUFFER_OFF;
3109         } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3110 }
3111 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3112
3113 /**
3114  * ring_buffer_record_is_on - return true if the ring buffer can write
3115  * @buffer: The ring buffer to see if write is enabled
3116  *
3117  * Returns true if the ring buffer is in a state that it accepts writes.
3118  */
3119 int ring_buffer_record_is_on(struct ring_buffer *buffer)
3120 {
3121         return !atomic_read(&buffer->record_disabled);
3122 }
3123
3124 /**
3125  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3126  * @buffer: The ring buffer to stop writes to.
3127  * @cpu: The CPU buffer to stop
3128  *
3129  * This prevents all writes to the buffer. Any attempt to write
3130  * to the buffer after this will fail and return NULL.
3131  *
3132  * The caller should call synchronize_sched() after this.
3133  */
3134 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
3135 {
3136         struct ring_buffer_per_cpu *cpu_buffer;
3137
3138         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3139                 return;
3140
3141         cpu_buffer = buffer->buffers[cpu];
3142         atomic_inc(&cpu_buffer->record_disabled);
3143 }
3144 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
3145
3146 /**
3147  * ring_buffer_record_enable_cpu - enable writes to the buffer
3148  * @buffer: The ring buffer to enable writes
3149  * @cpu: The CPU to enable.
3150  *
3151  * Note, multiple disables will need the same number of enables
3152  * to truly enable the writing (much like preempt_disable).
3153  */
3154 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
3155 {
3156         struct ring_buffer_per_cpu *cpu_buffer;
3157
3158         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3159                 return;
3160
3161         cpu_buffer = buffer->buffers[cpu];
3162         atomic_dec(&cpu_buffer->record_disabled);
3163 }
3164 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
3165
3166 /*
3167  * The total entries in the ring buffer is the running counter
3168  * of entries entered into the ring buffer, minus the sum of
3169  * the entries read from the ring buffer and the number of
3170  * entries that were overwritten.
3171  */
3172 static inline unsigned long
3173 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3174 {
3175         return local_read(&cpu_buffer->entries) -
3176                 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3177 }
3178
3179 /**
3180  * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3181  * @buffer: The ring buffer
3182  * @cpu: The per CPU buffer to read from.
3183  */
3184 u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
3185 {
3186         unsigned long flags;
3187         struct ring_buffer_per_cpu *cpu_buffer;
3188         struct buffer_page *bpage;
3189         u64 ret = 0;
3190
3191         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3192                 return 0;
3193
3194         cpu_buffer = buffer->buffers[cpu];
3195         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3196         /*
3197          * if the tail is on reader_page, oldest time stamp is on the reader
3198          * page
3199          */
3200         if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3201                 bpage = cpu_buffer->reader_page;
3202         else
3203                 bpage = rb_set_head_page(cpu_buffer);
3204         if (bpage)
3205                 ret = bpage->page->time_stamp;
3206         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3207
3208         return ret;
3209 }
3210 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3211
3212 /**
3213  * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3214  * @buffer: The ring buffer
3215  * @cpu: The per CPU buffer to read from.
3216  */
3217 unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
3218 {
3219         struct ring_buffer_per_cpu *cpu_buffer;
3220         unsigned long ret;
3221
3222         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3223                 return 0;
3224
3225         cpu_buffer = buffer->buffers[cpu];
3226         ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3227
3228         return ret;
3229 }
3230 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3231
3232 /**
3233  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3234  * @buffer: The ring buffer
3235  * @cpu: The per CPU buffer to get the entries from.
3236  */
3237 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
3238 {
3239         struct ring_buffer_per_cpu *cpu_buffer;
3240
3241         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3242                 return 0;
3243
3244         cpu_buffer = buffer->buffers[cpu];
3245
3246         return rb_num_of_entries(cpu_buffer);
3247 }
3248 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
3249
3250 /**
3251  * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3252  * buffer wrapping around (only if RB_FL_OVERWRITE is on).
3253  * @buffer: The ring buffer
3254  * @cpu: The per CPU buffer to get the number of overruns from
3255  */
3256 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
3257 {
3258         struct ring_buffer_per_cpu *cpu_buffer;
3259         unsigned long ret;
3260
3261         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3262                 return 0;
3263
3264         cpu_buffer = buffer->buffers[cpu];
3265         ret = local_read(&cpu_buffer->overrun);
3266
3267         return ret;
3268 }
3269 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
3270
3271 /**
3272  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3273  * commits failing due to the buffer wrapping around while there are uncommitted
3274  * events, such as during an interrupt storm.
3275  * @buffer: The ring buffer
3276  * @cpu: The per CPU buffer to get the number of overruns from
3277  */
3278 unsigned long
3279 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3280 {
3281         struct ring_buffer_per_cpu *cpu_buffer;
3282         unsigned long ret;
3283
3284         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3285                 return 0;
3286
3287         cpu_buffer = buffer->buffers[cpu];
3288         ret = local_read(&cpu_buffer->commit_overrun);
3289
3290         return ret;
3291 }
3292 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3293
3294 /**
3295  * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3296  * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3297  * @buffer: The ring buffer
3298  * @cpu: The per CPU buffer to get the number of overruns from
3299  */
3300 unsigned long
3301 ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu)
3302 {
3303         struct ring_buffer_per_cpu *cpu_buffer;
3304         unsigned long ret;
3305
3306         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3307                 return 0;
3308
3309         cpu_buffer = buffer->buffers[cpu];
3310         ret = local_read(&cpu_buffer->dropped_events);
3311
3312         return ret;
3313 }
3314 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3315
3316 /**
3317  * ring_buffer_read_events_cpu - get the number of events successfully read
3318  * @buffer: The ring buffer
3319  * @cpu: The per CPU buffer to get the number of events read
3320  */
3321 unsigned long
3322 ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu)
3323 {
3324         struct ring_buffer_per_cpu *cpu_buffer;
3325
3326         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3327                 return 0;
3328
3329         cpu_buffer = buffer->buffers[cpu];
3330         return cpu_buffer->read;
3331 }
3332 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3333
3334 /**
3335  * ring_buffer_entries - get the number of entries in a buffer
3336  * @buffer: The ring buffer
3337  *
3338  * Returns the total number of entries in the ring buffer
3339  * (all CPU entries)
3340  */
3341 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3342 {
3343         struct ring_buffer_per_cpu *cpu_buffer;
3344         unsigned long entries = 0;
3345         int cpu;
3346
3347         /* if you care about this being correct, lock the buffer */
3348         for_each_buffer_cpu(buffer, cpu) {
3349                 cpu_buffer = buffer->buffers[cpu];
3350                 entries += rb_num_of_entries(cpu_buffer);
3351         }
3352
3353         return entries;
3354 }
3355 EXPORT_SYMBOL_GPL(ring_buffer_entries);
3356
3357 /**
3358  * ring_buffer_overruns - get the number of overruns in buffer
3359  * @buffer: The ring buffer
3360  *
3361  * Returns the total number of overruns in the ring buffer
3362  * (all CPU entries)
3363  */
3364 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3365 {
3366         struct ring_buffer_per_cpu *cpu_buffer;
3367         unsigned long overruns = 0;
3368         int cpu;
3369
3370         /* if you care about this being correct, lock the buffer */
3371         for_each_buffer_cpu(buffer, cpu) {
3372                 cpu_buffer = buffer->buffers[cpu];
3373                 overruns += local_read(&cpu_buffer->overrun);
3374         }
3375
3376         return overruns;
3377 }
3378 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
3379
3380 static void rb_iter_reset(struct ring_buffer_iter *iter)
3381 {
3382         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3383
3384         /* Iterator usage is expected to have record disabled */
3385         iter->head_page = cpu_buffer->reader_page;
3386         iter->head = cpu_buffer->reader_page->read;
3387
3388         iter->cache_reader_page = iter->head_page;
3389         iter->cache_read = cpu_buffer->read;
3390
3391         if (iter->head)
3392                 iter->read_stamp = cpu_buffer->read_stamp;
3393         else
3394                 iter->read_stamp = iter->head_page->page->time_stamp;
3395 }
3396
3397 /**
3398  * ring_buffer_iter_reset - reset an iterator
3399  * @iter: The iterator to reset
3400  *
3401  * Resets the iterator, so that it will start from the beginning
3402  * again.
3403  */
3404 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3405 {
3406         struct ring_buffer_per_cpu *cpu_buffer;
3407         unsigned long flags;
3408
3409         if (!iter)
3410                 return;
3411
3412         cpu_buffer = iter->cpu_buffer;
3413
3414         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3415         rb_iter_reset(iter);
3416         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3417 }
3418 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
3419
3420 /**
3421  * ring_buffer_iter_empty - check if an iterator has no more to read
3422  * @iter: The iterator to check
3423  */
3424 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3425 {
3426         struct ring_buffer_per_cpu *cpu_buffer;
3427
3428         cpu_buffer = iter->cpu_buffer;
3429
3430         return iter->head_page == cpu_buffer->commit_page &&
3431                 iter->head == rb_commit_index(cpu_buffer);
3432 }
3433 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
3434
3435 static void
3436 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3437                      struct ring_buffer_event *event)
3438 {
3439         u64 delta;
3440
3441         switch (event->type_len) {
3442         case RINGBUF_TYPE_PADDING:
3443                 return;
3444
3445         case RINGBUF_TYPE_TIME_EXTEND:
3446                 delta = event->array[0];
3447                 delta <<= TS_SHIFT;
3448                 delta += event->time_delta;
3449                 cpu_buffer->read_stamp += delta;
3450                 return;
3451
3452         case RINGBUF_TYPE_TIME_STAMP:
3453                 /* FIXME: not implemented */
3454                 return;
3455
3456         case RINGBUF_TYPE_DATA:
3457                 cpu_buffer->read_stamp += event->time_delta;
3458                 return;
3459
3460         default:
3461                 BUG();
3462         }
3463         return;
3464 }
3465
3466 static void
3467 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3468                           struct ring_buffer_event *event)
3469 {
3470         u64 delta;
3471
3472         switch (event->type_len) {
3473         case RINGBUF_TYPE_PADDING:
3474                 return;
3475
3476         case RINGBUF_TYPE_TIME_EXTEND:
3477                 delta = event->array[0];
3478                 delta <<= TS_SHIFT;
3479                 delta += event->time_delta;
3480                 iter->read_stamp += delta;
3481                 return;
3482
3483         case RINGBUF_TYPE_TIME_STAMP:
3484                 /* FIXME: not implemented */
3485                 return;
3486
3487         case RINGBUF_TYPE_DATA:
3488                 iter->read_stamp += event->time_delta;
3489                 return;
3490
3491         default:
3492                 BUG();
3493         }
3494         return;
3495 }
3496
3497 static struct buffer_page *
3498 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
3499 {
3500         struct buffer_page *reader = NULL;
3501         unsigned long overwrite;
3502         unsigned long flags;
3503         int nr_loops = 0;
3504         int ret;
3505
3506         local_irq_save(flags);
3507         arch_spin_lock(&cpu_buffer->lock);
3508
3509  again:
3510         /*
3511          * This should normally only loop twice. But because the
3512          * start of the reader inserts an empty page, it causes
3513          * a case where we will loop three times. There should be no
3514          * reason to loop four times (that I know of).
3515          */
3516         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
3517                 reader = NULL;
3518                 goto out;
3519         }
3520
3521         reader = cpu_buffer->reader_page;
3522
3523         /* If there's more to read, return this page */
3524         if (cpu_buffer->reader_page->read < rb_page_size(reader))
3525                 goto out;
3526
3527         /* Never should we have an index greater than the size */
3528         if (RB_WARN_ON(cpu_buffer,
3529                        cpu_buffer->reader_page->read > rb_page_size(reader)))
3530                 goto out;
3531
3532         /* check if we caught up to the tail */
3533         reader = NULL;
3534         if (cpu_buffer->commit_page == cpu_buffer->reader_page)
3535                 goto out;
3536
3537         /* Don't bother swapping if the ring buffer is empty */
3538         if (rb_num_of_entries(cpu_buffer) == 0)
3539                 goto out;
3540
3541         /*
3542          * Reset the reader page to size zero.
3543          */
3544         local_set(&cpu_buffer->reader_page->write, 0);
3545         local_set(&cpu_buffer->reader_page->entries, 0);
3546         local_set(&cpu_buffer->reader_page->page->commit, 0);
3547         cpu_buffer->reader_page->real_end = 0;
3548
3549  spin:
3550         /*
3551          * Splice the empty reader page into the list around the head.
3552          */
3553         reader = rb_set_head_page(cpu_buffer);
3554         if (!reader)
3555                 goto out;
3556         cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
3557         cpu_buffer->reader_page->list.prev = reader->list.prev;
3558
3559         /*
3560          * cpu_buffer->pages just needs to point to the buffer, it
3561          *  has no specific buffer page to point to. Lets move it out
3562          *  of our way so we don't accidentally swap it.
3563          */
3564         cpu_buffer->pages = reader->list.prev;
3565
3566         /* The reader page will be pointing to the new head */
3567         rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
3568
3569         /*
3570          * We want to make sure we read the overruns after we set up our
3571          * pointers to the next object. The writer side does a
3572          * cmpxchg to cross pages which acts as the mb on the writer
3573          * side. Note, the reader will constantly fail the swap
3574          * while the writer is updating the pointers, so this
3575          * guarantees that the overwrite recorded here is the one we
3576          * want to compare with the last_overrun.
3577          */
3578         smp_mb();
3579         overwrite = local_read(&(cpu_buffer->overrun));
3580
3581         /*
3582          * Here's the tricky part.
3583          *
3584          * We need to move the pointer past the header page.
3585          * But we can only do that if a writer is not currently
3586          * moving it. The page before the header page has the
3587          * flag bit '1' set if it is pointing to the page we want.
3588          * but if the writer is in the process of moving it
3589          * than it will be '2' or already moved '0'.
3590          */
3591
3592         ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
3593
3594         /*
3595          * If we did not convert it, then we must try again.
3596          */
3597         if (!ret)
3598                 goto spin;
3599
3600         /*
3601          * Yeah! We succeeded in replacing the page.
3602          *
3603          * Now make the new head point back to the reader page.
