time: Change the return type of clockevents_notify() to integer
[firefly-linux-kernel-4.4.55.git] / kernel / time / tick-broadcast.c
1 /*
2  * linux/kernel/time/tick-broadcast.c
3  *
4  * This file contains functions which emulate a local clock-event
5  * device via a broadcast event source.
6  *
7  * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
8  * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
9  * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
10  *
11  * This code is licenced under the GPL version 2. For details see
12  * kernel-base/COPYING.
13  */
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/percpu.h>
19 #include <linux/profile.h>
20 #include <linux/sched.h>
21 #include <linux/smp.h>
22
23 #include "tick-internal.h"
24
25 /*
26  * Broadcast support for broken x86 hardware, where the local apic
27  * timer stops in C3 state.
28  */
29
30 static struct tick_device tick_broadcast_device;
31 static cpumask_var_t tick_broadcast_mask;
32 static cpumask_var_t tmpmask;
33 static DEFINE_RAW_SPINLOCK(tick_broadcast_lock);
34 static int tick_broadcast_force;
35
36 #ifdef CONFIG_TICK_ONESHOT
37 static void tick_broadcast_clear_oneshot(int cpu);
38 #else
39 static inline void tick_broadcast_clear_oneshot(int cpu) { }
40 #endif
41
42 /*
43  * Debugging: see timer_list.c
44  */
45 struct tick_device *tick_get_broadcast_device(void)
46 {
47         return &tick_broadcast_device;
48 }
49
50 struct cpumask *tick_get_broadcast_mask(void)
51 {
52         return tick_broadcast_mask;
53 }
54
55 /*
56  * Start the device in periodic mode
57  */
58 static void tick_broadcast_start_periodic(struct clock_event_device *bc)
59 {
60         if (bc)
61                 tick_setup_periodic(bc, 1);
62 }
63
64 /*
65  * Check, if the device can be utilized as broadcast device:
66  */
67 void tick_install_broadcast_device(struct clock_event_device *dev)
68 {
69         struct clock_event_device *cur = tick_broadcast_device.evtdev;
70
71         if ((dev->features & CLOCK_EVT_FEAT_DUMMY) ||
72             (tick_broadcast_device.evtdev &&
73              tick_broadcast_device.evtdev->rating >= dev->rating) ||
74              (dev->features & CLOCK_EVT_FEAT_C3STOP))
75                 return;
76
77         clockevents_exchange_device(tick_broadcast_device.evtdev, dev);
78         if (cur)
79                 cur->event_handler = clockevents_handle_noop;
80         tick_broadcast_device.evtdev = dev;
81         if (!cpumask_empty(tick_broadcast_mask))
82                 tick_broadcast_start_periodic(dev);
83         /*
84          * Inform all cpus about this. We might be in a situation
85          * where we did not switch to oneshot mode because the per cpu
86          * devices are affected by CLOCK_EVT_FEAT_C3STOP and the lack
87          * of a oneshot capable broadcast device. Without that
88          * notification the systems stays stuck in periodic mode
89          * forever.
90          */
91         if (dev->features & CLOCK_EVT_FEAT_ONESHOT)
92                 tick_clock_notify();
93 }
94
95 /*
96  * Check, if the device is the broadcast device
97  */
98 int tick_is_broadcast_device(struct clock_event_device *dev)
99 {
100         return (dev && tick_broadcast_device.evtdev == dev);
101 }
102
103 static void err_broadcast(const struct cpumask *mask)
104 {
105         pr_crit_once("Failed to broadcast timer tick. Some CPUs may be unresponsive.\n");
106 }
107
108 static void tick_device_setup_broadcast_func(struct clock_event_device *dev)
109 {
110         if (!dev->broadcast)
111                 dev->broadcast = tick_broadcast;
112         if (!dev->broadcast) {
113                 pr_warn_once("%s depends on broadcast, but no broadcast function available\n",
114                              dev->name);
115                 dev->broadcast = err_broadcast;
116         }
117 }
118
119 /*
120  * Check, if the device is disfunctional and a place holder, which
121  * needs to be handled by the broadcast device.
122  */
123 int tick_device_uses_broadcast(struct clock_event_device *dev, int cpu)
124 {
125         unsigned long flags;
126         int ret = 0;
127
128         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
129
130         /*
131          * Devices might be registered with both periodic and oneshot
132          * mode disabled. This signals, that the device needs to be
133          * operated from the broadcast device and is a placeholder for
134          * the cpu local device.
135          */
136         if (!tick_device_is_functional(dev)) {
137                 dev->event_handler = tick_handle_periodic;
138                 tick_device_setup_broadcast_func(dev);
139                 cpumask_set_cpu(cpu, tick_broadcast_mask);
140                 tick_broadcast_start_periodic(tick_broadcast_device.evtdev);
141                 ret = 1;
142         } else {
143                 /*
144                  * When the new device is not affected by the stop
145                  * feature and the cpu is marked in the broadcast mask
146                  * then clear the broadcast bit.
147                  */
148                 if (!(dev->features & CLOCK_EVT_FEAT_C3STOP)) {
149                         int cpu = smp_processor_id();
150                         cpumask_clear_cpu(cpu, tick_broadcast_mask);
151                         tick_broadcast_clear_oneshot(cpu);
152                 } else {
153                         tick_device_setup_broadcast_func(dev);
154                 }
155         }
156         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
157         return ret;
158 }
159
160 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
161 int tick_receive_broadcast(void)
162 {
163         struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
164         struct clock_event_device *evt = td->evtdev;
165
166         if (!evt)
167                 return -ENODEV;
168
169         if (!evt->event_handler)
170                 return -EINVAL;
171
172         evt->event_handler(evt);
173         return 0;
174 }
175 #endif
176
177 /*
178  * Broadcast the event to the cpus, which are set in the mask (mangled).
179  */
180 static void tick_do_broadcast(struct cpumask *mask)
181 {
182         int cpu = smp_processor_id();
183         struct tick_device *td;
184
185         /*
186          * Check, if the current cpu is in the mask
187          */
188         if (cpumask_test_cpu(cpu, mask)) {
189                 cpumask_clear_cpu(cpu, mask);
190                 td = &per_cpu(tick_cpu_device, cpu);
191                 td->evtdev->event_handler(td->evtdev);
192         }
193
194         if (!cpumask_empty(mask)) {
195                 /*
196                  * It might be necessary to actually check whether the devices
197                  * have different broadcast functions. For now, just use the
198                  * one of the first device. This works as long as we have this
199                  * misfeature only on x86 (lapic)
200                  */
201                 td = &per_cpu(tick_cpu_device, cpumask_first(mask));
202                 td->evtdev->broadcast(mask);
203         }
204 }
205
206 /*
207  * Periodic broadcast:
208  * - invoke the broadcast handlers
209  */
210 static void tick_do_periodic_broadcast(void)
211 {
212         raw_spin_lock(&tick_broadcast_lock);
213
214         cpumask_and(tmpmask, cpu_online_mask, tick_broadcast_mask);
215         tick_do_broadcast(tmpmask);
216
217         raw_spin_unlock(&tick_broadcast_lock);
218 }
219
220 /*
221  * Event handler for periodic broadcast ticks
222  */
223 static void tick_handle_periodic_broadcast(struct clock_event_device *dev)
224 {
225         ktime_t next;
226
227         tick_do_periodic_broadcast();
228
229         /*
230          * The device is in periodic mode. No reprogramming necessary:
231          */
232         if (dev->mode == CLOCK_EVT_MODE_PERIODIC)
233                 return;
234
235         /*
236          * Setup the next period for devices, which do not have
237          * periodic mode. We read dev->next_event first and add to it
238          * when the event already expired. clockevents_program_event()
239          * sets dev->next_event only when the event is really
240          * programmed to the device.
241          */
242         for (next = dev->next_event; ;) {
243                 next = ktime_add(next, tick_period);
244
245                 if (!clockevents_program_event(dev, next, false))
246                         return;
247                 tick_do_periodic_broadcast();
248         }
249 }
250
251 /*
252  * Powerstate information: The system enters/leaves a state, where
253  * affected devices might stop
254  */
255 static void tick_do_broadcast_on_off(unsigned long *reason)
256 {
257         struct clock_event_device *bc, *dev;
258         struct tick_device *td;
259         unsigned long flags;
260         int cpu, bc_stopped;
261
262         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
263
264         cpu = smp_processor_id();
265         td = &per_cpu(tick_cpu_device, cpu);
266         dev = td->evtdev;
267         bc = tick_broadcast_device.evtdev;
268
269         /*
270          * Is the device not affected by the powerstate ?
271          */
272         if (!dev || !(dev->features & CLOCK_EVT_FEAT_C3STOP))
273                 goto out;
274
275         if (!tick_device_is_functional(dev))
276                 goto out;
277
278         bc_stopped = cpumask_empty(tick_broadcast_mask);
279
280         switch (*reason) {
281         case CLOCK_EVT_NOTIFY_BROADCAST_ON:
282         case CLOCK_EVT_NOTIFY_BROADCAST_FORCE:
283                 if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_mask)) {
284                         if (tick_broadcast_device.mode ==
285                             TICKDEV_MODE_PERIODIC)
286                                 clockevents_shutdown(dev);
287                 }
288                 if (*reason == CLOCK_EVT_NOTIFY_BROADCAST_FORCE)
289                         tick_broadcast_force = 1;
290                 break;
291         case CLOCK_EVT_NOTIFY_BROADCAST_OFF:
292                 if (!tick_broadcast_force &&
293                     cpumask_test_and_clear_cpu(cpu, tick_broadcast_mask)) {
294                         if (tick_broadcast_device.mode ==
295                             TICKDEV_MODE_PERIODIC)
296                                 tick_setup_periodic(dev, 0);
297                 }
298                 break;
299         }
300
301         if (cpumask_empty(tick_broadcast_mask)) {
302                 if (!bc_stopped)
303                         clockevents_shutdown(bc);
304         } else if (bc_stopped) {
305                 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
306                         tick_broadcast_start_periodic(bc);
307                 else
308                         tick_broadcast_setup_oneshot(bc);
309         }
310 out:
311         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
312 }
313
314 /*
315  * Powerstate information: The system enters/leaves a state, where
316  * affected devices might stop.
317  */
318 void tick_broadcast_on_off(unsigned long reason, int *oncpu)
319 {
320         if (!cpumask_test_cpu(*oncpu, cpu_online_mask))
321                 printk(KERN_ERR "tick-broadcast: ignoring broadcast for "
322                        "offline CPU #%d\n", *oncpu);
323         else
324                 tick_do_broadcast_on_off(&reason);
325 }
326
327 /*
328  * Set the periodic handler depending on broadcast on/off
329  */
330 void tick_set_periodic_handler(struct clock_event_device *dev, int broadcast)
331 {
332         if (!broadcast)
333                 dev->event_handler = tick_handle_periodic;
334         else
335                 dev->event_handler = tick_handle_periodic_broadcast;
336 }
337
338 /*
339  * Remove a CPU from broadcasting
340  */
341 void tick_shutdown_broadcast(unsigned int *cpup)
342 {
343         struct clock_event_device *bc;
344         unsigned long flags;
345         unsigned int cpu = *cpup;
346
347         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
348
349         bc = tick_broadcast_device.evtdev;
350         cpumask_clear_cpu(cpu, tick_broadcast_mask);
351
352         if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) {
353                 if (bc && cpumask_empty(tick_broadcast_mask))
354                         clockevents_shutdown(bc);
355         }
356
357         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
358 }
359
360 void tick_suspend_broadcast(void)
361 {
362         struct clock_event_device *bc;
363         unsigned long flags;
364
365         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
366
367         bc = tick_broadcast_device.evtdev;
368         if (bc)
369                 clockevents_shutdown(bc);
370
371         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
372 }
373
374 int tick_resume_broadcast(void)
375 {
376         struct clock_event_device *bc;
377         unsigned long flags;
378         int broadcast = 0;
379
380         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
381
382         bc = tick_broadcast_device.evtdev;
383
384         if (bc) {
385                 clockevents_set_mode(bc, CLOCK_EVT_MODE_RESUME);
386
387                 switch (tick_broadcast_device.mode) {
388                 case TICKDEV_MODE_PERIODIC:
389                         if (!cpumask_empty(tick_broadcast_mask))
390                                 tick_broadcast_start_periodic(bc);
391                         broadcast = cpumask_test_cpu(smp_processor_id(),
392                                                      tick_broadcast_mask);
393                         break;
394                 case TICKDEV_MODE_ONESHOT:
395                         if (!cpumask_empty(tick_broadcast_mask))
396                                 broadcast = tick_resume_broadcast_oneshot(bc);
397                         break;
398                 }
399         }
400         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
401
402         return broadcast;
403 }
404
405
406 #ifdef CONFIG_TICK_ONESHOT
407
408 static cpumask_var_t tick_broadcast_oneshot_mask;
409 static cpumask_var_t tick_broadcast_pending_mask;
410 static cpumask_var_t tick_broadcast_force_mask;
411
412 /*
413  * Exposed for debugging: see timer_list.c
414  */
415 struct cpumask *tick_get_broadcast_oneshot_mask(void)
416 {
417         return tick_broadcast_oneshot_mask;
418 }
419
420 /*
421  * Called before going idle with interrupts disabled. Checks whether a
422  * broadcast event from the other core is about to happen. We detected
423  * that in tick_broadcast_oneshot_control(). The callsite can use this
424  * to avoid a deep idle transition as we are about to get the
425  * broadcast IPI right away.
426  */
427 int tick_check_broadcast_expired(void)
428 {
429         return cpumask_test_cpu(smp_processor_id(), tick_broadcast_force_mask);
430 }
431
432 /*
433  * Set broadcast interrupt affinity
434  */
435 static void tick_broadcast_set_affinity(struct clock_event_device *bc,
436                                         const struct cpumask *cpumask)
437 {
438         if (!(bc->features & CLOCK_EVT_FEAT_DYNIRQ))
439                 return;
440
441         if (cpumask_equal(bc->cpumask, cpumask))
442                 return;
443
444         bc->cpumask = cpumask;
445         irq_set_affinity(bc->irq, bc->cpumask);
446 }
447
448 static int tick_broadcast_set_event(struct clock_event_device *bc, int cpu,
449                                     ktime_t expires, int force)
450 {
451         int ret;
452
453         if (bc->mode != CLOCK_EVT_MODE_ONESHOT)
454                 clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT);
455
456         ret = clockevents_program_event(bc, expires, force);
457         if (!ret)
458                 tick_broadcast_set_affinity(bc, cpumask_of(cpu));
459         return ret;
460 }
461
462 int tick_resume_broadcast_oneshot(struct clock_event_device *bc)
463 {
464         clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT);
465         return 0;
466 }
467
468 /*
469  * Called from irq_enter() when idle was interrupted to reenable the
470  * per cpu device.
471  */
472 void tick_check_oneshot_broadcast(int cpu)
473 {
474         if (cpumask_test_cpu(cpu, tick_broadcast_oneshot_mask)) {
475                 struct tick_device *td = &per_cpu(tick_cpu_device, cpu);
476
477                 clockevents_set_mode(td->evtdev, CLOCK_EVT_MODE_ONESHOT);
478         }
479 }
480
481 /*
482  * Handle oneshot mode broadcasting
483  */
484 static void tick_handle_oneshot_broadcast(struct clock_event_device *dev)
485 {
486         struct tick_device *td;
487         ktime_t now, next_event;
488         int cpu, next_cpu = 0;
489
490         raw_spin_lock(&tick_broadcast_lock);
491 again:
492         dev->next_event.tv64 = KTIME_MAX;
493         next_event.tv64 = KTIME_MAX;
494         cpumask_clear(tmpmask);
495         now = ktime_get();
496         /* Find all expired events */
497         for_each_cpu(cpu, tick_broadcast_oneshot_mask) {
498                 td = &per_cpu(tick_cpu_device, cpu);
499                 if (td->evtdev->next_event.tv64 <= now.tv64) {
500                         cpumask_set_cpu(cpu, tmpmask);
501                         /*
502                          * Mark the remote cpu in the pending mask, so
503                          * it can avoid reprogramming the cpu local
504                          * timer in tick_broadcast_oneshot_control().
505                          */
506                         cpumask_set_cpu(cpu, tick_broadcast_pending_mask);
507                 } else if (td->evtdev->next_event.tv64 < next_event.tv64) {
508                         next_event.tv64 = td->evtdev->next_event.tv64;
509                         next_cpu = cpu;
510                 }
511         }
512
513         /*
514          * Remove the current cpu from the pending mask. The event is
515          * delivered immediately in tick_do_broadcast() !
516          */
517         cpumask_clear_cpu(smp_processor_id(), tick_broadcast_pending_mask);
518
519         /* Take care of enforced broadcast requests */
520         cpumask_or(tmpmask, tmpmask, tick_broadcast_force_mask);
521         cpumask_clear(tick_broadcast_force_mask);
522
523         /*
524          * Wakeup the cpus which have an expired event.
525          */
526         tick_do_broadcast(tmpmask);
527
528         /*
529          * Two reasons for reprogram:
530          *
531          * - The global event did not expire any CPU local
532          * events. This happens in dyntick mode, as the maximum PIT
533          * delta is quite small.
534          *
535          * - There are pending events on sleeping CPUs which were not
536          * in the event mask
537          */
538         if (next_event.tv64 != KTIME_MAX) {
539                 /*
540                  * Rearm the broadcast device. If event expired,
541                  * repeat the above
542                  */
543                 if (tick_broadcast_set_event(dev, next_cpu, next_event, 0))
544                         goto again;
545         }
546         raw_spin_unlock(&tick_broadcast_lock);
547 }
548
549 /*
550  * Powerstate information: The system enters/leaves a state, where
551  * affected devices might stop
552  * Returns 0 on success, -EBUSY if the cpu is used to broadcast wakeups.
553  */
554 int tick_broadcast_oneshot_control(unsigned long reason)
555 {
556         struct clock_event_device *bc, *dev;
557         struct tick_device *td;
558         unsigned long flags;
559         ktime_t now;
560         int cpu, ret = 0;
561
562         /*
563          * Periodic mode does not care about the enter/exit of power
564          * states
565          */
566         if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
567                 return;
568
569         /*
570          * We are called with preemtion disabled from the depth of the
571          * idle code, so we can't be moved away.
572          */
573         cpu = smp_processor_id();
574         td = &per_cpu(tick_cpu_device, cpu);
575         dev = td->evtdev;
576
577         if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
578                 return;
579
580         bc = tick_broadcast_device.evtdev;
581
582         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
583         if (reason == CLOCK_EVT_NOTIFY_BROADCAST_ENTER) {
584                 if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_oneshot_mask)) {
585                         WARN_ON_ONCE(cpumask_test_cpu(cpu, tick_broadcast_pending_mask));
586                         clockevents_set_mode(dev, CLOCK_EVT_MODE_SHUTDOWN);
587                         /*
588                          * We only reprogram the broadcast timer if we
589                          * did not mark ourself in the force mask and
590                          * if the cpu local event is earlier than the
591                          * broadcast event. If the current CPU is in
592                          * the force mask, then we are going to be
593                          * woken by the IPI right away.
594                          */
595                         if (!cpumask_test_cpu(cpu, tick_broadcast_force_mask) &&
596                             dev->next_event.tv64 < bc->next_event.tv64)
597                                 tick_broadcast_set_event(bc, cpu, dev->next_event, 1);
598                 }
599         } else {
600                 if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_oneshot_mask)) {
601                         clockevents_set_mode(dev, CLOCK_EVT_MODE_ONESHOT);
602                         /*
603                          * The cpu which was handling the broadcast
604                          * timer marked this cpu in the broadcast
605                          * pending mask and fired the broadcast
606                          * IPI. So we are going to handle the expired
607                          * event anyway via the broadcast IPI
608                          * handler. No need to reprogram the timer
609                          * with an already expired event.
610                          */
611                         if (cpumask_test_and_clear_cpu(cpu,
612                                        tick_broadcast_pending_mask))
613                                 goto out;
614
615                         /*
616                          * Bail out if there is no next event.
617                          */
618                         if (dev->next_event.tv64 == KTIME_MAX)
619                                 goto out;
620                         /*
621                          * If the pending bit is not set, then we are
622                          * either the CPU handling the broadcast
623                          * interrupt or we got woken by something else.
624                          *
625                          * We are not longer in the broadcast mask, so
626                          * if the cpu local expiry time is already
627                          * reached, we would reprogram the cpu local
628                          * timer with an already expired event.
629                          *
630                          * This can lead to a ping-pong when we return
631                          * to idle and therefor rearm the broadcast
632                          * timer before the cpu local timer was able
633                          * to fire. This happens because the forced
634                          * reprogramming makes sure that the event
635                          * will happen in the future and depending on
636                          * the min_delta setting this might be far
637                          * enough out that the ping-pong starts.
638                          *
639                          * If the cpu local next_event has expired
640                          * then we know that the broadcast timer
641                          * next_event has expired as well and
642                          * broadcast is about to be handled. So we
643                          * avoid reprogramming and enforce that the
644                          * broadcast handler, which did not run yet,
645                          * will invoke the cpu local handler.
646                          *
647                          * We cannot call the handler directly from
648                          * here, because we might be in a NOHZ phase
649                          * and we did not go through the irq_enter()
650                          * nohz fixups.
651                          */
652                         now = ktime_get();
653                         if (dev->next_event.tv64 <= now.tv64) {
654                                 cpumask_set_cpu(cpu, tick_broadcast_force_mask);
655                                 goto out;
656                         }
657                         /*
658                          * We got woken by something else. Reprogram
659                          * the cpu local timer device.
660                          */
661                         tick_program_event(dev->next_event, 1);
662                 }
663         }
664 out:
665         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
666         return ret;
667 }
668
669 /*
670  * Reset the one shot broadcast for a cpu
671  *
672  * Called with tick_broadcast_lock held
673  */
674 static void tick_broadcast_clear_oneshot(int cpu)
675 {
676         cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
677 }
678
679 static void tick_broadcast_init_next_event(struct cpumask *mask,
680                                            ktime_t expires)
681 {
682         struct tick_device *td;
683         int cpu;
684
685         for_each_cpu(cpu, mask) {
686                 td = &per_cpu(tick_cpu_device, cpu);
687                 if (td->evtdev)
688                         td->evtdev->next_event = expires;
689         }
690 }
691
692 /**
693  * tick_broadcast_setup_oneshot - setup the broadcast device
694  */
695 void tick_broadcast_setup_oneshot(struct clock_event_device *bc)
696 {
697         int cpu = smp_processor_id();
698
699         /* Set it up only once ! */
700         if (bc->event_handler != tick_handle_oneshot_broadcast) {
701                 int was_periodic = bc->mode == CLOCK_EVT_MODE_PERIODIC;
702
703                 bc->event_handler = tick_handle_oneshot_broadcast;
704
705                 /*
706                  * We must be careful here. There might be other CPUs
707                  * waiting for periodic broadcast. We need to set the
708                  * oneshot_mask bits for those and program the
709                  * broadcast device to fire.
710                  */
711                 cpumask_copy(tmpmask, tick_broadcast_mask);
712                 cpumask_clear_cpu(cpu, tmpmask);
713                 cpumask_or(tick_broadcast_oneshot_mask,
714                            tick_broadcast_oneshot_mask, tmpmask);
715
716                 if (was_periodic && !cpumask_empty(tmpmask)) {
717                         clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT);
718                         tick_broadcast_init_next_event(tmpmask,
719                                                        tick_next_period);
720                         tick_broadcast_set_event(bc, cpu, tick_next_period, 1);
721                 } else
722                         bc->next_event.tv64 = KTIME_MAX;
723         } else {
724                 /*
725                  * The first cpu which switches to oneshot mode sets
726                  * the bit for all other cpus which are in the general
727                  * (periodic) broadcast mask. So the bit is set and
728                  * would prevent the first broadcast enter after this
729                  * to program the bc device.
730                  */
731                 tick_broadcast_clear_oneshot(cpu);
732         }
733 }
734
735 /*
736  * Select oneshot operating mode for the broadcast device
737  */
738 void tick_broadcast_switch_to_oneshot(void)
739 {
740         struct clock_event_device *bc;
741         unsigned long flags;
742
743         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
744
745         tick_broadcast_device.mode = TICKDEV_MODE_ONESHOT;
746         bc = tick_broadcast_device.evtdev;
747         if (bc)
748                 tick_broadcast_setup_oneshot(bc);
749
750         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
751 }
752
753
754 /*
755  * Remove a dead CPU from broadcasting
756  */
757 void tick_shutdown_broadcast_oneshot(unsigned int *cpup)
758 {
759         unsigned long flags;
760         unsigned int cpu = *cpup;
761
762         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
763
764         /*
765          * Clear the broadcast mask flag for the dead cpu, but do not
766          * stop the broadcast device!
767          */
768         cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
769
770         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
771 }
772
773 /*
774  * Check, whether the broadcast device is in one shot mode
775  */
776 int tick_broadcast_oneshot_active(void)
777 {
778         return tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT;
779 }
780
781 /*
782  * Check whether the broadcast device supports oneshot.
783  */
784 bool tick_broadcast_oneshot_available(void)
785 {
786         struct clock_event_device *bc = tick_broadcast_device.evtdev;
787
788         return bc ? bc->features & CLOCK_EVT_FEAT_ONESHOT : false;
789 }
790
791 #endif
792
793 void __init tick_broadcast_init(void)
794 {
795         zalloc_cpumask_var(&tick_broadcast_mask, GFP_NOWAIT);
796         zalloc_cpumask_var(&tmpmask, GFP_NOWAIT);
797 #ifdef CONFIG_TICK_ONESHOT
798         zalloc_cpumask_var(&tick_broadcast_oneshot_mask, GFP_NOWAIT);
799         zalloc_cpumask_var(&tick_broadcast_pending_mask, GFP_NOWAIT);
800         zalloc_cpumask_var(&tick_broadcast_force_mask, GFP_NOWAIT);
801 #endif
802 }