timekeeping: Avoid taking lock in NMI path with CONFIG_DEBUG_TIMEKEEPING
[firefly-linux-kernel-4.4.55.git] / kernel / time / timekeeping.c
1 /*
2  *  linux/kernel/time/timekeeping.c
3  *
4  *  Kernel timekeeping code and accessor functions
5  *
6  *  This code was moved from linux/kernel/timer.c.
7  *  Please see that file for copyright and history logs.
8  *
9  */
10
11 #include <linux/timekeeper_internal.h>
12 #include <linux/module.h>
13 #include <linux/interrupt.h>
14 #include <linux/percpu.h>
15 #include <linux/init.h>
16 #include <linux/mm.h>
17 #include <linux/sched.h>
18 #include <linux/syscore_ops.h>
19 #include <linux/clocksource.h>
20 #include <linux/jiffies.h>
21 #include <linux/time.h>
22 #include <linux/tick.h>
23 #include <linux/stop_machine.h>
24 #include <linux/pvclock_gtod.h>
25 #include <linux/compiler.h>
26
27 #include "tick-internal.h"
28 #include "ntp_internal.h"
29 #include "timekeeping_internal.h"
30
31 #define TK_CLEAR_NTP            (1 << 0)
32 #define TK_MIRROR               (1 << 1)
33 #define TK_CLOCK_WAS_SET        (1 << 2)
34
35 /*
36  * The most important data for readout fits into a single 64 byte
37  * cache line.
38  */
39 static struct {
40         seqcount_t              seq;
41         struct timekeeper       timekeeper;
42 } tk_core ____cacheline_aligned;
43
44 static DEFINE_RAW_SPINLOCK(timekeeper_lock);
45 static struct timekeeper shadow_timekeeper;
46
47 /**
48  * struct tk_fast - NMI safe timekeeper
49  * @seq:        Sequence counter for protecting updates. The lowest bit
50  *              is the index for the tk_read_base array
51  * @base:       tk_read_base array. Access is indexed by the lowest bit of
52  *              @seq.
53  *
54  * See @update_fast_timekeeper() below.
55  */
56 struct tk_fast {
57         seqcount_t              seq;
58         struct tk_read_base     base[2];
59 };
60
61 static struct tk_fast tk_fast_mono ____cacheline_aligned;
62 static struct tk_fast tk_fast_raw  ____cacheline_aligned;
63
64 /* flag for if timekeeping is suspended */
65 int __read_mostly timekeeping_suspended;
66
67 static inline void tk_normalize_xtime(struct timekeeper *tk)
68 {
69         while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
70                 tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
71                 tk->xtime_sec++;
72         }
73 }
74
75 static inline struct timespec64 tk_xtime(struct timekeeper *tk)
76 {
77         struct timespec64 ts;
78
79         ts.tv_sec = tk->xtime_sec;
80         ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
81         return ts;
82 }
83
84 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
85 {
86         tk->xtime_sec = ts->tv_sec;
87         tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
88 }
89
90 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
91 {
92         tk->xtime_sec += ts->tv_sec;
93         tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
94         tk_normalize_xtime(tk);
95 }
96
97 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
98 {
99         struct timespec64 tmp;
100
101         /*
102          * Verify consistency of: offset_real = -wall_to_monotonic
103          * before modifying anything
104          */
105         set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
106                                         -tk->wall_to_monotonic.tv_nsec);
107         WARN_ON_ONCE(tk->offs_real.tv64 != timespec64_to_ktime(tmp).tv64);
108         tk->wall_to_monotonic = wtm;
109         set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
110         tk->offs_real = timespec64_to_ktime(tmp);
111         tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
112 }
113
114 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
115 {
116         tk->offs_boot = ktime_add(tk->offs_boot, delta);
117 }
118
119 #ifdef CONFIG_DEBUG_TIMEKEEPING
120 #define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */
121
122 static void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
123 {
124
125         cycle_t max_cycles = tk->tkr_mono.clock->max_cycles;
126         const char *name = tk->tkr_mono.clock->name;
127
128         if (offset > max_cycles) {
129                 printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
130                                 offset, name, max_cycles);
131                 printk_deferred("         timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
132         } else {
133                 if (offset > (max_cycles >> 1)) {
134                         printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the the '%s' clock's 50%% safety margin (%lld)\n",
135                                         offset, name, max_cycles >> 1);
136                         printk_deferred("      timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
137                 }
138         }
139
140         if (tk->underflow_seen) {
141                 if (jiffies - tk->last_warning > WARNING_FREQ) {
142                         printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
143                         printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
144                         printk_deferred("         Your kernel is probably still fine.\n");
145                         tk->last_warning = jiffies;
146                 }
147                 tk->underflow_seen = 0;
148         }
149
150         if (tk->overflow_seen) {
151                 if (jiffies - tk->last_warning > WARNING_FREQ) {
152                         printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
153                         printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
154                         printk_deferred("         Your kernel is probably still fine.\n");
155                         tk->last_warning = jiffies;
156                 }
157                 tk->overflow_seen = 0;
158         }
159 }
160
161 static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
162 {
163         struct timekeeper *tk = &tk_core.timekeeper;
164         cycle_t now, last, mask, max, delta;
165         unsigned int seq;
166
167         /*
168          * Since we're called holding a seqlock, the data may shift
169          * under us while we're doing the calculation. This can cause
170          * false positives, since we'd note a problem but throw the
171          * results away. So nest another seqlock here to atomically
172          * grab the points we are checking with.
173          */
174         do {
175                 seq = read_seqcount_begin(&tk_core.seq);
176                 now = tkr->read(tkr->clock);
177                 last = tkr->cycle_last;
178                 mask = tkr->mask;
179                 max = tkr->clock->max_cycles;
180         } while (read_seqcount_retry(&tk_core.seq, seq));
181
182         delta = clocksource_delta(now, last, mask);
183
184         /*
185          * Try to catch underflows by checking if we are seeing small
186          * mask-relative negative values.
187          */
188         if (unlikely((~delta & mask) < (mask >> 3))) {
189                 tk->underflow_seen = 1;
190                 delta = 0;
191         }
192
193         /* Cap delta value to the max_cycles values to avoid mult overflows */
194         if (unlikely(delta > max)) {
195                 tk->overflow_seen = 1;
196                 delta = tkr->clock->max_cycles;
197         }
198
199         return delta;
200 }
201 #else
202 static inline void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
203 {
204 }
205 static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
206 {
207         cycle_t cycle_now, delta;
208
209         /* read clocksource */
210         cycle_now = tkr->read(tkr->clock);
211
212         /* calculate the delta since the last update_wall_time */
213         delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
214
215         return delta;
216 }
217 #endif
218
219 /**
220  * tk_setup_internals - Set up internals to use clocksource clock.
221  *
222  * @tk:         The target timekeeper to setup.
223  * @clock:              Pointer to clocksource.
224  *
225  * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
226  * pair and interval request.
227  *
228  * Unless you're the timekeeping code, you should not be using this!
229  */
230 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
231 {
232         cycle_t interval;
233         u64 tmp, ntpinterval;
234         struct clocksource *old_clock;
235
236         old_clock = tk->tkr_mono.clock;
237         tk->tkr_mono.clock = clock;
238         tk->tkr_mono.read = clock->read;
239         tk->tkr_mono.mask = clock->mask;
240         tk->tkr_mono.cycle_last = tk->tkr_mono.read(clock);
241
242         tk->tkr_raw.clock = clock;
243         tk->tkr_raw.read = clock->read;
244         tk->tkr_raw.mask = clock->mask;
245         tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;
246
247         /* Do the ns -> cycle conversion first, using original mult */
248         tmp = NTP_INTERVAL_LENGTH;
249         tmp <<= clock->shift;
250         ntpinterval = tmp;
251         tmp += clock->mult/2;
252         do_div(tmp, clock->mult);
253         if (tmp == 0)
254                 tmp = 1;
255
256         interval = (cycle_t) tmp;
257         tk->cycle_interval = interval;
258
259         /* Go back from cycles -> shifted ns */
260         tk->xtime_interval = (u64) interval * clock->mult;
261         tk->xtime_remainder = ntpinterval - tk->xtime_interval;
262         tk->raw_interval =
263                 ((u64) interval * clock->mult) >> clock->shift;
264
265          /* if changing clocks, convert xtime_nsec shift units */
266         if (old_clock) {
267                 int shift_change = clock->shift - old_clock->shift;
268                 if (shift_change < 0)
269                         tk->tkr_mono.xtime_nsec >>= -shift_change;
270                 else
271                         tk->tkr_mono.xtime_nsec <<= shift_change;
272         }
273         tk->tkr_raw.xtime_nsec = 0;
274
275         tk->tkr_mono.shift = clock->shift;
276         tk->tkr_raw.shift = clock->shift;
277
278         tk->ntp_error = 0;
279         tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
280         tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
281
282         /*
283          * The timekeeper keeps its own mult values for the currently
284          * active clocksource. These value will be adjusted via NTP
285          * to counteract clock drifting.
286          */
287         tk->tkr_mono.mult = clock->mult;
288         tk->tkr_raw.mult = clock->mult;
289         tk->ntp_err_mult = 0;
290 }
291
292 /* Timekeeper helper functions. */
293
294 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
295 static u32 default_arch_gettimeoffset(void) { return 0; }
296 u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
297 #else
298 static inline u32 arch_gettimeoffset(void) { return 0; }
299 #endif
300
301 static inline s64 timekeeping_get_ns(struct tk_read_base *tkr)
302 {
303         cycle_t delta;
304         s64 nsec;
305
306         delta = timekeeping_get_delta(tkr);
307
308         nsec = (delta * tkr->mult + tkr->xtime_nsec) >> tkr->shift;
309
310         /* If arch requires, add in get_arch_timeoffset() */
311         return nsec + arch_gettimeoffset();
312 }
313
314 /**
315  * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
316  * @tkr: Timekeeping readout base from which we take the update
317  *
318  * We want to use this from any context including NMI and tracing /
319  * instrumenting the timekeeping code itself.
320  *
321  * Employ the latch technique; see @raw_write_seqcount_latch.
322  *
323  * So if a NMI hits the update of base[0] then it will use base[1]
324  * which is still consistent. In the worst case this can result is a
325  * slightly wrong timestamp (a few nanoseconds). See
326  * @ktime_get_mono_fast_ns.
327  */
328 static void update_fast_timekeeper(struct tk_read_base *tkr, struct tk_fast *tkf)
329 {
330         struct tk_read_base *base = tkf->base;
331
332         /* Force readers off to base[1] */
333         raw_write_seqcount_latch(&tkf->seq);
334
335         /* Update base[0] */
336         memcpy(base, tkr, sizeof(*base));
337
338         /* Force readers back to base[0] */
339         raw_write_seqcount_latch(&tkf->seq);
340
341         /* Update base[1] */
342         memcpy(base + 1, base, sizeof(*base));
343 }
344
345 /**
346  * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
347  *
348  * This timestamp is not guaranteed to be monotonic across an update.
349  * The timestamp is calculated by:
350  *
351  *      now = base_mono + clock_delta * slope
352  *
353  * So if the update lowers the slope, readers who are forced to the
354  * not yet updated second array are still using the old steeper slope.
355  *
356  * tmono
357  * ^
358  * |    o  n
359  * |   o n
360  * |  u
361  * | o
362  * |o
363  * |12345678---> reader order
364  *
365  * o = old slope
366  * u = update
367  * n = new slope
368  *
369  * So reader 6 will observe time going backwards versus reader 5.
370  *
371  * While other CPUs are likely to be able observe that, the only way
372  * for a CPU local observation is when an NMI hits in the middle of
373  * the update. Timestamps taken from that NMI context might be ahead
374  * of the following timestamps. Callers need to be aware of that and
375  * deal with it.
376  */
377 static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
378 {
379         struct tk_read_base *tkr;
380         unsigned int seq;
381         u64 now;
382
383         do {
384                 seq = raw_read_seqcount_latch(&tkf->seq);
385                 tkr = tkf->base + (seq & 0x01);
386                 now = ktime_to_ns(tkr->base);
387
388                 now += clocksource_delta(tkr->read(tkr->clock),
389                                          tkr->cycle_last, tkr->mask);
390         } while (read_seqcount_retry(&tkf->seq, seq));
391
392         return now;
393 }
394
395 u64 ktime_get_mono_fast_ns(void)
396 {
397         return __ktime_get_fast_ns(&tk_fast_mono);
398 }
399 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
400
401 u64 ktime_get_raw_fast_ns(void)
402 {
403         return __ktime_get_fast_ns(&tk_fast_raw);
404 }
405 EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);
406
407 /* Suspend-time cycles value for halted fast timekeeper. */
408 static cycle_t cycles_at_suspend;
409
410 static cycle_t dummy_clock_read(struct clocksource *cs)
411 {
412         return cycles_at_suspend;
413 }
414
415 /**
416  * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
417  * @tk: Timekeeper to snapshot.
418  *
419  * It generally is unsafe to access the clocksource after timekeeping has been
420  * suspended, so take a snapshot of the readout base of @tk and use it as the
421  * fast timekeeper's readout base while suspended.  It will return the same
422  * number of cycles every time until timekeeping is resumed at which time the
423  * proper readout base for the fast timekeeper will be restored automatically.
424  */
425 static void halt_fast_timekeeper(struct timekeeper *tk)
426 {
427         static struct tk_read_base tkr_dummy;
428         struct tk_read_base *tkr = &tk->tkr_mono;
429
430         memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
431         cycles_at_suspend = tkr->read(tkr->clock);
432         tkr_dummy.read = dummy_clock_read;
433         update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
434
435         tkr = &tk->tkr_raw;
436         memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
437         tkr_dummy.read = dummy_clock_read;
438         update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
439 }
440
441 #ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD
442
443 static inline void update_vsyscall(struct timekeeper *tk)
444 {
445         struct timespec xt, wm;
446
447         xt = timespec64_to_timespec(tk_xtime(tk));
448         wm = timespec64_to_timespec(tk->wall_to_monotonic);
449         update_vsyscall_old(&xt, &wm, tk->tkr_mono.clock, tk->tkr_mono.mult,
450                             tk->tkr_mono.cycle_last);
451 }
452
453 static inline void old_vsyscall_fixup(struct timekeeper *tk)
454 {
455         s64 remainder;
456
457         /*
458         * Store only full nanoseconds into xtime_nsec after rounding
459         * it up and add the remainder to the error difference.
460         * XXX - This is necessary to avoid small 1ns inconsistnecies caused
461         * by truncating the remainder in vsyscalls. However, it causes
462         * additional work to be done in timekeeping_adjust(). Once
463         * the vsyscall implementations are converted to use xtime_nsec
464         * (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
465         * users are removed, this can be killed.
466         */
467         remainder = tk->tkr_mono.xtime_nsec & ((1ULL << tk->tkr_mono.shift) - 1);
468         tk->tkr_mono.xtime_nsec -= remainder;
469         tk->tkr_mono.xtime_nsec += 1ULL << tk->tkr_mono.shift;
470         tk->ntp_error += remainder << tk->ntp_error_shift;
471         tk->ntp_error -= (1ULL << tk->tkr_mono.shift) << tk->ntp_error_shift;
472 }
473 #else
474 #define old_vsyscall_fixup(tk)
475 #endif
476
477 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
478
479 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
480 {
481         raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
482 }
483
484 /**
485  * pvclock_gtod_register_notifier - register a pvclock timedata update listener
486  */
487 int pvclock_gtod_register_notifier(struct notifier_block *nb)
488 {
489         struct timekeeper *tk = &tk_core.timekeeper;
490         unsigned long flags;
491         int ret;
492
493         raw_spin_lock_irqsave(&timekeeper_lock, flags);
494         ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
495         update_pvclock_gtod(tk, true);
496         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
497
498         return ret;
499 }
500 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
501
502 /**
503  * pvclock_gtod_unregister_notifier - unregister a pvclock
504  * timedata update listener
505  */
506 int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
507 {
508         unsigned long flags;
509         int ret;
510
511         raw_spin_lock_irqsave(&timekeeper_lock, flags);
512         ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
513         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
514
515         return ret;
516 }
517 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
518
519 /*
520  * tk_update_leap_state - helper to update the next_leap_ktime
521  */
522 static inline void tk_update_leap_state(struct timekeeper *tk)
523 {
524         tk->next_leap_ktime = ntp_get_next_leap();
525         if (tk->next_leap_ktime.tv64 != KTIME_MAX)
526                 /* Convert to monotonic time */
527                 tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
528 }
529
530 /*
531  * Update the ktime_t based scalar nsec members of the timekeeper
532  */
533 static inline void tk_update_ktime_data(struct timekeeper *tk)
534 {
535         u64 seconds;
536         u32 nsec;
537
538         /*
539          * The xtime based monotonic readout is:
540          *      nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
541          * The ktime based monotonic readout is:
542          *      nsec = base_mono + now();
543          * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
544          */
545         seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
546         nsec = (u32) tk->wall_to_monotonic.tv_nsec;
547         tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
548
549         /* Update the monotonic raw base */
550         tk->tkr_raw.base = timespec64_to_ktime(tk->raw_time);
551
552         /*
553          * The sum of the nanoseconds portions of xtime and
554          * wall_to_monotonic can be greater/equal one second. Take
555          * this into account before updating tk->ktime_sec.
556          */
557         nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
558         if (nsec >= NSEC_PER_SEC)
559                 seconds++;
560         tk->ktime_sec = seconds;
561 }
562
563 /* must hold timekeeper_lock */
564 static void timekeeping_update(struct timekeeper *tk, unsigned int action)
565 {
566         if (action & TK_CLEAR_NTP) {
567                 tk->ntp_error = 0;
568                 ntp_clear();
569         }
570
571         tk_update_leap_state(tk);
572         tk_update_ktime_data(tk);
573
574         update_vsyscall(tk);
575         update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
576
577         update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
578         update_fast_timekeeper(&tk->tkr_raw,  &tk_fast_raw);
579
580         if (action & TK_CLOCK_WAS_SET)
581                 tk->clock_was_set_seq++;
582         /*
583          * The mirroring of the data to the shadow-timekeeper needs
584          * to happen last here to ensure we don't over-write the
585          * timekeeper structure on the next update with stale data
586          */
587         if (action & TK_MIRROR)
588                 memcpy(&shadow_timekeeper, &tk_core.timekeeper,
589                        sizeof(tk_core.timekeeper));
590 }
591
592 /**
593  * timekeeping_forward_now - update clock to the current time
594  *
595  * Forward the current clock to update its state since the last call to
596  * update_wall_time(). This is useful before significant clock changes,
597  * as it avoids having to deal with this time offset explicitly.
598  */
599 static void timekeeping_forward_now(struct timekeeper *tk)
600 {
601         struct clocksource *clock = tk->tkr_mono.clock;
602         cycle_t cycle_now, delta;
603         s64 nsec;
604
605         cycle_now = tk->tkr_mono.read(clock);
606         delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
607         tk->tkr_mono.cycle_last = cycle_now;
608         tk->tkr_raw.cycle_last  = cycle_now;
609
610         tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
611
612         /* If arch requires, add in get_arch_timeoffset() */
613         tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift;
614
615         tk_normalize_xtime(tk);
616
617         nsec = clocksource_cyc2ns(delta, tk->tkr_raw.mult, tk->tkr_raw.shift);
618         timespec64_add_ns(&tk->raw_time, nsec);
619 }
620
621 /**
622  * __getnstimeofday64 - Returns the time of day in a timespec64.
623  * @ts:         pointer to the timespec to be set
624  *
625  * Updates the time of day in the timespec.
626  * Returns 0 on success, or -ve when suspended (timespec will be undefined).
627  */
628 int __getnstimeofday64(struct timespec64 *ts)
629 {
630         struct timekeeper *tk = &tk_core.timekeeper;
631         unsigned long seq;
632         s64 nsecs = 0;
633
634         do {
635                 seq = read_seqcount_begin(&tk_core.seq);
636
637                 ts->tv_sec = tk->xtime_sec;
638                 nsecs = timekeeping_get_ns(&tk->tkr_mono);
639
640         } while (read_seqcount_retry(&tk_core.seq, seq));
641
642         ts->tv_nsec = 0;
643         timespec64_add_ns(ts, nsecs);
644
645         /*
646          * Do not bail out early, in case there were callers still using
647          * the value, even in the face of the WARN_ON.
648          */
649         if (unlikely(timekeeping_suspended))
650                 return -EAGAIN;
651         return 0;
652 }
653 EXPORT_SYMBOL(__getnstimeofday64);
654
655 /**
656  * getnstimeofday64 - Returns the time of day in a timespec64.
657  * @ts:         pointer to the timespec64 to be set
658  *
659  * Returns the time of day in a timespec64 (WARN if suspended).
660  */
661 void getnstimeofday64(struct timespec64 *ts)
662 {
663         WARN_ON(__getnstimeofday64(ts));
664 }
665 EXPORT_SYMBOL(getnstimeofday64);
666
667 ktime_t ktime_get(void)
668 {
669         struct timekeeper *tk = &tk_core.timekeeper;
670         unsigned int seq;
671         ktime_t base;
672         s64 nsecs;
673
674         WARN_ON(timekeeping_suspended);
675
676         do {
677                 seq = read_seqcount_begin(&tk_core.seq);
678                 base = tk->tkr_mono.base;
679                 nsecs = timekeeping_get_ns(&tk->tkr_mono);
680
681         } while (read_seqcount_retry(&tk_core.seq, seq));
682
683         return ktime_add_ns(base, nsecs);
684 }
685 EXPORT_SYMBOL_GPL(ktime_get);
686
687 u32 ktime_get_resolution_ns(void)
688 {
689         struct timekeeper *tk = &tk_core.timekeeper;
690         unsigned int seq;
691         u32 nsecs;
692
693         WARN_ON(timekeeping_suspended);
694
695         do {
696                 seq = read_seqcount_begin(&tk_core.seq);
697                 nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
698         } while (read_seqcount_retry(&tk_core.seq, seq));
699
700         return nsecs;
701 }
702 EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);
703
704 static ktime_t *offsets[TK_OFFS_MAX] = {
705         [TK_OFFS_REAL]  = &tk_core.timekeeper.offs_real,
706         [TK_OFFS_BOOT]  = &tk_core.timekeeper.offs_boot,
707         [TK_OFFS_TAI]   = &tk_core.timekeeper.offs_tai,
708 };
709
710 ktime_t ktime_get_with_offset(enum tk_offsets offs)
711 {
712         struct timekeeper *tk = &tk_core.timekeeper;
713         unsigned int seq;
714         ktime_t base, *offset = offsets[offs];
715         s64 nsecs;
716
717         WARN_ON(timekeeping_suspended);
718
719         do {
720                 seq = read_seqcount_begin(&tk_core.seq);
721                 base = ktime_add(tk->tkr_mono.base, *offset);
722                 nsecs = timekeeping_get_ns(&tk->tkr_mono);
723
724         } while (read_seqcount_retry(&tk_core.seq, seq));
725
726         return ktime_add_ns(base, nsecs);
727
728 }
729 EXPORT_SYMBOL_GPL(ktime_get_with_offset);
730
731 /**
732  * ktime_mono_to_any() - convert mononotic time to any other time
733  * @tmono:      time to convert.
734  * @offs:       which offset to use
735  */
736 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
737 {
738         ktime_t *offset = offsets[offs];
739         unsigned long seq;
740         ktime_t tconv;
741
742         do {
743                 seq = read_seqcount_begin(&tk_core.seq);
744                 tconv = ktime_add(tmono, *offset);
745         } while (read_seqcount_retry(&tk_core.seq, seq));
746
747         return tconv;
748 }
749 EXPORT_SYMBOL_GPL(ktime_mono_to_any);
750
751 /**
752  * ktime_get_raw - Returns the raw monotonic time in ktime_t format
753  */
754 ktime_t ktime_get_raw(void)
755 {
756         struct timekeeper *tk = &tk_core.timekeeper;
757         unsigned int seq;
758         ktime_t base;
759         s64 nsecs;
760
761         do {
762                 seq = read_seqcount_begin(&tk_core.seq);
763                 base = tk->tkr_raw.base;
764                 nsecs = timekeeping_get_ns(&tk->tkr_raw);
765
766         } while (read_seqcount_retry(&tk_core.seq, seq));
767
768         return ktime_add_ns(base, nsecs);
769 }
770 EXPORT_SYMBOL_GPL(ktime_get_raw);
771
772 /**
773  * ktime_get_ts64 - get the monotonic clock in timespec64 format
774  * @ts:         pointer to timespec variable
775  *
776  * The function calculates the monotonic clock from the realtime
777  * clock and the wall_to_monotonic offset and stores the result
778  * in normalized timespec64 format in the variable pointed to by @ts.
779  */
780 void ktime_get_ts64(struct timespec64 *ts)
781 {
782         struct timekeeper *tk = &tk_core.timekeeper;
783         struct timespec64 tomono;
784         s64 nsec;
785         unsigned int seq;
786
787         WARN_ON(timekeeping_suspended);
788
789         do {
790                 seq = read_seqcount_begin(&tk_core.seq);
791                 ts->tv_sec = tk->xtime_sec;
792                 nsec = timekeeping_get_ns(&tk->tkr_mono);
793                 tomono = tk->wall_to_monotonic;
794
795         } while (read_seqcount_retry(&tk_core.seq, seq));
796
797         ts->tv_sec += tomono.tv_sec;
798         ts->tv_nsec = 0;
799         timespec64_add_ns(ts, nsec + tomono.tv_nsec);
800 }
801 EXPORT_SYMBOL_GPL(ktime_get_ts64);
802
803 /**
804  * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
805  *
806  * Returns the seconds portion of CLOCK_MONOTONIC with a single non
807  * serialized read. tk->ktime_sec is of type 'unsigned long' so this
808  * works on both 32 and 64 bit systems. On 32 bit systems the readout
809  * covers ~136 years of uptime which should be enough to prevent
810  * premature wrap arounds.
811  */
812 time64_t ktime_get_seconds(void)
813 {
814         struct timekeeper *tk = &tk_core.timekeeper;
815
816         WARN_ON(timekeeping_suspended);
817         return tk->ktime_sec;
818 }
819 EXPORT_SYMBOL_GPL(ktime_get_seconds);
820
821 /**
822  * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
823  *
824  * Returns the wall clock seconds since 1970. This replaces the
825  * get_seconds() interface which is not y2038 safe on 32bit systems.
826  *
827  * For 64bit systems the fast access to tk->xtime_sec is preserved. On
828  * 32bit systems the access must be protected with the sequence
829  * counter to provide "atomic" access to the 64bit tk->xtime_sec
830  * value.
831  */
832 time64_t ktime_get_real_seconds(void)
833 {
834         struct timekeeper *tk = &tk_core.timekeeper;
835         time64_t seconds;
836         unsigned int seq;
837
838         if (IS_ENABLED(CONFIG_64BIT))
839                 return tk->xtime_sec;
840
841         do {
842                 seq = read_seqcount_begin(&tk_core.seq);
843                 seconds = tk->xtime_sec;
844
845         } while (read_seqcount_retry(&tk_core.seq, seq));
846
847         return seconds;
848 }
849 EXPORT_SYMBOL_GPL(ktime_get_real_seconds);
850
851 #ifdef CONFIG_NTP_PPS
852
853 /**
854  * ktime_get_raw_and_real_ts64 - get day and raw monotonic time in timespec format
855  * @ts_raw:     pointer to the timespec to be set to raw monotonic time
856  * @ts_real:    pointer to the timespec to be set to the time of day
857  *
858  * This function reads both the time of day and raw monotonic time at the
859  * same time atomically and stores the resulting timestamps in timespec
860  * format.
861  */
862 void ktime_get_raw_and_real_ts64(struct timespec64 *ts_raw, struct timespec64 *ts_real)
863 {
864         struct timekeeper *tk = &tk_core.timekeeper;
865         unsigned long seq;
866         s64 nsecs_raw, nsecs_real;
867
868         WARN_ON_ONCE(timekeeping_suspended);
869
870         do {
871                 seq = read_seqcount_begin(&tk_core.seq);
872
873                 *ts_raw = tk->raw_time;
874                 ts_real->tv_sec = tk->xtime_sec;
875                 ts_real->tv_nsec = 0;
876
877                 nsecs_raw  = timekeeping_get_ns(&tk->tkr_raw);
878                 nsecs_real = timekeeping_get_ns(&tk->tkr_mono);
879
880         } while (read_seqcount_retry(&tk_core.seq, seq));
881
882         timespec64_add_ns(ts_raw, nsecs_raw);
883         timespec64_add_ns(ts_real, nsecs_real);
884 }
885 EXPORT_SYMBOL(ktime_get_raw_and_real_ts64);
886
887 #endif /* CONFIG_NTP_PPS */
888
889 /**
890  * do_gettimeofday - Returns the time of day in a timeval
891  * @tv:         pointer to the timeval to be set
892  *
893  * NOTE: Users should be converted to using getnstimeofday()
894  */
895 void do_gettimeofday(struct timeval *tv)
896 {
897         struct timespec64 now;
898
899         getnstimeofday64(&now);
900         tv->tv_sec = now.tv_sec;
901         tv->tv_usec = now.tv_nsec/1000;
902 }
903 EXPORT_SYMBOL(do_gettimeofday);
904
905 /**
906  * do_settimeofday64 - Sets the time of day.
907  * @ts:     pointer to the timespec64 variable containing the new time
908  *
909  * Sets the time of day to the new time and update NTP and notify hrtimers
910  */
911 int do_settimeofday64(const struct timespec64 *ts)
912 {
913         struct timekeeper *tk = &tk_core.timekeeper;
914         struct timespec64 ts_delta, xt;
915         unsigned long flags;
916         int ret = 0;
917
918         if (!timespec64_valid_strict(ts))
919                 return -EINVAL;
920
921         raw_spin_lock_irqsave(&timekeeper_lock, flags);
922         write_seqcount_begin(&tk_core.seq);
923
924         timekeeping_forward_now(tk);
925
926         xt = tk_xtime(tk);
927         ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
928         ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
929
930         if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) {
931                 ret = -EINVAL;
932                 goto out;
933         }
934
935         tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
936
937         tk_set_xtime(tk, ts);
938 out:
939         timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
940
941         write_seqcount_end(&tk_core.seq);
942         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
943
944         /* signal hrtimers about time change */
945         clock_was_set();
946
947         return ret;
948 }
949 EXPORT_SYMBOL(do_settimeofday64);
950
951 /**
952  * timekeeping_inject_offset - Adds or subtracts from the current time.
953  * @tv:         pointer to the timespec variable containing the offset
954  *
955  * Adds or subtracts an offset value from the current time.
956  */
957 int timekeeping_inject_offset(struct timespec *ts)
958 {
959         struct timekeeper *tk = &tk_core.timekeeper;
960         unsigned long flags;
961         struct timespec64 ts64, tmp;
962         int ret = 0;
963
964         if (!timespec_inject_offset_valid(ts))
965                 return -EINVAL;
966
967         ts64 = timespec_to_timespec64(*ts);
968
969         raw_spin_lock_irqsave(&timekeeper_lock, flags);
970         write_seqcount_begin(&tk_core.seq);
971
972         timekeeping_forward_now(tk);
973
974         /* Make sure the proposed value is valid */
975         tmp = timespec64_add(tk_xtime(tk),  ts64);
976         if (timespec64_compare(&tk->wall_to_monotonic, &ts64) > 0 ||
977             !timespec64_valid_strict(&tmp)) {
978                 ret = -EINVAL;
979                 goto error;
980         }
981
982         tk_xtime_add(tk, &ts64);
983         tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64));
984
985 error: /* even if we error out, we forwarded the time, so call update */
986         timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
987
988         write_seqcount_end(&tk_core.seq);
989         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
990
991         /* signal hrtimers about time change */
992         clock_was_set();
993
994         return ret;
995 }
996 EXPORT_SYMBOL(timekeeping_inject_offset);
997
998
999 /**
1000  * timekeeping_get_tai_offset - Returns current TAI offset from UTC
1001  *
1002  */
1003 s32 timekeeping_get_tai_offset(void)
1004 {
1005         struct timekeeper *tk = &tk_core.timekeeper;
1006         unsigned int seq;
1007         s32 ret;
1008
1009         do {
1010                 seq = read_seqcount_begin(&tk_core.seq);
1011                 ret = tk->tai_offset;
1012         } while (read_seqcount_retry(&tk_core.seq, seq));
1013
1014         return ret;
1015 }
1016
1017 /**
1018  * __timekeeping_set_tai_offset - Lock free worker function
1019  *
1020  */
1021 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
1022 {
1023         tk->tai_offset = tai_offset;
1024         tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
1025 }
1026
1027 /**
1028  * timekeeping_set_tai_offset - Sets the current TAI offset from UTC
1029  *
1030  */
1031 void timekeeping_set_tai_offset(s32 tai_offset)
1032 {
1033         struct timekeeper *tk = &tk_core.timekeeper;
1034         unsigned long flags;
1035
1036         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1037         write_seqcount_begin(&tk_core.seq);
1038         __timekeeping_set_tai_offset(tk, tai_offset);
1039         timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1040         write_seqcount_end(&tk_core.seq);
1041         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1042         clock_was_set();
1043 }
1044
1045 /**
1046  * change_clocksource - Swaps clocksources if a new one is available
1047  *
1048  * Accumulates current time interval and initializes new clocksource
1049  */
1050 static int change_clocksource(void *data)
1051 {
1052         struct timekeeper *tk = &tk_core.timekeeper;
1053         struct clocksource *new, *old;
1054         unsigned long flags;
1055
1056         new = (struct clocksource *) data;
1057
1058         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1059         write_seqcount_begin(&tk_core.seq);
1060
1061         timekeeping_forward_now(tk);
1062         /*
1063          * If the cs is in module, get a module reference. Succeeds
1064          * for built-in code (owner == NULL) as well.
1065          */
1066         if (try_module_get(new->owner)) {
1067                 if (!new->enable || new->enable(new) == 0) {
1068                         old = tk->tkr_mono.clock;
1069                         tk_setup_internals(tk, new);
1070                         if (old->disable)
1071                                 old->disable(old);
1072                         module_put(old->owner);
1073                 } else {
1074                         module_put(new->owner);
1075                 }
1076         }
1077         timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1078
1079         write_seqcount_end(&tk_core.seq);
1080         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1081
1082         return 0;
1083 }
1084
1085 /**
1086  * timekeeping_notify - Install a new clock source
1087  * @clock:              pointer to the clock source
1088  *
1089  * This function is called from clocksource.c after a new, better clock
1090  * source has been registered. The caller holds the clocksource_mutex.
1091  */
1092 int timekeeping_notify(struct clocksource *clock)
1093 {
1094         struct timekeeper *tk = &tk_core.timekeeper;
1095
1096         if (tk->tkr_mono.clock == clock)
1097                 return 0;
1098         stop_machine(change_clocksource, clock, NULL);
1099         tick_clock_notify();
1100         return tk->tkr_mono.clock == clock ? 0 : -1;
1101 }
1102
1103 /**
1104  * getrawmonotonic64 - Returns the raw monotonic time in a timespec
1105  * @ts:         pointer to the timespec64 to be set
1106  *
1107  * Returns the raw monotonic time (completely un-modified by ntp)
1108  */
1109 void getrawmonotonic64(struct timespec64 *ts)
1110 {
1111         struct timekeeper *tk = &tk_core.timekeeper;
1112         struct timespec64 ts64;
1113         unsigned long seq;
1114         s64 nsecs;
1115
1116         do {
1117                 seq = read_seqcount_begin(&tk_core.seq);
1118                 nsecs = timekeeping_get_ns(&tk->tkr_raw);
1119                 ts64 = tk->raw_time;
1120
1121         } while (read_seqcount_retry(&tk_core.seq, seq));
1122
1123         timespec64_add_ns(&ts64, nsecs);
1124         *ts = ts64;
1125 }
1126 EXPORT_SYMBOL(getrawmonotonic64);
1127
1128
1129 /**
1130  * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1131  */
1132 int timekeeping_valid_for_hres(void)
1133 {
1134         struct timekeeper *tk = &tk_core.timekeeper;
1135         unsigned long seq;
1136         int ret;
1137
1138         do {
1139                 seq = read_seqcount_begin(&tk_core.seq);
1140
1141                 ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1142
1143         } while (read_seqcount_retry(&tk_core.seq, seq));
1144
1145         return ret;
1146 }
1147
1148 /**
1149  * timekeeping_max_deferment - Returns max time the clocksource can be deferred
1150  */
1151 u64 timekeeping_max_deferment(void)
1152 {
1153         struct timekeeper *tk = &tk_core.timekeeper;
1154         unsigned long seq;
1155         u64 ret;
1156
1157         do {
1158                 seq = read_seqcount_begin(&tk_core.seq);
1159
1160                 ret = tk->tkr_mono.clock->max_idle_ns;
1161
1162         } while (read_seqcount_retry(&tk_core.seq, seq));
1163
1164         return ret;
1165 }
1166
1167 /**
1168  * read_persistent_clock -  Return time from the persistent clock.
1169  *
1170  * Weak dummy function for arches that do not yet support it.
1171  * Reads the time from the battery backed persistent clock.
1172  * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1173  *
1174  *  XXX - Do be sure to remove it once all arches implement it.
1175  */
1176 void __weak read_persistent_clock(struct timespec *ts)
1177 {
1178         ts->tv_sec = 0;
1179         ts->tv_nsec = 0;
1180 }
1181
1182 void __weak read_persistent_clock64(struct timespec64 *ts64)
1183 {
1184         struct timespec ts;
1185
1186         read_persistent_clock(&ts);
1187         *ts64 = timespec_to_timespec64(ts);
1188 }
1189
1190 /**
1191  * read_boot_clock64 -  Return time of the system start.
1192  *
1193  * Weak dummy function for arches that do not yet support it.
1194  * Function to read the exact time the system has been started.
1195  * Returns a timespec64 with tv_sec=0 and tv_nsec=0 if unsupported.
1196  *
1197  *  XXX - Do be sure to remove it once all arches implement it.
1198  */
1199 void __weak read_boot_clock64(struct timespec64 *ts)
1200 {
1201         ts->tv_sec = 0;
1202         ts->tv_nsec = 0;
1203 }
1204
1205 /* Flag for if timekeeping_resume() has injected sleeptime */
1206 static bool sleeptime_injected;
1207
1208 /* Flag for if there is a persistent clock on this platform */
1209 static bool persistent_clock_exists;
1210
1211 /*
1212  * timekeeping_init - Initializes the clocksource and common timekeeping values
1213  */
1214 void __init timekeeping_init(void)
1215 {
1216         struct timekeeper *tk = &tk_core.timekeeper;
1217         struct clocksource *clock;
1218         unsigned long flags;
1219         struct timespec64 now, boot, tmp;
1220
1221         read_persistent_clock64(&now);
1222         if (!timespec64_valid_strict(&now)) {
1223                 pr_warn("WARNING: Persistent clock returned invalid value!\n"
1224                         "         Check your CMOS/BIOS settings.\n");
1225                 now.tv_sec = 0;
1226                 now.tv_nsec = 0;
1227         } else if (now.tv_sec || now.tv_nsec)
1228                 persistent_clock_exists = true;
1229
1230         read_boot_clock64(&boot);
1231         if (!timespec64_valid_strict(&boot)) {
1232                 pr_warn("WARNING: Boot clock returned invalid value!\n"
1233                         "         Check your CMOS/BIOS settings.\n");
1234                 boot.tv_sec = 0;
1235                 boot.tv_nsec = 0;
1236         }
1237
1238         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1239         write_seqcount_begin(&tk_core.seq);
1240         ntp_init();
1241
1242         clock = clocksource_default_clock();
1243         if (clock->enable)
1244                 clock->enable(clock);
1245         tk_setup_internals(tk, clock);
1246
1247         tk_set_xtime(tk, &now);
1248         tk->raw_time.tv_sec = 0;
1249         tk->raw_time.tv_nsec = 0;
1250         if (boot.tv_sec == 0 && boot.tv_nsec == 0)
1251                 boot = tk_xtime(tk);
1252
1253         set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec);
1254         tk_set_wall_to_mono(tk, tmp);
1255
1256         timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1257
1258         write_seqcount_end(&tk_core.seq);
1259         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1260 }
1261
1262 /* time in seconds when suspend began for persistent clock */
1263 static struct timespec64 timekeeping_suspend_time;
1264
1265 /**
1266  * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1267  * @delta: pointer to a timespec delta value
1268  *
1269  * Takes a timespec offset measuring a suspend interval and properly
1270  * adds the sleep offset to the timekeeping variables.
1271  */
1272 static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1273                                            struct timespec64 *delta)
1274 {
1275         if (!timespec64_valid_strict(delta)) {
1276                 printk_deferred(KERN_WARNING
1277                                 "__timekeeping_inject_sleeptime: Invalid "
1278                                 "sleep delta value!\n");
1279                 return;
1280         }
1281         tk_xtime_add(tk, delta);
1282         tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1283         tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1284         tk_debug_account_sleep_time(delta);
1285 }
1286
1287 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
1288 /**
1289  * We have three kinds of time sources to use for sleep time
1290  * injection, the preference order is:
1291  * 1) non-stop clocksource
1292  * 2) persistent clock (ie: RTC accessible when irqs are off)
1293  * 3) RTC
1294  *
1295  * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
1296  * If system has neither 1) nor 2), 3) will be used finally.
1297  *
1298  *
1299  * If timekeeping has injected sleeptime via either 1) or 2),
1300  * 3) becomes needless, so in this case we don't need to call
1301  * rtc_resume(), and this is what timekeeping_rtc_skipresume()
1302  * means.
1303  */
1304 bool timekeeping_rtc_skipresume(void)
1305 {
1306         return sleeptime_injected;
1307 }
1308
1309 /**
1310  * 1) can be determined whether to use or not only when doing
1311  * timekeeping_resume() which is invoked after rtc_suspend(),
1312  * so we can't skip rtc_suspend() surely if system has 1).
1313  *
1314  * But if system has 2), 2) will definitely be used, so in this
1315  * case we don't need to call rtc_suspend(), and this is what
1316  * timekeeping_rtc_skipsuspend() means.
1317  */
1318 bool timekeeping_rtc_skipsuspend(void)
1319 {
1320         return persistent_clock_exists;
1321 }
1322
1323 /**
1324  * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
1325  * @delta: pointer to a timespec64 delta value
1326  *
1327  * This hook is for architectures that cannot support read_persistent_clock64
1328  * because their RTC/persistent clock is only accessible when irqs are enabled.
1329  * and also don't have an effective nonstop clocksource.
1330  *
1331  * This function should only be called by rtc_resume(), and allows
1332  * a suspend offset to be injected into the timekeeping values.
1333  */
1334 void timekeeping_inject_sleeptime64(struct timespec64 *delta)
1335 {
1336         struct timekeeper *tk = &tk_core.timekeeper;
1337         unsigned long flags;
1338
1339         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1340         write_seqcount_begin(&tk_core.seq);
1341
1342         timekeeping_forward_now(tk);
1343
1344         __timekeeping_inject_sleeptime(tk, delta);
1345
1346         timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1347
1348         write_seqcount_end(&tk_core.seq);
1349         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1350
1351         /* signal hrtimers about time change */
1352         clock_was_set();
1353 }
1354 #endif
1355
1356 /**
1357  * timekeeping_resume - Resumes the generic timekeeping subsystem.
1358  */
1359 void timekeeping_resume(void)
1360 {
1361         struct timekeeper *tk = &tk_core.timekeeper;
1362         struct clocksource *clock = tk->tkr_mono.clock;
1363         unsigned long flags;
1364         struct timespec64 ts_new, ts_delta;
1365         cycle_t cycle_now, cycle_delta;
1366
1367         sleeptime_injected = false;
1368         read_persistent_clock64(&ts_new);
1369
1370         clockevents_resume();
1371         clocksource_resume();
1372
1373         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1374         write_seqcount_begin(&tk_core.seq);
1375
1376         /*
1377          * After system resumes, we need to calculate the suspended time and
1378          * compensate it for the OS time. There are 3 sources that could be
1379          * used: Nonstop clocksource during suspend, persistent clock and rtc
1380          * device.
1381          *
1382          * One specific platform may have 1 or 2 or all of them, and the
1383          * preference will be:
1384          *      suspend-nonstop clocksource -> persistent clock -> rtc
1385          * The less preferred source will only be tried if there is no better
1386          * usable source. The rtc part is handled separately in rtc core code.
1387          */
1388         cycle_now = tk->tkr_mono.read(clock);
1389         if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
1390                 cycle_now > tk->tkr_mono.cycle_last) {
1391                 u64 num, max = ULLONG_MAX;
1392                 u32 mult = clock->mult;
1393                 u32 shift = clock->shift;
1394                 s64 nsec = 0;
1395
1396                 cycle_delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last,
1397                                                 tk->tkr_mono.mask);
1398
1399                 /*
1400                  * "cycle_delta * mutl" may cause 64 bits overflow, if the
1401                  * suspended time is too long. In that case we need do the
1402                  * 64 bits math carefully
1403                  */
1404                 do_div(max, mult);
1405                 if (cycle_delta > max) {
1406                         num = div64_u64(cycle_delta, max);
1407                         nsec = (((u64) max * mult) >> shift) * num;
1408                         cycle_delta -= num * max;
1409                 }
1410                 nsec += ((u64) cycle_delta * mult) >> shift;
1411
1412                 ts_delta = ns_to_timespec64(nsec);
1413                 sleeptime_injected = true;
1414         } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1415                 ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1416                 sleeptime_injected = true;
1417         }
1418
1419         if (sleeptime_injected)
1420                 __timekeeping_inject_sleeptime(tk, &ts_delta);
1421
1422         /* Re-base the last cycle value */
1423         tk->tkr_mono.cycle_last = cycle_now;
1424         tk->tkr_raw.cycle_last  = cycle_now;
1425
1426         tk->ntp_error = 0;
1427         timekeeping_suspended = 0;
1428         timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1429         write_seqcount_end(&tk_core.seq);
1430         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1431
1432         touch_softlockup_watchdog();
1433
1434         tick_resume();
1435         hrtimers_resume();
1436 }
1437
1438 int timekeeping_suspend(void)
1439 {
1440         struct timekeeper *tk = &tk_core.timekeeper;
1441         unsigned long flags;
1442         struct timespec64               delta, delta_delta;
1443         static struct timespec64        old_delta;
1444
1445         read_persistent_clock64(&timekeeping_suspend_time);
1446
1447         /*
1448          * On some systems the persistent_clock can not be detected at
1449          * timekeeping_init by its return value, so if we see a valid
1450          * value returned, update the persistent_clock_exists flag.
1451          */
1452         if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1453                 persistent_clock_exists = true;
1454
1455         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1456         write_seqcount_begin(&tk_core.seq);
1457         timekeeping_forward_now(tk);
1458         timekeeping_suspended = 1;
1459
1460         if (persistent_clock_exists) {
1461                 /*
1462                  * To avoid drift caused by repeated suspend/resumes,
1463                  * which each can add ~1 second drift error,
1464                  * try to compensate so the difference in system time
1465                  * and persistent_clock time stays close to constant.
1466                  */
1467                 delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
1468                 delta_delta = timespec64_sub(delta, old_delta);
1469                 if (abs(delta_delta.tv_sec) >= 2) {
1470                         /*
1471                          * if delta_delta is too large, assume time correction
1472                          * has occurred and set old_delta to the current delta.
1473                          */
1474                         old_delta = delta;
1475                 } else {
1476                         /* Otherwise try to adjust old_system to compensate */
1477                         timekeeping_suspend_time =
1478                                 timespec64_add(timekeeping_suspend_time, delta_delta);
1479                 }
1480         }
1481
1482         timekeeping_update(tk, TK_MIRROR);
1483         halt_fast_timekeeper(tk);
1484         write_seqcount_end(&tk_core.seq);
1485         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1486
1487         tick_suspend();
1488         clocksource_suspend();
1489         clockevents_suspend();
1490
1491         return 0;
1492 }
1493
1494 /* sysfs resume/suspend bits for timekeeping */
1495 static struct syscore_ops timekeeping_syscore_ops = {
1496         .resume         = timekeeping_resume,
1497         .suspend        = timekeeping_suspend,
1498 };
1499
1500 static int __init timekeeping_init_ops(void)
1501 {
1502         register_syscore_ops(&timekeeping_syscore_ops);
1503         return 0;
1504 }
1505 device_initcall(timekeeping_init_ops);
1506
1507 /*
1508  * Apply a multiplier adjustment to the timekeeper
1509  */
1510 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
1511                                                          s64 offset,
1512                                                          bool negative,
1513                                                          int adj_scale)
1514 {
1515         s64 interval = tk->cycle_interval;
1516         s32 mult_adj = 1;
1517
1518         if (negative) {
1519                 mult_adj = -mult_adj;
1520                 interval = -interval;
1521                 offset  = -offset;
1522         }
1523         mult_adj <<= adj_scale;
1524         interval <<= adj_scale;
1525         offset <<= adj_scale;
1526
1527         /*
1528          * So the following can be confusing.
1529          *
1530          * To keep things simple, lets assume mult_adj == 1 for now.
1531          *
1532          * When mult_adj != 1, remember that the interval and offset values
1533          * have been appropriately scaled so the math is the same.
1534          *
1535          * The basic idea here is that we're increasing the multiplier
1536          * by one, this causes the xtime_interval to be incremented by
1537          * one cycle_interval. This is because:
1538          *      xtime_interval = cycle_interval * mult
1539          * So if mult is being incremented by one:
1540          *      xtime_interval = cycle_interval * (mult + 1)
1541          * Its the same as:
1542          *      xtime_interval = (cycle_interval * mult) + cycle_interval
1543          * Which can be shortened to:
1544          *      xtime_interval += cycle_interval
1545          *
1546          * So offset stores the non-accumulated cycles. Thus the current
1547          * time (in shifted nanoseconds) is:
1548          *      now = (offset * adj) + xtime_nsec
1549          * Now, even though we're adjusting the clock frequency, we have
1550          * to keep time consistent. In other words, we can't jump back
1551          * in time, and we also want to avoid jumping forward in time.
1552          *
1553          * So given the same offset value, we need the time to be the same
1554          * both before and after the freq adjustment.
1555          *      now = (offset * adj_1) + xtime_nsec_1
1556          *      now = (offset * adj_2) + xtime_nsec_2
1557          * So:
1558          *      (offset * adj_1) + xtime_nsec_1 =
1559          *              (offset * adj_2) + xtime_nsec_2
1560          * And we know:
1561          *      adj_2 = adj_1 + 1
1562          * So:
1563          *      (offset * adj_1) + xtime_nsec_1 =
1564          *              (offset * (adj_1+1)) + xtime_nsec_2
1565          *      (offset * adj_1) + xtime_nsec_1 =
1566          *              (offset * adj_1) + offset + xtime_nsec_2
1567          * Canceling the sides:
1568          *      xtime_nsec_1 = offset + xtime_nsec_2
1569          * Which gives us:
1570          *      xtime_nsec_2 = xtime_nsec_1 - offset
1571          * Which simplfies to:
1572          *      xtime_nsec -= offset
1573          *
1574          * XXX - TODO: Doc ntp_error calculation.
1575          */
1576         if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
1577                 /* NTP adjustment caused clocksource mult overflow */
1578                 WARN_ON_ONCE(1);
1579                 return;
1580         }
1581
1582         tk->tkr_mono.mult += mult_adj;
1583         tk->xtime_interval += interval;
1584         tk->tkr_mono.xtime_nsec -= offset;
1585         tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
1586 }
1587
1588 /*
1589  * Calculate the multiplier adjustment needed to match the frequency
1590  * specified by NTP
1591  */
1592 static __always_inline void timekeeping_freqadjust(struct timekeeper *tk,
1593                                                         s64 offset)
1594 {
1595         s64 interval = tk->cycle_interval;
1596         s64 xinterval = tk->xtime_interval;
1597         s64 tick_error;
1598         bool negative;
1599         u32 adj;
1600
1601         /* Remove any current error adj from freq calculation */
1602         if (tk->ntp_err_mult)
1603                 xinterval -= tk->cycle_interval;
1604
1605         tk->ntp_tick = ntp_tick_length();
1606
1607         /* Calculate current error per tick */
1608         tick_error = ntp_tick_length() >> tk->ntp_error_shift;
1609         tick_error -= (xinterval + tk->xtime_remainder);
1610
1611         /* Don't worry about correcting it if its small */
1612         if (likely((tick_error >= 0) && (tick_error <= interval)))
1613                 return;
1614
1615         /* preserve the direction of correction */
1616         negative = (tick_error < 0);
1617
1618         /* Sort out the magnitude of the correction */
1619         tick_error = abs(tick_error);
1620         for (adj = 0; tick_error > interval; adj++)
1621                 tick_error >>= 1;
1622
1623         /* scale the corrections */
1624         timekeeping_apply_adjustment(tk, offset, negative, adj);
1625 }
1626
1627 /*
1628  * Adjust the timekeeper's multiplier to the correct frequency
1629  * and also to reduce the accumulated error value.
1630  */
1631 static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1632 {
1633         /* Correct for the current frequency error */
1634         timekeeping_freqadjust(tk, offset);
1635
1636         /* Next make a small adjustment to fix any cumulative error */
1637         if (!tk->ntp_err_mult && (tk->ntp_error > 0)) {
1638                 tk->ntp_err_mult = 1;
1639                 timekeeping_apply_adjustment(tk, offset, 0, 0);
1640         } else if (tk->ntp_err_mult && (tk->ntp_error <= 0)) {
1641                 /* Undo any existing error adjustment */
1642                 timekeeping_apply_adjustment(tk, offset, 1, 0);
1643                 tk->ntp_err_mult = 0;
1644         }
1645
1646         if (unlikely(tk->tkr_mono.clock->maxadj &&
1647                 (abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
1648                         > tk->tkr_mono.clock->maxadj))) {
1649                 printk_once(KERN_WARNING
1650                         "Adjusting %s more than 11%% (%ld vs %ld)\n",
1651                         tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
1652                         (long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
1653         }
1654
1655         /*
1656          * It may be possible that when we entered this function, xtime_nsec
1657          * was very small.  Further, if we're slightly speeding the clocksource
1658          * in the code above, its possible the required corrective factor to
1659          * xtime_nsec could cause it to underflow.
1660          *
1661          * Now, since we already accumulated the second, cannot simply roll
1662          * the accumulated second back, since the NTP subsystem has been
1663          * notified via second_overflow. So instead we push xtime_nsec forward
1664          * by the amount we underflowed, and add that amount into the error.
1665          *
1666          * We'll correct this error next time through this function, when
1667          * xtime_nsec is not as small.
1668          */
1669         if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
1670                 s64 neg = -(s64)tk->tkr_mono.xtime_nsec;
1671                 tk->tkr_mono.xtime_nsec = 0;
1672                 tk->ntp_error += neg << tk->ntp_error_shift;
1673         }
1674 }
1675
1676 /**
1677  * accumulate_nsecs_to_secs - Accumulates nsecs into secs
1678  *
1679  * Helper function that accumulates the nsecs greater than a second
1680  * from the xtime_nsec field to the xtime_secs field.
1681  * It also calls into the NTP code to handle leapsecond processing.
1682  *
1683  */
1684 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1685 {
1686         u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
1687         unsigned int clock_set = 0;
1688
1689         while (tk->tkr_mono.xtime_nsec >= nsecps) {
1690                 int leap;
1691
1692                 tk->tkr_mono.xtime_nsec -= nsecps;
1693                 tk->xtime_sec++;
1694
1695                 /* Figure out if its a leap sec and apply if needed */
1696                 leap = second_overflow(tk->xtime_sec);
1697                 if (unlikely(leap)) {
1698                         struct timespec64 ts;
1699
1700                         tk->xtime_sec += leap;
1701
1702                         ts.tv_sec = leap;
1703                         ts.tv_nsec = 0;
1704                         tk_set_wall_to_mono(tk,
1705                                 timespec64_sub(tk->wall_to_monotonic, ts));
1706
1707                         __timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
1708
1709                         clock_set = TK_CLOCK_WAS_SET;
1710                 }
1711         }
1712         return clock_set;
1713 }
1714
1715 /**
1716  * logarithmic_accumulation - shifted accumulation of cycles
1717  *
1718  * This functions accumulates a shifted interval of cycles into
1719  * into a shifted interval nanoseconds. Allows for O(log) accumulation
1720  * loop.
1721  *
1722  * Returns the unconsumed cycles.
1723  */
1724 static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset,
1725                                                 u32 shift,
1726                                                 unsigned int *clock_set)
1727 {
1728         cycle_t interval = tk->cycle_interval << shift;
1729         u64 raw_nsecs;
1730
1731         /* If the offset is smaller than a shifted interval, do nothing */
1732         if (offset < interval)
1733                 return offset;
1734
1735         /* Accumulate one shifted interval */
1736         offset -= interval;
1737         tk->tkr_mono.cycle_last += interval;
1738         tk->tkr_raw.cycle_last  += interval;
1739
1740         tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
1741         *clock_set |= accumulate_nsecs_to_secs(tk);
1742
1743         /* Accumulate raw time */
1744         raw_nsecs = (u64)tk->raw_interval << shift;
1745         raw_nsecs += tk->raw_time.tv_nsec;
1746         if (raw_nsecs >= NSEC_PER_SEC) {
1747                 u64 raw_secs = raw_nsecs;
1748                 raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
1749                 tk->raw_time.tv_sec += raw_secs;
1750         }
1751         tk->raw_time.tv_nsec = raw_nsecs;
1752
1753         /* Accumulate error between NTP and clock interval */
1754         tk->ntp_error += tk->ntp_tick << shift;
1755         tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
1756                                                 (tk->ntp_error_shift + shift);
1757
1758         return offset;
1759 }
1760
1761 /**
1762  * update_wall_time - Uses the current clocksource to increment the wall time
1763  *
1764  */
1765 void update_wall_time(void)
1766 {
1767         struct timekeeper *real_tk = &tk_core.timekeeper;
1768         struct timekeeper *tk = &shadow_timekeeper;
1769         cycle_t offset;
1770         int shift = 0, maxshift;
1771         unsigned int clock_set = 0;
1772         unsigned long flags;
1773
1774         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1775
1776         /* Make sure we're fully resumed: */
1777         if (unlikely(timekeeping_suspended))
1778                 goto out;
1779
1780 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
1781         offset = real_tk->cycle_interval;
1782 #else
1783         offset = clocksource_delta(tk->tkr_mono.read(tk->tkr_mono.clock),
1784                                    tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
1785 #endif
1786
1787         /* Check if there's really nothing to do */
1788         if (offset < real_tk->cycle_interval)
1789                 goto out;
1790
1791         /* Do some additional sanity checking */
1792         timekeeping_check_update(real_tk, offset);
1793
1794         /*
1795          * With NO_HZ we may have to accumulate many cycle_intervals
1796          * (think "ticks") worth of time at once. To do this efficiently,
1797          * we calculate the largest doubling multiple of cycle_intervals
1798          * that is smaller than the offset.  We then accumulate that
1799          * chunk in one go, and then try to consume the next smaller
1800          * doubled multiple.
1801          */
1802         shift = ilog2(offset) - ilog2(tk->cycle_interval);
1803         shift = max(0, shift);
1804         /* Bound shift to one less than what overflows tick_length */
1805         maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
1806         shift = min(shift, maxshift);
1807         while (offset >= tk->cycle_interval) {
1808                 offset = logarithmic_accumulation(tk, offset, shift,
1809                                                         &clock_set);
1810                 if (offset < tk->cycle_interval<<shift)
1811                         shift--;
1812         }
1813
1814         /* correct the clock when NTP error is too big */
1815         timekeeping_adjust(tk, offset);
1816
1817         /*
1818          * XXX This can be killed once everyone converts
1819          * to the new update_vsyscall.
1820          */
1821         old_vsyscall_fixup(tk);
1822
1823         /*
1824          * Finally, make sure that after the rounding
1825          * xtime_nsec isn't larger than NSEC_PER_SEC
1826          */
1827         clock_set |= accumulate_nsecs_to_secs(tk);
1828
1829         write_seqcount_begin(&tk_core.seq);
1830         /*
1831          * Update the real timekeeper.
1832          *
1833          * We could avoid this memcpy by switching pointers, but that
1834          * requires changes to all other timekeeper usage sites as
1835          * well, i.e. move the timekeeper pointer getter into the
1836          * spinlocked/seqcount protected sections. And we trade this
1837          * memcpy under the tk_core.seq against one before we start
1838          * updating.
1839          */
1840         timekeeping_update(tk, clock_set);
1841         memcpy(real_tk, tk, sizeof(*tk));
1842         /* The memcpy must come last. Do not put anything here! */
1843         write_seqcount_end(&tk_core.seq);
1844 out:
1845         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1846         if (clock_set)
1847                 /* Have to call _delayed version, since in irq context*/
1848                 clock_was_set_delayed();
1849 }
1850
1851 /**
1852  * getboottime64 - Return the real time of system boot.
1853  * @ts:         pointer to the timespec64 to be set
1854  *
1855  * Returns the wall-time of boot in a timespec64.
1856  *
1857  * This is based on the wall_to_monotonic offset and the total suspend
1858  * time. Calls to settimeofday will affect the value returned (which
1859  * basically means that however wrong your real time clock is at boot time,
1860  * you get the right time here).
1861  */
1862 void getboottime64(struct timespec64 *ts)
1863 {
1864         struct timekeeper *tk = &tk_core.timekeeper;
1865         ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
1866
1867         *ts = ktime_to_timespec64(t);
1868 }
1869 EXPORT_SYMBOL_GPL(getboottime64);
1870
1871 unsigned long get_seconds(void)
1872 {
1873         struct timekeeper *tk = &tk_core.timekeeper;
1874
1875         return tk->xtime_sec;
1876 }
1877 EXPORT_SYMBOL(get_seconds);
1878
1879 struct timespec __current_kernel_time(void)
1880 {
1881         struct timekeeper *tk = &tk_core.timekeeper;
1882
1883         return timespec64_to_timespec(tk_xtime(tk));
1884 }
1885
1886 struct timespec64 current_kernel_time64(void)
1887 {
1888         struct timekeeper *tk = &tk_core.timekeeper;
1889         struct timespec64 now;
1890         unsigned long seq;
1891
1892         do {
1893                 seq = read_seqcount_begin(&tk_core.seq);
1894
1895                 now = tk_xtime(tk);
1896         } while (read_seqcount_retry(&tk_core.seq, seq));
1897
1898         return now;
1899 }
1900 EXPORT_SYMBOL(current_kernel_time64);
1901
1902 struct timespec64 get_monotonic_coarse64(void)
1903 {
1904         struct timekeeper *tk = &tk_core.timekeeper;
1905         struct timespec64 now, mono;
1906         unsigned long seq;
1907
1908         do {
1909                 seq = read_seqcount_begin(&tk_core.seq);
1910
1911                 now = tk_xtime(tk);
1912                 mono = tk->wall_to_monotonic;
1913         } while (read_seqcount_retry(&tk_core.seq, seq));
1914
1915         set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec,
1916                                 now.tv_nsec + mono.tv_nsec);
1917
1918         return now;
1919 }
1920
1921 /*
1922  * Must hold jiffies_lock
1923  */
1924 void do_timer(unsigned long ticks)
1925 {
1926         jiffies_64 += ticks;
1927         calc_global_load(ticks);
1928 }
1929
1930 /**
1931  * ktime_get_update_offsets_now - hrtimer helper
1932  * @cwsseq:     pointer to check and store the clock was set sequence number
1933  * @offs_real:  pointer to storage for monotonic -> realtime offset
1934  * @offs_boot:  pointer to storage for monotonic -> boottime offset
1935  * @offs_tai:   pointer to storage for monotonic -> clock tai offset
1936  *
1937  * Returns current monotonic time and updates the offsets if the
1938  * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
1939  * different.
1940  *
1941  * Called from hrtimer_interrupt() or retrigger_next_event()
1942  */
1943 ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
1944                                      ktime_t *offs_boot, ktime_t *offs_tai)
1945 {
1946         struct timekeeper *tk = &tk_core.timekeeper;
1947         unsigned int seq;
1948         ktime_t base;
1949         u64 nsecs;
1950
1951         do {
1952                 seq = read_seqcount_begin(&tk_core.seq);
1953
1954                 base = tk->tkr_mono.base;
1955                 nsecs = timekeeping_get_ns(&tk->tkr_mono);
1956                 base = ktime_add_ns(base, nsecs);
1957
1958                 if (*cwsseq != tk->clock_was_set_seq) {
1959                         *cwsseq = tk->clock_was_set_seq;
1960                         *offs_real = tk->offs_real;
1961                         *offs_boot = tk->offs_boot;
1962                         *offs_tai = tk->offs_tai;
1963                 }
1964
1965                 /* Handle leapsecond insertion adjustments */
1966                 if (unlikely(base.tv64 >= tk->next_leap_ktime.tv64))
1967                         *offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0));
1968
1969         } while (read_seqcount_retry(&tk_core.seq, seq));
1970
1971         return base;
1972 }
1973
1974 /**
1975  * do_adjtimex() - Accessor function to NTP __do_adjtimex function
1976  */
1977 int do_adjtimex(struct timex *txc)
1978 {
1979         struct timekeeper *tk = &tk_core.timekeeper;
1980         unsigned long flags;
1981         struct timespec64 ts;
1982         s32 orig_tai, tai;
1983         int ret;
1984
1985         /* Validate the data before disabling interrupts */
1986         ret = ntp_validate_timex(txc);
1987         if (ret)
1988                 return ret;
1989
1990         if (txc->modes & ADJ_SETOFFSET) {
1991                 struct timespec delta;
1992                 delta.tv_sec  = txc->time.tv_sec;
1993                 delta.tv_nsec = txc->time.tv_usec;
1994                 if (!(txc->modes & ADJ_NANO))
1995                         delta.tv_nsec *= 1000;
1996                 ret = timekeeping_inject_offset(&delta);
1997                 if (ret)
1998                         return ret;
1999         }
2000
2001         getnstimeofday64(&ts);
2002
2003         raw_spin_lock_irqsave(&timekeeper_lock, flags);
2004         write_seqcount_begin(&tk_core.seq);
2005
2006         orig_tai = tai = tk->tai_offset;
2007         ret = __do_adjtimex(txc, &ts, &tai);
2008
2009         if (tai != orig_tai) {
2010                 __timekeeping_set_tai_offset(tk, tai);
2011                 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
2012         }
2013         tk_update_leap_state(tk);
2014
2015         write_seqcount_end(&tk_core.seq);
2016         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2017
2018         if (tai != orig_tai)
2019                 clock_was_set();
2020
2021         ntp_notify_cmos_timer();
2022
2023         return ret;
2024 }
2025
2026 #ifdef CONFIG_NTP_PPS
2027 /**
2028  * hardpps() - Accessor function to NTP __hardpps function
2029  */
2030 void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
2031 {
2032         unsigned long flags;
2033
2034         raw_spin_lock_irqsave(&timekeeper_lock, flags);
2035         write_seqcount_begin(&tk_core.seq);
2036
2037         __hardpps(phase_ts, raw_ts);
2038
2039         write_seqcount_end(&tk_core.seq);
2040         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2041 }
2042 EXPORT_SYMBOL(hardpps);
2043 #endif
2044
2045 /**
2046  * xtime_update() - advances the timekeeping infrastructure
2047  * @ticks:      number of ticks, that have elapsed since the last call.
2048  *
2049  * Must be called with interrupts disabled.
2050  */
2051 void xtime_update(unsigned long ticks)
2052 {
2053         write_seqlock(&jiffies_lock);
2054         do_timer(ticks);
2055         write_sequnlock(&jiffies_lock);
2056         update_wall_time();
2057 }