3604          */
3605         rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
3606         rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
3607
3608         /* Finally update the reader page to the new head */
3609         cpu_buffer->reader_page = reader;
3610         rb_reset_reader_page(cpu_buffer);
3611
3612         if (overwrite != cpu_buffer->last_overrun) {
3613                 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3614                 cpu_buffer->last_overrun = overwrite;
3615         }
3616
3617         goto again;
3618
3619  out:
3620         arch_spin_unlock(&cpu_buffer->lock);
3621         local_irq_restore(flags);
3622
3623         return reader;
3624 }
3625
3626 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3627 {
3628         struct ring_buffer_event *event;
3629         struct buffer_page *reader;
3630         unsigned length;
3631
3632         reader = rb_get_reader_page(cpu_buffer);
3633
3634         /* This function should not be called when buffer is empty */
3635         if (RB_WARN_ON(cpu_buffer, !reader))
3636                 return;
3637
3638         event = rb_reader_event(cpu_buffer);
3639
3640         if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
3641                 cpu_buffer->read++;
3642
3643         rb_update_read_stamp(cpu_buffer, event);
3644
3645         length = rb_event_length(event);
3646         cpu_buffer->reader_page->read += length;
3647 }
3648
3649 static void rb_advance_iter(struct ring_buffer_iter *iter)
3650 {
3651         struct ring_buffer_per_cpu *cpu_buffer;
3652         struct ring_buffer_event *event;
3653         unsigned length;
3654
3655         cpu_buffer = iter->cpu_buffer;
3656
3657         /*
3658          * Check if we are at the end of the buffer.
3659          */
3660         if (iter->head >= rb_page_size(iter->head_page)) {
3661                 /* discarded commits can make the page empty */
3662                 if (iter->head_page == cpu_buffer->commit_page)
3663                         return;
3664                 rb_inc_iter(iter);
3665                 return;
3666         }
3667
3668         event = rb_iter_head_event(iter);
3669
3670         length = rb_event_length(event);
3671
3672         /*
3673          * This should not be called to advance the header if we are
3674          * at the tail of the buffer.
3675          */
3676         if (RB_WARN_ON(cpu_buffer,
3677                        (iter->head_page == cpu_buffer->commit_page) &&
3678                        (iter->head + length > rb_commit_index(cpu_buffer))))
3679                 return;
3680
3681         rb_update_iter_read_stamp(iter, event);
3682
3683         iter->head += length;
3684
3685         /* check for end of page padding */
3686         if ((iter->head >= rb_page_size(iter->head_page)) &&
3687             (iter->head_page != cpu_buffer->commit_page))
3688                 rb_inc_iter(iter);
3689 }
3690
3691 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3692 {
3693         return cpu_buffer->lost_events;
3694 }
3695
3696 static struct ring_buffer_event *
3697 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3698                unsigned long *lost_events)
3699 {
3700         struct ring_buffer_event *event;
3701         struct buffer_page *reader;
3702         int nr_loops = 0;
3703
3704  again:
3705         /*
3706          * We repeat when a time extend is encountered.
3707          * Since the time extend is always attached to a data event,
3708          * we should never loop more than once.
3709          * (We never hit the following condition more than twice).
3710          */
3711         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3712                 return NULL;
3713
3714         reader = rb_get_reader_page(cpu_buffer);
3715         if (!reader)
3716                 return NULL;
3717
3718         event = rb_reader_event(cpu_buffer);
3719
3720         switch (event->type_len) {
3721         case RINGBUF_TYPE_PADDING:
3722                 if (rb_null_event(event))
3723                         RB_WARN_ON(cpu_buffer, 1);
3724                 /*
3725                  * Because the writer could be discarding every
3726                  * event it creates (which would probably be bad)
3727                  * if we were to go back to "again" then we may never
3728                  * catch up, and will trigger the warn on, or lock
3729                  * the box. Return the padding, and we will release
3730                  * the current locks, and try again.
3731                  */
3732                 return event;
3733
3734         case RINGBUF_TYPE_TIME_EXTEND:
3735                 /* Internal data, OK to advance */
3736                 rb_advance_reader(cpu_buffer);
3737                 goto again;
3738
3739         case RINGBUF_TYPE_TIME_STAMP:
3740                 /* FIXME: not implemented */
3741                 rb_advance_reader(cpu_buffer);
3742                 goto again;
3743
3744         case RINGBUF_TYPE_DATA:
3745                 if (ts) {
3746                         *ts = cpu_buffer->read_stamp + event->time_delta;
3747                         ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3748                                                          cpu_buffer->cpu, ts);
3749                 }
3750                 if (lost_events)
3751                         *lost_events = rb_lost_events(cpu_buffer);
3752                 return event;
3753
3754         default:
3755                 BUG();
3756         }
3757
3758         return NULL;
3759 }
3760 EXPORT_SYMBOL_GPL(ring_buffer_peek);
3761
3762 static struct ring_buffer_event *
3763 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3764 {
3765         struct ring_buffer *buffer;
3766         struct ring_buffer_per_cpu *cpu_buffer;
3767         struct ring_buffer_event *event;
3768         int nr_loops = 0;
3769
3770         cpu_buffer = iter->cpu_buffer;
3771         buffer = cpu_buffer->buffer;
3772
3773         /*
3774          * Check if someone performed a consuming read to
3775          * the buffer. A consuming read invalidates the iterator
3776          * and we need to reset the iterator in this case.
3777          */
3778         if (unlikely(iter->cache_read != cpu_buffer->read ||
3779                      iter->cache_reader_page != cpu_buffer->reader_page))
3780                 rb_iter_reset(iter);
3781
3782  again:
3783         if (ring_buffer_iter_empty(iter))
3784                 return NULL;
3785
3786         /*
3787          * We repeat when a time extend is encountered or we hit
3788          * the end of the page. Since the time extend is always attached
3789          * to a data event, we should never loop more than three times.
3790          * Once for going to next page, once on time extend, and
3791          * finally once to get the event.
3792          * (We never hit the following condition more than thrice).
3793          */
3794         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3))
3795                 return NULL;
3796
3797         if (rb_per_cpu_empty(cpu_buffer))
3798                 return NULL;
3799
3800         if (iter->head >= rb_page_size(iter->head_page)) {
3801                 rb_inc_iter(iter);
3802                 goto again;
3803         }
3804
3805         event = rb_iter_head_event(iter);
3806
3807         switch (event->type_len) {
3808         case RINGBUF_TYPE_PADDING:
3809                 if (rb_null_event(event)) {
3810                         rb_inc_iter(iter);
3811                         goto again;
3812                 }
3813                 rb_advance_iter(iter);
3814                 return event;
3815
3816         case RINGBUF_TYPE_TIME_EXTEND:
3817                 /* Internal data, OK to advance */
3818                 rb_advance_iter(iter);
3819                 goto again;
3820
3821         case RINGBUF_TYPE_TIME_STAMP:
3822                 /* FIXME: not implemented */
3823                 rb_advance_iter(iter);
3824                 goto again;
3825
3826         case RINGBUF_TYPE_DATA:
3827                 if (ts) {
3828                         *ts = iter->read_stamp + event->time_delta;
3829                         ring_buffer_normalize_time_stamp(buffer,
3830                                                          cpu_buffer->cpu, ts);
3831                 }
3832                 return event;
3833
3834         default:
3835                 BUG();
3836         }
3837
3838         return NULL;
3839 }
3840 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3841
3842 static inline int rb_ok_to_lock(void)
3843 {
3844         /*
3845          * If an NMI die dumps out the content of the ring buffer
3846          * do not grab locks. We also permanently disable the ring
3847          * buffer too. A one time deal is all you get from reading
3848          * the ring buffer from an NMI.
3849          */
3850         if (likely(!in_nmi()))
3851                 return 1;
3852
3853         tracing_off_permanent();
3854         return 0;
3855 }
3856
3857 /**
3858  * ring_buffer_peek - peek at the next event to be read
3859  * @buffer: The ring buffer to read
3860  * @cpu: The cpu to peak at
3861  * @ts: The timestamp counter of this event.
3862  * @lost_events: a variable to store if events were lost (may be NULL)
3863  *
3864  * This will return the event that will be read next, but does
3865  * not consume the data.
3866  */
3867 struct ring_buffer_event *
3868 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3869                  unsigned long *lost_events)
3870 {
3871         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3872         struct ring_buffer_event *event;
3873         unsigned long flags;
3874         int dolock;
3875
3876         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3877                 return NULL;
3878
3879         dolock = rb_ok_to_lock();
3880  again:
3881         local_irq_save(flags);
3882         if (dolock)
3883                 raw_spin_lock(&cpu_buffer->reader_lock);
3884         event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3885         if (event && event->type_len == RINGBUF_TYPE_PADDING)
3886                 rb_advance_reader(cpu_buffer);
3887         if (dolock)
3888                 raw_spin_unlock(&cpu_buffer->reader_lock);
3889         local_irq_restore(flags);
3890
3891         if (event && event->type_len == RINGBUF_TYPE_PADDING)
3892                 goto again;
3893
3894         return event;
3895 }
3896
3897 /**
3898  * ring_buffer_iter_peek - peek at the next event to be read
3899  * @iter: The ring buffer iterator
3900  * @ts: The timestamp counter of this event.
3901  *
3902  * This will return the event that will be read next, but does
3903  * not increment the iterator.
3904  */
3905 struct ring_buffer_event *
3906 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3907 {
3908         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3909         struct ring_buffer_event *event;
3910         unsigned long flags;
3911
3912  again:
3913         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3914         event = rb_iter_peek(iter, ts);
3915         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3916
3917         if (event && event->type_len == RINGBUF_TYPE_PADDING)
3918                 goto again;
3919
3920         return event;
3921 }
3922
3923 /**
3924  * ring_buffer_consume - return an event and consume it
3925  * @buffer: The ring buffer to get the next event from
3926  * @cpu: the cpu to read the buffer from
3927  * @ts: a variable to store the timestamp (may be NULL)
3928  * @lost_events: a variable to store if events were lost (may be NULL)
3929  *
3930  * Returns the next event in the ring buffer, and that event is consumed.
3931  * Meaning, that sequential reads will keep returning a different event,
3932  * and eventually empty the ring buffer if the producer is slower.
3933  */
3934 struct ring_buffer_event *
3935 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3936                     unsigned long *lost_events)
3937 {
3938         struct ring_buffer_per_cpu *cpu_buffer;
3939         struct ring_buffer_event *event = NULL;
3940         unsigned long flags;
3941         int dolock;
3942
3943         dolock = rb_ok_to_lock();
3944
3945  again:
3946         /* might be called in atomic */
3947         preempt_disable();
3948
3949         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3950                 goto out;
3951
3952         cpu_buffer = buffer->buffers[cpu];
3953         local_irq_save(flags);
3954         if (dolock)
3955                 raw_spin_lock(&cpu_buffer->reader_lock);
3956
3957         event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3958         if (event) {
3959                 cpu_buffer->lost_events = 0;
3960                 rb_advance_reader(cpu_buffer);
3961         }
3962
3963         if (dolock)
3964                 raw_spin_unlock(&cpu_buffer->reader_lock);
3965         local_irq_restore(flags);
3966
3967  out:
3968         preempt_enable();
3969
3970         if (event && event->type_len == RINGBUF_TYPE_PADDING)
3971                 goto again;
3972
3973         return event;
3974 }
3975 EXPORT_SYMBOL_GPL(ring_buffer_consume);
3976
3977 /**
3978  * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
3979  * @buffer: The ring buffer to read from
3980  * @cpu: The cpu buffer to iterate over
3981  *
3982  * This performs the initial preparations necessary to iterate
3983  * through the buffer.  Memory is allocated, buffer recording
3984  * is disabled, and the iterator pointer is returned to the caller.
3985  *
3986  * Disabling buffer recordng prevents the reading from being
3987  * corrupted. This is not a consuming read, so a producer is not
3988  * expected.
3989  *
3990  * After a sequence of ring_buffer_read_prepare calls, the user is
3991  * expected to make at least one call to ring_buffer_read_prepare_sync.
3992  * Afterwards, ring_buffer_read_start is invoked to get things going
3993  * for real.
3994  *
3995  * This overall must be paired with ring_buffer_read_finish.
3996  */
3997 struct ring_buffer_iter *
3998 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
3999 {
4000         struct ring_buffer_per_cpu *cpu_buffer;
4001         struct ring_buffer_iter *iter;
4002
4003         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4004                 return NULL;
4005
4006         iter = kmalloc(sizeof(*iter), GFP_KERNEL);
4007         if (!iter)
4008                 return NULL;
4009
4010         cpu_buffer = buffer->buffers[cpu];
4011
4012         iter->cpu_buffer = cpu_buffer;
4013
4014         atomic_inc(&buffer->resize_disabled);
4015         atomic_inc(&cpu_buffer->record_disabled);
4016
4017         return iter;
4018 }
4019 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
4020
4021 /**
4022  * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
4023  *
4024  * All previously invoked ring_buffer_read_prepare calls to prepare
4025  * iterators will be synchronized.  Afterwards, read_buffer_read_start
4026  * calls on those iterators are allowed.
4027  */
4028 void
4029 ring_buffer_read_prepare_sync(void)
4030 {
4031         synchronize_sched();
4032 }
4033 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4034
4035 /**
4036  * ring_buffer_read_start - start a non consuming read of the buffer
4037  * @iter: The iterator returned by ring_buffer_read_prepare
4038  *
4039  * This finalizes the startup of an iteration through the buffer.
4040  * The iterator comes from a call to ring_buffer_read_prepare and
4041  * an intervening ring_buffer_read_prepare_sync must have been
4042  * performed.
4043  *
4044  * Must be paired with ring_buffer_read_finish.
4045  */
4046 void
4047 ring_buffer_read_start(struct ring_buffer_iter *iter)
4048 {
4049         struct ring_buffer_per_cpu *cpu_buffer;
4050         unsigned long flags;
4051
4052         if (!iter)
4053                 return;
4054
4055         cpu_buffer = iter->cpu_buffer;
4056
4057         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4058         arch_spin_lock(&cpu_buffer->lock);
4059         rb_iter_reset(iter);
4060         arch_spin_unlock(&cpu_buffer->lock);
4061         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4062 }
4063 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
4064
4065 /**
4066  * ring_buffer_read_finish - finish reading the iterator of the buffer
4067  * @iter: The iterator retrieved by ring_buffer_start
4068  *
4069  * This re-enables the recording to the buffer, and frees the
4070  * iterator.
4071  */
4072 void
4073 ring_buffer_read_finish(struct ring_buffer_iter *iter)
4074 {
4075         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4076         unsigned long flags;
4077
4078         /*
4079          * Ring buffer is disabled from recording, here's a good place
4080          * to check the integrity of the ring buffer.
4081          * Must prevent readers from trying to read, as the check
4082          * clears the HEAD page and readers require it.
4083          */
4084         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4085         rb_check_pages(cpu_buffer);
4086         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4087
4088         atomic_dec(&cpu_buffer->record_disabled);
4089         atomic_dec(&cpu_buffer->buffer->resize_disabled);
4090         kfree(iter);
4091 }
4092 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
4093
4094 /**
4095  * ring_buffer_read - read the next item in the ring buffer by the iterator
4096  * @iter: The ring buffer iterator
4097  * @ts: The time stamp of the event read.
4098  *
4099  * This reads the next event in the ring buffer and increments the iterator.
4100  */
4101 struct ring_buffer_event *
4102 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
4103 {
4104         struct ring_buffer_event *event;
4105         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4106         unsigned long flags;
4107
4108         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4109  again:
4110         event = rb_iter_peek(iter, ts);
4111         if (!event)
4112                 goto out;
4113
4114         if (event->type_len == RINGBUF_TYPE_PADDING)
4115                 goto again;
4116
4117         rb_advance_iter(iter);
4118  out:
4119         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4120
4121         return event;
4122 }
4123 EXPORT_SYMBOL_GPL(ring_buffer_read);
4124
4125 /**
4126  * ring_buffer_size - return the size of the ring buffer (in bytes)
4127  * @buffer: The ring buffer.
4128  */
4129 unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
4130 {
4131         /*
4132          * Earlier, this method returned
4133          *      BUF_PAGE_SIZE * buffer->nr_pages
4134          * Since the nr_pages field is now removed, we have converted this to
4135          * return the per cpu buffer value.
4136          */
4137         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4138                 return 0;
4139
4140         return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
4141 }
4142 EXPORT_SYMBOL_GPL(ring_buffer_size);
4143
4144 static void
4145 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4146 {
4147         rb_head_page_deactivate(cpu_buffer);
4148
4149         cpu_buffer->head_page
4150                 = list_entry(cpu_buffer->pages, struct buffer_page, list);
4151         local_set(&cpu_buffer->head_page->write, 0);
4152         local_set(&cpu_buffer->head_page->entries, 0);
4153         local_set(&cpu_buffer->head_page->page->commit, 0);
4154
4155         cpu_buffer->head_page->read = 0;
4156
4157         cpu_buffer->tail_page = cpu_buffer->head_page;
4158         cpu_buffer->commit_page = cpu_buffer->head_page;
4159
4160         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
4161         INIT_LIST_HEAD(&cpu_buffer->new_pages);
4162         local_set(&cpu_buffer->reader_page->write, 0);
4163         local_set(&cpu_buffer->reader_page->entries, 0);
4164         local_set(&cpu_buffer->reader_page->page->commit, 0);
4165         cpu_buffer->reader_page->read = 0;
4166
4167         local_set(&cpu_buffer->entries_bytes, 0);
4168         local_set(&cpu_buffer->overrun, 0);
4169         local_set(&cpu_buffer->commit_overrun, 0);
4170         local_set(&cpu_buffer->dropped_events, 0);
4171         local_set(&cpu_buffer->entries, 0);
4172         local_set(&cpu_buffer->committing, 0);
4173         local_set(&cpu_buffer->commits, 0);
4174         cpu_buffer->read = 0;
4175         cpu_buffer->read_bytes = 0;
4176
4177         cpu_buffer->write_stamp = 0;
4178         cpu_buffer->read_stamp = 0;
4179
4180         cpu_buffer->lost_events = 0;
4181         cpu_buffer->last_overrun = 0;
4182
4183         rb_head_page_activate(cpu_buffer);
4184 }
4185
4186 /**
4187  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4188  * @buffer: The ring buffer to reset a per cpu buffer of
4189  * @cpu: The CPU buffer to be reset
4190  */
4191 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
4192 {
4193         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4194         unsigned long flags;
4195
4196         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4197                 return;
4198
4199         atomic_inc(&buffer->resize_disabled);
4200         atomic_inc(&cpu_buffer->record_disabled);
4201
4202         /* Make sure all commits have finished */
4203         synchronize_sched();
4204
4205         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4206
4207         if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4208                 goto out;
4209
4210         arch_spin_lock(&cpu_buffer->lock);
4211
4212         rb_reset_cpu(cpu_buffer);
4213
4214         arch_spin_unlock(&cpu_buffer->lock);
4215
4216  out:
4217         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4218
4219         atomic_dec(&cpu_buffer->record_disabled);
4220         atomic_dec(&buffer->resize_disabled);
4221 }
4222 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
4223
4224 /**
4225  * ring_buffer_reset - reset a ring buffer
4226  * @buffer: The ring buffer to reset all cpu buffers
4227  */
4228 void ring_buffer_reset(struct ring_buffer *buffer)
4229 {
4230         int cpu;
4231
4232         for_each_buffer_cpu(buffer, cpu)
4233                 ring_buffer_reset_cpu(buffer, cpu);
4234 }
4235 EXPORT_SYMBOL_GPL(ring_buffer_reset);
4236
4237 /**
4238  * rind_buffer_empty - is the ring buffer empty?
4239  * @buffer: The ring buffer to test
4240  */
4241 int ring_buffer_empty(struct ring_buffer *buffer)
4242 {
4243         struct ring_buffer_per_cpu *cpu_buffer;
4244         unsigned long flags;
4245         int dolock;
4246         int cpu;
4247         int ret;
4248
4249         dolock = rb_ok_to_lock();
4250
4251         /* yes this is racy, but if you don't like the race, lock the buffer */
4252         for_each_buffer_cpu(buffer, cpu) {
4253                 cpu_buffer = buffer->buffers[cpu];
4254                 local_irq_save(flags);
4255                 if (dolock)
4256                         raw_spin_lock(&cpu_buffer->reader_lock);
4257                 ret = rb_per_cpu_empty(cpu_buffer);
4258                 if (dolock)
4259                         raw_spin_unlock(&cpu_buffer->reader_lock);
4260                 local_irq_restore(flags);
4261
4262                 if (!ret)
4263                         return 0;
4264         }
4265
4266         return 1;
4267 }
4268 EXPORT_SYMBOL_GPL(ring_buffer_empty);
4269
4270 /**
4271  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4272  * @buffer: The ring buffer
4273  * @cpu: The CPU buffer to test
4274  */
4275 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
4276 {
4277         struct ring_buffer_per_cpu *cpu_buffer;
4278         unsigned long flags;
4279         int dolock;
4280         int ret;
4281
4282         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4283                 return 1;
4284
4285         dolock = rb_ok_to_lock();
4286
4287         cpu_buffer = buffer->buffers[cpu];
4288         local_irq_save(flags);
4289         if (dolock)
4290                 raw_spin_lock(&cpu_buffer->reader_lock);
4291         ret = rb_per_cpu_empty(cpu_buffer);
4292         if (dolock)
4293                 raw_spin_unlock(&cpu_buffer->reader_lock);
4294         local_irq_restore(flags);
4295
4296         return ret;
4297 }
4298 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
4299
4300 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4301 /**
4302  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4303  * @buffer_a: One buffer to swap with
4304  * @buffer_b: The other buffer to swap with
4305  *
4306  * This function is useful for tracers that want to take a "snapshot"
4307  * of a CPU buffer and has another back up buffer lying around.
4308  * it is expected that the tracer handles the cpu buffer not being
4309  * used at the moment.
4310  */
4311 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4312                          struct ring_buffer *buffer_b, int cpu)
4313 {
4314         struct ring_buffer_per_cpu *cpu_buffer_a;
4315         struct ring_buffer_per_cpu *cpu_buffer_b;
4316         int ret = -EINVAL;
4317
4318         if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4319             !cpumask_test_cpu(cpu, buffer_b->cpumask))
4320                 goto out;
4321
4322         cpu_buffer_a = buffer_a->buffers[cpu];
4323         cpu_buffer_b = buffer_b->buffers[cpu];
4324
4325         /* At least make sure the two buffers are somewhat the same */
4326         if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
4327                 goto out;
4328
4329         ret = -EAGAIN;
4330
4331         if (ring_buffer_flags != RB_BUFFERS_ON)
4332                 goto out;
4333
4334         if (atomic_read(&buffer_a->record_disabled))
4335                 goto out;
4336
4337         if (atomic_read(&buffer_b->record_disabled))
4338                 goto out;
4339
4340         if (atomic_read(&cpu_buffer_a->record_disabled))
4341                 goto out;
4342
4343         if (atomic_read(&cpu_buffer_b->record_disabled))
4344                 goto out;
4345
4346         /*
4347          * We can't do a synchronize_sched here because this
4348          * function can be called in atomic context.
4349          * Normally this will be called from the same CPU as cpu.
4350          * If not it's up to the caller to protect this.
4351          */
4352         atomic_inc(&cpu_buffer_a->record_disabled);
4353         atomic_inc(&cpu_buffer_b->record_disabled);
4354
4355         ret = -EBUSY;
4356         if (local_read(&cpu_buffer_a->committing))
4357                 goto out_dec;
4358         if (local_read(&cpu_buffer_b->committing))
4359                 goto out_dec;
4360
4361         buffer_a->buffers[cpu] = cpu_buffer_b;
4362         buffer_b->buffers[cpu] = cpu_buffer_a;
4363
4364         cpu_buffer_b->buffer = buffer_a;
4365         cpu_buffer_a->buffer = buffer_b;
4366
4367         ret = 0;
4368
4369 out_dec:
4370         atomic_dec(&cpu_buffer_a->record_disabled);
4371         atomic_dec(&cpu_buffer_b->record_disabled);
4372 out:
4373         return ret;
4374 }
4375 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
4376 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
4377
4378 /**
4379  * ring_buffer_alloc_read_page - allocate a page to read from buffer
4380  * @buffer: the buffer to allocate for.
4381  * @cpu: the cpu buffer to allocate.
4382  *
4383  * This function is used in conjunction with ring_buffer_read_page.
4384  * When reading a full page from the ring buffer, these functions
4385  * can be used to speed up the process. The calling function should
4386  * allocate a few pages first with this function. Then when it
4387  * needs to get pages from the ring buffer, it passes the result
4388  * of this function into ring_buffer_read_page, which will swap
4389  * the page that was allocated, with the read page of the buffer.
4390  *
4391  * Returns:
4392  *  The page allocated, or NULL on error.
4393  */
4394 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
4395 {
4396         struct buffer_data_page *bpage;
4397         struct page *page;
4398
4399         page = alloc_pages_node(cpu_to_node(cpu),
4400                                 GFP_KERNEL | __GFP_NORETRY, 0);
4401         if (!page)
4402                 return NULL;
4403
4404         bpage = page_address(page);
4405
4406         rb_init_page(bpage);
4407
4408         return bpage;
4409 }
4410 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
4411
4412 /**
4413  * ring_buffer_free_read_page - free an allocated read page
4414  * @buffer: the buffer the page was allocate for
4415  * @data: the page to free
4416  *
4417  * Free a page allocated from ring_buffer_alloc_read_page.
4418  */
4419 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
4420 {
4421         free_page((unsigned long)data);
4422 }
4423 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
4424
4425 /**
4426  * ring_buffer_read_page - extract a page from the ring buffer
4427  * @buffer: buffer to extract from
4428  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
4429  * @len: amount to extract
4430  * @cpu: the cpu of the buffer to extract
4431  * @full: should the extraction only happen when the page is full.
4432  *
4433  * This function will pull out a page from the ring buffer and consume it.
4434  * @data_page must be the address of the variable that was returned
4435  * from ring_buffer_alloc_read_page. This is because the page might be used
4436  * to swap with a page in the ring buffer.
4437  *
4438  * for example:
4439  *      rpage = ring_buffer_alloc_read_page(buffer, cpu);
4440  *      if (!rpage)
4441  *              return error;
4442  *      ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
4443  *      if (ret >= 0)
4444  *              process_page(rpage, ret);
4445  *
4446  * When @full is set, the function will not return true unless
4447  * the writer is off the reader page.
4448  *
4449  * Note: it is up to the calling functions to handle sleeps and wakeups.
4450  *  The ring buffer can be used anywhere in the kernel and can not
4451  *  blindly call wake_up. The layer that uses the ring buffer must be
4452  *  responsible for that.
4453  *
4454  * Returns:
4455  *  >=0 if data has been transferred, returns the offset of consumed data.
4456  *  <0 if no data has been transferred.
4457  */
4458 int ring_buffer_read_page(struct ring_buffer *buffer,
4459                           void **data_page, size_t len, int cpu, int full)
4460 {
4461         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4462         struct ring_buffer_event *event;
4463         struct buffer_data_page *bpage;
4464         struct buffer_page *reader;
4465         unsigned long missed_events;
4466         unsigned long flags;
4467         unsigned int commit;
4468         unsigned int read;
4469         u64 save_timestamp;
4470         int ret = -1;
4471
4472         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4473                 goto out;
4474
4475         /*
4476          * If len is not big enough to hold the page header, then
4477          * we can not copy anything.
4478          */
4479         if (len <= BUF_PAGE_HDR_SIZE)
4480                 goto out;
4481
4482         len -= BUF_PAGE_HDR_SIZE;
4483
4484         if (!data_page)
4485                 goto out;
4486
4487         bpage = *data_page;
4488         if (!bpage)
4489                 goto out;
4490
4491         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4492
4493         reader = rb_get_reader_page(cpu_buffer);
4494         if (!reader)
4495                 goto out_unlock;
4496
4497         event = rb_reader_event(cpu_buffer);
4498
4499         read = reader->read;
4500         commit = rb_page_commit(reader);
4501
4502         /* Check if any events were dropped */
4503         missed_events = cpu_buffer->lost_events;
4504
4505         /*
4506          * If this page has been partially read or
4507          * if len is not big enough to read the rest of the page or
4508          * a writer is still on the page, then
4509          * we must copy the data from the page to the buffer.
4510          * Otherwise, we can simply swap the page with the one passed in.
4511          */
4512         if (read || (len < (commit - read)) ||
4513             cpu_buffer->reader_page == cpu_buffer->commit_page) {
4514                 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
4515                 unsigned int rpos = read;
4516                 unsigned int pos = 0;
4517                 unsigned int size;
4518
4519                 if (full)
4520                         goto out_unlock;
4521
4522                 if (len > (commit - read))
4523                         len = (commit - read);
4524
4525                 /* Always keep the time extend and data together */
4526                 size = rb_event_ts_length(event);
4527
4528                 if (len < size)
4529                         goto out_unlock;
4530
4531                 /* save the current timestamp, since the user will need it */
4532                 save_timestamp = cpu_buffer->read_stamp;
4533
4534                 /* Need to copy one event at a time */
4535                 do {
4536                         /* We need the size of one event, because
4537                          * rb_advance_reader only advances by one event,
4538                          * whereas rb_event_ts_length may include the size of
4539                          * one or two events.
4540                          * We have already ensured there's enough space if this
4541                          * is a time extend. */
4542                         size = rb_event_length(event);
4543                         memcpy(bpage->data + pos, rpage->data + rpos, size);
4544
4545                         len -= size;
4546
4547                         rb_advance_reader(cpu_buffer);
4548                         rpos = reader->read;
4549                         pos += size;
4550
4551                         if (rpos >= commit)
4552                                 break;
4553
4554                         event = rb_reader_event(cpu_buffer);
4555                         /* Always keep the time extend and data together */
4556                         size = rb_event_ts_length(event);
4557                 } while (len >= size);
4558
4559                 /* update bpage */
4560                 local_set(&bpage->commit, pos);
4561                 bpage->time_stamp = save_timestamp;
4562
4563                 /* we copied everything to the beginning */
4564                 read = 0;
4565         } else {
4566                 /* update the entry counter */
4567                 cpu_buffer->read += rb_page_entries(reader);
4568                 cpu_buffer->read_bytes += BUF_PAGE_SIZE;
4569
4570                 /* swap the pages */
4571                 rb_init_page(bpage);
4572                 bpage = reader->page;
4573                 reader->page = *data_page;
4574                 local_set(&reader->write, 0);
4575                 local_set(&reader->entries, 0);
4576                 reader->read = 0;
4577                 *data_page = bpage;
4578
4579                 /*
4580                  * Use the real_end for the data size,
4581                  * This gives us a chance to store the lost events
4582                  * on the page.
4583                  */
4584                 if (reader->real_end)
4585                         local_set(&bpage->commit, reader->real_end);
4586         }
4587         ret = read;
4588
4589         cpu_buffer->lost_events = 0;
4590
4591         commit = local_read(&bpage->commit);
4592         /*
4593          * Set a flag in the commit field if we lost events
4594          */
4595         if (missed_events) {
4596                 /* If there is room at the end of the page to save the
4597                  * missed events, then record it there.
4598                  */
4599                 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4600                         memcpy(&bpage->data[commit], &missed_events,
4601                                sizeof(missed_events));
4602                         local_add(RB_MISSED_STORED, &bpage->commit);
4603                         commit += sizeof(missed_events);
4604                 }
4605                 local_add(RB_MISSED_EVENTS, &bpage->commit);
4606         }
4607
4608         /*
4609          * This page may be off to user land. Zero it out here.
4610          */
4611         if (commit < BUF_PAGE_SIZE)
4612                 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4613
4614  out_unlock:
4615         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4616
4617  out:
4618         return ret;
4619 }
4620 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
4621
4622 #ifdef CONFIG_HOTPLUG_CPU
4623 static int rb_cpu_notify(struct notifier_block *self,
4624                          unsigned long action, void *hcpu)
4625 {
4626         struct ring_buffer *buffer =
4627                 container_of(self, struct ring_buffer, cpu_notify);
4628         long cpu = (long)hcpu;
4629         int cpu_i, nr_pages_same;
4630         unsigned int nr_pages;
4631
4632         switch (action) {
4633         case CPU_UP_PREPARE:
4634         case CPU_UP_PREPARE_FROZEN:
4635                 if (cpumask_test_cpu(cpu, buffer->cpumask))
4636                         return NOTIFY_OK;
4637
4638                 nr_pages = 0;
4639                 nr_pages_same = 1;
4640                 /* check if all cpu sizes are same */
4641                 for_each_buffer_cpu(buffer, cpu_i) {
4642                         /* fill in the size from first enabled cpu */
4643                         if (nr_pages == 0)
4644                                 nr_pages = buffer->buffers[cpu_i]->nr_pages;
4645                         if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4646                                 nr_pages_same = 0;
4647                                 break;
4648                         }
4649                 }
4650                 /* allocate minimum pages, user can later expand it */
4651                 if (!nr_pages_same)
4652                         nr_pages = 2;
4653                 buffer->buffers[cpu] =
4654                         rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
4655                 if (!buffer->buffers[cpu]) {
4656                         WARN(1, "failed to allocate ring buffer on CPU %ld\n",
4657                              cpu);
4658                         return NOTIFY_OK;
4659                 }
4660                 smp_wmb();
4661                 cpumask_set_cpu(cpu, buffer->cpumask);
4662                 break;
4663         case CPU_DOWN_PREPARE:
4664         case CPU_DOWN_PREPARE_FROZEN:
4665                 /*
4666                  * Do nothing.
4667                  *  If we were to free the buffer, then the user would
4668                  *  lose any trace that was in the buffer.
4669                  */
4670                 break;
4671         default:
4672                 break;
4673         }
4674         return NOTIFY_OK;
4675 }
4676 #endif
4677
4678 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
4679 /*
4680  * This is a basic integrity check of the ring buffer.
4681  * Late in the boot cycle this test will run when configured in.
4682  * It will kick off a thread per CPU that will go into a loop
4683  * writing to the per cpu ring buffer various sizes of data.
4684  * Some of the data will be large items, some small.
4685  *
4686  * Another thread is created that goes into a spin, sending out
4687  * IPIs to the other CPUs to also write into the ring buffer.
4688  * this is to test the nesting ability of the buffer.
4689  *
4690  * Basic stats are recorded and reported. If something in the
4691  * ring buffer should happen that's not expected, a big warning
4692  * is displayed and all ring buffers are disabled.
4693  */
4694 static struct task_struct *rb_threads[NR_CPUS] __initdata;
4695
4696 struct rb_test_data {
4697         struct ring_buffer      *buffer;
4698         unsigned long           events;
4699         unsigned long           bytes_written;
4700         unsigned long           bytes_alloc;
4701         unsigned long           bytes_dropped;
4702         unsigned long           events_nested;
4703         unsigned long           bytes_written_nested;
4704         unsigned long           bytes_alloc_nested;
4705         unsigned long           bytes_dropped_nested;
4706         int                     min_size_nested;
4707         int                     max_size_nested;
4708         int                     max_size;
4709         int                     min_size;
4710         int                     cpu;
4711         int                     cnt;
4712 };
4713
4714 static struct rb_test_data rb_data[NR_CPUS] __initdata;
4715
4716 /* 1 meg per cpu */
4717 #define RB_TEST_BUFFER_SIZE     1048576
4718
4719 static char rb_string[] __initdata =
4720         "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
4721         "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
4722         "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
4723
4724 static bool rb_test_started __initdata;
4725
4726 struct rb_item {
4727         int size;
4728         char str[];
4729 };
4730
4731 static __init int rb_write_something(struct rb_test_data *data, bool nested)
4732 {
4733         struct ring_buffer_event *event;
4734         struct rb_item *item;
4735         bool started;
4736         int event_len;
4737         int size;
4738         int len;
4739         int cnt;
4740
4741         /* Have nested writes different that what is written */
4742         cnt = data->cnt + (nested ? 27 : 0);
4743
4744         /* Multiply cnt by ~e, to make some unique increment */
4745         size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1);
4746
4747         len = size + sizeof(struct rb_item);
4748
4749         started = rb_test_started;
4750         /* read rb_test_started before checking buffer enabled */
4751         smp_rmb();
4752
4753         event = ring_buffer_lock_reserve(data->buffer, len);
4754         if (!event) {
4755                 /* Ignore dropped events before test starts. */
4756                 if (started) {
4757                         if (nested)
4758                                 data->bytes_dropped += len;
4759                         else
4760                                 data->bytes_dropped_nested += len;
4761                 }
4762                 return len;
4763         }
4764
4765         event_len = ring_buffer_event_length(event);
4766
4767         if (RB_WARN_ON(data->buffer, event_len < len))
4768                 goto out;
4769
4770         item = ring_buffer_event_data(event);
4771         item->size = size;
4772         memcpy(item->str, rb_string, size);
4773
4774         if (nested) {
4775                 data->bytes_alloc_nested += event_len;
4776                 data->bytes_written_nested += len;
4777                 data->events_nested++;
4778                 if (!data->min_size_nested || len < data->min_size_nested)
4779                         data->min_size_nested = len;
4780                 if (len > data->max_size_nested)
4781                         data->max_size_nested = len;
4782         } else {
4783                 data->bytes_alloc += event_len;
4784                 data->bytes_written += len;
4785                 data->events++;
4786                 if (!data->min_size || len < data->min_size)
4787                         data->max_size = len;
4788                 if (len > data->max_size)
4789                         data->max_size = len;
4790         }
4791
4792  out:
4793         ring_buffer_unlock_commit(data->buffer, event);
4794
4795         return 0;
4796 }
4797
4798 static __init int rb_test(void *arg)
4799 {
4800         struct rb_test_data *data = arg;
4801
4802         while (!kthread_should_stop()) {
4803                 rb_write_something(data, false);
4804                 data->cnt++;
4805
4806                 set_current_state(TASK_INTERRUPTIBLE);
4807                 /* Now sleep between a min of 100-300us and a max of 1ms */
4808                 usleep_range(((data->cnt % 3) + 1) * 100, 1000);
4809         }
4810
4811         return 0;
4812 }
4813
4814 static __init void rb_ipi(void *ignore)
4815 {
4816         struct rb_test_data *data;
4817         int cpu = smp_processor_id();
4818
4819         data = &rb_data[cpu];
4820         rb_write_something(data, true);
4821 }
4822
4823 static __init int rb_hammer_test(void *arg)
4824 {
4825         while (!kthread_should_stop()) {
4826
4827                 /* Send an IPI to all cpus to write data! */
4828                 smp_call_function(rb_ipi, NULL, 1);
4829                 /* No sleep, but for non preempt, let others run */
4830                 schedule();
4831         }
4832
4833         return 0;
4834 }
4835
4836 static __init int test_ringbuffer(void)
4837 {
4838         struct task_struct *rb_hammer;
4839         struct ring_buffer *buffer;
4840         int cpu;
4841         int ret = 0;
4842
4843         pr_info("Running ring buffer tests...\n");
4844
4845         buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
4846         if (WARN_ON(!buffer))
4847                 return 0;
4848
4849         /* Disable buffer so that threads can't write to it yet */
4850         ring_buffer_record_off(buffer);
4851
4852         for_each_online_cpu(cpu) {
4853                 rb_data[cpu].buffer = buffer;
4854                 rb_data[cpu].cpu = cpu;
4855                 rb_data[cpu].cnt = cpu;
4856                 rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
4857                                                  "rbtester/%d", cpu);
4858                 if (WARN_ON(!rb_threads[cpu])) {
4859                         pr_cont("FAILED\n");
4860                         ret = -1;
4861                         goto out_free;
4862                 }
4863
4864                 kthread_bind(rb_threads[cpu], cpu);
4865                 wake_up_process(rb_threads[cpu]);
4866         }
4867
4868         /* Now create the rb hammer! */
4869         rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
4870         if (WARN_ON(!rb_hammer)) {
4871                 pr_cont("FAILED\n");
4872                 ret = -1;
4873                 goto out_free;
4874         }
4875
4876         ring_buffer_record_on(buffer);
4877         /*
4878          * Show buffer is enabled before setting rb_test_started.
4879          * Yes there's a small race window where events could be
4880          * dropped and the thread wont catch it. But when a ring
4881          * buffer gets enabled, there will always be some kind of
4882          * delay before other CPUs see it. Thus, we don't care about
4883          * those dropped events. We care about events dropped after
4884          * the threads see that the buffer is active.
4885          */
4886         smp_wmb();
4887         rb_test_started = true;
4888
4889         set_current_state(TASK_INTERRUPTIBLE);
4890         /* Just run for 10 seconds */;
4891         schedule_timeout(10 * HZ);
4892
4893         kthread_stop(rb_hammer);
4894
4895  out_free:
4896         for_each_online_cpu(cpu) {
4897                 if (!rb_threads[cpu])
4898                         break;
4899                 kthread_stop(rb_threads[cpu]);
4900         }
4901         if (ret) {
4902                 ring_buffer_free(buffer);
4903                 return ret;
4904         }
4905
4906         /* Report! */
4907         pr_info("finished\n");
4908         for_each_online_cpu(cpu) {
4909                 struct ring_buffer_event *event;
4910                 struct rb_test_data *data = &rb_data[cpu];
4911                 struct rb_item *item;
4912                 unsigned long total_events;
4913                 unsigned long total_dropped;
4914                 unsigned long total_written;
4915                 unsigned long total_alloc;
4916                 unsigned long total_read = 0;
4917                 unsigned long total_size = 0;
4918                 unsigned long total_len = 0;
4919                 unsigned long total_lost = 0;
4920                 unsigned long lost;
4921                 int big_event_size;
4922                 int small_event_size;
4923
4924                 ret = -1;
4925
4926                 total_events = data->events + data->events_nested;
4927                 total_written = data->bytes_written + data->bytes_written_nested;
4928                 total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
4929                 total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
4930
4931                 big_event_size = data->max_size + data->max_size_nested;
4932                 small_event_size = data->min_size + data->min_size_nested;
4933
4934                 pr_info("CPU %d:\n", cpu);
4935                 pr_info("              events:    %ld\n", total_events);
4936                 pr_info("       dropped bytes:    %ld\n", total_dropped);
4937                 pr_info("       alloced bytes:    %ld\n", total_alloc);
4938                 pr_info("       written bytes:    %ld\n", total_written);
4939                 pr_info("       biggest event:    %d\n", big_event_size);
4940                 pr_info("      smallest event:    %d\n", small_event_size);
4941
4942                 if (RB_WARN_ON(buffer, total_dropped))
4943                         break;
4944
4945                 ret = 0;
4946
4947                 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
4948                         total_lost += lost;
4949                         item = ring_buffer_event_data(event);
4950                         total_len += ring_buffer_event_length(event);
4951                         total_size += item->size + sizeof(struct rb_item);
4952                         if (memcmp(&item->str[0], rb_string, item->size) != 0) {
4953                                 pr_info("FAILED!\n");
4954                                 pr_info("buffer had: %.*s\n", item->size, item->str);
4955                                 pr_info("expected:   %.*s\n", item->size, rb_string);
4956                                 RB_WARN_ON(buffer, 1);
4957                                 ret = -1;
4958                                 break;
4959                         }
4960                         total_read++;
4961                 }
4962                 if (ret)
4963                         break;
4964
4965                 ret = -1;
4966
4967                 pr_info("         read events:   %ld\n", total_read);
4968                 pr_info("         lost events:   %ld\n", total_lost);
4969                 pr_info("        total events:   %ld\n", total_lost + total_read);
4970                 pr_info("  recorded len bytes:   %ld\n", total_len);
4971                 pr_info(" recorded size bytes:   %ld\n", total_size);
4972                 if (total_lost)
4973                         pr_info(" With dropped events, record len and size may not match\n"
4974                                 " alloced and written from above\n");
4975                 if (!total_lost) {
4976                         if (RB_WARN_ON(buffer, total_len != total_alloc ||
4977                                        total_size != total_written))
4978                                 break;
4979                 }
4980                 if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
4981                         break;
4982
4983                 ret = 0;
4984         }
4985         if (!ret)
4986                 pr_info("Ring buffer PASSED!\n");
4987
4988         ring_buffer_free(buffer);
4989         return 0;
4990 }
4991
4992 late_initcall(test_ringbuffer);
4993 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */