ring-buffer: Check if buffer exists before polling
[firefly-linux-kernel-4.4.55.git] / kernel / trace / ring_buffer.c
1 /*
2  * Generic ring buffer
3  *
4  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5  */
6 #include <linux/ftrace_event.h>
7 #include <linux/ring_buffer.h>
8 #include <linux/trace_clock.h>
9 #include <linux/trace_seq.h>
10 #include <linux/spinlock.h>
11 #include <linux/irq_work.h>
12 #include <linux/debugfs.h>
13 #include <linux/uaccess.h>
14 #include <linux/hardirq.h>
15 #include <linux/kthread.h>      /* for self test */
16 #include <linux/kmemcheck.h>
17 #include <linux/module.h>
18 #include <linux/percpu.h>
19 #include <linux/mutex.h>
20 #include <linux/delay.h>
21 #include <linux/slab.h>
22 #include <linux/init.h>
23 #include <linux/hash.h>
24 #include <linux/list.h>
25 #include <linux/cpu.h>
26 #include <linux/fs.h>
27
28 #include <asm/local.h>
29
30 static void update_pages_handler(struct work_struct *work);
31
32 /*
33  * The ring buffer header is special. We must manually up keep it.
34  */
35 int ring_buffer_print_entry_header(struct trace_seq *s)
36 {
37         int ret;
38
39         ret = trace_seq_printf(s, "# compressed entry header\n");
40         ret = trace_seq_printf(s, "\ttype_len    :    5 bits\n");
41         ret = trace_seq_printf(s, "\ttime_delta  :   27 bits\n");
42         ret = trace_seq_printf(s, "\tarray       :   32 bits\n");
43         ret = trace_seq_printf(s, "\n");
44         ret = trace_seq_printf(s, "\tpadding     : type == %d\n",
45                                RINGBUF_TYPE_PADDING);
46         ret = trace_seq_printf(s, "\ttime_extend : type == %d\n",
47                                RINGBUF_TYPE_TIME_EXTEND);
48         ret = trace_seq_printf(s, "\tdata max type_len  == %d\n",
49                                RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
50
51         return ret;
52 }
53
54 /*
55  * The ring buffer is made up of a list of pages. A separate list of pages is
56  * allocated for each CPU. A writer may only write to a buffer that is
57  * associated with the CPU it is currently executing on.  A reader may read
58  * from any per cpu buffer.
59  *
60  * The reader is special. For each per cpu buffer, the reader has its own
61  * reader page. When a reader has read the entire reader page, this reader
62  * page is swapped with another page in the ring buffer.
63  *
64  * Now, as long as the writer is off the reader page, the reader can do what
65  * ever it wants with that page. The writer will never write to that page
66  * again (as long as it is out of the ring buffer).
67  *
68  * Here's some silly ASCII art.
69  *
70  *   +------+
71  *   |reader|          RING BUFFER
72  *   |page  |
73  *   +------+        +---+   +---+   +---+
74  *                   |   |-->|   |-->|   |
75  *                   +---+   +---+   +---+
76  *                     ^               |
77  *                     |               |
78  *                     +---------------+
79  *
80  *
81  *   +------+
82  *   |reader|          RING BUFFER
83  *   |page  |------------------v
84  *   +------+        +---+   +---+   +---+
85  *                   |   |-->|   |-->|   |
86  *                   +---+   +---+   +---+
87  *                     ^               |
88  *                     |               |
89  *                     +---------------+
90  *
91  *
92  *   +------+
93  *   |reader|          RING BUFFER
94  *   |page  |------------------v
95  *   +------+        +---+   +---+   +---+
96  *      ^            |   |-->|   |-->|   |
97  *      |            +---+   +---+   +---+
98  *      |                              |
99  *      |                              |
100  *      +------------------------------+
101  *
102  *
103  *   +------+
104  *   |buffer|          RING BUFFER
105  *   |page  |------------------v
106  *   +------+        +---+   +---+   +---+
107  *      ^            |   |   |   |-->|   |
108  *      |   New      +---+   +---+   +---+
109  *      |  Reader------^               |
110  *      |   page                       |
111  *      +------------------------------+
112  *
113  *
114  * After we make this swap, the reader can hand this page off to the splice
115  * code and be done with it. It can even allocate a new page if it needs to
116  * and swap that into the ring buffer.
117  *
118  * We will be using cmpxchg soon to make all this lockless.
119  *
120  */
121
122 /*
123  * A fast way to enable or disable all ring buffers is to
124  * call tracing_on or tracing_off. Turning off the ring buffers
125  * prevents all ring buffers from being recorded to.
126  * Turning this switch on, makes it OK to write to the
127  * ring buffer, if the ring buffer is enabled itself.
128  *
129  * There's three layers that must be on in order to write
130  * to the ring buffer.
131  *
132  * 1) This global flag must be set.
133  * 2) The ring buffer must be enabled for recording.
134  * 3) The per cpu buffer must be enabled for recording.
135  *
136  * In case of an anomaly, this global flag has a bit set that
137  * will permantly disable all ring buffers.
138  */
139
140 /*
141  * Global flag to disable all recording to ring buffers
142  *  This has two bits: ON, DISABLED
143  *
144  *  ON   DISABLED
145  * ---- ----------
146  *   0      0        : ring buffers are off
147  *   1      0        : ring buffers are on
148  *   X      1        : ring buffers are permanently disabled
149  */
150
151 enum {
152         RB_BUFFERS_ON_BIT       = 0,
153         RB_BUFFERS_DISABLED_BIT = 1,
154 };
155
156 enum {
157         RB_BUFFERS_ON           = 1 << RB_BUFFERS_ON_BIT,
158         RB_BUFFERS_DISABLED     = 1 << RB_BUFFERS_DISABLED_BIT,
159 };
160
161 static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
162
163 /* Used for individual buffers (after the counter) */
164 #define RB_BUFFER_OFF           (1 << 20)
165
166 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
167
168 /**
169  * tracing_off_permanent - permanently disable ring buffers
170  *
171  * This function, once called, will disable all ring buffers
172  * permanently.
173  */
174 void tracing_off_permanent(void)
175 {
176         set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
177 }
178
179 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
180 #define RB_ALIGNMENT            4U
181 #define RB_MAX_SMALL_DATA       (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
182 #define RB_EVNT_MIN_SIZE        8U      /* two 32bit words */
183
184 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
185 # define RB_FORCE_8BYTE_ALIGNMENT       0
186 # define RB_ARCH_ALIGNMENT              RB_ALIGNMENT
187 #else
188 # define RB_FORCE_8BYTE_ALIGNMENT       1
189 # define RB_ARCH_ALIGNMENT              8U
190 #endif
191
192 #define RB_ALIGN_DATA           __aligned(RB_ARCH_ALIGNMENT)
193
194 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
195 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
196
197 enum {
198         RB_LEN_TIME_EXTEND = 8,
199         RB_LEN_TIME_STAMP = 16,
200 };
201
202 #define skip_time_extend(event) \
203         ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
204
205 static inline int rb_null_event(struct ring_buffer_event *event)
206 {
207         return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
208 }
209
210 static void rb_event_set_padding(struct ring_buffer_event *event)
211 {
212         /* padding has a NULL time_delta */
213         event->type_len = RINGBUF_TYPE_PADDING;
214         event->time_delta = 0;
215 }
216
217 static unsigned
218 rb_event_data_length(struct ring_buffer_event *event)
219 {
220         unsigned length;
221
222         if (event->type_len)
223                 length = event->type_len * RB_ALIGNMENT;
224         else
225                 length = event->array[0];
226         return length + RB_EVNT_HDR_SIZE;
227 }
228
229 /*
230  * Return the length of the given event. Will return
231  * the length of the time extend if the event is a
232  * time extend.
233  */
234 static inline unsigned
235 rb_event_length(struct ring_buffer_event *event)
236 {
237         switch (event->type_len) {
238         case RINGBUF_TYPE_PADDING:
239                 if (rb_null_event(event))
240                         /* undefined */
241                         return -1;
242                 return  event->array[0] + RB_EVNT_HDR_SIZE;
243
244         case RINGBUF_TYPE_TIME_EXTEND:
245                 return RB_LEN_TIME_EXTEND;
246
247         case RINGBUF_TYPE_TIME_STAMP:
248                 return RB_LEN_TIME_STAMP;
249
250         case RINGBUF_TYPE_DATA:
251                 return rb_event_data_length(event);
252         default:
253                 BUG();
254         }
255         /* not hit */
256         return 0;
257 }
258
259 /*
260  * Return total length of time extend and data,
261  *   or just the event length for all other events.
262  */
263 static inline unsigned
264 rb_event_ts_length(struct ring_buffer_event *event)
265 {
266         unsigned len = 0;
267
268         if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
269                 /* time extends include the data event after it */
270                 len = RB_LEN_TIME_EXTEND;
271                 event = skip_time_extend(event);
272         }
273         return len + rb_event_length(event);
274 }
275
276 /**
277  * ring_buffer_event_length - return the length of the event
278  * @event: the event to get the length of
279  *
280  * Returns the size of the data load of a data event.
281  * If the event is something other than a data event, it
282  * returns the size of the event itself. With the exception
283  * of a TIME EXTEND, where it still returns the size of the
284  * data load of the data event after it.
285  */
286 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
287 {
288         unsigned length;
289
290         if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
291                 event = skip_time_extend(event);
292
293         length = rb_event_length(event);
294         if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
295                 return length;
296         length -= RB_EVNT_HDR_SIZE;
297         if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
298                 length -= sizeof(event->array[0]);
299         return length;
300 }
301 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
302
303 /* inline for ring buffer fast paths */
304 static void *
305 rb_event_data(struct ring_buffer_event *event)
306 {
307         if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
308                 event = skip_time_extend(event);
309         BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
310         /* If length is in len field, then array[0] has the data */
311         if (event->type_len)
312                 return (void *)&event->array[0];
313         /* Otherwise length is in array[0] and array[1] has the data */
314         return (void *)&event->array[1];
315 }
316
317 /**
318  * ring_buffer_event_data - return the data of the event
319  * @event: the event to get the data from
320  */
321 void *ring_buffer_event_data(struct ring_buffer_event *event)
322 {
323         return rb_event_data(event);
324 }
325 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
326
327 #define for_each_buffer_cpu(buffer, cpu)                \
328         for_each_cpu(cpu, buffer->cpumask)
329
330 #define TS_SHIFT        27
331 #define TS_MASK         ((1ULL << TS_SHIFT) - 1)
332 #define TS_DELTA_TEST   (~TS_MASK)
333
334 /* Flag when events were overwritten */
335 #define RB_MISSED_EVENTS        (1 << 31)
336 /* Missed count stored at end */
337 #define RB_MISSED_STORED        (1 << 30)
338
339 struct buffer_data_page {
340         u64              time_stamp;    /* page time stamp */
341         local_t          commit;        /* write committed index */
342         unsigned char    data[] RB_ALIGN_DATA;  /* data of buffer page */
343 };
344
345 /*
346  * Note, the buffer_page list must be first. The buffer pages
347  * are allocated in cache lines, which means that each buffer
348  * page will be at the beginning of a cache line, and thus
349  * the least significant bits will be zero. We use this to
350  * add flags in the list struct pointers, to make the ring buffer
351  * lockless.
352  */
353 struct buffer_page {
354         struct list_head list;          /* list of buffer pages */
355         local_t          write;         /* index for next write */
356         unsigned         read;          /* index for next read */
357         local_t          entries;       /* entries on this page */
358         unsigned long    real_end;      /* real end of data */
359         struct buffer_data_page *page;  /* Actual data page */
360 };
361
362 /*
363  * The buffer page counters, write and entries, must be reset
364  * atomically when crossing page boundaries. To synchronize this
365  * update, two counters are inserted into the number. One is
366  * the actual counter for the write position or count on the page.
367  *
368  * The other is a counter of updaters. Before an update happens
369  * the update partition of the counter is incremented. This will
370  * allow the updater to update the counter atomically.
371  *
372  * The counter is 20 bits, and the state data is 12.
373  */
374 #define RB_WRITE_MASK           0xfffff
375 #define RB_WRITE_INTCNT         (1 << 20)
376
377 static void rb_init_page(struct buffer_data_page *bpage)
378 {
379         local_set(&bpage->commit, 0);
380 }
381
382 /**
383  * ring_buffer_page_len - the size of data on the page.
384  * @page: The page to read
385  *
386  * Returns the amount of data on the page, including buffer page header.
387  */
388 size_t ring_buffer_page_len(void *page)
389 {
390         return local_read(&((struct buffer_data_page *)page)->commit)
391                 + BUF_PAGE_HDR_SIZE;
392 }
393
394 /*
395  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
396  * this issue out.
397  */
398 static void free_buffer_page(struct buffer_page *bpage)
399 {
400         free_page((unsigned long)bpage->page);
401         kfree(bpage);
402 }
403
404 /*
405  * We need to fit the time_stamp delta into 27 bits.
406  */
407 static inline int test_time_stamp(u64 delta)
408 {
409         if (delta & TS_DELTA_TEST)
410                 return 1;
411         return 0;
412 }
413
414 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
415
416 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
417 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
418
419 int ring_buffer_print_page_header(struct trace_seq *s)
420 {
421         struct buffer_data_page field;
422         int ret;
423
424         ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t"
425                                "offset:0;\tsize:%u;\tsigned:%u;\n",
426                                (unsigned int)sizeof(field.time_stamp),
427                                (unsigned int)is_signed_type(u64));
428
429         ret = trace_seq_printf(s, "\tfield: local_t commit;\t"
430                                "offset:%u;\tsize:%u;\tsigned:%u;\n",
431                                (unsigned int)offsetof(typeof(field), commit),
432                                (unsigned int)sizeof(field.commit),
433                                (unsigned int)is_signed_type(long));
434
435         ret = trace_seq_printf(s, "\tfield: int overwrite;\t"
436                                "offset:%u;\tsize:%u;\tsigned:%u;\n",
437                                (unsigned int)offsetof(typeof(field), commit),
438                                1,
439                                (unsigned int)is_signed_type(long));
440
441         ret = trace_seq_printf(s, "\tfield: char data;\t"
442                                "offset:%u;\tsize:%u;\tsigned:%u;\n",
443                                (unsigned int)offsetof(typeof(field), data),
444                                (unsigned int)BUF_PAGE_SIZE,
445                                (unsigned int)is_signed_type(char));
446
447         return ret;
448 }
449
450 struct rb_irq_work {
451         struct irq_work                 work;
452         wait_queue_head_t               waiters;
453         bool                            waiters_pending;
454 };
455
456 /*
457  * head_page == tail_page && head == tail then buffer is empty.
458  */
459 struct ring_buffer_per_cpu {
460         int                             cpu;
461         atomic_t                        record_disabled;
462         struct ring_buffer              *buffer;
463         raw_spinlock_t                  reader_lock;    /* serialize readers */
464         arch_spinlock_t                 lock;
465         struct lock_class_key           lock_key;
466         unsigned int                    nr_pages;
467         struct list_head                *pages;
468         struct buffer_page              *head_page;     /* read from head */
469         struct buffer_page              *tail_page;     /* write to tail */
470         struct buffer_page              *commit_page;   /* committed pages */
471         struct buffer_page              *reader_page;
472         unsigned long                   lost_events;
473         unsigned long                   last_overrun;
474         local_t                         entries_bytes;
475         local_t                         entries;
476         local_t                         overrun;
477         local_t                         commit_overrun;
478         local_t                         dropped_events;
479         local_t                         committing;
480         local_t                         commits;
481         unsigned long                   read;
482         unsigned long                   read_bytes;
483         u64                             write_stamp;
484         u64                             read_stamp;
485         /* ring buffer pages to update, > 0 to add, < 0 to remove */
486         int                             nr_pages_to_update;
487         struct list_head                new_pages; /* new pages to add */
488         struct work_struct              update_pages_work;
489         struct completion               update_done;
490
491         struct rb_irq_work              irq_work;
492 };
493
494 struct ring_buffer {
495         unsigned                        flags;
496         int                             cpus;
497         atomic_t                        record_disabled;
498         atomic_t                        resize_disabled;
499         cpumask_var_t                   cpumask;
500
501         struct lock_class_key           *reader_lock_key;
502
503         struct mutex                    mutex;
504
505         struct ring_buffer_per_cpu      **buffers;
506
507 #ifdef CONFIG_HOTPLUG_CPU
508         struct notifier_block           cpu_notify;
509 #endif
510         u64                             (*clock)(void);
511
512         struct rb_irq_work              irq_work;
513 };
514
515 struct ring_buffer_iter {
516         struct ring_buffer_per_cpu      *cpu_buffer;
517         unsigned long                   head;
518         struct buffer_page              *head_page;
519         struct buffer_page              *cache_reader_page;
520         unsigned long                   cache_read;
521         u64                             read_stamp;
522 };
523
524 /*
525  * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
526  *
527  * Schedules a delayed work to wake up any task that is blocked on the
528  * ring buffer waiters queue.
529  */
530 static void rb_wake_up_waiters(struct irq_work *work)
531 {
532         struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
533
534         wake_up_all(&rbwork->waiters);
535 }
536
537 /**
538  * ring_buffer_wait - wait for input to the ring buffer
539  * @buffer: buffer to wait on
540  * @cpu: the cpu buffer to wait on
541  *
542  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
543  * as data is added to any of the @buffer's cpu buffers. Otherwise
544  * it will wait for data to be added to a specific cpu buffer.
545  */
546 int ring_buffer_wait(struct ring_buffer *buffer, int cpu)
547 {
548         struct ring_buffer_per_cpu *cpu_buffer;
549         DEFINE_WAIT(wait);
550         struct rb_irq_work *work;
551
552         /*
553          * Depending on what the caller is waiting for, either any
554          * data in any cpu buffer, or a specific buffer, put the
555          * caller on the appropriate wait queue.
556          */
557         if (cpu == RING_BUFFER_ALL_CPUS)
558                 work = &buffer->irq_work;
559         else {
560                 if (!cpumask_test_cpu(cpu, buffer->cpumask))
561                         return -ENODEV;
562                 cpu_buffer = buffer->buffers[cpu];
563                 work = &cpu_buffer->irq_work;
564         }
565
566
567         prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
568
569         /*
570          * The events can happen in critical sections where
571          * checking a work queue can cause deadlocks.
572          * After adding a task to the queue, this flag is set
573          * only to notify events to try to wake up the queue
574          * using irq_work.
575          *
576          * We don't clear it even if the buffer is no longer
577          * empty. The flag only causes the next event to run
578          * irq_work to do the work queue wake up. The worse
579          * that can happen if we race with !trace_empty() is that
580          * an event will cause an irq_work to try to wake up
581          * an empty queue.
582          *
583          * There's no reason to protect this flag either, as
584          * the work queue and irq_work logic will do the necessary
585          * synchronization for the wake ups. The only thing
586          * that is necessary is that the wake up happens after
587          * a task has been queued. It's OK for spurious wake ups.
588          */
589         work->waiters_pending = true;
590
591         if ((cpu == RING_BUFFER_ALL_CPUS && ring_buffer_empty(buffer)) ||
592             (cpu != RING_BUFFER_ALL_CPUS && ring_buffer_empty_cpu(buffer, cpu)))
593                 schedule();
594
595         finish_wait(&work->waiters, &wait);
596         return 0;
597 }
598
599 /**
600  * ring_buffer_poll_wait - poll on buffer input
601  * @buffer: buffer to wait on
602  * @cpu: the cpu buffer to wait on
603  * @filp: the file descriptor
604  * @poll_table: The poll descriptor
605  *
606  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
607  * as data is added to any of the @buffer's cpu buffers. Otherwise
608  * it will wait for data to be added to a specific cpu buffer.
609  *
610  * Returns POLLIN | POLLRDNORM if data exists in the buffers,
611  * zero otherwise.
612  */
613 int ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu,
614                           struct file *filp, poll_table *poll_table)
615 {
616         struct ring_buffer_per_cpu *cpu_buffer;
617         struct rb_irq_work *work;
618
619         if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
620             (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
621                 return POLLIN | POLLRDNORM;
622
623         if (cpu == RING_BUFFER_ALL_CPUS)
624                 work = &buffer->irq_work;
625         else {
626                 if (!cpumask_test_cpu(cpu, buffer->cpumask))
627                         return -EINVAL;
628
629                 cpu_buffer = buffer->buffers[cpu];
630                 work = &cpu_buffer->irq_work;
631         }
632
633         work->waiters_pending = true;
634         poll_wait(filp, &work->waiters, poll_table);
635
636         if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
637             (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
638                 return POLLIN | POLLRDNORM;
639         return 0;
640 }
641
642 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
643 #define RB_WARN_ON(b, cond)                                             \
644         ({                                                              \
645                 int _____ret = unlikely(cond);                          \
646                 if (_____ret) {                                         \
647                         if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
648                                 struct ring_buffer_per_cpu *__b =       \
649                                         (void *)b;                      \
650                                 atomic_inc(&__b->buffer->record_disabled); \
651                         } else                                          \
652                                 atomic_inc(&b->record_disabled);        \
653                         WARN_ON(1);                                     \
654                 }                                                       \
655                 _____ret;                                               \
656         })
657
658 /* Up this if you want to test the TIME_EXTENTS and normalization */
659 #define DEBUG_SHIFT 0
660
661 static inline u64 rb_time_stamp(struct ring_buffer *buffer)
662 {
663         /* shift to debug/test normalization and TIME_EXTENTS */
664         return buffer->clock() << DEBUG_SHIFT;
665 }
666
667 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
668 {
669         u64 time;
670
671         preempt_disable_notrace();
672         time = rb_time_stamp(buffer);
673         preempt_enable_no_resched_notrace();
674
675         return time;
676 }
677 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
678
679 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
680                                       int cpu, u64 *ts)
681 {
682         /* Just stupid testing the normalize function and deltas */
683         *ts >>= DEBUG_SHIFT;
684 }
685 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
686
687 /*
688  * Making the ring buffer lockless makes things tricky.
689  * Although writes only happen on the CPU that they are on,
690  * and they only need to worry about interrupts. Reads can
691  * happen on any CPU.
692  *
693  * The reader page is always off the ring buffer, but when the
694  * reader finishes with a page, it needs to swap its page with
695  * a new one from the buffer. The reader needs to take from
696  * the head (writes go to the tail). But if a writer is in overwrite
697  * mode and wraps, it must push the head page forward.
698  *
699  * Here lies the problem.
700  *
701  * The reader must be careful to replace only the head page, and
702  * not another one. As described at the top of the file in the
703  * ASCII art, the reader sets its old page to point to the next
704  * page after head. It then sets the page after head to point to
705  * the old reader page. But if the writer moves the head page
706  * during this operation, the reader could end up with the tail.
707  *
708  * We use cmpxchg to help prevent this race. We also do something
709  * special with the page before head. We set the LSB to 1.
710  *
711  * When the writer must push the page forward, it will clear the
712  * bit that points to the head page, move the head, and then set
713  * the bit that points to the new head page.
714  *
715  * We also don't want an interrupt coming in and moving the head
716  * page on another writer. Thus we use the second LSB to catch
717  * that too. Thus:
718  *
719  * head->list->prev->next        bit 1          bit 0
720  *                              -------        -------
721  * Normal page                     0              0
722  * Points to head page             0              1
723  * New head page                   1              0
724  *
725  * Note we can not trust the prev pointer of the head page, because:
726  *
727  * +----+       +-----+        +-----+
728  * |    |------>|  T  |---X--->|  N  |
729  * |    |<------|     |        |     |
730  * +----+       +-----+        +-----+
731  *   ^                           ^ |
732  *   |          +-----+          | |
733  *   +----------|  R  |----------+ |
734  *              |     |<-----------+
735  *              +-----+
736  *
737  * Key:  ---X-->  HEAD flag set in pointer
738  *         T      Tail page
739  *         R      Reader page
740  *         N      Next page
741  *
742  * (see __rb_reserve_next() to see where this happens)
743  *
744  *  What the above shows is that the reader just swapped out
745  *  the reader page with a page in the buffer, but before it
746  *  could make the new header point back to the new page added
747  *  it was preempted by a writer. The writer moved forward onto
748  *  the new page added by the reader and is about to move forward
749  *  again.
750  *
751  *  You can see, it is legitimate for the previous pointer of
752  *  the head (or any page) not to point back to itself. But only
753  *  temporarially.
754  */
755
756 #define RB_PAGE_NORMAL          0UL
757 #define RB_PAGE_HEAD            1UL
758 #define RB_PAGE_UPDATE          2UL
759
760
761 #define RB_FLAG_MASK            3UL
762
763 /* PAGE_MOVED is not part of the mask */
764 #define RB_PAGE_MOVED           4UL
765
766 /*
767  * rb_list_head - remove any bit
768  */
769 static struct list_head *rb_list_head(struct list_head *list)
770 {
771         unsigned long val = (unsigned long)list;
772
773         return (struct list_head *)(val & ~RB_FLAG_MASK);
774 }
775
776 /*
777  * rb_is_head_page - test if the given page is the head page
778  *
779  * Because the reader may move the head_page pointer, we can
780  * not trust what the head page is (it may be pointing to
781  * the reader page). But if the next page is a header page,
782  * its flags will be non zero.
783  */
784 static inline int
785 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
786                 struct buffer_page *page, struct list_head *list)
787 {
788         unsigned long val;
789
790         val = (unsigned long)list->next;
791
792         if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
793                 return RB_PAGE_MOVED;
794
795         return val & RB_FLAG_MASK;
796 }
797
798 /*
799  * rb_is_reader_page
800  *
801  * The unique thing about the reader page, is that, if the
802  * writer is ever on it, the previous pointer never points
803  * back to the reader page.
804  */
805 static int rb_is_reader_page(struct buffer_page *page)
806 {
807         struct list_head *list = page->list.prev;
808
809         return rb_list_head(list->next) != &page->list;
810 }
811
812 /*
813  * rb_set_list_to_head - set a list_head to be pointing to head.
814  */
815 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
816                                 struct list_head *list)
817 {
818         unsigned long *ptr;
819
820         ptr = (unsigned long *)&list->next;
821         *ptr |= RB_PAGE_HEAD;
822         *ptr &= ~RB_PAGE_UPDATE;
823 }
824
825 /*
826  * rb_head_page_activate - sets up head page
827  */
828 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
829 {
830         struct buffer_page *head;
831
832         head = cpu_buffer->head_page;
833         if (!head)
834                 return;
835
836         /*
837          * Set the previous list pointer to have the HEAD flag.
838          */
839         rb_set_list_to_head(cpu_buffer, head->list.prev);
840 }
841
842 static void rb_list_head_clear(struct list_head *list)
843 {
844         unsigned long *ptr = (unsigned long *)&list->next;
845
846         *ptr &= ~RB_FLAG_MASK;
847 }
848
849 /*
850  * rb_head_page_dactivate - clears head page ptr (for free list)
851  */
852 static void
853 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
854 {
855         struct list_head *hd;
856
857         /* Go through the whole list and clear any pointers found. */
858         rb_list_head_clear(cpu_buffer->pages);
859
860         list_for_each(hd, cpu_buffer->pages)
861                 rb_list_head_clear(hd);
862 }
863
864 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
865                             struct buffer_page *head,
866                             struct buffer_page *prev,
867                             int old_flag, int new_flag)
868 {
869         struct list_head *list;
870         unsigned long val = (unsigned long)&head->list;
871         unsigned long ret;
872
873         list = &prev->list;
874
875         val &= ~RB_FLAG_MASK;
876
877         ret = cmpxchg((unsigned long *)&list->next,
878                       val | old_flag, val | new_flag);
879
880         /* check if the reader took the page */
881         if ((ret & ~RB_FLAG_MASK) != val)
882                 return RB_PAGE_MOVED;
883
884         return ret & RB_FLAG_MASK;
885 }
886
887 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
888                                    struct buffer_page *head,
889                                    struct buffer_page *prev,
890                                    int old_flag)
891 {
892         return rb_head_page_set(cpu_buffer, head, prev,
893                                 old_flag, RB_PAGE_UPDATE);
894 }
895
896 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
897                                  struct buffer_page *head,
898                                  struct buffer_page *prev,
899                                  int old_flag)
900 {
901         return rb_head_page_set(cpu_buffer, head, prev,
902                                 old_flag, RB_PAGE_HEAD);
903 }
904
905 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
906                                    struct buffer_page *head,
907                                    struct buffer_page *prev,
908                                    int old_flag)
909 {
910         return rb_head_page_set(cpu_buffer, head, prev,
911                                 old_flag, RB_PAGE_NORMAL);
912 }
913
914 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
915                                struct buffer_page **bpage)
916 {
917         struct list_head *p = rb_list_head((*bpage)->list.next);
918
919         *bpage = list_entry(p, struct buffer_page, list);
920 }
921
922 static struct buffer_page *
923 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
924 {
925         struct buffer_page *head;
926         struct buffer_page *page;
927         struct list_head *list;
928         int i;
929
930         if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
931                 return NULL;
932
933         /* sanity check */
934         list = cpu_buffer->pages;
935         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
936                 return NULL;
937
938         page = head = cpu_buffer->head_page;
939         /*
940          * It is possible that the writer moves the header behind
941          * where we started, and we miss in one loop.
942          * A second loop should grab the header, but we'll do
943          * three loops just because I'm paranoid.
944          */
945         for (i = 0; i < 3; i++) {
946                 do {
947                         if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
948                                 cpu_buffer->head_page = page;
949                                 return page;
950                         }
951                         rb_inc_page(cpu_buffer, &page);
952                 } while (page != head);
953         }
954
955         RB_WARN_ON(cpu_buffer, 1);
956
957         return NULL;
958 }
959
960 static int rb_head_page_replace(struct buffer_page *old,
961                                 struct buffer_page *new)
962 {
963         unsigned long *ptr = (unsigned long *)&old->list.prev->next;
964         unsigned long val;
965         unsigned long ret;
966
967         val = *ptr & ~RB_FLAG_MASK;
968         val |= RB_PAGE_HEAD;
969
970         ret = cmpxchg(ptr, val, (unsigned long)&new->list);
971
972         return ret == val;
973 }
974
975 /*
976  * rb_tail_page_update - move the tail page forward
977  *
978  * Returns 1 if moved tail page, 0 if someone else did.
979  */
980 static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
981                                struct buffer_page *tail_page,
982                                struct buffer_page *next_page)
983 {
984         struct buffer_page *old_tail;
985         unsigned long old_entries;
986         unsigned long old_write;
987         int ret = 0;
988
989         /*
990          * The tail page now needs to be moved forward.
991          *
992          * We need to reset the tail page, but without messing
993          * with possible erasing of data brought in by interrupts
994          * that have moved the tail page and are currently on it.
995          *
996          * We add a counter to the write field to denote this.
997          */
998         old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
999         old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1000
1001         /*
1002          * Just make sure we have seen our old_write and synchronize
1003          * with any interrupts that come in.
1004          */
1005         barrier();
1006
1007         /*
1008          * If the tail page is still the same as what we think
1009          * it is, then it is up to us to update the tail
1010          * pointer.
1011          */
1012         if (tail_page == cpu_buffer->tail_page) {
1013                 /* Zero the write counter */
1014                 unsigned long val = old_write & ~RB_WRITE_MASK;
1015                 unsigned long eval = old_entries & ~RB_WRITE_MASK;
1016
1017                 /*
1018                  * This will only succeed if an interrupt did
1019                  * not come in and change it. In which case, we
1020                  * do not want to modify it.
1021                  *
1022                  * We add (void) to let the compiler know that we do not care
1023                  * about the return value of these functions. We use the
1024                  * cmpxchg to only update if an interrupt did not already
1025                  * do it for us. If the cmpxchg fails, we don't care.
1026                  */
1027                 (void)local_cmpxchg(&next_page->write, old_write, val);
1028                 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
1029
1030                 /*
1031                  * No need to worry about races with clearing out the commit.
1032                  * it only can increment when a commit takes place. But that
1033                  * only happens in the outer most nested commit.
1034                  */
1035                 local_set(&next_page->page->commit, 0);
1036
1037                 old_tail = cmpxchg(&cpu_buffer->tail_page,
1038                                    tail_page, next_page);
1039
1040                 if (old_tail == tail_page)
1041                         ret = 1;
1042         }
1043
1044         return ret;
1045 }
1046
1047 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1048                           struct buffer_page *bpage)
1049 {
1050         unsigned long val = (unsigned long)bpage;
1051
1052         if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1053                 return 1;
1054
1055         return 0;
1056 }
1057
1058 /**
1059  * rb_check_list - make sure a pointer to a list has the last bits zero
1060  */
1061 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1062                          struct list_head *list)
1063 {
1064         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1065                 return 1;
1066         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1067                 return 1;
1068         return 0;
1069 }
1070
1071 /**
1072  * check_pages - integrity check of buffer pages
1073  * @cpu_buffer: CPU buffer with pages to test
1074  *
1075  * As a safety measure we check to make sure the data pages have not
1076  * been corrupted.
1077  */
1078 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1079 {
1080         struct list_head *head = cpu_buffer->pages;
1081         struct buffer_page *bpage, *tmp;
1082
1083         /* Reset the head page if it exists */
1084         if (cpu_buffer->head_page)
1085                 rb_set_head_page(cpu_buffer);
1086
1087         rb_head_page_deactivate(cpu_buffer);
1088
1089         if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1090                 return -1;
1091         if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1092                 return -1;
1093
1094         if (rb_check_list(cpu_buffer, head))
1095                 return -1;
1096
1097         list_for_each_entry_safe(bpage, tmp, head, list) {
1098                 if (RB_WARN_ON(cpu_buffer,
1099                                bpage->list.next->prev != &bpage->list))
1100                         return -1;
1101                 if (RB_WARN_ON(cpu_buffer,
1102                                bpage->list.prev->next != &bpage->list))
1103                         return -1;
1104                 if (rb_check_list(cpu_buffer, &bpage->list))
1105                         return -1;
1106         }
1107
1108         rb_head_page_activate(cpu_buffer);
1109
1110         return 0;
1111 }
1112
1113 static int __rb_allocate_pages(int nr_pages, struct list_head *pages, int cpu)
1114 {
1115         int i;
1116         struct buffer_page *bpage, *tmp;
1117
1118         for (i = 0; i < nr_pages; i++) {
1119                 struct page *page;
1120                 /*
1121                  * __GFP_NORETRY flag makes sure that the allocation fails
1122                  * gracefully without invoking oom-killer and the system is
1123                  * not destabilized.
1124                  */
1125                 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1126                                     GFP_KERNEL | __GFP_NORETRY,
1127                                     cpu_to_node(cpu));
1128                 if (!bpage)
1129                         goto free_pages;
1130
1131                 list_add(&bpage->list, pages);
1132
1133                 page = alloc_pages_node(cpu_to_node(cpu),
1134                                         GFP_KERNEL | __GFP_NORETRY, 0);
1135                 if (!page)
1136                         goto free_pages;
1137                 bpage->page = page_address(page);
1138                 rb_init_page(bpage->page);
1139         }
1140
1141         return 0;
1142
1143 free_pages:
1144         list_for_each_entry_safe(bpage, tmp, pages, list) {
1145                 list_del_init(&bpage->list);
1146                 free_buffer_page(bpage);
1147         }
1148
1149         return -ENOMEM;
1150 }
1151
1152 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1153                              unsigned nr_pages)
1154 {
1155         LIST_HEAD(pages);
1156
1157         WARN_ON(!nr_pages);
1158
1159         if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1160                 return -ENOMEM;
1161
1162         /*
1163          * The ring buffer page list is a circular list that does not
1164          * start and end with a list head. All page list items point to
1165          * other pages.
1166          */
1167         cpu_buffer->pages = pages.next;
1168         list_del(&pages);
1169
1170         cpu_buffer->nr_pages = nr_pages;
1171
1172         rb_check_pages(cpu_buffer);
1173
1174         return 0;
1175 }
1176
1177 static struct ring_buffer_per_cpu *
1178 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int nr_pages, int cpu)
1179 {
1180         struct ring_buffer_per_cpu *cpu_buffer;
1181         struct buffer_page *bpage;
1182         struct page *page;
1183         int ret;
1184
1185         cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1186                                   GFP_KERNEL, cpu_to_node(cpu));
1187         if (!cpu_buffer)
1188                 return NULL;
1189
1190         cpu_buffer->cpu = cpu;
1191         cpu_buffer->buffer = buffer;
1192         raw_spin_lock_init(&cpu_buffer->reader_lock);
1193         lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1194         cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1195         INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1196         init_completion(&cpu_buffer->update_done);
1197         init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1198         init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1199
1200         bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1201                             GFP_KERNEL, cpu_to_node(cpu));
1202         if (!bpage)
1203                 goto fail_free_buffer;
1204
1205         rb_check_bpage(cpu_buffer, bpage);
1206
1207         cpu_buffer->reader_page = bpage;
1208         page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1209         if (!page)
1210                 goto fail_free_reader;
1211         bpage->page = page_address(page);
1212         rb_init_page(bpage->page);
1213
1214         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1215         INIT_LIST_HEAD(&cpu_buffer->new_pages);
1216
1217         ret = rb_allocate_pages(cpu_buffer, nr_pages);
1218         if (ret < 0)
1219                 goto fail_free_reader;
1220
1221         cpu_buffer->head_page
1222                 = list_entry(cpu_buffer->pages, struct buffer_page, list);
1223         cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1224
1225         rb_head_page_activate(cpu_buffer);
1226
1227         return cpu_buffer;
1228
1229  fail_free_reader:
1230         free_buffer_page(cpu_buffer->reader_page);
1231
1232  fail_free_buffer:
1233         kfree(cpu_buffer);
1234         return NULL;
1235 }
1236
1237 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1238 {
1239         struct list_head *head = cpu_buffer->pages;
1240         struct buffer_page *bpage, *tmp;
1241
1242         free_buffer_page(cpu_buffer->reader_page);
1243
1244         rb_head_page_deactivate(cpu_buffer);
1245
1246         if (head) {
1247                 list_for_each_entry_safe(bpage, tmp, head, list) {
1248                         list_del_init(&bpage->list);
1249                         free_buffer_page(bpage);
1250                 }
1251                 bpage = list_entry(head, struct buffer_page, list);
1252                 free_buffer_page(bpage);
1253         }
1254
1255         kfree(cpu_buffer);
1256 }
1257
1258 #ifdef CONFIG_HOTPLUG_CPU
1259 static int rb_cpu_notify(struct notifier_block *self,
1260                          unsigned long action, void *hcpu);
1261 #endif
1262
1263 /**
1264  * ring_buffer_alloc - allocate a new ring_buffer
1265  * @size: the size in bytes per cpu that is needed.
1266  * @flags: attributes to set for the ring buffer.
1267  *
1268  * Currently the only flag that is available is the RB_FL_OVERWRITE
1269  * flag. This flag means that the buffer will overwrite old data
1270  * when the buffer wraps. If this flag is not set, the buffer will
1271  * drop data when the tail hits the head.
1272  */
1273 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1274                                         struct lock_class_key *key)
1275 {
1276         struct ring_buffer *buffer;
1277         int bsize;
1278         int cpu, nr_pages;
1279
1280         /* keep it in its own cache line */
1281         buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1282                          GFP_KERNEL);
1283         if (!buffer)
1284                 return NULL;
1285
1286         if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1287                 goto fail_free_buffer;
1288
1289         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1290         buffer->flags = flags;
1291         buffer->clock = trace_clock_local;
1292         buffer->reader_lock_key = key;
1293
1294         init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1295         init_waitqueue_head(&buffer->irq_work.waiters);
1296
1297         /* need at least two pages */
1298         if (nr_pages < 2)
1299                 nr_pages = 2;
1300
1301         /*
1302          * In case of non-hotplug cpu, if the ring-buffer is allocated
1303          * in early initcall, it will not be notified of secondary cpus.
1304          * In that off case, we need to allocate for all possible cpus.
1305          */
1306 #ifdef CONFIG_HOTPLUG_CPU
1307         get_online_cpus();
1308         cpumask_copy(buffer->cpumask, cpu_online_mask);
1309 #else
1310         cpumask_copy(buffer->cpumask, cpu_possible_mask);
1311 #endif
1312         buffer->cpus = nr_cpu_ids;
1313
1314         bsize = sizeof(void *) * nr_cpu_ids;
1315         buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1316                                   GFP_KERNEL);
1317         if (!buffer->buffers)
1318                 goto fail_free_cpumask;
1319
1320         for_each_buffer_cpu(buffer, cpu) {
1321                 buffer->buffers[cpu] =
1322                         rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1323                 if (!buffer->buffers[cpu])
1324                         goto fail_free_buffers;
1325         }
1326
1327 #ifdef CONFIG_HOTPLUG_CPU
1328         buffer->cpu_notify.notifier_call = rb_cpu_notify;
1329         buffer->cpu_notify.priority = 0;
1330         register_cpu_notifier(&buffer->cpu_notify);
1331 #endif
1332
1333         put_online_cpus();
1334         mutex_init(&buffer->mutex);
1335
1336         return buffer;
1337
1338  fail_free_buffers:
1339         for_each_buffer_cpu(buffer, cpu) {
1340                 if (buffer->buffers[cpu])
1341                         rb_free_cpu_buffer(buffer->buffers[cpu]);
1342         }
1343         kfree(buffer->buffers);
1344
1345  fail_free_cpumask:
1346         free_cpumask_var(buffer->cpumask);
1347         put_online_cpus();
1348
1349  fail_free_buffer:
1350         kfree(buffer);
1351         return NULL;
1352 }
1353 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1354
1355 /**
1356  * ring_buffer_free - free a ring buffer.
1357  * @buffer: the buffer to free.
1358  */
1359 void
1360 ring_buffer_free(struct ring_buffer *buffer)
1361 {
1362         int cpu;
1363
1364         get_online_cpus();
1365
1366 #ifdef CONFIG_HOTPLUG_CPU
1367         unregister_cpu_notifier(&buffer->cpu_notify);
1368 #endif
1369
1370         for_each_buffer_cpu(buffer, cpu)
1371                 rb_free_cpu_buffer(buffer->buffers[cpu]);
1372
1373         put_online_cpus();
1374
1375         kfree(buffer->buffers);
1376         free_cpumask_var(buffer->cpumask);
1377
1378         kfree(buffer);
1379 }
1380 EXPORT_SYMBOL_GPL(ring_buffer_free);
1381
1382 void ring_buffer_set_clock(struct ring_buffer *buffer,
1383                            u64 (*clock)(void))
1384 {
1385         buffer->clock = clock;
1386 }
1387
1388 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1389
1390 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1391 {
1392         return local_read(&bpage->entries) & RB_WRITE_MASK;
1393 }
1394
1395 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1396 {
1397         return local_read(&bpage->write) & RB_WRITE_MASK;
1398 }
1399
1400 static int
1401 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned int nr_pages)
1402 {
1403         struct list_head *tail_page, *to_remove, *next_page;
1404         struct buffer_page *to_remove_page, *tmp_iter_page;
1405         struct buffer_page *last_page, *first_page;
1406         unsigned int nr_removed;
1407         unsigned long head_bit;
1408         int page_entries;
1409
1410         head_bit = 0;
1411
1412         raw_spin_lock_irq(&cpu_buffer->reader_lock);
1413         atomic_inc(&cpu_buffer->record_disabled);
1414         /*
1415          * We don't race with the readers since we have acquired the reader
1416          * lock. We also don't race with writers after disabling recording.
1417          * This makes it easy to figure out the first and the last page to be
1418          * removed from the list. We unlink all the pages in between including
1419          * the first and last pages. This is done in a busy loop so that we
1420          * lose the least number of traces.
1421          * The pages are freed after we restart recording and unlock readers.
1422          */
1423         tail_page = &cpu_buffer->tail_page->list;
1424
1425         /*
1426          * tail page might be on reader page, we remove the next page
1427          * from the ring buffer
1428          */
1429         if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1430                 tail_page = rb_list_head(tail_page->next);
1431         to_remove = tail_page;
1432
1433         /* start of pages to remove */
1434         first_page = list_entry(rb_list_head(to_remove->next),
1435                                 struct buffer_page, list);
1436
1437         for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1438                 to_remove = rb_list_head(to_remove)->next;
1439                 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1440         }
1441
1442         next_page = rb_list_head(to_remove)->next;
1443
1444         /*
1445          * Now we remove all pages between tail_page and next_page.
1446          * Make sure that we have head_bit value preserved for the
1447          * next page
1448          */
1449         tail_page->next = (struct list_head *)((unsigned long)next_page |
1450                                                 head_bit);
1451         next_page = rb_list_head(next_page);
1452         next_page->prev = tail_page;
1453
1454         /* make sure pages points to a valid page in the ring buffer */
1455         cpu_buffer->pages = next_page;
1456
1457         /* update head page */
1458         if (head_bit)
1459                 cpu_buffer->head_page = list_entry(next_page,
1460                                                 struct buffer_page, list);
1461
1462         /*
1463          * change read pointer to make sure any read iterators reset
1464          * themselves
1465          */
1466         cpu_buffer->read = 0;
1467
1468         /* pages are removed, resume tracing and then free the pages */
1469         atomic_dec(&cpu_buffer->record_disabled);
1470         raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1471
1472         RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1473
1474         /* last buffer page to remove */
1475         last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1476                                 list);
1477         tmp_iter_page = first_page;
1478
1479         do {
1480                 to_remove_page = tmp_iter_page;
1481                 rb_inc_page(cpu_buffer, &tmp_iter_page);
1482
1483                 /* update the counters */
1484                 page_entries = rb_page_entries(to_remove_page);
1485                 if (page_entries) {
1486                         /*
1487                          * If something was added to this page, it was full
1488                          * since it is not the tail page. So we deduct the
1489                          * bytes consumed in ring buffer from here.
1490                          * Increment overrun to account for the lost events.
1491                          */
1492                         local_add(page_entries, &cpu_buffer->overrun);
1493                         local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1494                 }
1495
1496                 /*
1497                  * We have already removed references to this list item, just
1498                  * free up the buffer_page and its page
1499                  */
1500                 free_buffer_page(to_remove_page);
1501                 nr_removed--;
1502
1503         } while (to_remove_page != last_page);
1504
1505         RB_WARN_ON(cpu_buffer, nr_removed);
1506
1507         return nr_removed == 0;
1508 }
1509
1510 static int
1511 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1512 {
1513         struct list_head *pages = &cpu_buffer->new_pages;
1514         int retries, success;
1515
1516         raw_spin_lock_irq(&cpu_buffer->reader_lock);
1517         /*
1518          * We are holding the reader lock, so the reader page won't be swapped
1519          * in the ring buffer. Now we are racing with the writer trying to
1520          * move head page and the tail page.
1521          * We are going to adapt the reader page update process where:
1522          * 1. We first splice the start and end of list of new pages between
1523          *    the head page and its previous page.
1524          * 2. We cmpxchg the prev_page->next to point from head page to the
1525          *    start of new pages list.
1526          * 3. Finally, we update the head->prev to the end of new list.
1527          *
1528          * We will try this process 10 times, to make sure that we don't keep
1529          * spinning.
1530          */
1531         retries = 10;
1532         success = 0;
1533         while (retries--) {
1534                 struct list_head *head_page, *prev_page, *r;
1535                 struct list_head *last_page, *first_page;
1536                 struct list_head *head_page_with_bit;
1537
1538                 head_page = &rb_set_head_page(cpu_buffer)->list;
1539                 if (!head_page)
1540                         break;
1541                 prev_page = head_page->prev;
1542
1543                 first_page = pages->next;
1544                 last_page  = pages->prev;
1545
1546                 head_page_with_bit = (struct list_head *)
1547                                      ((unsigned long)head_page | RB_PAGE_HEAD);
1548
1549                 last_page->next = head_page_with_bit;
1550                 first_page->prev = prev_page;
1551
1552                 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1553
1554                 if (r == head_page_with_bit) {
1555                         /*
1556                          * yay, we replaced the page pointer to our new list,
1557                          * now, we just have to update to head page's prev
1558                          * pointer to point to end of list
1559                          */
1560                         head_page->prev = last_page;
1561                         success = 1;
1562                         break;
1563                 }
1564         }
1565
1566         if (success)
1567                 INIT_LIST_HEAD(pages);
1568         /*
1569          * If we weren't successful in adding in new pages, warn and stop
1570          * tracing
1571          */
1572         RB_WARN_ON(cpu_buffer, !success);
1573         raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1574
1575         /* free pages if they weren't inserted */
1576         if (!success) {
1577                 struct buffer_page *bpage, *tmp;
1578                 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1579                                          list) {
1580                         list_del_init(&bpage->list);
1581                         free_buffer_page(bpage);
1582                 }
1583         }
1584         return success;
1585 }
1586
1587 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1588 {
1589         int success;
1590
1591         if (cpu_buffer->nr_pages_to_update > 0)
1592                 success = rb_insert_pages(cpu_buffer);
1593         else
1594                 success = rb_remove_pages(cpu_buffer,
1595                                         -cpu_buffer->nr_pages_to_update);
1596
1597         if (success)
1598                 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1599 }
1600
1601 static void update_pages_handler(struct work_struct *work)
1602 {
1603         struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1604                         struct ring_buffer_per_cpu, update_pages_work);
1605         rb_update_pages(cpu_buffer);
1606         complete(&cpu_buffer->update_done);
1607 }
1608
1609 /**
1610  * ring_buffer_resize - resize the ring buffer
1611  * @buffer: the buffer to resize.
1612  * @size: the new size.
1613  *
1614  * Minimum size is 2 * BUF_PAGE_SIZE.
1615  *
1616  * Returns 0 on success and < 0 on failure.
1617  */
1618 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1619                         int cpu_id)
1620 {
1621         struct ring_buffer_per_cpu *cpu_buffer;
1622         unsigned nr_pages;
1623         int cpu, err = 0;
1624
1625         /*
1626          * Always succeed at resizing a non-existent buffer:
1627          */
1628         if (!buffer)
1629                 return size;
1630
1631         /* Make sure the requested buffer exists */
1632         if (cpu_id != RING_BUFFER_ALL_CPUS &&
1633             !cpumask_test_cpu(cpu_id, buffer->cpumask))
1634                 return size;
1635
1636         size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1637         size *= BUF_PAGE_SIZE;
1638
1639         /* we need a minimum of two pages */
1640         if (size < BUF_PAGE_SIZE * 2)
1641                 size = BUF_PAGE_SIZE * 2;
1642
1643         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1644
1645         /*
1646          * Don't succeed if resizing is disabled, as a reader might be
1647          * manipulating the ring buffer and is expecting a sane state while
1648          * this is true.
1649          */
1650         if (atomic_read(&buffer->resize_disabled))
1651                 return -EBUSY;
1652
1653         /* prevent another thread from changing buffer sizes */
1654         mutex_lock(&buffer->mutex);
1655
1656         if (cpu_id == RING_BUFFER_ALL_CPUS) {
1657                 /* calculate the pages to update */
1658                 for_each_buffer_cpu(buffer, cpu) {
1659                         cpu_buffer = buffer->buffers[cpu];
1660
1661                         cpu_buffer->nr_pages_to_update = nr_pages -
1662                                                         cpu_buffer->nr_pages;
1663                         /*
1664                          * nothing more to do for removing pages or no update
1665                          */
1666                         if (cpu_buffer->nr_pages_to_update <= 0)
1667                                 continue;
1668                         /*
1669                          * to add pages, make sure all new pages can be
1670                          * allocated without receiving ENOMEM
1671                          */
1672                         INIT_LIST_HEAD(&cpu_buffer->new_pages);
1673                         if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1674                                                 &cpu_buffer->new_pages, cpu)) {
1675                                 /* not enough memory for new pages */
1676                                 err = -ENOMEM;
1677                                 goto out_err;
1678                         }
1679                 }
1680
1681                 get_online_cpus();
1682                 /*
1683                  * Fire off all the required work handlers
1684                  * We can't schedule on offline CPUs, but it's not necessary
1685                  * since we can change their buffer sizes without any race.
1686                  */
1687                 for_each_buffer_cpu(buffer, cpu) {
1688                         cpu_buffer = buffer->buffers[cpu];
1689                         if (!cpu_buffer->nr_pages_to_update)
1690                                 continue;
1691
1692                         /* The update must run on the CPU that is being updated. */
1693                         preempt_disable();
1694                         if (cpu == smp_processor_id() || !cpu_online(cpu)) {
1695                                 rb_update_pages(cpu_buffer);
1696                                 cpu_buffer->nr_pages_to_update = 0;
1697                         } else {
1698                                 /*
1699                                  * Can not disable preemption for schedule_work_on()
1700                                  * on PREEMPT_RT.
1701                                  */
1702                                 preempt_enable();
1703                                 schedule_work_on(cpu,
1704                                                 &cpu_buffer->update_pages_work);
1705                                 preempt_disable();
1706                         }
1707                         preempt_enable();
1708                 }
1709
1710                 /* wait for all the updates to complete */
1711                 for_each_buffer_cpu(buffer, cpu) {
1712                         cpu_buffer = buffer->buffers[cpu];
1713                         if (!cpu_buffer->nr_pages_to_update)
1714                                 continue;
1715
1716                         if (cpu_online(cpu))
1717                                 wait_for_completion(&cpu_buffer->update_done);
1718                         cpu_buffer->nr_pages_to_update = 0;
1719                 }
1720
1721                 put_online_cpus();
1722         } else {
1723                 /* Make sure this CPU has been intitialized */
1724                 if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1725                         goto out;
1726
1727                 cpu_buffer = buffer->buffers[cpu_id];
1728
1729                 if (nr_pages == cpu_buffer->nr_pages)
1730                         goto out;
1731
1732                 cpu_buffer->nr_pages_to_update = nr_pages -
1733                                                 cpu_buffer->nr_pages;
1734
1735                 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1736                 if (cpu_buffer->nr_pages_to_update > 0 &&
1737                         __rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1738                                             &cpu_buffer->new_pages, cpu_id)) {
1739                         err = -ENOMEM;
1740                         goto out_err;
1741                 }
1742
1743                 get_online_cpus();
1744
1745                 preempt_disable();
1746                 /* The update must run on the CPU that is being updated. */
1747                 if (cpu_id == smp_processor_id() || !cpu_online(cpu_id))
1748                         rb_update_pages(cpu_buffer);
1749                 else {
1750                         /*
1751                          * Can not disable preemption for schedule_work_on()
1752                          * on PREEMPT_RT.
1753                          */
1754                         preempt_enable();
1755                         schedule_work_on(cpu_id,
1756                                          &cpu_buffer->update_pages_work);
1757                         wait_for_completion(&cpu_buffer->update_done);
1758                         preempt_disable();
1759                 }
1760                 preempt_enable();
1761
1762                 cpu_buffer->nr_pages_to_update = 0;
1763                 put_online_cpus();
1764         }
1765
1766  out:
1767         /*
1768          * The ring buffer resize can happen with the ring buffer
1769          * enabled, so that the update disturbs the tracing as little
1770          * as possible. But if the buffer is disabled, we do not need
1771          * to worry about that, and we can take the time to verify
1772          * that the buffer is not corrupt.
1773          */
1774         if (atomic_read(&buffer->record_disabled)) {
1775                 atomic_inc(&buffer->record_disabled);
1776                 /*
1777                  * Even though the buffer was disabled, we must make sure
1778                  * that it is truly disabled before calling rb_check_pages.
1779                  * There could have been a race between checking
1780                  * record_disable and incrementing it.
1781                  */
1782                 synchronize_sched();
1783                 for_each_buffer_cpu(buffer, cpu) {
1784                         cpu_buffer = buffer->buffers[cpu];
1785                         rb_check_pages(cpu_buffer);
1786                 }
1787                 atomic_dec(&buffer->record_disabled);
1788         }
1789
1790         mutex_unlock(&buffer->mutex);
1791         return size;
1792
1793  out_err:
1794         for_each_buffer_cpu(buffer, cpu) {
1795                 struct buffer_page *bpage, *tmp;
1796
1797                 cpu_buffer = buffer->buffers[cpu];
1798                 cpu_buffer->nr_pages_to_update = 0;
1799
1800                 if (list_empty(&cpu_buffer->new_pages))
1801                         continue;
1802
1803                 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1804                                         list) {
1805                         list_del_init(&bpage->list);
1806                         free_buffer_page(bpage);
1807                 }
1808         }
1809         mutex_unlock(&buffer->mutex);
1810         return err;
1811 }
1812 EXPORT_SYMBOL_GPL(ring_buffer_resize);
1813
1814 void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1815 {
1816         mutex_lock(&buffer->mutex);
1817         if (val)
1818                 buffer->flags |= RB_FL_OVERWRITE;
1819         else
1820                 buffer->flags &= ~RB_FL_OVERWRITE;
1821         mutex_unlock(&buffer->mutex);
1822 }
1823 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1824
1825 static inline void *
1826 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
1827 {
1828         return bpage->data + index;
1829 }
1830
1831 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1832 {
1833         return bpage->page->data + index;
1834 }
1835
1836 static inline struct ring_buffer_event *
1837 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1838 {
1839         return __rb_page_index(cpu_buffer->reader_page,
1840                                cpu_buffer->reader_page->read);
1841 }
1842
1843 static inline struct ring_buffer_event *
1844 rb_iter_head_event(struct ring_buffer_iter *iter)
1845 {
1846         return __rb_page_index(iter->head_page, iter->head);
1847 }
1848
1849 static inline unsigned rb_page_commit(struct buffer_page *bpage)
1850 {
1851         return local_read(&bpage->page->commit);
1852 }
1853
1854 /* Size is determined by what has been committed */
1855 static inline unsigned rb_page_size(struct buffer_page *bpage)
1856 {
1857         return rb_page_commit(bpage);
1858 }
1859
1860 static inline unsigned
1861 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1862 {
1863         return rb_page_commit(cpu_buffer->commit_page);
1864 }
1865
1866 static inline unsigned
1867 rb_event_index(struct ring_buffer_event *event)
1868 {
1869         unsigned long addr = (unsigned long)event;
1870
1871         return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1872 }
1873
1874 static inline int
1875 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1876                    struct ring_buffer_event *event)
1877 {
1878         unsigned long addr = (unsigned long)event;
1879         unsigned long index;
1880
1881         index = rb_event_index(event);
1882         addr &= PAGE_MASK;
1883
1884         return cpu_buffer->commit_page->page == (void *)addr &&
1885                 rb_commit_index(cpu_buffer) == index;
1886 }
1887
1888 static void
1889 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
1890 {
1891         unsigned long max_count;
1892
1893         /*
1894          * We only race with interrupts and NMIs on this CPU.
1895          * If we own the commit event, then we can commit
1896          * all others that interrupted us, since the interruptions
1897          * are in stack format (they finish before they come
1898          * back to us). This allows us to do a simple loop to
1899          * assign the commit to the tail.
1900          */
1901  again:
1902         max_count = cpu_buffer->nr_pages * 100;
1903
1904         while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
1905                 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
1906                         return;
1907                 if (RB_WARN_ON(cpu_buffer,
1908                                rb_is_reader_page(cpu_buffer->tail_page)))
1909                         return;
1910                 local_set(&cpu_buffer->commit_page->page->commit,
1911                           rb_page_write(cpu_buffer->commit_page));
1912                 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
1913                 cpu_buffer->write_stamp =
1914                         cpu_buffer->commit_page->page->time_stamp;
1915                 /* add barrier to keep gcc from optimizing too much */
1916                 barrier();
1917         }
1918         while (rb_commit_index(cpu_buffer) !=
1919                rb_page_write(cpu_buffer->commit_page)) {
1920
1921                 local_set(&cpu_buffer->commit_page->page->commit,
1922                           rb_page_write(cpu_buffer->commit_page));
1923                 RB_WARN_ON(cpu_buffer,
1924                            local_read(&cpu_buffer->commit_page->page->commit) &
1925                            ~RB_WRITE_MASK);
1926                 barrier();
1927         }
1928
1929         /* again, keep gcc from optimizing */
1930         barrier();
1931
1932         /*
1933          * If an interrupt came in just after the first while loop
1934          * and pushed the tail page forward, we will be left with
1935          * a dangling commit that will never go forward.
1936          */
1937         if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1938                 goto again;
1939 }
1940
1941 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1942 {
1943         cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
1944         cpu_buffer->reader_page->read = 0;
1945 }
1946
1947 static void rb_inc_iter(struct ring_buffer_iter *iter)
1948 {
1949         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1950
1951         /*
1952          * The iterator could be on the reader page (it starts there).
1953          * But the head could have moved, since the reader was
1954          * found. Check for this case and assign the iterator
1955          * to the head page instead of next.
1956          */
1957         if (iter->head_page == cpu_buffer->reader_page)
1958                 iter->head_page = rb_set_head_page(cpu_buffer);
1959         else
1960                 rb_inc_page(cpu_buffer, &iter->head_page);
1961
1962         iter->read_stamp = iter->head_page->page->time_stamp;
1963         iter->head = 0;
1964 }
1965
1966 /* Slow path, do not inline */
1967 static noinline struct ring_buffer_event *
1968 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
1969 {
1970         event->type_len = RINGBUF_TYPE_TIME_EXTEND;
1971
1972         /* Not the first event on the page? */
1973         if (rb_event_index(event)) {
1974                 event->time_delta = delta & TS_MASK;
1975                 event->array[0] = delta >> TS_SHIFT;
1976         } else {
1977                 /* nope, just zero it */
1978                 event->time_delta = 0;
1979                 event->array[0] = 0;
1980         }
1981
1982         return skip_time_extend(event);
1983 }
1984
1985 /**
1986  * rb_update_event - update event type and data
1987  * @event: the even to update
1988  * @type: the type of event
1989  * @length: the size of the event field in the ring buffer
1990  *
1991  * Update the type and data fields of the event. The length
1992  * is the actual size that is written to the ring buffer,
1993  * and with this, we can determine what to place into the
1994  * data field.
1995  */
1996 static void
1997 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
1998                 struct ring_buffer_event *event, unsigned length,
1999                 int add_timestamp, u64 delta)
2000 {
2001         /* Only a commit updates the timestamp */
2002         if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
2003                 delta = 0;
2004
2005         /*
2006          * If we need to add a timestamp, then we
2007          * add it to the start of the resevered space.
2008          */
2009         if (unlikely(add_timestamp)) {
2010                 event = rb_add_time_stamp(event, delta);
2011                 length -= RB_LEN_TIME_EXTEND;
2012                 delta = 0;
2013         }
2014
2015         event->time_delta = delta;
2016         length -= RB_EVNT_HDR_SIZE;
2017         if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2018                 event->type_len = 0;
2019                 event->array[0] = length;
2020         } else
2021                 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2022 }
2023
2024 /*
2025  * rb_handle_head_page - writer hit the head page
2026  *
2027  * Returns: +1 to retry page
2028  *           0 to continue
2029  *          -1 on error
2030  */
2031 static int
2032 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
2033                     struct buffer_page *tail_page,
2034                     struct buffer_page *next_page)
2035 {
2036         struct buffer_page *new_head;
2037         int entries;
2038         int type;
2039         int ret;
2040
2041         entries = rb_page_entries(next_page);
2042
2043         /*
2044          * The hard part is here. We need to move the head
2045          * forward, and protect against both readers on
2046          * other CPUs and writers coming in via interrupts.
2047          */
2048         type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
2049                                        RB_PAGE_HEAD);
2050
2051         /*
2052          * type can be one of four:
2053          *  NORMAL - an interrupt already moved it for us
2054          *  HEAD   - we are the first to get here.
2055          *  UPDATE - we are the interrupt interrupting
2056          *           a current move.
2057          *  MOVED  - a reader on another CPU moved the next
2058          *           pointer to its reader page. Give up
2059          *           and try again.
2060          */
2061
2062         switch (type) {
2063         case RB_PAGE_HEAD:
2064                 /*
2065                  * We changed the head to UPDATE, thus
2066                  * it is our responsibility to update
2067                  * the counters.
2068                  */
2069                 local_add(entries, &cpu_buffer->overrun);
2070                 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
2071
2072                 /*
2073                  * The entries will be zeroed out when we move the
2074                  * tail page.
2075                  */
2076
2077                 /* still more to do */
2078                 break;
2079
2080         case RB_PAGE_UPDATE:
2081                 /*
2082                  * This is an interrupt that interrupt the
2083                  * previous update. Still more to do.
2084                  */
2085                 break;
2086         case RB_PAGE_NORMAL:
2087                 /*
2088                  * An interrupt came in before the update
2089                  * and processed this for us.
2090                  * Nothing left to do.
2091                  */
2092                 return 1;
2093         case RB_PAGE_MOVED:
2094                 /*
2095                  * The reader is on another CPU and just did
2096                  * a swap with our next_page.
2097                  * Try again.
2098                  */
2099                 return 1;
2100         default:
2101                 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2102                 return -1;
2103         }
2104
2105         /*
2106          * Now that we are here, the old head pointer is
2107          * set to UPDATE. This will keep the reader from
2108          * swapping the head page with the reader page.
2109          * The reader (on another CPU) will spin till
2110          * we are finished.
2111          *
2112          * We just need to protect against interrupts
2113          * doing the job. We will set the next pointer
2114          * to HEAD. After that, we set the old pointer
2115          * to NORMAL, but only if it was HEAD before.
2116          * otherwise we are an interrupt, and only
2117          * want the outer most commit to reset it.
2118          */
2119         new_head = next_page;
2120         rb_inc_page(cpu_buffer, &new_head);
2121
2122         ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2123                                     RB_PAGE_NORMAL);
2124
2125         /*
2126          * Valid returns are:
2127          *  HEAD   - an interrupt came in and already set it.
2128          *  NORMAL - One of two things:
2129          *            1) We really set it.
2130          *            2) A bunch of interrupts came in and moved
2131          *               the page forward again.
2132          */
2133         switch (ret) {
2134         case RB_PAGE_HEAD:
2135         case RB_PAGE_NORMAL:
2136                 /* OK */
2137                 break;
2138         default:
2139                 RB_WARN_ON(cpu_buffer, 1);
2140                 return -1;
2141         }
2142
2143         /*
2144          * It is possible that an interrupt came in,
2145          * set the head up, then more interrupts came in
2146          * and moved it again. When we get back here,
2147          * the page would have been set to NORMAL but we
2148          * just set it back to HEAD.
2149          *
2150          * How do you detect this? Well, if that happened
2151          * the tail page would have moved.
2152          */
2153         if (ret == RB_PAGE_NORMAL) {
2154                 /*
2155                  * If the tail had moved passed next, then we need
2156                  * to reset the pointer.
2157                  */
2158                 if (cpu_buffer->tail_page != tail_page &&
2159                     cpu_buffer->tail_page != next_page)
2160                         rb_head_page_set_normal(cpu_buffer, new_head,
2161                                                 next_page,
2162                                                 RB_PAGE_HEAD);
2163         }
2164
2165         /*
2166          * If this was the outer most commit (the one that
2167          * changed the original pointer from HEAD to UPDATE),
2168          * then it is up to us to reset it to NORMAL.
2169          */
2170         if (type == RB_PAGE_HEAD) {
2171                 ret = rb_head_page_set_normal(cpu_buffer, next_page,
2172                                               tail_page,
2173                                               RB_PAGE_UPDATE);
2174                 if (RB_WARN_ON(cpu_buffer,
2175                                ret != RB_PAGE_UPDATE))
2176                         return -1;
2177         }
2178
2179         return 0;
2180 }
2181
2182 static unsigned rb_calculate_event_length(unsigned length)
2183 {
2184         struct ring_buffer_event event; /* Used only for sizeof array */
2185
2186         /* zero length can cause confusions */
2187         if (!length)
2188                 length = 1;
2189
2190         if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2191                 length += sizeof(event.array[0]);
2192
2193         length += RB_EVNT_HDR_SIZE;
2194         length = ALIGN(length, RB_ARCH_ALIGNMENT);
2195
2196         return length;
2197 }
2198
2199 static inline void
2200 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2201               struct buffer_page *tail_page,
2202               unsigned long tail, unsigned long length)
2203 {
2204         struct ring_buffer_event *event;
2205
2206         /*
2207          * Only the event that crossed the page boundary
2208          * must fill the old tail_page with padding.
2209          */
2210         if (tail >= BUF_PAGE_SIZE) {
2211                 /*
2212                  * If the page was filled, then we still need
2213                  * to update the real_end. Reset it to zero
2214                  * and the reader will ignore it.
2215                  */
2216                 if (tail == BUF_PAGE_SIZE)
2217                         tail_page->real_end = 0;
2218
2219                 local_sub(length, &tail_page->write);
2220                 return;
2221         }
2222
2223         event = __rb_page_index(tail_page, tail);
2224         kmemcheck_annotate_bitfield(event, bitfield);
2225
2226         /* account for padding bytes */
2227         local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2228
2229         /*
2230          * Save the original length to the meta data.
2231          * This will be used by the reader to add lost event
2232          * counter.
2233          */
2234         tail_page->real_end = tail;
2235
2236         /*
2237          * If this event is bigger than the minimum size, then
2238          * we need to be careful that we don't subtract the
2239          * write counter enough to allow another writer to slip
2240          * in on this page.
2241          * We put in a discarded commit instead, to make sure
2242          * that this space is not used again.
2243          *
2244          * If we are less than the minimum size, we don't need to
2245          * worry about it.
2246          */
2247         if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2248                 /* No room for any events */
2249
2250                 /* Mark the rest of the page with padding */
2251                 rb_event_set_padding(event);
2252
2253                 /* Set the write back to the previous setting */
2254                 local_sub(length, &tail_page->write);
2255                 return;
2256         }
2257
2258         /* Put in a discarded event */
2259         event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2260         event->type_len = RINGBUF_TYPE_PADDING;
2261         /* time delta must be non zero */
2262         event->time_delta = 1;
2263
2264         /* Set write to end of buffer */
2265         length = (tail + length) - BUF_PAGE_SIZE;
2266         local_sub(length, &tail_page->write);
2267 }
2268
2269 /*
2270  * This is the slow path, force gcc not to inline it.
2271  */
2272 static noinline struct ring_buffer_event *
2273 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2274              unsigned long length, unsigned long tail,
2275              struct buffer_page *tail_page, u64 ts)
2276 {
2277         struct buffer_page *commit_page = cpu_buffer->commit_page;
2278         struct ring_buffer *buffer = cpu_buffer->buffer;
2279         struct buffer_page *next_page;
2280         int ret;
2281
2282         next_page = tail_page;
2283
2284         rb_inc_page(cpu_buffer, &next_page);
2285
2286         /*
2287          * If for some reason, we had an interrupt storm that made
2288          * it all the way around the buffer, bail, and warn
2289          * about it.
2290          */
2291         if (unlikely(next_page == commit_page)) {
2292                 local_inc(&cpu_buffer->commit_overrun);
2293                 goto out_reset;
2294         }
2295
2296         /*
2297          * This is where the fun begins!
2298          *
2299          * We are fighting against races between a reader that
2300          * could be on another CPU trying to swap its reader
2301          * page with the buffer head.
2302          *
2303          * We are also fighting against interrupts coming in and
2304          * moving the head or tail on us as well.
2305          *
2306          * If the next page is the head page then we have filled
2307          * the buffer, unless the commit page is still on the
2308          * reader page.
2309          */
2310         if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2311
2312                 /*
2313                  * If the commit is not on the reader page, then
2314                  * move the header page.
2315                  */
2316                 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2317                         /*
2318                          * If we are not in overwrite mode,
2319                          * this is easy, just stop here.
2320                          */
2321                         if (!(buffer->flags & RB_FL_OVERWRITE)) {
2322                                 local_inc(&cpu_buffer->dropped_events);
2323                                 goto out_reset;
2324                         }
2325
2326                         ret = rb_handle_head_page(cpu_buffer,
2327                                                   tail_page,
2328                                                   next_page);
2329                         if (ret < 0)
2330                                 goto out_reset;
2331                         if (ret)
2332                                 goto out_again;
2333                 } else {
2334                         /*
2335                          * We need to be careful here too. The
2336                          * commit page could still be on the reader
2337                          * page. We could have a small buffer, and
2338                          * have filled up the buffer with events
2339                          * from interrupts and such, and wrapped.
2340                          *
2341                          * Note, if the tail page is also the on the
2342                          * reader_page, we let it move out.
2343                          */
2344                         if (unlikely((cpu_buffer->commit_page !=
2345                                       cpu_buffer->tail_page) &&
2346                                      (cpu_buffer->commit_page ==
2347                                       cpu_buffer->reader_page))) {
2348                                 local_inc(&cpu_buffer->commit_overrun);
2349                                 goto out_reset;
2350                         }
2351                 }
2352         }
2353
2354         ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
2355         if (ret) {
2356                 /*
2357                  * Nested commits always have zero deltas, so
2358                  * just reread the time stamp
2359                  */
2360                 ts = rb_time_stamp(buffer);
2361                 next_page->page->time_stamp = ts;
2362         }
2363
2364  out_again:
2365
2366         rb_reset_tail(cpu_buffer, tail_page, tail, length);
2367
2368         /* fail and let the caller try again */
2369         return ERR_PTR(-EAGAIN);
2370
2371  out_reset:
2372         /* reset write */
2373         rb_reset_tail(cpu_buffer, tail_page, tail, length);
2374
2375         return NULL;
2376 }
2377
2378 static struct ring_buffer_event *
2379 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
2380                   unsigned long length, u64 ts,
2381                   u64 delta, int add_timestamp)
2382 {
2383         struct buffer_page *tail_page;
2384         struct ring_buffer_event *event;
2385         unsigned long tail, write;
2386
2387         /*
2388          * If the time delta since the last event is too big to
2389          * hold in the time field of the event, then we append a
2390          * TIME EXTEND event ahead of the data event.
2391          */
2392         if (unlikely(add_timestamp))
2393                 length += RB_LEN_TIME_EXTEND;
2394
2395         tail_page = cpu_buffer->tail_page;
2396         write = local_add_return(length, &tail_page->write);
2397
2398         /* set write to only the index of the write */
2399         write &= RB_WRITE_MASK;
2400         tail = write - length;
2401
2402         /*
2403          * If this is the first commit on the page, then it has the same
2404          * timestamp as the page itself.
2405          */
2406         if (!tail)
2407                 delta = 0;
2408
2409         /* See if we shot pass the end of this buffer page */
2410         if (unlikely(write > BUF_PAGE_SIZE))
2411                 return rb_move_tail(cpu_buffer, length, tail,
2412                                     tail_page, ts);
2413
2414         /* We reserved something on the buffer */
2415
2416         event = __rb_page_index(tail_page, tail);
2417         kmemcheck_annotate_bitfield(event, bitfield);
2418         rb_update_event(cpu_buffer, event, length, add_timestamp, delta);
2419
2420         local_inc(&tail_page->entries);
2421
2422         /*
2423          * If this is the first commit on the page, then update
2424          * its timestamp.
2425          */
2426         if (!tail)
2427                 tail_page->page->time_stamp = ts;
2428
2429         /* account for these added bytes */
2430         local_add(length, &cpu_buffer->entries_bytes);
2431
2432         return event;
2433 }
2434
2435 static inline int
2436 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2437                   struct ring_buffer_event *event)
2438 {
2439         unsigned long new_index, old_index;
2440         struct buffer_page *bpage;
2441         unsigned long index;
2442         unsigned long addr;
2443
2444         new_index = rb_event_index(event);
2445         old_index = new_index + rb_event_ts_length(event);
2446         addr = (unsigned long)event;
2447         addr &= PAGE_MASK;
2448
2449         bpage = cpu_buffer->tail_page;
2450
2451         if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2452                 unsigned long write_mask =
2453                         local_read(&bpage->write) & ~RB_WRITE_MASK;
2454                 unsigned long event_length = rb_event_length(event);
2455                 /*
2456                  * This is on the tail page. It is possible that
2457                  * a write could come in and move the tail page
2458                  * and write to the next page. That is fine
2459                  * because we just shorten what is on this page.
2460                  */
2461                 old_index += write_mask;
2462                 new_index += write_mask;
2463                 index = local_cmpxchg(&bpage->write, old_index, new_index);
2464                 if (index == old_index) {
2465                         /* update counters */
2466                         local_sub(event_length, &cpu_buffer->entries_bytes);
2467                         return 1;
2468                 }
2469         }
2470
2471         /* could not discard */
2472         return 0;
2473 }
2474
2475 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2476 {
2477         local_inc(&cpu_buffer->committing);
2478         local_inc(&cpu_buffer->commits);
2479 }
2480
2481 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2482 {
2483         unsigned long commits;
2484
2485         if (RB_WARN_ON(cpu_buffer,
2486                        !local_read(&cpu_buffer->committing)))
2487                 return;
2488
2489  again:
2490         commits = local_read(&cpu_buffer->commits);
2491         /* synchronize with interrupts */
2492         barrier();
2493         if (local_read(&cpu_buffer->committing) == 1)
2494                 rb_set_commit_to_write(cpu_buffer);
2495
2496         local_dec(&cpu_buffer->committing);
2497
2498         /* synchronize with interrupts */
2499         barrier();
2500
2501         /*
2502          * Need to account for interrupts coming in between the
2503          * updating of the commit page and the clearing of the
2504          * committing counter.
2505          */
2506         if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2507             !local_read(&cpu_buffer->committing)) {
2508                 local_inc(&cpu_buffer->committing);
2509                 goto again;
2510         }
2511 }
2512
2513 static struct ring_buffer_event *
2514 rb_reserve_next_event(struct ring_buffer *buffer,
2515                       struct ring_buffer_per_cpu *cpu_buffer,
2516                       unsigned long length)
2517 {
2518         struct ring_buffer_event *event;
2519         u64 ts, delta;
2520         int nr_loops = 0;
2521         int add_timestamp;
2522         u64 diff;
2523
2524         rb_start_commit(cpu_buffer);
2525
2526 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2527         /*
2528          * Due to the ability to swap a cpu buffer from a buffer
2529          * it is possible it was swapped before we committed.
2530          * (committing stops a swap). We check for it here and
2531          * if it happened, we have to fail the write.
2532          */
2533         barrier();
2534         if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2535                 local_dec(&cpu_buffer->committing);
2536                 local_dec(&cpu_buffer->commits);
2537                 return NULL;
2538         }
2539 #endif
2540
2541         length = rb_calculate_event_length(length);
2542  again:
2543         add_timestamp = 0;
2544         delta = 0;
2545
2546         /*
2547          * We allow for interrupts to reenter here and do a trace.
2548          * If one does, it will cause this original code to loop
2549          * back here. Even with heavy interrupts happening, this
2550          * should only happen a few times in a row. If this happens
2551          * 1000 times in a row, there must be either an interrupt
2552          * storm or we have something buggy.
2553          * Bail!
2554          */
2555         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2556                 goto out_fail;
2557
2558         ts = rb_time_stamp(cpu_buffer->buffer);
2559         diff = ts - cpu_buffer->write_stamp;
2560
2561         /* make sure this diff is calculated here */
2562         barrier();
2563
2564         /* Did the write stamp get updated already? */
2565         if (likely(ts >= cpu_buffer->write_stamp)) {
2566                 delta = diff;
2567                 if (unlikely(test_time_stamp(delta))) {
2568                         int local_clock_stable = 1;
2569 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2570                         local_clock_stable = sched_clock_stable;
2571 #endif
2572                         WARN_ONCE(delta > (1ULL << 59),
2573                                   KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2574                                   (unsigned long long)delta,
2575                                   (unsigned long long)ts,
2576                                   (unsigned long long)cpu_buffer->write_stamp,
2577                                   local_clock_stable ? "" :
2578                                   "If you just came from a suspend/resume,\n"
2579                                   "please switch to the trace global clock:\n"
2580                                   "  echo global > /sys/kernel/debug/tracing/trace_clock\n");
2581                         add_timestamp = 1;
2582                 }
2583         }
2584
2585         event = __rb_reserve_next(cpu_buffer, length, ts,
2586                                   delta, add_timestamp);
2587         if (unlikely(PTR_ERR(event) == -EAGAIN))
2588                 goto again;
2589
2590         if (!event)
2591                 goto out_fail;
2592
2593         return event;
2594
2595  out_fail:
2596         rb_end_commit(cpu_buffer);
2597         return NULL;
2598 }
2599
2600 #ifdef CONFIG_TRACING
2601
2602 /*
2603  * The lock and unlock are done within a preempt disable section.
2604  * The current_context per_cpu variable can only be modified
2605  * by the current task between lock and unlock. But it can
2606  * be modified more than once via an interrupt. To pass this
2607  * information from the lock to the unlock without having to
2608  * access the 'in_interrupt()' functions again (which do show
2609  * a bit of overhead in something as critical as function tracing,
2610  * we use a bitmask trick.
2611  *
2612  *  bit 0 =  NMI context
2613  *  bit 1 =  IRQ context
2614  *  bit 2 =  SoftIRQ context
2615  *  bit 3 =  normal context.
2616  *
2617  * This works because this is the order of contexts that can
2618  * preempt other contexts. A SoftIRQ never preempts an IRQ
2619  * context.
2620  *
2621  * When the context is determined, the corresponding bit is
2622  * checked and set (if it was set, then a recursion of that context
2623  * happened).
2624  *
2625  * On unlock, we need to clear this bit. To do so, just subtract
2626  * 1 from the current_context and AND it to itself.
2627  *
2628  * (binary)
2629  *  101 - 1 = 100
2630  *  101 & 100 = 100 (clearing bit zero)
2631  *
2632  *  1010 - 1 = 1001
2633  *  1010 & 1001 = 1000 (clearing bit 1)
2634  *
2635  * The least significant bit can be cleared this way, and it
2636  * just so happens that it is the same bit corresponding to
2637  * the current context.
2638  */
2639 static DEFINE_PER_CPU(unsigned int, current_context);
2640
2641 static __always_inline int trace_recursive_lock(void)
2642 {
2643         unsigned int val = this_cpu_read(current_context);
2644         int bit;
2645
2646         if (in_interrupt()) {
2647                 if (in_nmi())
2648                         bit = 0;
2649                 else if (in_irq())
2650                         bit = 1;
2651                 else
2652                         bit = 2;
2653         } else
2654                 bit = 3;
2655
2656         if (unlikely(val & (1 << bit)))
2657                 return 1;
2658
2659         val |= (1 << bit);
2660         this_cpu_write(current_context, val);
2661
2662         return 0;
2663 }
2664
2665 static __always_inline void trace_recursive_unlock(void)
2666 {
2667         unsigned int val = this_cpu_read(current_context);
2668
2669         val--;
2670         val &= this_cpu_read(current_context);
2671         this_cpu_write(current_context, val);
2672 }
2673
2674 #else
2675
2676 #define trace_recursive_lock()          (0)
2677 #define trace_recursive_unlock()        do { } while (0)
2678
2679 #endif
2680
2681 /**
2682  * ring_buffer_lock_reserve - reserve a part of the buffer
2683  * @buffer: the ring buffer to reserve from
2684  * @length: the length of the data to reserve (excluding event header)
2685  *
2686  * Returns a reseverd event on the ring buffer to copy directly to.
2687  * The user of this interface will need to get the body to write into
2688  * and can use the ring_buffer_event_data() interface.
2689  *
2690  * The length is the length of the data needed, not the event length
2691  * which also includes the event header.
2692  *
2693  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2694  * If NULL is returned, then nothing has been allocated or locked.
2695  */
2696 struct ring_buffer_event *
2697 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2698 {
2699         struct ring_buffer_per_cpu *cpu_buffer;
2700         struct ring_buffer_event *event;
2701         int cpu;
2702
2703         if (ring_buffer_flags != RB_BUFFERS_ON)
2704                 return NULL;
2705
2706         /* If we are tracing schedule, we don't want to recurse */
2707         preempt_disable_notrace();
2708
2709         if (atomic_read(&buffer->record_disabled))
2710                 goto out_nocheck;
2711
2712         if (trace_recursive_lock())
2713                 goto out_nocheck;
2714
2715         cpu = raw_smp_processor_id();
2716
2717         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2718                 goto out;
2719
2720         cpu_buffer = buffer->buffers[cpu];
2721
2722         if (atomic_read(&cpu_buffer->record_disabled))
2723                 goto out;
2724
2725         if (length > BUF_MAX_DATA_SIZE)
2726                 goto out;
2727
2728         event = rb_reserve_next_event(buffer, cpu_buffer, length);
2729         if (!event)
2730                 goto out;
2731
2732         return event;
2733
2734  out:
2735         trace_recursive_unlock();
2736
2737  out_nocheck:
2738         preempt_enable_notrace();
2739         return NULL;
2740 }
2741 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2742
2743 static void
2744 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2745                       struct ring_buffer_event *event)
2746 {
2747         u64 delta;
2748
2749         /*
2750          * The event first in the commit queue updates the
2751          * time stamp.
2752          */
2753         if (rb_event_is_commit(cpu_buffer, event)) {
2754                 /*
2755                  * A commit event that is first on a page
2756                  * updates the write timestamp with the page stamp
2757                  */
2758                 if (!rb_event_index(event))
2759                         cpu_buffer->write_stamp =
2760                                 cpu_buffer->commit_page->page->time_stamp;
2761                 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2762                         delta = event->array[0];
2763                         delta <<= TS_SHIFT;
2764                         delta += event->time_delta;
2765                         cpu_buffer->write_stamp += delta;
2766                 } else
2767                         cpu_buffer->write_stamp += event->time_delta;
2768         }
2769 }
2770
2771 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2772                       struct ring_buffer_event *event)
2773 {
2774         local_inc(&cpu_buffer->entries);
2775         rb_update_write_stamp(cpu_buffer, event);
2776         rb_end_commit(cpu_buffer);
2777 }
2778
2779 static __always_inline void
2780 rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2781 {
2782         if (buffer->irq_work.waiters_pending) {
2783                 buffer->irq_work.waiters_pending = false;
2784                 /* irq_work_queue() supplies it's own memory barriers */
2785                 irq_work_queue(&buffer->irq_work.work);
2786         }
2787
2788         if (cpu_buffer->irq_work.waiters_pending) {
2789                 cpu_buffer->irq_work.waiters_pending = false;
2790                 /* irq_work_queue() supplies it's own memory barriers */
2791                 irq_work_queue(&cpu_buffer->irq_work.work);
2792         }
2793 }
2794
2795 /**
2796  * ring_buffer_unlock_commit - commit a reserved
2797  * @buffer: The buffer to commit to
2798  * @event: The event pointer to commit.
2799  *
2800  * This commits the data to the ring buffer, and releases any locks held.
2801  *
2802  * Must be paired with ring_buffer_lock_reserve.
2803  */
2804 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2805                               struct ring_buffer_event *event)
2806 {
2807         struct ring_buffer_per_cpu *cpu_buffer;
2808         int cpu = raw_smp_processor_id();
2809
2810         cpu_buffer = buffer->buffers[cpu];
2811
2812         rb_commit(cpu_buffer, event);
2813
2814         rb_wakeups(buffer, cpu_buffer);
2815
2816         trace_recursive_unlock();
2817
2818         preempt_enable_notrace();
2819
2820         return 0;
2821 }
2822 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2823
2824 static inline void rb_event_discard(struct ring_buffer_event *event)
2825 {
2826         if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2827                 event = skip_time_extend(event);
2828
2829         /* array[0] holds the actual length for the discarded event */
2830         event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2831         event->type_len = RINGBUF_TYPE_PADDING;
2832         /* time delta must be non zero */
2833         if (!event->time_delta)
2834                 event->time_delta = 1;
2835 }
2836
2837 /*
2838  * Decrement the entries to the page that an event is on.
2839  * The event does not even need to exist, only the pointer
2840  * to the page it is on. This may only be called before the commit
2841  * takes place.
2842  */
2843 static inline void
2844 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2845                    struct ring_buffer_event *event)
2846 {
2847         unsigned long addr = (unsigned long)event;
2848         struct buffer_page *bpage = cpu_buffer->commit_page;
2849         struct buffer_page *start;
2850
2851         addr &= PAGE_MASK;
2852
2853         /* Do the likely case first */
2854         if (likely(bpage->page == (void *)addr)) {
2855                 local_dec(&bpage->entries);
2856                 return;
2857         }
2858
2859         /*
2860          * Because the commit page may be on the reader page we
2861          * start with the next page and check the end loop there.
2862          */
2863         rb_inc_page(cpu_buffer, &bpage);
2864         start = bpage;
2865         do {
2866                 if (bpage->page == (void *)addr) {
2867                         local_dec(&bpage->entries);
2868                         return;
2869                 }
2870                 rb_inc_page(cpu_buffer, &bpage);
2871         } while (bpage != start);
2872
2873         /* commit not part of this buffer?? */
2874         RB_WARN_ON(cpu_buffer, 1);
2875 }
2876
2877 /**
2878  * ring_buffer_commit_discard - discard an event that has not been committed
2879  * @buffer: the ring buffer
2880  * @event: non committed event to discard
2881  *
2882  * Sometimes an event that is in the ring buffer needs to be ignored.
2883  * This function lets the user discard an event in the ring buffer
2884  * and then that event will not be read later.
2885  *
2886  * This function only works if it is called before the the item has been
2887  * committed. It will try to free the event from the ring buffer
2888  * if another event has not been added behind it.
2889  *
2890  * If another event has been added behind it, it will set the event
2891  * up as discarded, and perform the commit.
2892  *
2893  * If this function is called, do not call ring_buffer_unlock_commit on
2894  * the event.
2895  */
2896 void ring_buffer_discard_commit(struct ring_buffer *buffer,
2897                                 struct ring_buffer_event *event)
2898 {
2899         struct ring_buffer_per_cpu *cpu_buffer;
2900         int cpu;
2901
2902         /* The event is discarded regardless */
2903         rb_event_discard(event);
2904
2905         cpu = smp_processor_id();
2906         cpu_buffer = buffer->buffers[cpu];
2907
2908         /*
2909          * This must only be called if the event has not been
2910          * committed yet. Thus we can assume that preemption
2911          * is still disabled.
2912          */
2913         RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
2914
2915         rb_decrement_entry(cpu_buffer, event);
2916         if (rb_try_to_discard(cpu_buffer, event))
2917                 goto out;
2918
2919         /*
2920          * The commit is still visible by the reader, so we
2921          * must still update the timestamp.
2922          */
2923         rb_update_write_stamp(cpu_buffer, event);
2924  out:
2925         rb_end_commit(cpu_buffer);
2926
2927         trace_recursive_unlock();
2928
2929         preempt_enable_notrace();
2930
2931 }
2932 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2933
2934 /**
2935  * ring_buffer_write - write data to the buffer without reserving
2936  * @buffer: The ring buffer to write to.
2937  * @length: The length of the data being written (excluding the event header)
2938  * @data: The data to write to the buffer.
2939  *
2940  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2941  * one function. If you already have the data to write to the buffer, it
2942  * may be easier to simply call this function.
2943  *
2944  * Note, like ring_buffer_lock_reserve, the length is the length of the data
2945  * and not the length of the event which would hold the header.
2946  */
2947 int ring_buffer_write(struct ring_buffer *buffer,
2948                       unsigned long length,
2949                       void *data)
2950 {
2951         struct ring_buffer_per_cpu *cpu_buffer;
2952         struct ring_buffer_event *event;
2953         void *body;
2954         int ret = -EBUSY;
2955         int cpu;
2956
2957         if (ring_buffer_flags != RB_BUFFERS_ON)
2958                 return -EBUSY;
2959
2960         preempt_disable_notrace();
2961
2962         if (atomic_read(&buffer->record_disabled))
2963                 goto out;
2964
2965         cpu = raw_smp_processor_id();
2966
2967         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2968                 goto out;
2969
2970         cpu_buffer = buffer->buffers[cpu];
2971
2972         if (atomic_read(&cpu_buffer->record_disabled))
2973                 goto out;
2974
2975         if (length > BUF_MAX_DATA_SIZE)
2976                 goto out;
2977
2978         event = rb_reserve_next_event(buffer, cpu_buffer, length);
2979         if (!event)
2980                 goto out;
2981
2982         body = rb_event_data(event);
2983
2984         memcpy(body, data, length);
2985
2986         rb_commit(cpu_buffer, event);
2987
2988         rb_wakeups(buffer, cpu_buffer);
2989
2990         ret = 0;
2991  out:
2992         preempt_enable_notrace();
2993
2994         return ret;
2995 }
2996 EXPORT_SYMBOL_GPL(ring_buffer_write);
2997
2998 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
2999 {
3000         struct buffer_page *reader = cpu_buffer->reader_page;
3001         struct buffer_page *head = rb_set_head_page(cpu_buffer);
3002         struct buffer_page *commit = cpu_buffer->commit_page;
3003
3004         /* In case of error, head will be NULL */
3005         if (unlikely(!head))
3006                 return 1;
3007
3008         return reader->read == rb_page_commit(reader) &&
3009                 (commit == reader ||
3010                  (commit == head &&
3011                   head->read == rb_page_commit(commit)));
3012 }
3013
3014 /**
3015  * ring_buffer_record_disable - stop all writes into the buffer
3016  * @buffer: The ring buffer to stop writes to.
3017  *
3018  * This prevents all writes to the buffer. Any attempt to write
3019  * to the buffer after this will fail and return NULL.
3020  *
3021  * The caller should call synchronize_sched() after this.
3022  */
3023 void ring_buffer_record_disable(struct ring_buffer *buffer)
3024 {
3025         atomic_inc(&buffer->record_disabled);
3026 }
3027 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3028
3029 /**
3030  * ring_buffer_record_enable - enable writes to the buffer
3031  * @buffer: The ring buffer to enable writes
3032  *
3033  * Note, multiple disables will need the same number of enables
3034  * to truly enable the writing (much like preempt_disable).
3035  */
3036 void ring_buffer_record_enable(struct ring_buffer *buffer)
3037 {
3038         atomic_dec(&buffer->record_disabled);
3039 }
3040 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
3041
3042 /**
3043  * ring_buffer_record_off - stop all writes into the buffer
3044  * @buffer: The ring buffer to stop writes to.
3045  *
3046  * This prevents all writes to the buffer. Any attempt to write
3047  * to the buffer after this will fail and return NULL.
3048  *
3049  * This is different than ring_buffer_record_disable() as
3050  * it works like an on/off switch, where as the disable() version
3051  * must be paired with a enable().
3052  */
3053 void ring_buffer_record_off(struct ring_buffer *buffer)
3054 {
3055         unsigned int rd;
3056         unsigned int new_rd;
3057
3058         do {
3059                 rd = atomic_read(&buffer->record_disabled);
3060                 new_rd = rd | RB_BUFFER_OFF;
3061         } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3062 }
3063 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3064
3065 /**
3066  * ring_buffer_record_on - restart writes into the buffer
3067  * @buffer: The ring buffer to start writes to.
3068  *
3069  * This enables all writes to the buffer that was disabled by
3070  * ring_buffer_record_off().
3071  *
3072  * This is different than ring_buffer_record_enable() as
3073  * it works like an on/off switch, where as the enable() version
3074  * must be paired with a disable().
3075  */
3076 void ring_buffer_record_on(struct ring_buffer *buffer)
3077 {
3078         unsigned int rd;
3079         unsigned int new_rd;
3080
3081         do {
3082                 rd = atomic_read(&buffer->record_disabled);
3083                 new_rd = rd & ~RB_BUFFER_OFF;
3084         } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3085 }
3086 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3087
3088 /**
3089  * ring_buffer_record_is_on - return true if the ring buffer can write
3090  * @buffer: The ring buffer to see if write is enabled
3091  *
3092  * Returns true if the ring buffer is in a state that it accepts writes.
3093  */
3094 int ring_buffer_record_is_on(struct ring_buffer *buffer)
3095 {
3096         return !atomic_read(&buffer->record_disabled);
3097 }
3098
3099 /**
3100  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3101  * @buffer: The ring buffer to stop writes to.
3102  * @cpu: The CPU buffer to stop
3103  *
3104  * This prevents all writes to the buffer. Any attempt to write
3105  * to the buffer after this will fail and return NULL.
3106  *
3107  * The caller should call synchronize_sched() after this.
3108  */
3109 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
3110 {
3111         struct ring_buffer_per_cpu *cpu_buffer;
3112
3113         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3114                 return;
3115
3116         cpu_buffer = buffer->buffers[cpu];
3117         atomic_inc(&cpu_buffer->record_disabled);
3118 }
3119 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
3120
3121 /**
3122  * ring_buffer_record_enable_cpu - enable writes to the buffer
3123  * @buffer: The ring buffer to enable writes
3124  * @cpu: The CPU to enable.
3125  *
3126  * Note, multiple disables will need the same number of enables
3127  * to truly enable the writing (much like preempt_disable).
3128  */
3129 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
3130 {
3131         struct ring_buffer_per_cpu *cpu_buffer;
3132
3133         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3134                 return;
3135
3136         cpu_buffer = buffer->buffers[cpu];
3137         atomic_dec(&cpu_buffer->record_disabled);
3138 }
3139 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
3140
3141 /*
3142  * The total entries in the ring buffer is the running counter
3143  * of entries entered into the ring buffer, minus the sum of
3144  * the entries read from the ring buffer and the number of
3145  * entries that were overwritten.
3146  */
3147 static inline unsigned long
3148 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3149 {
3150         return local_read(&cpu_buffer->entries) -
3151                 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3152 }
3153
3154 /**
3155  * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3156  * @buffer: The ring buffer
3157  * @cpu: The per CPU buffer to read from.
3158  */
3159 u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
3160 {
3161         unsigned long flags;
3162         struct ring_buffer_per_cpu *cpu_buffer;
3163         struct buffer_page *bpage;
3164         u64 ret = 0;
3165
3166         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3167                 return 0;
3168
3169         cpu_buffer = buffer->buffers[cpu];
3170         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3171         /*
3172          * if the tail is on reader_page, oldest time stamp is on the reader
3173          * page
3174          */
3175         if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3176                 bpage = cpu_buffer->reader_page;
3177         else
3178                 bpage = rb_set_head_page(cpu_buffer);
3179         if (bpage)
3180                 ret = bpage->page->time_stamp;
3181         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3182
3183         return ret;
3184 }
3185 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3186
3187 /**
3188  * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3189  * @buffer: The ring buffer
3190  * @cpu: The per CPU buffer to read from.
3191  */
3192 unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
3193 {
3194         struct ring_buffer_per_cpu *cpu_buffer;
3195         unsigned long ret;
3196
3197         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3198                 return 0;
3199
3200         cpu_buffer = buffer->buffers[cpu];
3201         ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3202
3203         return ret;
3204 }
3205 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3206
3207 /**
3208  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3209  * @buffer: The ring buffer
3210  * @cpu: The per CPU buffer to get the entries from.
3211  */
3212 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
3213 {
3214         struct ring_buffer_per_cpu *cpu_buffer;
3215
3216         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3217                 return 0;
3218
3219         cpu_buffer = buffer->buffers[cpu];
3220
3221         return rb_num_of_entries(cpu_buffer);
3222 }
3223 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
3224
3225 /**
3226  * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3227  * buffer wrapping around (only if RB_FL_OVERWRITE is on).
3228  * @buffer: The ring buffer
3229  * @cpu: The per CPU buffer to get the number of overruns from
3230  */
3231 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
3232 {
3233         struct ring_buffer_per_cpu *cpu_buffer;
3234         unsigned long ret;
3235
3236         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3237                 return 0;
3238
3239         cpu_buffer = buffer->buffers[cpu];
3240         ret = local_read(&cpu_buffer->overrun);
3241
3242         return ret;
3243 }
3244 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
3245
3246 /**
3247  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3248  * commits failing due to the buffer wrapping around while there are uncommitted
3249  * events, such as during an interrupt storm.
3250  * @buffer: The ring buffer
3251  * @cpu: The per CPU buffer to get the number of overruns from
3252  */
3253 unsigned long
3254 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3255 {
3256         struct ring_buffer_per_cpu *cpu_buffer;
3257         unsigned long ret;
3258
3259         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3260                 return 0;
3261
3262         cpu_buffer = buffer->buffers[cpu];
3263         ret = local_read(&cpu_buffer->commit_overrun);
3264
3265         return ret;
3266 }
3267 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3268
3269 /**
3270  * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3271  * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3272  * @buffer: The ring buffer
3273  * @cpu: The per CPU buffer to get the number of overruns from
3274  */
3275 unsigned long
3276 ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu)
3277 {
3278         struct ring_buffer_per_cpu *cpu_buffer;
3279         unsigned long ret;
3280
3281         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3282                 return 0;
3283
3284         cpu_buffer = buffer->buffers[cpu];
3285         ret = local_read(&cpu_buffer->dropped_events);
3286
3287         return ret;
3288 }
3289 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3290
3291 /**
3292  * ring_buffer_read_events_cpu - get the number of events successfully read
3293  * @buffer: The ring buffer
3294  * @cpu: The per CPU buffer to get the number of events read
3295  */
3296 unsigned long
3297 ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu)
3298 {
3299         struct ring_buffer_per_cpu *cpu_buffer;
3300
3301         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3302                 return 0;
3303
3304         cpu_buffer = buffer->buffers[cpu];
3305         return cpu_buffer->read;
3306 }
3307 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3308
3309 /**
3310  * ring_buffer_entries - get the number of entries in a buffer
3311  * @buffer: The ring buffer
3312  *
3313  * Returns the total number of entries in the ring buffer
3314  * (all CPU entries)
3315  */
3316 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3317 {
3318         struct ring_buffer_per_cpu *cpu_buffer;
3319         unsigned long entries = 0;
3320         int cpu;
3321
3322         /* if you care about this being correct, lock the buffer */
3323         for_each_buffer_cpu(buffer, cpu) {
3324                 cpu_buffer = buffer->buffers[cpu];
3325                 entries += rb_num_of_entries(cpu_buffer);
3326         }
3327
3328         return entries;
3329 }
3330 EXPORT_SYMBOL_GPL(ring_buffer_entries);
3331
3332 /**
3333  * ring_buffer_overruns - get the number of overruns in buffer
3334  * @buffer: The ring buffer
3335  *
3336  * Returns the total number of overruns in the ring buffer
3337  * (all CPU entries)
3338  */
3339 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3340 {
3341         struct ring_buffer_per_cpu *cpu_buffer;
3342         unsigned long overruns = 0;
3343         int cpu;
3344
3345         /* if you care about this being correct, lock the buffer */
3346         for_each_buffer_cpu(buffer, cpu) {
3347                 cpu_buffer = buffer->buffers[cpu];
3348                 overruns += local_read(&cpu_buffer->overrun);
3349         }
3350
3351         return overruns;
3352 }
3353 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
3354
3355 static void rb_iter_reset(struct ring_buffer_iter *iter)
3356 {
3357         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3358
3359         /* Iterator usage is expected to have record disabled */
3360         if (list_empty(&cpu_buffer->reader_page->list)) {
3361                 iter->head_page = rb_set_head_page(cpu_buffer);
3362                 if (unlikely(!iter->head_page))
3363                         return;
3364                 iter->head = iter->head_page->read;
3365         } else {
3366                 iter->head_page = cpu_buffer->reader_page;
3367                 iter->head = cpu_buffer->reader_page->read;
3368         }
3369         if (iter->head)
3370                 iter->read_stamp = cpu_buffer->read_stamp;
3371         else
3372                 iter->read_stamp = iter->head_page->page->time_stamp;
3373         iter->cache_reader_page = cpu_buffer->reader_page;
3374         iter->cache_read = cpu_buffer->read;
3375 }
3376
3377 /**
3378  * ring_buffer_iter_reset - reset an iterator
3379  * @iter: The iterator to reset
3380  *
3381  * Resets the iterator, so that it will start from the beginning
3382  * again.
3383  */
3384 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3385 {
3386         struct ring_buffer_per_cpu *cpu_buffer;
3387         unsigned long flags;
3388
3389         if (!iter)
3390                 return;
3391
3392         cpu_buffer = iter->cpu_buffer;
3393
3394         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3395         rb_iter_reset(iter);
3396         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3397 }
3398 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
3399
3400 /**
3401  * ring_buffer_iter_empty - check if an iterator has no more to read
3402  * @iter: The iterator to check
3403  */
3404 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3405 {
3406         struct ring_buffer_per_cpu *cpu_buffer;
3407
3408         cpu_buffer = iter->cpu_buffer;
3409
3410         return iter->head_page == cpu_buffer->commit_page &&
3411                 iter->head == rb_commit_index(cpu_buffer);
3412 }
3413 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
3414
3415 static void
3416 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3417                      struct ring_buffer_event *event)
3418 {
3419         u64 delta;
3420
3421         switch (event->type_len) {
3422         case RINGBUF_TYPE_PADDING:
3423                 return;
3424
3425         case RINGBUF_TYPE_TIME_EXTEND:
3426                 delta = event->array[0];
3427                 delta <<= TS_SHIFT;
3428                 delta += event->time_delta;
3429                 cpu_buffer->read_stamp += delta;
3430                 return;
3431
3432         case RINGBUF_TYPE_TIME_STAMP:
3433                 /* FIXME: not implemented */
3434                 return;
3435
3436         case RINGBUF_TYPE_DATA:
3437                 cpu_buffer->read_stamp += event->time_delta;
3438                 return;
3439
3440         default:
3441                 BUG();
3442         }
3443         return;
3444 }
3445
3446 static void
3447 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3448                           struct ring_buffer_event *event)
3449 {
3450         u64 delta;
3451
3452         switch (event->type_len) {
3453         case RINGBUF_TYPE_PADDING:
3454                 return;
3455
3456         case RINGBUF_TYPE_TIME_EXTEND:
3457                 delta = event->array[0];
3458                 delta <<= TS_SHIFT;
3459                 delta += event->time_delta;
3460                 iter->read_stamp += delta;
3461                 return;
3462
3463         case RINGBUF_TYPE_TIME_STAMP:
3464                 /* FIXME: not implemented */
3465                 return;
3466
3467         case RINGBUF_TYPE_DATA:
3468                 iter->read_stamp += event->time_delta;
3469                 return;
3470
3471         default:
3472                 BUG();
3473         }
3474         return;
3475 }
3476
3477 static struct buffer_page *
3478 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
3479 {
3480         struct buffer_page *reader = NULL;
3481         unsigned long overwrite;
3482         unsigned long flags;
3483         int nr_loops = 0;
3484         int ret;
3485
3486         local_irq_save(flags);
3487         arch_spin_lock(&cpu_buffer->lock);
3488
3489  again:
3490         /*
3491          * This should normally only loop twice. But because the
3492          * start of the reader inserts an empty page, it causes
3493          * a case where we will loop three times. There should be no
3494          * reason to loop four times (that I know of).
3495          */
3496         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
3497                 reader = NULL;
3498                 goto out;
3499         }
3500
3501         reader = cpu_buffer->reader_page;
3502
3503         /* If there's more to read, return this page */
3504         if (cpu_buffer->reader_page->read < rb_page_size(reader))
3505                 goto out;
3506
3507         /* Never should we have an index greater than the size */
3508         if (RB_WARN_ON(cpu_buffer,
3509                        cpu_buffer->reader_page->read > rb_page_size(reader)))
3510                 goto out;
3511
3512         /* check if we caught up to the tail */
3513         reader = NULL;
3514         if (cpu_buffer->commit_page == cpu_buffer->reader_page)
3515                 goto out;
3516
3517         /* Don't bother swapping if the ring buffer is empty */
3518         if (rb_num_of_entries(cpu_buffer) == 0)
3519                 goto out;
3520
3521         /*
3522          * Reset the reader page to size zero.
3523          */
3524         local_set(&cpu_buffer->reader_page->write, 0);
3525         local_set(&cpu_buffer->reader_page->entries, 0);
3526         local_set(&cpu_buffer->reader_page->page->commit, 0);
3527         cpu_buffer->reader_page->real_end = 0;
3528
3529  spin:
3530         /*
3531          * Splice the empty reader page into the list around the head.
3532          */
3533         reader = rb_set_head_page(cpu_buffer);
3534         if (!reader)
3535                 goto out;
3536         cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
3537         cpu_buffer->reader_page->list.prev = reader->list.prev;
3538
3539         /*
3540          * cpu_buffer->pages just needs to point to the buffer, it
3541          *  has no specific buffer page to point to. Lets move it out
3542          *  of our way so we don't accidentally swap it.
3543          */
3544         cpu_buffer->pages = reader->list.prev;
3545
3546         /* The reader page will be pointing to the new head */
3547         rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
3548
3549         /*
3550          * We want to make sure we read the overruns after we set up our
3551          * pointers to the next object. The writer side does a
3552          * cmpxchg to cross pages which acts as the mb on the writer
3553          * side. Note, the reader will constantly fail the swap
3554          * while the writer is updating the pointers, so this
3555          * guarantees that the overwrite recorded here is the one we
3556          * want to compare with the last_overrun.
3557          */
3558         smp_mb();
3559         overwrite = local_read(&(cpu_buffer->overrun));
3560
3561         /*
3562          * Here's the tricky part.
3563          *
3564          * We need to move the pointer past the header page.
3565          * But we can only do that if a writer is not currently
3566          * moving it. The page before the header page has the
3567          * flag bit '1' set if it is pointing to the page we want.
3568          * but if the writer is in the process of moving it
3569          * than it will be '2' or already moved '0'.
3570          */
3571
3572         ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
3573
3574         /*
3575          * If we did not convert it, then we must try again.
3576          */
3577         if (!ret)
3578                 goto spin;
3579
3580         /*
3581          * Yeah! We succeeded in replacing the page.
3582          *
3583          * Now make the new head point back to the reader page.
3584          */
3585         rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
3586         rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
3587
3588         /* Finally update the reader page to the new head */
3589         cpu_buffer->reader_page = reader;
3590         rb_reset_reader_page(cpu_buffer);
3591
3592         if (overwrite != cpu_buffer->last_overrun) {
3593                 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3594                 cpu_buffer->last_overrun = overwrite;
3595         }
3596
3597         goto again;
3598
3599  out:
3600         arch_spin_unlock(&cpu_buffer->lock);
3601         local_irq_restore(flags);
3602
3603         return reader;
3604 }
3605
3606 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3607 {
3608         struct ring_buffer_event *event;
3609         struct buffer_page *reader;
3610         unsigned length;
3611
3612         reader = rb_get_reader_page(cpu_buffer);
3613
3614         /* This function should not be called when buffer is empty */
3615         if (RB_WARN_ON(cpu_buffer, !reader))
3616                 return;
3617
3618         event = rb_reader_event(cpu_buffer);
3619
3620         if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
3621                 cpu_buffer->read++;
3622
3623         rb_update_read_stamp(cpu_buffer, event);
3624
3625         length = rb_event_length(event);
3626         cpu_buffer->reader_page->read += length;
3627 }
3628
3629 static void rb_advance_iter(struct ring_buffer_iter *iter)
3630 {
3631         struct ring_buffer_per_cpu *cpu_buffer;
3632         struct ring_buffer_event *event;
3633         unsigned length;
3634
3635         cpu_buffer = iter->cpu_buffer;
3636
3637         /*
3638          * Check if we are at the end of the buffer.
3639          */
3640         if (iter->head >= rb_page_size(iter->head_page)) {
3641                 /* discarded commits can make the page empty */
3642                 if (iter->head_page == cpu_buffer->commit_page)
3643                         return;
3644                 rb_inc_iter(iter);
3645                 return;
3646         }
3647
3648         event = rb_iter_head_event(iter);
3649
3650         length = rb_event_length(event);
3651
3652         /*
3653          * This should not be called to advance the header if we are
3654          * at the tail of the buffer.
3655          */
3656         if (RB_WARN_ON(cpu_buffer,
3657                        (iter->head_page == cpu_buffer->commit_page) &&
3658                        (iter->head + length > rb_commit_index(cpu_buffer))))
3659                 return;
3660
3661         rb_update_iter_read_stamp(iter, event);
3662
3663         iter->head += length;
3664
3665         /* check for end of page padding */
3666         if ((iter->head >= rb_page_size(iter->head_page)) &&
3667             (iter->head_page != cpu_buffer->commit_page))
3668                 rb_inc_iter(iter);
3669 }
3670
3671 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3672 {
3673         return cpu_buffer->lost_events;
3674 }
3675
3676 static struct ring_buffer_event *
3677 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3678                unsigned long *lost_events)
3679 {
3680         struct ring_buffer_event *event;
3681         struct buffer_page *reader;
3682         int nr_loops = 0;
3683
3684  again:
3685         /*
3686          * We repeat when a time extend is encountered.
3687          * Since the time extend is always attached to a data event,
3688          * we should never loop more than once.
3689          * (We never hit the following condition more than twice).
3690          */
3691         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3692                 return NULL;
3693
3694         reader = rb_get_reader_page(cpu_buffer);
3695         if (!reader)
3696                 return NULL;
3697
3698         event = rb_reader_event(cpu_buffer);
3699
3700         switch (event->type_len) {
3701         case RINGBUF_TYPE_PADDING:
3702                 if (rb_null_event(event))
3703                         RB_WARN_ON(cpu_buffer, 1);
3704                 /*
3705                  * Because the writer could be discarding every
3706                  * event it creates (which would probably be bad)
3707                  * if we were to go back to "again" then we may never
3708                  * catch up, and will trigger the warn on, or lock
3709                  * the box. Return the padding, and we will release
3710                  * the current locks, and try again.
3711                  */
3712                 return event;
3713
3714         case RINGBUF_TYPE_TIME_EXTEND:
3715                 /* Internal data, OK to advance */
3716                 rb_advance_reader(cpu_buffer);
3717                 goto again;
3718
3719         case RINGBUF_TYPE_TIME_STAMP:
3720                 /* FIXME: not implemented */
3721                 rb_advance_reader(cpu_buffer);
3722                 goto again;
3723
3724         case RINGBUF_TYPE_DATA:
3725                 if (ts) {
3726                         *ts = cpu_buffer->read_stamp + event->time_delta;
3727                         ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3728                                                          cpu_buffer->cpu, ts);
3729                 }
3730                 if (lost_events)
3731                         *lost_events = rb_lost_events(cpu_buffer);
3732                 return event;
3733
3734         default:
3735                 BUG();
3736         }
3737
3738         return NULL;
3739 }
3740 EXPORT_SYMBOL_GPL(ring_buffer_peek);
3741
3742 static struct ring_buffer_event *
3743 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3744 {
3745         struct ring_buffer *buffer;
3746         struct ring_buffer_per_cpu *cpu_buffer;
3747         struct ring_buffer_event *event;
3748         int nr_loops = 0;
3749
3750         cpu_buffer = iter->cpu_buffer;
3751         buffer = cpu_buffer->buffer;
3752
3753         /*
3754          * Check if someone performed a consuming read to
3755          * the buffer. A consuming read invalidates the iterator
3756          * and we need to reset the iterator in this case.
3757          */
3758         if (unlikely(iter->cache_read != cpu_buffer->read ||
3759                      iter->cache_reader_page != cpu_buffer->reader_page))
3760                 rb_iter_reset(iter);
3761
3762  again:
3763         if (ring_buffer_iter_empty(iter))
3764                 return NULL;
3765
3766         /*
3767          * We repeat when a time extend is encountered.
3768          * Since the time extend is always attached to a data event,
3769          * we should never loop more than once.
3770          * (We never hit the following condition more than twice).
3771          */
3772         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3773                 return NULL;
3774
3775         if (rb_per_cpu_empty(cpu_buffer))
3776                 return NULL;
3777
3778         if (iter->head >= local_read(&iter->head_page->page->commit)) {
3779                 rb_inc_iter(iter);
3780                 goto again;
3781         }
3782
3783         event = rb_iter_head_event(iter);
3784
3785         switch (event->type_len) {
3786         case RINGBUF_TYPE_PADDING:
3787                 if (rb_null_event(event)) {
3788                         rb_inc_iter(iter);
3789                         goto again;
3790                 }
3791                 rb_advance_iter(iter);
3792                 return event;
3793
3794         case RINGBUF_TYPE_TIME_EXTEND:
3795                 /* Internal data, OK to advance */
3796                 rb_advance_iter(iter);
3797                 goto again;
3798
3799         case RINGBUF_TYPE_TIME_STAMP:
3800                 /* FIXME: not implemented */
3801                 rb_advance_iter(iter);
3802                 goto again;
3803
3804         case RINGBUF_TYPE_DATA:
3805                 if (ts) {
3806                         *ts = iter->read_stamp + event->time_delta;
3807                         ring_buffer_normalize_time_stamp(buffer,
3808                                                          cpu_buffer->cpu, ts);
3809                 }
3810                 return event;
3811
3812         default:
3813                 BUG();
3814         }
3815
3816         return NULL;
3817 }
3818 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3819
3820 static inline int rb_ok_to_lock(void)
3821 {
3822         /*
3823          * If an NMI die dumps out the content of the ring buffer
3824          * do not grab locks. We also permanently disable the ring
3825          * buffer too. A one time deal is all you get from reading
3826          * the ring buffer from an NMI.
3827          */
3828         if (likely(!in_nmi()))
3829                 return 1;
3830
3831         tracing_off_permanent();
3832         return 0;
3833 }
3834
3835 /**
3836  * ring_buffer_peek - peek at the next event to be read
3837  * @buffer: The ring buffer to read
3838  * @cpu: The cpu to peak at
3839  * @ts: The timestamp counter of this event.
3840  * @lost_events: a variable to store if events were lost (may be NULL)
3841  *
3842  * This will return the event that will be read next, but does
3843  * not consume the data.
3844  */
3845 struct ring_buffer_event *
3846 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3847                  unsigned long *lost_events)
3848 {
3849         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3850         struct ring_buffer_event *event;
3851         unsigned long flags;
3852         int dolock;
3853
3854         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3855                 return NULL;
3856
3857         dolock = rb_ok_to_lock();
3858  again:
3859         local_irq_save(flags);
3860         if (dolock)
3861                 raw_spin_lock(&cpu_buffer->reader_lock);
3862         event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3863         if (event && event->type_len == RINGBUF_TYPE_PADDING)
3864                 rb_advance_reader(cpu_buffer);
3865         if (dolock)
3866                 raw_spin_unlock(&cpu_buffer->reader_lock);
3867         local_irq_restore(flags);
3868
3869         if (event && event->type_len == RINGBUF_TYPE_PADDING)
3870                 goto again;
3871
3872         return event;
3873 }
3874
3875 /**
3876  * ring_buffer_iter_peek - peek at the next event to be read
3877  * @iter: The ring buffer iterator
3878  * @ts: The timestamp counter of this event.
3879  *
3880  * This will return the event that will be read next, but does
3881  * not increment the iterator.
3882  */
3883 struct ring_buffer_event *
3884 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3885 {
3886         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3887         struct ring_buffer_event *event;
3888         unsigned long flags;
3889
3890  again:
3891         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3892         event = rb_iter_peek(iter, ts);
3893         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3894
3895         if (event && event->type_len == RINGBUF_TYPE_PADDING)
3896                 goto again;
3897
3898         return event;
3899 }
3900
3901 /**
3902  * ring_buffer_consume - return an event and consume it
3903  * @buffer: The ring buffer to get the next event from
3904  * @cpu: the cpu to read the buffer from
3905  * @ts: a variable to store the timestamp (may be NULL)
3906  * @lost_events: a variable to store if events were lost (may be NULL)
3907  *
3908  * Returns the next event in the ring buffer, and that event is consumed.
3909  * Meaning, that sequential reads will keep returning a different event,
3910  * and eventually empty the ring buffer if the producer is slower.
3911  */
3912 struct ring_buffer_event *
3913 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3914                     unsigned long *lost_events)
3915 {
3916         struct ring_buffer_per_cpu *cpu_buffer;
3917         struct ring_buffer_event *event = NULL;
3918         unsigned long flags;
3919         int dolock;
3920
3921         dolock = rb_ok_to_lock();
3922
3923  again:
3924         /* might be called in atomic */
3925         preempt_disable();
3926
3927         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3928                 goto out;
3929
3930         cpu_buffer = buffer->buffers[cpu];
3931         local_irq_save(flags);
3932         if (dolock)
3933                 raw_spin_lock(&cpu_buffer->reader_lock);
3934
3935         event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3936         if (event) {
3937                 cpu_buffer->lost_events = 0;
3938                 rb_advance_reader(cpu_buffer);
3939         }
3940
3941         if (dolock)
3942                 raw_spin_unlock(&cpu_buffer->reader_lock);
3943         local_irq_restore(flags);
3944
3945  out:
3946         preempt_enable();
3947
3948         if (event && event->type_len == RINGBUF_TYPE_PADDING)
3949                 goto again;
3950
3951         return event;
3952 }
3953 EXPORT_SYMBOL_GPL(ring_buffer_consume);
3954
3955 /**
3956  * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
3957  * @buffer: The ring buffer to read from
3958  * @cpu: The cpu buffer to iterate over
3959  *
3960  * This performs the initial preparations necessary to iterate
3961  * through the buffer.  Memory is allocated, buffer recording
3962  * is disabled, and the iterator pointer is returned to the caller.
3963  *
3964  * Disabling buffer recordng prevents the reading from being
3965  * corrupted. This is not a consuming read, so a producer is not
3966  * expected.
3967  *
3968  * After a sequence of ring_buffer_read_prepare calls, the user is
3969  * expected to make at least one call to ring_buffer_prepare_sync.
3970  * Afterwards, ring_buffer_read_start is invoked to get things going
3971  * for real.
3972  *
3973  * This overall must be paired with ring_buffer_finish.
3974  */
3975 struct ring_buffer_iter *
3976 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
3977 {
3978         struct ring_buffer_per_cpu *cpu_buffer;
3979         struct ring_buffer_iter *iter;
3980
3981         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3982                 return NULL;
3983
3984         iter = kmalloc(sizeof(*iter), GFP_KERNEL);
3985         if (!iter)
3986                 return NULL;
3987
3988         cpu_buffer = buffer->buffers[cpu];
3989
3990         iter->cpu_buffer = cpu_buffer;
3991
3992         atomic_inc(&buffer->resize_disabled);
3993         atomic_inc(&cpu_buffer->record_disabled);
3994
3995         return iter;
3996 }
3997 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
3998
3999 /**
4000  * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
4001  *
4002  * All previously invoked ring_buffer_read_prepare calls to prepare
4003  * iterators will be synchronized.  Afterwards, read_buffer_read_start
4004  * calls on those iterators are allowed.
4005  */
4006 void
4007 ring_buffer_read_prepare_sync(void)
4008 {
4009         synchronize_sched();
4010 }
4011 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4012
4013 /**
4014  * ring_buffer_read_start - start a non consuming read of the buffer
4015  * @iter: The iterator returned by ring_buffer_read_prepare
4016  *
4017  * This finalizes the startup of an iteration through the buffer.
4018  * The iterator comes from a call to ring_buffer_read_prepare and
4019  * an intervening ring_buffer_read_prepare_sync must have been
4020  * performed.
4021  *
4022  * Must be paired with ring_buffer_finish.
4023  */
4024 void
4025 ring_buffer_read_start(struct ring_buffer_iter *iter)
4026 {
4027         struct ring_buffer_per_cpu *cpu_buffer;
4028         unsigned long flags;
4029
4030         if (!iter)
4031                 return;
4032
4033         cpu_buffer = iter->cpu_buffer;
4034
4035         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4036         arch_spin_lock(&cpu_buffer->lock);
4037         rb_iter_reset(iter);
4038         arch_spin_unlock(&cpu_buffer->lock);
4039         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4040 }
4041 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
4042
4043 /**
4044  * ring_buffer_finish - finish reading the iterator of the buffer
4045  * @iter: The iterator retrieved by ring_buffer_start
4046  *
4047  * This re-enables the recording to the buffer, and frees the
4048  * iterator.
4049  */
4050 void
4051 ring_buffer_read_finish(struct ring_buffer_iter *iter)
4052 {
4053         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4054         unsigned long flags;
4055
4056         /*
4057          * Ring buffer is disabled from recording, here's a good place
4058          * to check the integrity of the ring buffer.
4059          * Must prevent readers from trying to read, as the check
4060          * clears the HEAD page and readers require it.
4061          */
4062         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4063         rb_check_pages(cpu_buffer);
4064         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4065
4066         atomic_dec(&cpu_buffer->record_disabled);
4067         atomic_dec(&cpu_buffer->buffer->resize_disabled);
4068         kfree(iter);
4069 }
4070 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
4071
4072 /**
4073  * ring_buffer_read - read the next item in the ring buffer by the iterator
4074  * @iter: The ring buffer iterator
4075  * @ts: The time stamp of the event read.
4076  *
4077  * This reads the next event in the ring buffer and increments the iterator.
4078  */
4079 struct ring_buffer_event *
4080 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
4081 {
4082         struct ring_buffer_event *event;
4083         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4084         unsigned long flags;
4085
4086         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4087  again:
4088         event = rb_iter_peek(iter, ts);
4089         if (!event)
4090                 goto out;
4091
4092         if (event->type_len == RINGBUF_TYPE_PADDING)
4093                 goto again;
4094
4095         rb_advance_iter(iter);
4096  out:
4097         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4098
4099         return event;
4100 }
4101 EXPORT_SYMBOL_GPL(ring_buffer_read);
4102
4103 /**
4104  * ring_buffer_size - return the size of the ring buffer (in bytes)
4105  * @buffer: The ring buffer.
4106  */
4107 unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
4108 {
4109         /*
4110          * Earlier, this method returned
4111          *      BUF_PAGE_SIZE * buffer->nr_pages
4112          * Since the nr_pages field is now removed, we have converted this to
4113          * return the per cpu buffer value.
4114          */
4115         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4116                 return 0;
4117
4118         return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
4119 }
4120 EXPORT_SYMBOL_GPL(ring_buffer_size);
4121
4122 static void
4123 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4124 {
4125         rb_head_page_deactivate(cpu_buffer);
4126
4127         cpu_buffer->head_page
4128                 = list_entry(cpu_buffer->pages, struct buffer_page, list);
4129         local_set(&cpu_buffer->head_page->write, 0);
4130         local_set(&cpu_buffer->head_page->entries, 0);
4131         local_set(&cpu_buffer->head_page->page->commit, 0);
4132
4133         cpu_buffer->head_page->read = 0;
4134
4135         cpu_buffer->tail_page = cpu_buffer->head_page;
4136         cpu_buffer->commit_page = cpu_buffer->head_page;
4137
4138         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
4139         INIT_LIST_HEAD(&cpu_buffer->new_pages);
4140         local_set(&cpu_buffer->reader_page->write, 0);
4141         local_set(&cpu_buffer->reader_page->entries, 0);
4142         local_set(&cpu_buffer->reader_page->page->commit, 0);
4143         cpu_buffer->reader_page->read = 0;
4144
4145         local_set(&cpu_buffer->entries_bytes, 0);
4146         local_set(&cpu_buffer->overrun, 0);
4147         local_set(&cpu_buffer->commit_overrun, 0);
4148         local_set(&cpu_buffer->dropped_events, 0);
4149         local_set(&cpu_buffer->entries, 0);
4150         local_set(&cpu_buffer->committing, 0);
4151         local_set(&cpu_buffer->commits, 0);
4152         cpu_buffer->read = 0;
4153         cpu_buffer->read_bytes = 0;
4154
4155         cpu_buffer->write_stamp = 0;
4156         cpu_buffer->read_stamp = 0;
4157
4158         cpu_buffer->lost_events = 0;
4159         cpu_buffer->last_overrun = 0;
4160
4161         rb_head_page_activate(cpu_buffer);
4162 }
4163
4164 /**
4165  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4166  * @buffer: The ring buffer to reset a per cpu buffer of
4167  * @cpu: The CPU buffer to be reset
4168  */
4169 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
4170 {
4171         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4172         unsigned long flags;
4173
4174         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4175                 return;
4176
4177         atomic_inc(&buffer->resize_disabled);
4178         atomic_inc(&cpu_buffer->record_disabled);
4179
4180         /* Make sure all commits have finished */
4181         synchronize_sched();
4182
4183         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4184
4185         if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4186                 goto out;
4187
4188         arch_spin_lock(&cpu_buffer->lock);
4189
4190         rb_reset_cpu(cpu_buffer);
4191
4192         arch_spin_unlock(&cpu_buffer->lock);
4193
4194  out:
4195         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4196
4197         atomic_dec(&cpu_buffer->record_disabled);
4198         atomic_dec(&buffer->resize_disabled);
4199 }
4200 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
4201
4202 /**
4203  * ring_buffer_reset - reset a ring buffer
4204  * @buffer: The ring buffer to reset all cpu buffers
4205  */
4206 void ring_buffer_reset(struct ring_buffer *buffer)
4207 {
4208         int cpu;
4209
4210         for_each_buffer_cpu(buffer, cpu)
4211                 ring_buffer_reset_cpu(buffer, cpu);
4212 }
4213 EXPORT_SYMBOL_GPL(ring_buffer_reset);
4214
4215 /**
4216  * rind_buffer_empty - is the ring buffer empty?
4217  * @buffer: The ring buffer to test
4218  */
4219 int ring_buffer_empty(struct ring_buffer *buffer)
4220 {
4221         struct ring_buffer_per_cpu *cpu_buffer;
4222         unsigned long flags;
4223         int dolock;
4224         int cpu;
4225         int ret;
4226
4227         dolock = rb_ok_to_lock();
4228
4229         /* yes this is racy, but if you don't like the race, lock the buffer */
4230         for_each_buffer_cpu(buffer, cpu) {
4231                 cpu_buffer = buffer->buffers[cpu];
4232                 local_irq_save(flags);
4233                 if (dolock)
4234                         raw_spin_lock(&cpu_buffer->reader_lock);
4235                 ret = rb_per_cpu_empty(cpu_buffer);
4236                 if (dolock)
4237                         raw_spin_unlock(&cpu_buffer->reader_lock);
4238                 local_irq_restore(flags);
4239
4240                 if (!ret)
4241                         return 0;
4242         }
4243
4244         return 1;
4245 }
4246 EXPORT_SYMBOL_GPL(ring_buffer_empty);
4247
4248 /**
4249  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4250  * @buffer: The ring buffer
4251  * @cpu: The CPU buffer to test
4252  */
4253 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
4254 {
4255         struct ring_buffer_per_cpu *cpu_buffer;
4256         unsigned long flags;
4257         int dolock;
4258         int ret;
4259
4260         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4261                 return 1;
4262
4263         dolock = rb_ok_to_lock();
4264
4265         cpu_buffer = buffer->buffers[cpu];
4266         local_irq_save(flags);
4267         if (dolock)
4268                 raw_spin_lock(&cpu_buffer->reader_lock);
4269         ret = rb_per_cpu_empty(cpu_buffer);
4270         if (dolock)
4271                 raw_spin_unlock(&cpu_buffer->reader_lock);
4272         local_irq_restore(flags);
4273
4274         return ret;
4275 }
4276 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
4277
4278 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4279 /**
4280  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4281  * @buffer_a: One buffer to swap with
4282  * @buffer_b: The other buffer to swap with
4283  *
4284  * This function is useful for tracers that want to take a "snapshot"
4285  * of a CPU buffer and has another back up buffer lying around.
4286  * it is expected that the tracer handles the cpu buffer not being
4287  * used at the moment.
4288  */
4289 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4290                          struct ring_buffer *buffer_b, int cpu)
4291 {
4292         struct ring_buffer_per_cpu *cpu_buffer_a;
4293         struct ring_buffer_per_cpu *cpu_buffer_b;
4294         int ret = -EINVAL;
4295
4296         if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4297             !cpumask_test_cpu(cpu, buffer_b->cpumask))
4298                 goto out;
4299
4300         cpu_buffer_a = buffer_a->buffers[cpu];
4301         cpu_buffer_b = buffer_b->buffers[cpu];
4302
4303         /* At least make sure the two buffers are somewhat the same */
4304         if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
4305                 goto out;
4306
4307         ret = -EAGAIN;
4308
4309         if (ring_buffer_flags != RB_BUFFERS_ON)
4310                 goto out;
4311
4312         if (atomic_read(&buffer_a->record_disabled))
4313                 goto out;
4314
4315         if (atomic_read(&buffer_b->record_disabled))
4316                 goto out;
4317
4318         if (atomic_read(&cpu_buffer_a->record_disabled))
4319                 goto out;
4320
4321         if (atomic_read(&cpu_buffer_b->record_disabled))
4322                 goto out;
4323
4324         /*
4325          * We can't do a synchronize_sched here because this
4326          * function can be called in atomic context.
4327          * Normally this will be called from the same CPU as cpu.
4328          * If not it's up to the caller to protect this.
4329          */
4330         atomic_inc(&cpu_buffer_a->record_disabled);
4331         atomic_inc(&cpu_buffer_b->record_disabled);
4332
4333         ret = -EBUSY;
4334         if (local_read(&cpu_buffer_a->committing))
4335                 goto out_dec;
4336         if (local_read(&cpu_buffer_b->committing))
4337                 goto out_dec;
4338
4339         buffer_a->buffers[cpu] = cpu_buffer_b;
4340         buffer_b->buffers[cpu] = cpu_buffer_a;
4341
4342         cpu_buffer_b->buffer = buffer_a;
4343         cpu_buffer_a->buffer = buffer_b;
4344
4345         ret = 0;
4346
4347 out_dec:
4348         atomic_dec(&cpu_buffer_a->record_disabled);
4349         atomic_dec(&cpu_buffer_b->record_disabled);
4350 out:
4351         return ret;
4352 }
4353 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
4354 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
4355
4356 /**
4357  * ring_buffer_alloc_read_page - allocate a page to read from buffer
4358  * @buffer: the buffer to allocate for.
4359  *
4360  * This function is used in conjunction with ring_buffer_read_page.
4361  * When reading a full page from the ring buffer, these functions
4362  * can be used to speed up the process. The calling function should
4363  * allocate a few pages first with this function. Then when it
4364  * needs to get pages from the ring buffer, it passes the result
4365  * of this function into ring_buffer_read_page, which will swap
4366  * the page that was allocated, with the read page of the buffer.
4367  *
4368  * Returns:
4369  *  The page allocated, or NULL on error.
4370  */
4371 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
4372 {
4373         struct buffer_data_page *bpage;
4374         struct page *page;
4375
4376         page = alloc_pages_node(cpu_to_node(cpu),
4377                                 GFP_KERNEL | __GFP_NORETRY, 0);
4378         if (!page)
4379                 return NULL;
4380
4381         bpage = page_address(page);
4382
4383         rb_init_page(bpage);
4384
4385         return bpage;
4386 }
4387 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
4388
4389 /**
4390  * ring_buffer_free_read_page - free an allocated read page
4391  * @buffer: the buffer the page was allocate for
4392  * @data: the page to free
4393  *
4394  * Free a page allocated from ring_buffer_alloc_read_page.
4395  */
4396 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
4397 {
4398         free_page((unsigned long)data);
4399 }
4400 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
4401
4402 /**
4403  * ring_buffer_read_page - extract a page from the ring buffer
4404  * @buffer: buffer to extract from
4405  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
4406  * @len: amount to extract
4407  * @cpu: the cpu of the buffer to extract
4408  * @full: should the extraction only happen when the page is full.
4409  *
4410  * This function will pull out a page from the ring buffer and consume it.
4411  * @data_page must be the address of the variable that was returned
4412  * from ring_buffer_alloc_read_page. This is because the page might be used
4413  * to swap with a page in the ring buffer.
4414  *
4415  * for example:
4416  *      rpage = ring_buffer_alloc_read_page(buffer);
4417  *      if (!rpage)
4418  *              return error;
4419  *      ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
4420  *      if (ret >= 0)
4421  *              process_page(rpage, ret);
4422  *
4423  * When @full is set, the function will not return true unless
4424  * the writer is off the reader page.
4425  *
4426  * Note: it is up to the calling functions to handle sleeps and wakeups.
4427  *  The ring buffer can be used anywhere in the kernel and can not
4428  *  blindly call wake_up. The layer that uses the ring buffer must be
4429  *  responsible for that.
4430  *
4431  * Returns:
4432  *  >=0 if data has been transferred, returns the offset of consumed data.
4433  *  <0 if no data has been transferred.
4434  */
4435 int ring_buffer_read_page(struct ring_buffer *buffer,
4436                           void **data_page, size_t len, int cpu, int full)
4437 {
4438         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4439         struct ring_buffer_event *event;
4440         struct buffer_data_page *bpage;
4441         struct buffer_page *reader;
4442         unsigned long missed_events;
4443         unsigned long flags;
4444         unsigned int commit;
4445         unsigned int read;
4446         u64 save_timestamp;
4447         int ret = -1;
4448
4449         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4450                 goto out;
4451
4452         /*
4453          * If len is not big enough to hold the page header, then
4454          * we can not copy anything.
4455          */
4456         if (len <= BUF_PAGE_HDR_SIZE)
4457                 goto out;
4458
4459         len -= BUF_PAGE_HDR_SIZE;
4460
4461         if (!data_page)
4462                 goto out;
4463
4464         bpage = *data_page;
4465         if (!bpage)
4466                 goto out;
4467
4468         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4469
4470         reader = rb_get_reader_page(cpu_buffer);
4471         if (!reader)
4472                 goto out_unlock;
4473
4474         event = rb_reader_event(cpu_buffer);
4475
4476         read = reader->read;
4477         commit = rb_page_commit(reader);
4478
4479         /* Check if any events were dropped */
4480         missed_events = cpu_buffer->lost_events;
4481
4482         /*
4483          * If this page has been partially read or
4484          * if len is not big enough to read the rest of the page or
4485          * a writer is still on the page, then
4486          * we must copy the data from the page to the buffer.
4487          * Otherwise, we can simply swap the page with the one passed in.
4488          */
4489         if (read || (len < (commit - read)) ||
4490             cpu_buffer->reader_page == cpu_buffer->commit_page) {
4491                 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
4492                 unsigned int rpos = read;
4493                 unsigned int pos = 0;
4494                 unsigned int size;
4495
4496                 if (full)
4497                         goto out_unlock;
4498
4499                 if (len > (commit - read))
4500                         len = (commit - read);
4501
4502                 /* Always keep the time extend and data together */
4503                 size = rb_event_ts_length(event);
4504
4505                 if (len < size)
4506                         goto out_unlock;
4507
4508                 /* save the current timestamp, since the user will need it */
4509                 save_timestamp = cpu_buffer->read_stamp;
4510
4511                 /* Need to copy one event at a time */
4512                 do {
4513                         /* We need the size of one event, because
4514                          * rb_advance_reader only advances by one event,
4515                          * whereas rb_event_ts_length may include the size of
4516                          * one or two events.
4517                          * We have already ensured there's enough space if this
4518                          * is a time extend. */
4519                         size = rb_event_length(event);
4520                         memcpy(bpage->data + pos, rpage->data + rpos, size);
4521
4522                         len -= size;
4523
4524                         rb_advance_reader(cpu_buffer);
4525                         rpos = reader->read;
4526                         pos += size;
4527
4528                         if (rpos >= commit)
4529                                 break;
4530
4531                         event = rb_reader_event(cpu_buffer);
4532                         /* Always keep the time extend and data together */
4533                         size = rb_event_ts_length(event);
4534                 } while (len >= size);
4535
4536                 /* update bpage */
4537                 local_set(&bpage->commit, pos);
4538                 bpage->time_stamp = save_timestamp;
4539
4540                 /* we copied everything to the beginning */
4541                 read = 0;
4542         } else {
4543                 /* update the entry counter */
4544                 cpu_buffer->read += rb_page_entries(reader);
4545                 cpu_buffer->read_bytes += BUF_PAGE_SIZE;
4546
4547                 /* swap the pages */
4548                 rb_init_page(bpage);
4549                 bpage = reader->page;
4550                 reader->page = *data_page;
4551                 local_set(&reader->write, 0);
4552                 local_set(&reader->entries, 0);
4553                 reader->read = 0;
4554                 *data_page = bpage;
4555
4556                 /*
4557                  * Use the real_end for the data size,
4558                  * This gives us a chance to store the lost events
4559                  * on the page.
4560                  */
4561                 if (reader->real_end)
4562                         local_set(&bpage->commit, reader->real_end);
4563         }
4564         ret = read;
4565
4566         cpu_buffer->lost_events = 0;
4567
4568         commit = local_read(&bpage->commit);
4569         /*
4570          * Set a flag in the commit field if we lost events
4571          */
4572         if (missed_events) {
4573                 /* If there is room at the end of the page to save the
4574                  * missed events, then record it there.
4575                  */
4576                 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4577                         memcpy(&bpage->data[commit], &missed_events,
4578                                sizeof(missed_events));
4579                         local_add(RB_MISSED_STORED, &bpage->commit);
4580                         commit += sizeof(missed_events);
4581                 }
4582                 local_add(RB_MISSED_EVENTS, &bpage->commit);
4583         }
4584
4585         /*
4586          * This page may be off to user land. Zero it out here.
4587          */
4588         if (commit < BUF_PAGE_SIZE)
4589                 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4590
4591  out_unlock:
4592         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4593
4594  out:
4595         return ret;
4596 }
4597 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
4598
4599 #ifdef CONFIG_HOTPLUG_CPU
4600 static int rb_cpu_notify(struct notifier_block *self,
4601                          unsigned long action, void *hcpu)
4602 {
4603         struct ring_buffer *buffer =
4604                 container_of(self, struct ring_buffer, cpu_notify);
4605         long cpu = (long)hcpu;
4606         int cpu_i, nr_pages_same;
4607         unsigned int nr_pages;
4608
4609         switch (action) {
4610         case CPU_UP_PREPARE:
4611         case CPU_UP_PREPARE_FROZEN:
4612                 if (cpumask_test_cpu(cpu, buffer->cpumask))
4613                         return NOTIFY_OK;
4614
4615                 nr_pages = 0;
4616                 nr_pages_same = 1;
4617                 /* check if all cpu sizes are same */
4618                 for_each_buffer_cpu(buffer, cpu_i) {
4619                         /* fill in the size from first enabled cpu */
4620                         if (nr_pages == 0)
4621                                 nr_pages = buffer->buffers[cpu_i]->nr_pages;
4622                         if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4623                                 nr_pages_same = 0;
4624                                 break;
4625                         }
4626                 }
4627                 /* allocate minimum pages, user can later expand it */
4628                 if (!nr_pages_same)
4629                         nr_pages = 2;
4630                 buffer->buffers[cpu] =
4631                         rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
4632                 if (!buffer->buffers[cpu]) {
4633                         WARN(1, "failed to allocate ring buffer on CPU %ld\n",
4634                              cpu);
4635                         return NOTIFY_OK;
4636                 }
4637                 smp_wmb();
4638                 cpumask_set_cpu(cpu, buffer->cpumask);
4639                 break;
4640         case CPU_DOWN_PREPARE:
4641         case CPU_DOWN_PREPARE_FROZEN:
4642                 /*
4643                  * Do nothing.
4644                  *  If we were to free the buffer, then the user would
4645                  *  lose any trace that was in the buffer.
4646                  */
4647                 break;
4648         default:
4649                 break;
4650         }
4651         return NOTIFY_OK;
4652 }
4653 #endif
4654
4655 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
4656 /*
4657  * This is a basic integrity check of the ring buffer.
4658  * Late in the boot cycle this test will run when configured in.
4659  * It will kick off a thread per CPU that will go into a loop
4660  * writing to the per cpu ring buffer various sizes of data.
4661  * Some of the data will be large items, some small.
4662  *
4663  * Another thread is created that goes into a spin, sending out
4664  * IPIs to the other CPUs to also write into the ring buffer.
4665  * this is to test the nesting ability of the buffer.
4666  *
4667  * Basic stats are recorded and reported. If something in the
4668  * ring buffer should happen that's not expected, a big warning
4669  * is displayed and all ring buffers are disabled.
4670  */
4671 static struct task_struct *rb_threads[NR_CPUS] __initdata;
4672
4673 struct rb_test_data {
4674         struct ring_buffer      *buffer;
4675         unsigned long           events;
4676         unsigned long           bytes_written;
4677         unsigned long           bytes_alloc;
4678         unsigned long           bytes_dropped;
4679         unsigned long           events_nested;
4680         unsigned long           bytes_written_nested;
4681         unsigned long           bytes_alloc_nested;
4682         unsigned long           bytes_dropped_nested;
4683         int                     min_size_nested;
4684         int                     max_size_nested;
4685         int                     max_size;
4686         int                     min_size;
4687         int                     cpu;
4688         int                     cnt;
4689 };
4690
4691 static struct rb_test_data rb_data[NR_CPUS] __initdata;
4692
4693 /* 1 meg per cpu */
4694 #define RB_TEST_BUFFER_SIZE     1048576
4695
4696 static char rb_string[] __initdata =
4697         "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
4698         "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
4699         "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
4700
4701 static bool rb_test_started __initdata;
4702
4703 struct rb_item {
4704         int size;
4705         char str[];
4706 };
4707
4708 static __init int rb_write_something(struct rb_test_data *data, bool nested)
4709 {
4710         struct ring_buffer_event *event;
4711         struct rb_item *item;
4712         bool started;
4713         int event_len;
4714         int size;
4715         int len;
4716         int cnt;
4717
4718         /* Have nested writes different that what is written */
4719         cnt = data->cnt + (nested ? 27 : 0);
4720
4721         /* Multiply cnt by ~e, to make some unique increment */
4722         size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1);
4723
4724         len = size + sizeof(struct rb_item);
4725
4726         started = rb_test_started;
4727         /* read rb_test_started before checking buffer enabled */
4728         smp_rmb();
4729
4730         event = ring_buffer_lock_reserve(data->buffer, len);
4731         if (!event) {
4732                 /* Ignore dropped events before test starts. */
4733                 if (started) {
4734                         if (nested)
4735                                 data->bytes_dropped += len;
4736                         else
4737                                 data->bytes_dropped_nested += len;
4738                 }
4739                 return len;
4740         }
4741
4742         event_len = ring_buffer_event_length(event);
4743
4744         if (RB_WARN_ON(data->buffer, event_len < len))
4745                 goto out;
4746
4747         item = ring_buffer_event_data(event);
4748         item->size = size;
4749         memcpy(item->str, rb_string, size);
4750
4751         if (nested) {
4752                 data->bytes_alloc_nested += event_len;
4753                 data->bytes_written_nested += len;
4754                 data->events_nested++;
4755                 if (!data->min_size_nested || len < data->min_size_nested)
4756                         data->min_size_nested = len;
4757                 if (len > data->max_size_nested)
4758                         data->max_size_nested = len;
4759         } else {
4760                 data->bytes_alloc += event_len;
4761                 data->bytes_written += len;
4762                 data->events++;
4763                 if (!data->min_size || len < data->min_size)
4764                         data->max_size = len;
4765                 if (len > data->max_size)
4766                         data->max_size = len;
4767         }
4768
4769  out:
4770         ring_buffer_unlock_commit(data->buffer, event);
4771
4772         return 0;
4773 }
4774
4775 static __init int rb_test(void *arg)
4776 {
4777         struct rb_test_data *data = arg;
4778
4779         while (!kthread_should_stop()) {
4780                 rb_write_something(data, false);
4781                 data->cnt++;
4782
4783                 set_current_state(TASK_INTERRUPTIBLE);
4784                 /* Now sleep between a min of 100-300us and a max of 1ms */
4785                 usleep_range(((data->cnt % 3) + 1) * 100, 1000);
4786         }
4787
4788         return 0;
4789 }
4790
4791 static __init void rb_ipi(void *ignore)
4792 {
4793         struct rb_test_data *data;
4794         int cpu = smp_processor_id();
4795
4796         data = &rb_data[cpu];
4797         rb_write_something(data, true);
4798 }
4799
4800 static __init int rb_hammer_test(void *arg)
4801 {
4802         while (!kthread_should_stop()) {
4803
4804                 /* Send an IPI to all cpus to write data! */
4805                 smp_call_function(rb_ipi, NULL, 1);
4806                 /* No sleep, but for non preempt, let others run */
4807                 schedule();
4808         }
4809
4810         return 0;
4811 }
4812
4813 static __init int test_ringbuffer(void)
4814 {
4815         struct task_struct *rb_hammer;
4816         struct ring_buffer *buffer;
4817         int cpu;
4818         int ret = 0;
4819
4820         pr_info("Running ring buffer tests...\n");
4821
4822         buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
4823         if (WARN_ON(!buffer))
4824                 return 0;
4825
4826         /* Disable buffer so that threads can't write to it yet */
4827         ring_buffer_record_off(buffer);
4828
4829         for_each_online_cpu(cpu) {
4830                 rb_data[cpu].buffer = buffer;
4831                 rb_data[cpu].cpu = cpu;
4832                 rb_data[cpu].cnt = cpu;
4833                 rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
4834                                                  "rbtester/%d", cpu);
4835                 if (WARN_ON(!rb_threads[cpu])) {
4836                         pr_cont("FAILED\n");
4837                         ret = -1;
4838                         goto out_free;
4839                 }
4840
4841                 kthread_bind(rb_threads[cpu], cpu);
4842                 wake_up_process(rb_threads[cpu]);
4843         }
4844
4845         /* Now create the rb hammer! */
4846         rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
4847         if (WARN_ON(!rb_hammer)) {
4848                 pr_cont("FAILED\n");
4849                 ret = -1;
4850                 goto out_free;
4851         }
4852
4853         ring_buffer_record_on(buffer);
4854         /*
4855          * Show buffer is enabled before setting rb_test_started.
4856          * Yes there's a small race window where events could be
4857          * dropped and the thread wont catch it. But when a ring
4858          * buffer gets enabled, there will always be some kind of
4859          * delay before other CPUs see it. Thus, we don't care about
4860          * those dropped events. We care about events dropped after
4861          * the threads see that the buffer is active.
4862          */
4863         smp_wmb();
4864         rb_test_started = true;
4865
4866         set_current_state(TASK_INTERRUPTIBLE);
4867         /* Just run for 10 seconds */;
4868         schedule_timeout(10 * HZ);
4869
4870         kthread_stop(rb_hammer);
4871
4872  out_free:
4873         for_each_online_cpu(cpu) {
4874                 if (!rb_threads[cpu])
4875                         break;
4876                 kthread_stop(rb_threads[cpu]);
4877         }
4878         if (ret) {
4879                 ring_buffer_free(buffer);
4880                 return ret;
4881         }
4882
4883         /* Report! */
4884         pr_info("finished\n");
4885         for_each_online_cpu(cpu) {
4886                 struct ring_buffer_event *event;
4887                 struct rb_test_data *data = &rb_data[cpu];
4888                 struct rb_item *item;
4889                 unsigned long total_events;
4890                 unsigned long total_dropped;
4891                 unsigned long total_written;
4892                 unsigned long total_alloc;
4893                 unsigned long total_read = 0;
4894                 unsigned long total_size = 0;
4895                 unsigned long total_len = 0;
4896                 unsigned long total_lost = 0;
4897                 unsigned long lost;
4898                 int big_event_size;
4899                 int small_event_size;
4900
4901                 ret = -1;
4902
4903                 total_events = data->events + data->events_nested;
4904                 total_written = data->bytes_written + data->bytes_written_nested;
4905                 total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
4906                 total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
4907
4908                 big_event_size = data->max_size + data->max_size_nested;
4909                 small_event_size = data->min_size + data->min_size_nested;
4910
4911                 pr_info("CPU %d:\n", cpu);
4912                 pr_info("              events:    %ld\n", total_events);
4913                 pr_info("       dropped bytes:    %ld\n", total_dropped);
4914                 pr_info("       alloced bytes:    %ld\n", total_alloc);
4915                 pr_info("       written bytes:    %ld\n", total_written);
4916                 pr_info("       biggest event:    %d\n", big_event_size);
4917                 pr_info("      smallest event:    %d\n", small_event_size);
4918
4919                 if (RB_WARN_ON(buffer, total_dropped))
4920                         break;
4921
4922                 ret = 0;
4923
4924                 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
4925                         total_lost += lost;
4926                         item = ring_buffer_event_data(event);
4927                         total_len += ring_buffer_event_length(event);
4928                         total_size += item->size + sizeof(struct rb_item);
4929                         if (memcmp(&item->str[0], rb_string, item->size) != 0) {
4930                                 pr_info("FAILED!\n");
4931                                 pr_info("buffer had: %.*s\n", item->size, item->str);
4932                                 pr_info("expected:   %.*s\n", item->size, rb_string);
4933                                 RB_WARN_ON(buffer, 1);
4934                                 ret = -1;
4935                                 break;
4936                         }
4937                         total_read++;
4938                 }
4939                 if (ret)
4940                         break;
4941
4942                 ret = -1;
4943
4944                 pr_info("         read events:   %ld\n", total_read);
4945                 pr_info("         lost events:   %ld\n", total_lost);
4946                 pr_info("        total events:   %ld\n", total_lost + total_read);
4947                 pr_info("  recorded len bytes:   %ld\n", total_len);
4948                 pr_info(" recorded size bytes:   %ld\n", total_size);
4949                 if (total_lost)
4950                         pr_info(" With dropped events, record len and size may not match\n"
4951                                 " alloced and written from above\n");
4952                 if (!total_lost) {
4953                         if (RB_WARN_ON(buffer, total_len != total_alloc ||
4954                                        total_size != total_written))
4955                                 break;
4956                 }
4957                 if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
4958                         break;
4959
4960                 ret = 0;
4961         }
4962         if (!ret)
4963                 pr_info("Ring buffer PASSED!\n");
4964
4965         ring_buffer_free(buffer);
4966         return 0;
4967 }
4968
4969 late_initcall(test_ringbuffer);
4970 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */