ring-buffer: Use long for nr_pages to avoid overflow failures
[firefly-linux-kernel-4.4.55.git] / kernel / trace / ring_buffer.c
1 /*
2  * Generic ring buffer
3  *
4  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5  */
6 #include <linux/trace_events.h>
7 #include <linux/ring_buffer.h>
8 #include <linux/trace_clock.h>
9 #include <linux/trace_seq.h>
10 #include <linux/spinlock.h>
11 #include <linux/irq_work.h>
12 #include <linux/uaccess.h>
13 #include <linux/hardirq.h>
14 #include <linux/kthread.h>      /* for self test */
15 #include <linux/kmemcheck.h>
16 #include <linux/module.h>
17 #include <linux/percpu.h>
18 #include <linux/mutex.h>
19 #include <linux/delay.h>
20 #include <linux/slab.h>
21 #include <linux/init.h>
22 #include <linux/hash.h>
23 #include <linux/list.h>
24 #include <linux/cpu.h>
25
26 #include <asm/local.h>
27
28 static void update_pages_handler(struct work_struct *work);
29
30 /*
31  * The ring buffer header is special. We must manually up keep it.
32  */
33 int ring_buffer_print_entry_header(struct trace_seq *s)
34 {
35         trace_seq_puts(s, "# compressed entry header\n");
36         trace_seq_puts(s, "\ttype_len    :    5 bits\n");
37         trace_seq_puts(s, "\ttime_delta  :   27 bits\n");
38         trace_seq_puts(s, "\tarray       :   32 bits\n");
39         trace_seq_putc(s, '\n');
40         trace_seq_printf(s, "\tpadding     : type == %d\n",
41                          RINGBUF_TYPE_PADDING);
42         trace_seq_printf(s, "\ttime_extend : type == %d\n",
43                          RINGBUF_TYPE_TIME_EXTEND);
44         trace_seq_printf(s, "\tdata max type_len  == %d\n",
45                          RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
46
47         return !trace_seq_has_overflowed(s);
48 }
49
50 /*
51  * The ring buffer is made up of a list of pages. A separate list of pages is
52  * allocated for each CPU. A writer may only write to a buffer that is
53  * associated with the CPU it is currently executing on.  A reader may read
54  * from any per cpu buffer.
55  *
56  * The reader is special. For each per cpu buffer, the reader has its own
57  * reader page. When a reader has read the entire reader page, this reader
58  * page is swapped with another page in the ring buffer.
59  *
60  * Now, as long as the writer is off the reader page, the reader can do what
61  * ever it wants with that page. The writer will never write to that page
62  * again (as long as it is out of the ring buffer).
63  *
64  * Here's some silly ASCII art.
65  *
66  *   +------+
67  *   |reader|          RING BUFFER
68  *   |page  |
69  *   +------+        +---+   +---+   +---+
70  *                   |   |-->|   |-->|   |
71  *                   +---+   +---+   +---+
72  *                     ^               |
73  *                     |               |
74  *                     +---------------+
75  *
76  *
77  *   +------+
78  *   |reader|          RING BUFFER
79  *   |page  |------------------v
80  *   +------+        +---+   +---+   +---+
81  *                   |   |-->|   |-->|   |
82  *                   +---+   +---+   +---+
83  *                     ^               |
84  *                     |               |
85  *                     +---------------+
86  *
87  *
88  *   +------+
89  *   |reader|          RING BUFFER
90  *   |page  |------------------v
91  *   +------+        +---+   +---+   +---+
92  *      ^            |   |-->|   |-->|   |
93  *      |            +---+   +---+   +---+
94  *      |                              |
95  *      |                              |
96  *      +------------------------------+
97  *
98  *
99  *   +------+
100  *   |buffer|          RING BUFFER
101  *   |page  |------------------v
102  *   +------+        +---+   +---+   +---+
103  *      ^            |   |   |   |-->|   |
104  *      |   New      +---+   +---+   +---+
105  *      |  Reader------^               |
106  *      |   page                       |
107  *      +------------------------------+
108  *
109  *
110  * After we make this swap, the reader can hand this page off to the splice
111  * code and be done with it. It can even allocate a new page if it needs to
112  * and swap that into the ring buffer.
113  *
114  * We will be using cmpxchg soon to make all this lockless.
115  *
116  */
117
118 /* Used for individual buffers (after the counter) */
119 #define RB_BUFFER_OFF           (1 << 20)
120
121 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
122
123 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
124 #define RB_ALIGNMENT            4U
125 #define RB_MAX_SMALL_DATA       (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
126 #define RB_EVNT_MIN_SIZE        8U      /* two 32bit words */
127
128 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
129 # define RB_FORCE_8BYTE_ALIGNMENT       0
130 # define RB_ARCH_ALIGNMENT              RB_ALIGNMENT
131 #else
132 # define RB_FORCE_8BYTE_ALIGNMENT       1
133 # define RB_ARCH_ALIGNMENT              8U
134 #endif
135
136 #define RB_ALIGN_DATA           __aligned(RB_ARCH_ALIGNMENT)
137
138 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
139 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
140
141 enum {
142         RB_LEN_TIME_EXTEND = 8,
143         RB_LEN_TIME_STAMP = 16,
144 };
145
146 #define skip_time_extend(event) \
147         ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
148
149 static inline int rb_null_event(struct ring_buffer_event *event)
150 {
151         return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
152 }
153
154 static void rb_event_set_padding(struct ring_buffer_event *event)
155 {
156         /* padding has a NULL time_delta */
157         event->type_len = RINGBUF_TYPE_PADDING;
158         event->time_delta = 0;
159 }
160
161 static unsigned
162 rb_event_data_length(struct ring_buffer_event *event)
163 {
164         unsigned length;
165
166         if (event->type_len)
167                 length = event->type_len * RB_ALIGNMENT;
168         else
169                 length = event->array[0];
170         return length + RB_EVNT_HDR_SIZE;
171 }
172
173 /*
174  * Return the length of the given event. Will return
175  * the length of the time extend if the event is a
176  * time extend.
177  */
178 static inline unsigned
179 rb_event_length(struct ring_buffer_event *event)
180 {
181         switch (event->type_len) {
182         case RINGBUF_TYPE_PADDING:
183                 if (rb_null_event(event))
184                         /* undefined */
185                         return -1;
186                 return  event->array[0] + RB_EVNT_HDR_SIZE;
187
188         case RINGBUF_TYPE_TIME_EXTEND:
189                 return RB_LEN_TIME_EXTEND;
190
191         case RINGBUF_TYPE_TIME_STAMP:
192                 return RB_LEN_TIME_STAMP;
193
194         case RINGBUF_TYPE_DATA:
195                 return rb_event_data_length(event);
196         default:
197                 BUG();
198         }
199         /* not hit */
200         return 0;
201 }
202
203 /*
204  * Return total length of time extend and data,
205  *   or just the event length for all other events.
206  */
207 static inline unsigned
208 rb_event_ts_length(struct ring_buffer_event *event)
209 {
210         unsigned len = 0;
211
212         if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
213                 /* time extends include the data event after it */
214                 len = RB_LEN_TIME_EXTEND;
215                 event = skip_time_extend(event);
216         }
217         return len + rb_event_length(event);
218 }
219
220 /**
221  * ring_buffer_event_length - return the length of the event
222  * @event: the event to get the length of
223  *
224  * Returns the size of the data load of a data event.
225  * If the event is something other than a data event, it
226  * returns the size of the event itself. With the exception
227  * of a TIME EXTEND, where it still returns the size of the
228  * data load of the data event after it.
229  */
230 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
231 {
232         unsigned length;
233
234         if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
235                 event = skip_time_extend(event);
236
237         length = rb_event_length(event);
238         if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
239                 return length;
240         length -= RB_EVNT_HDR_SIZE;
241         if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
242                 length -= sizeof(event->array[0]);
243         return length;
244 }
245 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
246
247 /* inline for ring buffer fast paths */
248 static void *
249 rb_event_data(struct ring_buffer_event *event)
250 {
251         if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
252                 event = skip_time_extend(event);
253         BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
254         /* If length is in len field, then array[0] has the data */
255         if (event->type_len)
256                 return (void *)&event->array[0];
257         /* Otherwise length is in array[0] and array[1] has the data */
258         return (void *)&event->array[1];
259 }
260
261 /**
262  * ring_buffer_event_data - return the data of the event
263  * @event: the event to get the data from
264  */
265 void *ring_buffer_event_data(struct ring_buffer_event *event)
266 {
267         return rb_event_data(event);
268 }
269 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
270
271 #define for_each_buffer_cpu(buffer, cpu)                \
272         for_each_cpu(cpu, buffer->cpumask)
273
274 #define TS_SHIFT        27
275 #define TS_MASK         ((1ULL << TS_SHIFT) - 1)
276 #define TS_DELTA_TEST   (~TS_MASK)
277
278 /* Flag when events were overwritten */
279 #define RB_MISSED_EVENTS        (1 << 31)
280 /* Missed count stored at end */
281 #define RB_MISSED_STORED        (1 << 30)
282
283 struct buffer_data_page {
284         u64              time_stamp;    /* page time stamp */
285         local_t          commit;        /* write committed index */
286         unsigned char    data[] RB_ALIGN_DATA;  /* data of buffer page */
287 };
288
289 /*
290  * Note, the buffer_page list must be first. The buffer pages
291  * are allocated in cache lines, which means that each buffer
292  * page will be at the beginning of a cache line, and thus
293  * the least significant bits will be zero. We use this to
294  * add flags in the list struct pointers, to make the ring buffer
295  * lockless.
296  */
297 struct buffer_page {
298         struct list_head list;          /* list of buffer pages */
299         local_t          write;         /* index for next write */
300         unsigned         read;          /* index for next read */
301         local_t          entries;       /* entries on this page */
302         unsigned long    real_end;      /* real end of data */
303         struct buffer_data_page *page;  /* Actual data page */
304 };
305
306 /*
307  * The buffer page counters, write and entries, must be reset
308  * atomically when crossing page boundaries. To synchronize this
309  * update, two counters are inserted into the number. One is
310  * the actual counter for the write position or count on the page.
311  *
312  * The other is a counter of updaters. Before an update happens
313  * the update partition of the counter is incremented. This will
314  * allow the updater to update the counter atomically.
315  *
316  * The counter is 20 bits, and the state data is 12.
317  */
318 #define RB_WRITE_MASK           0xfffff
319 #define RB_WRITE_INTCNT         (1 << 20)
320
321 static void rb_init_page(struct buffer_data_page *bpage)
322 {
323         local_set(&bpage->commit, 0);
324 }
325
326 /**
327  * ring_buffer_page_len - the size of data on the page.
328  * @page: The page to read
329  *
330  * Returns the amount of data on the page, including buffer page header.
331  */
332 size_t ring_buffer_page_len(void *page)
333 {
334         return local_read(&((struct buffer_data_page *)page)->commit)
335                 + BUF_PAGE_HDR_SIZE;
336 }
337
338 /*
339  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
340  * this issue out.
341  */
342 static void free_buffer_page(struct buffer_page *bpage)
343 {
344         free_page((unsigned long)bpage->page);
345         kfree(bpage);
346 }
347
348 /*
349  * We need to fit the time_stamp delta into 27 bits.
350  */
351 static inline int test_time_stamp(u64 delta)
352 {
353         if (delta & TS_DELTA_TEST)
354                 return 1;
355         return 0;
356 }
357
358 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
359
360 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
361 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
362
363 int ring_buffer_print_page_header(struct trace_seq *s)
364 {
365         struct buffer_data_page field;
366
367         trace_seq_printf(s, "\tfield: u64 timestamp;\t"
368                          "offset:0;\tsize:%u;\tsigned:%u;\n",
369                          (unsigned int)sizeof(field.time_stamp),
370                          (unsigned int)is_signed_type(u64));
371
372         trace_seq_printf(s, "\tfield: local_t commit;\t"
373                          "offset:%u;\tsize:%u;\tsigned:%u;\n",
374                          (unsigned int)offsetof(typeof(field), commit),
375                          (unsigned int)sizeof(field.commit),
376                          (unsigned int)is_signed_type(long));
377
378         trace_seq_printf(s, "\tfield: int overwrite;\t"
379                          "offset:%u;\tsize:%u;\tsigned:%u;\n",
380                          (unsigned int)offsetof(typeof(field), commit),
381                          1,
382                          (unsigned int)is_signed_type(long));
383
384         trace_seq_printf(s, "\tfield: char data;\t"
385                          "offset:%u;\tsize:%u;\tsigned:%u;\n",
386                          (unsigned int)offsetof(typeof(field), data),
387                          (unsigned int)BUF_PAGE_SIZE,
388                          (unsigned int)is_signed_type(char));
389
390         return !trace_seq_has_overflowed(s);
391 }
392
393 struct rb_irq_work {
394         struct irq_work                 work;
395         wait_queue_head_t               waiters;
396         wait_queue_head_t               full_waiters;
397         bool                            waiters_pending;
398         bool                            full_waiters_pending;
399         bool                            wakeup_full;
400 };
401
402 /*
403  * Structure to hold event state and handle nested events.
404  */
405 struct rb_event_info {
406         u64                     ts;
407         u64                     delta;
408         unsigned long           length;
409         struct buffer_page      *tail_page;
410         int                     add_timestamp;
411 };
412
413 /*
414  * Used for which event context the event is in.
415  *  NMI     = 0
416  *  IRQ     = 1
417  *  SOFTIRQ = 2
418  *  NORMAL  = 3
419  *
420  * See trace_recursive_lock() comment below for more details.
421  */
422 enum {
423         RB_CTX_NMI,
424         RB_CTX_IRQ,
425         RB_CTX_SOFTIRQ,
426         RB_CTX_NORMAL,
427         RB_CTX_MAX
428 };
429
430 /*
431  * head_page == tail_page && head == tail then buffer is empty.
432  */
433 struct ring_buffer_per_cpu {
434         int                             cpu;
435         atomic_t                        record_disabled;
436         struct ring_buffer              *buffer;
437         raw_spinlock_t                  reader_lock;    /* serialize readers */
438         arch_spinlock_t                 lock;
439         struct lock_class_key           lock_key;
440         unsigned long                   nr_pages;
441         unsigned int                    current_context;
442         struct list_head                *pages;
443         struct buffer_page              *head_page;     /* read from head */
444         struct buffer_page              *tail_page;     /* write to tail */
445         struct buffer_page              *commit_page;   /* committed pages */
446         struct buffer_page              *reader_page;
447         unsigned long                   lost_events;
448         unsigned long                   last_overrun;
449         local_t                         entries_bytes;
450         local_t                         entries;
451         local_t                         overrun;
452         local_t                         commit_overrun;
453         local_t                         dropped_events;
454         local_t                         committing;
455         local_t                         commits;
456         unsigned long                   read;
457         unsigned long                   read_bytes;
458         u64                             write_stamp;
459         u64                             read_stamp;
460         /* ring buffer pages to update, > 0 to add, < 0 to remove */
461         long                            nr_pages_to_update;
462         struct list_head                new_pages; /* new pages to add */
463         struct work_struct              update_pages_work;
464         struct completion               update_done;
465
466         struct rb_irq_work              irq_work;
467 };
468
469 struct ring_buffer {
470         unsigned                        flags;
471         int                             cpus;
472         atomic_t                        record_disabled;
473         atomic_t                        resize_disabled;
474         cpumask_var_t                   cpumask;
475
476         struct lock_class_key           *reader_lock_key;
477
478         struct mutex                    mutex;
479
480         struct ring_buffer_per_cpu      **buffers;
481
482 #ifdef CONFIG_HOTPLUG_CPU
483         struct notifier_block           cpu_notify;
484 #endif
485         u64                             (*clock)(void);
486
487         struct rb_irq_work              irq_work;
488 };
489
490 struct ring_buffer_iter {
491         struct ring_buffer_per_cpu      *cpu_buffer;
492         unsigned long                   head;
493         struct buffer_page              *head_page;
494         struct buffer_page              *cache_reader_page;
495         unsigned long                   cache_read;
496         u64                             read_stamp;
497 };
498
499 /*
500  * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
501  *
502  * Schedules a delayed work to wake up any task that is blocked on the
503  * ring buffer waiters queue.
504  */
505 static void rb_wake_up_waiters(struct irq_work *work)
506 {
507         struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
508
509         wake_up_all(&rbwork->waiters);
510         if (rbwork->wakeup_full) {
511                 rbwork->wakeup_full = false;
512                 wake_up_all(&rbwork->full_waiters);
513         }
514 }
515
516 /**
517  * ring_buffer_wait - wait for input to the ring buffer
518  * @buffer: buffer to wait on
519  * @cpu: the cpu buffer to wait on
520  * @full: wait until a full page is available, if @cpu != RING_BUFFER_ALL_CPUS
521  *
522  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
523  * as data is added to any of the @buffer's cpu buffers. Otherwise
524  * it will wait for data to be added to a specific cpu buffer.
525  */
526 int ring_buffer_wait(struct ring_buffer *buffer, int cpu, bool full)
527 {
528         struct ring_buffer_per_cpu *uninitialized_var(cpu_buffer);
529         DEFINE_WAIT(wait);
530         struct rb_irq_work *work;
531         int ret = 0;
532
533         /*
534          * Depending on what the caller is waiting for, either any
535          * data in any cpu buffer, or a specific buffer, put the
536          * caller on the appropriate wait queue.
537          */
538         if (cpu == RING_BUFFER_ALL_CPUS) {
539                 work = &buffer->irq_work;
540                 /* Full only makes sense on per cpu reads */
541                 full = false;
542         } else {
543                 if (!cpumask_test_cpu(cpu, buffer->cpumask))
544                         return -ENODEV;
545                 cpu_buffer = buffer->buffers[cpu];
546                 work = &cpu_buffer->irq_work;
547         }
548
549
550         while (true) {
551                 if (full)
552                         prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
553                 else
554                         prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
555
556                 /*
557                  * The events can happen in critical sections where
558                  * checking a work queue can cause deadlocks.
559                  * After adding a task to the queue, this flag is set
560                  * only to notify events to try to wake up the queue
561                  * using irq_work.
562                  *
563                  * We don't clear it even if the buffer is no longer
564                  * empty. The flag only causes the next event to run
565                  * irq_work to do the work queue wake up. The worse
566                  * that can happen if we race with !trace_empty() is that
567                  * an event will cause an irq_work to try to wake up
568                  * an empty queue.
569                  *
570                  * There's no reason to protect this flag either, as
571                  * the work queue and irq_work logic will do the necessary
572                  * synchronization for the wake ups. The only thing
573                  * that is necessary is that the wake up happens after
574                  * a task has been queued. It's OK for spurious wake ups.
575                  */
576                 if (full)
577                         work->full_waiters_pending = true;
578                 else
579                         work->waiters_pending = true;
580
581                 if (signal_pending(current)) {
582                         ret = -EINTR;
583                         break;
584                 }
585
586                 if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
587                         break;
588
589                 if (cpu != RING_BUFFER_ALL_CPUS &&
590                     !ring_buffer_empty_cpu(buffer, cpu)) {
591                         unsigned long flags;
592                         bool pagebusy;
593
594                         if (!full)
595                                 break;
596
597                         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
598                         pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
599                         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
600
601                         if (!pagebusy)
602                                 break;
603                 }
604
605                 schedule();
606         }
607
608         if (full)
609                 finish_wait(&work->full_waiters, &wait);
610         else
611                 finish_wait(&work->waiters, &wait);
612
613         return ret;
614 }
615
616 /**
617  * ring_buffer_poll_wait - poll on buffer input
618  * @buffer: buffer to wait on
619  * @cpu: the cpu buffer to wait on
620  * @filp: the file descriptor
621  * @poll_table: The poll descriptor
622  *
623  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
624  * as data is added to any of the @buffer's cpu buffers. Otherwise
625  * it will wait for data to be added to a specific cpu buffer.
626  *
627  * Returns POLLIN | POLLRDNORM if data exists in the buffers,
628  * zero otherwise.
629  */
630 int ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu,
631                           struct file *filp, poll_table *poll_table)
632 {
633         struct ring_buffer_per_cpu *cpu_buffer;
634         struct rb_irq_work *work;
635
636         if (cpu == RING_BUFFER_ALL_CPUS)
637                 work = &buffer->irq_work;
638         else {
639                 if (!cpumask_test_cpu(cpu, buffer->cpumask))
640                         return -EINVAL;
641
642                 cpu_buffer = buffer->buffers[cpu];
643                 work = &cpu_buffer->irq_work;
644         }
645
646         poll_wait(filp, &work->waiters, poll_table);
647         work->waiters_pending = true;
648         /*
649          * There's a tight race between setting the waiters_pending and
650          * checking if the ring buffer is empty.  Once the waiters_pending bit
651          * is set, the next event will wake the task up, but we can get stuck
652          * if there's only a single event in.
653          *
654          * FIXME: Ideally, we need a memory barrier on the writer side as well,
655          * but adding a memory barrier to all events will cause too much of a
656          * performance hit in the fast path.  We only need a memory barrier when
657          * the buffer goes from empty to having content.  But as this race is
658          * extremely small, and it's not a problem if another event comes in, we
659          * will fix it later.
660          */
661         smp_mb();
662
663         if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
664             (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
665                 return POLLIN | POLLRDNORM;
666         return 0;
667 }
668
669 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
670 #define RB_WARN_ON(b, cond)                                             \
671         ({                                                              \
672                 int _____ret = unlikely(cond);                          \
673                 if (_____ret) {                                         \
674                         if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
675                                 struct ring_buffer_per_cpu *__b =       \
676                                         (void *)b;                      \
677                                 atomic_inc(&__b->buffer->record_disabled); \
678                         } else                                          \
679                                 atomic_inc(&b->record_disabled);        \
680                         WARN_ON(1);                                     \
681                 }                                                       \
682                 _____ret;                                               \
683         })
684
685 /* Up this if you want to test the TIME_EXTENTS and normalization */
686 #define DEBUG_SHIFT 0
687
688 static inline u64 rb_time_stamp(struct ring_buffer *buffer)
689 {
690         /* shift to debug/test normalization and TIME_EXTENTS */
691         return buffer->clock() << DEBUG_SHIFT;
692 }
693
694 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
695 {
696         u64 time;
697
698         preempt_disable_notrace();
699         time = rb_time_stamp(buffer);
700         preempt_enable_no_resched_notrace();
701
702         return time;
703 }
704 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
705
706 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
707                                       int cpu, u64 *ts)
708 {
709         /* Just stupid testing the normalize function and deltas */
710         *ts >>= DEBUG_SHIFT;
711 }
712 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
713
714 /*
715  * Making the ring buffer lockless makes things tricky.
716  * Although writes only happen on the CPU that they are on,
717  * and they only need to worry about interrupts. Reads can
718  * happen on any CPU.
719  *
720  * The reader page is always off the ring buffer, but when the
721  * reader finishes with a page, it needs to swap its page with
722  * a new one from the buffer. The reader needs to take from
723  * the head (writes go to the tail). But if a writer is in overwrite
724  * mode and wraps, it must push the head page forward.
725  *
726  * Here lies the problem.
727  *
728  * The reader must be careful to replace only the head page, and
729  * not another one. As described at the top of the file in the
730  * ASCII art, the reader sets its old page to point to the next
731  * page after head. It then sets the page after head to point to
732  * the old reader page. But if the writer moves the head page
733  * during this operation, the reader could end up with the tail.
734  *
735  * We use cmpxchg to help prevent this race. We also do something
736  * special with the page before head. We set the LSB to 1.
737  *
738  * When the writer must push the page forward, it will clear the
739  * bit that points to the head page, move the head, and then set
740  * the bit that points to the new head page.
741  *
742  * We also don't want an interrupt coming in and moving the head
743  * page on another writer. Thus we use the second LSB to catch
744  * that too. Thus:
745  *
746  * head->list->prev->next        bit 1          bit 0
747  *                              -------        -------
748  * Normal page                     0              0
749  * Points to head page             0              1
750  * New head page                   1              0
751  *
752  * Note we can not trust the prev pointer of the head page, because:
753  *
754  * +----+       +-----+        +-----+
755  * |    |------>|  T  |---X--->|  N  |
756  * |    |<------|     |        |     |
757  * +----+       +-----+        +-----+
758  *   ^                           ^ |
759  *   |          +-----+          | |
760  *   +----------|  R  |----------+ |
761  *              |     |<-----------+
762  *              +-----+
763  *
764  * Key:  ---X-->  HEAD flag set in pointer
765  *         T      Tail page
766  *         R      Reader page
767  *         N      Next page
768  *
769  * (see __rb_reserve_next() to see where this happens)
770  *
771  *  What the above shows is that the reader just swapped out
772  *  the reader page with a page in the buffer, but before it
773  *  could make the new header point back to the new page added
774  *  it was preempted by a writer. The writer moved forward onto
775  *  the new page added by the reader and is about to move forward
776  *  again.
777  *
778  *  You can see, it is legitimate for the previous pointer of
779  *  the head (or any page) not to point back to itself. But only
780  *  temporarially.
781  */
782
783 #define RB_PAGE_NORMAL          0UL
784 #define RB_PAGE_HEAD            1UL
785 #define RB_PAGE_UPDATE          2UL
786
787
788 #define RB_FLAG_MASK            3UL
789
790 /* PAGE_MOVED is not part of the mask */
791 #define RB_PAGE_MOVED           4UL
792
793 /*
794  * rb_list_head - remove any bit
795  */
796 static struct list_head *rb_list_head(struct list_head *list)
797 {
798         unsigned long val = (unsigned long)list;
799
800         return (struct list_head *)(val & ~RB_FLAG_MASK);
801 }
802
803 /*
804  * rb_is_head_page - test if the given page is the head page
805  *
806  * Because the reader may move the head_page pointer, we can
807  * not trust what the head page is (it may be pointing to
808  * the reader page). But if the next page is a header page,
809  * its flags will be non zero.
810  */
811 static inline int
812 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
813                 struct buffer_page *page, struct list_head *list)
814 {
815         unsigned long val;
816
817         val = (unsigned long)list->next;
818
819         if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
820                 return RB_PAGE_MOVED;
821
822         return val & RB_FLAG_MASK;
823 }
824
825 /*
826  * rb_is_reader_page
827  *
828  * The unique thing about the reader page, is that, if the
829  * writer is ever on it, the previous pointer never points
830  * back to the reader page.
831  */
832 static bool rb_is_reader_page(struct buffer_page *page)
833 {
834         struct list_head *list = page->list.prev;
835
836         return rb_list_head(list->next) != &page->list;
837 }
838
839 /*
840  * rb_set_list_to_head - set a list_head to be pointing to head.
841  */
842 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
843                                 struct list_head *list)
844 {
845         unsigned long *ptr;
846
847         ptr = (unsigned long *)&list->next;
848         *ptr |= RB_PAGE_HEAD;
849         *ptr &= ~RB_PAGE_UPDATE;
850 }
851
852 /*
853  * rb_head_page_activate - sets up head page
854  */
855 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
856 {
857         struct buffer_page *head;
858
859         head = cpu_buffer->head_page;
860         if (!head)
861                 return;
862
863         /*
864          * Set the previous list pointer to have the HEAD flag.
865          */
866         rb_set_list_to_head(cpu_buffer, head->list.prev);
867 }
868
869 static void rb_list_head_clear(struct list_head *list)
870 {
871         unsigned long *ptr = (unsigned long *)&list->next;
872
873         *ptr &= ~RB_FLAG_MASK;
874 }
875
876 /*
877  * rb_head_page_dactivate - clears head page ptr (for free list)
878  */
879 static void
880 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
881 {
882         struct list_head *hd;
883
884         /* Go through the whole list and clear any pointers found. */
885         rb_list_head_clear(cpu_buffer->pages);
886
887         list_for_each(hd, cpu_buffer->pages)
888                 rb_list_head_clear(hd);
889 }
890
891 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
892                             struct buffer_page *head,
893                             struct buffer_page *prev,
894                             int old_flag, int new_flag)
895 {
896         struct list_head *list;
897         unsigned long val = (unsigned long)&head->list;
898         unsigned long ret;
899
900         list = &prev->list;
901
902         val &= ~RB_FLAG_MASK;
903
904         ret = cmpxchg((unsigned long *)&list->next,
905                       val | old_flag, val | new_flag);
906
907         /* check if the reader took the page */
908         if ((ret & ~RB_FLAG_MASK) != val)
909                 return RB_PAGE_MOVED;
910
911         return ret & RB_FLAG_MASK;
912 }
913
914 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
915                                    struct buffer_page *head,
916                                    struct buffer_page *prev,
917                                    int old_flag)
918 {
919         return rb_head_page_set(cpu_buffer, head, prev,
920                                 old_flag, RB_PAGE_UPDATE);
921 }
922
923 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
924                                  struct buffer_page *head,
925                                  struct buffer_page *prev,
926                                  int old_flag)
927 {
928         return rb_head_page_set(cpu_buffer, head, prev,
929                                 old_flag, RB_PAGE_HEAD);
930 }
931
932 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
933                                    struct buffer_page *head,
934                                    struct buffer_page *prev,
935                                    int old_flag)
936 {
937         return rb_head_page_set(cpu_buffer, head, prev,
938                                 old_flag, RB_PAGE_NORMAL);
939 }
940
941 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
942                                struct buffer_page **bpage)
943 {
944         struct list_head *p = rb_list_head((*bpage)->list.next);
945
946         *bpage = list_entry(p, struct buffer_page, list);
947 }
948
949 static struct buffer_page *
950 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
951 {
952         struct buffer_page *head;
953         struct buffer_page *page;
954         struct list_head *list;
955         int i;
956
957         if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
958                 return NULL;
959
960         /* sanity check */
961         list = cpu_buffer->pages;
962         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
963                 return NULL;
964
965         page = head = cpu_buffer->head_page;
966         /*
967          * It is possible that the writer moves the header behind
968          * where we started, and we miss in one loop.
969          * A second loop should grab the header, but we'll do
970          * three loops just because I'm paranoid.
971          */
972         for (i = 0; i < 3; i++) {
973                 do {
974                         if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
975                                 cpu_buffer->head_page = page;
976                                 return page;
977                         }
978                         rb_inc_page(cpu_buffer, &page);
979                 } while (page != head);
980         }
981
982         RB_WARN_ON(cpu_buffer, 1);
983
984         return NULL;
985 }
986
987 static int rb_head_page_replace(struct buffer_page *old,
988                                 struct buffer_page *new)
989 {
990         unsigned long *ptr = (unsigned long *)&old->list.prev->next;
991         unsigned long val;
992         unsigned long ret;
993
994         val = *ptr & ~RB_FLAG_MASK;
995         val |= RB_PAGE_HEAD;
996
997         ret = cmpxchg(ptr, val, (unsigned long)&new->list);
998
999         return ret == val;
1000 }
1001
1002 /*
1003  * rb_tail_page_update - move the tail page forward
1004  *
1005  * Returns 1 if moved tail page, 0 if someone else did.
1006  */
1007 static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1008                                struct buffer_page *tail_page,
1009                                struct buffer_page *next_page)
1010 {
1011         struct buffer_page *old_tail;
1012         unsigned long old_entries;
1013         unsigned long old_write;
1014         int ret = 0;
1015
1016         /*
1017          * The tail page now needs to be moved forward.
1018          *
1019          * We need to reset the tail page, but without messing
1020          * with possible erasing of data brought in by interrupts
1021          * that have moved the tail page and are currently on it.
1022          *
1023          * We add a counter to the write field to denote this.
1024          */
1025         old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1026         old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1027
1028         /*
1029          * Just make sure we have seen our old_write and synchronize
1030          * with any interrupts that come in.
1031          */
1032         barrier();
1033
1034         /*
1035          * If the tail page is still the same as what we think
1036          * it is, then it is up to us to update the tail
1037          * pointer.
1038          */
1039         if (tail_page == cpu_buffer->tail_page) {
1040                 /* Zero the write counter */
1041                 unsigned long val = old_write & ~RB_WRITE_MASK;
1042                 unsigned long eval = old_entries & ~RB_WRITE_MASK;
1043
1044                 /*
1045                  * This will only succeed if an interrupt did
1046                  * not come in and change it. In which case, we
1047                  * do not want to modify it.
1048                  *
1049                  * We add (void) to let the compiler know that we do not care
1050                  * about the return value of these functions. We use the
1051                  * cmpxchg to only update if an interrupt did not already
1052                  * do it for us. If the cmpxchg fails, we don't care.
1053                  */
1054                 (void)local_cmpxchg(&next_page->write, old_write, val);
1055                 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
1056
1057                 /*
1058                  * No need to worry about races with clearing out the commit.
1059                  * it only can increment when a commit takes place. But that
1060                  * only happens in the outer most nested commit.
1061                  */
1062                 local_set(&next_page->page->commit, 0);
1063
1064                 old_tail = cmpxchg(&cpu_buffer->tail_page,
1065                                    tail_page, next_page);
1066
1067                 if (old_tail == tail_page)
1068                         ret = 1;
1069         }
1070
1071         return ret;
1072 }
1073
1074 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1075                           struct buffer_page *bpage)
1076 {
1077         unsigned long val = (unsigned long)bpage;
1078
1079         if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1080                 return 1;
1081
1082         return 0;
1083 }
1084
1085 /**
1086  * rb_check_list - make sure a pointer to a list has the last bits zero
1087  */
1088 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1089                          struct list_head *list)
1090 {
1091         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1092                 return 1;
1093         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1094                 return 1;
1095         return 0;
1096 }
1097
1098 /**
1099  * rb_check_pages - integrity check of buffer pages
1100  * @cpu_buffer: CPU buffer with pages to test
1101  *
1102  * As a safety measure we check to make sure the data pages have not
1103  * been corrupted.
1104  */
1105 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1106 {
1107         struct list_head *head = cpu_buffer->pages;
1108         struct buffer_page *bpage, *tmp;
1109
1110         /* Reset the head page if it exists */
1111         if (cpu_buffer->head_page)
1112                 rb_set_head_page(cpu_buffer);
1113
1114         rb_head_page_deactivate(cpu_buffer);
1115
1116         if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1117                 return -1;
1118         if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1119                 return -1;
1120
1121         if (rb_check_list(cpu_buffer, head))
1122                 return -1;
1123
1124         list_for_each_entry_safe(bpage, tmp, head, list) {
1125                 if (RB_WARN_ON(cpu_buffer,
1126                                bpage->list.next->prev != &bpage->list))
1127                         return -1;
1128                 if (RB_WARN_ON(cpu_buffer,
1129                                bpage->list.prev->next != &bpage->list))
1130                         return -1;
1131                 if (rb_check_list(cpu_buffer, &bpage->list))
1132                         return -1;
1133         }
1134
1135         rb_head_page_activate(cpu_buffer);
1136
1137         return 0;
1138 }
1139
1140 static int __rb_allocate_pages(long nr_pages, struct list_head *pages, int cpu)
1141 {
1142         struct buffer_page *bpage, *tmp;
1143         long i;
1144
1145         for (i = 0; i < nr_pages; i++) {
1146                 struct page *page;
1147                 /*
1148                  * __GFP_NORETRY flag makes sure that the allocation fails
1149                  * gracefully without invoking oom-killer and the system is
1150                  * not destabilized.
1151                  */
1152                 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1153                                     GFP_KERNEL | __GFP_NORETRY,
1154                                     cpu_to_node(cpu));
1155                 if (!bpage)
1156                         goto free_pages;
1157
1158                 list_add(&bpage->list, pages);
1159
1160                 page = alloc_pages_node(cpu_to_node(cpu),
1161                                         GFP_KERNEL | __GFP_NORETRY, 0);
1162                 if (!page)
1163                         goto free_pages;
1164                 bpage->page = page_address(page);
1165                 rb_init_page(bpage->page);
1166         }
1167
1168         return 0;
1169
1170 free_pages:
1171         list_for_each_entry_safe(bpage, tmp, pages, list) {
1172                 list_del_init(&bpage->list);
1173                 free_buffer_page(bpage);
1174         }
1175
1176         return -ENOMEM;
1177 }
1178
1179 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1180                              unsigned long nr_pages)
1181 {
1182         LIST_HEAD(pages);
1183
1184         WARN_ON(!nr_pages);
1185
1186         if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1187                 return -ENOMEM;
1188
1189         /*
1190          * The ring buffer page list is a circular list that does not
1191          * start and end with a list head. All page list items point to
1192          * other pages.
1193          */
1194         cpu_buffer->pages = pages.next;
1195         list_del(&pages);
1196
1197         cpu_buffer->nr_pages = nr_pages;
1198
1199         rb_check_pages(cpu_buffer);
1200
1201         return 0;
1202 }
1203
1204 static struct ring_buffer_per_cpu *
1205 rb_allocate_cpu_buffer(struct ring_buffer *buffer, long nr_pages, int cpu)
1206 {
1207         struct ring_buffer_per_cpu *cpu_buffer;
1208         struct buffer_page *bpage;
1209         struct page *page;
1210         int ret;
1211
1212         cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1213                                   GFP_KERNEL, cpu_to_node(cpu));
1214         if (!cpu_buffer)
1215                 return NULL;
1216
1217         cpu_buffer->cpu = cpu;
1218         cpu_buffer->buffer = buffer;
1219         raw_spin_lock_init(&cpu_buffer->reader_lock);
1220         lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1221         cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1222         INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1223         init_completion(&cpu_buffer->update_done);
1224         init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1225         init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1226         init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
1227
1228         bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1229                             GFP_KERNEL, cpu_to_node(cpu));
1230         if (!bpage)
1231                 goto fail_free_buffer;
1232
1233         rb_check_bpage(cpu_buffer, bpage);
1234
1235         cpu_buffer->reader_page = bpage;
1236         page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1237         if (!page)
1238                 goto fail_free_reader;
1239         bpage->page = page_address(page);
1240         rb_init_page(bpage->page);
1241
1242         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1243         INIT_LIST_HEAD(&cpu_buffer->new_pages);
1244
1245         ret = rb_allocate_pages(cpu_buffer, nr_pages);
1246         if (ret < 0)
1247                 goto fail_free_reader;
1248
1249         cpu_buffer->head_page
1250                 = list_entry(cpu_buffer->pages, struct buffer_page, list);
1251         cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1252
1253         rb_head_page_activate(cpu_buffer);
1254
1255         return cpu_buffer;
1256
1257  fail_free_reader:
1258         free_buffer_page(cpu_buffer->reader_page);
1259
1260  fail_free_buffer:
1261         kfree(cpu_buffer);
1262         return NULL;
1263 }
1264
1265 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1266 {
1267         struct list_head *head = cpu_buffer->pages;
1268         struct buffer_page *bpage, *tmp;
1269
1270         free_buffer_page(cpu_buffer->reader_page);
1271
1272         rb_head_page_deactivate(cpu_buffer);
1273
1274         if (head) {
1275                 list_for_each_entry_safe(bpage, tmp, head, list) {
1276                         list_del_init(&bpage->list);
1277                         free_buffer_page(bpage);
1278                 }
1279                 bpage = list_entry(head, struct buffer_page, list);
1280                 free_buffer_page(bpage);
1281         }
1282
1283         kfree(cpu_buffer);
1284 }
1285
1286 #ifdef CONFIG_HOTPLUG_CPU
1287 static int rb_cpu_notify(struct notifier_block *self,
1288                          unsigned long action, void *hcpu);
1289 #endif
1290
1291 /**
1292  * __ring_buffer_alloc - allocate a new ring_buffer
1293  * @size: the size in bytes per cpu that is needed.
1294  * @flags: attributes to set for the ring buffer.
1295  *
1296  * Currently the only flag that is available is the RB_FL_OVERWRITE
1297  * flag. This flag means that the buffer will overwrite old data
1298  * when the buffer wraps. If this flag is not set, the buffer will
1299  * drop data when the tail hits the head.
1300  */
1301 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1302                                         struct lock_class_key *key)
1303 {
1304         struct ring_buffer *buffer;
1305         long nr_pages;
1306         int bsize;
1307         int cpu;
1308
1309         /* keep it in its own cache line */
1310         buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1311                          GFP_KERNEL);
1312         if (!buffer)
1313                 return NULL;
1314
1315         if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1316                 goto fail_free_buffer;
1317
1318         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1319         buffer->flags = flags;
1320         buffer->clock = trace_clock_local;
1321         buffer->reader_lock_key = key;
1322
1323         init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1324         init_waitqueue_head(&buffer->irq_work.waiters);
1325
1326         /* need at least two pages */
1327         if (nr_pages < 2)
1328                 nr_pages = 2;
1329
1330         /*
1331          * In case of non-hotplug cpu, if the ring-buffer is allocated
1332          * in early initcall, it will not be notified of secondary cpus.
1333          * In that off case, we need to allocate for all possible cpus.
1334          */
1335 #ifdef CONFIG_HOTPLUG_CPU
1336         cpu_notifier_register_begin();
1337         cpumask_copy(buffer->cpumask, cpu_online_mask);
1338 #else
1339         cpumask_copy(buffer->cpumask, cpu_possible_mask);
1340 #endif
1341         buffer->cpus = nr_cpu_ids;
1342
1343         bsize = sizeof(void *) * nr_cpu_ids;
1344         buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1345                                   GFP_KERNEL);
1346         if (!buffer->buffers)
1347                 goto fail_free_cpumask;
1348
1349         for_each_buffer_cpu(buffer, cpu) {
1350                 buffer->buffers[cpu] =
1351                         rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1352                 if (!buffer->buffers[cpu])
1353                         goto fail_free_buffers;
1354         }
1355
1356 #ifdef CONFIG_HOTPLUG_CPU
1357         buffer->cpu_notify.notifier_call = rb_cpu_notify;
1358         buffer->cpu_notify.priority = 0;
1359         __register_cpu_notifier(&buffer->cpu_notify);
1360         cpu_notifier_register_done();
1361 #endif
1362
1363         mutex_init(&buffer->mutex);
1364
1365         return buffer;
1366
1367  fail_free_buffers:
1368         for_each_buffer_cpu(buffer, cpu) {
1369                 if (buffer->buffers[cpu])
1370                         rb_free_cpu_buffer(buffer->buffers[cpu]);
1371         }
1372         kfree(buffer->buffers);
1373
1374  fail_free_cpumask:
1375         free_cpumask_var(buffer->cpumask);
1376 #ifdef CONFIG_HOTPLUG_CPU
1377         cpu_notifier_register_done();
1378 #endif
1379
1380  fail_free_buffer:
1381         kfree(buffer);
1382         return NULL;
1383 }
1384 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1385
1386 /**
1387  * ring_buffer_free - free a ring buffer.
1388  * @buffer: the buffer to free.
1389  */
1390 void
1391 ring_buffer_free(struct ring_buffer *buffer)
1392 {
1393         int cpu;
1394
1395 #ifdef CONFIG_HOTPLUG_CPU
1396         cpu_notifier_register_begin();
1397         __unregister_cpu_notifier(&buffer->cpu_notify);
1398 #endif
1399
1400         for_each_buffer_cpu(buffer, cpu)
1401                 rb_free_cpu_buffer(buffer->buffers[cpu]);
1402
1403 #ifdef CONFIG_HOTPLUG_CPU
1404         cpu_notifier_register_done();
1405 #endif
1406
1407         kfree(buffer->buffers);
1408         free_cpumask_var(buffer->cpumask);
1409
1410         kfree(buffer);
1411 }
1412 EXPORT_SYMBOL_GPL(ring_buffer_free);
1413
1414 void ring_buffer_set_clock(struct ring_buffer *buffer,
1415                            u64 (*clock)(void))
1416 {
1417         buffer->clock = clock;
1418 }
1419
1420 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1421
1422 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1423 {
1424         return local_read(&bpage->entries) & RB_WRITE_MASK;
1425 }
1426
1427 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1428 {
1429         return local_read(&bpage->write) & RB_WRITE_MASK;
1430 }
1431
1432 static int
1433 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
1434 {
1435         struct list_head *tail_page, *to_remove, *next_page;
1436         struct buffer_page *to_remove_page, *tmp_iter_page;
1437         struct buffer_page *last_page, *first_page;
1438         unsigned long nr_removed;
1439         unsigned long head_bit;
1440         int page_entries;
1441
1442         head_bit = 0;
1443
1444         raw_spin_lock_irq(&cpu_buffer->reader_lock);
1445         atomic_inc(&cpu_buffer->record_disabled);
1446         /*
1447          * We don't race with the readers since we have acquired the reader
1448          * lock. We also don't race with writers after disabling recording.
1449          * This makes it easy to figure out the first and the last page to be
1450          * removed from the list. We unlink all the pages in between including
1451          * the first and last pages. This is done in a busy loop so that we
1452          * lose the least number of traces.
1453          * The pages are freed after we restart recording and unlock readers.
1454          */
1455         tail_page = &cpu_buffer->tail_page->list;
1456
1457         /*
1458          * tail page might be on reader page, we remove the next page
1459          * from the ring buffer
1460          */
1461         if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1462                 tail_page = rb_list_head(tail_page->next);
1463         to_remove = tail_page;
1464
1465         /* start of pages to remove */
1466         first_page = list_entry(rb_list_head(to_remove->next),
1467                                 struct buffer_page, list);
1468
1469         for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1470                 to_remove = rb_list_head(to_remove)->next;
1471                 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1472         }
1473
1474         next_page = rb_list_head(to_remove)->next;
1475
1476         /*
1477          * Now we remove all pages between tail_page and next_page.
1478          * Make sure that we have head_bit value preserved for the
1479          * next page
1480          */
1481         tail_page->next = (struct list_head *)((unsigned long)next_page |
1482                                                 head_bit);
1483         next_page = rb_list_head(next_page);
1484         next_page->prev = tail_page;
1485
1486         /* make sure pages points to a valid page in the ring buffer */
1487         cpu_buffer->pages = next_page;
1488
1489         /* update head page */
1490         if (head_bit)
1491                 cpu_buffer->head_page = list_entry(next_page,
1492                                                 struct buffer_page, list);
1493
1494         /*
1495          * change read pointer to make sure any read iterators reset
1496          * themselves
1497          */
1498         cpu_buffer->read = 0;
1499
1500         /* pages are removed, resume tracing and then free the pages */
1501         atomic_dec(&cpu_buffer->record_disabled);
1502         raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1503
1504         RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1505
1506         /* last buffer page to remove */
1507         last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1508                                 list);
1509         tmp_iter_page = first_page;
1510
1511         do {
1512                 to_remove_page = tmp_iter_page;
1513                 rb_inc_page(cpu_buffer, &tmp_iter_page);
1514
1515                 /* update the counters */
1516                 page_entries = rb_page_entries(to_remove_page);
1517                 if (page_entries) {
1518                         /*
1519                          * If something was added to this page, it was full
1520                          * since it is not the tail page. So we deduct the
1521                          * bytes consumed in ring buffer from here.
1522                          * Increment overrun to account for the lost events.
1523                          */
1524                         local_add(page_entries, &cpu_buffer->overrun);
1525                         local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1526                 }
1527
1528                 /*
1529                  * We have already removed references to this list item, just
1530                  * free up the buffer_page and its page
1531                  */
1532                 free_buffer_page(to_remove_page);
1533                 nr_removed--;
1534
1535         } while (to_remove_page != last_page);
1536
1537         RB_WARN_ON(cpu_buffer, nr_removed);
1538
1539         return nr_removed == 0;
1540 }
1541
1542 static int
1543 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1544 {
1545         struct list_head *pages = &cpu_buffer->new_pages;
1546         int retries, success;
1547
1548         raw_spin_lock_irq(&cpu_buffer->reader_lock);
1549         /*
1550          * We are holding the reader lock, so the reader page won't be swapped
1551          * in the ring buffer. Now we are racing with the writer trying to
1552          * move head page and the tail page.
1553          * We are going to adapt the reader page update process where:
1554          * 1. We first splice the start and end of list of new pages between
1555          *    the head page and its previous page.
1556          * 2. We cmpxchg the prev_page->next to point from head page to the
1557          *    start of new pages list.
1558          * 3. Finally, we update the head->prev to the end of new list.
1559          *
1560          * We will try this process 10 times, to make sure that we don't keep
1561          * spinning.
1562          */
1563         retries = 10;
1564         success = 0;
1565         while (retries--) {
1566                 struct list_head *head_page, *prev_page, *r;
1567                 struct list_head *last_page, *first_page;
1568                 struct list_head *head_page_with_bit;
1569
1570                 head_page = &rb_set_head_page(cpu_buffer)->list;
1571                 if (!head_page)
1572                         break;
1573                 prev_page = head_page->prev;
1574
1575                 first_page = pages->next;
1576                 last_page  = pages->prev;
1577
1578                 head_page_with_bit = (struct list_head *)
1579                                      ((unsigned long)head_page | RB_PAGE_HEAD);
1580
1581                 last_page->next = head_page_with_bit;
1582                 first_page->prev = prev_page;
1583
1584                 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1585
1586                 if (r == head_page_with_bit) {
1587                         /*
1588                          * yay, we replaced the page pointer to our new list,
1589                          * now, we just have to update to head page's prev
1590                          * pointer to point to end of list
1591                          */
1592                         head_page->prev = last_page;
1593                         success = 1;
1594                         break;
1595                 }
1596         }
1597
1598         if (success)
1599                 INIT_LIST_HEAD(pages);
1600         /*
1601          * If we weren't successful in adding in new pages, warn and stop
1602          * tracing
1603          */
1604         RB_WARN_ON(cpu_buffer, !success);
1605         raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1606
1607         /* free pages if they weren't inserted */
1608         if (!success) {
1609                 struct buffer_page *bpage, *tmp;
1610                 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1611                                          list) {
1612                         list_del_init(&bpage->list);
1613                         free_buffer_page(bpage);
1614                 }
1615         }
1616         return success;
1617 }
1618
1619 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1620 {
1621         int success;
1622
1623         if (cpu_buffer->nr_pages_to_update > 0)
1624                 success = rb_insert_pages(cpu_buffer);
1625         else
1626                 success = rb_remove_pages(cpu_buffer,
1627                                         -cpu_buffer->nr_pages_to_update);
1628
1629         if (success)
1630                 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1631 }
1632
1633 static void update_pages_handler(struct work_struct *work)
1634 {
1635         struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1636                         struct ring_buffer_per_cpu, update_pages_work);
1637         rb_update_pages(cpu_buffer);
1638         complete(&cpu_buffer->update_done);
1639 }
1640
1641 /**
1642  * ring_buffer_resize - resize the ring buffer
1643  * @buffer: the buffer to resize.
1644  * @size: the new size.
1645  * @cpu_id: the cpu buffer to resize
1646  *
1647  * Minimum size is 2 * BUF_PAGE_SIZE.
1648  *
1649  * Returns 0 on success and < 0 on failure.
1650  */
1651 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1652                         int cpu_id)
1653 {
1654         struct ring_buffer_per_cpu *cpu_buffer;
1655         unsigned long nr_pages;
1656         int cpu, err = 0;
1657
1658         /*
1659          * Always succeed at resizing a non-existent buffer:
1660          */
1661         if (!buffer)
1662                 return size;
1663
1664         /* Make sure the requested buffer exists */
1665         if (cpu_id != RING_BUFFER_ALL_CPUS &&
1666             !cpumask_test_cpu(cpu_id, buffer->cpumask))
1667                 return size;
1668
1669         size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1670         size *= BUF_PAGE_SIZE;
1671
1672         /* we need a minimum of two pages */
1673         if (size < BUF_PAGE_SIZE * 2)
1674                 size = BUF_PAGE_SIZE * 2;
1675
1676         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1677
1678         /*
1679          * Don't succeed if resizing is disabled, as a reader might be
1680          * manipulating the ring buffer and is expecting a sane state while
1681          * this is true.
1682          */
1683         if (atomic_read(&buffer->resize_disabled))
1684                 return -EBUSY;
1685
1686         /* prevent another thread from changing buffer sizes */
1687         mutex_lock(&buffer->mutex);
1688
1689         if (cpu_id == RING_BUFFER_ALL_CPUS) {
1690                 /* calculate the pages to update */
1691                 for_each_buffer_cpu(buffer, cpu) {
1692                         cpu_buffer = buffer->buffers[cpu];
1693
1694                         cpu_buffer->nr_pages_to_update = nr_pages -
1695                                                         cpu_buffer->nr_pages;
1696                         /*
1697                          * nothing more to do for removing pages or no update
1698                          */
1699                         if (cpu_buffer->nr_pages_to_update <= 0)
1700                                 continue;
1701                         /*
1702                          * to add pages, make sure all new pages can be
1703                          * allocated without receiving ENOMEM
1704                          */
1705                         INIT_LIST_HEAD(&cpu_buffer->new_pages);
1706                         if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1707                                                 &cpu_buffer->new_pages, cpu)) {
1708                                 /* not enough memory for new pages */
1709                                 err = -ENOMEM;
1710                                 goto out_err;
1711                         }
1712                 }
1713
1714                 get_online_cpus();
1715                 /*
1716                  * Fire off all the required work handlers
1717                  * We can't schedule on offline CPUs, but it's not necessary
1718                  * since we can change their buffer sizes without any race.
1719                  */
1720                 for_each_buffer_cpu(buffer, cpu) {
1721                         cpu_buffer = buffer->buffers[cpu];
1722                         if (!cpu_buffer->nr_pages_to_update)
1723                                 continue;
1724
1725                         /* Can't run something on an offline CPU. */
1726                         if (!cpu_online(cpu)) {
1727                                 rb_update_pages(cpu_buffer);
1728                                 cpu_buffer->nr_pages_to_update = 0;
1729                         } else {
1730                                 schedule_work_on(cpu,
1731                                                 &cpu_buffer->update_pages_work);
1732                         }
1733                 }
1734
1735                 /* wait for all the updates to complete */
1736                 for_each_buffer_cpu(buffer, cpu) {
1737                         cpu_buffer = buffer->buffers[cpu];
1738                         if (!cpu_buffer->nr_pages_to_update)
1739                                 continue;
1740
1741                         if (cpu_online(cpu))
1742                                 wait_for_completion(&cpu_buffer->update_done);
1743                         cpu_buffer->nr_pages_to_update = 0;
1744                 }
1745
1746                 put_online_cpus();
1747         } else {
1748                 /* Make sure this CPU has been intitialized */
1749                 if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1750                         goto out;
1751
1752                 cpu_buffer = buffer->buffers[cpu_id];
1753
1754                 if (nr_pages == cpu_buffer->nr_pages)
1755                         goto out;
1756
1757                 cpu_buffer->nr_pages_to_update = nr_pages -
1758                                                 cpu_buffer->nr_pages;
1759
1760                 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1761                 if (cpu_buffer->nr_pages_to_update > 0 &&
1762                         __rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1763                                             &cpu_buffer->new_pages, cpu_id)) {
1764                         err = -ENOMEM;
1765                         goto out_err;
1766                 }
1767
1768                 get_online_cpus();
1769
1770                 /* Can't run something on an offline CPU. */
1771                 if (!cpu_online(cpu_id))
1772                         rb_update_pages(cpu_buffer);
1773                 else {
1774                         schedule_work_on(cpu_id,
1775                                          &cpu_buffer->update_pages_work);
1776                         wait_for_completion(&cpu_buffer->update_done);
1777                 }
1778
1779                 cpu_buffer->nr_pages_to_update = 0;
1780                 put_online_cpus();
1781         }
1782
1783  out:
1784         /*
1785          * The ring buffer resize can happen with the ring buffer
1786          * enabled, so that the update disturbs the tracing as little
1787          * as possible. But if the buffer is disabled, we do not need
1788          * to worry about that, and we can take the time to verify
1789          * that the buffer is not corrupt.
1790          */
1791         if (atomic_read(&buffer->record_disabled)) {
1792                 atomic_inc(&buffer->record_disabled);
1793                 /*
1794                  * Even though the buffer was disabled, we must make sure
1795                  * that it is truly disabled before calling rb_check_pages.
1796                  * There could have been a race between checking
1797                  * record_disable and incrementing it.
1798                  */
1799                 synchronize_sched();
1800                 for_each_buffer_cpu(buffer, cpu) {
1801                         cpu_buffer = buffer->buffers[cpu];
1802                         rb_check_pages(cpu_buffer);
1803                 }
1804                 atomic_dec(&buffer->record_disabled);
1805         }
1806
1807         mutex_unlock(&buffer->mutex);
1808         return size;
1809
1810  out_err:
1811         for_each_buffer_cpu(buffer, cpu) {
1812                 struct buffer_page *bpage, *tmp;
1813
1814                 cpu_buffer = buffer->buffers[cpu];
1815                 cpu_buffer->nr_pages_to_update = 0;
1816
1817                 if (list_empty(&cpu_buffer->new_pages))
1818                         continue;
1819
1820                 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1821                                         list) {
1822                         list_del_init(&bpage->list);
1823                         free_buffer_page(bpage);
1824                 }
1825         }
1826         mutex_unlock(&buffer->mutex);
1827         return err;
1828 }
1829 EXPORT_SYMBOL_GPL(ring_buffer_resize);
1830
1831 void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1832 {
1833         mutex_lock(&buffer->mutex);
1834         if (val)
1835                 buffer->flags |= RB_FL_OVERWRITE;
1836         else
1837                 buffer->flags &= ~RB_FL_OVERWRITE;
1838         mutex_unlock(&buffer->mutex);
1839 }
1840 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1841
1842 static inline void *
1843 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
1844 {
1845         return bpage->data + index;
1846 }
1847
1848 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1849 {
1850         return bpage->page->data + index;
1851 }
1852
1853 static inline struct ring_buffer_event *
1854 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1855 {
1856         return __rb_page_index(cpu_buffer->reader_page,
1857                                cpu_buffer->reader_page->read);
1858 }
1859
1860 static inline struct ring_buffer_event *
1861 rb_iter_head_event(struct ring_buffer_iter *iter)
1862 {
1863         return __rb_page_index(iter->head_page, iter->head);
1864 }
1865
1866 static inline unsigned rb_page_commit(struct buffer_page *bpage)
1867 {
1868         return local_read(&bpage->page->commit);
1869 }
1870
1871 /* Size is determined by what has been committed */
1872 static inline unsigned rb_page_size(struct buffer_page *bpage)
1873 {
1874         return rb_page_commit(bpage);
1875 }
1876
1877 static inline unsigned
1878 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1879 {
1880         return rb_page_commit(cpu_buffer->commit_page);
1881 }
1882
1883 static inline unsigned
1884 rb_event_index(struct ring_buffer_event *event)
1885 {
1886         unsigned long addr = (unsigned long)event;
1887
1888         return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1889 }
1890
1891 static void rb_inc_iter(struct ring_buffer_iter *iter)
1892 {
1893         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1894
1895         /*
1896          * The iterator could be on the reader page (it starts there).
1897          * But the head could have moved, since the reader was
1898          * found. Check for this case and assign the iterator
1899          * to the head page instead of next.
1900          */
1901         if (iter->head_page == cpu_buffer->reader_page)
1902                 iter->head_page = rb_set_head_page(cpu_buffer);
1903         else
1904                 rb_inc_page(cpu_buffer, &iter->head_page);
1905
1906         iter->read_stamp = iter->head_page->page->time_stamp;
1907         iter->head = 0;
1908 }
1909
1910 /*
1911  * rb_handle_head_page - writer hit the head page
1912  *
1913  * Returns: +1 to retry page
1914  *           0 to continue
1915  *          -1 on error
1916  */
1917 static int
1918 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1919                     struct buffer_page *tail_page,
1920                     struct buffer_page *next_page)
1921 {
1922         struct buffer_page *new_head;
1923         int entries;
1924         int type;
1925         int ret;
1926
1927         entries = rb_page_entries(next_page);
1928
1929         /*
1930          * The hard part is here. We need to move the head
1931          * forward, and protect against both readers on
1932          * other CPUs and writers coming in via interrupts.
1933          */
1934         type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
1935                                        RB_PAGE_HEAD);
1936
1937         /*
1938          * type can be one of four:
1939          *  NORMAL - an interrupt already moved it for us
1940          *  HEAD   - we are the first to get here.
1941          *  UPDATE - we are the interrupt interrupting
1942          *           a current move.
1943          *  MOVED  - a reader on another CPU moved the next
1944          *           pointer to its reader page. Give up
1945          *           and try again.
1946          */
1947
1948         switch (type) {
1949         case RB_PAGE_HEAD:
1950                 /*
1951                  * We changed the head to UPDATE, thus
1952                  * it is our responsibility to update
1953                  * the counters.
1954                  */
1955                 local_add(entries, &cpu_buffer->overrun);
1956                 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1957
1958                 /*
1959                  * The entries will be zeroed out when we move the
1960                  * tail page.
1961                  */
1962
1963                 /* still more to do */
1964                 break;
1965
1966         case RB_PAGE_UPDATE:
1967                 /*
1968                  * This is an interrupt that interrupt the
1969                  * previous update. Still more to do.
1970                  */
1971                 break;
1972         case RB_PAGE_NORMAL:
1973                 /*
1974                  * An interrupt came in before the update
1975                  * and processed this for us.
1976                  * Nothing left to do.
1977                  */
1978                 return 1;
1979         case RB_PAGE_MOVED:
1980                 /*
1981                  * The reader is on another CPU and just did
1982                  * a swap with our next_page.
1983                  * Try again.
1984                  */
1985                 return 1;
1986         default:
1987                 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
1988                 return -1;
1989         }
1990
1991         /*
1992          * Now that we are here, the old head pointer is
1993          * set to UPDATE. This will keep the reader from
1994          * swapping the head page with the reader page.
1995          * The reader (on another CPU) will spin till
1996          * we are finished.
1997          *
1998          * We just need to protect against interrupts
1999          * doing the job. We will set the next pointer
2000          * to HEAD. After that, we set the old pointer
2001          * to NORMAL, but only if it was HEAD before.
2002          * otherwise we are an interrupt, and only
2003          * want the outer most commit to reset it.
2004          */
2005         new_head = next_page;
2006         rb_inc_page(cpu_buffer, &new_head);
2007
2008         ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2009                                     RB_PAGE_NORMAL);
2010
2011         /*
2012          * Valid returns are:
2013          *  HEAD   - an interrupt came in and already set it.
2014          *  NORMAL - One of two things:
2015          *            1) We really set it.
2016          *            2) A bunch of interrupts came in and moved
2017          *               the page forward again.
2018          */
2019         switch (ret) {
2020         case RB_PAGE_HEAD:
2021         case RB_PAGE_NORMAL:
2022                 /* OK */
2023                 break;
2024         default:
2025                 RB_WARN_ON(cpu_buffer, 1);
2026                 return -1;
2027         }
2028
2029         /*
2030          * It is possible that an interrupt came in,
2031          * set the head up, then more interrupts came in
2032          * and moved it again. When we get back here,
2033          * the page would have been set to NORMAL but we
2034          * just set it back to HEAD.
2035          *
2036          * How do you detect this? Well, if that happened
2037          * the tail page would have moved.
2038          */
2039         if (ret == RB_PAGE_NORMAL) {
2040                 /*
2041                  * If the tail had moved passed next, then we need
2042                  * to reset the pointer.
2043                  */
2044                 if (cpu_buffer->tail_page != tail_page &&
2045                     cpu_buffer->tail_page != next_page)
2046                         rb_head_page_set_normal(cpu_buffer, new_head,
2047                                                 next_page,
2048                                                 RB_PAGE_HEAD);
2049         }
2050
2051         /*
2052          * If this was the outer most commit (the one that
2053          * changed the original pointer from HEAD to UPDATE),
2054          * then it is up to us to reset it to NORMAL.
2055          */
2056         if (type == RB_PAGE_HEAD) {
2057                 ret = rb_head_page_set_normal(cpu_buffer, next_page,
2058                                               tail_page,
2059                                               RB_PAGE_UPDATE);
2060                 if (RB_WARN_ON(cpu_buffer,
2061                                ret != RB_PAGE_UPDATE))
2062                         return -1;
2063         }
2064
2065         return 0;
2066 }
2067
2068 static inline void
2069 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2070               unsigned long tail, struct rb_event_info *info)
2071 {
2072         struct buffer_page *tail_page = info->tail_page;
2073         struct ring_buffer_event *event;
2074         unsigned long length = info->length;
2075
2076         /*
2077          * Only the event that crossed the page boundary
2078          * must fill the old tail_page with padding.
2079          */
2080         if (tail >= BUF_PAGE_SIZE) {
2081                 /*
2082                  * If the page was filled, then we still need
2083                  * to update the real_end. Reset it to zero
2084                  * and the reader will ignore it.
2085                  */
2086                 if (tail == BUF_PAGE_SIZE)
2087                         tail_page->real_end = 0;
2088
2089                 local_sub(length, &tail_page->write);
2090                 return;
2091         }
2092
2093         event = __rb_page_index(tail_page, tail);
2094         kmemcheck_annotate_bitfield(event, bitfield);
2095
2096         /* account for padding bytes */
2097         local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2098
2099         /*
2100          * Save the original length to the meta data.
2101          * This will be used by the reader to add lost event
2102          * counter.
2103          */
2104         tail_page->real_end = tail;
2105
2106         /*
2107          * If this event is bigger than the minimum size, then
2108          * we need to be careful that we don't subtract the
2109          * write counter enough to allow another writer to slip
2110          * in on this page.
2111          * We put in a discarded commit instead, to make sure
2112          * that this space is not used again.
2113          *
2114          * If we are less than the minimum size, we don't need to
2115          * worry about it.
2116          */
2117         if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2118                 /* No room for any events */
2119
2120                 /* Mark the rest of the page with padding */
2121                 rb_event_set_padding(event);
2122
2123                 /* Set the write back to the previous setting */
2124                 local_sub(length, &tail_page->write);
2125                 return;
2126         }
2127
2128         /* Put in a discarded event */
2129         event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2130         event->type_len = RINGBUF_TYPE_PADDING;
2131         /* time delta must be non zero */
2132         event->time_delta = 1;
2133
2134         /* Set write to end of buffer */
2135         length = (tail + length) - BUF_PAGE_SIZE;
2136         local_sub(length, &tail_page->write);
2137 }
2138
2139 /*
2140  * This is the slow path, force gcc not to inline it.
2141  */
2142 static noinline struct ring_buffer_event *
2143 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2144              unsigned long tail, struct rb_event_info *info)
2145 {
2146         struct buffer_page *tail_page = info->tail_page;
2147         struct buffer_page *commit_page = cpu_buffer->commit_page;
2148         struct ring_buffer *buffer = cpu_buffer->buffer;
2149         struct buffer_page *next_page;
2150         int ret;
2151         u64 ts;
2152
2153         next_page = tail_page;
2154
2155         rb_inc_page(cpu_buffer, &next_page);
2156
2157         /*
2158          * If for some reason, we had an interrupt storm that made
2159          * it all the way around the buffer, bail, and warn
2160          * about it.
2161          */
2162         if (unlikely(next_page == commit_page)) {
2163                 local_inc(&cpu_buffer->commit_overrun);
2164                 goto out_reset;
2165         }
2166
2167         /*
2168          * This is where the fun begins!
2169          *
2170          * We are fighting against races between a reader that
2171          * could be on another CPU trying to swap its reader
2172          * page with the buffer head.
2173          *
2174          * We are also fighting against interrupts coming in and
2175          * moving the head or tail on us as well.
2176          *
2177          * If the next page is the head page then we have filled
2178          * the buffer, unless the commit page is still on the
2179          * reader page.
2180          */
2181         if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2182
2183                 /*
2184                  * If the commit is not on the reader page, then
2185                  * move the header page.
2186                  */
2187                 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2188                         /*
2189                          * If we are not in overwrite mode,
2190                          * this is easy, just stop here.
2191                          */
2192                         if (!(buffer->flags & RB_FL_OVERWRITE)) {
2193                                 local_inc(&cpu_buffer->dropped_events);
2194                                 goto out_reset;
2195                         }
2196
2197                         ret = rb_handle_head_page(cpu_buffer,
2198                                                   tail_page,
2199                                                   next_page);
2200                         if (ret < 0)
2201                                 goto out_reset;
2202                         if (ret)
2203                                 goto out_again;
2204                 } else {
2205                         /*
2206                          * We need to be careful here too. The
2207                          * commit page could still be on the reader
2208                          * page. We could have a small buffer, and
2209                          * have filled up the buffer with events
2210                          * from interrupts and such, and wrapped.
2211                          *
2212                          * Note, if the tail page is also the on the
2213                          * reader_page, we let it move out.
2214                          */
2215                         if (unlikely((cpu_buffer->commit_page !=
2216                                       cpu_buffer->tail_page) &&
2217                                      (cpu_buffer->commit_page ==
2218                                       cpu_buffer->reader_page))) {
2219                                 local_inc(&cpu_buffer->commit_overrun);
2220                                 goto out_reset;
2221                         }
2222                 }
2223         }
2224
2225         ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
2226         if (ret) {
2227                 /*
2228                  * Nested commits always have zero deltas, so
2229                  * just reread the time stamp
2230                  */
2231                 ts = rb_time_stamp(buffer);
2232                 next_page->page->time_stamp = ts;
2233         }
2234
2235  out_again:
2236
2237         rb_reset_tail(cpu_buffer, tail, info);
2238
2239         /* fail and let the caller try again */
2240         return ERR_PTR(-EAGAIN);
2241
2242  out_reset:
2243         /* reset write */
2244         rb_reset_tail(cpu_buffer, tail, info);
2245
2246         return NULL;
2247 }
2248
2249 /* Slow path, do not inline */
2250 static noinline struct ring_buffer_event *
2251 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
2252 {
2253         event->type_len = RINGBUF_TYPE_TIME_EXTEND;
2254
2255         /* Not the first event on the page? */
2256         if (rb_event_index(event)) {
2257                 event->time_delta = delta & TS_MASK;
2258                 event->array[0] = delta >> TS_SHIFT;
2259         } else {
2260                 /* nope, just zero it */
2261                 event->time_delta = 0;
2262                 event->array[0] = 0;
2263         }
2264
2265         return skip_time_extend(event);
2266 }
2267
2268 static inline bool rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2269                                      struct ring_buffer_event *event);
2270
2271 /**
2272  * rb_update_event - update event type and data
2273  * @event: the event to update
2274  * @type: the type of event
2275  * @length: the size of the event field in the ring buffer
2276  *
2277  * Update the type and data fields of the event. The length
2278  * is the actual size that is written to the ring buffer,
2279  * and with this, we can determine what to place into the
2280  * data field.
2281  */
2282 static void
2283 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2284                 struct ring_buffer_event *event,
2285                 struct rb_event_info *info)
2286 {
2287         unsigned length = info->length;
2288         u64 delta = info->delta;
2289
2290         /* Only a commit updates the timestamp */
2291         if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
2292                 delta = 0;
2293
2294         /*
2295          * If we need to add a timestamp, then we
2296          * add it to the start of the resevered space.
2297          */
2298         if (unlikely(info->add_timestamp)) {
2299                 event = rb_add_time_stamp(event, delta);
2300                 length -= RB_LEN_TIME_EXTEND;
2301                 delta = 0;
2302         }
2303
2304         event->time_delta = delta;
2305         length -= RB_EVNT_HDR_SIZE;
2306         if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2307                 event->type_len = 0;
2308                 event->array[0] = length;
2309         } else
2310                 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2311 }
2312
2313 static unsigned rb_calculate_event_length(unsigned length)
2314 {
2315         struct ring_buffer_event event; /* Used only for sizeof array */
2316
2317         /* zero length can cause confusions */
2318         if (!length)
2319                 length++;
2320
2321         if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2322                 length += sizeof(event.array[0]);
2323
2324         length += RB_EVNT_HDR_SIZE;
2325         length = ALIGN(length, RB_ARCH_ALIGNMENT);
2326
2327         /*
2328          * In case the time delta is larger than the 27 bits for it
2329          * in the header, we need to add a timestamp. If another
2330          * event comes in when trying to discard this one to increase
2331          * the length, then the timestamp will be added in the allocated
2332          * space of this event. If length is bigger than the size needed
2333          * for the TIME_EXTEND, then padding has to be used. The events
2334          * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
2335          * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
2336          * As length is a multiple of 4, we only need to worry if it
2337          * is 12 (RB_LEN_TIME_EXTEND + 4).
2338          */
2339         if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
2340                 length += RB_ALIGNMENT;
2341
2342         return length;
2343 }
2344
2345 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2346 static inline bool sched_clock_stable(void)
2347 {
2348         return true;
2349 }
2350 #endif
2351
2352 static inline int
2353 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2354                   struct ring_buffer_event *event)
2355 {
2356         unsigned long new_index, old_index;
2357         struct buffer_page *bpage;
2358         unsigned long index;
2359         unsigned long addr;
2360
2361         new_index = rb_event_index(event);
2362         old_index = new_index + rb_event_ts_length(event);
2363         addr = (unsigned long)event;
2364         addr &= PAGE_MASK;
2365
2366         bpage = cpu_buffer->tail_page;
2367
2368         if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2369                 unsigned long write_mask =
2370                         local_read(&bpage->write) & ~RB_WRITE_MASK;
2371                 unsigned long event_length = rb_event_length(event);
2372                 /*
2373                  * This is on the tail page. It is possible that
2374                  * a write could come in and move the tail page
2375                  * and write to the next page. That is fine
2376                  * because we just shorten what is on this page.
2377                  */
2378                 old_index += write_mask;
2379                 new_index += write_mask;
2380                 index = local_cmpxchg(&bpage->write, old_index, new_index);
2381                 if (index == old_index) {
2382                         /* update counters */
2383                         local_sub(event_length, &cpu_buffer->entries_bytes);
2384                         return 1;
2385                 }
2386         }
2387
2388         /* could not discard */
2389         return 0;
2390 }
2391
2392 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2393 {
2394         local_inc(&cpu_buffer->committing);
2395         local_inc(&cpu_buffer->commits);
2396 }
2397
2398 static void
2399 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
2400 {
2401         unsigned long max_count;
2402
2403         /*
2404          * We only race with interrupts and NMIs on this CPU.
2405          * If we own the commit event, then we can commit
2406          * all others that interrupted us, since the interruptions
2407          * are in stack format (they finish before they come
2408          * back to us). This allows us to do a simple loop to
2409          * assign the commit to the tail.
2410          */
2411  again:
2412         max_count = cpu_buffer->nr_pages * 100;
2413
2414         while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
2415                 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
2416                         return;
2417                 if (RB_WARN_ON(cpu_buffer,
2418                                rb_is_reader_page(cpu_buffer->tail_page)))
2419                         return;
2420                 local_set(&cpu_buffer->commit_page->page->commit,
2421                           rb_page_write(cpu_buffer->commit_page));
2422                 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
2423                 cpu_buffer->write_stamp =
2424                         cpu_buffer->commit_page->page->time_stamp;
2425                 /* add barrier to keep gcc from optimizing too much */
2426                 barrier();
2427         }
2428         while (rb_commit_index(cpu_buffer) !=
2429                rb_page_write(cpu_buffer->commit_page)) {
2430
2431                 local_set(&cpu_buffer->commit_page->page->commit,
2432                           rb_page_write(cpu_buffer->commit_page));
2433                 RB_WARN_ON(cpu_buffer,
2434                            local_read(&cpu_buffer->commit_page->page->commit) &
2435                            ~RB_WRITE_MASK);
2436                 barrier();
2437         }
2438
2439         /* again, keep gcc from optimizing */
2440         barrier();
2441
2442         /*
2443          * If an interrupt came in just after the first while loop
2444          * and pushed the tail page forward, we will be left with
2445          * a dangling commit that will never go forward.
2446          */
2447         if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
2448                 goto again;
2449 }
2450
2451 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2452 {
2453         unsigned long commits;
2454
2455         if (RB_WARN_ON(cpu_buffer,
2456                        !local_read(&cpu_buffer->committing)))
2457                 return;
2458
2459  again:
2460         commits = local_read(&cpu_buffer->commits);
2461         /* synchronize with interrupts */
2462         barrier();
2463         if (local_read(&cpu_buffer->committing) == 1)
2464                 rb_set_commit_to_write(cpu_buffer);
2465
2466         local_dec(&cpu_buffer->committing);
2467
2468         /* synchronize with interrupts */
2469         barrier();
2470
2471         /*
2472          * Need to account for interrupts coming in between the
2473          * updating of the commit page and the clearing of the
2474          * committing counter.
2475          */
2476         if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2477             !local_read(&cpu_buffer->committing)) {
2478                 local_inc(&cpu_buffer->committing);
2479                 goto again;
2480         }
2481 }
2482
2483 static inline void rb_event_discard(struct ring_buffer_event *event)
2484 {
2485         if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2486                 event = skip_time_extend(event);
2487
2488         /* array[0] holds the actual length for the discarded event */
2489         event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2490         event->type_len = RINGBUF_TYPE_PADDING;
2491         /* time delta must be non zero */
2492         if (!event->time_delta)
2493                 event->time_delta = 1;
2494 }
2495
2496 static inline bool
2497 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2498                    struct ring_buffer_event *event)
2499 {
2500         unsigned long addr = (unsigned long)event;
2501         unsigned long index;
2502
2503         index = rb_event_index(event);
2504         addr &= PAGE_MASK;
2505
2506         return cpu_buffer->commit_page->page == (void *)addr &&
2507                 rb_commit_index(cpu_buffer) == index;
2508 }
2509
2510 static void
2511 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2512                       struct ring_buffer_event *event)
2513 {
2514         u64 delta;
2515
2516         /*
2517          * The event first in the commit queue updates the
2518          * time stamp.
2519          */
2520         if (rb_event_is_commit(cpu_buffer, event)) {
2521                 /*
2522                  * A commit event that is first on a page
2523                  * updates the write timestamp with the page stamp
2524                  */
2525                 if (!rb_event_index(event))
2526                         cpu_buffer->write_stamp =
2527                                 cpu_buffer->commit_page->page->time_stamp;
2528                 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2529                         delta = event->array[0];
2530                         delta <<= TS_SHIFT;
2531                         delta += event->time_delta;
2532                         cpu_buffer->write_stamp += delta;
2533                 } else
2534                         cpu_buffer->write_stamp += event->time_delta;
2535         }
2536 }
2537
2538 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2539                       struct ring_buffer_event *event)
2540 {
2541         local_inc(&cpu_buffer->entries);
2542         rb_update_write_stamp(cpu_buffer, event);
2543         rb_end_commit(cpu_buffer);
2544 }
2545
2546 static __always_inline void
2547 rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2548 {
2549         bool pagebusy;
2550
2551         if (buffer->irq_work.waiters_pending) {
2552                 buffer->irq_work.waiters_pending = false;
2553                 /* irq_work_queue() supplies it's own memory barriers */
2554                 irq_work_queue(&buffer->irq_work.work);
2555         }
2556
2557         if (cpu_buffer->irq_work.waiters_pending) {
2558                 cpu_buffer->irq_work.waiters_pending = false;
2559                 /* irq_work_queue() supplies it's own memory barriers */
2560                 irq_work_queue(&cpu_buffer->irq_work.work);
2561         }
2562
2563         pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
2564
2565         if (!pagebusy && cpu_buffer->irq_work.full_waiters_pending) {
2566                 cpu_buffer->irq_work.wakeup_full = true;
2567                 cpu_buffer->irq_work.full_waiters_pending = false;
2568                 /* irq_work_queue() supplies it's own memory barriers */
2569                 irq_work_queue(&cpu_buffer->irq_work.work);
2570         }
2571 }
2572
2573 /*
2574  * The lock and unlock are done within a preempt disable section.
2575  * The current_context per_cpu variable can only be modified
2576  * by the current task between lock and unlock. But it can
2577  * be modified more than once via an interrupt. To pass this
2578  * information from the lock to the unlock without having to
2579  * access the 'in_interrupt()' functions again (which do show
2580  * a bit of overhead in something as critical as function tracing,
2581  * we use a bitmask trick.
2582  *
2583  *  bit 0 =  NMI context
2584  *  bit 1 =  IRQ context
2585  *  bit 2 =  SoftIRQ context
2586  *  bit 3 =  normal context.
2587  *
2588  * This works because this is the order of contexts that can
2589  * preempt other contexts. A SoftIRQ never preempts an IRQ
2590  * context.
2591  *
2592  * When the context is determined, the corresponding bit is
2593  * checked and set (if it was set, then a recursion of that context
2594  * happened).
2595  *
2596  * On unlock, we need to clear this bit. To do so, just subtract
2597  * 1 from the current_context and AND it to itself.
2598  *
2599  * (binary)
2600  *  101 - 1 = 100
2601  *  101 & 100 = 100 (clearing bit zero)
2602  *
2603  *  1010 - 1 = 1001
2604  *  1010 & 1001 = 1000 (clearing bit 1)
2605  *
2606  * The least significant bit can be cleared this way, and it
2607  * just so happens that it is the same bit corresponding to
2608  * the current context.
2609  */
2610
2611 static __always_inline int
2612 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
2613 {
2614         unsigned int val = cpu_buffer->current_context;
2615         int bit;
2616
2617         if (in_interrupt()) {
2618                 if (in_nmi())
2619                         bit = RB_CTX_NMI;
2620                 else if (in_irq())
2621                         bit = RB_CTX_IRQ;
2622                 else
2623                         bit = RB_CTX_SOFTIRQ;
2624         } else
2625                 bit = RB_CTX_NORMAL;
2626
2627         if (unlikely(val & (1 << bit)))
2628                 return 1;
2629
2630         val |= (1 << bit);
2631         cpu_buffer->current_context = val;
2632
2633         return 0;
2634 }
2635
2636 static __always_inline void
2637 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
2638 {
2639         cpu_buffer->current_context &= cpu_buffer->current_context - 1;
2640 }
2641
2642 /**
2643  * ring_buffer_unlock_commit - commit a reserved
2644  * @buffer: The buffer to commit to
2645  * @event: The event pointer to commit.
2646  *
2647  * This commits the data to the ring buffer, and releases any locks held.
2648  *
2649  * Must be paired with ring_buffer_lock_reserve.
2650  */
2651 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2652                               struct ring_buffer_event *event)
2653 {
2654         struct ring_buffer_per_cpu *cpu_buffer;
2655         int cpu = raw_smp_processor_id();
2656
2657         cpu_buffer = buffer->buffers[cpu];
2658
2659         rb_commit(cpu_buffer, event);
2660
2661         rb_wakeups(buffer, cpu_buffer);
2662
2663         trace_recursive_unlock(cpu_buffer);
2664
2665         preempt_enable_notrace();
2666
2667         return 0;
2668 }
2669 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2670
2671 static noinline void
2672 rb_handle_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2673                     struct rb_event_info *info)
2674 {
2675         WARN_ONCE(info->delta > (1ULL << 59),
2676                   KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2677                   (unsigned long long)info->delta,
2678                   (unsigned long long)info->ts,
2679                   (unsigned long long)cpu_buffer->write_stamp,
2680                   sched_clock_stable() ? "" :
2681                   "If you just came from a suspend/resume,\n"
2682                   "please switch to the trace global clock:\n"
2683                   "  echo global > /sys/kernel/debug/tracing/trace_clock\n");
2684         info->add_timestamp = 1;
2685 }
2686
2687 static struct ring_buffer_event *
2688 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
2689                   struct rb_event_info *info)
2690 {
2691         struct ring_buffer_event *event;
2692         struct buffer_page *tail_page;
2693         unsigned long tail, write;
2694
2695         /*
2696          * If the time delta since the last event is too big to
2697          * hold in the time field of the event, then we append a
2698          * TIME EXTEND event ahead of the data event.
2699          */
2700         if (unlikely(info->add_timestamp))
2701                 info->length += RB_LEN_TIME_EXTEND;
2702
2703         tail_page = info->tail_page = cpu_buffer->tail_page;
2704         write = local_add_return(info->length, &tail_page->write);
2705
2706         /* set write to only the index of the write */
2707         write &= RB_WRITE_MASK;
2708         tail = write - info->length;
2709
2710         /*
2711          * If this is the first commit on the page, then it has the same
2712          * timestamp as the page itself.
2713          */
2714         if (!tail)
2715                 info->delta = 0;
2716
2717         /* See if we shot pass the end of this buffer page */
2718         if (unlikely(write > BUF_PAGE_SIZE))
2719                 return rb_move_tail(cpu_buffer, tail, info);
2720
2721         /* We reserved something on the buffer */
2722
2723         event = __rb_page_index(tail_page, tail);
2724         kmemcheck_annotate_bitfield(event, bitfield);
2725         rb_update_event(cpu_buffer, event, info);
2726
2727         local_inc(&tail_page->entries);
2728
2729         /*
2730          * If this is the first commit on the page, then update
2731          * its timestamp.
2732          */
2733         if (!tail)
2734                 tail_page->page->time_stamp = info->ts;
2735
2736         /* account for these added bytes */
2737         local_add(info->length, &cpu_buffer->entries_bytes);
2738
2739         return event;
2740 }
2741
2742 static struct ring_buffer_event *
2743 rb_reserve_next_event(struct ring_buffer *buffer,
2744                       struct ring_buffer_per_cpu *cpu_buffer,
2745                       unsigned long length)
2746 {
2747         struct ring_buffer_event *event;
2748         struct rb_event_info info;
2749         int nr_loops = 0;
2750         u64 diff;
2751
2752         rb_start_commit(cpu_buffer);
2753
2754 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2755         /*
2756          * Due to the ability to swap a cpu buffer from a buffer
2757          * it is possible it was swapped before we committed.
2758          * (committing stops a swap). We check for it here and
2759          * if it happened, we have to fail the write.
2760          */
2761         barrier();
2762         if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2763                 local_dec(&cpu_buffer->committing);
2764                 local_dec(&cpu_buffer->commits);
2765                 return NULL;
2766         }
2767 #endif
2768
2769         info.length = rb_calculate_event_length(length);
2770  again:
2771         info.add_timestamp = 0;
2772         info.delta = 0;
2773
2774         /*
2775          * We allow for interrupts to reenter here and do a trace.
2776          * If one does, it will cause this original code to loop
2777          * back here. Even with heavy interrupts happening, this
2778          * should only happen a few times in a row. If this happens
2779          * 1000 times in a row, there must be either an interrupt
2780          * storm or we have something buggy.
2781          * Bail!
2782          */
2783         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2784                 goto out_fail;
2785
2786         info.ts = rb_time_stamp(cpu_buffer->buffer);
2787         diff = info.ts - cpu_buffer->write_stamp;
2788
2789         /* make sure this diff is calculated here */
2790         barrier();
2791
2792         /* Did the write stamp get updated already? */
2793         if (likely(info.ts >= cpu_buffer->write_stamp)) {
2794                 info.delta = diff;
2795                 if (unlikely(test_time_stamp(info.delta)))
2796                         rb_handle_timestamp(cpu_buffer, &info);
2797         }
2798
2799         event = __rb_reserve_next(cpu_buffer, &info);
2800
2801         if (unlikely(PTR_ERR(event) == -EAGAIN)) {
2802                 if (info.add_timestamp)
2803                         info.length -= RB_LEN_TIME_EXTEND;
2804                 goto again;
2805         }
2806
2807         if (!event)
2808                 goto out_fail;
2809
2810         return event;
2811
2812  out_fail:
2813         rb_end_commit(cpu_buffer);
2814         return NULL;
2815 }
2816
2817 /**
2818  * ring_buffer_lock_reserve - reserve a part of the buffer
2819  * @buffer: the ring buffer to reserve from
2820  * @length: the length of the data to reserve (excluding event header)
2821  *
2822  * Returns a reseverd event on the ring buffer to copy directly to.
2823  * The user of this interface will need to get the body to write into
2824  * and can use the ring_buffer_event_data() interface.
2825  *
2826  * The length is the length of the data needed, not the event length
2827  * which also includes the event header.
2828  *
2829  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2830  * If NULL is returned, then nothing has been allocated or locked.
2831  */
2832 struct ring_buffer_event *
2833 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2834 {
2835         struct ring_buffer_per_cpu *cpu_buffer;
2836         struct ring_buffer_event *event;
2837         int cpu;
2838
2839         /* If we are tracing schedule, we don't want to recurse */
2840         preempt_disable_notrace();
2841
2842         if (unlikely(atomic_read(&buffer->record_disabled)))
2843                 goto out;
2844
2845         cpu = raw_smp_processor_id();
2846
2847         if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
2848                 goto out;
2849
2850         cpu_buffer = buffer->buffers[cpu];
2851
2852         if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
2853                 goto out;
2854
2855         if (unlikely(length > BUF_MAX_DATA_SIZE))
2856                 goto out;
2857
2858         if (unlikely(trace_recursive_lock(cpu_buffer)))
2859                 goto out;
2860
2861         event = rb_reserve_next_event(buffer, cpu_buffer, length);
2862         if (!event)
2863                 goto out_unlock;
2864
2865         return event;
2866
2867  out_unlock:
2868         trace_recursive_unlock(cpu_buffer);
2869  out:
2870         preempt_enable_notrace();
2871         return NULL;
2872 }
2873 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2874
2875 /*
2876  * Decrement the entries to the page that an event is on.
2877  * The event does not even need to exist, only the pointer
2878  * to the page it is on. This may only be called before the commit
2879  * takes place.
2880  */
2881 static inline void
2882 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2883                    struct ring_buffer_event *event)
2884 {
2885         unsigned long addr = (unsigned long)event;
2886         struct buffer_page *bpage = cpu_buffer->commit_page;
2887         struct buffer_page *start;
2888
2889         addr &= PAGE_MASK;
2890
2891         /* Do the likely case first */
2892         if (likely(bpage->page == (void *)addr)) {
2893                 local_dec(&bpage->entries);
2894                 return;
2895         }
2896
2897         /*
2898          * Because the commit page may be on the reader page we
2899          * start with the next page and check the end loop there.
2900          */
2901         rb_inc_page(cpu_buffer, &bpage);
2902         start = bpage;
2903         do {
2904                 if (bpage->page == (void *)addr) {
2905                         local_dec(&bpage->entries);
2906                         return;
2907                 }
2908                 rb_inc_page(cpu_buffer, &bpage);
2909         } while (bpage != start);
2910
2911         /* commit not part of this buffer?? */
2912         RB_WARN_ON(cpu_buffer, 1);
2913 }
2914
2915 /**
2916  * ring_buffer_commit_discard - discard an event that has not been committed
2917  * @buffer: the ring buffer
2918  * @event: non committed event to discard
2919  *
2920  * Sometimes an event that is in the ring buffer needs to be ignored.
2921  * This function lets the user discard an event in the ring buffer
2922  * and then that event will not be read later.
2923  *
2924  * This function only works if it is called before the the item has been
2925  * committed. It will try to free the event from the ring buffer
2926  * if another event has not been added behind it.
2927  *
2928  * If another event has been added behind it, it will set the event
2929  * up as discarded, and perform the commit.
2930  *
2931  * If this function is called, do not call ring_buffer_unlock_commit on
2932  * the event.
2933  */
2934 void ring_buffer_discard_commit(struct ring_buffer *buffer,
2935                                 struct ring_buffer_event *event)
2936 {
2937         struct ring_buffer_per_cpu *cpu_buffer;
2938         int cpu;
2939
2940         /* The event is discarded regardless */
2941         rb_event_discard(event);
2942
2943         cpu = smp_processor_id();
2944         cpu_buffer = buffer->buffers[cpu];
2945
2946         /*
2947          * This must only be called if the event has not been
2948          * committed yet. Thus we can assume that preemption
2949          * is still disabled.
2950          */
2951         RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
2952
2953         rb_decrement_entry(cpu_buffer, event);
2954         if (rb_try_to_discard(cpu_buffer, event))
2955                 goto out;
2956
2957         /*
2958          * The commit is still visible by the reader, so we
2959          * must still update the timestamp.
2960          */
2961         rb_update_write_stamp(cpu_buffer, event);
2962  out:
2963         rb_end_commit(cpu_buffer);
2964
2965         trace_recursive_unlock(cpu_buffer);
2966
2967         preempt_enable_notrace();
2968
2969 }
2970 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2971
2972 /**
2973  * ring_buffer_write - write data to the buffer without reserving
2974  * @buffer: The ring buffer to write to.
2975  * @length: The length of the data being written (excluding the event header)
2976  * @data: The data to write to the buffer.
2977  *
2978  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2979  * one function. If you already have the data to write to the buffer, it
2980  * may be easier to simply call this function.
2981  *
2982  * Note, like ring_buffer_lock_reserve, the length is the length of the data
2983  * and not the length of the event which would hold the header.
2984  */
2985 int ring_buffer_write(struct ring_buffer *buffer,
2986                       unsigned long length,
2987                       void *data)
2988 {
2989         struct ring_buffer_per_cpu *cpu_buffer;
2990         struct ring_buffer_event *event;
2991         void *body;
2992         int ret = -EBUSY;
2993         int cpu;
2994
2995         preempt_disable_notrace();
2996
2997         if (atomic_read(&buffer->record_disabled))
2998                 goto out;
2999
3000         cpu = raw_smp_processor_id();
3001
3002         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3003                 goto out;
3004
3005         cpu_buffer = buffer->buffers[cpu];
3006
3007         if (atomic_read(&cpu_buffer->record_disabled))
3008                 goto out;
3009
3010         if (length > BUF_MAX_DATA_SIZE)
3011                 goto out;
3012
3013         if (unlikely(trace_recursive_lock(cpu_buffer)))
3014                 goto out;
3015
3016         event = rb_reserve_next_event(buffer, cpu_buffer, length);
3017         if (!event)
3018                 goto out_unlock;
3019
3020         body = rb_event_data(event);
3021
3022         memcpy(body, data, length);
3023
3024         rb_commit(cpu_buffer, event);
3025
3026         rb_wakeups(buffer, cpu_buffer);
3027
3028         ret = 0;
3029
3030  out_unlock:
3031         trace_recursive_unlock(cpu_buffer);
3032
3033  out:
3034         preempt_enable_notrace();
3035
3036         return ret;
3037 }
3038 EXPORT_SYMBOL_GPL(ring_buffer_write);
3039
3040 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
3041 {
3042         struct buffer_page *reader = cpu_buffer->reader_page;
3043         struct buffer_page *head = rb_set_head_page(cpu_buffer);
3044         struct buffer_page *commit = cpu_buffer->commit_page;
3045
3046         /* In case of error, head will be NULL */
3047         if (unlikely(!head))
3048                 return true;
3049
3050         return reader->read == rb_page_commit(reader) &&
3051                 (commit == reader ||
3052                  (commit == head &&
3053                   head->read == rb_page_commit(commit)));
3054 }
3055
3056 /**
3057  * ring_buffer_record_disable - stop all writes into the buffer
3058  * @buffer: The ring buffer to stop writes to.
3059  *
3060  * This prevents all writes to the buffer. Any attempt to write
3061  * to the buffer after this will fail and return NULL.
3062  *
3063  * The caller should call synchronize_sched() after this.
3064  */
3065 void ring_buffer_record_disable(struct ring_buffer *buffer)
3066 {
3067         atomic_inc(&buffer->record_disabled);
3068 }
3069 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3070
3071 /**
3072  * ring_buffer_record_enable - enable writes to the buffer
3073  * @buffer: The ring buffer to enable writes
3074  *
3075  * Note, multiple disables will need the same number of enables
3076  * to truly enable the writing (much like preempt_disable).
3077  */
3078 void ring_buffer_record_enable(struct ring_buffer *buffer)
3079 {
3080         atomic_dec(&buffer->record_disabled);
3081 }
3082 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
3083
3084 /**
3085  * ring_buffer_record_off - stop all writes into the buffer
3086  * @buffer: The ring buffer to stop writes to.
3087  *
3088  * This prevents all writes to the buffer. Any attempt to write
3089  * to the buffer after this will fail and return NULL.
3090  *
3091  * This is different than ring_buffer_record_disable() as
3092  * it works like an on/off switch, where as the disable() version
3093  * must be paired with a enable().
3094  */
3095 void ring_buffer_record_off(struct ring_buffer *buffer)
3096 {
3097         unsigned int rd;
3098         unsigned int new_rd;
3099
3100         do {
3101                 rd = atomic_read(&buffer->record_disabled);
3102                 new_rd = rd | RB_BUFFER_OFF;
3103         } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3104 }
3105 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3106
3107 /**
3108  * ring_buffer_record_on - restart writes into the buffer
3109  * @buffer: The ring buffer to start writes to.
3110  *
3111  * This enables all writes to the buffer that was disabled by
3112  * ring_buffer_record_off().
3113  *
3114  * This is different than ring_buffer_record_enable() as
3115  * it works like an on/off switch, where as the enable() version
3116  * must be paired with a disable().
3117  */
3118 void ring_buffer_record_on(struct ring_buffer *buffer)
3119 {
3120         unsigned int rd;
3121         unsigned int new_rd;
3122
3123         do {
3124                 rd = atomic_read(&buffer->record_disabled);
3125                 new_rd = rd & ~RB_BUFFER_OFF;
3126         } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3127 }
3128 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3129
3130 /**
3131  * ring_buffer_record_is_on - return true if the ring buffer can write
3132  * @buffer: The ring buffer to see if write is enabled
3133  *
3134  * Returns true if the ring buffer is in a state that it accepts writes.
3135  */
3136 int ring_buffer_record_is_on(struct ring_buffer *buffer)
3137 {
3138         return !atomic_read(&buffer->record_disabled);
3139 }
3140
3141 /**
3142  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3143  * @buffer: The ring buffer to stop writes to.
3144  * @cpu: The CPU buffer to stop
3145  *
3146  * This prevents all writes to the buffer. Any attempt to write
3147  * to the buffer after this will fail and return NULL.
3148  *
3149  * The caller should call synchronize_sched() after this.
3150  */
3151 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
3152 {
3153         struct ring_buffer_per_cpu *cpu_buffer;
3154
3155         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3156                 return;
3157
3158         cpu_buffer = buffer->buffers[cpu];
3159         atomic_inc(&cpu_buffer->record_disabled);
3160 }
3161 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
3162
3163 /**
3164  * ring_buffer_record_enable_cpu - enable writes to the buffer
3165  * @buffer: The ring buffer to enable writes
3166  * @cpu: The CPU to enable.
3167  *
3168  * Note, multiple disables will need the same number of enables
3169  * to truly enable the writing (much like preempt_disable).
3170  */
3171 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
3172 {
3173         struct ring_buffer_per_cpu *cpu_buffer;
3174
3175         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3176                 return;
3177
3178         cpu_buffer = buffer->buffers[cpu];
3179         atomic_dec(&cpu_buffer->record_disabled);
3180 }
3181 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
3182
3183 /*
3184  * The total entries in the ring buffer is the running counter
3185  * of entries entered into the ring buffer, minus the sum of
3186  * the entries read from the ring buffer and the number of
3187  * entries that were overwritten.
3188  */
3189 static inline unsigned long
3190 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3191 {
3192         return local_read(&cpu_buffer->entries) -
3193                 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3194 }
3195
3196 /**
3197  * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3198  * @buffer: The ring buffer
3199  * @cpu: The per CPU buffer to read from.
3200  */
3201 u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
3202 {
3203         unsigned long flags;
3204         struct ring_buffer_per_cpu *cpu_buffer;
3205         struct buffer_page *bpage;
3206         u64 ret = 0;
3207
3208         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3209                 return 0;
3210
3211         cpu_buffer = buffer->buffers[cpu];
3212         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3213         /*
3214          * if the tail is on reader_page, oldest time stamp is on the reader
3215          * page
3216          */
3217         if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3218                 bpage = cpu_buffer->reader_page;
3219         else
3220                 bpage = rb_set_head_page(cpu_buffer);
3221         if (bpage)
3222                 ret = bpage->page->time_stamp;
3223         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3224
3225         return ret;
3226 }
3227 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3228
3229 /**
3230  * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3231  * @buffer: The ring buffer
3232  * @cpu: The per CPU buffer to read from.
3233  */
3234 unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
3235 {
3236         struct ring_buffer_per_cpu *cpu_buffer;
3237         unsigned long ret;
3238
3239         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3240                 return 0;
3241
3242         cpu_buffer = buffer->buffers[cpu];
3243         ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3244
3245         return ret;
3246 }
3247 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3248
3249 /**
3250  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3251  * @buffer: The ring buffer
3252  * @cpu: The per CPU buffer to get the entries from.
3253  */
3254 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
3255 {
3256         struct ring_buffer_per_cpu *cpu_buffer;
3257
3258         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3259                 return 0;
3260
3261         cpu_buffer = buffer->buffers[cpu];
3262
3263         return rb_num_of_entries(cpu_buffer);
3264 }
3265 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
3266
3267 /**
3268  * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3269  * buffer wrapping around (only if RB_FL_OVERWRITE is on).
3270  * @buffer: The ring buffer
3271  * @cpu: The per CPU buffer to get the number of overruns from
3272  */
3273 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
3274 {
3275         struct ring_buffer_per_cpu *cpu_buffer;
3276         unsigned long ret;
3277
3278         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3279                 return 0;
3280
3281         cpu_buffer = buffer->buffers[cpu];
3282         ret = local_read(&cpu_buffer->overrun);
3283
3284         return ret;
3285 }
3286 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
3287
3288 /**
3289  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3290  * commits failing due to the buffer wrapping around while there are uncommitted
3291  * events, such as during an interrupt storm.
3292  * @buffer: The ring buffer
3293  * @cpu: The per CPU buffer to get the number of overruns from
3294  */
3295 unsigned long
3296 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3297 {
3298         struct ring_buffer_per_cpu *cpu_buffer;
3299         unsigned long ret;
3300
3301         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3302                 return 0;
3303
3304         cpu_buffer = buffer->buffers[cpu];
3305         ret = local_read(&cpu_buffer->commit_overrun);
3306
3307         return ret;
3308 }
3309 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3310
3311 /**
3312  * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3313  * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3314  * @buffer: The ring buffer
3315  * @cpu: The per CPU buffer to get the number of overruns from
3316  */
3317 unsigned long
3318 ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu)
3319 {
3320         struct ring_buffer_per_cpu *cpu_buffer;
3321         unsigned long ret;
3322
3323         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3324                 return 0;
3325
3326         cpu_buffer = buffer->buffers[cpu];
3327         ret = local_read(&cpu_buffer->dropped_events);
3328
3329         return ret;
3330 }
3331 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3332
3333 /**
3334  * ring_buffer_read_events_cpu - get the number of events successfully read
3335  * @buffer: The ring buffer
3336  * @cpu: The per CPU buffer to get the number of events read
3337  */
3338 unsigned long
3339 ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu)
3340 {
3341         struct ring_buffer_per_cpu *cpu_buffer;
3342
3343         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3344                 return 0;
3345
3346         cpu_buffer = buffer->buffers[cpu];
3347         return cpu_buffer->read;
3348 }
3349 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3350
3351 /**
3352  * ring_buffer_entries - get the number of entries in a buffer
3353  * @buffer: The ring buffer
3354  *
3355  * Returns the total number of entries in the ring buffer
3356  * (all CPU entries)
3357  */
3358 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3359 {
3360         struct ring_buffer_per_cpu *cpu_buffer;
3361         unsigned long entries = 0;
3362         int cpu;
3363
3364         /* if you care about this being correct, lock the buffer */
3365         for_each_buffer_cpu(buffer, cpu) {
3366                 cpu_buffer = buffer->buffers[cpu];
3367                 entries += rb_num_of_entries(cpu_buffer);
3368         }
3369
3370         return entries;
3371 }
3372 EXPORT_SYMBOL_GPL(ring_buffer_entries);
3373
3374 /**
3375  * ring_buffer_overruns - get the number of overruns in buffer
3376  * @buffer: The ring buffer
3377  *
3378  * Returns the total number of overruns in the ring buffer
3379  * (all CPU entries)
3380  */
3381 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3382 {
3383         struct ring_buffer_per_cpu *cpu_buffer;
3384         unsigned long overruns = 0;
3385         int cpu;
3386
3387         /* if you care about this being correct, lock the buffer */
3388         for_each_buffer_cpu(buffer, cpu) {
3389                 cpu_buffer = buffer->buffers[cpu];
3390                 overruns += local_read(&cpu_buffer->overrun);
3391         }
3392
3393         return overruns;
3394 }
3395 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
3396
3397 static void rb_iter_reset(struct ring_buffer_iter *iter)
3398 {
3399         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3400
3401         /* Iterator usage is expected to have record disabled */
3402         iter->head_page = cpu_buffer->reader_page;
3403         iter->head = cpu_buffer->reader_page->read;
3404
3405         iter->cache_reader_page = iter->head_page;
3406         iter->cache_read = cpu_buffer->read;
3407
3408         if (iter->head)
3409                 iter->read_stamp = cpu_buffer->read_stamp;
3410         else
3411                 iter->read_stamp = iter->head_page->page->time_stamp;
3412 }
3413
3414 /**
3415  * ring_buffer_iter_reset - reset an iterator
3416  * @iter: The iterator to reset
3417  *
3418  * Resets the iterator, so that it will start from the beginning
3419  * again.
3420  */
3421 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3422 {
3423         struct ring_buffer_per_cpu *cpu_buffer;
3424         unsigned long flags;
3425
3426         if (!iter)
3427                 return;
3428
3429         cpu_buffer = iter->cpu_buffer;
3430
3431         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3432         rb_iter_reset(iter);
3433         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3434 }
3435 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
3436
3437 /**
3438  * ring_buffer_iter_empty - check if an iterator has no more to read
3439  * @iter: The iterator to check
3440  */
3441 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3442 {
3443         struct ring_buffer_per_cpu *cpu_buffer;
3444
3445         cpu_buffer = iter->cpu_buffer;
3446
3447         return iter->head_page == cpu_buffer->commit_page &&
3448                 iter->head == rb_commit_index(cpu_buffer);
3449 }
3450 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
3451
3452 static void
3453 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3454                      struct ring_buffer_event *event)
3455 {
3456         u64 delta;
3457
3458         switch (event->type_len) {
3459         case RINGBUF_TYPE_PADDING:
3460                 return;
3461
3462         case RINGBUF_TYPE_TIME_EXTEND:
3463                 delta = event->array[0];
3464                 delta <<= TS_SHIFT;
3465                 delta += event->time_delta;
3466                 cpu_buffer->read_stamp += delta;
3467                 return;
3468
3469         case RINGBUF_TYPE_TIME_STAMP:
3470                 /* FIXME: not implemented */
3471                 return;
3472
3473         case RINGBUF_TYPE_DATA:
3474                 cpu_buffer->read_stamp += event->time_delta;
3475                 return;
3476
3477         default:
3478                 BUG();
3479         }
3480         return;
3481 }
3482
3483 static void
3484 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3485                           struct ring_buffer_event *event)
3486 {
3487         u64 delta;
3488
3489         switch (event->type_len) {
3490         case RINGBUF_TYPE_PADDING:
3491                 return;
3492
3493         case RINGBUF_TYPE_TIME_EXTEND:
3494                 delta = event->array[0];
3495                 delta <<= TS_SHIFT;
3496                 delta += event->time_delta;
3497                 iter->read_stamp += delta;
3498                 return;
3499
3500         case RINGBUF_TYPE_TIME_STAMP:
3501                 /* FIXME: not implemented */
3502                 return;
3503
3504         case RINGBUF_TYPE_DATA:
3505                 iter->read_stamp += event->time_delta;
3506                 return;
3507
3508         default:
3509                 BUG();
3510         }
3511         return;
3512 }
3513
3514 static struct buffer_page *
3515 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
3516 {
3517         struct buffer_page *reader = NULL;
3518         unsigned long overwrite;
3519         unsigned long flags;
3520         int nr_loops = 0;
3521         int ret;
3522
3523         local_irq_save(flags);
3524         arch_spin_lock(&cpu_buffer->lock);
3525
3526  again:
3527         /*
3528          * This should normally only loop twice. But because the
3529          * start of the reader inserts an empty page, it causes
3530          * a case where we will loop three times. There should be no
3531          * reason to loop four times (that I know of).
3532          */
3533         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
3534                 reader = NULL;
3535                 goto out;
3536         }
3537
3538         reader = cpu_buffer->reader_page;
3539
3540         /* If there's more to read, return this page */
3541         if (cpu_buffer->reader_page->read < rb_page_size(reader))
3542                 goto out;
3543
3544         /* Never should we have an index greater than the size */
3545         if (RB_WARN_ON(cpu_buffer,
3546                        cpu_buffer->reader_page->read > rb_page_size(reader)))
3547                 goto out;
3548
3549         /* check if we caught up to the tail */
3550         reader = NULL;
3551         if (cpu_buffer->commit_page == cpu_buffer->reader_page)
3552                 goto out;
3553
3554         /* Don't bother swapping if the ring buffer is empty */
3555         if (rb_num_of_entries(cpu_buffer) == 0)
3556                 goto out;
3557
3558         /*
3559          * Reset the reader page to size zero.
3560          */
3561         local_set(&cpu_buffer->reader_page->write, 0);
3562         local_set(&cpu_buffer->reader_page->entries, 0);
3563         local_set(&cpu_buffer->reader_page->page->commit, 0);
3564         cpu_buffer->reader_page->real_end = 0;
3565
3566  spin:
3567         /*
3568          * Splice the empty reader page into the list around the head.
3569          */
3570         reader = rb_set_head_page(cpu_buffer);
3571         if (!reader)
3572                 goto out;
3573         cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
3574         cpu_buffer->reader_page->list.prev = reader->list.prev;
3575
3576         /*
3577          * cpu_buffer->pages just needs to point to the buffer, it
3578          *  has no specific buffer page to point to. Lets move it out
3579          *  of our way so we don't accidentally swap it.
3580          */
3581         cpu_buffer->pages = reader->list.prev;
3582
3583         /* The reader page will be pointing to the new head */
3584         rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
3585
3586         /*
3587          * We want to make sure we read the overruns after we set up our
3588          * pointers to the next object. The writer side does a
3589          * cmpxchg to cross pages which acts as the mb on the writer
3590          * side. Note, the reader will constantly fail the swap
3591          * while the writer is updating the pointers, so this
3592          * guarantees that the overwrite recorded here is the one we
3593          * want to compare with the last_overrun.
3594          */
3595         smp_mb();
3596         overwrite = local_read(&(cpu_buffer->overrun));
3597
3598         /*
3599          * Here's the tricky part.
3600          *
3601          * We need to move the pointer past the header page.
3602          * But we can only do that if a writer is not currently
3603          * moving it. The page before the header page has the
3604          * flag bit '1' set if it is pointing to the page we want.
3605          * but if the writer is in the process of moving it
3606          * than it will be '2' or already moved '0'.
3607          */
3608
3609         ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
3610
3611         /*
3612          * If we did not convert it, then we must try again.
3613          */
3614         if (!ret)
3615                 goto spin;
3616
3617         /*
3618          * Yeah! We succeeded in replacing the page.
3619          *
3620          * Now make the new head point back to the reader page.
3621          */
3622         rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
3623         rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
3624
3625         /* Finally update the reader page to the new head */
3626         cpu_buffer->reader_page = reader;
3627         cpu_buffer->reader_page->read = 0;
3628
3629         if (overwrite != cpu_buffer->last_overrun) {
3630                 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3631                 cpu_buffer->last_overrun = overwrite;
3632         }
3633
3634         goto again;
3635
3636  out:
3637         /* Update the read_stamp on the first event */
3638         if (reader && reader->read == 0)
3639                 cpu_buffer->read_stamp = reader->page->time_stamp;
3640
3641         arch_spin_unlock(&cpu_buffer->lock);
3642         local_irq_restore(flags);
3643
3644         return reader;
3645 }
3646
3647 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3648 {
3649         struct ring_buffer_event *event;
3650         struct buffer_page *reader;
3651         unsigned length;
3652
3653         reader = rb_get_reader_page(cpu_buffer);
3654
3655         /* This function should not be called when buffer is empty */
3656         if (RB_WARN_ON(cpu_buffer, !reader))
3657                 return;
3658
3659         event = rb_reader_event(cpu_buffer);
3660
3661         if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
3662                 cpu_buffer->read++;
3663
3664         rb_update_read_stamp(cpu_buffer, event);
3665
3666         length = rb_event_length(event);
3667         cpu_buffer->reader_page->read += length;
3668 }
3669
3670 static void rb_advance_iter(struct ring_buffer_iter *iter)
3671 {
3672         struct ring_buffer_per_cpu *cpu_buffer;
3673         struct ring_buffer_event *event;
3674         unsigned length;
3675
3676         cpu_buffer = iter->cpu_buffer;
3677
3678         /*
3679          * Check if we are at the end of the buffer.
3680          */
3681         if (iter->head >= rb_page_size(iter->head_page)) {
3682                 /* discarded commits can make the page empty */
3683                 if (iter->head_page == cpu_buffer->commit_page)
3684                         return;
3685                 rb_inc_iter(iter);
3686                 return;
3687         }
3688
3689         event = rb_iter_head_event(iter);
3690
3691         length = rb_event_length(event);
3692
3693         /*
3694          * This should not be called to advance the header if we are
3695          * at the tail of the buffer.
3696          */
3697         if (RB_WARN_ON(cpu_buffer,
3698                        (iter->head_page == cpu_buffer->commit_page) &&
3699                        (iter->head + length > rb_commit_index(cpu_buffer))))
3700                 return;
3701
3702         rb_update_iter_read_stamp(iter, event);
3703
3704         iter->head += length;
3705
3706         /* check for end of page padding */
3707         if ((iter->head >= rb_page_size(iter->head_page)) &&
3708             (iter->head_page != cpu_buffer->commit_page))
3709                 rb_inc_iter(iter);
3710 }
3711
3712 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3713 {
3714         return cpu_buffer->lost_events;
3715 }
3716
3717 static struct ring_buffer_event *
3718 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3719                unsigned long *lost_events)
3720 {
3721         struct ring_buffer_event *event;
3722         struct buffer_page *reader;
3723         int nr_loops = 0;
3724
3725  again:
3726         /*
3727          * We repeat when a time extend is encountered.
3728          * Since the time extend is always attached to a data event,
3729          * we should never loop more than once.
3730          * (We never hit the following condition more than twice).
3731          */
3732         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3733                 return NULL;
3734
3735         reader = rb_get_reader_page(cpu_buffer);
3736         if (!reader)
3737                 return NULL;
3738
3739         event = rb_reader_event(cpu_buffer);
3740
3741         switch (event->type_len) {
3742         case RINGBUF_TYPE_PADDING:
3743                 if (rb_null_event(event))
3744                         RB_WARN_ON(cpu_buffer, 1);
3745                 /*
3746                  * Because the writer could be discarding every
3747                  * event it creates (which would probably be bad)
3748                  * if we were to go back to "again" then we may never
3749                  * catch up, and will trigger the warn on, or lock
3750                  * the box. Return the padding, and we will release
3751                  * the current locks, and try again.
3752                  */
3753                 return event;
3754
3755         case RINGBUF_TYPE_TIME_EXTEND:
3756                 /* Internal data, OK to advance */
3757                 rb_advance_reader(cpu_buffer);
3758                 goto again;
3759
3760         case RINGBUF_TYPE_TIME_STAMP:
3761                 /* FIXME: not implemented */
3762                 rb_advance_reader(cpu_buffer);
3763                 goto again;
3764
3765         case RINGBUF_TYPE_DATA:
3766                 if (ts) {
3767                         *ts = cpu_buffer->read_stamp + event->time_delta;
3768                         ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3769                                                          cpu_buffer->cpu, ts);
3770                 }
3771                 if (lost_events)
3772                         *lost_events = rb_lost_events(cpu_buffer);
3773                 return event;
3774
3775         default:
3776                 BUG();
3777         }
3778
3779         return NULL;
3780 }
3781 EXPORT_SYMBOL_GPL(ring_buffer_peek);
3782
3783 static struct ring_buffer_event *
3784 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3785 {
3786         struct ring_buffer *buffer;
3787         struct ring_buffer_per_cpu *cpu_buffer;
3788         struct ring_buffer_event *event;
3789         int nr_loops = 0;
3790
3791         cpu_buffer = iter->cpu_buffer;
3792         buffer = cpu_buffer->buffer;
3793
3794         /*
3795          * Check if someone performed a consuming read to
3796          * the buffer. A consuming read invalidates the iterator
3797          * and we need to reset the iterator in this case.
3798          */
3799         if (unlikely(iter->cache_read != cpu_buffer->read ||
3800                      iter->cache_reader_page != cpu_buffer->reader_page))
3801                 rb_iter_reset(iter);
3802
3803  again:
3804         if (ring_buffer_iter_empty(iter))
3805                 return NULL;
3806
3807         /*
3808          * We repeat when a time extend is encountered or we hit
3809          * the end of the page. Since the time extend is always attached
3810          * to a data event, we should never loop more than three times.
3811          * Once for going to next page, once on time extend, and
3812          * finally once to get the event.
3813          * (We never hit the following condition more than thrice).
3814          */
3815         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3))
3816                 return NULL;
3817
3818         if (rb_per_cpu_empty(cpu_buffer))
3819                 return NULL;
3820
3821         if (iter->head >= rb_page_size(iter->head_page)) {
3822                 rb_inc_iter(iter);
3823                 goto again;
3824         }
3825
3826         event = rb_iter_head_event(iter);
3827
3828         switch (event->type_len) {
3829         case RINGBUF_TYPE_PADDING:
3830                 if (rb_null_event(event)) {
3831                         rb_inc_iter(iter);
3832                         goto again;
3833                 }
3834                 rb_advance_iter(iter);
3835                 return event;
3836
3837         case RINGBUF_TYPE_TIME_EXTEND:
3838                 /* Internal data, OK to advance */
3839                 rb_advance_iter(iter);
3840                 goto again;
3841
3842         case RINGBUF_TYPE_TIME_STAMP:
3843                 /* FIXME: not implemented */
3844                 rb_advance_iter(iter);
3845                 goto again;
3846
3847         case RINGBUF_TYPE_DATA:
3848                 if (ts) {
3849                         *ts = iter->read_stamp + event->time_delta;
3850                         ring_buffer_normalize_time_stamp(buffer,
3851                                                          cpu_buffer->cpu, ts);
3852                 }
3853                 return event;
3854
3855         default:
3856                 BUG();
3857         }
3858
3859         return NULL;
3860 }
3861 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3862
3863 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
3864 {
3865         if (likely(!in_nmi())) {
3866                 raw_spin_lock(&cpu_buffer->reader_lock);
3867                 return true;
3868         }
3869
3870         /*
3871          * If an NMI die dumps out the content of the ring buffer
3872          * trylock must be used to prevent a deadlock if the NMI
3873          * preempted a task that holds the ring buffer locks. If
3874          * we get the lock then all is fine, if not, then continue
3875          * to do the read, but this can corrupt the ring buffer,
3876          * so it must be permanently disabled from future writes.
3877          * Reading from NMI is a oneshot deal.
3878          */
3879         if (raw_spin_trylock(&cpu_buffer->reader_lock))
3880                 return true;
3881
3882         /* Continue without locking, but disable the ring buffer */
3883         atomic_inc(&cpu_buffer->record_disabled);
3884         return false;
3885 }
3886
3887 static inline void
3888 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
3889 {
3890         if (likely(locked))
3891                 raw_spin_unlock(&cpu_buffer->reader_lock);
3892         return;
3893 }
3894
3895 /**
3896  * ring_buffer_peek - peek at the next event to be read
3897  * @buffer: The ring buffer to read
3898  * @cpu: The cpu to peak at
3899  * @ts: The timestamp counter of this event.
3900  * @lost_events: a variable to store if events were lost (may be NULL)
3901  *
3902  * This will return the event that will be read next, but does
3903  * not consume the data.
3904  */
3905 struct ring_buffer_event *
3906 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3907                  unsigned long *lost_events)
3908 {
3909         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3910         struct ring_buffer_event *event;
3911         unsigned long flags;
3912         bool dolock;
3913
3914         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3915                 return NULL;
3916
3917  again:
3918         local_irq_save(flags);
3919         dolock = rb_reader_lock(cpu_buffer);
3920         event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3921         if (event && event->type_len == RINGBUF_TYPE_PADDING)
3922                 rb_advance_reader(cpu_buffer);
3923         rb_reader_unlock(cpu_buffer, dolock);
3924         local_irq_restore(flags);
3925
3926         if (event && event->type_len == RINGBUF_TYPE_PADDING)
3927                 goto again;
3928
3929         return event;
3930 }
3931
3932 /**
3933  * ring_buffer_iter_peek - peek at the next event to be read
3934  * @iter: The ring buffer iterator
3935  * @ts: The timestamp counter of this event.
3936  *
3937  * This will return the event that will be read next, but does
3938  * not increment the iterator.
3939  */
3940 struct ring_buffer_event *
3941 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3942 {
3943         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3944         struct ring_buffer_event *event;
3945         unsigned long flags;
3946
3947  again:
3948         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3949         event = rb_iter_peek(iter, ts);
3950         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3951
3952         if (event && event->type_len == RINGBUF_TYPE_PADDING)
3953                 goto again;
3954
3955         return event;
3956 }
3957
3958 /**
3959  * ring_buffer_consume - return an event and consume it
3960  * @buffer: The ring buffer to get the next event from
3961  * @cpu: the cpu to read the buffer from
3962  * @ts: a variable to store the timestamp (may be NULL)
3963  * @lost_events: a variable to store if events were lost (may be NULL)
3964  *
3965  * Returns the next event in the ring buffer, and that event is consumed.
3966  * Meaning, that sequential reads will keep returning a different event,
3967  * and eventually empty the ring buffer if the producer is slower.
3968  */
3969 struct ring_buffer_event *
3970 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3971                     unsigned long *lost_events)
3972 {
3973         struct ring_buffer_per_cpu *cpu_buffer;
3974         struct ring_buffer_event *event = NULL;
3975         unsigned long flags;
3976         bool dolock;
3977
3978  again:
3979         /* might be called in atomic */
3980         preempt_disable();
3981
3982         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3983                 goto out;
3984
3985         cpu_buffer = buffer->buffers[cpu];
3986         local_irq_save(flags);
3987         dolock = rb_reader_lock(cpu_buffer);
3988
3989         event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3990         if (event) {
3991                 cpu_buffer->lost_events = 0;
3992                 rb_advance_reader(cpu_buffer);
3993         }
3994
3995         rb_reader_unlock(cpu_buffer, dolock);
3996         local_irq_restore(flags);
3997
3998  out:
3999         preempt_enable();
4000
4001         if (event && event->type_len == RINGBUF_TYPE_PADDING)
4002                 goto again;
4003
4004         return event;
4005 }
4006 EXPORT_SYMBOL_GPL(ring_buffer_consume);
4007
4008 /**
4009  * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
4010  * @buffer: The ring buffer to read from
4011  * @cpu: The cpu buffer to iterate over
4012  *
4013  * This performs the initial preparations necessary to iterate
4014  * through the buffer.  Memory is allocated, buffer recording
4015  * is disabled, and the iterator pointer is returned to the caller.
4016  *
4017  * Disabling buffer recordng prevents the reading from being
4018  * corrupted. This is not a consuming read, so a producer is not
4019  * expected.
4020  *
4021  * After a sequence of ring_buffer_read_prepare calls, the user is
4022  * expected to make at least one call to ring_buffer_read_prepare_sync.
4023  * Afterwards, ring_buffer_read_start is invoked to get things going
4024  * for real.
4025  *
4026  * This overall must be paired with ring_buffer_read_finish.
4027  */
4028 struct ring_buffer_iter *
4029 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
4030 {
4031         struct ring_buffer_per_cpu *cpu_buffer;
4032         struct ring_buffer_iter *iter;
4033
4034         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4035                 return NULL;
4036
4037         iter = kmalloc(sizeof(*iter), GFP_KERNEL);
4038         if (!iter)
4039                 return NULL;
4040
4041         cpu_buffer = buffer->buffers[cpu];
4042
4043         iter->cpu_buffer = cpu_buffer;
4044
4045         atomic_inc(&buffer->resize_disabled);
4046         atomic_inc(&cpu_buffer->record_disabled);
4047
4048         return iter;
4049 }
4050 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
4051
4052 /**
4053  * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
4054  *
4055  * All previously invoked ring_buffer_read_prepare calls to prepare
4056  * iterators will be synchronized.  Afterwards, read_buffer_read_start
4057  * calls on those iterators are allowed.
4058  */
4059 void
4060 ring_buffer_read_prepare_sync(void)
4061 {
4062         synchronize_sched();
4063 }
4064 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4065
4066 /**
4067  * ring_buffer_read_start - start a non consuming read of the buffer
4068  * @iter: The iterator returned by ring_buffer_read_prepare
4069  *
4070  * This finalizes the startup of an iteration through the buffer.
4071  * The iterator comes from a call to ring_buffer_read_prepare and
4072  * an intervening ring_buffer_read_prepare_sync must have been
4073  * performed.
4074  *
4075  * Must be paired with ring_buffer_read_finish.
4076  */
4077 void
4078 ring_buffer_read_start(struct ring_buffer_iter *iter)
4079 {
4080         struct ring_buffer_per_cpu *cpu_buffer;
4081         unsigned long flags;
4082
4083         if (!iter)
4084                 return;
4085
4086         cpu_buffer = iter->cpu_buffer;
4087
4088         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4089         arch_spin_lock(&cpu_buffer->lock);
4090         rb_iter_reset(iter);
4091         arch_spin_unlock(&cpu_buffer->lock);
4092         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4093 }
4094 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
4095
4096 /**
4097  * ring_buffer_read_finish - finish reading the iterator of the buffer
4098  * @iter: The iterator retrieved by ring_buffer_start
4099  *
4100  * This re-enables the recording to the buffer, and frees the
4101  * iterator.
4102  */
4103 void
4104 ring_buffer_read_finish(struct ring_buffer_iter *iter)
4105 {
4106         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4107         unsigned long flags;
4108
4109         /*
4110          * Ring buffer is disabled from recording, here's a good place
4111          * to check the integrity of the ring buffer.
4112          * Must prevent readers from trying to read, as the check
4113          * clears the HEAD page and readers require it.
4114          */
4115         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4116         rb_check_pages(cpu_buffer);
4117         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4118
4119         atomic_dec(&cpu_buffer->record_disabled);
4120         atomic_dec(&cpu_buffer->buffer->resize_disabled);
4121         kfree(iter);
4122 }
4123 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
4124
4125 /**
4126  * ring_buffer_read - read the next item in the ring buffer by the iterator
4127  * @iter: The ring buffer iterator
4128  * @ts: The time stamp of the event read.
4129  *
4130  * This reads the next event in the ring buffer and increments the iterator.
4131  */
4132 struct ring_buffer_event *
4133 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
4134 {
4135         struct ring_buffer_event *event;
4136         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4137         unsigned long flags;
4138
4139         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4140  again:
4141         event = rb_iter_peek(iter, ts);
4142         if (!event)
4143                 goto out;
4144
4145         if (event->type_len == RINGBUF_TYPE_PADDING)
4146                 goto again;
4147
4148         rb_advance_iter(iter);
4149  out:
4150         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4151
4152         return event;
4153 }
4154 EXPORT_SYMBOL_GPL(ring_buffer_read);
4155
4156 /**
4157  * ring_buffer_size - return the size of the ring buffer (in bytes)
4158  * @buffer: The ring buffer.
4159  */
4160 unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
4161 {
4162         /*
4163          * Earlier, this method returned
4164          *      BUF_PAGE_SIZE * buffer->nr_pages
4165          * Since the nr_pages field is now removed, we have converted this to
4166          * return the per cpu buffer value.
4167          */
4168         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4169                 return 0;
4170
4171         return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
4172 }
4173 EXPORT_SYMBOL_GPL(ring_buffer_size);
4174
4175 static void
4176 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4177 {
4178         rb_head_page_deactivate(cpu_buffer);
4179
4180         cpu_buffer->head_page
4181                 = list_entry(cpu_buffer->pages, struct buffer_page, list);
4182         local_set(&cpu_buffer->head_page->write, 0);
4183         local_set(&cpu_buffer->head_page->entries, 0);
4184         local_set(&cpu_buffer->head_page->page->commit, 0);
4185
4186         cpu_buffer->head_page->read = 0;
4187
4188         cpu_buffer->tail_page = cpu_buffer->head_page;
4189         cpu_buffer->commit_page = cpu_buffer->head_page;
4190
4191         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
4192         INIT_LIST_HEAD(&cpu_buffer->new_pages);
4193         local_set(&cpu_buffer->reader_page->write, 0);
4194         local_set(&cpu_buffer->reader_page->entries, 0);
4195         local_set(&cpu_buffer->reader_page->page->commit, 0);
4196         cpu_buffer->reader_page->read = 0;
4197
4198         local_set(&cpu_buffer->entries_bytes, 0);
4199         local_set(&cpu_buffer->overrun, 0);
4200         local_set(&cpu_buffer->commit_overrun, 0);
4201         local_set(&cpu_buffer->dropped_events, 0);
4202         local_set(&cpu_buffer->entries, 0);
4203         local_set(&cpu_buffer->committing, 0);
4204         local_set(&cpu_buffer->commits, 0);
4205         cpu_buffer->read = 0;
4206         cpu_buffer->read_bytes = 0;
4207
4208         cpu_buffer->write_stamp = 0;
4209         cpu_buffer->read_stamp = 0;
4210
4211         cpu_buffer->lost_events = 0;
4212         cpu_buffer->last_overrun = 0;
4213
4214         rb_head_page_activate(cpu_buffer);
4215 }
4216
4217 /**
4218  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4219  * @buffer: The ring buffer to reset a per cpu buffer of
4220  * @cpu: The CPU buffer to be reset
4221  */
4222 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
4223 {
4224         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4225         unsigned long flags;
4226
4227         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4228                 return;
4229
4230         atomic_inc(&buffer->resize_disabled);
4231         atomic_inc(&cpu_buffer->record_disabled);
4232
4233         /* Make sure all commits have finished */
4234         synchronize_sched();
4235
4236         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4237
4238         if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4239                 goto out;
4240
4241         arch_spin_lock(&cpu_buffer->lock);
4242
4243         rb_reset_cpu(cpu_buffer);
4244
4245         arch_spin_unlock(&cpu_buffer->lock);
4246
4247  out:
4248         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4249
4250         atomic_dec(&cpu_buffer->record_disabled);
4251         atomic_dec(&buffer->resize_disabled);
4252 }
4253 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
4254
4255 /**
4256  * ring_buffer_reset - reset a ring buffer
4257  * @buffer: The ring buffer to reset all cpu buffers
4258  */
4259 void ring_buffer_reset(struct ring_buffer *buffer)
4260 {
4261         int cpu;
4262
4263         for_each_buffer_cpu(buffer, cpu)
4264                 ring_buffer_reset_cpu(buffer, cpu);
4265 }
4266 EXPORT_SYMBOL_GPL(ring_buffer_reset);
4267
4268 /**
4269  * rind_buffer_empty - is the ring buffer empty?
4270  * @buffer: The ring buffer to test
4271  */
4272 bool ring_buffer_empty(struct ring_buffer *buffer)
4273 {
4274         struct ring_buffer_per_cpu *cpu_buffer;
4275         unsigned long flags;
4276         bool dolock;
4277         int cpu;
4278         int ret;
4279
4280         /* yes this is racy, but if you don't like the race, lock the buffer */
4281         for_each_buffer_cpu(buffer, cpu) {
4282                 cpu_buffer = buffer->buffers[cpu];
4283                 local_irq_save(flags);
4284                 dolock = rb_reader_lock(cpu_buffer);
4285                 ret = rb_per_cpu_empty(cpu_buffer);
4286                 rb_reader_unlock(cpu_buffer, dolock);
4287                 local_irq_restore(flags);
4288
4289                 if (!ret)
4290                         return false;
4291         }
4292
4293         return true;
4294 }
4295 EXPORT_SYMBOL_GPL(ring_buffer_empty);
4296
4297 /**
4298  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4299  * @buffer: The ring buffer
4300  * @cpu: The CPU buffer to test
4301  */
4302 bool ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
4303 {
4304         struct ring_buffer_per_cpu *cpu_buffer;
4305         unsigned long flags;
4306         bool dolock;
4307         int ret;
4308
4309         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4310                 return true;
4311
4312         cpu_buffer = buffer->buffers[cpu];
4313         local_irq_save(flags);
4314         dolock = rb_reader_lock(cpu_buffer);
4315         ret = rb_per_cpu_empty(cpu_buffer);
4316         rb_reader_unlock(cpu_buffer, dolock);
4317         local_irq_restore(flags);
4318
4319         return ret;
4320 }
4321 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
4322
4323 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4324 /**
4325  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4326  * @buffer_a: One buffer to swap with
4327  * @buffer_b: The other buffer to swap with
4328  *
4329  * This function is useful for tracers that want to take a "snapshot"
4330  * of a CPU buffer and has another back up buffer lying around.
4331  * it is expected that the tracer handles the cpu buffer not being
4332  * used at the moment.
4333  */
4334 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4335                          struct ring_buffer *buffer_b, int cpu)
4336 {
4337         struct ring_buffer_per_cpu *cpu_buffer_a;
4338         struct ring_buffer_per_cpu *cpu_buffer_b;
4339         int ret = -EINVAL;
4340
4341         if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4342             !cpumask_test_cpu(cpu, buffer_b->cpumask))
4343                 goto out;
4344
4345         cpu_buffer_a = buffer_a->buffers[cpu];
4346         cpu_buffer_b = buffer_b->buffers[cpu];
4347
4348         /* At least make sure the two buffers are somewhat the same */
4349         if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
4350                 goto out;
4351
4352         ret = -EAGAIN;
4353
4354         if (atomic_read(&buffer_a->record_disabled))
4355                 goto out;
4356
4357         if (atomic_read(&buffer_b->record_disabled))
4358                 goto out;
4359
4360         if (atomic_read(&cpu_buffer_a->record_disabled))
4361                 goto out;
4362
4363         if (atomic_read(&cpu_buffer_b->record_disabled))
4364                 goto out;
4365
4366         /*
4367          * We can't do a synchronize_sched here because this
4368          * function can be called in atomic context.
4369          * Normally this will be called from the same CPU as cpu.
4370          * If not it's up to the caller to protect this.
4371          */
4372         atomic_inc(&cpu_buffer_a->record_disabled);
4373         atomic_inc(&cpu_buffer_b->record_disabled);
4374
4375         ret = -EBUSY;
4376         if (local_read(&cpu_buffer_a->committing))
4377                 goto out_dec;
4378         if (local_read(&cpu_buffer_b->committing))
4379                 goto out_dec;
4380
4381         buffer_a->buffers[cpu] = cpu_buffer_b;
4382         buffer_b->buffers[cpu] = cpu_buffer_a;
4383
4384         cpu_buffer_b->buffer = buffer_a;
4385         cpu_buffer_a->buffer = buffer_b;
4386
4387         ret = 0;
4388
4389 out_dec:
4390         atomic_dec(&cpu_buffer_a->record_disabled);
4391         atomic_dec(&cpu_buffer_b->record_disabled);
4392 out:
4393         return ret;
4394 }
4395 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
4396 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
4397
4398 /**
4399  * ring_buffer_alloc_read_page - allocate a page to read from buffer
4400  * @buffer: the buffer to allocate for.
4401  * @cpu: the cpu buffer to allocate.
4402  *
4403  * This function is used in conjunction with ring_buffer_read_page.
4404  * When reading a full page from the ring buffer, these functions
4405  * can be used to speed up the process. The calling function should
4406  * allocate a few pages first with this function. Then when it
4407  * needs to get pages from the ring buffer, it passes the result
4408  * of this function into ring_buffer_read_page, which will swap
4409  * the page that was allocated, with the read page of the buffer.
4410  *
4411  * Returns:
4412  *  The page allocated, or NULL on error.
4413  */
4414 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
4415 {
4416         struct buffer_data_page *bpage;
4417         struct page *page;
4418
4419         page = alloc_pages_node(cpu_to_node(cpu),
4420                                 GFP_KERNEL | __GFP_NORETRY, 0);
4421         if (!page)
4422                 return NULL;
4423
4424         bpage = page_address(page);
4425
4426         rb_init_page(bpage);
4427
4428         return bpage;
4429 }
4430 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
4431
4432 /**
4433  * ring_buffer_free_read_page - free an allocated read page
4434  * @buffer: the buffer the page was allocate for
4435  * @data: the page to free
4436  *
4437  * Free a page allocated from ring_buffer_alloc_read_page.
4438  */
4439 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
4440 {
4441         free_page((unsigned long)data);
4442 }
4443 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
4444
4445 /**
4446  * ring_buffer_read_page - extract a page from the ring buffer
4447  * @buffer: buffer to extract from
4448  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
4449  * @len: amount to extract
4450  * @cpu: the cpu of the buffer to extract
4451  * @full: should the extraction only happen when the page is full.
4452  *
4453  * This function will pull out a page from the ring buffer and consume it.
4454  * @data_page must be the address of the variable that was returned
4455  * from ring_buffer_alloc_read_page. This is because the page might be used
4456  * to swap with a page in the ring buffer.
4457  *
4458  * for example:
4459  *      rpage = ring_buffer_alloc_read_page(buffer, cpu);
4460  *      if (!rpage)
4461  *              return error;
4462  *      ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
4463  *      if (ret >= 0)
4464  *              process_page(rpage, ret);
4465  *
4466  * When @full is set, the function will not return true unless
4467  * the writer is off the reader page.
4468  *
4469  * Note: it is up to the calling functions to handle sleeps and wakeups.
4470  *  The ring buffer can be used anywhere in the kernel and can not
4471  *  blindly call wake_up. The layer that uses the ring buffer must be
4472  *  responsible for that.
4473  *
4474  * Returns:
4475  *  >=0 if data has been transferred, returns the offset of consumed data.
4476  *  <0 if no data has been transferred.
4477  */
4478 int ring_buffer_read_page(struct ring_buffer *buffer,
4479                           void **data_page, size_t len, int cpu, int full)
4480 {
4481         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4482         struct ring_buffer_event *event;
4483         struct buffer_data_page *bpage;
4484         struct buffer_page *reader;
4485         unsigned long missed_events;
4486         unsigned long flags;
4487         unsigned int commit;
4488         unsigned int read;
4489         u64 save_timestamp;
4490         int ret = -1;
4491
4492         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4493                 goto out;
4494
4495         /*
4496          * If len is not big enough to hold the page header, then
4497          * we can not copy anything.
4498          */
4499         if (len <= BUF_PAGE_HDR_SIZE)
4500                 goto out;
4501
4502         len -= BUF_PAGE_HDR_SIZE;
4503
4504         if (!data_page)
4505                 goto out;
4506
4507         bpage = *data_page;
4508         if (!bpage)
4509                 goto out;
4510
4511         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4512
4513         reader = rb_get_reader_page(cpu_buffer);
4514         if (!reader)
4515                 goto out_unlock;
4516
4517         event = rb_reader_event(cpu_buffer);
4518
4519         read = reader->read;
4520         commit = rb_page_commit(reader);
4521
4522         /* Check if any events were dropped */
4523         missed_events = cpu_buffer->lost_events;
4524
4525         /*
4526          * If this page has been partially read or
4527          * if len is not big enough to read the rest of the page or
4528          * a writer is still on the page, then
4529          * we must copy the data from the page to the buffer.
4530          * Otherwise, we can simply swap the page with the one passed in.
4531          */
4532         if (read || (len < (commit - read)) ||
4533             cpu_buffer->reader_page == cpu_buffer->commit_page) {
4534                 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
4535                 unsigned int rpos = read;
4536                 unsigned int pos = 0;
4537                 unsigned int size;
4538
4539                 if (full)
4540                         goto out_unlock;
4541
4542                 if (len > (commit - read))
4543                         len = (commit - read);
4544
4545                 /* Always keep the time extend and data together */
4546                 size = rb_event_ts_length(event);
4547
4548                 if (len < size)
4549                         goto out_unlock;
4550
4551                 /* save the current timestamp, since the user will need it */
4552                 save_timestamp = cpu_buffer->read_stamp;
4553
4554                 /* Need to copy one event at a time */
4555                 do {
4556                         /* We need the size of one event, because
4557                          * rb_advance_reader only advances by one event,
4558                          * whereas rb_event_ts_length may include the size of
4559                          * one or two events.
4560                          * We have already ensured there's enough space if this
4561                          * is a time extend. */
4562                         size = rb_event_length(event);
4563                         memcpy(bpage->data + pos, rpage->data + rpos, size);
4564
4565                         len -= size;
4566
4567                         rb_advance_reader(cpu_buffer);
4568                         rpos = reader->read;
4569                         pos += size;
4570
4571                         if (rpos >= commit)
4572                                 break;
4573
4574                         event = rb_reader_event(cpu_buffer);
4575                         /* Always keep the time extend and data together */
4576                         size = rb_event_ts_length(event);
4577                 } while (len >= size);
4578
4579                 /* update bpage */
4580                 local_set(&bpage->commit, pos);
4581                 bpage->time_stamp = save_timestamp;
4582
4583                 /* we copied everything to the beginning */
4584                 read = 0;
4585         } else {
4586                 /* update the entry counter */
4587                 cpu_buffer->read += rb_page_entries(reader);
4588                 cpu_buffer->read_bytes += BUF_PAGE_SIZE;
4589
4590                 /* swap the pages */
4591                 rb_init_page(bpage);
4592                 bpage = reader->page;
4593                 reader->page = *data_page;
4594                 local_set(&reader->write, 0);
4595                 local_set(&reader->entries, 0);
4596                 reader->read = 0;
4597                 *data_page = bpage;
4598
4599                 /*
4600                  * Use the real_end for the data size,
4601                  * This gives us a chance to store the lost events
4602                  * on the page.
4603                  */
4604                 if (reader->real_end)
4605                         local_set(&bpage->commit, reader->real_end);
4606         }
4607         ret = read;
4608
4609         cpu_buffer->lost_events = 0;
4610
4611         commit = local_read(&bpage->commit);
4612         /*
4613          * Set a flag in the commit field if we lost events
4614          */
4615         if (missed_events) {
4616                 /* If there is room at the end of the page to save the
4617                  * missed events, then record it there.
4618                  */
4619                 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4620                         memcpy(&bpage->data[commit], &missed_events,
4621                                sizeof(missed_events));
4622                         local_add(RB_MISSED_STORED, &bpage->commit);
4623                         commit += sizeof(missed_events);
4624                 }
4625                 local_add(RB_MISSED_EVENTS, &bpage->commit);
4626         }
4627
4628         /*
4629          * This page may be off to user land. Zero it out here.
4630          */
4631         if (commit < BUF_PAGE_SIZE)
4632                 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4633
4634  out_unlock:
4635         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4636
4637  out:
4638         return ret;
4639 }
4640 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
4641
4642 #ifdef CONFIG_HOTPLUG_CPU
4643 static int rb_cpu_notify(struct notifier_block *self,
4644                          unsigned long action, void *hcpu)
4645 {
4646         struct ring_buffer *buffer =
4647                 container_of(self, struct ring_buffer, cpu_notify);
4648         long cpu = (long)hcpu;
4649         long nr_pages_same;
4650         int cpu_i;
4651         unsigned long nr_pages;
4652
4653         switch (action) {
4654         case CPU_UP_PREPARE:
4655         case CPU_UP_PREPARE_FROZEN:
4656                 if (cpumask_test_cpu(cpu, buffer->cpumask))
4657                         return NOTIFY_OK;
4658
4659                 nr_pages = 0;
4660                 nr_pages_same = 1;
4661                 /* check if all cpu sizes are same */
4662                 for_each_buffer_cpu(buffer, cpu_i) {
4663                         /* fill in the size from first enabled cpu */
4664                         if (nr_pages == 0)
4665                                 nr_pages = buffer->buffers[cpu_i]->nr_pages;
4666                         if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4667                                 nr_pages_same = 0;
4668                                 break;
4669                         }
4670                 }
4671                 /* allocate minimum pages, user can later expand it */
4672                 if (!nr_pages_same)
4673                         nr_pages = 2;
4674                 buffer->buffers[cpu] =
4675                         rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
4676                 if (!buffer->buffers[cpu]) {
4677                         WARN(1, "failed to allocate ring buffer on CPU %ld\n",
4678                              cpu);
4679                         return NOTIFY_OK;
4680                 }
4681                 smp_wmb();
4682                 cpumask_set_cpu(cpu, buffer->cpumask);
4683                 break;
4684         case CPU_DOWN_PREPARE:
4685         case CPU_DOWN_PREPARE_FROZEN:
4686                 /*
4687                  * Do nothing.
4688                  *  If we were to free the buffer, then the user would
4689                  *  lose any trace that was in the buffer.
4690                  */
4691                 break;
4692         default:
4693                 break;
4694         }
4695         return NOTIFY_OK;
4696 }
4697 #endif
4698
4699 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
4700 /*
4701  * This is a basic integrity check of the ring buffer.
4702  * Late in the boot cycle this test will run when configured in.
4703  * It will kick off a thread per CPU that will go into a loop
4704  * writing to the per cpu ring buffer various sizes of data.
4705  * Some of the data will be large items, some small.
4706  *
4707  * Another thread is created that goes into a spin, sending out
4708  * IPIs to the other CPUs to also write into the ring buffer.
4709  * this is to test the nesting ability of the buffer.
4710  *
4711  * Basic stats are recorded and reported. If something in the
4712  * ring buffer should happen that's not expected, a big warning
4713  * is displayed and all ring buffers are disabled.
4714  */
4715 static struct task_struct *rb_threads[NR_CPUS] __initdata;
4716
4717 struct rb_test_data {
4718         struct ring_buffer      *buffer;
4719         unsigned long           events;
4720         unsigned long           bytes_written;
4721         unsigned long           bytes_alloc;
4722         unsigned long           bytes_dropped;
4723         unsigned long           events_nested;
4724         unsigned long           bytes_written_nested;
4725         unsigned long           bytes_alloc_nested;
4726         unsigned long           bytes_dropped_nested;
4727         int                     min_size_nested;
4728         int                     max_size_nested;
4729         int                     max_size;
4730         int                     min_size;
4731         int                     cpu;
4732         int                     cnt;
4733 };
4734
4735 static struct rb_test_data rb_data[NR_CPUS] __initdata;
4736
4737 /* 1 meg per cpu */
4738 #define RB_TEST_BUFFER_SIZE     1048576
4739
4740 static char rb_string[] __initdata =
4741         "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
4742         "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
4743         "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
4744
4745 static bool rb_test_started __initdata;
4746
4747 struct rb_item {
4748         int size;
4749         char str[];
4750 };
4751
4752 static __init int rb_write_something(struct rb_test_data *data, bool nested)
4753 {
4754         struct ring_buffer_event *event;
4755         struct rb_item *item;
4756         bool started;
4757         int event_len;
4758         int size;
4759         int len;
4760         int cnt;
4761
4762         /* Have nested writes different that what is written */
4763         cnt = data->cnt + (nested ? 27 : 0);
4764
4765         /* Multiply cnt by ~e, to make some unique increment */
4766         size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1);
4767
4768         len = size + sizeof(struct rb_item);
4769
4770         started = rb_test_started;
4771         /* read rb_test_started before checking buffer enabled */
4772         smp_rmb();
4773
4774         event = ring_buffer_lock_reserve(data->buffer, len);
4775         if (!event) {
4776                 /* Ignore dropped events before test starts. */
4777                 if (started) {
4778                         if (nested)
4779                                 data->bytes_dropped += len;
4780                         else
4781                                 data->bytes_dropped_nested += len;
4782                 }
4783                 return len;
4784         }
4785
4786         event_len = ring_buffer_event_length(event);
4787
4788         if (RB_WARN_ON(data->buffer, event_len < len))
4789                 goto out;
4790
4791         item = ring_buffer_event_data(event);
4792         item->size = size;
4793         memcpy(item->str, rb_string, size);
4794
4795         if (nested) {
4796                 data->bytes_alloc_nested += event_len;
4797                 data->bytes_written_nested += len;
4798                 data->events_nested++;
4799                 if (!data->min_size_nested || len < data->min_size_nested)
4800                         data->min_size_nested = len;
4801                 if (len > data->max_size_nested)
4802                         data->max_size_nested = len;
4803         } else {
4804                 data->bytes_alloc += event_len;
4805                 data->bytes_written += len;
4806                 data->events++;
4807                 if (!data->min_size || len < data->min_size)
4808                         data->max_size = len;
4809                 if (len > data->max_size)
4810                         data->max_size = len;
4811         }
4812
4813  out:
4814         ring_buffer_unlock_commit(data->buffer, event);
4815
4816         return 0;
4817 }
4818
4819 static __init int rb_test(void *arg)
4820 {
4821         struct rb_test_data *data = arg;
4822
4823         while (!kthread_should_stop()) {
4824                 rb_write_something(data, false);
4825                 data->cnt++;
4826
4827                 set_current_state(TASK_INTERRUPTIBLE);
4828                 /* Now sleep between a min of 100-300us and a max of 1ms */
4829                 usleep_range(((data->cnt % 3) + 1) * 100, 1000);
4830         }
4831
4832         return 0;
4833 }
4834
4835 static __init void rb_ipi(void *ignore)
4836 {
4837         struct rb_test_data *data;
4838         int cpu = smp_processor_id();
4839
4840         data = &rb_data[cpu];
4841         rb_write_something(data, true);
4842 }
4843
4844 static __init int rb_hammer_test(void *arg)
4845 {
4846         while (!kthread_should_stop()) {
4847
4848                 /* Send an IPI to all cpus to write data! */
4849                 smp_call_function(rb_ipi, NULL, 1);
4850                 /* No sleep, but for non preempt, let others run */
4851                 schedule();
4852         }
4853
4854         return 0;
4855 }
4856
4857 static __init int test_ringbuffer(void)
4858 {
4859         struct task_struct *rb_hammer;
4860         struct ring_buffer *buffer;
4861         int cpu;
4862         int ret = 0;
4863
4864         pr_info("Running ring buffer tests...\n");
4865
4866         buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
4867         if (WARN_ON(!buffer))
4868                 return 0;
4869
4870         /* Disable buffer so that threads can't write to it yet */
4871         ring_buffer_record_off(buffer);
4872
4873         for_each_online_cpu(cpu) {
4874                 rb_data[cpu].buffer = buffer;
4875                 rb_data[cpu].cpu = cpu;
4876                 rb_data[cpu].cnt = cpu;
4877                 rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
4878                                                  "rbtester/%d", cpu);
4879                 if (WARN_ON(!rb_threads[cpu])) {
4880                         pr_cont("FAILED\n");
4881                         ret = -1;
4882                         goto out_free;
4883                 }
4884
4885                 kthread_bind(rb_threads[cpu], cpu);
4886                 wake_up_process(rb_threads[cpu]);
4887         }
4888
4889         /* Now create the rb hammer! */
4890         rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
4891         if (WARN_ON(!rb_hammer)) {
4892                 pr_cont("FAILED\n");
4893                 ret = -1;
4894                 goto out_free;
4895         }
4896
4897         ring_buffer_record_on(buffer);
4898         /*
4899          * Show buffer is enabled before setting rb_test_started.
4900          * Yes there's a small race window where events could be
4901          * dropped and the thread wont catch it. But when a ring
4902          * buffer gets enabled, there will always be some kind of
4903          * delay before other CPUs see it. Thus, we don't care about
4904          * those dropped events. We care about events dropped after
4905          * the threads see that the buffer is active.
4906          */
4907         smp_wmb();
4908         rb_test_started = true;
4909
4910         set_current_state(TASK_INTERRUPTIBLE);
4911         /* Just run for 10 seconds */;
4912         schedule_timeout(10 * HZ);
4913
4914         kthread_stop(rb_hammer);
4915
4916  out_free:
4917         for_each_online_cpu(cpu) {
4918                 if (!rb_threads[cpu])
4919                         break;
4920                 kthread_stop(rb_threads[cpu]);
4921         }
4922         if (ret) {
4923                 ring_buffer_free(buffer);
4924                 return ret;
4925         }
4926
4927         /* Report! */
4928         pr_info("finished\n");
4929         for_each_online_cpu(cpu) {
4930                 struct ring_buffer_event *event;
4931                 struct rb_test_data *data = &rb_data[cpu];
4932                 struct rb_item *item;
4933                 unsigned long total_events;
4934                 unsigned long total_dropped;
4935                 unsigned long total_written;
4936                 unsigned long total_alloc;
4937                 unsigned long total_read = 0;
4938                 unsigned long total_size = 0;
4939                 unsigned long total_len = 0;
4940                 unsigned long total_lost = 0;
4941                 unsigned long lost;
4942                 int big_event_size;
4943                 int small_event_size;
4944
4945                 ret = -1;
4946
4947                 total_events = data->events + data->events_nested;
4948                 total_written = data->bytes_written + data->bytes_written_nested;
4949                 total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
4950                 total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
4951
4952                 big_event_size = data->max_size + data->max_size_nested;
4953                 small_event_size = data->min_size + data->min_size_nested;
4954
4955                 pr_info("CPU %d:\n", cpu);
4956                 pr_info("              events:    %ld\n", total_events);
4957                 pr_info("       dropped bytes:    %ld\n", total_dropped);
4958                 pr_info("       alloced bytes:    %ld\n", total_alloc);
4959                 pr_info("       written bytes:    %ld\n", total_written);
4960                 pr_info("       biggest event:    %d\n", big_event_size);
4961                 pr_info("      smallest event:    %d\n", small_event_size);
4962
4963                 if (RB_WARN_ON(buffer, total_dropped))
4964                         break;
4965
4966                 ret = 0;
4967
4968                 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
4969                         total_lost += lost;
4970                         item = ring_buffer_event_data(event);
4971                         total_len += ring_buffer_event_length(event);
4972                         total_size += item->size + sizeof(struct rb_item);
4973                         if (memcmp(&item->str[0], rb_string, item->size) != 0) {
4974                                 pr_info("FAILED!\n");
4975                                 pr_info("buffer had: %.*s\n", item->size, item->str);
4976                                 pr_info("expected:   %.*s\n", item->size, rb_string);
4977                                 RB_WARN_ON(buffer, 1);
4978                                 ret = -1;
4979                                 break;
4980                         }
4981                         total_read++;
4982                 }
4983                 if (ret)
4984                         break;
4985
4986                 ret = -1;
4987
4988                 pr_info("         read events:   %ld\n", total_read);
4989                 pr_info("         lost events:   %ld\n", total_lost);
4990                 pr_info("        total events:   %ld\n", total_lost + total_read);
4991                 pr_info("  recorded len bytes:   %ld\n", total_len);
4992                 pr_info(" recorded size bytes:   %ld\n", total_size);
4993                 if (total_lost)
4994                         pr_info(" With dropped events, record len and size may not match\n"
4995                                 " alloced and written from above\n");
4996                 if (!total_lost) {
4997                         if (RB_WARN_ON(buffer, total_len != total_alloc ||
4998                                        total_size != total_written))
4999                                 break;
5000                 }
5001                 if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
5002                         break;
5003
5004                 ret = 0;
5005         }
5006         if (!ret)
5007                 pr_info("Ring buffer PASSED!\n");
5008
5009         ring_buffer_free(buffer);
5010         return 0;
5011 }
5012
5013 late_initcall(test_ringbuffer);
5014 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */