timekeeping: Update timekeeper before updating vsyscall and pvclock
[firefly-linux-kernel-4.4.55.git] / kernel / time / timekeeping.c
1 /*
2  *  linux/kernel/time/timekeeping.c
3  *
4  *  Kernel timekeeping code and accessor functions
5  *
6  *  This code was moved from linux/kernel/timer.c.
7  *  Please see that file for copyright and history logs.
8  *
9  */
10
11 #include <linux/timekeeper_internal.h>
12 #include <linux/module.h>
13 #include <linux/interrupt.h>
14 #include <linux/percpu.h>
15 #include <linux/init.h>
16 #include <linux/mm.h>
17 #include <linux/sched.h>
18 #include <linux/syscore_ops.h>
19 #include <linux/clocksource.h>
20 #include <linux/jiffies.h>
21 #include <linux/time.h>
22 #include <linux/tick.h>
23 #include <linux/stop_machine.h>
24 #include <linux/pvclock_gtod.h>
25 #include <linux/compiler.h>
26
27 #include "tick-internal.h"
28 #include "ntp_internal.h"
29 #include "timekeeping_internal.h"
30
31 #define TK_CLEAR_NTP            (1 << 0)
32 #define TK_MIRROR               (1 << 1)
33 #define TK_CLOCK_WAS_SET        (1 << 2)
34
35 /*
36  * The most important data for readout fits into a single 64 byte
37  * cache line.
38  */
39 static struct {
40         seqcount_t              seq;
41         struct timekeeper       timekeeper;
42 } tk_core ____cacheline_aligned;
43
44 static DEFINE_RAW_SPINLOCK(timekeeper_lock);
45 static struct timekeeper shadow_timekeeper;
46
47 /**
48  * struct tk_fast - NMI safe timekeeper
49  * @seq:        Sequence counter for protecting updates. The lowest bit
50  *              is the index for the tk_read_base array
51  * @base:       tk_read_base array. Access is indexed by the lowest bit of
52  *              @seq.
53  *
54  * See @update_fast_timekeeper() below.
55  */
56 struct tk_fast {
57         seqcount_t              seq;
58         struct tk_read_base     base[2];
59 };
60
61 static struct tk_fast tk_fast_mono ____cacheline_aligned;
62
63 /* flag for if timekeeping is suspended */
64 int __read_mostly timekeeping_suspended;
65
66 /* Flag for if there is a persistent clock on this platform */
67 bool __read_mostly persistent_clock_exist = false;
68
69 static inline void tk_normalize_xtime(struct timekeeper *tk)
70 {
71         while (tk->tkr.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr.shift)) {
72                 tk->tkr.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr.shift;
73                 tk->xtime_sec++;
74         }
75 }
76
77 static inline struct timespec64 tk_xtime(struct timekeeper *tk)
78 {
79         struct timespec64 ts;
80
81         ts.tv_sec = tk->xtime_sec;
82         ts.tv_nsec = (long)(tk->tkr.xtime_nsec >> tk->tkr.shift);
83         return ts;
84 }
85
86 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
87 {
88         tk->xtime_sec = ts->tv_sec;
89         tk->tkr.xtime_nsec = (u64)ts->tv_nsec << tk->tkr.shift;
90 }
91
92 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
93 {
94         tk->xtime_sec += ts->tv_sec;
95         tk->tkr.xtime_nsec += (u64)ts->tv_nsec << tk->tkr.shift;
96         tk_normalize_xtime(tk);
97 }
98
99 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
100 {
101         struct timespec64 tmp;
102
103         /*
104          * Verify consistency of: offset_real = -wall_to_monotonic
105          * before modifying anything
106          */
107         set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
108                                         -tk->wall_to_monotonic.tv_nsec);
109         WARN_ON_ONCE(tk->offs_real.tv64 != timespec64_to_ktime(tmp).tv64);
110         tk->wall_to_monotonic = wtm;
111         set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
112         tk->offs_real = timespec64_to_ktime(tmp);
113         tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
114 }
115
116 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
117 {
118         tk->offs_boot = ktime_add(tk->offs_boot, delta);
119 }
120
121 /**
122  * tk_setup_internals - Set up internals to use clocksource clock.
123  *
124  * @tk:         The target timekeeper to setup.
125  * @clock:              Pointer to clocksource.
126  *
127  * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
128  * pair and interval request.
129  *
130  * Unless you're the timekeeping code, you should not be using this!
131  */
132 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
133 {
134         cycle_t interval;
135         u64 tmp, ntpinterval;
136         struct clocksource *old_clock;
137
138         old_clock = tk->tkr.clock;
139         tk->tkr.clock = clock;
140         tk->tkr.read = clock->read;
141         tk->tkr.mask = clock->mask;
142         tk->tkr.cycle_last = tk->tkr.read(clock);
143
144         /* Do the ns -> cycle conversion first, using original mult */
145         tmp = NTP_INTERVAL_LENGTH;
146         tmp <<= clock->shift;
147         ntpinterval = tmp;
148         tmp += clock->mult/2;
149         do_div(tmp, clock->mult);
150         if (tmp == 0)
151                 tmp = 1;
152
153         interval = (cycle_t) tmp;
154         tk->cycle_interval = interval;
155
156         /* Go back from cycles -> shifted ns */
157         tk->xtime_interval = (u64) interval * clock->mult;
158         tk->xtime_remainder = ntpinterval - tk->xtime_interval;
159         tk->raw_interval =
160                 ((u64) interval * clock->mult) >> clock->shift;
161
162          /* if changing clocks, convert xtime_nsec shift units */
163         if (old_clock) {
164                 int shift_change = clock->shift - old_clock->shift;
165                 if (shift_change < 0)
166                         tk->tkr.xtime_nsec >>= -shift_change;
167                 else
168                         tk->tkr.xtime_nsec <<= shift_change;
169         }
170         tk->tkr.shift = clock->shift;
171
172         tk->ntp_error = 0;
173         tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
174         tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
175
176         /*
177          * The timekeeper keeps its own mult values for the currently
178          * active clocksource. These value will be adjusted via NTP
179          * to counteract clock drifting.
180          */
181         tk->tkr.mult = clock->mult;
182         tk->ntp_err_mult = 0;
183 }
184
185 /* Timekeeper helper functions. */
186
187 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
188 static u32 default_arch_gettimeoffset(void) { return 0; }
189 u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
190 #else
191 static inline u32 arch_gettimeoffset(void) { return 0; }
192 #endif
193
194 static inline s64 timekeeping_get_ns(struct tk_read_base *tkr)
195 {
196         cycle_t cycle_now, delta;
197         s64 nsec;
198
199         /* read clocksource: */
200         cycle_now = tkr->read(tkr->clock);
201
202         /* calculate the delta since the last update_wall_time: */
203         delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
204
205         nsec = delta * tkr->mult + tkr->xtime_nsec;
206         nsec >>= tkr->shift;
207
208         /* If arch requires, add in get_arch_timeoffset() */
209         return nsec + arch_gettimeoffset();
210 }
211
212 static inline s64 timekeeping_get_ns_raw(struct timekeeper *tk)
213 {
214         struct clocksource *clock = tk->tkr.clock;
215         cycle_t cycle_now, delta;
216         s64 nsec;
217
218         /* read clocksource: */
219         cycle_now = tk->tkr.read(clock);
220
221         /* calculate the delta since the last update_wall_time: */
222         delta = clocksource_delta(cycle_now, tk->tkr.cycle_last, tk->tkr.mask);
223
224         /* convert delta to nanoseconds. */
225         nsec = clocksource_cyc2ns(delta, clock->mult, clock->shift);
226
227         /* If arch requires, add in get_arch_timeoffset() */
228         return nsec + arch_gettimeoffset();
229 }
230
231 /**
232  * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
233  * @tk:         The timekeeper from which we take the update
234  * @tkf:        The fast timekeeper to update
235  * @tbase:      The time base for the fast timekeeper (mono/raw)
236  *
237  * We want to use this from any context including NMI and tracing /
238  * instrumenting the timekeeping code itself.
239  *
240  * So we handle this differently than the other timekeeping accessor
241  * functions which retry when the sequence count has changed. The
242  * update side does:
243  *
244  * smp_wmb();   <- Ensure that the last base[1] update is visible
245  * tkf->seq++;
246  * smp_wmb();   <- Ensure that the seqcount update is visible
247  * update(tkf->base[0], tk);
248  * smp_wmb();   <- Ensure that the base[0] update is visible
249  * tkf->seq++;
250  * smp_wmb();   <- Ensure that the seqcount update is visible
251  * update(tkf->base[1], tk);
252  *
253  * The reader side does:
254  *
255  * do {
256  *      seq = tkf->seq;
257  *      smp_rmb();
258  *      idx = seq & 0x01;
259  *      now = now(tkf->base[idx]);
260  *      smp_rmb();
261  * } while (seq != tkf->seq)
262  *
263  * As long as we update base[0] readers are forced off to
264  * base[1]. Once base[0] is updated readers are redirected to base[0]
265  * and the base[1] update takes place.
266  *
267  * So if a NMI hits the update of base[0] then it will use base[1]
268  * which is still consistent. In the worst case this can result is a
269  * slightly wrong timestamp (a few nanoseconds). See
270  * @ktime_get_mono_fast_ns.
271  */
272 static void update_fast_timekeeper(struct timekeeper *tk)
273 {
274         struct tk_read_base *base = tk_fast_mono.base;
275
276         /* Force readers off to base[1] */
277         raw_write_seqcount_latch(&tk_fast_mono.seq);
278
279         /* Update base[0] */
280         memcpy(base, &tk->tkr, sizeof(*base));
281
282         /* Force readers back to base[0] */
283         raw_write_seqcount_latch(&tk_fast_mono.seq);
284
285         /* Update base[1] */
286         memcpy(base + 1, base, sizeof(*base));
287 }
288
289 /**
290  * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
291  *
292  * This timestamp is not guaranteed to be monotonic across an update.
293  * The timestamp is calculated by:
294  *
295  *      now = base_mono + clock_delta * slope
296  *
297  * So if the update lowers the slope, readers who are forced to the
298  * not yet updated second array are still using the old steeper slope.
299  *
300  * tmono
301  * ^
302  * |    o  n
303  * |   o n
304  * |  u
305  * | o
306  * |o
307  * |12345678---> reader order
308  *
309  * o = old slope
310  * u = update
311  * n = new slope
312  *
313  * So reader 6 will observe time going backwards versus reader 5.
314  *
315  * While other CPUs are likely to be able observe that, the only way
316  * for a CPU local observation is when an NMI hits in the middle of
317  * the update. Timestamps taken from that NMI context might be ahead
318  * of the following timestamps. Callers need to be aware of that and
319  * deal with it.
320  */
321 u64 notrace ktime_get_mono_fast_ns(void)
322 {
323         struct tk_read_base *tkr;
324         unsigned int seq;
325         u64 now;
326
327         do {
328                 seq = raw_read_seqcount(&tk_fast_mono.seq);
329                 tkr = tk_fast_mono.base + (seq & 0x01);
330                 now = ktime_to_ns(tkr->base_mono) + timekeeping_get_ns(tkr);
331
332         } while (read_seqcount_retry(&tk_fast_mono.seq, seq));
333         return now;
334 }
335 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
336
337 #ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD
338
339 static inline void update_vsyscall(struct timekeeper *tk)
340 {
341         struct timespec xt, wm;
342
343         xt = timespec64_to_timespec(tk_xtime(tk));
344         wm = timespec64_to_timespec(tk->wall_to_monotonic);
345         update_vsyscall_old(&xt, &wm, tk->tkr.clock, tk->tkr.mult,
346                             tk->tkr.cycle_last);
347 }
348
349 static inline void old_vsyscall_fixup(struct timekeeper *tk)
350 {
351         s64 remainder;
352
353         /*
354         * Store only full nanoseconds into xtime_nsec after rounding
355         * it up and add the remainder to the error difference.
356         * XXX - This is necessary to avoid small 1ns inconsistnecies caused
357         * by truncating the remainder in vsyscalls. However, it causes
358         * additional work to be done in timekeeping_adjust(). Once
359         * the vsyscall implementations are converted to use xtime_nsec
360         * (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
361         * users are removed, this can be killed.
362         */
363         remainder = tk->tkr.xtime_nsec & ((1ULL << tk->tkr.shift) - 1);
364         tk->tkr.xtime_nsec -= remainder;
365         tk->tkr.xtime_nsec += 1ULL << tk->tkr.shift;
366         tk->ntp_error += remainder << tk->ntp_error_shift;
367         tk->ntp_error -= (1ULL << tk->tkr.shift) << tk->ntp_error_shift;
368 }
369 #else
370 #define old_vsyscall_fixup(tk)
371 #endif
372
373 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
374
375 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
376 {
377         raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
378 }
379
380 /**
381  * pvclock_gtod_register_notifier - register a pvclock timedata update listener
382  */
383 int pvclock_gtod_register_notifier(struct notifier_block *nb)
384 {
385         struct timekeeper *tk = &tk_core.timekeeper;
386         unsigned long flags;
387         int ret;
388
389         raw_spin_lock_irqsave(&timekeeper_lock, flags);
390         ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
391         update_pvclock_gtod(tk, true);
392         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
393
394         return ret;
395 }
396 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
397
398 /**
399  * pvclock_gtod_unregister_notifier - unregister a pvclock
400  * timedata update listener
401  */
402 int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
403 {
404         unsigned long flags;
405         int ret;
406
407         raw_spin_lock_irqsave(&timekeeper_lock, flags);
408         ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
409         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
410
411         return ret;
412 }
413 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
414
415 /*
416  * Update the ktime_t based scalar nsec members of the timekeeper
417  */
418 static inline void tk_update_ktime_data(struct timekeeper *tk)
419 {
420         s64 nsec;
421
422         /*
423          * The xtime based monotonic readout is:
424          *      nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
425          * The ktime based monotonic readout is:
426          *      nsec = base_mono + now();
427          * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
428          */
429         nsec = (s64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
430         nsec *= NSEC_PER_SEC;
431         nsec += tk->wall_to_monotonic.tv_nsec;
432         tk->tkr.base_mono = ns_to_ktime(nsec);
433
434         /* Update the monotonic raw base */
435         tk->base_raw = timespec64_to_ktime(tk->raw_time);
436 }
437
438 /* must hold timekeeper_lock */
439 static void timekeeping_update(struct timekeeper *tk, unsigned int action)
440 {
441         if (action & TK_CLEAR_NTP) {
442                 tk->ntp_error = 0;
443                 ntp_clear();
444         }
445
446         tk_update_ktime_data(tk);
447
448         update_vsyscall(tk);
449         update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
450
451         if (action & TK_MIRROR)
452                 memcpy(&shadow_timekeeper, &tk_core.timekeeper,
453                        sizeof(tk_core.timekeeper));
454
455         update_fast_timekeeper(tk);
456 }
457
458 /**
459  * timekeeping_forward_now - update clock to the current time
460  *
461  * Forward the current clock to update its state since the last call to
462  * update_wall_time(). This is useful before significant clock changes,
463  * as it avoids having to deal with this time offset explicitly.
464  */
465 static void timekeeping_forward_now(struct timekeeper *tk)
466 {
467         struct clocksource *clock = tk->tkr.clock;
468         cycle_t cycle_now, delta;
469         s64 nsec;
470
471         cycle_now = tk->tkr.read(clock);
472         delta = clocksource_delta(cycle_now, tk->tkr.cycle_last, tk->tkr.mask);
473         tk->tkr.cycle_last = cycle_now;
474
475         tk->tkr.xtime_nsec += delta * tk->tkr.mult;
476
477         /* If arch requires, add in get_arch_timeoffset() */
478         tk->tkr.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr.shift;
479
480         tk_normalize_xtime(tk);
481
482         nsec = clocksource_cyc2ns(delta, clock->mult, clock->shift);
483         timespec64_add_ns(&tk->raw_time, nsec);
484 }
485
486 /**
487  * __getnstimeofday64 - Returns the time of day in a timespec64.
488  * @ts:         pointer to the timespec to be set
489  *
490  * Updates the time of day in the timespec.
491  * Returns 0 on success, or -ve when suspended (timespec will be undefined).
492  */
493 int __getnstimeofday64(struct timespec64 *ts)
494 {
495         struct timekeeper *tk = &tk_core.timekeeper;
496         unsigned long seq;
497         s64 nsecs = 0;
498
499         do {
500                 seq = read_seqcount_begin(&tk_core.seq);
501
502                 ts->tv_sec = tk->xtime_sec;
503                 nsecs = timekeeping_get_ns(&tk->tkr);
504
505         } while (read_seqcount_retry(&tk_core.seq, seq));
506
507         ts->tv_nsec = 0;
508         timespec64_add_ns(ts, nsecs);
509
510         /*
511          * Do not bail out early, in case there were callers still using
512          * the value, even in the face of the WARN_ON.
513          */
514         if (unlikely(timekeeping_suspended))
515                 return -EAGAIN;
516         return 0;
517 }
518 EXPORT_SYMBOL(__getnstimeofday64);
519
520 /**
521  * getnstimeofday64 - Returns the time of day in a timespec64.
522  * @ts:         pointer to the timespec to be set
523  *
524  * Returns the time of day in a timespec (WARN if suspended).
525  */
526 void getnstimeofday64(struct timespec64 *ts)
527 {
528         WARN_ON(__getnstimeofday64(ts));
529 }
530 EXPORT_SYMBOL(getnstimeofday64);
531
532 ktime_t ktime_get(void)
533 {
534         struct timekeeper *tk = &tk_core.timekeeper;
535         unsigned int seq;
536         ktime_t base;
537         s64 nsecs;
538
539         WARN_ON(timekeeping_suspended);
540
541         do {
542                 seq = read_seqcount_begin(&tk_core.seq);
543                 base = tk->tkr.base_mono;
544                 nsecs = timekeeping_get_ns(&tk->tkr);
545
546         } while (read_seqcount_retry(&tk_core.seq, seq));
547
548         return ktime_add_ns(base, nsecs);
549 }
550 EXPORT_SYMBOL_GPL(ktime_get);
551
552 static ktime_t *offsets[TK_OFFS_MAX] = {
553         [TK_OFFS_REAL]  = &tk_core.timekeeper.offs_real,
554         [TK_OFFS_BOOT]  = &tk_core.timekeeper.offs_boot,
555         [TK_OFFS_TAI]   = &tk_core.timekeeper.offs_tai,
556 };
557
558 ktime_t ktime_get_with_offset(enum tk_offsets offs)
559 {
560         struct timekeeper *tk = &tk_core.timekeeper;
561         unsigned int seq;
562         ktime_t base, *offset = offsets[offs];
563         s64 nsecs;
564
565         WARN_ON(timekeeping_suspended);
566
567         do {
568                 seq = read_seqcount_begin(&tk_core.seq);
569                 base = ktime_add(tk->tkr.base_mono, *offset);
570                 nsecs = timekeeping_get_ns(&tk->tkr);
571
572         } while (read_seqcount_retry(&tk_core.seq, seq));
573
574         return ktime_add_ns(base, nsecs);
575
576 }
577 EXPORT_SYMBOL_GPL(ktime_get_with_offset);
578
579 /**
580  * ktime_mono_to_any() - convert mononotic time to any other time
581  * @tmono:      time to convert.
582  * @offs:       which offset to use
583  */
584 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
585 {
586         ktime_t *offset = offsets[offs];
587         unsigned long seq;
588         ktime_t tconv;
589
590         do {
591                 seq = read_seqcount_begin(&tk_core.seq);
592                 tconv = ktime_add(tmono, *offset);
593         } while (read_seqcount_retry(&tk_core.seq, seq));
594
595         return tconv;
596 }
597 EXPORT_SYMBOL_GPL(ktime_mono_to_any);
598
599 /**
600  * ktime_get_raw - Returns the raw monotonic time in ktime_t format
601  */
602 ktime_t ktime_get_raw(void)
603 {
604         struct timekeeper *tk = &tk_core.timekeeper;
605         unsigned int seq;
606         ktime_t base;
607         s64 nsecs;
608
609         do {
610                 seq = read_seqcount_begin(&tk_core.seq);
611                 base = tk->base_raw;
612                 nsecs = timekeeping_get_ns_raw(tk);
613
614         } while (read_seqcount_retry(&tk_core.seq, seq));
615
616         return ktime_add_ns(base, nsecs);
617 }
618 EXPORT_SYMBOL_GPL(ktime_get_raw);
619
620 /**
621  * ktime_get_ts64 - get the monotonic clock in timespec64 format
622  * @ts:         pointer to timespec variable
623  *
624  * The function calculates the monotonic clock from the realtime
625  * clock and the wall_to_monotonic offset and stores the result
626  * in normalized timespec format in the variable pointed to by @ts.
627  */
628 void ktime_get_ts64(struct timespec64 *ts)
629 {
630         struct timekeeper *tk = &tk_core.timekeeper;
631         struct timespec64 tomono;
632         s64 nsec;
633         unsigned int seq;
634
635         WARN_ON(timekeeping_suspended);
636
637         do {
638                 seq = read_seqcount_begin(&tk_core.seq);
639                 ts->tv_sec = tk->xtime_sec;
640                 nsec = timekeeping_get_ns(&tk->tkr);
641                 tomono = tk->wall_to_monotonic;
642
643         } while (read_seqcount_retry(&tk_core.seq, seq));
644
645         ts->tv_sec += tomono.tv_sec;
646         ts->tv_nsec = 0;
647         timespec64_add_ns(ts, nsec + tomono.tv_nsec);
648 }
649 EXPORT_SYMBOL_GPL(ktime_get_ts64);
650
651 #ifdef CONFIG_NTP_PPS
652
653 /**
654  * getnstime_raw_and_real - get day and raw monotonic time in timespec format
655  * @ts_raw:     pointer to the timespec to be set to raw monotonic time
656  * @ts_real:    pointer to the timespec to be set to the time of day
657  *
658  * This function reads both the time of day and raw monotonic time at the
659  * same time atomically and stores the resulting timestamps in timespec
660  * format.
661  */
662 void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real)
663 {
664         struct timekeeper *tk = &tk_core.timekeeper;
665         unsigned long seq;
666         s64 nsecs_raw, nsecs_real;
667
668         WARN_ON_ONCE(timekeeping_suspended);
669
670         do {
671                 seq = read_seqcount_begin(&tk_core.seq);
672
673                 *ts_raw = timespec64_to_timespec(tk->raw_time);
674                 ts_real->tv_sec = tk->xtime_sec;
675                 ts_real->tv_nsec = 0;
676
677                 nsecs_raw = timekeeping_get_ns_raw(tk);
678                 nsecs_real = timekeeping_get_ns(&tk->tkr);
679
680         } while (read_seqcount_retry(&tk_core.seq, seq));
681
682         timespec_add_ns(ts_raw, nsecs_raw);
683         timespec_add_ns(ts_real, nsecs_real);
684 }
685 EXPORT_SYMBOL(getnstime_raw_and_real);
686
687 #endif /* CONFIG_NTP_PPS */
688
689 /**
690  * do_gettimeofday - Returns the time of day in a timeval
691  * @tv:         pointer to the timeval to be set
692  *
693  * NOTE: Users should be converted to using getnstimeofday()
694  */
695 void do_gettimeofday(struct timeval *tv)
696 {
697         struct timespec64 now;
698
699         getnstimeofday64(&now);
700         tv->tv_sec = now.tv_sec;
701         tv->tv_usec = now.tv_nsec/1000;
702 }
703 EXPORT_SYMBOL(do_gettimeofday);
704
705 /**
706  * do_settimeofday - Sets the time of day
707  * @tv:         pointer to the timespec variable containing the new time
708  *
709  * Sets the time of day to the new time and update NTP and notify hrtimers
710  */
711 int do_settimeofday(const struct timespec *tv)
712 {
713         struct timekeeper *tk = &tk_core.timekeeper;
714         struct timespec64 ts_delta, xt, tmp;
715         unsigned long flags;
716
717         if (!timespec_valid_strict(tv))
718                 return -EINVAL;
719
720         raw_spin_lock_irqsave(&timekeeper_lock, flags);
721         write_seqcount_begin(&tk_core.seq);
722
723         timekeeping_forward_now(tk);
724
725         xt = tk_xtime(tk);
726         ts_delta.tv_sec = tv->tv_sec - xt.tv_sec;
727         ts_delta.tv_nsec = tv->tv_nsec - xt.tv_nsec;
728
729         tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
730
731         tmp = timespec_to_timespec64(*tv);
732         tk_set_xtime(tk, &tmp);
733
734         timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
735
736         write_seqcount_end(&tk_core.seq);
737         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
738
739         /* signal hrtimers about time change */
740         clock_was_set();
741
742         return 0;
743 }
744 EXPORT_SYMBOL(do_settimeofday);
745
746 /**
747  * timekeeping_inject_offset - Adds or subtracts from the current time.
748  * @tv:         pointer to the timespec variable containing the offset
749  *
750  * Adds or subtracts an offset value from the current time.
751  */
752 int timekeeping_inject_offset(struct timespec *ts)
753 {
754         struct timekeeper *tk = &tk_core.timekeeper;
755         unsigned long flags;
756         struct timespec64 ts64, tmp;
757         int ret = 0;
758
759         if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC)
760                 return -EINVAL;
761
762         ts64 = timespec_to_timespec64(*ts);
763
764         raw_spin_lock_irqsave(&timekeeper_lock, flags);
765         write_seqcount_begin(&tk_core.seq);
766
767         timekeeping_forward_now(tk);
768
769         /* Make sure the proposed value is valid */
770         tmp = timespec64_add(tk_xtime(tk),  ts64);
771         if (!timespec64_valid_strict(&tmp)) {
772                 ret = -EINVAL;
773                 goto error;
774         }
775
776         tk_xtime_add(tk, &ts64);
777         tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64));
778
779 error: /* even if we error out, we forwarded the time, so call update */
780         timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
781
782         write_seqcount_end(&tk_core.seq);
783         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
784
785         /* signal hrtimers about time change */
786         clock_was_set();
787
788         return ret;
789 }
790 EXPORT_SYMBOL(timekeeping_inject_offset);
791
792
793 /**
794  * timekeeping_get_tai_offset - Returns current TAI offset from UTC
795  *
796  */
797 s32 timekeeping_get_tai_offset(void)
798 {
799         struct timekeeper *tk = &tk_core.timekeeper;
800         unsigned int seq;
801         s32 ret;
802
803         do {
804                 seq = read_seqcount_begin(&tk_core.seq);
805                 ret = tk->tai_offset;
806         } while (read_seqcount_retry(&tk_core.seq, seq));
807
808         return ret;
809 }
810
811 /**
812  * __timekeeping_set_tai_offset - Lock free worker function
813  *
814  */
815 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
816 {
817         tk->tai_offset = tai_offset;
818         tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
819 }
820
821 /**
822  * timekeeping_set_tai_offset - Sets the current TAI offset from UTC
823  *
824  */
825 void timekeeping_set_tai_offset(s32 tai_offset)
826 {
827         struct timekeeper *tk = &tk_core.timekeeper;
828         unsigned long flags;
829
830         raw_spin_lock_irqsave(&timekeeper_lock, flags);
831         write_seqcount_begin(&tk_core.seq);
832         __timekeeping_set_tai_offset(tk, tai_offset);
833         timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
834         write_seqcount_end(&tk_core.seq);
835         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
836         clock_was_set();
837 }
838
839 /**
840  * change_clocksource - Swaps clocksources if a new one is available
841  *
842  * Accumulates current time interval and initializes new clocksource
843  */
844 static int change_clocksource(void *data)
845 {
846         struct timekeeper *tk = &tk_core.timekeeper;
847         struct clocksource *new, *old;
848         unsigned long flags;
849
850         new = (struct clocksource *) data;
851
852         raw_spin_lock_irqsave(&timekeeper_lock, flags);
853         write_seqcount_begin(&tk_core.seq);
854
855         timekeeping_forward_now(tk);
856         /*
857          * If the cs is in module, get a module reference. Succeeds
858          * for built-in code (owner == NULL) as well.
859          */
860         if (try_module_get(new->owner)) {
861                 if (!new->enable || new->enable(new) == 0) {
862                         old = tk->tkr.clock;
863                         tk_setup_internals(tk, new);
864                         if (old->disable)
865                                 old->disable(old);
866                         module_put(old->owner);
867                 } else {
868                         module_put(new->owner);
869                 }
870         }
871         timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
872
873         write_seqcount_end(&tk_core.seq);
874         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
875
876         return 0;
877 }
878
879 /**
880  * timekeeping_notify - Install a new clock source
881  * @clock:              pointer to the clock source
882  *
883  * This function is called from clocksource.c after a new, better clock
884  * source has been registered. The caller holds the clocksource_mutex.
885  */
886 int timekeeping_notify(struct clocksource *clock)
887 {
888         struct timekeeper *tk = &tk_core.timekeeper;
889
890         if (tk->tkr.clock == clock)
891                 return 0;
892         stop_machine(change_clocksource, clock, NULL);
893         tick_clock_notify();
894         return tk->tkr.clock == clock ? 0 : -1;
895 }
896
897 /**
898  * getrawmonotonic - Returns the raw monotonic time in a timespec
899  * @ts:         pointer to the timespec to be set
900  *
901  * Returns the raw monotonic time (completely un-modified by ntp)
902  */
903 void getrawmonotonic(struct timespec *ts)
904 {
905         struct timekeeper *tk = &tk_core.timekeeper;
906         struct timespec64 ts64;
907         unsigned long seq;
908         s64 nsecs;
909
910         do {
911                 seq = read_seqcount_begin(&tk_core.seq);
912                 nsecs = timekeeping_get_ns_raw(tk);
913                 ts64 = tk->raw_time;
914
915         } while (read_seqcount_retry(&tk_core.seq, seq));
916
917         timespec64_add_ns(&ts64, nsecs);
918         *ts = timespec64_to_timespec(ts64);
919 }
920 EXPORT_SYMBOL(getrawmonotonic);
921
922 /**
923  * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
924  */
925 int timekeeping_valid_for_hres(void)
926 {
927         struct timekeeper *tk = &tk_core.timekeeper;
928         unsigned long seq;
929         int ret;
930
931         do {
932                 seq = read_seqcount_begin(&tk_core.seq);
933
934                 ret = tk->tkr.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
935
936         } while (read_seqcount_retry(&tk_core.seq, seq));
937
938         return ret;
939 }
940
941 /**
942  * timekeeping_max_deferment - Returns max time the clocksource can be deferred
943  */
944 u64 timekeeping_max_deferment(void)
945 {
946         struct timekeeper *tk = &tk_core.timekeeper;
947         unsigned long seq;
948         u64 ret;
949
950         do {
951                 seq = read_seqcount_begin(&tk_core.seq);
952
953                 ret = tk->tkr.clock->max_idle_ns;
954
955         } while (read_seqcount_retry(&tk_core.seq, seq));
956
957         return ret;
958 }
959
960 /**
961  * read_persistent_clock -  Return time from the persistent clock.
962  *
963  * Weak dummy function for arches that do not yet support it.
964  * Reads the time from the battery backed persistent clock.
965  * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
966  *
967  *  XXX - Do be sure to remove it once all arches implement it.
968  */
969 void __weak read_persistent_clock(struct timespec *ts)
970 {
971         ts->tv_sec = 0;
972         ts->tv_nsec = 0;
973 }
974
975 /**
976  * read_boot_clock -  Return time of the system start.
977  *
978  * Weak dummy function for arches that do not yet support it.
979  * Function to read the exact time the system has been started.
980  * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
981  *
982  *  XXX - Do be sure to remove it once all arches implement it.
983  */
984 void __weak read_boot_clock(struct timespec *ts)
985 {
986         ts->tv_sec = 0;
987         ts->tv_nsec = 0;
988 }
989
990 /*
991  * timekeeping_init - Initializes the clocksource and common timekeeping values
992  */
993 void __init timekeeping_init(void)
994 {
995         struct timekeeper *tk = &tk_core.timekeeper;
996         struct clocksource *clock;
997         unsigned long flags;
998         struct timespec64 now, boot, tmp;
999         struct timespec ts;
1000
1001         read_persistent_clock(&ts);
1002         now = timespec_to_timespec64(ts);
1003         if (!timespec64_valid_strict(&now)) {
1004                 pr_warn("WARNING: Persistent clock returned invalid value!\n"
1005                         "         Check your CMOS/BIOS settings.\n");
1006                 now.tv_sec = 0;
1007                 now.tv_nsec = 0;
1008         } else if (now.tv_sec || now.tv_nsec)
1009                 persistent_clock_exist = true;
1010
1011         read_boot_clock(&ts);
1012         boot = timespec_to_timespec64(ts);
1013         if (!timespec64_valid_strict(&boot)) {
1014                 pr_warn("WARNING: Boot clock returned invalid value!\n"
1015                         "         Check your CMOS/BIOS settings.\n");
1016                 boot.tv_sec = 0;
1017                 boot.tv_nsec = 0;
1018         }
1019
1020         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1021         write_seqcount_begin(&tk_core.seq);
1022         ntp_init();
1023
1024         clock = clocksource_default_clock();
1025         if (clock->enable)
1026                 clock->enable(clock);
1027         tk_setup_internals(tk, clock);
1028
1029         tk_set_xtime(tk, &now);
1030         tk->raw_time.tv_sec = 0;
1031         tk->raw_time.tv_nsec = 0;
1032         tk->base_raw.tv64 = 0;
1033         if (boot.tv_sec == 0 && boot.tv_nsec == 0)
1034                 boot = tk_xtime(tk);
1035
1036         set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec);
1037         tk_set_wall_to_mono(tk, tmp);
1038
1039         timekeeping_update(tk, TK_MIRROR);
1040
1041         write_seqcount_end(&tk_core.seq);
1042         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1043 }
1044
1045 /* time in seconds when suspend began */
1046 static struct timespec64 timekeeping_suspend_time;
1047
1048 /**
1049  * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1050  * @delta: pointer to a timespec delta value
1051  *
1052  * Takes a timespec offset measuring a suspend interval and properly
1053  * adds the sleep offset to the timekeeping variables.
1054  */
1055 static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1056                                            struct timespec64 *delta)
1057 {
1058         if (!timespec64_valid_strict(delta)) {
1059                 printk_deferred(KERN_WARNING
1060                                 "__timekeeping_inject_sleeptime: Invalid "
1061                                 "sleep delta value!\n");
1062                 return;
1063         }
1064         tk_xtime_add(tk, delta);
1065         tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1066         tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1067         tk_debug_account_sleep_time(delta);
1068 }
1069
1070 /**
1071  * timekeeping_inject_sleeptime - Adds suspend interval to timeekeeping values
1072  * @delta: pointer to a timespec delta value
1073  *
1074  * This hook is for architectures that cannot support read_persistent_clock
1075  * because their RTC/persistent clock is only accessible when irqs are enabled.
1076  *
1077  * This function should only be called by rtc_resume(), and allows
1078  * a suspend offset to be injected into the timekeeping values.
1079  */
1080 void timekeeping_inject_sleeptime(struct timespec *delta)
1081 {
1082         struct timekeeper *tk = &tk_core.timekeeper;
1083         struct timespec64 tmp;
1084         unsigned long flags;
1085
1086         /*
1087          * Make sure we don't set the clock twice, as timekeeping_resume()
1088          * already did it
1089          */
1090         if (has_persistent_clock())
1091                 return;
1092
1093         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1094         write_seqcount_begin(&tk_core.seq);
1095
1096         timekeeping_forward_now(tk);
1097
1098         tmp = timespec_to_timespec64(*delta);
1099         __timekeeping_inject_sleeptime(tk, &tmp);
1100
1101         timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1102
1103         write_seqcount_end(&tk_core.seq);
1104         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1105
1106         /* signal hrtimers about time change */
1107         clock_was_set();
1108 }
1109
1110 /**
1111  * timekeeping_resume - Resumes the generic timekeeping subsystem.
1112  *
1113  * This is for the generic clocksource timekeeping.
1114  * xtime/wall_to_monotonic/jiffies/etc are
1115  * still managed by arch specific suspend/resume code.
1116  */
1117 static void timekeeping_resume(void)
1118 {
1119         struct timekeeper *tk = &tk_core.timekeeper;
1120         struct clocksource *clock = tk->tkr.clock;
1121         unsigned long flags;
1122         struct timespec64 ts_new, ts_delta;
1123         struct timespec tmp;
1124         cycle_t cycle_now, cycle_delta;
1125         bool suspendtime_found = false;
1126
1127         read_persistent_clock(&tmp);
1128         ts_new = timespec_to_timespec64(tmp);
1129
1130         clockevents_resume();
1131         clocksource_resume();
1132
1133         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1134         write_seqcount_begin(&tk_core.seq);
1135
1136         /*
1137          * After system resumes, we need to calculate the suspended time and
1138          * compensate it for the OS time. There are 3 sources that could be
1139          * used: Nonstop clocksource during suspend, persistent clock and rtc
1140          * device.
1141          *
1142          * One specific platform may have 1 or 2 or all of them, and the
1143          * preference will be:
1144          *      suspend-nonstop clocksource -> persistent clock -> rtc
1145          * The less preferred source will only be tried if there is no better
1146          * usable source. The rtc part is handled separately in rtc core code.
1147          */
1148         cycle_now = tk->tkr.read(clock);
1149         if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
1150                 cycle_now > tk->tkr.cycle_last) {
1151                 u64 num, max = ULLONG_MAX;
1152                 u32 mult = clock->mult;
1153                 u32 shift = clock->shift;
1154                 s64 nsec = 0;
1155
1156                 cycle_delta = clocksource_delta(cycle_now, tk->tkr.cycle_last,
1157                                                 tk->tkr.mask);
1158
1159                 /*
1160                  * "cycle_delta * mutl" may cause 64 bits overflow, if the
1161                  * suspended time is too long. In that case we need do the
1162                  * 64 bits math carefully
1163                  */
1164                 do_div(max, mult);
1165                 if (cycle_delta > max) {
1166                         num = div64_u64(cycle_delta, max);
1167                         nsec = (((u64) max * mult) >> shift) * num;
1168                         cycle_delta -= num * max;
1169                 }
1170                 nsec += ((u64) cycle_delta * mult) >> shift;
1171
1172                 ts_delta = ns_to_timespec64(nsec);
1173                 suspendtime_found = true;
1174         } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1175                 ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1176                 suspendtime_found = true;
1177         }
1178
1179         if (suspendtime_found)
1180                 __timekeeping_inject_sleeptime(tk, &ts_delta);
1181
1182         /* Re-base the last cycle value */
1183         tk->tkr.cycle_last = cycle_now;
1184         tk->ntp_error = 0;
1185         timekeeping_suspended = 0;
1186         timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1187         write_seqcount_end(&tk_core.seq);
1188         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1189
1190         touch_softlockup_watchdog();
1191
1192         clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL);
1193
1194         /* Resume hrtimers */
1195         hrtimers_resume();
1196 }
1197
1198 static int timekeeping_suspend(void)
1199 {
1200         struct timekeeper *tk = &tk_core.timekeeper;
1201         unsigned long flags;
1202         struct timespec64               delta, delta_delta;
1203         static struct timespec64        old_delta;
1204         struct timespec tmp;
1205
1206         read_persistent_clock(&tmp);
1207         timekeeping_suspend_time = timespec_to_timespec64(tmp);
1208
1209         /*
1210          * On some systems the persistent_clock can not be detected at
1211          * timekeeping_init by its return value, so if we see a valid
1212          * value returned, update the persistent_clock_exists flag.
1213          */
1214         if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1215                 persistent_clock_exist = true;
1216
1217         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1218         write_seqcount_begin(&tk_core.seq);
1219         timekeeping_forward_now(tk);
1220         timekeeping_suspended = 1;
1221
1222         /*
1223          * To avoid drift caused by repeated suspend/resumes,
1224          * which each can add ~1 second drift error,
1225          * try to compensate so the difference in system time
1226          * and persistent_clock time stays close to constant.
1227          */
1228         delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
1229         delta_delta = timespec64_sub(delta, old_delta);
1230         if (abs(delta_delta.tv_sec)  >= 2) {
1231                 /*
1232                  * if delta_delta is too large, assume time correction
1233                  * has occured and set old_delta to the current delta.
1234                  */
1235                 old_delta = delta;
1236         } else {
1237                 /* Otherwise try to adjust old_system to compensate */
1238                 timekeeping_suspend_time =
1239                         timespec64_add(timekeeping_suspend_time, delta_delta);
1240         }
1241
1242         timekeeping_update(tk, TK_MIRROR);
1243         write_seqcount_end(&tk_core.seq);
1244         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1245
1246         clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL);
1247         clocksource_suspend();
1248         clockevents_suspend();
1249
1250         return 0;
1251 }
1252
1253 /* sysfs resume/suspend bits for timekeeping */
1254 static struct syscore_ops timekeeping_syscore_ops = {
1255         .resume         = timekeeping_resume,
1256         .suspend        = timekeeping_suspend,
1257 };
1258
1259 static int __init timekeeping_init_ops(void)
1260 {
1261         register_syscore_ops(&timekeeping_syscore_ops);
1262         return 0;
1263 }
1264 device_initcall(timekeeping_init_ops);
1265
1266 /*
1267  * Apply a multiplier adjustment to the timekeeper
1268  */
1269 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
1270                                                          s64 offset,
1271                                                          bool negative,
1272                                                          int adj_scale)
1273 {
1274         s64 interval = tk->cycle_interval;
1275         s32 mult_adj = 1;
1276
1277         if (negative) {
1278                 mult_adj = -mult_adj;
1279                 interval = -interval;
1280                 offset  = -offset;
1281         }
1282         mult_adj <<= adj_scale;
1283         interval <<= adj_scale;
1284         offset <<= adj_scale;
1285
1286         /*
1287          * So the following can be confusing.
1288          *
1289          * To keep things simple, lets assume mult_adj == 1 for now.
1290          *
1291          * When mult_adj != 1, remember that the interval and offset values
1292          * have been appropriately scaled so the math is the same.
1293          *
1294          * The basic idea here is that we're increasing the multiplier
1295          * by one, this causes the xtime_interval to be incremented by
1296          * one cycle_interval. This is because:
1297          *      xtime_interval = cycle_interval * mult
1298          * So if mult is being incremented by one:
1299          *      xtime_interval = cycle_interval * (mult + 1)
1300          * Its the same as:
1301          *      xtime_interval = (cycle_interval * mult) + cycle_interval
1302          * Which can be shortened to:
1303          *      xtime_interval += cycle_interval
1304          *
1305          * So offset stores the non-accumulated cycles. Thus the current
1306          * time (in shifted nanoseconds) is:
1307          *      now = (offset * adj) + xtime_nsec
1308          * Now, even though we're adjusting the clock frequency, we have
1309          * to keep time consistent. In other words, we can't jump back
1310          * in time, and we also want to avoid jumping forward in time.
1311          *
1312          * So given the same offset value, we need the time to be the same
1313          * both before and after the freq adjustment.
1314          *      now = (offset * adj_1) + xtime_nsec_1
1315          *      now = (offset * adj_2) + xtime_nsec_2
1316          * So:
1317          *      (offset * adj_1) + xtime_nsec_1 =
1318          *              (offset * adj_2) + xtime_nsec_2
1319          * And we know:
1320          *      adj_2 = adj_1 + 1
1321          * So:
1322          *      (offset * adj_1) + xtime_nsec_1 =
1323          *              (offset * (adj_1+1)) + xtime_nsec_2
1324          *      (offset * adj_1) + xtime_nsec_1 =
1325          *              (offset * adj_1) + offset + xtime_nsec_2
1326          * Canceling the sides:
1327          *      xtime_nsec_1 = offset + xtime_nsec_2
1328          * Which gives us:
1329          *      xtime_nsec_2 = xtime_nsec_1 - offset
1330          * Which simplfies to:
1331          *      xtime_nsec -= offset
1332          *
1333          * XXX - TODO: Doc ntp_error calculation.
1334          */
1335         tk->tkr.mult += mult_adj;
1336         tk->xtime_interval += interval;
1337         tk->tkr.xtime_nsec -= offset;
1338         tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
1339 }
1340
1341 /*
1342  * Calculate the multiplier adjustment needed to match the frequency
1343  * specified by NTP
1344  */
1345 static __always_inline void timekeeping_freqadjust(struct timekeeper *tk,
1346                                                         s64 offset)
1347 {
1348         s64 interval = tk->cycle_interval;
1349         s64 xinterval = tk->xtime_interval;
1350         s64 tick_error;
1351         bool negative;
1352         u32 adj;
1353
1354         /* Remove any current error adj from freq calculation */
1355         if (tk->ntp_err_mult)
1356                 xinterval -= tk->cycle_interval;
1357
1358         tk->ntp_tick = ntp_tick_length();
1359
1360         /* Calculate current error per tick */
1361         tick_error = ntp_tick_length() >> tk->ntp_error_shift;
1362         tick_error -= (xinterval + tk->xtime_remainder);
1363
1364         /* Don't worry about correcting it if its small */
1365         if (likely((tick_error >= 0) && (tick_error <= interval)))
1366                 return;
1367
1368         /* preserve the direction of correction */
1369         negative = (tick_error < 0);
1370
1371         /* Sort out the magnitude of the correction */
1372         tick_error = abs(tick_error);
1373         for (adj = 0; tick_error > interval; adj++)
1374                 tick_error >>= 1;
1375
1376         /* scale the corrections */
1377         timekeeping_apply_adjustment(tk, offset, negative, adj);
1378 }
1379
1380 /*
1381  * Adjust the timekeeper's multiplier to the correct frequency
1382  * and also to reduce the accumulated error value.
1383  */
1384 static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1385 {
1386         /* Correct for the current frequency error */
1387         timekeeping_freqadjust(tk, offset);
1388
1389         /* Next make a small adjustment to fix any cumulative error */
1390         if (!tk->ntp_err_mult && (tk->ntp_error > 0)) {
1391                 tk->ntp_err_mult = 1;
1392                 timekeeping_apply_adjustment(tk, offset, 0, 0);
1393         } else if (tk->ntp_err_mult && (tk->ntp_error <= 0)) {
1394                 /* Undo any existing error adjustment */
1395                 timekeeping_apply_adjustment(tk, offset, 1, 0);
1396                 tk->ntp_err_mult = 0;
1397         }
1398
1399         if (unlikely(tk->tkr.clock->maxadj &&
1400                 (tk->tkr.mult > tk->tkr.clock->mult + tk->tkr.clock->maxadj))) {
1401                 printk_once(KERN_WARNING
1402                         "Adjusting %s more than 11%% (%ld vs %ld)\n",
1403                         tk->tkr.clock->name, (long)tk->tkr.mult,
1404                         (long)tk->tkr.clock->mult + tk->tkr.clock->maxadj);
1405         }
1406
1407         /*
1408          * It may be possible that when we entered this function, xtime_nsec
1409          * was very small.  Further, if we're slightly speeding the clocksource
1410          * in the code above, its possible the required corrective factor to
1411          * xtime_nsec could cause it to underflow.
1412          *
1413          * Now, since we already accumulated the second, cannot simply roll
1414          * the accumulated second back, since the NTP subsystem has been
1415          * notified via second_overflow. So instead we push xtime_nsec forward
1416          * by the amount we underflowed, and add that amount into the error.
1417          *
1418          * We'll correct this error next time through this function, when
1419          * xtime_nsec is not as small.
1420          */
1421         if (unlikely((s64)tk->tkr.xtime_nsec < 0)) {
1422                 s64 neg = -(s64)tk->tkr.xtime_nsec;
1423                 tk->tkr.xtime_nsec = 0;
1424                 tk->ntp_error += neg << tk->ntp_error_shift;
1425         }
1426 }
1427
1428 /**
1429  * accumulate_nsecs_to_secs - Accumulates nsecs into secs
1430  *
1431  * Helper function that accumulates a the nsecs greater then a second
1432  * from the xtime_nsec field to the xtime_secs field.
1433  * It also calls into the NTP code to handle leapsecond processing.
1434  *
1435  */
1436 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1437 {
1438         u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr.shift;
1439         unsigned int clock_set = 0;
1440
1441         while (tk->tkr.xtime_nsec >= nsecps) {
1442                 int leap;
1443
1444                 tk->tkr.xtime_nsec -= nsecps;
1445                 tk->xtime_sec++;
1446
1447                 /* Figure out if its a leap sec and apply if needed */
1448                 leap = second_overflow(tk->xtime_sec);
1449                 if (unlikely(leap)) {
1450                         struct timespec64 ts;
1451
1452                         tk->xtime_sec += leap;
1453
1454                         ts.tv_sec = leap;
1455                         ts.tv_nsec = 0;
1456                         tk_set_wall_to_mono(tk,
1457                                 timespec64_sub(tk->wall_to_monotonic, ts));
1458
1459                         __timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
1460
1461                         clock_set = TK_CLOCK_WAS_SET;
1462                 }
1463         }
1464         return clock_set;
1465 }
1466
1467 /**
1468  * logarithmic_accumulation - shifted accumulation of cycles
1469  *
1470  * This functions accumulates a shifted interval of cycles into
1471  * into a shifted interval nanoseconds. Allows for O(log) accumulation
1472  * loop.
1473  *
1474  * Returns the unconsumed cycles.
1475  */
1476 static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset,
1477                                                 u32 shift,
1478                                                 unsigned int *clock_set)
1479 {
1480         cycle_t interval = tk->cycle_interval << shift;
1481         u64 raw_nsecs;
1482
1483         /* If the offset is smaller then a shifted interval, do nothing */
1484         if (offset < interval)
1485                 return offset;
1486
1487         /* Accumulate one shifted interval */
1488         offset -= interval;
1489         tk->tkr.cycle_last += interval;
1490
1491         tk->tkr.xtime_nsec += tk->xtime_interval << shift;
1492         *clock_set |= accumulate_nsecs_to_secs(tk);
1493
1494         /* Accumulate raw time */
1495         raw_nsecs = (u64)tk->raw_interval << shift;
1496         raw_nsecs += tk->raw_time.tv_nsec;
1497         if (raw_nsecs >= NSEC_PER_SEC) {
1498                 u64 raw_secs = raw_nsecs;
1499                 raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
1500                 tk->raw_time.tv_sec += raw_secs;
1501         }
1502         tk->raw_time.tv_nsec = raw_nsecs;
1503
1504         /* Accumulate error between NTP and clock interval */
1505         tk->ntp_error += tk->ntp_tick << shift;
1506         tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
1507                                                 (tk->ntp_error_shift + shift);
1508
1509         return offset;
1510 }
1511
1512 /**
1513  * update_wall_time - Uses the current clocksource to increment the wall time
1514  *
1515  */
1516 void update_wall_time(void)
1517 {
1518         struct timekeeper *real_tk = &tk_core.timekeeper;
1519         struct timekeeper *tk = &shadow_timekeeper;
1520         cycle_t offset;
1521         int shift = 0, maxshift;
1522         unsigned int clock_set = 0;
1523         unsigned long flags;
1524
1525         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1526
1527         /* Make sure we're fully resumed: */
1528         if (unlikely(timekeeping_suspended))
1529                 goto out;
1530
1531 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
1532         offset = real_tk->cycle_interval;
1533 #else
1534         offset = clocksource_delta(tk->tkr.read(tk->tkr.clock),
1535                                    tk->tkr.cycle_last, tk->tkr.mask);
1536 #endif
1537
1538         /* Check if there's really nothing to do */
1539         if (offset < real_tk->cycle_interval)
1540                 goto out;
1541
1542         /*
1543          * With NO_HZ we may have to accumulate many cycle_intervals
1544          * (think "ticks") worth of time at once. To do this efficiently,
1545          * we calculate the largest doubling multiple of cycle_intervals
1546          * that is smaller than the offset.  We then accumulate that
1547          * chunk in one go, and then try to consume the next smaller
1548          * doubled multiple.
1549          */
1550         shift = ilog2(offset) - ilog2(tk->cycle_interval);
1551         shift = max(0, shift);
1552         /* Bound shift to one less than what overflows tick_length */
1553         maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
1554         shift = min(shift, maxshift);
1555         while (offset >= tk->cycle_interval) {
1556                 offset = logarithmic_accumulation(tk, offset, shift,
1557                                                         &clock_set);
1558                 if (offset < tk->cycle_interval<<shift)
1559                         shift--;
1560         }
1561
1562         /* correct the clock when NTP error is too big */
1563         timekeeping_adjust(tk, offset);
1564
1565         /*
1566          * XXX This can be killed once everyone converts
1567          * to the new update_vsyscall.
1568          */
1569         old_vsyscall_fixup(tk);
1570
1571         /*
1572          * Finally, make sure that after the rounding
1573          * xtime_nsec isn't larger than NSEC_PER_SEC
1574          */
1575         clock_set |= accumulate_nsecs_to_secs(tk);
1576
1577         write_seqcount_begin(&tk_core.seq);
1578         /*
1579          * Update the real timekeeper.
1580          *
1581          * We could avoid this memcpy by switching pointers, but that
1582          * requires changes to all other timekeeper usage sites as
1583          * well, i.e. move the timekeeper pointer getter into the
1584          * spinlocked/seqcount protected sections. And we trade this
1585          * memcpy under the tk_core.seq against one before we start
1586          * updating.
1587          */
1588         memcpy(real_tk, tk, sizeof(*tk));
1589         timekeeping_update(real_tk, clock_set);
1590         write_seqcount_end(&tk_core.seq);
1591 out:
1592         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1593         if (clock_set)
1594                 /* Have to call _delayed version, since in irq context*/
1595                 clock_was_set_delayed();
1596 }
1597
1598 /**
1599  * getboottime - Return the real time of system boot.
1600  * @ts:         pointer to the timespec to be set
1601  *
1602  * Returns the wall-time of boot in a timespec.
1603  *
1604  * This is based on the wall_to_monotonic offset and the total suspend
1605  * time. Calls to settimeofday will affect the value returned (which
1606  * basically means that however wrong your real time clock is at boot time,
1607  * you get the right time here).
1608  */
1609 void getboottime(struct timespec *ts)
1610 {
1611         struct timekeeper *tk = &tk_core.timekeeper;
1612         ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
1613
1614         *ts = ktime_to_timespec(t);
1615 }
1616 EXPORT_SYMBOL_GPL(getboottime);
1617
1618 unsigned long get_seconds(void)
1619 {
1620         struct timekeeper *tk = &tk_core.timekeeper;
1621
1622         return tk->xtime_sec;
1623 }
1624 EXPORT_SYMBOL(get_seconds);
1625
1626 struct timespec __current_kernel_time(void)
1627 {
1628         struct timekeeper *tk = &tk_core.timekeeper;
1629
1630         return timespec64_to_timespec(tk_xtime(tk));
1631 }
1632
1633 struct timespec current_kernel_time(void)
1634 {
1635         struct timekeeper *tk = &tk_core.timekeeper;
1636         struct timespec64 now;
1637         unsigned long seq;
1638
1639         do {
1640                 seq = read_seqcount_begin(&tk_core.seq);
1641
1642                 now = tk_xtime(tk);
1643         } while (read_seqcount_retry(&tk_core.seq, seq));
1644
1645         return timespec64_to_timespec(now);
1646 }
1647 EXPORT_SYMBOL(current_kernel_time);
1648
1649 struct timespec get_monotonic_coarse(void)
1650 {
1651         struct timekeeper *tk = &tk_core.timekeeper;
1652         struct timespec64 now, mono;
1653         unsigned long seq;
1654
1655         do {
1656                 seq = read_seqcount_begin(&tk_core.seq);
1657
1658                 now = tk_xtime(tk);
1659                 mono = tk->wall_to_monotonic;
1660         } while (read_seqcount_retry(&tk_core.seq, seq));
1661
1662         set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec,
1663                                 now.tv_nsec + mono.tv_nsec);
1664
1665         return timespec64_to_timespec(now);
1666 }
1667
1668 /*
1669  * Must hold jiffies_lock
1670  */
1671 void do_timer(unsigned long ticks)
1672 {
1673         jiffies_64 += ticks;
1674         calc_global_load(ticks);
1675 }
1676
1677 /**
1678  * ktime_get_update_offsets_tick - hrtimer helper
1679  * @offs_real:  pointer to storage for monotonic -> realtime offset
1680  * @offs_boot:  pointer to storage for monotonic -> boottime offset
1681  * @offs_tai:   pointer to storage for monotonic -> clock tai offset
1682  *
1683  * Returns monotonic time at last tick and various offsets
1684  */
1685 ktime_t ktime_get_update_offsets_tick(ktime_t *offs_real, ktime_t *offs_boot,
1686                                                         ktime_t *offs_tai)
1687 {
1688         struct timekeeper *tk = &tk_core.timekeeper;
1689         unsigned int seq;
1690         ktime_t base;
1691         u64 nsecs;
1692
1693         do {
1694                 seq = read_seqcount_begin(&tk_core.seq);
1695
1696                 base = tk->tkr.base_mono;
1697                 nsecs = tk->tkr.xtime_nsec >> tk->tkr.shift;
1698
1699                 *offs_real = tk->offs_real;
1700                 *offs_boot = tk->offs_boot;
1701                 *offs_tai = tk->offs_tai;
1702         } while (read_seqcount_retry(&tk_core.seq, seq));
1703
1704         return ktime_add_ns(base, nsecs);
1705 }
1706
1707 #ifdef CONFIG_HIGH_RES_TIMERS
1708 /**
1709  * ktime_get_update_offsets_now - hrtimer helper
1710  * @offs_real:  pointer to storage for monotonic -> realtime offset
1711  * @offs_boot:  pointer to storage for monotonic -> boottime offset
1712  * @offs_tai:   pointer to storage for monotonic -> clock tai offset
1713  *
1714  * Returns current monotonic time and updates the offsets
1715  * Called from hrtimer_interrupt() or retrigger_next_event()
1716  */
1717 ktime_t ktime_get_update_offsets_now(ktime_t *offs_real, ktime_t *offs_boot,
1718                                                         ktime_t *offs_tai)
1719 {
1720         struct timekeeper *tk = &tk_core.timekeeper;
1721         unsigned int seq;
1722         ktime_t base;
1723         u64 nsecs;
1724
1725         do {
1726                 seq = read_seqcount_begin(&tk_core.seq);
1727
1728                 base = tk->tkr.base_mono;
1729                 nsecs = timekeeping_get_ns(&tk->tkr);
1730
1731                 *offs_real = tk->offs_real;
1732                 *offs_boot = tk->offs_boot;
1733                 *offs_tai = tk->offs_tai;
1734         } while (read_seqcount_retry(&tk_core.seq, seq));
1735
1736         return ktime_add_ns(base, nsecs);
1737 }
1738 #endif
1739
1740 /**
1741  * do_adjtimex() - Accessor function to NTP __do_adjtimex function
1742  */
1743 int do_adjtimex(struct timex *txc)
1744 {
1745         struct timekeeper *tk = &tk_core.timekeeper;
1746         unsigned long flags;
1747         struct timespec64 ts;
1748         s32 orig_tai, tai;
1749         int ret;
1750
1751         /* Validate the data before disabling interrupts */
1752         ret = ntp_validate_timex(txc);
1753         if (ret)
1754                 return ret;
1755
1756         if (txc->modes & ADJ_SETOFFSET) {
1757                 struct timespec delta;
1758                 delta.tv_sec  = txc->time.tv_sec;
1759                 delta.tv_nsec = txc->time.tv_usec;
1760                 if (!(txc->modes & ADJ_NANO))
1761                         delta.tv_nsec *= 1000;
1762                 ret = timekeeping_inject_offset(&delta);
1763                 if (ret)
1764                         return ret;
1765         }
1766
1767         getnstimeofday64(&ts);
1768
1769         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1770         write_seqcount_begin(&tk_core.seq);
1771
1772         orig_tai = tai = tk->tai_offset;
1773         ret = __do_adjtimex(txc, &ts, &tai);
1774
1775         if (tai != orig_tai) {
1776                 __timekeeping_set_tai_offset(tk, tai);
1777                 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1778         }
1779         write_seqcount_end(&tk_core.seq);
1780         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1781
1782         if (tai != orig_tai)
1783                 clock_was_set();
1784
1785         ntp_notify_cmos_timer();
1786
1787         return ret;
1788 }
1789
1790 #ifdef CONFIG_NTP_PPS
1791 /**
1792  * hardpps() - Accessor function to NTP __hardpps function
1793  */
1794 void hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts)
1795 {
1796         unsigned long flags;
1797
1798         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1799         write_seqcount_begin(&tk_core.seq);
1800
1801         __hardpps(phase_ts, raw_ts);
1802
1803         write_seqcount_end(&tk_core.seq);
1804         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1805 }
1806 EXPORT_SYMBOL(hardpps);
1807 #endif
1808
1809 /**
1810  * xtime_update() - advances the timekeeping infrastructure
1811  * @ticks:      number of ticks, that have elapsed since the last call.
1812  *
1813  * Must be called with interrupts disabled.
1814  */
1815 void xtime_update(unsigned long ticks)
1816 {
1817         write_seqlock(&jiffies_lock);
1818         do_timer(ticks);
1819         write_sequnlock(&jiffies_lock);
1820         update_wall_time();
1821 }