regulator: ltc3589: Staticize ltc3589_reg_defaults
[firefly-linux-kernel-4.4.55.git] / kernel / trace / ring_buffer.c
1 /*
2  * Generic ring buffer
3  *
4  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5  */
6 #include <linux/ftrace_event.h>
7 #include <linux/ring_buffer.h>
8 #include <linux/trace_clock.h>
9 #include <linux/trace_seq.h>
10 #include <linux/spinlock.h>
11 #include <linux/irq_work.h>
12 #include <linux/debugfs.h>
13 #include <linux/uaccess.h>
14 #include <linux/hardirq.h>
15 #include <linux/kthread.h>      /* for self test */
16 #include <linux/kmemcheck.h>
17 #include <linux/module.h>
18 #include <linux/percpu.h>
19 #include <linux/mutex.h>
20 #include <linux/delay.h>
21 #include <linux/slab.h>
22 #include <linux/init.h>
23 #include <linux/hash.h>
24 #include <linux/list.h>
25 #include <linux/cpu.h>
26 #include <linux/fs.h>
27
28 #include <asm/local.h>
29
30 static void update_pages_handler(struct work_struct *work);
31
32 /*
33  * The ring buffer header is special. We must manually up keep it.
34  */
35 int ring_buffer_print_entry_header(struct trace_seq *s)
36 {
37         int ret;
38
39         ret = trace_seq_puts(s, "# compressed entry header\n");
40         ret = trace_seq_puts(s, "\ttype_len    :    5 bits\n");
41         ret = trace_seq_puts(s, "\ttime_delta  :   27 bits\n");
42         ret = trace_seq_puts(s, "\tarray       :   32 bits\n");
43         ret = trace_seq_putc(s, '\n');
44         ret = trace_seq_printf(s, "\tpadding     : type == %d\n",
45                                RINGBUF_TYPE_PADDING);
46         ret = trace_seq_printf(s, "\ttime_extend : type == %d\n",
47                                RINGBUF_TYPE_TIME_EXTEND);
48         ret = trace_seq_printf(s, "\tdata max type_len  == %d\n",
49                                RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
50
51         return ret;
52 }
53
54 /*
55  * The ring buffer is made up of a list of pages. A separate list of pages is
56  * allocated for each CPU. A writer may only write to a buffer that is
57  * associated with the CPU it is currently executing on.  A reader may read
58  * from any per cpu buffer.
59  *
60  * The reader is special. For each per cpu buffer, the reader has its own
61  * reader page. When a reader has read the entire reader page, this reader
62  * page is swapped with another page in the ring buffer.
63  *
64  * Now, as long as the writer is off the reader page, the reader can do what
65  * ever it wants with that page. The writer will never write to that page
66  * again (as long as it is out of the ring buffer).
67  *
68  * Here's some silly ASCII art.
69  *
70  *   +------+
71  *   |reader|          RING BUFFER
72  *   |page  |
73  *   +------+        +---+   +---+   +---+
74  *                   |   |-->|   |-->|   |
75  *                   +---+   +---+   +---+
76  *                     ^               |
77  *                     |               |
78  *                     +---------------+
79  *
80  *
81  *   +------+
82  *   |reader|          RING BUFFER
83  *   |page  |------------------v
84  *   +------+        +---+   +---+   +---+
85  *                   |   |-->|   |-->|   |
86  *                   +---+   +---+   +---+
87  *                     ^               |
88  *                     |               |
89  *                     +---------------+
90  *
91  *
92  *   +------+
93  *   |reader|          RING BUFFER
94  *   |page  |------------------v
95  *   +------+        +---+   +---+   +---+
96  *      ^            |   |-->|   |-->|   |
97  *      |            +---+   +---+   +---+
98  *      |                              |
99  *      |                              |
100  *      +------------------------------+
101  *
102  *
103  *   +------+
104  *   |buffer|          RING BUFFER
105  *   |page  |------------------v
106  *   +------+        +---+   +---+   +---+
107  *      ^            |   |   |   |-->|   |
108  *      |   New      +---+   +---+   +---+
109  *      |  Reader------^               |
110  *      |   page                       |
111  *      +------------------------------+
112  *
113  *
114  * After we make this swap, the reader can hand this page off to the splice
115  * code and be done with it. It can even allocate a new page if it needs to
116  * and swap that into the ring buffer.
117  *
118  * We will be using cmpxchg soon to make all this lockless.
119  *
120  */
121
122 /*
123  * A fast way to enable or disable all ring buffers is to
124  * call tracing_on or tracing_off. Turning off the ring buffers
125  * prevents all ring buffers from being recorded to.
126  * Turning this switch on, makes it OK to write to the
127  * ring buffer, if the ring buffer is enabled itself.
128  *
129  * There's three layers that must be on in order to write
130  * to the ring buffer.
131  *
132  * 1) This global flag must be set.
133  * 2) The ring buffer must be enabled for recording.
134  * 3) The per cpu buffer must be enabled for recording.
135  *
136  * In case of an anomaly, this global flag has a bit set that
137  * will permantly disable all ring buffers.
138  */
139
140 /*
141  * Global flag to disable all recording to ring buffers
142  *  This has two bits: ON, DISABLED
143  *
144  *  ON   DISABLED
145  * ---- ----------
146  *   0      0        : ring buffers are off
147  *   1      0        : ring buffers are on
148  *   X      1        : ring buffers are permanently disabled
149  */
150
151 enum {
152         RB_BUFFERS_ON_BIT       = 0,
153         RB_BUFFERS_DISABLED_BIT = 1,
154 };
155
156 enum {
157         RB_BUFFERS_ON           = 1 << RB_BUFFERS_ON_BIT,
158         RB_BUFFERS_DISABLED     = 1 << RB_BUFFERS_DISABLED_BIT,
159 };
160
161 static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
162
163 /* Used for individual buffers (after the counter) */
164 #define RB_BUFFER_OFF           (1 << 20)
165
166 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
167
168 /**
169  * tracing_off_permanent - permanently disable ring buffers
170  *
171  * This function, once called, will disable all ring buffers
172  * permanently.
173  */
174 void tracing_off_permanent(void)
175 {
176         set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
177 }
178
179 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
180 #define RB_ALIGNMENT            4U
181 #define RB_MAX_SMALL_DATA       (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
182 #define RB_EVNT_MIN_SIZE        8U      /* two 32bit words */
183
184 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
185 # define RB_FORCE_8BYTE_ALIGNMENT       0
186 # define RB_ARCH_ALIGNMENT              RB_ALIGNMENT
187 #else
188 # define RB_FORCE_8BYTE_ALIGNMENT       1
189 # define RB_ARCH_ALIGNMENT              8U
190 #endif
191
192 #define RB_ALIGN_DATA           __aligned(RB_ARCH_ALIGNMENT)
193
194 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
195 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
196
197 enum {
198         RB_LEN_TIME_EXTEND = 8,
199         RB_LEN_TIME_STAMP = 16,
200 };
201
202 #define skip_time_extend(event) \
203         ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
204
205 static inline int rb_null_event(struct ring_buffer_event *event)
206 {
207         return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
208 }
209
210 static void rb_event_set_padding(struct ring_buffer_event *event)
211 {
212         /* padding has a NULL time_delta */
213         event->type_len = RINGBUF_TYPE_PADDING;
214         event->time_delta = 0;
215 }
216
217 static unsigned
218 rb_event_data_length(struct ring_buffer_event *event)
219 {
220         unsigned length;
221
222         if (event->type_len)
223                 length = event->type_len * RB_ALIGNMENT;
224         else
225                 length = event->array[0];
226         return length + RB_EVNT_HDR_SIZE;
227 }
228
229 /*
230  * Return the length of the given event. Will return
231  * the length of the time extend if the event is a
232  * time extend.
233  */
234 static inline unsigned
235 rb_event_length(struct ring_buffer_event *event)
236 {
237         switch (event->type_len) {
238         case RINGBUF_TYPE_PADDING:
239                 if (rb_null_event(event))
240                         /* undefined */
241                         return -1;
242                 return  event->array[0] + RB_EVNT_HDR_SIZE;
243
244         case RINGBUF_TYPE_TIME_EXTEND:
245                 return RB_LEN_TIME_EXTEND;
246
247         case RINGBUF_TYPE_TIME_STAMP:
248                 return RB_LEN_TIME_STAMP;
249
250         case RINGBUF_TYPE_DATA:
251                 return rb_event_data_length(event);
252         default:
253                 BUG();
254         }
255         /* not hit */
256         return 0;
257 }
258
259 /*
260  * Return total length of time extend and data,
261  *   or just the event length for all other events.
262  */
263 static inline unsigned
264 rb_event_ts_length(struct ring_buffer_event *event)
265 {
266         unsigned len = 0;
267
268         if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
269                 /* time extends include the data event after it */
270                 len = RB_LEN_TIME_EXTEND;
271                 event = skip_time_extend(event);
272         }
273         return len + rb_event_length(event);
274 }
275
276 /**
277  * ring_buffer_event_length - return the length of the event
278  * @event: the event to get the length of
279  *
280  * Returns the size of the data load of a data event.
281  * If the event is something other than a data event, it
282  * returns the size of the event itself. With the exception
283  * of a TIME EXTEND, where it still returns the size of the
284  * data load of the data event after it.
285  */
286 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
287 {
288         unsigned length;
289
290         if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
291                 event = skip_time_extend(event);
292
293         length = rb_event_length(event);
294         if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
295                 return length;
296         length -= RB_EVNT_HDR_SIZE;
297         if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
298                 length -= sizeof(event->array[0]);
299         return length;
300 }
301 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
302
303 /* inline for ring buffer fast paths */
304 static void *
305 rb_event_data(struct ring_buffer_event *event)
306 {
307         if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
308                 event = skip_time_extend(event);
309         BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
310         /* If length is in len field, then array[0] has the data */
311         if (event->type_len)
312                 return (void *)&event->array[0];
313         /* Otherwise length is in array[0] and array[1] has the data */
314         return (void *)&event->array[1];
315 }
316
317 /**
318  * ring_buffer_event_data - return the data of the event
319  * @event: the event to get the data from
320  */
321 void *ring_buffer_event_data(struct ring_buffer_event *event)
322 {
323         return rb_event_data(event);
324 }
325 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
326
327 #define for_each_buffer_cpu(buffer, cpu)                \
328         for_each_cpu(cpu, buffer->cpumask)
329
330 #define TS_SHIFT        27
331 #define TS_MASK         ((1ULL << TS_SHIFT) - 1)
332 #define TS_DELTA_TEST   (~TS_MASK)
333
334 /* Flag when events were overwritten */
335 #define RB_MISSED_EVENTS        (1 << 31)
336 /* Missed count stored at end */
337 #define RB_MISSED_STORED        (1 << 30)
338
339 struct buffer_data_page {
340         u64              time_stamp;    /* page time stamp */
341         local_t          commit;        /* write committed index */
342         unsigned char    data[] RB_ALIGN_DATA;  /* data of buffer page */
343 };
344
345 /*
346  * Note, the buffer_page list must be first. The buffer pages
347  * are allocated in cache lines, which means that each buffer
348  * page will be at the beginning of a cache line, and thus
349  * the least significant bits will be zero. We use this to
350  * add flags in the list struct pointers, to make the ring buffer
351  * lockless.
352  */
353 struct buffer_page {
354         struct list_head list;          /* list of buffer pages */
355         local_t          write;         /* index for next write */
356         unsigned         read;          /* index for next read */
357         local_t          entries;       /* entries on this page */
358         unsigned long    real_end;      /* real end of data */
359         struct buffer_data_page *page;  /* Actual data page */
360 };
361
362 /*
363  * The buffer page counters, write and entries, must be reset
364  * atomically when crossing page boundaries. To synchronize this
365  * update, two counters are inserted into the number. One is
366  * the actual counter for the write position or count on the page.
367  *
368  * The other is a counter of updaters. Before an update happens
369  * the update partition of the counter is incremented. This will
370  * allow the updater to update the counter atomically.
371  *
372  * The counter is 20 bits, and the state data is 12.
373  */
374 #define RB_WRITE_MASK           0xfffff
375 #define RB_WRITE_INTCNT         (1 << 20)
376
377 static void rb_init_page(struct buffer_data_page *bpage)
378 {
379         local_set(&bpage->commit, 0);
380 }
381
382 /**
383  * ring_buffer_page_len - the size of data on the page.
384  * @page: The page to read
385  *
386  * Returns the amount of data on the page, including buffer page header.
387  */
388 size_t ring_buffer_page_len(void *page)
389 {
390         return local_read(&((struct buffer_data_page *)page)->commit)
391                 + BUF_PAGE_HDR_SIZE;
392 }
393
394 /*
395  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
396  * this issue out.
397  */
398 static void free_buffer_page(struct buffer_page *bpage)
399 {
400         free_page((unsigned long)bpage->page);
401         kfree(bpage);
402 }
403
404 /*
405  * We need to fit the time_stamp delta into 27 bits.
406  */
407 static inline int test_time_stamp(u64 delta)
408 {
409         if (delta & TS_DELTA_TEST)
410                 return 1;
411         return 0;
412 }
413
414 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
415
416 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
417 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
418
419 int ring_buffer_print_page_header(struct trace_seq *s)
420 {
421         struct buffer_data_page field;
422         int ret;
423
424         ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t"
425                                "offset:0;\tsize:%u;\tsigned:%u;\n",
426                                (unsigned int)sizeof(field.time_stamp),
427                                (unsigned int)is_signed_type(u64));
428
429         ret = trace_seq_printf(s, "\tfield: local_t commit;\t"
430                                "offset:%u;\tsize:%u;\tsigned:%u;\n",
431                                (unsigned int)offsetof(typeof(field), commit),
432                                (unsigned int)sizeof(field.commit),
433                                (unsigned int)is_signed_type(long));
434
435         ret = trace_seq_printf(s, "\tfield: int overwrite;\t"
436                                "offset:%u;\tsize:%u;\tsigned:%u;\n",
437                                (unsigned int)offsetof(typeof(field), commit),
438                                1,
439                                (unsigned int)is_signed_type(long));
440
441         ret = trace_seq_printf(s, "\tfield: char data;\t"
442                                "offset:%u;\tsize:%u;\tsigned:%u;\n",
443                                (unsigned int)offsetof(typeof(field), data),
444                                (unsigned int)BUF_PAGE_SIZE,
445                                (unsigned int)is_signed_type(char));
446
447         return ret;
448 }
449
450 struct rb_irq_work {
451         struct irq_work                 work;
452         wait_queue_head_t               waiters;
453         bool                            waiters_pending;
454 };
455
456 /*
457  * head_page == tail_page && head == tail then buffer is empty.
458  */
459 struct ring_buffer_per_cpu {
460         int                             cpu;
461         atomic_t                        record_disabled;
462         struct ring_buffer              *buffer;
463         raw_spinlock_t                  reader_lock;    /* serialize readers */
464         arch_spinlock_t                 lock;
465         struct lock_class_key           lock_key;
466         unsigned int                    nr_pages;
467         struct list_head                *pages;
468         struct buffer_page              *head_page;     /* read from head */
469         struct buffer_page              *tail_page;     /* write to tail */
470         struct buffer_page              *commit_page;   /* committed pages */
471         struct buffer_page              *reader_page;
472         unsigned long                   lost_events;
473         unsigned long                   last_overrun;
474         local_t                         entries_bytes;
475         local_t                         entries;
476         local_t                         overrun;
477         local_t                         commit_overrun;
478         local_t                         dropped_events;
479         local_t                         committing;
480         local_t                         commits;
481         unsigned long                   read;
482         unsigned long                   read_bytes;
483         u64                             write_stamp;
484         u64                             read_stamp;
485         /* ring buffer pages to update, > 0 to add, < 0 to remove */
486         int                             nr_pages_to_update;
487         struct list_head                new_pages; /* new pages to add */
488         struct work_struct              update_pages_work;
489         struct completion               update_done;
490
491         struct rb_irq_work              irq_work;
492 };
493
494 struct ring_buffer {
495         unsigned                        flags;
496         int                             cpus;
497         atomic_t                        record_disabled;
498         atomic_t                        resize_disabled;
499         cpumask_var_t                   cpumask;
500
501         struct lock_class_key           *reader_lock_key;
502
503         struct mutex                    mutex;
504
505         struct ring_buffer_per_cpu      **buffers;
506
507 #ifdef CONFIG_HOTPLUG_CPU
508         struct notifier_block           cpu_notify;
509 #endif
510         u64                             (*clock)(void);
511
512         struct rb_irq_work              irq_work;
513 };
514
515 struct ring_buffer_iter {
516         struct ring_buffer_per_cpu      *cpu_buffer;
517         unsigned long                   head;
518         struct buffer_page              *head_page;
519         struct buffer_page              *cache_reader_page;
520         unsigned long                   cache_read;
521         u64                             read_stamp;
522 };
523
524 /*
525  * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
526  *
527  * Schedules a delayed work to wake up any task that is blocked on the
528  * ring buffer waiters queue.
529  */
530 static void rb_wake_up_waiters(struct irq_work *work)
531 {
532         struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
533
534         wake_up_all(&rbwork->waiters);
535 }
536
537 /**
538  * ring_buffer_wait - wait for input to the ring buffer
539  * @buffer: buffer to wait on
540  * @cpu: the cpu buffer to wait on
541  *
542  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
543  * as data is added to any of the @buffer's cpu buffers. Otherwise
544  * it will wait for data to be added to a specific cpu buffer.
545  */
546 int ring_buffer_wait(struct ring_buffer *buffer, int cpu)
547 {
548         struct ring_buffer_per_cpu *cpu_buffer;
549         DEFINE_WAIT(wait);
550         struct rb_irq_work *work;
551
552         /*
553          * Depending on what the caller is waiting for, either any
554          * data in any cpu buffer, or a specific buffer, put the
555          * caller on the appropriate wait queue.
556          */
557         if (cpu == RING_BUFFER_ALL_CPUS)
558                 work = &buffer->irq_work;
559         else {
560                 if (!cpumask_test_cpu(cpu, buffer->cpumask))
561                         return -ENODEV;
562                 cpu_buffer = buffer->buffers[cpu];
563                 work = &cpu_buffer->irq_work;
564         }
565
566
567         prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
568
569         /*
570          * The events can happen in critical sections where
571          * checking a work queue can cause deadlocks.
572          * After adding a task to the queue, this flag is set
573          * only to notify events to try to wake up the queue
574          * using irq_work.
575          *
576          * We don't clear it even if the buffer is no longer
577          * empty. The flag only causes the next event to run
578          * irq_work to do the work queue wake up. The worse
579          * that can happen if we race with !trace_empty() is that
580          * an event will cause an irq_work to try to wake up
581          * an empty queue.
582          *
583          * There's no reason to protect this flag either, as
584          * the work queue and irq_work logic will do the necessary
585          * synchronization for the wake ups. The only thing
586          * that is necessary is that the wake up happens after
587          * a task has been queued. It's OK for spurious wake ups.
588          */
589         work->waiters_pending = true;
590
591         if ((cpu == RING_BUFFER_ALL_CPUS && ring_buffer_empty(buffer)) ||
592             (cpu != RING_BUFFER_ALL_CPUS && ring_buffer_empty_cpu(buffer, cpu)))
593                 schedule();
594
595         finish_wait(&work->waiters, &wait);
596         return 0;
597 }
598
599 /**
600  * ring_buffer_poll_wait - poll on buffer input
601  * @buffer: buffer to wait on
602  * @cpu: the cpu buffer to wait on
603  * @filp: the file descriptor
604  * @poll_table: The poll descriptor
605  *
606  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
607  * as data is added to any of the @buffer's cpu buffers. Otherwise
608  * it will wait for data to be added to a specific cpu buffer.
609  *
610  * Returns POLLIN | POLLRDNORM if data exists in the buffers,
611  * zero otherwise.
612  */
613 int ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu,
614                           struct file *filp, poll_table *poll_table)
615 {
616         struct ring_buffer_per_cpu *cpu_buffer;
617         struct rb_irq_work *work;
618
619         if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
620             (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
621                 return POLLIN | POLLRDNORM;
622
623         if (cpu == RING_BUFFER_ALL_CPUS)
624                 work = &buffer->irq_work;
625         else {
626                 if (!cpumask_test_cpu(cpu, buffer->cpumask))
627                         return -EINVAL;
628
629                 cpu_buffer = buffer->buffers[cpu];
630                 work = &cpu_buffer->irq_work;
631         }
632
633         work->waiters_pending = true;
634         poll_wait(filp, &work->waiters, poll_table);
635
636         if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
637             (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
638                 return POLLIN | POLLRDNORM;
639         return 0;
640 }
641
642 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
643 #define RB_WARN_ON(b, cond)                                             \
644         ({                                                              \
645                 int _____ret = unlikely(cond);                          \
646                 if (_____ret) {                                         \
647                         if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
648                                 struct ring_buffer_per_cpu *__b =       \
649                                         (void *)b;                      \
650                                 atomic_inc(&__b->buffer->record_disabled); \
651                         } else                                          \
652                                 atomic_inc(&b->record_disabled);        \
653                         WARN_ON(1);                                     \
654                 }                                                       \
655                 _____ret;                                               \
656         })
657
658 /* Up this if you want to test the TIME_EXTENTS and normalization */
659 #define DEBUG_SHIFT 0
660
661 static inline u64 rb_time_stamp(struct ring_buffer *buffer)
662 {
663         /* shift to debug/test normalization and TIME_EXTENTS */
664         return buffer->clock() << DEBUG_SHIFT;
665 }
666
667 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
668 {
669         u64 time;
670
671         preempt_disable_notrace();
672         time = rb_time_stamp(buffer);
673         preempt_enable_no_resched_notrace();
674
675         return time;
676 }
677 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
678
679 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
680                                       int cpu, u64 *ts)
681 {
682         /* Just stupid testing the normalize function and deltas */
683         *ts >>= DEBUG_SHIFT;
684 }
685 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
686
687 /*
688  * Making the ring buffer lockless makes things tricky.
689  * Although writes only happen on the CPU that they are on,
690  * and they only need to worry about interrupts. Reads can
691  * happen on any CPU.
692  *
693  * The reader page is always off the ring buffer, but when the
694  * reader finishes with a page, it needs to swap its page with
695  * a new one from the buffer. The reader needs to take from
696  * the head (writes go to the tail). But if a writer is in overwrite
697  * mode and wraps, it must push the head page forward.
698  *
699  * Here lies the problem.
700  *
701  * The reader must be careful to replace only the head page, and
702  * not another one. As described at the top of the file in the
703  * ASCII art, the reader sets its old page to point to the next
704  * page after head. It then sets the page after head to point to
705  * the old reader page. But if the writer moves the head page
706  * during this operation, the reader could end up with the tail.
707  *
708  * We use cmpxchg to help prevent this race. We also do something
709  * special with the page before head. We set the LSB to 1.
710  *
711  * When the writer must push the page forward, it will clear the
712  * bit that points to the head page, move the head, and then set
713  * the bit that points to the new head page.
714  *
715  * We also don't want an interrupt coming in and moving the head
716  * page on another writer. Thus we use the second LSB to catch
717  * that too. Thus:
718  *
719  * head->list->prev->next        bit 1          bit 0
720  *                              -------        -------
721  * Normal page                     0              0
722  * Points to head page             0              1
723  * New head page                   1              0
724  *
725  * Note we can not trust the prev pointer of the head page, because:
726  *
727  * +----+       +-----+        +-----+
728  * |    |------>|  T  |---X--->|  N  |
729  * |    |<------|     |        |     |
730  * +----+       +-----+        +-----+
731  *   ^                           ^ |
732  *   |          +-----+          | |
733  *   +----------|  R  |----------+ |
734  *              |     |<-----------+
735  *              +-----+
736  *
737  * Key:  ---X-->  HEAD flag set in pointer
738  *         T      Tail page
739  *         R      Reader page
740  *         N      Next page
741  *
742  * (see __rb_reserve_next() to see where this happens)
743  *
744  *  What the above shows is that the reader just swapped out
745  *  the reader page with a page in the buffer, but before it
746  *  could make the new header point back to the new page added
747  *  it was preempted by a writer. The writer moved forward onto
748  *  the new page added by the reader and is about to move forward
749  *  again.
750  *
751  *  You can see, it is legitimate for the previous pointer of
752  *  the head (or any page) not to point back to itself. But only
753  *  temporarially.
754  */
755
756 #define RB_PAGE_NORMAL          0UL
757 #define RB_PAGE_HEAD            1UL
758 #define RB_PAGE_UPDATE          2UL
759
760
761 #define RB_FLAG_MASK            3UL
762
763 /* PAGE_MOVED is not part of the mask */
764 #define RB_PAGE_MOVED           4UL
765
766 /*
767  * rb_list_head - remove any bit
768  */
769 static struct list_head *rb_list_head(struct list_head *list)
770 {
771         unsigned long val = (unsigned long)list;
772
773         return (struct list_head *)(val & ~RB_FLAG_MASK);
774 }
775
776 /*
777  * rb_is_head_page - test if the given page is the head page
778  *
779  * Because the reader may move the head_page pointer, we can
780  * not trust what the head page is (it may be pointing to
781  * the reader page). But if the next page is a header page,
782  * its flags will be non zero.
783  */
784 static inline int
785 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
786                 struct buffer_page *page, struct list_head *list)
787 {
788         unsigned long val;
789
790         val = (unsigned long)list->next;
791
792         if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
793                 return RB_PAGE_MOVED;
794
795         return val & RB_FLAG_MASK;
796 }
797
798 /*
799  * rb_is_reader_page
800  *
801  * The unique thing about the reader page, is that, if the
802  * writer is ever on it, the previous pointer never points
803  * back to the reader page.
804  */
805 static int rb_is_reader_page(struct buffer_page *page)
806 {
807         struct list_head *list = page->list.prev;
808
809         return rb_list_head(list->next) != &page->list;
810 }
811
812 /*
813  * rb_set_list_to_head - set a list_head to be pointing to head.
814  */
815 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
816                                 struct list_head *list)
817 {
818         unsigned long *ptr;
819
820         ptr = (unsigned long *)&list->next;
821         *ptr |= RB_PAGE_HEAD;
822         *ptr &= ~RB_PAGE_UPDATE;
823 }
824
825 /*
826  * rb_head_page_activate - sets up head page
827  */
828 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
829 {
830         struct buffer_page *head;
831
832         head = cpu_buffer->head_page;
833         if (!head)
834                 return;
835
836         /*
837          * Set the previous list pointer to have the HEAD flag.
838          */
839         rb_set_list_to_head(cpu_buffer, head->list.prev);
840 }
841
842 static void rb_list_head_clear(struct list_head *list)
843 {
844         unsigned long *ptr = (unsigned long *)&list->next;
845
846         *ptr &= ~RB_FLAG_MASK;
847 }
848
849 /*
850  * rb_head_page_dactivate - clears head page ptr (for free list)
851  */
852 static void
853 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
854 {
855         struct list_head *hd;
856
857         /* Go through the whole list and clear any pointers found. */
858         rb_list_head_clear(cpu_buffer->pages);
859
860         list_for_each(hd, cpu_buffer->pages)
861                 rb_list_head_clear(hd);
862 }
863
864 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
865                             struct buffer_page *head,
866                             struct buffer_page *prev,
867                             int old_flag, int new_flag)
868 {
869         struct list_head *list;
870         unsigned long val = (unsigned long)&head->list;
871         unsigned long ret;
872
873         list = &prev->list;
874
875         val &= ~RB_FLAG_MASK;
876
877         ret = cmpxchg((unsigned long *)&list->next,
878                       val | old_flag, val | new_flag);
879
880         /* check if the reader took the page */
881         if ((ret & ~RB_FLAG_MASK) != val)
882                 return RB_PAGE_MOVED;
883
884         return ret & RB_FLAG_MASK;
885 }
886
887 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
888                                    struct buffer_page *head,
889                                    struct buffer_page *prev,
890                                    int old_flag)
891 {
892         return rb_head_page_set(cpu_buffer, head, prev,
893                                 old_flag, RB_PAGE_UPDATE);
894 }
895
896 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
897                                  struct buffer_page *head,
898                                  struct buffer_page *prev,
899                                  int old_flag)
900 {
901         return rb_head_page_set(cpu_buffer, head, prev,
902                                 old_flag, RB_PAGE_HEAD);
903 }
904
905 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
906                                    struct buffer_page *head,
907                                    struct buffer_page *prev,
908                                    int old_flag)
909 {
910         return rb_head_page_set(cpu_buffer, head, prev,
911                                 old_flag, RB_PAGE_NORMAL);
912 }
913
914 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
915                                struct buffer_page **bpage)
916 {
917         struct list_head *p = rb_list_head((*bpage)->list.next);
918
919         *bpage = list_entry(p, struct buffer_page, list);
920 }
921
922 static struct buffer_page *
923 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
924 {
925         struct buffer_page *head;
926         struct buffer_page *page;
927         struct list_head *list;
928         int i;
929
930         if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
931                 return NULL;
932
933         /* sanity check */
934         list = cpu_buffer->pages;
935         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
936                 return NULL;
937
938         page = head = cpu_buffer->head_page;
939         /*
940          * It is possible that the writer moves the header behind
941          * where we started, and we miss in one loop.
942          * A second loop should grab the header, but we'll do
943          * three loops just because I'm paranoid.
944          */
945         for (i = 0; i < 3; i++) {
946                 do {
947                         if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
948                                 cpu_buffer->head_page = page;
949                                 return page;
950                         }
951                         rb_inc_page(cpu_buffer, &page);
952                 } while (page != head);
953         }
954
955         RB_WARN_ON(cpu_buffer, 1);
956
957         return NULL;
958 }
959
960 static int rb_head_page_replace(struct buffer_page *old,
961                                 struct buffer_page *new)
962 {
963         unsigned long *ptr = (unsigned long *)&old->list.prev->next;
964         unsigned long val;
965         unsigned long ret;
966
967         val = *ptr & ~RB_FLAG_MASK;
968         val |= RB_PAGE_HEAD;
969
970         ret = cmpxchg(ptr, val, (unsigned long)&new->list);
971
972         return ret == val;
973 }
974
975 /*
976  * rb_tail_page_update - move the tail page forward
977  *
978  * Returns 1 if moved tail page, 0 if someone else did.
979  */
980 static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
981                                struct buffer_page *tail_page,
982                                struct buffer_page *next_page)
983 {
984         struct buffer_page *old_tail;
985         unsigned long old_entries;
986         unsigned long old_write;
987         int ret = 0;
988
989         /*
990          * The tail page now needs to be moved forward.
991          *
992          * We need to reset the tail page, but without messing
993          * with possible erasing of data brought in by interrupts
994          * that have moved the tail page and are currently on it.
995          *
996          * We add a counter to the write field to denote this.
997          */
998         old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
999         old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1000
1001         /*
1002          * Just make sure we have seen our old_write and synchronize
1003          * with any interrupts that come in.
1004          */
1005         barrier();
1006
1007         /*
1008          * If the tail page is still the same as what we think
1009          * it is, then it is up to us to update the tail
1010          * pointer.
1011          */
1012         if (tail_page == cpu_buffer->tail_page) {
1013                 /* Zero the write counter */
1014                 unsigned long val = old_write & ~RB_WRITE_MASK;
1015                 unsigned long eval = old_entries & ~RB_WRITE_MASK;
1016
1017                 /*
1018                  * This will only succeed if an interrupt did
1019                  * not come in and change it. In which case, we
1020                  * do not want to modify it.
1021                  *
1022                  * We add (void) to let the compiler know that we do not care
1023                  * about the return value of these functions. We use the
1024                  * cmpxchg to only update if an interrupt did not already
1025                  * do it for us. If the cmpxchg fails, we don't care.
1026                  */
1027                 (void)local_cmpxchg(&next_page->write, old_write, val);
1028                 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
1029
1030                 /*
1031                  * No need to worry about races with clearing out the commit.
1032                  * it only can increment when a commit takes place. But that
1033                  * only happens in the outer most nested commit.
1034                  */
1035                 local_set(&next_page->page->commit, 0);
1036
1037                 old_tail = cmpxchg(&cpu_buffer->tail_page,
1038                                    tail_page, next_page);
1039
1040                 if (old_tail == tail_page)
1041                         ret = 1;
1042         }
1043
1044         return ret;
1045 }
1046
1047 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1048                           struct buffer_page *bpage)
1049 {
1050         unsigned long val = (unsigned long)bpage;
1051
1052         if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1053                 return 1;
1054
1055         return 0;
1056 }
1057
1058 /**
1059  * rb_check_list - make sure a pointer to a list has the last bits zero
1060  */
1061 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1062                          struct list_head *list)
1063 {
1064         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1065                 return 1;
1066         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1067                 return 1;
1068         return 0;
1069 }
1070
1071 /**
1072  * rb_check_pages - integrity check of buffer pages
1073  * @cpu_buffer: CPU buffer with pages to test
1074  *
1075  * As a safety measure we check to make sure the data pages have not
1076  * been corrupted.
1077  */
1078 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1079 {
1080         struct list_head *head = cpu_buffer->pages;
1081         struct buffer_page *bpage, *tmp;
1082
1083         /* Reset the head page if it exists */
1084         if (cpu_buffer->head_page)
1085                 rb_set_head_page(cpu_buffer);
1086
1087         rb_head_page_deactivate(cpu_buffer);
1088
1089         if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1090                 return -1;
1091         if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1092                 return -1;
1093
1094         if (rb_check_list(cpu_buffer, head))
1095                 return -1;
1096
1097         list_for_each_entry_safe(bpage, tmp, head, list) {
1098                 if (RB_WARN_ON(cpu_buffer,
1099                                bpage->list.next->prev != &bpage->list))
1100                         return -1;
1101                 if (RB_WARN_ON(cpu_buffer,
1102                                bpage->list.prev->next != &bpage->list))
1103                         return -1;
1104                 if (rb_check_list(cpu_buffer, &bpage->list))
1105                         return -1;
1106         }
1107
1108         rb_head_page_activate(cpu_buffer);
1109
1110         return 0;
1111 }
1112
1113 static int __rb_allocate_pages(int nr_pages, struct list_head *pages, int cpu)
1114 {
1115         int i;
1116         struct buffer_page *bpage, *tmp;
1117
1118         for (i = 0; i < nr_pages; i++) {
1119                 struct page *page;
1120                 /*
1121                  * __GFP_NORETRY flag makes sure that the allocation fails
1122                  * gracefully without invoking oom-killer and the system is
1123                  * not destabilized.
1124                  */
1125                 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1126                                     GFP_KERNEL | __GFP_NORETRY,
1127                                     cpu_to_node(cpu));
1128                 if (!bpage)
1129                         goto free_pages;
1130
1131                 list_add(&bpage->list, pages);
1132
1133                 page = alloc_pages_node(cpu_to_node(cpu),
1134                                         GFP_KERNEL | __GFP_NORETRY, 0);
1135                 if (!page)
1136                         goto free_pages;
1137                 bpage->page = page_address(page);
1138                 rb_init_page(bpage->page);
1139         }
1140
1141         return 0;
1142
1143 free_pages:
1144         list_for_each_entry_safe(bpage, tmp, pages, list) {
1145                 list_del_init(&bpage->list);
1146                 free_buffer_page(bpage);
1147         }
1148
1149         return -ENOMEM;
1150 }
1151
1152 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1153                              unsigned nr_pages)
1154 {
1155         LIST_HEAD(pages);
1156
1157         WARN_ON(!nr_pages);
1158
1159         if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1160                 return -ENOMEM;
1161
1162         /*
1163          * The ring buffer page list is a circular list that does not
1164          * start and end with a list head. All page list items point to
1165          * other pages.
1166          */
1167         cpu_buffer->pages = pages.next;
1168         list_del(&pages);
1169
1170         cpu_buffer->nr_pages = nr_pages;
1171
1172         rb_check_pages(cpu_buffer);
1173
1174         return 0;
1175 }
1176
1177 static struct ring_buffer_per_cpu *
1178 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int nr_pages, int cpu)
1179 {
1180         struct ring_buffer_per_cpu *cpu_buffer;
1181         struct buffer_page *bpage;
1182         struct page *page;
1183         int ret;
1184
1185         cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1186                                   GFP_KERNEL, cpu_to_node(cpu));
1187         if (!cpu_buffer)
1188                 return NULL;
1189
1190         cpu_buffer->cpu = cpu;
1191         cpu_buffer->buffer = buffer;
1192         raw_spin_lock_init(&cpu_buffer->reader_lock);
1193         lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1194         cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1195         INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1196         init_completion(&cpu_buffer->update_done);
1197         init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1198         init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1199
1200         bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1201                             GFP_KERNEL, cpu_to_node(cpu));
1202         if (!bpage)
1203                 goto fail_free_buffer;
1204
1205         rb_check_bpage(cpu_buffer, bpage);
1206
1207         cpu_buffer->reader_page = bpage;
1208         page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1209         if (!page)
1210                 goto fail_free_reader;
1211         bpage->page = page_address(page);
1212         rb_init_page(bpage->page);
1213
1214         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1215         INIT_LIST_HEAD(&cpu_buffer->new_pages);
1216
1217         ret = rb_allocate_pages(cpu_buffer, nr_pages);
1218         if (ret < 0)
1219                 goto fail_free_reader;
1220
1221         cpu_buffer->head_page
1222                 = list_entry(cpu_buffer->pages, struct buffer_page, list);
1223         cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1224
1225         rb_head_page_activate(cpu_buffer);
1226
1227         return cpu_buffer;
1228
1229  fail_free_reader:
1230         free_buffer_page(cpu_buffer->reader_page);
1231
1232  fail_free_buffer:
1233         kfree(cpu_buffer);
1234         return NULL;
1235 }
1236
1237 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1238 {
1239         struct list_head *head = cpu_buffer->pages;
1240         struct buffer_page *bpage, *tmp;
1241
1242         free_buffer_page(cpu_buffer->reader_page);
1243
1244         rb_head_page_deactivate(cpu_buffer);
1245
1246         if (head) {
1247                 list_for_each_entry_safe(bpage, tmp, head, list) {
1248                         list_del_init(&bpage->list);
1249                         free_buffer_page(bpage);
1250                 }
1251                 bpage = list_entry(head, struct buffer_page, list);
1252                 free_buffer_page(bpage);
1253         }
1254
1255         kfree(cpu_buffer);
1256 }
1257
1258 #ifdef CONFIG_HOTPLUG_CPU
1259 static int rb_cpu_notify(struct notifier_block *self,
1260                          unsigned long action, void *hcpu);
1261 #endif
1262
1263 /**
1264  * __ring_buffer_alloc - allocate a new ring_buffer
1265  * @size: the size in bytes per cpu that is needed.
1266  * @flags: attributes to set for the ring buffer.
1267  *
1268  * Currently the only flag that is available is the RB_FL_OVERWRITE
1269  * flag. This flag means that the buffer will overwrite old data
1270  * when the buffer wraps. If this flag is not set, the buffer will
1271  * drop data when the tail hits the head.
1272  */
1273 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1274                                         struct lock_class_key *key)
1275 {
1276         struct ring_buffer *buffer;
1277         int bsize;
1278         int cpu, nr_pages;
1279
1280         /* keep it in its own cache line */
1281         buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1282                          GFP_KERNEL);
1283         if (!buffer)
1284                 return NULL;
1285
1286         if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1287                 goto fail_free_buffer;
1288
1289         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1290         buffer->flags = flags;
1291         buffer->clock = trace_clock_local;
1292         buffer->reader_lock_key = key;
1293
1294         init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1295         init_waitqueue_head(&buffer->irq_work.waiters);
1296
1297         /* need at least two pages */
1298         if (nr_pages < 2)
1299                 nr_pages = 2;
1300
1301         /*
1302          * In case of non-hotplug cpu, if the ring-buffer is allocated
1303          * in early initcall, it will not be notified of secondary cpus.
1304          * In that off case, we need to allocate for all possible cpus.
1305          */
1306 #ifdef CONFIG_HOTPLUG_CPU
1307         cpu_notifier_register_begin();
1308         cpumask_copy(buffer->cpumask, cpu_online_mask);
1309 #else
1310         cpumask_copy(buffer->cpumask, cpu_possible_mask);
1311 #endif
1312         buffer->cpus = nr_cpu_ids;
1313
1314         bsize = sizeof(void *) * nr_cpu_ids;
1315         buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1316                                   GFP_KERNEL);
1317         if (!buffer->buffers)
1318                 goto fail_free_cpumask;
1319
1320         for_each_buffer_cpu(buffer, cpu) {
1321                 buffer->buffers[cpu] =
1322                         rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1323                 if (!buffer->buffers[cpu])
1324                         goto fail_free_buffers;
1325         }
1326
1327 #ifdef CONFIG_HOTPLUG_CPU
1328         buffer->cpu_notify.notifier_call = rb_cpu_notify;
1329         buffer->cpu_notify.priority = 0;
1330         __register_cpu_notifier(&buffer->cpu_notify);
1331         cpu_notifier_register_done();
1332 #endif
1333
1334         mutex_init(&buffer->mutex);
1335
1336         return buffer;
1337
1338  fail_free_buffers:
1339         for_each_buffer_cpu(buffer, cpu) {
1340                 if (buffer->buffers[cpu])
1341                         rb_free_cpu_buffer(buffer->buffers[cpu]);
1342         }
1343         kfree(buffer->buffers);
1344
1345  fail_free_cpumask:
1346         free_cpumask_var(buffer->cpumask);
1347 #ifdef CONFIG_HOTPLUG_CPU
1348         cpu_notifier_register_done();
1349 #endif
1350
1351  fail_free_buffer:
1352         kfree(buffer);
1353         return NULL;
1354 }
1355 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1356
1357 /**
1358  * ring_buffer_free - free a ring buffer.
1359  * @buffer: the buffer to free.
1360  */
1361 void
1362 ring_buffer_free(struct ring_buffer *buffer)
1363 {
1364         int cpu;
1365
1366 #ifdef CONFIG_HOTPLUG_CPU
1367         cpu_notifier_register_begin();
1368         __unregister_cpu_notifier(&buffer->cpu_notify);
1369 #endif
1370
1371         for_each_buffer_cpu(buffer, cpu)
1372                 rb_free_cpu_buffer(buffer->buffers[cpu]);
1373
1374 #ifdef CONFIG_HOTPLUG_CPU
1375         cpu_notifier_register_done();
1376 #endif
1377
1378         kfree(buffer->buffers);
1379         free_cpumask_var(buffer->cpumask);
1380
1381         kfree(buffer);
1382 }
1383 EXPORT_SYMBOL_GPL(ring_buffer_free);
1384
1385 void ring_buffer_set_clock(struct ring_buffer *buffer,
1386                            u64 (*clock)(void))
1387 {
1388         buffer->clock = clock;
1389 }
1390
1391 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1392
1393 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1394 {
1395         return local_read(&bpage->entries) & RB_WRITE_MASK;
1396 }
1397
1398 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1399 {
1400         return local_read(&bpage->write) & RB_WRITE_MASK;
1401 }
1402
1403 static int
1404 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned int nr_pages)
1405 {
1406         struct list_head *tail_page, *to_remove, *next_page;
1407         struct buffer_page *to_remove_page, *tmp_iter_page;
1408         struct buffer_page *last_page, *first_page;
1409         unsigned int nr_removed;
1410         unsigned long head_bit;
1411         int page_entries;
1412
1413         head_bit = 0;
1414
1415         raw_spin_lock_irq(&cpu_buffer->reader_lock);
1416         atomic_inc(&cpu_buffer->record_disabled);
1417         /*
1418          * We don't race with the readers since we have acquired the reader
1419          * lock. We also don't race with writers after disabling recording.
1420          * This makes it easy to figure out the first and the last page to be
1421          * removed from the list. We unlink all the pages in between including
1422          * the first and last pages. This is done in a busy loop so that we
1423          * lose the least number of traces.
1424          * The pages are freed after we restart recording and unlock readers.
1425          */
1426         tail_page = &cpu_buffer->tail_page->list;
1427
1428         /*
1429          * tail page might be on reader page, we remove the next page
1430          * from the ring buffer
1431          */
1432         if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1433                 tail_page = rb_list_head(tail_page->next);
1434         to_remove = tail_page;
1435
1436         /* start of pages to remove */
1437         first_page = list_entry(rb_list_head(to_remove->next),
1438                                 struct buffer_page, list);
1439
1440         for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1441                 to_remove = rb_list_head(to_remove)->next;
1442                 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1443         }
1444
1445         next_page = rb_list_head(to_remove)->next;
1446
1447         /*
1448          * Now we remove all pages between tail_page and next_page.
1449          * Make sure that we have head_bit value preserved for the
1450          * next page
1451          */
1452         tail_page->next = (struct list_head *)((unsigned long)next_page |
1453                                                 head_bit);
1454         next_page = rb_list_head(next_page);
1455         next_page->prev = tail_page;
1456
1457         /* make sure pages points to a valid page in the ring buffer */
1458         cpu_buffer->pages = next_page;
1459
1460         /* update head page */
1461         if (head_bit)
1462                 cpu_buffer->head_page = list_entry(next_page,
1463                                                 struct buffer_page, list);
1464
1465         /*
1466          * change read pointer to make sure any read iterators reset
1467          * themselves
1468          */
1469         cpu_buffer->read = 0;
1470
1471         /* pages are removed, resume tracing and then free the pages */
1472         atomic_dec(&cpu_buffer->record_disabled);
1473         raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1474
1475         RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1476
1477         /* last buffer page to remove */
1478         last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1479                                 list);
1480         tmp_iter_page = first_page;
1481
1482         do {
1483                 to_remove_page = tmp_iter_page;
1484                 rb_inc_page(cpu_buffer, &tmp_iter_page);
1485
1486                 /* update the counters */
1487                 page_entries = rb_page_entries(to_remove_page);
1488                 if (page_entries) {
1489                         /*
1490                          * If something was added to this page, it was full
1491                          * since it is not the tail page. So we deduct the
1492                          * bytes consumed in ring buffer from here.
1493                          * Increment overrun to account for the lost events.
1494                          */
1495                         local_add(page_entries, &cpu_buffer->overrun);
1496                         local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1497                 }
1498
1499                 /*
1500                  * We have already removed references to this list item, just
1501                  * free up the buffer_page and its page
1502                  */
1503                 free_buffer_page(to_remove_page);
1504                 nr_removed--;
1505
1506         } while (to_remove_page != last_page);
1507
1508         RB_WARN_ON(cpu_buffer, nr_removed);
1509
1510         return nr_removed == 0;
1511 }
1512
1513 static int
1514 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1515 {
1516         struct list_head *pages = &cpu_buffer->new_pages;
1517         int retries, success;
1518
1519         raw_spin_lock_irq(&cpu_buffer->reader_lock);
1520         /*
1521          * We are holding the reader lock, so the reader page won't be swapped
1522          * in the ring buffer. Now we are racing with the writer trying to
1523          * move head page and the tail page.
1524          * We are going to adapt the reader page update process where:
1525          * 1. We first splice the start and end of list of new pages between
1526          *    the head page and its previous page.
1527          * 2. We cmpxchg the prev_page->next to point from head page to the
1528          *    start of new pages list.
1529          * 3. Finally, we update the head->prev to the end of new list.
1530          *
1531          * We will try this process 10 times, to make sure that we don't keep
1532          * spinning.
1533          */
1534         retries = 10;
1535         success = 0;
1536         while (retries--) {
1537                 struct list_head *head_page, *prev_page, *r;
1538                 struct list_head *last_page, *first_page;
1539                 struct list_head *head_page_with_bit;
1540
1541                 head_page = &rb_set_head_page(cpu_buffer)->list;
1542                 if (!head_page)
1543                         break;
1544                 prev_page = head_page->prev;
1545
1546                 first_page = pages->next;
1547                 last_page  = pages->prev;
1548
1549                 head_page_with_bit = (struct list_head *)
1550                                      ((unsigned long)head_page | RB_PAGE_HEAD);
1551
1552                 last_page->next = head_page_with_bit;
1553                 first_page->prev = prev_page;
1554
1555                 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1556
1557                 if (r == head_page_with_bit) {
1558                         /*
1559                          * yay, we replaced the page pointer to our new list,
1560                          * now, we just have to update to head page's prev
1561                          * pointer to point to end of list
1562                          */
1563                         head_page->prev = last_page;
1564                         success = 1;
1565                         break;
1566                 }
1567         }
1568
1569         if (success)
1570                 INIT_LIST_HEAD(pages);
1571         /*
1572          * If we weren't successful in adding in new pages, warn and stop
1573          * tracing
1574          */
1575         RB_WARN_ON(cpu_buffer, !success);
1576         raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1577
1578         /* free pages if they weren't inserted */
1579         if (!success) {
1580                 struct buffer_page *bpage, *tmp;
1581                 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1582                                          list) {
1583                         list_del_init(&bpage->list);
1584                         free_buffer_page(bpage);
1585                 }
1586         }
1587         return success;
1588 }
1589
1590 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1591 {
1592         int success;
1593
1594         if (cpu_buffer->nr_pages_to_update > 0)
1595                 success = rb_insert_pages(cpu_buffer);
1596         else
1597                 success = rb_remove_pages(cpu_buffer,
1598                                         -cpu_buffer->nr_pages_to_update);
1599
1600         if (success)
1601                 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1602 }
1603
1604 static void update_pages_handler(struct work_struct *work)
1605 {
1606         struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1607                         struct ring_buffer_per_cpu, update_pages_work);
1608         rb_update_pages(cpu_buffer);
1609         complete(&cpu_buffer->update_done);
1610 }
1611
1612 /**
1613  * ring_buffer_resize - resize the ring buffer
1614  * @buffer: the buffer to resize.
1615  * @size: the new size.
1616  * @cpu_id: the cpu buffer to resize
1617  *
1618  * Minimum size is 2 * BUF_PAGE_SIZE.
1619  *
1620  * Returns 0 on success and < 0 on failure.
1621  */
1622 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1623                         int cpu_id)
1624 {
1625         struct ring_buffer_per_cpu *cpu_buffer;
1626         unsigned nr_pages;
1627         int cpu, err = 0;
1628
1629         /*
1630          * Always succeed at resizing a non-existent buffer:
1631          */
1632         if (!buffer)
1633                 return size;
1634
1635         /* Make sure the requested buffer exists */
1636         if (cpu_id != RING_BUFFER_ALL_CPUS &&
1637             !cpumask_test_cpu(cpu_id, buffer->cpumask))
1638                 return size;
1639
1640         size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1641         size *= BUF_PAGE_SIZE;
1642
1643         /* we need a minimum of two pages */
1644         if (size < BUF_PAGE_SIZE * 2)
1645                 size = BUF_PAGE_SIZE * 2;
1646
1647         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1648
1649         /*
1650          * Don't succeed if resizing is disabled, as a reader might be
1651          * manipulating the ring buffer and is expecting a sane state while
1652          * this is true.
1653          */
1654         if (atomic_read(&buffer->resize_disabled))
1655                 return -EBUSY;
1656
1657         /* prevent another thread from changing buffer sizes */
1658         mutex_lock(&buffer->mutex);
1659
1660         if (cpu_id == RING_BUFFER_ALL_CPUS) {
1661                 /* calculate the pages to update */
1662                 for_each_buffer_cpu(buffer, cpu) {
1663                         cpu_buffer = buffer->buffers[cpu];
1664
1665                         cpu_buffer->nr_pages_to_update = nr_pages -
1666                                                         cpu_buffer->nr_pages;
1667                         /*
1668                          * nothing more to do for removing pages or no update
1669                          */
1670                         if (cpu_buffer->nr_pages_to_update <= 0)
1671                                 continue;
1672                         /*
1673                          * to add pages, make sure all new pages can be
1674                          * allocated without receiving ENOMEM
1675                          */
1676                         INIT_LIST_HEAD(&cpu_buffer->new_pages);
1677                         if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1678                                                 &cpu_buffer->new_pages, cpu)) {
1679                                 /* not enough memory for new pages */
1680                                 err = -ENOMEM;
1681                                 goto out_err;
1682                         }
1683                 }
1684
1685                 get_online_cpus();
1686                 /*
1687                  * Fire off all the required work handlers
1688                  * We can't schedule on offline CPUs, but it's not necessary
1689                  * since we can change their buffer sizes without any race.
1690                  */
1691                 for_each_buffer_cpu(buffer, cpu) {
1692                         cpu_buffer = buffer->buffers[cpu];
1693                         if (!cpu_buffer->nr_pages_to_update)
1694                                 continue;
1695
1696                         /* The update must run on the CPU that is being updated. */
1697                         preempt_disable();
1698                         if (cpu == smp_processor_id() || !cpu_online(cpu)) {
1699                                 rb_update_pages(cpu_buffer);
1700                                 cpu_buffer->nr_pages_to_update = 0;
1701                         } else {
1702                                 /*
1703                                  * Can not disable preemption for schedule_work_on()
1704                                  * on PREEMPT_RT.
1705                                  */
1706                                 preempt_enable();
1707                                 schedule_work_on(cpu,
1708                                                 &cpu_buffer->update_pages_work);
1709                                 preempt_disable();
1710                         }
1711                         preempt_enable();
1712                 }
1713
1714                 /* wait for all the updates to complete */
1715                 for_each_buffer_cpu(buffer, cpu) {
1716                         cpu_buffer = buffer->buffers[cpu];
1717                         if (!cpu_buffer->nr_pages_to_update)
1718                                 continue;
1719
1720                         if (cpu_online(cpu))
1721                                 wait_for_completion(&cpu_buffer->update_done);
1722                         cpu_buffer->nr_pages_to_update = 0;
1723                 }
1724
1725                 put_online_cpus();
1726         } else {
1727                 /* Make sure this CPU has been intitialized */
1728                 if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1729                         goto out;
1730
1731                 cpu_buffer = buffer->buffers[cpu_id];
1732
1733                 if (nr_pages == cpu_buffer->nr_pages)
1734                         goto out;
1735
1736                 cpu_buffer->nr_pages_to_update = nr_pages -
1737                                                 cpu_buffer->nr_pages;
1738
1739                 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1740                 if (cpu_buffer->nr_pages_to_update > 0 &&
1741                         __rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1742                                             &cpu_buffer->new_pages, cpu_id)) {
1743                         err = -ENOMEM;
1744                         goto out_err;
1745                 }
1746
1747                 get_online_cpus();
1748
1749                 preempt_disable();
1750                 /* The update must run on the CPU that is being updated. */
1751                 if (cpu_id == smp_processor_id() || !cpu_online(cpu_id))
1752                         rb_update_pages(cpu_buffer);
1753                 else {
1754                         /*
1755                          * Can not disable preemption for schedule_work_on()
1756                          * on PREEMPT_RT.
1757                          */
1758                         preempt_enable();
1759                         schedule_work_on(cpu_id,
1760                                          &cpu_buffer->update_pages_work);
1761                         wait_for_completion(&cpu_buffer->update_done);
1762                         preempt_disable();
1763                 }
1764                 preempt_enable();
1765
1766                 cpu_buffer->nr_pages_to_update = 0;
1767                 put_online_cpus();
1768         }
1769
1770  out:
1771         /*
1772          * The ring buffer resize can happen with the ring buffer
1773          * enabled, so that the update disturbs the tracing as little
1774          * as possible. But if the buffer is disabled, we do not need
1775          * to worry about that, and we can take the time to verify
1776          * that the buffer is not corrupt.
1777          */
1778         if (atomic_read(&buffer->record_disabled)) {
1779                 atomic_inc(&buffer->record_disabled);
1780                 /*
1781                  * Even though the buffer was disabled, we must make sure
1782                  * that it is truly disabled before calling rb_check_pages.
1783                  * There could have been a race between checking
1784                  * record_disable and incrementing it.
1785                  */
1786                 synchronize_sched();
1787                 for_each_buffer_cpu(buffer, cpu) {
1788                         cpu_buffer = buffer->buffers[cpu];
1789                         rb_check_pages(cpu_buffer);
1790                 }
1791                 atomic_dec(&buffer->record_disabled);
1792         }
1793
1794         mutex_unlock(&buffer->mutex);
1795         return size;
1796
1797  out_err:
1798         for_each_buffer_cpu(buffer, cpu) {
1799                 struct buffer_page *bpage, *tmp;
1800
1801                 cpu_buffer = buffer->buffers[cpu];
1802                 cpu_buffer->nr_pages_to_update = 0;
1803
1804                 if (list_empty(&cpu_buffer->new_pages))
1805                         continue;
1806
1807                 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1808                                         list) {
1809                         list_del_init(&bpage->list);
1810                         free_buffer_page(bpage);
1811                 }
1812         }
1813         mutex_unlock(&buffer->mutex);
1814         return err;
1815 }
1816 EXPORT_SYMBOL_GPL(ring_buffer_resize);
1817
1818 void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1819 {
1820         mutex_lock(&buffer->mutex);
1821         if (val)
1822                 buffer->flags |= RB_FL_OVERWRITE;
1823         else
1824                 buffer->flags &= ~RB_FL_OVERWRITE;
1825         mutex_unlock(&buffer->mutex);
1826 }
1827 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1828
1829 static inline void *
1830 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
1831 {
1832         return bpage->data + index;
1833 }
1834
1835 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1836 {
1837         return bpage->page->data + index;
1838 }
1839
1840 static inline struct ring_buffer_event *
1841 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1842 {
1843         return __rb_page_index(cpu_buffer->reader_page,
1844                                cpu_buffer->reader_page->read);
1845 }
1846
1847 static inline struct ring_buffer_event *
1848 rb_iter_head_event(struct ring_buffer_iter *iter)
1849 {
1850         return __rb_page_index(iter->head_page, iter->head);
1851 }
1852
1853 static inline unsigned rb_page_commit(struct buffer_page *bpage)
1854 {
1855         return local_read(&bpage->page->commit);
1856 }
1857
1858 /* Size is determined by what has been committed */
1859 static inline unsigned rb_page_size(struct buffer_page *bpage)
1860 {
1861         return rb_page_commit(bpage);
1862 }
1863
1864 static inline unsigned
1865 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1866 {
1867         return rb_page_commit(cpu_buffer->commit_page);
1868 }
1869
1870 static inline unsigned
1871 rb_event_index(struct ring_buffer_event *event)
1872 {
1873         unsigned long addr = (unsigned long)event;
1874
1875         return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1876 }
1877
1878 static inline int
1879 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1880                    struct ring_buffer_event *event)
1881 {
1882         unsigned long addr = (unsigned long)event;
1883         unsigned long index;
1884
1885         index = rb_event_index(event);
1886         addr &= PAGE_MASK;
1887
1888         return cpu_buffer->commit_page->page == (void *)addr &&
1889                 rb_commit_index(cpu_buffer) == index;
1890 }
1891
1892 static void
1893 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
1894 {
1895         unsigned long max_count;
1896
1897         /*
1898          * We only race with interrupts and NMIs on this CPU.
1899          * If we own the commit event, then we can commit
1900          * all others that interrupted us, since the interruptions
1901          * are in stack format (they finish before they come
1902          * back to us). This allows us to do a simple loop to
1903          * assign the commit to the tail.
1904          */
1905  again:
1906         max_count = cpu_buffer->nr_pages * 100;
1907
1908         while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
1909                 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
1910                         return;
1911                 if (RB_WARN_ON(cpu_buffer,
1912                                rb_is_reader_page(cpu_buffer->tail_page)))
1913                         return;
1914                 local_set(&cpu_buffer->commit_page->page->commit,
1915                           rb_page_write(cpu_buffer->commit_page));
1916                 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
1917                 cpu_buffer->write_stamp =
1918                         cpu_buffer->commit_page->page->time_stamp;
1919                 /* add barrier to keep gcc from optimizing too much */
1920                 barrier();
1921         }
1922         while (rb_commit_index(cpu_buffer) !=
1923                rb_page_write(cpu_buffer->commit_page)) {
1924
1925                 local_set(&cpu_buffer->commit_page->page->commit,
1926                           rb_page_write(cpu_buffer->commit_page));
1927                 RB_WARN_ON(cpu_buffer,
1928                            local_read(&cpu_buffer->commit_page->page->commit) &
1929                            ~RB_WRITE_MASK);
1930                 barrier();
1931         }
1932
1933         /* again, keep gcc from optimizing */
1934         barrier();
1935
1936         /*
1937          * If an interrupt came in just after the first while loop
1938          * and pushed the tail page forward, we will be left with
1939          * a dangling commit that will never go forward.
1940          */
1941         if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1942                 goto again;
1943 }
1944
1945 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1946 {
1947         cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
1948         cpu_buffer->reader_page->read = 0;
1949 }
1950
1951 static void rb_inc_iter(struct ring_buffer_iter *iter)
1952 {
1953         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1954
1955         /*
1956          * The iterator could be on the reader page (it starts there).
1957          * But the head could have moved, since the reader was
1958          * found. Check for this case and assign the iterator
1959          * to the head page instead of next.
1960          */
1961         if (iter->head_page == cpu_buffer->reader_page)
1962                 iter->head_page = rb_set_head_page(cpu_buffer);
1963         else
1964                 rb_inc_page(cpu_buffer, &iter->head_page);
1965
1966         iter->read_stamp = iter->head_page->page->time_stamp;
1967         iter->head = 0;
1968 }
1969
1970 /* Slow path, do not inline */
1971 static noinline struct ring_buffer_event *
1972 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
1973 {
1974         event->type_len = RINGBUF_TYPE_TIME_EXTEND;
1975
1976         /* Not the first event on the page? */
1977         if (rb_event_index(event)) {
1978                 event->time_delta = delta & TS_MASK;
1979                 event->array[0] = delta >> TS_SHIFT;
1980         } else {
1981                 /* nope, just zero it */
1982                 event->time_delta = 0;
1983                 event->array[0] = 0;
1984         }
1985
1986         return skip_time_extend(event);
1987 }
1988
1989 /**
1990  * rb_update_event - update event type and data
1991  * @event: the even to update
1992  * @type: the type of event
1993  * @length: the size of the event field in the ring buffer
1994  *
1995  * Update the type and data fields of the event. The length
1996  * is the actual size that is written to the ring buffer,
1997  * and with this, we can determine what to place into the
1998  * data field.
1999  */
2000 static void
2001 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2002                 struct ring_buffer_event *event, unsigned length,
2003                 int add_timestamp, u64 delta)
2004 {
2005         /* Only a commit updates the timestamp */
2006         if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
2007                 delta = 0;
2008
2009         /*
2010          * If we need to add a timestamp, then we
2011          * add it to the start of the resevered space.
2012          */
2013         if (unlikely(add_timestamp)) {
2014                 event = rb_add_time_stamp(event, delta);
2015                 length -= RB_LEN_TIME_EXTEND;
2016                 delta = 0;
2017         }
2018
2019         event->time_delta = delta;
2020         length -= RB_EVNT_HDR_SIZE;
2021         if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2022                 event->type_len = 0;
2023                 event->array[0] = length;
2024         } else
2025                 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2026 }
2027
2028 /*
2029  * rb_handle_head_page - writer hit the head page
2030  *
2031  * Returns: +1 to retry page
2032  *           0 to continue
2033  *          -1 on error
2034  */
2035 static int
2036 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
2037                     struct buffer_page *tail_page,
2038                     struct buffer_page *next_page)
2039 {
2040         struct buffer_page *new_head;
2041         int entries;
2042         int type;
2043         int ret;
2044
2045         entries = rb_page_entries(next_page);
2046
2047         /*
2048          * The hard part is here. We need to move the head
2049          * forward, and protect against both readers on
2050          * other CPUs and writers coming in via interrupts.
2051          */
2052         type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
2053                                        RB_PAGE_HEAD);
2054
2055         /*
2056          * type can be one of four:
2057          *  NORMAL - an interrupt already moved it for us
2058          *  HEAD   - we are the first to get here.
2059          *  UPDATE - we are the interrupt interrupting
2060          *           a current move.
2061          *  MOVED  - a reader on another CPU moved the next
2062          *           pointer to its reader page. Give up
2063          *           and try again.
2064          */
2065
2066         switch (type) {
2067         case RB_PAGE_HEAD:
2068                 /*
2069                  * We changed the head to UPDATE, thus
2070                  * it is our responsibility to update
2071                  * the counters.
2072                  */
2073                 local_add(entries, &cpu_buffer->overrun);
2074                 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
2075
2076                 /*
2077                  * The entries will be zeroed out when we move the
2078                  * tail page.
2079                  */
2080
2081                 /* still more to do */
2082                 break;
2083
2084         case RB_PAGE_UPDATE:
2085                 /*
2086                  * This is an interrupt that interrupt the
2087                  * previous update. Still more to do.
2088                  */
2089                 break;
2090         case RB_PAGE_NORMAL:
2091                 /*
2092                  * An interrupt came in before the update
2093                  * and processed this for us.
2094                  * Nothing left to do.
2095                  */
2096                 return 1;
2097         case RB_PAGE_MOVED:
2098                 /*
2099                  * The reader is on another CPU and just did
2100                  * a swap with our next_page.
2101                  * Try again.
2102                  */
2103                 return 1;
2104         default:
2105                 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2106                 return -1;
2107         }
2108
2109         /*
2110          * Now that we are here, the old head pointer is
2111          * set to UPDATE. This will keep the reader from
2112          * swapping the head page with the reader page.
2113          * The reader (on another CPU) will spin till
2114          * we are finished.
2115          *
2116          * We just need to protect against interrupts
2117          * doing the job. We will set the next pointer
2118          * to HEAD. After that, we set the old pointer
2119          * to NORMAL, but only if it was HEAD before.
2120          * otherwise we are an interrupt, and only
2121          * want the outer most commit to reset it.
2122          */
2123         new_head = next_page;
2124         rb_inc_page(cpu_buffer, &new_head);
2125
2126         ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2127                                     RB_PAGE_NORMAL);
2128
2129         /*
2130          * Valid returns are:
2131          *  HEAD   - an interrupt came in and already set it.
2132          *  NORMAL - One of two things:
2133          *            1) We really set it.
2134          *            2) A bunch of interrupts came in and moved
2135          *               the page forward again.
2136          */
2137         switch (ret) {
2138         case RB_PAGE_HEAD:
2139         case RB_PAGE_NORMAL:
2140                 /* OK */
2141                 break;
2142         default:
2143                 RB_WARN_ON(cpu_buffer, 1);
2144                 return -1;
2145         }
2146
2147         /*
2148          * It is possible that an interrupt came in,
2149          * set the head up, then more interrupts came in
2150          * and moved it again. When we get back here,
2151          * the page would have been set to NORMAL but we
2152          * just set it back to HEAD.
2153          *
2154          * How do you detect this? Well, if that happened
2155          * the tail page would have moved.
2156          */
2157         if (ret == RB_PAGE_NORMAL) {
2158                 /*
2159                  * If the tail had moved passed next, then we need
2160                  * to reset the pointer.
2161                  */
2162                 if (cpu_buffer->tail_page != tail_page &&
2163                     cpu_buffer->tail_page != next_page)
2164                         rb_head_page_set_normal(cpu_buffer, new_head,
2165                                                 next_page,
2166                                                 RB_PAGE_HEAD);
2167         }
2168
2169         /*
2170          * If this was the outer most commit (the one that
2171          * changed the original pointer from HEAD to UPDATE),
2172          * then it is up to us to reset it to NORMAL.
2173          */
2174         if (type == RB_PAGE_HEAD) {
2175                 ret = rb_head_page_set_normal(cpu_buffer, next_page,
2176                                               tail_page,
2177                                               RB_PAGE_UPDATE);
2178                 if (RB_WARN_ON(cpu_buffer,
2179                                ret != RB_PAGE_UPDATE))
2180                         return -1;
2181         }
2182
2183         return 0;
2184 }
2185
2186 static unsigned rb_calculate_event_length(unsigned length)
2187 {
2188         struct ring_buffer_event event; /* Used only for sizeof array */
2189
2190         /* zero length can cause confusions */
2191         if (!length)
2192                 length = 1;
2193
2194         if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2195                 length += sizeof(event.array[0]);
2196
2197         length += RB_EVNT_HDR_SIZE;
2198         length = ALIGN(length, RB_ARCH_ALIGNMENT);
2199
2200         return length;
2201 }
2202
2203 static inline void
2204 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2205               struct buffer_page *tail_page,
2206               unsigned long tail, unsigned long length)
2207 {
2208         struct ring_buffer_event *event;
2209
2210         /*
2211          * Only the event that crossed the page boundary
2212          * must fill the old tail_page with padding.
2213          */
2214         if (tail >= BUF_PAGE_SIZE) {
2215                 /*
2216                  * If the page was filled, then we still need
2217                  * to update the real_end. Reset it to zero
2218                  * and the reader will ignore it.
2219                  */
2220                 if (tail == BUF_PAGE_SIZE)
2221                         tail_page->real_end = 0;
2222
2223                 local_sub(length, &tail_page->write);
2224                 return;
2225         }
2226
2227         event = __rb_page_index(tail_page, tail);
2228         kmemcheck_annotate_bitfield(event, bitfield);
2229
2230         /* account for padding bytes */
2231         local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2232
2233         /*
2234          * Save the original length to the meta data.
2235          * This will be used by the reader to add lost event
2236          * counter.
2237          */
2238         tail_page->real_end = tail;
2239
2240         /*
2241          * If this event is bigger than the minimum size, then
2242          * we need to be careful that we don't subtract the
2243          * write counter enough to allow another writer to slip
2244          * in on this page.
2245          * We put in a discarded commit instead, to make sure
2246          * that this space is not used again.
2247          *
2248          * If we are less than the minimum size, we don't need to
2249          * worry about it.
2250          */
2251         if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2252                 /* No room for any events */
2253
2254                 /* Mark the rest of the page with padding */
2255                 rb_event_set_padding(event);
2256
2257                 /* Set the write back to the previous setting */
2258                 local_sub(length, &tail_page->write);
2259                 return;
2260         }
2261
2262         /* Put in a discarded event */
2263         event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2264         event->type_len = RINGBUF_TYPE_PADDING;
2265         /* time delta must be non zero */
2266         event->time_delta = 1;
2267
2268         /* Set write to end of buffer */
2269         length = (tail + length) - BUF_PAGE_SIZE;
2270         local_sub(length, &tail_page->write);
2271 }
2272
2273 /*
2274  * This is the slow path, force gcc not to inline it.
2275  */
2276 static noinline struct ring_buffer_event *
2277 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2278              unsigned long length, unsigned long tail,
2279              struct buffer_page *tail_page, u64 ts)
2280 {
2281         struct buffer_page *commit_page = cpu_buffer->commit_page;
2282         struct ring_buffer *buffer = cpu_buffer->buffer;
2283         struct buffer_page *next_page;
2284         int ret;
2285
2286         next_page = tail_page;
2287
2288         rb_inc_page(cpu_buffer, &next_page);
2289
2290         /*
2291          * If for some reason, we had an interrupt storm that made
2292          * it all the way around the buffer, bail, and warn
2293          * about it.
2294          */
2295         if (unlikely(next_page == commit_page)) {
2296                 local_inc(&cpu_buffer->commit_overrun);
2297                 goto out_reset;
2298         }
2299
2300         /*
2301          * This is where the fun begins!
2302          *
2303          * We are fighting against races between a reader that
2304          * could be on another CPU trying to swap its reader
2305          * page with the buffer head.
2306          *
2307          * We are also fighting against interrupts coming in and
2308          * moving the head or tail on us as well.
2309          *
2310          * If the next page is the head page then we have filled
2311          * the buffer, unless the commit page is still on the
2312          * reader page.
2313          */
2314         if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2315
2316                 /*
2317                  * If the commit is not on the reader page, then
2318                  * move the header page.
2319                  */
2320                 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2321                         /*
2322                          * If we are not in overwrite mode,
2323                          * this is easy, just stop here.
2324                          */
2325                         if (!(buffer->flags & RB_FL_OVERWRITE)) {
2326                                 local_inc(&cpu_buffer->dropped_events);
2327                                 goto out_reset;
2328                         }
2329
2330                         ret = rb_handle_head_page(cpu_buffer,
2331                                                   tail_page,
2332                                                   next_page);
2333                         if (ret < 0)
2334                                 goto out_reset;
2335                         if (ret)
2336                                 goto out_again;
2337                 } else {
2338                         /*
2339                          * We need to be careful here too. The
2340                          * commit page could still be on the reader
2341                          * page. We could have a small buffer, and
2342                          * have filled up the buffer with events
2343                          * from interrupts and such, and wrapped.
2344                          *
2345                          * Note, if the tail page is also the on the
2346                          * reader_page, we let it move out.
2347                          */
2348                         if (unlikely((cpu_buffer->commit_page !=
2349                                       cpu_buffer->tail_page) &&
2350                                      (cpu_buffer->commit_page ==
2351                                       cpu_buffer->reader_page))) {
2352                                 local_inc(&cpu_buffer->commit_overrun);
2353                                 goto out_reset;
2354                         }
2355                 }
2356         }
2357
2358         ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
2359         if (ret) {
2360                 /*
2361                  * Nested commits always have zero deltas, so
2362                  * just reread the time stamp
2363                  */
2364                 ts = rb_time_stamp(buffer);
2365                 next_page->page->time_stamp = ts;
2366         }
2367
2368  out_again:
2369
2370         rb_reset_tail(cpu_buffer, tail_page, tail, length);
2371
2372         /* fail and let the caller try again */
2373         return ERR_PTR(-EAGAIN);
2374
2375  out_reset:
2376         /* reset write */
2377         rb_reset_tail(cpu_buffer, tail_page, tail, length);
2378
2379         return NULL;
2380 }
2381
2382 static struct ring_buffer_event *
2383 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
2384                   unsigned long length, u64 ts,
2385                   u64 delta, int add_timestamp)
2386 {
2387         struct buffer_page *tail_page;
2388         struct ring_buffer_event *event;
2389         unsigned long tail, write;
2390
2391         /*
2392          * If the time delta since the last event is too big to
2393          * hold in the time field of the event, then we append a
2394          * TIME EXTEND event ahead of the data event.
2395          */
2396         if (unlikely(add_timestamp))
2397                 length += RB_LEN_TIME_EXTEND;
2398
2399         tail_page = cpu_buffer->tail_page;
2400         write = local_add_return(length, &tail_page->write);
2401
2402         /* set write to only the index of the write */
2403         write &= RB_WRITE_MASK;
2404         tail = write - length;
2405
2406         /*
2407          * If this is the first commit on the page, then it has the same
2408          * timestamp as the page itself.
2409          */
2410         if (!tail)
2411                 delta = 0;
2412
2413         /* See if we shot pass the end of this buffer page */
2414         if (unlikely(write > BUF_PAGE_SIZE))
2415                 return rb_move_tail(cpu_buffer, length, tail,
2416                                     tail_page, ts);
2417
2418         /* We reserved something on the buffer */
2419
2420         event = __rb_page_index(tail_page, tail);
2421         kmemcheck_annotate_bitfield(event, bitfield);
2422         rb_update_event(cpu_buffer, event, length, add_timestamp, delta);
2423
2424         local_inc(&tail_page->entries);
2425
2426         /*
2427          * If this is the first commit on the page, then update
2428          * its timestamp.
2429          */
2430         if (!tail)
2431                 tail_page->page->time_stamp = ts;
2432
2433         /* account for these added bytes */
2434         local_add(length, &cpu_buffer->entries_bytes);
2435
2436         return event;
2437 }
2438
2439 static inline int
2440 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2441                   struct ring_buffer_event *event)
2442 {
2443         unsigned long new_index, old_index;
2444         struct buffer_page *bpage;
2445         unsigned long index;
2446         unsigned long addr;
2447
2448         new_index = rb_event_index(event);
2449         old_index = new_index + rb_event_ts_length(event);
2450         addr = (unsigned long)event;
2451         addr &= PAGE_MASK;
2452
2453         bpage = cpu_buffer->tail_page;
2454
2455         if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2456                 unsigned long write_mask =
2457                         local_read(&bpage->write) & ~RB_WRITE_MASK;
2458                 unsigned long event_length = rb_event_length(event);
2459                 /*
2460                  * This is on the tail page. It is possible that
2461                  * a write could come in and move the tail page
2462                  * and write to the next page. That is fine
2463                  * because we just shorten what is on this page.
2464                  */
2465                 old_index += write_mask;
2466                 new_index += write_mask;
2467                 index = local_cmpxchg(&bpage->write, old_index, new_index);
2468                 if (index == old_index) {
2469                         /* update counters */
2470                         local_sub(event_length, &cpu_buffer->entries_bytes);
2471                         return 1;
2472                 }
2473         }
2474
2475         /* could not discard */
2476         return 0;
2477 }
2478
2479 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2480 {
2481         local_inc(&cpu_buffer->committing);
2482         local_inc(&cpu_buffer->commits);
2483 }
2484
2485 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2486 {
2487         unsigned long commits;
2488
2489         if (RB_WARN_ON(cpu_buffer,
2490                        !local_read(&cpu_buffer->committing)))
2491                 return;
2492
2493  again:
2494         commits = local_read(&cpu_buffer->commits);
2495         /* synchronize with interrupts */
2496         barrier();
2497         if (local_read(&cpu_buffer->committing) == 1)
2498                 rb_set_commit_to_write(cpu_buffer);
2499
2500         local_dec(&cpu_buffer->committing);
2501
2502         /* synchronize with interrupts */
2503         barrier();
2504
2505         /*
2506          * Need to account for interrupts coming in between the
2507          * updating of the commit page and the clearing of the
2508          * committing counter.
2509          */
2510         if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2511             !local_read(&cpu_buffer->committing)) {
2512                 local_inc(&cpu_buffer->committing);
2513                 goto again;
2514         }
2515 }
2516
2517 static struct ring_buffer_event *
2518 rb_reserve_next_event(struct ring_buffer *buffer,
2519                       struct ring_buffer_per_cpu *cpu_buffer,
2520                       unsigned long length)
2521 {
2522         struct ring_buffer_event *event;
2523         u64 ts, delta;
2524         int nr_loops = 0;
2525         int add_timestamp;
2526         u64 diff;
2527
2528         rb_start_commit(cpu_buffer);
2529
2530 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2531         /*
2532          * Due to the ability to swap a cpu buffer from a buffer
2533          * it is possible it was swapped before we committed.
2534          * (committing stops a swap). We check for it here and
2535          * if it happened, we have to fail the write.
2536          */
2537         barrier();
2538         if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2539                 local_dec(&cpu_buffer->committing);
2540                 local_dec(&cpu_buffer->commits);
2541                 return NULL;
2542         }
2543 #endif
2544
2545         length = rb_calculate_event_length(length);
2546  again:
2547         add_timestamp = 0;
2548         delta = 0;
2549
2550         /*
2551          * We allow for interrupts to reenter here and do a trace.
2552          * If one does, it will cause this original code to loop
2553          * back here. Even with heavy interrupts happening, this
2554          * should only happen a few times in a row. If this happens
2555          * 1000 times in a row, there must be either an interrupt
2556          * storm or we have something buggy.
2557          * Bail!
2558          */
2559         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2560                 goto out_fail;
2561
2562         ts = rb_time_stamp(cpu_buffer->buffer);
2563         diff = ts - cpu_buffer->write_stamp;
2564
2565         /* make sure this diff is calculated here */
2566         barrier();
2567
2568         /* Did the write stamp get updated already? */
2569         if (likely(ts >= cpu_buffer->write_stamp)) {
2570                 delta = diff;
2571                 if (unlikely(test_time_stamp(delta))) {
2572                         int local_clock_stable = 1;
2573 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2574                         local_clock_stable = sched_clock_stable();
2575 #endif
2576                         WARN_ONCE(delta > (1ULL << 59),
2577                                   KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2578                                   (unsigned long long)delta,
2579                                   (unsigned long long)ts,
2580                                   (unsigned long long)cpu_buffer->write_stamp,
2581                                   local_clock_stable ? "" :
2582                                   "If you just came from a suspend/resume,\n"
2583                                   "please switch to the trace global clock:\n"
2584                                   "  echo global > /sys/kernel/debug/tracing/trace_clock\n");
2585                         add_timestamp = 1;
2586                 }
2587         }
2588
2589         event = __rb_reserve_next(cpu_buffer, length, ts,
2590                                   delta, add_timestamp);
2591         if (unlikely(PTR_ERR(event) == -EAGAIN))
2592                 goto again;
2593
2594         if (!event)
2595                 goto out_fail;
2596
2597         return event;
2598
2599  out_fail:
2600         rb_end_commit(cpu_buffer);
2601         return NULL;
2602 }
2603
2604 #ifdef CONFIG_TRACING
2605
2606 /*
2607  * The lock and unlock are done within a preempt disable section.
2608  * The current_context per_cpu variable can only be modified
2609  * by the current task between lock and unlock. But it can
2610  * be modified more than once via an interrupt. To pass this
2611  * information from the lock to the unlock without having to
2612  * access the 'in_interrupt()' functions again (which do show
2613  * a bit of overhead in something as critical as function tracing,
2614  * we use a bitmask trick.
2615  *
2616  *  bit 0 =  NMI context
2617  *  bit 1 =  IRQ context
2618  *  bit 2 =  SoftIRQ context
2619  *  bit 3 =  normal context.
2620  *
2621  * This works because this is the order of contexts that can
2622  * preempt other contexts. A SoftIRQ never preempts an IRQ
2623  * context.
2624  *
2625  * When the context is determined, the corresponding bit is
2626  * checked and set (if it was set, then a recursion of that context
2627  * happened).
2628  *
2629  * On unlock, we need to clear this bit. To do so, just subtract
2630  * 1 from the current_context and AND it to itself.
2631  *
2632  * (binary)
2633  *  101 - 1 = 100
2634  *  101 & 100 = 100 (clearing bit zero)
2635  *
2636  *  1010 - 1 = 1001
2637  *  1010 & 1001 = 1000 (clearing bit 1)
2638  *
2639  * The least significant bit can be cleared this way, and it
2640  * just so happens that it is the same bit corresponding to
2641  * the current context.
2642  */
2643 static DEFINE_PER_CPU(unsigned int, current_context);
2644
2645 static __always_inline int trace_recursive_lock(void)
2646 {
2647         unsigned int val = this_cpu_read(current_context);
2648         int bit;
2649
2650         if (in_interrupt()) {
2651                 if (in_nmi())
2652                         bit = 0;
2653                 else if (in_irq())
2654                         bit = 1;
2655                 else
2656                         bit = 2;
2657         } else
2658                 bit = 3;
2659
2660         if (unlikely(val & (1 << bit)))
2661                 return 1;
2662
2663         val |= (1 << bit);
2664         this_cpu_write(current_context, val);
2665
2666         return 0;
2667 }
2668
2669 static __always_inline void trace_recursive_unlock(void)
2670 {
2671         unsigned int val = this_cpu_read(current_context);
2672
2673         val--;
2674         val &= this_cpu_read(current_context);
2675         this_cpu_write(current_context, val);
2676 }
2677
2678 #else
2679
2680 #define trace_recursive_lock()          (0)
2681 #define trace_recursive_unlock()        do { } while (0)
2682
2683 #endif
2684
2685 /**
2686  * ring_buffer_lock_reserve - reserve a part of the buffer
2687  * @buffer: the ring buffer to reserve from
2688  * @length: the length of the data to reserve (excluding event header)
2689  *
2690  * Returns a reseverd event on the ring buffer to copy directly to.
2691  * The user of this interface will need to get the body to write into
2692  * and can use the ring_buffer_event_data() interface.
2693  *
2694  * The length is the length of the data needed, not the event length
2695  * which also includes the event header.
2696  *
2697  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2698  * If NULL is returned, then nothing has been allocated or locked.
2699  */
2700 struct ring_buffer_event *
2701 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2702 {
2703         struct ring_buffer_per_cpu *cpu_buffer;
2704         struct ring_buffer_event *event;
2705         int cpu;
2706
2707         if (ring_buffer_flags != RB_BUFFERS_ON)
2708                 return NULL;
2709
2710         /* If we are tracing schedule, we don't want to recurse */
2711         preempt_disable_notrace();
2712
2713         if (atomic_read(&buffer->record_disabled))
2714                 goto out_nocheck;
2715
2716         if (trace_recursive_lock())
2717                 goto out_nocheck;
2718
2719         cpu = raw_smp_processor_id();
2720
2721         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2722                 goto out;
2723
2724         cpu_buffer = buffer->buffers[cpu];
2725
2726         if (atomic_read(&cpu_buffer->record_disabled))
2727                 goto out;
2728
2729         if (length > BUF_MAX_DATA_SIZE)
2730                 goto out;
2731
2732         event = rb_reserve_next_event(buffer, cpu_buffer, length);
2733         if (!event)
2734                 goto out;
2735
2736         return event;
2737
2738  out:
2739         trace_recursive_unlock();
2740
2741  out_nocheck:
2742         preempt_enable_notrace();
2743         return NULL;
2744 }
2745 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2746
2747 static void
2748 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2749                       struct ring_buffer_event *event)
2750 {
2751         u64 delta;
2752
2753         /*
2754          * The event first in the commit queue updates the
2755          * time stamp.
2756          */
2757         if (rb_event_is_commit(cpu_buffer, event)) {
2758                 /*
2759                  * A commit event that is first on a page
2760                  * updates the write timestamp with the page stamp
2761                  */
2762                 if (!rb_event_index(event))
2763                         cpu_buffer->write_stamp =
2764                                 cpu_buffer->commit_page->page->time_stamp;
2765                 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2766                         delta = event->array[0];
2767                         delta <<= TS_SHIFT;
2768                         delta += event->time_delta;
2769                         cpu_buffer->write_stamp += delta;
2770                 } else
2771                         cpu_buffer->write_stamp += event->time_delta;
2772         }
2773 }
2774
2775 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2776                       struct ring_buffer_event *event)
2777 {
2778         local_inc(&cpu_buffer->entries);
2779         rb_update_write_stamp(cpu_buffer, event);
2780         rb_end_commit(cpu_buffer);
2781 }
2782
2783 static __always_inline void
2784 rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2785 {
2786         if (buffer->irq_work.waiters_pending) {
2787                 buffer->irq_work.waiters_pending = false;
2788                 /* irq_work_queue() supplies it's own memory barriers */
2789                 irq_work_queue(&buffer->irq_work.work);
2790         }
2791
2792         if (cpu_buffer->irq_work.waiters_pending) {
2793                 cpu_buffer->irq_work.waiters_pending = false;
2794                 /* irq_work_queue() supplies it's own memory barriers */
2795                 irq_work_queue(&cpu_buffer->irq_work.work);
2796         }
2797 }
2798
2799 /**
2800  * ring_buffer_unlock_commit - commit a reserved
2801  * @buffer: The buffer to commit to
2802  * @event: The event pointer to commit.
2803  *
2804  * This commits the data to the ring buffer, and releases any locks held.
2805  *
2806  * Must be paired with ring_buffer_lock_reserve.
2807  */
2808 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2809                               struct ring_buffer_event *event)
2810 {
2811         struct ring_buffer_per_cpu *cpu_buffer;
2812         int cpu = raw_smp_processor_id();
2813
2814         cpu_buffer = buffer->buffers[cpu];
2815
2816         rb_commit(cpu_buffer, event);
2817
2818         rb_wakeups(buffer, cpu_buffer);
2819
2820         trace_recursive_unlock();
2821
2822         preempt_enable_notrace();
2823
2824         return 0;
2825 }
2826 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2827
2828 static inline void rb_event_discard(struct ring_buffer_event *event)
2829 {
2830         if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2831                 event = skip_time_extend(event);
2832
2833         /* array[0] holds the actual length for the discarded event */
2834         event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2835         event->type_len = RINGBUF_TYPE_PADDING;
2836         /* time delta must be non zero */
2837         if (!event->time_delta)
2838                 event->time_delta = 1;
2839 }
2840
2841 /*
2842  * Decrement the entries to the page that an event is on.
2843  * The event does not even need to exist, only the pointer
2844  * to the page it is on. This may only be called before the commit
2845  * takes place.
2846  */
2847 static inline void
2848 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2849                    struct ring_buffer_event *event)
2850 {
2851         unsigned long addr = (unsigned long)event;
2852         struct buffer_page *bpage = cpu_buffer->commit_page;
2853         struct buffer_page *start;
2854
2855         addr &= PAGE_MASK;
2856
2857         /* Do the likely case first */
2858         if (likely(bpage->page == (void *)addr)) {
2859                 local_dec(&bpage->entries);
2860                 return;
2861         }
2862
2863         /*
2864          * Because the commit page may be on the reader page we
2865          * start with the next page and check the end loop there.
2866          */
2867         rb_inc_page(cpu_buffer, &bpage);
2868         start = bpage;
2869         do {
2870                 if (bpage->page == (void *)addr) {
2871                         local_dec(&bpage->entries);
2872                         return;
2873                 }
2874                 rb_inc_page(cpu_buffer, &bpage);
2875         } while (bpage != start);
2876
2877         /* commit not part of this buffer?? */
2878         RB_WARN_ON(cpu_buffer, 1);
2879 }
2880
2881 /**
2882  * ring_buffer_commit_discard - discard an event that has not been committed
2883  * @buffer: the ring buffer
2884  * @event: non committed event to discard
2885  *
2886  * Sometimes an event that is in the ring buffer needs to be ignored.
2887  * This function lets the user discard an event in the ring buffer
2888  * and then that event will not be read later.
2889  *
2890  * This function only works if it is called before the the item has been
2891  * committed. It will try to free the event from the ring buffer
2892  * if another event has not been added behind it.
2893  *
2894  * If another event has been added behind it, it will set the event
2895  * up as discarded, and perform the commit.
2896  *
2897  * If this function is called, do not call ring_buffer_unlock_commit on
2898  * the event.
2899  */
2900 void ring_buffer_discard_commit(struct ring_buffer *buffer,
2901                                 struct ring_buffer_event *event)
2902 {
2903         struct ring_buffer_per_cpu *cpu_buffer;
2904         int cpu;
2905
2906         /* The event is discarded regardless */
2907         rb_event_discard(event);
2908
2909         cpu = smp_processor_id();
2910         cpu_buffer = buffer->buffers[cpu];
2911
2912         /*
2913          * This must only be called if the event has not been
2914          * committed yet. Thus we can assume that preemption
2915          * is still disabled.
2916          */
2917         RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
2918
2919         rb_decrement_entry(cpu_buffer, event);
2920         if (rb_try_to_discard(cpu_buffer, event))
2921                 goto out;
2922
2923         /*
2924          * The commit is still visible by the reader, so we
2925          * must still update the timestamp.
2926          */
2927         rb_update_write_stamp(cpu_buffer, event);
2928  out:
2929         rb_end_commit(cpu_buffer);
2930
2931         trace_recursive_unlock();
2932
2933         preempt_enable_notrace();
2934
2935 }
2936 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2937
2938 /**
2939  * ring_buffer_write - write data to the buffer without reserving
2940  * @buffer: The ring buffer to write to.
2941  * @length: The length of the data being written (excluding the event header)
2942  * @data: The data to write to the buffer.
2943  *
2944  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2945  * one function. If you already have the data to write to the buffer, it
2946  * may be easier to simply call this function.
2947  *
2948  * Note, like ring_buffer_lock_reserve, the length is the length of the data
2949  * and not the length of the event which would hold the header.
2950  */
2951 int ring_buffer_write(struct ring_buffer *buffer,
2952                       unsigned long length,
2953                       void *data)
2954 {
2955         struct ring_buffer_per_cpu *cpu_buffer;
2956         struct ring_buffer_event *event;
2957         void *body;
2958         int ret = -EBUSY;
2959         int cpu;
2960
2961         if (ring_buffer_flags != RB_BUFFERS_ON)
2962                 return -EBUSY;
2963
2964         preempt_disable_notrace();
2965
2966         if (atomic_read(&buffer->record_disabled))
2967                 goto out;
2968
2969         cpu = raw_smp_processor_id();
2970
2971         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2972                 goto out;
2973
2974         cpu_buffer = buffer->buffers[cpu];
2975
2976         if (atomic_read(&cpu_buffer->record_disabled))
2977                 goto out;
2978
2979         if (length > BUF_MAX_DATA_SIZE)
2980                 goto out;
2981
2982         event = rb_reserve_next_event(buffer, cpu_buffer, length);
2983         if (!event)
2984                 goto out;
2985
2986         body = rb_event_data(event);
2987
2988         memcpy(body, data, length);
2989
2990         rb_commit(cpu_buffer, event);
2991
2992         rb_wakeups(buffer, cpu_buffer);
2993
2994         ret = 0;
2995  out:
2996         preempt_enable_notrace();
2997
2998         return ret;
2999 }
3000 EXPORT_SYMBOL_GPL(ring_buffer_write);
3001
3002 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
3003 {
3004         struct buffer_page *reader = cpu_buffer->reader_page;
3005         struct buffer_page *head = rb_set_head_page(cpu_buffer);
3006         struct buffer_page *commit = cpu_buffer->commit_page;
3007
3008         /* In case of error, head will be NULL */
3009         if (unlikely(!head))
3010                 return 1;
3011
3012         return reader->read == rb_page_commit(reader) &&
3013                 (commit == reader ||
3014                  (commit == head &&
3015                   head->read == rb_page_commit(commit)));
3016 }
3017
3018 /**
3019  * ring_buffer_record_disable - stop all writes into the buffer
3020  * @buffer: The ring buffer to stop writes to.
3021  *
3022  * This prevents all writes to the buffer. Any attempt to write
3023  * to the buffer after this will fail and return NULL.
3024  *
3025  * The caller should call synchronize_sched() after this.
3026  */
3027 void ring_buffer_record_disable(struct ring_buffer *buffer)
3028 {
3029         atomic_inc(&buffer->record_disabled);
3030 }
3031 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3032
3033 /**
3034  * ring_buffer_record_enable - enable writes to the buffer
3035  * @buffer: The ring buffer to enable writes
3036  *
3037  * Note, multiple disables will need the same number of enables
3038  * to truly enable the writing (much like preempt_disable).
3039  */
3040 void ring_buffer_record_enable(struct ring_buffer *buffer)
3041 {
3042         atomic_dec(&buffer->record_disabled);
3043 }
3044 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
3045
3046 /**
3047  * ring_buffer_record_off - stop all writes into the buffer
3048  * @buffer: The ring buffer to stop writes to.
3049  *
3050  * This prevents all writes to the buffer. Any attempt to write
3051  * to the buffer after this will fail and return NULL.
3052  *
3053  * This is different than ring_buffer_record_disable() as
3054  * it works like an on/off switch, where as the disable() version
3055  * must be paired with a enable().
3056  */
3057 void ring_buffer_record_off(struct ring_buffer *buffer)
3058 {
3059         unsigned int rd;
3060         unsigned int new_rd;
3061
3062         do {
3063                 rd = atomic_read(&buffer->record_disabled);
3064                 new_rd = rd | RB_BUFFER_OFF;
3065         } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3066 }
3067 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3068
3069 /**
3070  * ring_buffer_record_on - restart writes into the buffer
3071  * @buffer: The ring buffer to start writes to.
3072  *
3073  * This enables all writes to the buffer that was disabled by
3074  * ring_buffer_record_off().
3075  *
3076  * This is different than ring_buffer_record_enable() as
3077  * it works like an on/off switch, where as the enable() version
3078  * must be paired with a disable().
3079  */
3080 void ring_buffer_record_on(struct ring_buffer *buffer)
3081 {
3082         unsigned int rd;
3083         unsigned int new_rd;
3084
3085         do {
3086                 rd = atomic_read(&buffer->record_disabled);
3087                 new_rd = rd & ~RB_BUFFER_OFF;
3088         } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3089 }
3090 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3091
3092 /**
3093  * ring_buffer_record_is_on - return true if the ring buffer can write
3094  * @buffer: The ring buffer to see if write is enabled
3095  *
3096  * Returns true if the ring buffer is in a state that it accepts writes.
3097  */
3098 int ring_buffer_record_is_on(struct ring_buffer *buffer)
3099 {
3100         return !atomic_read(&buffer->record_disabled);
3101 }
3102
3103 /**
3104  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3105  * @buffer: The ring buffer to stop writes to.
3106  * @cpu: The CPU buffer to stop
3107  *
3108  * This prevents all writes to the buffer. Any attempt to write
3109  * to the buffer after this will fail and return NULL.
3110  *
3111  * The caller should call synchronize_sched() after this.
3112  */
3113 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
3114 {
3115         struct ring_buffer_per_cpu *cpu_buffer;
3116
3117         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3118                 return;
3119
3120         cpu_buffer = buffer->buffers[cpu];
3121         atomic_inc(&cpu_buffer->record_disabled);
3122 }
3123 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
3124
3125 /**
3126  * ring_buffer_record_enable_cpu - enable writes to the buffer
3127  * @buffer: The ring buffer to enable writes
3128  * @cpu: The CPU to enable.
3129  *
3130  * Note, multiple disables will need the same number of enables
3131  * to truly enable the writing (much like preempt_disable).
3132  */
3133 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
3134 {
3135         struct ring_buffer_per_cpu *cpu_buffer;
3136
3137         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3138                 return;
3139
3140         cpu_buffer = buffer->buffers[cpu];
3141         atomic_dec(&cpu_buffer->record_disabled);
3142 }
3143 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
3144
3145 /*
3146  * The total entries in the ring buffer is the running counter
3147  * of entries entered into the ring buffer, minus the sum of
3148  * the entries read from the ring buffer and the number of
3149  * entries that were overwritten.
3150  */
3151 static inline unsigned long
3152 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3153 {
3154         return local_read(&cpu_buffer->entries) -
3155                 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3156 }
3157
3158 /**
3159  * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3160  * @buffer: The ring buffer
3161  * @cpu: The per CPU buffer to read from.
3162  */
3163 u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
3164 {
3165         unsigned long flags;
3166         struct ring_buffer_per_cpu *cpu_buffer;
3167         struct buffer_page *bpage;
3168         u64 ret = 0;
3169
3170         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3171                 return 0;
3172
3173         cpu_buffer = buffer->buffers[cpu];
3174         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3175         /*
3176          * if the tail is on reader_page, oldest time stamp is on the reader
3177          * page
3178          */
3179         if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3180                 bpage = cpu_buffer->reader_page;
3181         else
3182                 bpage = rb_set_head_page(cpu_buffer);
3183         if (bpage)
3184                 ret = bpage->page->time_stamp;
3185         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3186
3187         return ret;
3188 }
3189 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3190
3191 /**
3192  * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3193  * @buffer: The ring buffer
3194  * @cpu: The per CPU buffer to read from.
3195  */
3196 unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
3197 {
3198         struct ring_buffer_per_cpu *cpu_buffer;
3199         unsigned long ret;
3200
3201         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3202                 return 0;
3203
3204         cpu_buffer = buffer->buffers[cpu];
3205         ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3206
3207         return ret;
3208 }
3209 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3210
3211 /**
3212  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3213  * @buffer: The ring buffer
3214  * @cpu: The per CPU buffer to get the entries from.
3215  */
3216 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
3217 {
3218         struct ring_buffer_per_cpu *cpu_buffer;
3219
3220         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3221                 return 0;
3222
3223         cpu_buffer = buffer->buffers[cpu];
3224
3225         return rb_num_of_entries(cpu_buffer);
3226 }
3227 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
3228
3229 /**
3230  * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3231  * buffer wrapping around (only if RB_FL_OVERWRITE is on).
3232  * @buffer: The ring buffer
3233  * @cpu: The per CPU buffer to get the number of overruns from
3234  */
3235 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
3236 {
3237         struct ring_buffer_per_cpu *cpu_buffer;
3238         unsigned long ret;
3239
3240         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3241                 return 0;
3242
3243         cpu_buffer = buffer->buffers[cpu];
3244         ret = local_read(&cpu_buffer->overrun);
3245
3246         return ret;
3247 }
3248 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
3249
3250 /**
3251  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3252  * commits failing due to the buffer wrapping around while there are uncommitted
3253  * events, such as during an interrupt storm.
3254  * @buffer: The ring buffer
3255  * @cpu: The per CPU buffer to get the number of overruns from
3256  */
3257 unsigned long
3258 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3259 {
3260         struct ring_buffer_per_cpu *cpu_buffer;
3261         unsigned long ret;
3262
3263         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3264                 return 0;
3265
3266         cpu_buffer = buffer->buffers[cpu];
3267         ret = local_read(&cpu_buffer->commit_overrun);
3268
3269         return ret;
3270 }
3271 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3272
3273 /**
3274  * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3275  * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3276  * @buffer: The ring buffer
3277  * @cpu: The per CPU buffer to get the number of overruns from
3278  */
3279 unsigned long
3280 ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu)
3281 {
3282         struct ring_buffer_per_cpu *cpu_buffer;
3283         unsigned long ret;
3284
3285         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3286                 return 0;
3287
3288         cpu_buffer = buffer->buffers[cpu];
3289         ret = local_read(&cpu_buffer->dropped_events);
3290
3291         return ret;
3292 }
3293 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3294
3295 /**
3296  * ring_buffer_read_events_cpu - get the number of events successfully read
3297  * @buffer: The ring buffer
3298  * @cpu: The per CPU buffer to get the number of events read
3299  */
3300 unsigned long
3301 ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu)
3302 {
3303         struct ring_buffer_per_cpu *cpu_buffer;
3304
3305         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3306                 return 0;
3307
3308         cpu_buffer = buffer->buffers[cpu];
3309         return cpu_buffer->read;
3310 }
3311 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3312
3313 /**
3314  * ring_buffer_entries - get the number of entries in a buffer
3315  * @buffer: The ring buffer
3316  *
3317  * Returns the total number of entries in the ring buffer
3318  * (all CPU entries)
3319  */
3320 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3321 {
3322         struct ring_buffer_per_cpu *cpu_buffer;
3323         unsigned long entries = 0;
3324         int cpu;
3325
3326         /* if you care about this being correct, lock the buffer */
3327         for_each_buffer_cpu(buffer, cpu) {
3328                 cpu_buffer = buffer->buffers[cpu];
3329                 entries += rb_num_of_entries(cpu_buffer);
3330         }
3331
3332         return entries;
3333 }
3334 EXPORT_SYMBOL_GPL(ring_buffer_entries);
3335
3336 /**
3337  * ring_buffer_overruns - get the number of overruns in buffer
3338  * @buffer: The ring buffer
3339  *
3340  * Returns the total number of overruns in the ring buffer
3341  * (all CPU entries)
3342  */
3343 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3344 {
3345         struct ring_buffer_per_cpu *cpu_buffer;
3346         unsigned long overruns = 0;
3347         int cpu;
3348
3349         /* if you care about this being correct, lock the buffer */
3350         for_each_buffer_cpu(buffer, cpu) {
3351                 cpu_buffer = buffer->buffers[cpu];
3352                 overruns += local_read(&cpu_buffer->overrun);
3353         }
3354
3355         return overruns;
3356 }
3357 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
3358
3359 static void rb_iter_reset(struct ring_buffer_iter *iter)
3360 {
3361         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3362
3363         /* Iterator usage is expected to have record disabled */
3364         if (list_empty(&cpu_buffer->reader_page->list)) {
3365                 iter->head_page = rb_set_head_page(cpu_buffer);
3366                 if (unlikely(!iter->head_page))
3367                         return;
3368                 iter->head = iter->head_page->read;
3369         } else {
3370                 iter->head_page = cpu_buffer->reader_page;
3371                 iter->head = cpu_buffer->reader_page->read;
3372         }
3373         if (iter->head)
3374                 iter->read_stamp = cpu_buffer->read_stamp;
3375         else
3376                 iter->read_stamp = iter->head_page->page->time_stamp;
3377         iter->cache_reader_page = cpu_buffer->reader_page;
3378         iter->cache_read = cpu_buffer->read;
3379 }
3380
3381 /**
3382  * ring_buffer_iter_reset - reset an iterator
3383  * @iter: The iterator to reset
3384  *
3385  * Resets the iterator, so that it will start from the beginning
3386  * again.
3387  */
3388 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3389 {
3390         struct ring_buffer_per_cpu *cpu_buffer;
3391         unsigned long flags;
3392
3393         if (!iter)
3394                 return;
3395
3396         cpu_buffer = iter->cpu_buffer;
3397
3398         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3399         rb_iter_reset(iter);
3400         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3401 }
3402 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
3403
3404 /**
3405  * ring_buffer_iter_empty - check if an iterator has no more to read
3406  * @iter: The iterator to check
3407  */
3408 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3409 {
3410         struct ring_buffer_per_cpu *cpu_buffer;
3411
3412         cpu_buffer = iter->cpu_buffer;
3413
3414         return iter->head_page == cpu_buffer->commit_page &&
3415                 iter->head == rb_commit_index(cpu_buffer);
3416 }
3417 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
3418
3419 static void
3420 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3421                      struct ring_buffer_event *event)
3422 {
3423         u64 delta;
3424
3425         switch (event->type_len) {
3426         case RINGBUF_TYPE_PADDING:
3427                 return;
3428
3429         case RINGBUF_TYPE_TIME_EXTEND:
3430                 delta = event->array[0];
3431                 delta <<= TS_SHIFT;
3432                 delta += event->time_delta;
3433                 cpu_buffer->read_stamp += delta;
3434                 return;
3435
3436         case RINGBUF_TYPE_TIME_STAMP:
3437                 /* FIXME: not implemented */
3438                 return;
3439
3440         case RINGBUF_TYPE_DATA:
3441                 cpu_buffer->read_stamp += event->time_delta;
3442                 return;
3443
3444         default:
3445                 BUG();
3446         }
3447         return;
3448 }
3449
3450 static void
3451 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3452                           struct ring_buffer_event *event)
3453 {
3454         u64 delta;
3455
3456         switch (event->type_len) {
3457         case RINGBUF_TYPE_PADDING:
3458                 return;
3459
3460         case RINGBUF_TYPE_TIME_EXTEND:
3461                 delta = event->array[0];
3462                 delta <<= TS_SHIFT;
3463                 delta += event->time_delta;
3464                 iter->read_stamp += delta;
3465                 return;
3466
3467         case RINGBUF_TYPE_TIME_STAMP:
3468                 /* FIXME: not implemented */
3469                 return;
3470
3471         case RINGBUF_TYPE_DATA:
3472                 iter->read_stamp += event->time_delta;
3473                 return;
3474
3475         default:
3476                 BUG();
3477         }
3478         return;
3479 }
3480
3481 static struct buffer_page *
3482 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
3483 {
3484         struct buffer_page *reader = NULL;
3485         unsigned long overwrite;
3486         unsigned long flags;
3487         int nr_loops = 0;
3488         int ret;
3489
3490         local_irq_save(flags);
3491         arch_spin_lock(&cpu_buffer->lock);
3492
3493  again:
3494         /*
3495          * This should normally only loop twice. But because the
3496          * start of the reader inserts an empty page, it causes
3497          * a case where we will loop three times. There should be no
3498          * reason to loop four times (that I know of).
3499          */
3500         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
3501                 reader = NULL;
3502                 goto out;
3503         }
3504
3505         reader = cpu_buffer->reader_page;
3506
3507         /* If there's more to read, return this page */
3508         if (cpu_buffer->reader_page->read < rb_page_size(reader))
3509                 goto out;
3510
3511         /* Never should we have an index greater than the size */
3512         if (RB_WARN_ON(cpu_buffer,
3513                        cpu_buffer->reader_page->read > rb_page_size(reader)))
3514                 goto out;
3515
3516         /* check if we caught up to the tail */
3517         reader = NULL;
3518         if (cpu_buffer->commit_page == cpu_buffer->reader_page)
3519                 goto out;
3520
3521         /* Don't bother swapping if the ring buffer is empty */
3522         if (rb_num_of_entries(cpu_buffer) == 0)
3523                 goto out;
3524
3525         /*
3526          * Reset the reader page to size zero.
3527          */
3528         local_set(&cpu_buffer->reader_page->write, 0);
3529         local_set(&cpu_buffer->reader_page->entries, 0);
3530         local_set(&cpu_buffer->reader_page->page->commit, 0);
3531         cpu_buffer->reader_page->real_end = 0;
3532
3533  spin:
3534         /*
3535          * Splice the empty reader page into the list around the head.
3536          */
3537         reader = rb_set_head_page(cpu_buffer);
3538         if (!reader)
3539                 goto out;
3540         cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
3541         cpu_buffer->reader_page->list.prev = reader->list.prev;
3542
3543         /*
3544          * cpu_buffer->pages just needs to point to the buffer, it
3545          *  has no specific buffer page to point to. Lets move it out
3546          *  of our way so we don't accidentally swap it.
3547          */
3548         cpu_buffer->pages = reader->list.prev;
3549
3550         /* The reader page will be pointing to the new head */
3551         rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
3552
3553         /*
3554          * We want to make sure we read the overruns after we set up our
3555          * pointers to the next object. The writer side does a
3556          * cmpxchg to cross pages which acts as the mb on the writer
3557          * side. Note, the reader will constantly fail the swap
3558          * while the writer is updating the pointers, so this
3559          * guarantees that the overwrite recorded here is the one we
3560          * want to compare with the last_overrun.
3561          */
3562         smp_mb();
3563         overwrite = local_read(&(cpu_buffer->overrun));
3564
3565         /*
3566          * Here's the tricky part.
3567          *
3568          * We need to move the pointer past the header page.
3569          * But we can only do that if a writer is not currently
3570          * moving it. The page before the header page has the
3571          * flag bit '1' set if it is pointing to the page we want.
3572          * but if the writer is in the process of moving it
3573          * than it will be '2' or already moved '0'.
3574          */
3575
3576         ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
3577
3578         /*
3579          * If we did not convert it, then we must try again.
3580          */
3581         if (!ret)
3582                 goto spin;
3583
3584         /*
3585          * Yeah! We succeeded in replacing the page.
3586          *
3587          * Now make the new head point back to the reader page.
3588          */
3589         rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
3590         rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
3591
3592         /* Finally update the reader page to the new head */
3593         cpu_buffer->reader_page = reader;
3594         rb_reset_reader_page(cpu_buffer);
3595
3596         if (overwrite != cpu_buffer->last_overrun) {
3597                 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3598                 cpu_buffer->last_overrun = overwrite;
3599         }
3600
3601         goto again;
3602
3603  out:
3604         arch_spin_unlock(&cpu_buffer->lock);
3605         local_irq_restore(flags);
3606
3607         return reader;
3608 }
3609
3610 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3611 {
3612         struct ring_buffer_event *event;
3613         struct buffer_page *reader;
3614         unsigned length;
3615
3616         reader = rb_get_reader_page(cpu_buffer);
3617
3618         /* This function should not be called when buffer is empty */
3619         if (RB_WARN_ON(cpu_buffer, !reader))
3620                 return;
3621
3622         event = rb_reader_event(cpu_buffer);
3623
3624         if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
3625                 cpu_buffer->read++;
3626
3627         rb_update_read_stamp(cpu_buffer, event);
3628
3629         length = rb_event_length(event);
3630         cpu_buffer->reader_page->read += length;
3631 }
3632
3633 static void rb_advance_iter(struct ring_buffer_iter *iter)
3634 {
3635         struct ring_buffer_per_cpu *cpu_buffer;
3636         struct ring_buffer_event *event;
3637         unsigned length;
3638
3639         cpu_buffer = iter->cpu_buffer;
3640
3641         /*
3642          * Check if we are at the end of the buffer.
3643          */
3644         if (iter->head >= rb_page_size(iter->head_page)) {
3645                 /* discarded commits can make the page empty */
3646                 if (iter->head_page == cpu_buffer->commit_page)
3647                         return;
3648                 rb_inc_iter(iter);
3649                 return;
3650         }
3651
3652         event = rb_iter_head_event(iter);
3653
3654         length = rb_event_length(event);
3655
3656         /*
3657          * This should not be called to advance the header if we are
3658          * at the tail of the buffer.
3659          */
3660         if (RB_WARN_ON(cpu_buffer,
3661                        (iter->head_page == cpu_buffer->commit_page) &&
3662                        (iter->head + length > rb_commit_index(cpu_buffer))))
3663                 return;
3664
3665         rb_update_iter_read_stamp(iter, event);
3666
3667         iter->head += length;
3668
3669         /* check for end of page padding */
3670         if ((iter->head >= rb_page_size(iter->head_page)) &&
3671             (iter->head_page != cpu_buffer->commit_page))
3672                 rb_inc_iter(iter);
3673 }
3674
3675 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3676 {
3677         return cpu_buffer->lost_events;
3678 }
3679
3680 static struct ring_buffer_event *
3681 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3682                unsigned long *lost_events)
3683 {
3684         struct ring_buffer_event *event;
3685         struct buffer_page *reader;
3686         int nr_loops = 0;
3687
3688  again:
3689         /*
3690          * We repeat when a time extend is encountered.
3691          * Since the time extend is always attached to a data event,
3692          * we should never loop more than once.
3693          * (We never hit the following condition more than twice).
3694          */
3695         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3696                 return NULL;
3697
3698         reader = rb_get_reader_page(cpu_buffer);
3699         if (!reader)
3700                 return NULL;
3701
3702         event = rb_reader_event(cpu_buffer);
3703
3704         switch (event->type_len) {
3705         case RINGBUF_TYPE_PADDING:
3706                 if (rb_null_event(event))
3707                         RB_WARN_ON(cpu_buffer, 1);
3708                 /*
3709                  * Because the writer could be discarding every
3710                  * event it creates (which would probably be bad)
3711                  * if we were to go back to "again" then we may never
3712                  * catch up, and will trigger the warn on, or lock
3713                  * the box. Return the padding, and we will release
3714                  * the current locks, and try again.
3715                  */
3716                 return event;
3717
3718         case RINGBUF_TYPE_TIME_EXTEND:
3719                 /* Internal data, OK to advance */
3720                 rb_advance_reader(cpu_buffer);
3721                 goto again;
3722
3723         case RINGBUF_TYPE_TIME_STAMP:
3724                 /* FIXME: not implemented */
3725                 rb_advance_reader(cpu_buffer);
3726                 goto again;
3727
3728         case RINGBUF_TYPE_DATA:
3729                 if (ts) {
3730                         *ts = cpu_buffer->read_stamp + event->time_delta;
3731                         ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3732                                                          cpu_buffer->cpu, ts);
3733                 }
3734                 if (lost_events)
3735                         *lost_events = rb_lost_events(cpu_buffer);
3736                 return event;
3737
3738         default:
3739                 BUG();
3740         }
3741
3742         return NULL;
3743 }
3744 EXPORT_SYMBOL_GPL(ring_buffer_peek);
3745
3746 static struct ring_buffer_event *
3747 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3748 {
3749         struct ring_buffer *buffer;
3750         struct ring_buffer_per_cpu *cpu_buffer;
3751         struct ring_buffer_event *event;
3752         int nr_loops = 0;
3753
3754         cpu_buffer = iter->cpu_buffer;
3755         buffer = cpu_buffer->buffer;
3756
3757         /*
3758          * Check if someone performed a consuming read to
3759          * the buffer. A consuming read invalidates the iterator
3760          * and we need to reset the iterator in this case.
3761          */
3762         if (unlikely(iter->cache_read != cpu_buffer->read ||
3763                      iter->cache_reader_page != cpu_buffer->reader_page))
3764                 rb_iter_reset(iter);
3765
3766  again:
3767         if (ring_buffer_iter_empty(iter))
3768                 return NULL;
3769
3770         /*
3771          * We repeat when a time extend is encountered.
3772          * Since the time extend is always attached to a data event,
3773          * we should never loop more than once.
3774          * (We never hit the following condition more than twice).
3775          */
3776         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3777                 return NULL;
3778
3779         if (rb_per_cpu_empty(cpu_buffer))
3780                 return NULL;
3781
3782         if (iter->head >= local_read(&iter->head_page->page->commit)) {
3783                 rb_inc_iter(iter);
3784                 goto again;
3785         }
3786
3787         event = rb_iter_head_event(iter);
3788
3789         switch (event->type_len) {
3790         case RINGBUF_TYPE_PADDING:
3791                 if (rb_null_event(event)) {
3792                         rb_inc_iter(iter);
3793                         goto again;
3794                 }
3795                 rb_advance_iter(iter);
3796                 return event;
3797
3798         case RINGBUF_TYPE_TIME_EXTEND:
3799                 /* Internal data, OK to advance */
3800                 rb_advance_iter(iter);
3801                 goto again;
3802
3803         case RINGBUF_TYPE_TIME_STAMP:
3804                 /* FIXME: not implemented */
3805                 rb_advance_iter(iter);
3806                 goto again;
3807
3808         case RINGBUF_TYPE_DATA:
3809                 if (ts) {
3810                         *ts = iter->read_stamp + event->time_delta;
3811                         ring_buffer_normalize_time_stamp(buffer,
3812                                                          cpu_buffer->cpu, ts);
3813                 }
3814                 return event;
3815
3816         default:
3817                 BUG();
3818         }
3819
3820         return NULL;
3821 }
3822 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3823
3824 static inline int rb_ok_to_lock(void)
3825 {
3826         /*
3827          * If an NMI die dumps out the content of the ring buffer
3828          * do not grab locks. We also permanently disable the ring
3829          * buffer too. A one time deal is all you get from reading
3830          * the ring buffer from an NMI.
3831          */
3832         if (likely(!in_nmi()))
3833                 return 1;
3834
3835         tracing_off_permanent();
3836         return 0;
3837 }
3838
3839 /**
3840  * ring_buffer_peek - peek at the next event to be read
3841  * @buffer: The ring buffer to read
3842  * @cpu: The cpu to peak at
3843  * @ts: The timestamp counter of this event.
3844  * @lost_events: a variable to store if events were lost (may be NULL)
3845  *
3846  * This will return the event that will be read next, but does
3847  * not consume the data.
3848  */
3849 struct ring_buffer_event *
3850 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3851                  unsigned long *lost_events)
3852 {
3853         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3854         struct ring_buffer_event *event;
3855         unsigned long flags;
3856         int dolock;
3857
3858         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3859                 return NULL;
3860
3861         dolock = rb_ok_to_lock();
3862  again:
3863         local_irq_save(flags);
3864         if (dolock)
3865                 raw_spin_lock(&cpu_buffer->reader_lock);
3866         event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3867         if (event && event->type_len == RINGBUF_TYPE_PADDING)
3868                 rb_advance_reader(cpu_buffer);
3869         if (dolock)
3870                 raw_spin_unlock(&cpu_buffer->reader_lock);
3871         local_irq_restore(flags);
3872
3873         if (event && event->type_len == RINGBUF_TYPE_PADDING)
3874                 goto again;
3875
3876         return event;
3877 }
3878
3879 /**
3880  * ring_buffer_iter_peek - peek at the next event to be read
3881  * @iter: The ring buffer iterator
3882  * @ts: The timestamp counter of this event.
3883  *
3884  * This will return the event that will be read next, but does
3885  * not increment the iterator.
3886  */
3887 struct ring_buffer_event *
3888 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3889 {
3890         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3891         struct ring_buffer_event *event;
3892         unsigned long flags;
3893
3894  again:
3895         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3896         event = rb_iter_peek(iter, ts);
3897         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3898
3899         if (event && event->type_len == RINGBUF_TYPE_PADDING)
3900                 goto again;
3901
3902         return event;
3903 }
3904
3905 /**
3906  * ring_buffer_consume - return an event and consume it
3907  * @buffer: The ring buffer to get the next event from
3908  * @cpu: the cpu to read the buffer from
3909  * @ts: a variable to store the timestamp (may be NULL)
3910  * @lost_events: a variable to store if events were lost (may be NULL)
3911  *
3912  * Returns the next event in the ring buffer, and that event is consumed.
3913  * Meaning, that sequential reads will keep returning a different event,
3914  * and eventually empty the ring buffer if the producer is slower.
3915  */
3916 struct ring_buffer_event *
3917 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3918                     unsigned long *lost_events)
3919 {
3920         struct ring_buffer_per_cpu *cpu_buffer;
3921         struct ring_buffer_event *event = NULL;
3922         unsigned long flags;
3923         int dolock;
3924
3925         dolock = rb_ok_to_lock();
3926
3927  again:
3928         /* might be called in atomic */
3929         preempt_disable();
3930
3931         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3932                 goto out;
3933
3934         cpu_buffer = buffer->buffers[cpu];
3935         local_irq_save(flags);
3936         if (dolock)
3937                 raw_spin_lock(&cpu_buffer->reader_lock);
3938
3939         event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3940         if (event) {
3941                 cpu_buffer->lost_events = 0;
3942                 rb_advance_reader(cpu_buffer);
3943         }
3944
3945         if (dolock)
3946                 raw_spin_unlock(&cpu_buffer->reader_lock);
3947         local_irq_restore(flags);
3948
3949  out:
3950         preempt_enable();
3951
3952         if (event && event->type_len == RINGBUF_TYPE_PADDING)
3953                 goto again;
3954
3955         return event;
3956 }
3957 EXPORT_SYMBOL_GPL(ring_buffer_consume);
3958
3959 /**
3960  * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
3961  * @buffer: The ring buffer to read from
3962  * @cpu: The cpu buffer to iterate over
3963  *
3964  * This performs the initial preparations necessary to iterate
3965  * through the buffer.  Memory is allocated, buffer recording
3966  * is disabled, and the iterator pointer is returned to the caller.
3967  *
3968  * Disabling buffer recordng prevents the reading from being
3969  * corrupted. This is not a consuming read, so a producer is not
3970  * expected.
3971  *
3972  * After a sequence of ring_buffer_read_prepare calls, the user is
3973  * expected to make at least one call to ring_buffer_read_prepare_sync.
3974  * Afterwards, ring_buffer_read_start is invoked to get things going
3975  * for real.
3976  *
3977  * This overall must be paired with ring_buffer_read_finish.
3978  */
3979 struct ring_buffer_iter *
3980 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
3981 {
3982         struct ring_buffer_per_cpu *cpu_buffer;
3983         struct ring_buffer_iter *iter;
3984
3985         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3986                 return NULL;
3987
3988         iter = kmalloc(sizeof(*iter), GFP_KERNEL);
3989         if (!iter)
3990                 return NULL;
3991
3992         cpu_buffer = buffer->buffers[cpu];
3993
3994         iter->cpu_buffer = cpu_buffer;
3995
3996         atomic_inc(&buffer->resize_disabled);
3997         atomic_inc(&cpu_buffer->record_disabled);
3998
3999         return iter;
4000 }
4001 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
4002
4003 /**
4004  * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
4005  *
4006  * All previously invoked ring_buffer_read_prepare calls to prepare
4007  * iterators will be synchronized.  Afterwards, read_buffer_read_start
4008  * calls on those iterators are allowed.
4009  */
4010 void
4011 ring_buffer_read_prepare_sync(void)
4012 {
4013         synchronize_sched();
4014 }
4015 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4016
4017 /**
4018  * ring_buffer_read_start - start a non consuming read of the buffer
4019  * @iter: The iterator returned by ring_buffer_read_prepare
4020  *
4021  * This finalizes the startup of an iteration through the buffer.
4022  * The iterator comes from a call to ring_buffer_read_prepare and
4023  * an intervening ring_buffer_read_prepare_sync must have been
4024  * performed.
4025  *
4026  * Must be paired with ring_buffer_read_finish.
4027  */
4028 void
4029 ring_buffer_read_start(struct ring_buffer_iter *iter)
4030 {
4031         struct ring_buffer_per_cpu *cpu_buffer;
4032         unsigned long flags;
4033
4034         if (!iter)
4035                 return;
4036
4037         cpu_buffer = iter->cpu_buffer;
4038
4039         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4040         arch_spin_lock(&cpu_buffer->lock);
4041         rb_iter_reset(iter);
4042         arch_spin_unlock(&cpu_buffer->lock);
4043         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4044 }
4045 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
4046
4047 /**
4048  * ring_buffer_read_finish - finish reading the iterator of the buffer
4049  * @iter: The iterator retrieved by ring_buffer_start
4050  *
4051  * This re-enables the recording to the buffer, and frees the
4052  * iterator.
4053  */
4054 void
4055 ring_buffer_read_finish(struct ring_buffer_iter *iter)
4056 {
4057         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4058         unsigned long flags;
4059
4060         /*
4061          * Ring buffer is disabled from recording, here's a good place
4062          * to check the integrity of the ring buffer.
4063          * Must prevent readers from trying to read, as the check
4064          * clears the HEAD page and readers require it.
4065          */
4066         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4067         rb_check_pages(cpu_buffer);
4068         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4069
4070         atomic_dec(&cpu_buffer->record_disabled);
4071         atomic_dec(&cpu_buffer->buffer->resize_disabled);
4072         kfree(iter);
4073 }
4074 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
4075
4076 /**
4077  * ring_buffer_read - read the next item in the ring buffer by the iterator
4078  * @iter: The ring buffer iterator
4079  * @ts: The time stamp of the event read.
4080  *
4081  * This reads the next event in the ring buffer and increments the iterator.
4082  */
4083 struct ring_buffer_event *
4084 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
4085 {
4086         struct ring_buffer_event *event;
4087         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4088         unsigned long flags;
4089
4090         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4091  again:
4092         event = rb_iter_peek(iter, ts);
4093         if (!event)
4094                 goto out;
4095
4096         if (event->type_len == RINGBUF_TYPE_PADDING)
4097                 goto again;
4098
4099         rb_advance_iter(iter);
4100  out:
4101         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4102
4103         return event;
4104 }
4105 EXPORT_SYMBOL_GPL(ring_buffer_read);
4106
4107 /**
4108  * ring_buffer_size - return the size of the ring buffer (in bytes)
4109  * @buffer: The ring buffer.
4110  */
4111 unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
4112 {
4113         /*
4114          * Earlier, this method returned
4115          *      BUF_PAGE_SIZE * buffer->nr_pages
4116          * Since the nr_pages field is now removed, we have converted this to
4117          * return the per cpu buffer value.
4118          */
4119         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4120                 return 0;
4121
4122         return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
4123 }
4124 EXPORT_SYMBOL_GPL(ring_buffer_size);
4125
4126 static void
4127 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4128 {
4129         rb_head_page_deactivate(cpu_buffer);
4130
4131         cpu_buffer->head_page
4132                 = list_entry(cpu_buffer->pages, struct buffer_page, list);
4133         local_set(&cpu_buffer->head_page->write, 0);
4134         local_set(&cpu_buffer->head_page->entries, 0);
4135         local_set(&cpu_buffer->head_page->page->commit, 0);
4136
4137         cpu_buffer->head_page->read = 0;
4138
4139         cpu_buffer->tail_page = cpu_buffer->head_page;
4140         cpu_buffer->commit_page = cpu_buffer->head_page;
4141
4142         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
4143         INIT_LIST_HEAD(&cpu_buffer->new_pages);
4144         local_set(&cpu_buffer->reader_page->write, 0);
4145         local_set(&cpu_buffer->reader_page->entries, 0);
4146         local_set(&cpu_buffer->reader_page->page->commit, 0);
4147         cpu_buffer->reader_page->read = 0;
4148
4149         local_set(&cpu_buffer->entries_bytes, 0);
4150         local_set(&cpu_buffer->overrun, 0);
4151         local_set(&cpu_buffer->commit_overrun, 0);
4152         local_set(&cpu_buffer->dropped_events, 0);
4153         local_set(&cpu_buffer->entries, 0);
4154         local_set(&cpu_buffer->committing, 0);
4155         local_set(&cpu_buffer->commits, 0);
4156         cpu_buffer->read = 0;
4157         cpu_buffer->read_bytes = 0;
4158
4159         cpu_buffer->write_stamp = 0;
4160         cpu_buffer->read_stamp = 0;
4161
4162         cpu_buffer->lost_events = 0;
4163         cpu_buffer->last_overrun = 0;
4164
4165         rb_head_page_activate(cpu_buffer);
4166 }
4167
4168 /**
4169  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4170  * @buffer: The ring buffer to reset a per cpu buffer of
4171  * @cpu: The CPU buffer to be reset
4172  */
4173 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
4174 {
4175         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4176         unsigned long flags;
4177
4178         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4179                 return;
4180
4181         atomic_inc(&buffer->resize_disabled);
4182         atomic_inc(&cpu_buffer->record_disabled);
4183
4184         /* Make sure all commits have finished */
4185         synchronize_sched();
4186
4187         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4188
4189         if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4190                 goto out;
4191
4192         arch_spin_lock(&cpu_buffer->lock);
4193
4194         rb_reset_cpu(cpu_buffer);
4195
4196         arch_spin_unlock(&cpu_buffer->lock);
4197
4198  out:
4199         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4200
4201         atomic_dec(&cpu_buffer->record_disabled);
4202         atomic_dec(&buffer->resize_disabled);
4203 }
4204 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
4205
4206 /**
4207  * ring_buffer_reset - reset a ring buffer
4208  * @buffer: The ring buffer to reset all cpu buffers
4209  */
4210 void ring_buffer_reset(struct ring_buffer *buffer)
4211 {
4212         int cpu;
4213
4214         for_each_buffer_cpu(buffer, cpu)
4215                 ring_buffer_reset_cpu(buffer, cpu);
4216 }
4217 EXPORT_SYMBOL_GPL(ring_buffer_reset);
4218
4219 /**
4220  * rind_buffer_empty - is the ring buffer empty?
4221  * @buffer: The ring buffer to test
4222  */
4223 int ring_buffer_empty(struct ring_buffer *buffer)
4224 {
4225         struct ring_buffer_per_cpu *cpu_buffer;
4226         unsigned long flags;
4227         int dolock;
4228         int cpu;
4229         int ret;
4230
4231         dolock = rb_ok_to_lock();
4232
4233         /* yes this is racy, but if you don't like the race, lock the buffer */
4234         for_each_buffer_cpu(buffer, cpu) {
4235                 cpu_buffer = buffer->buffers[cpu];
4236                 local_irq_save(flags);
4237                 if (dolock)
4238                         raw_spin_lock(&cpu_buffer->reader_lock);
4239                 ret = rb_per_cpu_empty(cpu_buffer);
4240                 if (dolock)
4241                         raw_spin_unlock(&cpu_buffer->reader_lock);
4242                 local_irq_restore(flags);
4243
4244                 if (!ret)
4245                         return 0;
4246         }
4247
4248         return 1;
4249 }
4250 EXPORT_SYMBOL_GPL(ring_buffer_empty);
4251
4252 /**
4253  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4254  * @buffer: The ring buffer
4255  * @cpu: The CPU buffer to test
4256  */
4257 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
4258 {
4259         struct ring_buffer_per_cpu *cpu_buffer;
4260         unsigned long flags;
4261         int dolock;
4262         int ret;
4263
4264         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4265                 return 1;
4266
4267         dolock = rb_ok_to_lock();
4268
4269         cpu_buffer = buffer->buffers[cpu];
4270         local_irq_save(flags);
4271         if (dolock)
4272                 raw_spin_lock(&cpu_buffer->reader_lock);
4273         ret = rb_per_cpu_empty(cpu_buffer);
4274         if (dolock)
4275                 raw_spin_unlock(&cpu_buffer->reader_lock);
4276         local_irq_restore(flags);
4277
4278         return ret;
4279 }
4280 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
4281
4282 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4283 /**
4284  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4285  * @buffer_a: One buffer to swap with
4286  * @buffer_b: The other buffer to swap with
4287  *
4288  * This function is useful for tracers that want to take a "snapshot"
4289  * of a CPU buffer and has another back up buffer lying around.
4290  * it is expected that the tracer handles the cpu buffer not being
4291  * used at the moment.
4292  */
4293 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4294                          struct ring_buffer *buffer_b, int cpu)
4295 {
4296         struct ring_buffer_per_cpu *cpu_buffer_a;
4297         struct ring_buffer_per_cpu *cpu_buffer_b;
4298         int ret = -EINVAL;
4299
4300         if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4301             !cpumask_test_cpu(cpu, buffer_b->cpumask))
4302                 goto out;
4303
4304         cpu_buffer_a = buffer_a->buffers[cpu];
4305         cpu_buffer_b = buffer_b->buffers[cpu];
4306
4307         /* At least make sure the two buffers are somewhat the same */
4308         if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
4309                 goto out;
4310
4311         ret = -EAGAIN;
4312
4313         if (ring_buffer_flags != RB_BUFFERS_ON)
4314                 goto out;
4315
4316         if (atomic_read(&buffer_a->record_disabled))
4317                 goto out;
4318
4319         if (atomic_read(&buffer_b->record_disabled))
4320                 goto out;
4321
4322         if (atomic_read(&cpu_buffer_a->record_disabled))
4323                 goto out;
4324
4325         if (atomic_read(&cpu_buffer_b->record_disabled))
4326                 goto out;
4327
4328         /*
4329          * We can't do a synchronize_sched here because this
4330          * function can be called in atomic context.
4331          * Normally this will be called from the same CPU as cpu.
4332          * If not it's up to the caller to protect this.
4333          */
4334         atomic_inc(&cpu_buffer_a->record_disabled);
4335         atomic_inc(&cpu_buffer_b->record_disabled);
4336
4337         ret = -EBUSY;
4338         if (local_read(&cpu_buffer_a->committing))
4339                 goto out_dec;
4340         if (local_read(&cpu_buffer_b->committing))
4341                 goto out_dec;
4342
4343         buffer_a->buffers[cpu] = cpu_buffer_b;
4344         buffer_b->buffers[cpu] = cpu_buffer_a;
4345
4346         cpu_buffer_b->buffer = buffer_a;
4347         cpu_buffer_a->buffer = buffer_b;
4348
4349         ret = 0;
4350
4351 out_dec:
4352         atomic_dec(&cpu_buffer_a->record_disabled);
4353         atomic_dec(&cpu_buffer_b->record_disabled);
4354 out:
4355         return ret;
4356 }
4357 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
4358 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
4359
4360 /**
4361  * ring_buffer_alloc_read_page - allocate a page to read from buffer
4362  * @buffer: the buffer to allocate for.
4363  * @cpu: the cpu buffer to allocate.
4364  *
4365  * This function is used in conjunction with ring_buffer_read_page.
4366  * When reading a full page from the ring buffer, these functions
4367  * can be used to speed up the process. The calling function should
4368  * allocate a few pages first with this function. Then when it
4369  * needs to get pages from the ring buffer, it passes the result
4370  * of this function into ring_buffer_read_page, which will swap
4371  * the page that was allocated, with the read page of the buffer.
4372  *
4373  * Returns:
4374  *  The page allocated, or NULL on error.
4375  */
4376 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
4377 {
4378         struct buffer_data_page *bpage;
4379         struct page *page;
4380
4381         page = alloc_pages_node(cpu_to_node(cpu),
4382                                 GFP_KERNEL | __GFP_NORETRY, 0);
4383         if (!page)
4384                 return NULL;
4385
4386         bpage = page_address(page);
4387
4388         rb_init_page(bpage);
4389
4390         return bpage;
4391 }
4392 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
4393
4394 /**
4395  * ring_buffer_free_read_page - free an allocated read page
4396  * @buffer: the buffer the page was allocate for
4397  * @data: the page to free
4398  *
4399  * Free a page allocated from ring_buffer_alloc_read_page.
4400  */
4401 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
4402 {
4403         free_page((unsigned long)data);
4404 }
4405 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
4406
4407 /**
4408  * ring_buffer_read_page - extract a page from the ring buffer
4409  * @buffer: buffer to extract from
4410  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
4411  * @len: amount to extract
4412  * @cpu: the cpu of the buffer to extract
4413  * @full: should the extraction only happen when the page is full.
4414  *
4415  * This function will pull out a page from the ring buffer and consume it.
4416  * @data_page must be the address of the variable that was returned
4417  * from ring_buffer_alloc_read_page. This is because the page might be used
4418  * to swap with a page in the ring buffer.
4419  *
4420  * for example:
4421  *      rpage = ring_buffer_alloc_read_page(buffer, cpu);
4422  *      if (!rpage)
4423  *              return error;
4424  *      ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
4425  *      if (ret >= 0)
4426  *              process_page(rpage, ret);
4427  *
4428  * When @full is set, the function will not return true unless
4429  * the writer is off the reader page.
4430  *
4431  * Note: it is up to the calling functions to handle sleeps and wakeups.
4432  *  The ring buffer can be used anywhere in the kernel and can not
4433  *  blindly call wake_up. The layer that uses the ring buffer must be
4434  *  responsible for that.
4435  *
4436  * Returns:
4437  *  >=0 if data has been transferred, returns the offset of consumed data.
4438  *  <0 if no data has been transferred.
4439  */
4440 int ring_buffer_read_page(struct ring_buffer *buffer,
4441                           void **data_page, size_t len, int cpu, int full)
4442 {
4443         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4444         struct ring_buffer_event *event;
4445         struct buffer_data_page *bpage;
4446         struct buffer_page *reader;
4447         unsigned long missed_events;
4448         unsigned long flags;
4449         unsigned int commit;
4450         unsigned int read;
4451         u64 save_timestamp;
4452         int ret = -1;
4453
4454         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4455                 goto out;
4456
4457         /*
4458          * If len is not big enough to hold the page header, then
4459          * we can not copy anything.
4460          */
4461         if (len <= BUF_PAGE_HDR_SIZE)
4462                 goto out;
4463
4464         len -= BUF_PAGE_HDR_SIZE;
4465
4466         if (!data_page)
4467                 goto out;
4468
4469         bpage = *data_page;
4470         if (!bpage)
4471                 goto out;
4472
4473         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4474
4475         reader = rb_get_reader_page(cpu_buffer);
4476         if (!reader)
4477                 goto out_unlock;
4478
4479         event = rb_reader_event(cpu_buffer);
4480
4481         read = reader->read;
4482         commit = rb_page_commit(reader);
4483
4484         /* Check if any events were dropped */
4485         missed_events = cpu_buffer->lost_events;
4486
4487         /*
4488          * If this page has been partially read or
4489          * if len is not big enough to read the rest of the page or
4490          * a writer is still on the page, then
4491          * we must copy the data from the page to the buffer.
4492          * Otherwise, we can simply swap the page with the one passed in.
4493          */
4494         if (read || (len < (commit - read)) ||
4495             cpu_buffer->reader_page == cpu_buffer->commit_page) {
4496                 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
4497                 unsigned int rpos = read;
4498                 unsigned int pos = 0;
4499                 unsigned int size;
4500
4501                 if (full)
4502                         goto out_unlock;
4503
4504                 if (len > (commit - read))
4505                         len = (commit - read);
4506
4507                 /* Always keep the time extend and data together */
4508                 size = rb_event_ts_length(event);
4509
4510                 if (len < size)
4511                         goto out_unlock;
4512
4513                 /* save the current timestamp, since the user will need it */
4514                 save_timestamp = cpu_buffer->read_stamp;
4515
4516                 /* Need to copy one event at a time */
4517                 do {
4518                         /* We need the size of one event, because
4519                          * rb_advance_reader only advances by one event,
4520                          * whereas rb_event_ts_length may include the size of
4521                          * one or two events.
4522                          * We have already ensured there's enough space if this
4523                          * is a time extend. */
4524                         size = rb_event_length(event);
4525                         memcpy(bpage->data + pos, rpage->data + rpos, size);
4526
4527                         len -= size;
4528
4529                         rb_advance_reader(cpu_buffer);
4530                         rpos = reader->read;
4531                         pos += size;
4532
4533                         if (rpos >= commit)
4534                                 break;
4535
4536                         event = rb_reader_event(cpu_buffer);
4537                         /* Always keep the time extend and data together */
4538                         size = rb_event_ts_length(event);
4539                 } while (len >= size);
4540
4541                 /* update bpage */
4542                 local_set(&bpage->commit, pos);
4543                 bpage->time_stamp = save_timestamp;
4544
4545                 /* we copied everything to the beginning */
4546                 read = 0;
4547         } else {
4548                 /* update the entry counter */
4549                 cpu_buffer->read += rb_page_entries(reader);
4550                 cpu_buffer->read_bytes += BUF_PAGE_SIZE;
4551
4552                 /* swap the pages */
4553                 rb_init_page(bpage);
4554                 bpage = reader->page;
4555                 reader->page = *data_page;
4556                 local_set(&reader->write, 0);
4557                 local_set(&reader->entries, 0);
4558                 reader->read = 0;
4559                 *data_page = bpage;
4560
4561                 /*
4562                  * Use the real_end for the data size,
4563                  * This gives us a chance to store the lost events
4564                  * on the page.
4565                  */
4566                 if (reader->real_end)
4567                         local_set(&bpage->commit, reader->real_end);
4568         }
4569         ret = read;
4570
4571         cpu_buffer->lost_events = 0;
4572
4573         commit = local_read(&bpage->commit);
4574         /*
4575          * Set a flag in the commit field if we lost events
4576          */
4577         if (missed_events) {
4578                 /* If there is room at the end of the page to save the
4579                  * missed events, then record it there.
4580                  */
4581                 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4582                         memcpy(&bpage->data[commit], &missed_events,
4583                                sizeof(missed_events));
4584                         local_add(RB_MISSED_STORED, &bpage->commit);
4585                         commit += sizeof(missed_events);
4586                 }
4587                 local_add(RB_MISSED_EVENTS, &bpage->commit);
4588         }
4589
4590         /*
4591          * This page may be off to user land. Zero it out here.
4592          */
4593         if (commit < BUF_PAGE_SIZE)
4594                 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4595
4596  out_unlock:
4597         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4598
4599  out:
4600         return ret;
4601 }
4602 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
4603
4604 #ifdef CONFIG_HOTPLUG_CPU
4605 static int rb_cpu_notify(struct notifier_block *self,
4606                          unsigned long action, void *hcpu)
4607 {
4608         struct ring_buffer *buffer =
4609                 container_of(self, struct ring_buffer, cpu_notify);
4610         long cpu = (long)hcpu;
4611         int cpu_i, nr_pages_same;
4612         unsigned int nr_pages;
4613
4614         switch (action) {
4615         case CPU_UP_PREPARE:
4616         case CPU_UP_PREPARE_FROZEN:
4617                 if (cpumask_test_cpu(cpu, buffer->cpumask))
4618                         return NOTIFY_OK;
4619
4620                 nr_pages = 0;
4621                 nr_pages_same = 1;
4622                 /* check if all cpu sizes are same */
4623                 for_each_buffer_cpu(buffer, cpu_i) {
4624                         /* fill in the size from first enabled cpu */
4625                         if (nr_pages == 0)
4626                                 nr_pages = buffer->buffers[cpu_i]->nr_pages;
4627                         if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4628                                 nr_pages_same = 0;
4629                                 break;
4630                         }
4631                 }
4632                 /* allocate minimum pages, user can later expand it */
4633                 if (!nr_pages_same)
4634                         nr_pages = 2;
4635                 buffer->buffers[cpu] =
4636                         rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
4637                 if (!buffer->buffers[cpu]) {
4638                         WARN(1, "failed to allocate ring buffer on CPU %ld\n",
4639                              cpu);
4640                         return NOTIFY_OK;
4641                 }
4642                 smp_wmb();
4643                 cpumask_set_cpu(cpu, buffer->cpumask);
4644                 break;
4645         case CPU_DOWN_PREPARE:
4646         case CPU_DOWN_PREPARE_FROZEN:
4647                 /*
4648                  * Do nothing.
4649                  *  If we were to free the buffer, then the user would
4650                  *  lose any trace that was in the buffer.
4651                  */
4652                 break;
4653         default:
4654                 break;
4655         }
4656         return NOTIFY_OK;
4657 }
4658 #endif
4659
4660 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
4661 /*
4662  * This is a basic integrity check of the ring buffer.
4663  * Late in the boot cycle this test will run when configured in.
4664  * It will kick off a thread per CPU that will go into a loop
4665  * writing to the per cpu ring buffer various sizes of data.
4666  * Some of the data will be large items, some small.
4667  *
4668  * Another thread is created that goes into a spin, sending out
4669  * IPIs to the other CPUs to also write into the ring buffer.
4670  * this is to test the nesting ability of the buffer.
4671  *
4672  * Basic stats are recorded and reported. If something in the
4673  * ring buffer should happen that's not expected, a big warning
4674  * is displayed and all ring buffers are disabled.
4675  */
4676 static struct task_struct *rb_threads[NR_CPUS] __initdata;
4677
4678 struct rb_test_data {
4679         struct ring_buffer      *buffer;
4680         unsigned long           events;
4681         unsigned long           bytes_written;
4682         unsigned long           bytes_alloc;
4683         unsigned long           bytes_dropped;
4684         unsigned long           events_nested;
4685         unsigned long           bytes_written_nested;
4686         unsigned long           bytes_alloc_nested;
4687         unsigned long           bytes_dropped_nested;
4688         int                     min_size_nested;
4689         int                     max_size_nested;
4690         int                     max_size;
4691         int                     min_size;
4692         int                     cpu;
4693         int                     cnt;
4694 };
4695
4696 static struct rb_test_data rb_data[NR_CPUS] __initdata;
4697
4698 /* 1 meg per cpu */
4699 #define RB_TEST_BUFFER_SIZE     1048576
4700
4701 static char rb_string[] __initdata =
4702         "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
4703         "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
4704         "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
4705
4706 static bool rb_test_started __initdata;
4707
4708 struct rb_item {
4709         int size;
4710         char str[];
4711 };
4712
4713 static __init int rb_write_something(struct rb_test_data *data, bool nested)
4714 {
4715         struct ring_buffer_event *event;
4716         struct rb_item *item;
4717         bool started;
4718         int event_len;
4719         int size;
4720         int len;
4721         int cnt;
4722
4723         /* Have nested writes different that what is written */
4724         cnt = data->cnt + (nested ? 27 : 0);
4725
4726         /* Multiply cnt by ~e, to make some unique increment */
4727         size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1);
4728
4729         len = size + sizeof(struct rb_item);
4730
4731         started = rb_test_started;
4732         /* read rb_test_started before checking buffer enabled */
4733         smp_rmb();
4734
4735         event = ring_buffer_lock_reserve(data->buffer, len);
4736         if (!event) {
4737                 /* Ignore dropped events before test starts. */
4738                 if (started) {
4739                         if (nested)
4740                                 data->bytes_dropped += len;
4741                         else
4742                                 data->bytes_dropped_nested += len;
4743                 }
4744                 return len;
4745         }
4746
4747         event_len = ring_buffer_event_length(event);
4748
4749         if (RB_WARN_ON(data->buffer, event_len < len))
4750                 goto out;
4751
4752         item = ring_buffer_event_data(event);
4753         item->size = size;
4754         memcpy(item->str, rb_string, size);
4755
4756         if (nested) {
4757                 data->bytes_alloc_nested += event_len;
4758                 data->bytes_written_nested += len;
4759                 data->events_nested++;
4760                 if (!data->min_size_nested || len < data->min_size_nested)
4761                         data->min_size_nested = len;
4762                 if (len > data->max_size_nested)
4763                         data->max_size_nested = len;
4764         } else {
4765                 data->bytes_alloc += event_len;
4766                 data->bytes_written += len;
4767                 data->events++;
4768                 if (!data->min_size || len < data->min_size)
4769                         data->max_size = len;
4770                 if (len > data->max_size)
4771                         data->max_size = len;
4772         }
4773
4774  out:
4775         ring_buffer_unlock_commit(data->buffer, event);
4776
4777         return 0;
4778 }
4779
4780 static __init int rb_test(void *arg)
4781 {
4782         struct rb_test_data *data = arg;
4783
4784         while (!kthread_should_stop()) {
4785                 rb_write_something(data, false);
4786                 data->cnt++;
4787
4788                 set_current_state(TASK_INTERRUPTIBLE);
4789                 /* Now sleep between a min of 100-300us and a max of 1ms */
4790                 usleep_range(((data->cnt % 3) + 1) * 100, 1000);
4791         }
4792
4793         return 0;
4794 }
4795
4796 static __init void rb_ipi(void *ignore)
4797 {
4798         struct rb_test_data *data;
4799         int cpu = smp_processor_id();
4800
4801         data = &rb_data[cpu];
4802         rb_write_something(data, true);
4803 }
4804
4805 static __init int rb_hammer_test(void *arg)
4806 {
4807         while (!kthread_should_stop()) {
4808
4809                 /* Send an IPI to all cpus to write data! */
4810                 smp_call_function(rb_ipi, NULL, 1);
4811                 /* No sleep, but for non preempt, let others run */
4812                 schedule();
4813         }
4814
4815         return 0;
4816 }
4817
4818 static __init int test_ringbuffer(void)
4819 {
4820         struct task_struct *rb_hammer;
4821         struct ring_buffer *buffer;
4822         int cpu;
4823         int ret = 0;
4824
4825         pr_info("Running ring buffer tests...\n");
4826
4827         buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
4828         if (WARN_ON(!buffer))
4829                 return 0;
4830
4831         /* Disable buffer so that threads can't write to it yet */
4832         ring_buffer_record_off(buffer);
4833
4834         for_each_online_cpu(cpu) {
4835                 rb_data[cpu].buffer = buffer;
4836                 rb_data[cpu].cpu = cpu;
4837                 rb_data[cpu].cnt = cpu;
4838                 rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
4839                                                  "rbtester/%d", cpu);
4840                 if (WARN_ON(!rb_threads[cpu])) {
4841                         pr_cont("FAILED\n");
4842                         ret = -1;
4843                         goto out_free;
4844                 }
4845
4846                 kthread_bind(rb_threads[cpu], cpu);
4847                 wake_up_process(rb_threads[cpu]);
4848         }
4849
4850         /* Now create the rb hammer! */
4851         rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
4852         if (WARN_ON(!rb_hammer)) {
4853                 pr_cont("FAILED\n");
4854                 ret = -1;
4855                 goto out_free;
4856         }
4857
4858         ring_buffer_record_on(buffer);
4859         /*
4860          * Show buffer is enabled before setting rb_test_started.
4861          * Yes there's a small race window where events could be
4862          * dropped and the thread wont catch it. But when a ring
4863          * buffer gets enabled, there will always be some kind of
4864          * delay before other CPUs see it. Thus, we don't care about
4865          * those dropped events. We care about events dropped after
4866          * the threads see that the buffer is active.
4867          */
4868         smp_wmb();
4869         rb_test_started = true;
4870
4871         set_current_state(TASK_INTERRUPTIBLE);
4872         /* Just run for 10 seconds */;
4873         schedule_timeout(10 * HZ);
4874
4875         kthread_stop(rb_hammer);
4876
4877  out_free:
4878         for_each_online_cpu(cpu) {
4879                 if (!rb_threads[cpu])
4880                         break;
4881                 kthread_stop(rb_threads[cpu]);
4882         }
4883         if (ret) {
4884                 ring_buffer_free(buffer);
4885                 return ret;
4886         }
4887
4888         /* Report! */
4889         pr_info("finished\n");
4890         for_each_online_cpu(cpu) {
4891                 struct ring_buffer_event *event;
4892                 struct rb_test_data *data = &rb_data[cpu];
4893                 struct rb_item *item;
4894                 unsigned long total_events;
4895                 unsigned long total_dropped;
4896                 unsigned long total_written;
4897                 unsigned long total_alloc;
4898                 unsigned long total_read = 0;
4899                 unsigned long total_size = 0;
4900                 unsigned long total_len = 0;
4901                 unsigned long total_lost = 0;
4902                 unsigned long lost;
4903                 int big_event_size;
4904                 int small_event_size;
4905
4906                 ret = -1;
4907
4908                 total_events = data->events + data->events_nested;
4909                 total_written = data->bytes_written + data->bytes_written_nested;
4910                 total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
4911                 total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
4912
4913                 big_event_size = data->max_size + data->max_size_nested;
4914                 small_event_size = data->min_size + data->min_size_nested;
4915
4916                 pr_info("CPU %d:\n", cpu);
4917                 pr_info("              events:    %ld\n", total_events);
4918                 pr_info("       dropped bytes:    %ld\n", total_dropped);
4919                 pr_info("       alloced bytes:    %ld\n", total_alloc);
4920                 pr_info("       written bytes:    %ld\n", total_written);
4921                 pr_info("       biggest event:    %d\n", big_event_size);
4922                 pr_info("      smallest event:    %d\n", small_event_size);
4923
4924                 if (RB_WARN_ON(buffer, total_dropped))
4925                         break;
4926
4927                 ret = 0;
4928
4929                 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
4930                         total_lost += lost;
4931                         item = ring_buffer_event_data(event);
4932                         total_len += ring_buffer_event_length(event);
4933                         total_size += item->size + sizeof(struct rb_item);
4934                         if (memcmp(&item->str[0], rb_string, item->size) != 0) {
4935                                 pr_info("FAILED!\n");
4936                                 pr_info("buffer had: %.*s\n", item->size, item->str);
4937                                 pr_info("expected:   %.*s\n", item->size, rb_string);
4938                                 RB_WARN_ON(buffer, 1);
4939                                 ret = -1;
4940                                 break;
4941                         }
4942                         total_read++;
4943                 }
4944                 if (ret)
4945                         break;
4946
4947                 ret = -1;
4948
4949                 pr_info("         read events:   %ld\n", total_read);
4950                 pr_info("         lost events:   %ld\n", total_lost);
4951                 pr_info("        total events:   %ld\n", total_lost + total_read);
4952                 pr_info("  recorded len bytes:   %ld\n", total_len);
4953                 pr_info(" recorded size bytes:   %ld\n", total_size);
4954                 if (total_lost)
4955                         pr_info(" With dropped events, record len and size may not match\n"
4956                                 " alloced and written from above\n");
4957                 if (!total_lost) {
4958                         if (RB_WARN_ON(buffer, total_len != total_alloc ||
4959                                        total_size != total_written))
4960                                 break;
4961                 }
4962                 if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
4963                         break;
4964
4965                 ret = 0;
4966         }
4967         if (!ret)
4968                 pr_info("Ring buffer PASSED!\n");
4969
4970         ring_buffer_free(buffer);
4971         return 0;
4972 }
4973
4974 late_initcall(test_ringbuffer);
4975 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */