Merge branch 'v3.10/topic/big.LITTLE' into linux-linaro-lsk-v3.10
[firefly-linux-kernel-4.4.55.git] / kernel / time / tick-broadcast.c
1 /*
2  * linux/kernel/time/tick-broadcast.c
3  *
4  * This file contains functions which emulate a local clock-event
5  * device via a broadcast event source.
6  *
7  * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
8  * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
9  * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
10  *
11  * This code is licenced under the GPL version 2. For details see
12  * kernel-base/COPYING.
13  */
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/percpu.h>
19 #include <linux/profile.h>
20 #include <linux/sched.h>
21 #include <linux/smp.h>
22 #include <linux/module.h>
23
24 #include "tick-internal.h"
25
26 /*
27  * Broadcast support for broken x86 hardware, where the local apic
28  * timer stops in C3 state.
29  */
30
31 static struct tick_device tick_broadcast_device;
32 static cpumask_var_t tick_broadcast_mask;
33 static cpumask_var_t tick_broadcast_on;
34 static cpumask_var_t tmpmask;
35 static DEFINE_RAW_SPINLOCK(tick_broadcast_lock);
36 static int tick_broadcast_force;
37
38 #ifdef CONFIG_TICK_ONESHOT
39 static void tick_broadcast_clear_oneshot(int cpu);
40 #else
41 static inline void tick_broadcast_clear_oneshot(int cpu) { }
42 #endif
43
44 /*
45  * Debugging: see timer_list.c
46  */
47 struct tick_device *tick_get_broadcast_device(void)
48 {
49         return &tick_broadcast_device;
50 }
51
52 struct cpumask *tick_get_broadcast_mask(void)
53 {
54         return tick_broadcast_mask;
55 }
56
57 /*
58  * Start the device in periodic mode
59  */
60 static void tick_broadcast_start_periodic(struct clock_event_device *bc)
61 {
62         if (bc)
63                 tick_setup_periodic(bc, 1);
64 }
65
66 /*
67  * Check, if the device can be utilized as broadcast device:
68  */
69 static bool tick_check_broadcast_device(struct clock_event_device *curdev,
70                                         struct clock_event_device *newdev)
71 {
72         if ((newdev->features & CLOCK_EVT_FEAT_DUMMY) ||
73             (newdev->features & CLOCK_EVT_FEAT_C3STOP))
74                 return false;
75
76         if (tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT &&
77             !(newdev->features & CLOCK_EVT_FEAT_ONESHOT))
78                 return false;
79
80         return !curdev || newdev->rating > curdev->rating;
81 }
82
83 /*
84  * Conditionally install/replace broadcast device
85  */
86 void tick_install_broadcast_device(struct clock_event_device *dev)
87 {
88         struct clock_event_device *cur = tick_broadcast_device.evtdev;
89
90         if (!tick_check_broadcast_device(cur, dev))
91                 return;
92
93         if (!try_module_get(dev->owner))
94                 return;
95
96         clockevents_exchange_device(cur, dev);
97         if (cur)
98                 cur->event_handler = clockevents_handle_noop;
99         tick_broadcast_device.evtdev = dev;
100         if (!cpumask_empty(tick_broadcast_mask))
101                 tick_broadcast_start_periodic(dev);
102         /*
103          * Inform all cpus about this. We might be in a situation
104          * where we did not switch to oneshot mode because the per cpu
105          * devices are affected by CLOCK_EVT_FEAT_C3STOP and the lack
106          * of a oneshot capable broadcast device. Without that
107          * notification the systems stays stuck in periodic mode
108          * forever.
109          */
110         if (dev->features & CLOCK_EVT_FEAT_ONESHOT)
111                 tick_clock_notify();
112 }
113
114 /*
115  * Check, if the device is the broadcast device
116  */
117 int tick_is_broadcast_device(struct clock_event_device *dev)
118 {
119         return (dev && tick_broadcast_device.evtdev == dev);
120 }
121
122 static void err_broadcast(const struct cpumask *mask)
123 {
124         pr_crit_once("Failed to broadcast timer tick. Some CPUs may be unresponsive.\n");
125 }
126
127 static void tick_device_setup_broadcast_func(struct clock_event_device *dev)
128 {
129         if (!dev->broadcast)
130                 dev->broadcast = tick_broadcast;
131         if (!dev->broadcast) {
132                 pr_warn_once("%s depends on broadcast, but no broadcast function available\n",
133                              dev->name);
134                 dev->broadcast = err_broadcast;
135         }
136 }
137
138 /*
139  * Check, if the device is disfunctional and a place holder, which
140  * needs to be handled by the broadcast device.
141  */
142 int tick_device_uses_broadcast(struct clock_event_device *dev, int cpu)
143 {
144         struct clock_event_device *bc = tick_broadcast_device.evtdev;
145         unsigned long flags;
146         int ret;
147
148         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
149
150         /*
151          * Devices might be registered with both periodic and oneshot
152          * mode disabled. This signals, that the device needs to be
153          * operated from the broadcast device and is a placeholder for
154          * the cpu local device.
155          */
156         if (!tick_device_is_functional(dev)) {
157                 dev->event_handler = tick_handle_periodic;
158                 tick_device_setup_broadcast_func(dev);
159                 cpumask_set_cpu(cpu, tick_broadcast_mask);
160                 tick_broadcast_start_periodic(bc);
161                 ret = 1;
162         } else {
163                 /*
164                  * Clear the broadcast bit for this cpu if the
165                  * device is not power state affected.
166                  */
167                 if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
168                         cpumask_clear_cpu(cpu, tick_broadcast_mask);
169                 else
170                         tick_device_setup_broadcast_func(dev);
171
172                 /*
173                  * Clear the broadcast bit if the CPU is not in
174                  * periodic broadcast on state.
175                  */
176                 if (!cpumask_test_cpu(cpu, tick_broadcast_on))
177                         cpumask_clear_cpu(cpu, tick_broadcast_mask);
178
179                 switch (tick_broadcast_device.mode) {
180                 case TICKDEV_MODE_ONESHOT:
181                         /*
182                          * If the system is in oneshot mode we can
183                          * unconditionally clear the oneshot mask bit,
184                          * because the CPU is running and therefore
185                          * not in an idle state which causes the power
186                          * state affected device to stop. Let the
187                          * caller initialize the device.
188                          */
189                         tick_broadcast_clear_oneshot(cpu);
190                         ret = 0;
191                         break;
192
193                 case TICKDEV_MODE_PERIODIC:
194                         /*
195                          * If the system is in periodic mode, check
196                          * whether the broadcast device can be
197                          * switched off now.
198                          */
199                         if (cpumask_empty(tick_broadcast_mask) && bc)
200                                 clockevents_shutdown(bc);
201                         /*
202                          * If we kept the cpu in the broadcast mask,
203                          * tell the caller to leave the per cpu device
204                          * in shutdown state. The periodic interrupt
205                          * is delivered by the broadcast device.
206                          */
207                         ret = cpumask_test_cpu(cpu, tick_broadcast_mask);
208                         break;
209                 default:
210                         /* Nothing to do */
211                         ret = 0;
212                         break;
213                 }
214         }
215         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
216         return ret;
217 }
218
219 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
220 int tick_receive_broadcast(void)
221 {
222         struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
223         struct clock_event_device *evt = td->evtdev;
224
225         if (!evt)
226                 return -ENODEV;
227
228         if (!evt->event_handler)
229                 return -EINVAL;
230
231         evt->event_handler(evt);
232         return 0;
233 }
234 #endif
235
236 /*
237  * Broadcast the event to the cpus, which are set in the mask (mangled).
238  */
239 static void tick_do_broadcast(struct cpumask *mask)
240 {
241         int cpu = smp_processor_id();
242         struct tick_device *td;
243
244         /*
245          * Check, if the current cpu is in the mask
246          */
247         if (cpumask_test_cpu(cpu, mask)) {
248                 cpumask_clear_cpu(cpu, mask);
249                 td = &per_cpu(tick_cpu_device, cpu);
250                 td->evtdev->event_handler(td->evtdev);
251         }
252
253         if (!cpumask_empty(mask)) {
254                 /*
255                  * It might be necessary to actually check whether the devices
256                  * have different broadcast functions. For now, just use the
257                  * one of the first device. This works as long as we have this
258                  * misfeature only on x86 (lapic)
259                  */
260                 td = &per_cpu(tick_cpu_device, cpumask_first(mask));
261                 td->evtdev->broadcast(mask);
262         }
263 }
264
265 /*
266  * Periodic broadcast:
267  * - invoke the broadcast handlers
268  */
269 static void tick_do_periodic_broadcast(void)
270 {
271         raw_spin_lock(&tick_broadcast_lock);
272
273         cpumask_and(tmpmask, cpu_online_mask, tick_broadcast_mask);
274         tick_do_broadcast(tmpmask);
275
276         raw_spin_unlock(&tick_broadcast_lock);
277 }
278
279 /*
280  * Event handler for periodic broadcast ticks
281  */
282 static void tick_handle_periodic_broadcast(struct clock_event_device *dev)
283 {
284         ktime_t next;
285
286         tick_do_periodic_broadcast();
287
288         /*
289          * The device is in periodic mode. No reprogramming necessary:
290          */
291         if (dev->mode == CLOCK_EVT_MODE_PERIODIC)
292                 return;
293
294         /*
295          * Setup the next period for devices, which do not have
296          * periodic mode. We read dev->next_event first and add to it
297          * when the event already expired. clockevents_program_event()
298          * sets dev->next_event only when the event is really
299          * programmed to the device.
300          */
301         for (next = dev->next_event; ;) {
302                 next = ktime_add(next, tick_period);
303
304                 if (!clockevents_program_event(dev, next, false))
305                         return;
306                 tick_do_periodic_broadcast();
307         }
308 }
309
310 /*
311  * Powerstate information: The system enters/leaves a state, where
312  * affected devices might stop
313  */
314 static void tick_do_broadcast_on_off(unsigned long *reason)
315 {
316         struct clock_event_device *bc, *dev;
317         struct tick_device *td;
318         unsigned long flags;
319         int cpu, bc_stopped;
320
321         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
322
323         cpu = smp_processor_id();
324         td = &per_cpu(tick_cpu_device, cpu);
325         dev = td->evtdev;
326         bc = tick_broadcast_device.evtdev;
327
328         /*
329          * Is the device not affected by the powerstate ?
330          */
331         if (!dev || !(dev->features & CLOCK_EVT_FEAT_C3STOP))
332                 goto out;
333
334         if (!tick_device_is_functional(dev))
335                 goto out;
336
337         bc_stopped = cpumask_empty(tick_broadcast_mask);
338
339         switch (*reason) {
340         case CLOCK_EVT_NOTIFY_BROADCAST_ON:
341         case CLOCK_EVT_NOTIFY_BROADCAST_FORCE:
342                 cpumask_set_cpu(cpu, tick_broadcast_on);
343                 if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_mask)) {
344                         if (tick_broadcast_device.mode ==
345                             TICKDEV_MODE_PERIODIC)
346                                 clockevents_shutdown(dev);
347                 }
348                 if (*reason == CLOCK_EVT_NOTIFY_BROADCAST_FORCE)
349                         tick_broadcast_force = 1;
350                 break;
351         case CLOCK_EVT_NOTIFY_BROADCAST_OFF:
352                 if (tick_broadcast_force)
353                         break;
354                 cpumask_clear_cpu(cpu, tick_broadcast_on);
355                 if (!tick_device_is_functional(dev))
356                         break;
357                 if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_mask)) {
358                         if (tick_broadcast_device.mode ==
359                             TICKDEV_MODE_PERIODIC)
360                                 tick_setup_periodic(dev, 0);
361                 }
362                 break;
363         }
364
365         if (cpumask_empty(tick_broadcast_mask)) {
366                 if (!bc_stopped)
367                         clockevents_shutdown(bc);
368         } else if (bc_stopped) {
369                 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
370                         tick_broadcast_start_periodic(bc);
371                 else
372                         tick_broadcast_setup_oneshot(bc);
373         }
374 out:
375         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
376 }
377
378 /*
379  * Powerstate information: The system enters/leaves a state, where
380  * affected devices might stop.
381  */
382 void tick_broadcast_on_off(unsigned long reason, int *oncpu)
383 {
384         if (!cpumask_test_cpu(*oncpu, cpu_online_mask))
385                 printk(KERN_ERR "tick-broadcast: ignoring broadcast for "
386                        "offline CPU #%d\n", *oncpu);
387         else
388                 tick_do_broadcast_on_off(&reason);
389 }
390
391 /*
392  * Set the periodic handler depending on broadcast on/off
393  */
394 void tick_set_periodic_handler(struct clock_event_device *dev, int broadcast)
395 {
396         if (!broadcast)
397                 dev->event_handler = tick_handle_periodic;
398         else
399                 dev->event_handler = tick_handle_periodic_broadcast;
400 }
401
402 /*
403  * Remove a CPU from broadcasting
404  */
405 void tick_shutdown_broadcast(unsigned int *cpup)
406 {
407         struct clock_event_device *bc;
408         unsigned long flags;
409         unsigned int cpu = *cpup;
410
411         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
412
413         bc = tick_broadcast_device.evtdev;
414         cpumask_clear_cpu(cpu, tick_broadcast_mask);
415         cpumask_clear_cpu(cpu, tick_broadcast_on);
416
417         if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) {
418                 if (bc && cpumask_empty(tick_broadcast_mask))
419                         clockevents_shutdown(bc);
420         }
421
422         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
423 }
424
425 void tick_suspend_broadcast(void)
426 {
427         struct clock_event_device *bc;
428         unsigned long flags;
429
430         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
431
432         bc = tick_broadcast_device.evtdev;
433         if (bc)
434                 clockevents_shutdown(bc);
435
436         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
437 }
438
439 int tick_resume_broadcast(void)
440 {
441         struct clock_event_device *bc;
442         unsigned long flags;
443         int broadcast = 0;
444
445         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
446
447         bc = tick_broadcast_device.evtdev;
448
449         if (bc) {
450                 clockevents_set_mode(bc, CLOCK_EVT_MODE_RESUME);
451
452                 switch (tick_broadcast_device.mode) {
453                 case TICKDEV_MODE_PERIODIC:
454                         if (!cpumask_empty(tick_broadcast_mask))
455                                 tick_broadcast_start_periodic(bc);
456                         broadcast = cpumask_test_cpu(smp_processor_id(),
457                                                      tick_broadcast_mask);
458                         break;
459                 case TICKDEV_MODE_ONESHOT:
460                         if (!cpumask_empty(tick_broadcast_mask))
461                                 broadcast = tick_resume_broadcast_oneshot(bc);
462                         break;
463                 }
464         }
465         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
466
467         return broadcast;
468 }
469
470
471 #ifdef CONFIG_TICK_ONESHOT
472
473 static cpumask_var_t tick_broadcast_oneshot_mask;
474 static cpumask_var_t tick_broadcast_pending_mask;
475 static cpumask_var_t tick_broadcast_force_mask;
476
477 /*
478  * Exposed for debugging: see timer_list.c
479  */
480 struct cpumask *tick_get_broadcast_oneshot_mask(void)
481 {
482         return tick_broadcast_oneshot_mask;
483 }
484
485 /*
486  * Called before going idle with interrupts disabled. Checks whether a
487  * broadcast event from the other core is about to happen. We detected
488  * that in tick_broadcast_oneshot_control(). The callsite can use this
489  * to avoid a deep idle transition as we are about to get the
490  * broadcast IPI right away.
491  */
492 int tick_check_broadcast_expired(void)
493 {
494         return cpumask_test_cpu(smp_processor_id(), tick_broadcast_force_mask);
495 }
496
497 /*
498  * Set broadcast interrupt affinity
499  */
500 static void tick_broadcast_set_affinity(struct clock_event_device *bc,
501                                         const struct cpumask *cpumask)
502 {
503         if (!(bc->features & CLOCK_EVT_FEAT_DYNIRQ))
504                 return;
505
506         if (cpumask_equal(bc->cpumask, cpumask))
507                 return;
508
509         bc->cpumask = cpumask;
510         irq_set_affinity(bc->irq, bc->cpumask);
511 }
512
513 static int tick_broadcast_set_event(struct clock_event_device *bc, int cpu,
514                                     ktime_t expires, int force)
515 {
516         int ret;
517
518         if (bc->mode != CLOCK_EVT_MODE_ONESHOT)
519                 clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT);
520
521         ret = clockevents_program_event(bc, expires, force);
522         if (!ret)
523                 tick_broadcast_set_affinity(bc, cpumask_of(cpu));
524         return ret;
525 }
526
527 int tick_resume_broadcast_oneshot(struct clock_event_device *bc)
528 {
529         clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT);
530         return 0;
531 }
532
533 /*
534  * Called from irq_enter() when idle was interrupted to reenable the
535  * per cpu device.
536  */
537 void tick_check_oneshot_broadcast(int cpu)
538 {
539         if (cpumask_test_cpu(cpu, tick_broadcast_oneshot_mask)) {
540                 struct tick_device *td = &per_cpu(tick_cpu_device, cpu);
541
542                 /*
543                  * We might be in the middle of switching over from
544                  * periodic to oneshot. If the CPU has not yet
545                  * switched over, leave the device alone.
546                  */
547                 if (td->mode == TICKDEV_MODE_ONESHOT) {
548                         clockevents_set_mode(td->evtdev,
549                                              CLOCK_EVT_MODE_ONESHOT);
550                 }
551         }
552 }
553
554 /*
555  * Handle oneshot mode broadcasting
556  */
557 static void tick_handle_oneshot_broadcast(struct clock_event_device *dev)
558 {
559         struct tick_device *td;
560         ktime_t now, next_event;
561         int cpu, next_cpu = 0;
562
563         raw_spin_lock(&tick_broadcast_lock);
564 again:
565         dev->next_event.tv64 = KTIME_MAX;
566         next_event.tv64 = KTIME_MAX;
567         cpumask_clear(tmpmask);
568         now = ktime_get();
569         /* Find all expired events */
570         for_each_cpu(cpu, tick_broadcast_oneshot_mask) {
571                 td = &per_cpu(tick_cpu_device, cpu);
572                 if (td->evtdev->next_event.tv64 <= now.tv64) {
573                         cpumask_set_cpu(cpu, tmpmask);
574                         /*
575                          * Mark the remote cpu in the pending mask, so
576                          * it can avoid reprogramming the cpu local
577                          * timer in tick_broadcast_oneshot_control().
578                          */
579                         cpumask_set_cpu(cpu, tick_broadcast_pending_mask);
580                 } else if (td->evtdev->next_event.tv64 < next_event.tv64) {
581                         next_event.tv64 = td->evtdev->next_event.tv64;
582                         next_cpu = cpu;
583                 }
584         }
585
586         /*
587          * Remove the current cpu from the pending mask. The event is
588          * delivered immediately in tick_do_broadcast() !
589          */
590         cpumask_clear_cpu(smp_processor_id(), tick_broadcast_pending_mask);
591
592         /* Take care of enforced broadcast requests */
593         cpumask_or(tmpmask, tmpmask, tick_broadcast_force_mask);
594         cpumask_clear(tick_broadcast_force_mask);
595
596         /*
597          * Sanity check. Catch the case where we try to broadcast to
598          * offline cpus.
599          */
600         if (WARN_ON_ONCE(!cpumask_subset(tmpmask, cpu_online_mask)))
601                 cpumask_and(tmpmask, tmpmask, cpu_online_mask);
602
603         /*
604          * Wakeup the cpus which have an expired event.
605          */
606         tick_do_broadcast(tmpmask);
607
608         /*
609          * Two reasons for reprogram:
610          *
611          * - The global event did not expire any CPU local
612          * events. This happens in dyntick mode, as the maximum PIT
613          * delta is quite small.
614          *
615          * - There are pending events on sleeping CPUs which were not
616          * in the event mask
617          */
618         if (next_event.tv64 != KTIME_MAX) {
619                 /*
620                  * Rearm the broadcast device. If event expired,
621                  * repeat the above
622                  */
623                 if (tick_broadcast_set_event(dev, next_cpu, next_event, 0))
624                         goto again;
625         }
626         raw_spin_unlock(&tick_broadcast_lock);
627 }
628
629 static int broadcast_needs_cpu(struct clock_event_device *bc, int cpu)
630 {
631         if (!(bc->features & CLOCK_EVT_FEAT_HRTIMER))
632                 return 0;
633         if (bc->next_event.tv64 == KTIME_MAX)
634                 return 0;
635         return bc->bound_on == cpu ? -EBUSY : 0;
636 }
637
638 static void broadcast_shutdown_local(struct clock_event_device *bc,
639                                      struct clock_event_device *dev)
640 {
641         /*
642          * For hrtimer based broadcasting we cannot shutdown the cpu
643          * local device if our own event is the first one to expire or
644          * if we own the broadcast timer.
645          */
646         if (bc->features & CLOCK_EVT_FEAT_HRTIMER) {
647                 if (broadcast_needs_cpu(bc, smp_processor_id()))
648                         return;
649                 if (dev->next_event.tv64 < bc->next_event.tv64)
650                         return;
651         }
652         clockevents_set_mode(dev, CLOCK_EVT_MODE_SHUTDOWN);
653 }
654
655 static void broadcast_move_bc(int deadcpu)
656 {
657         struct clock_event_device *bc = tick_broadcast_device.evtdev;
658
659         if (!bc || !broadcast_needs_cpu(bc, deadcpu))
660                 return;
661         /* This moves the broadcast assignment to this cpu */
662         clockevents_program_event(bc, bc->next_event, 1);
663 }
664
665 /*
666  * Powerstate information: The system enters/leaves a state, where
667  * affected devices might stop
668  * Returns 0 on success, -EBUSY if the cpu is used to broadcast wakeups.
669  */
670 int tick_broadcast_oneshot_control(unsigned long reason)
671 {
672         struct clock_event_device *bc, *dev;
673         struct tick_device *td;
674         unsigned long flags;
675         ktime_t now;
676         int cpu, ret = 0;
677
678         /*
679          * Periodic mode does not care about the enter/exit of power
680          * states
681          */
682         if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
683                 return 0;
684
685         /*
686          * We are called with preemtion disabled from the depth of the
687          * idle code, so we can't be moved away.
688          */
689         cpu = smp_processor_id();
690         td = &per_cpu(tick_cpu_device, cpu);
691         dev = td->evtdev;
692
693         if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
694                 return 0;
695
696         bc = tick_broadcast_device.evtdev;
697
698         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
699         if (reason == CLOCK_EVT_NOTIFY_BROADCAST_ENTER) {
700                 if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_oneshot_mask)) {
701                         WARN_ON_ONCE(cpumask_test_cpu(cpu, tick_broadcast_pending_mask));
702                         broadcast_shutdown_local(bc, dev);
703                         /*
704                          * We only reprogram the broadcast timer if we
705                          * did not mark ourself in the force mask and
706                          * if the cpu local event is earlier than the
707                          * broadcast event. If the current CPU is in
708                          * the force mask, then we are going to be
709                          * woken by the IPI right away.
710                          */
711                         if (!cpumask_test_cpu(cpu, tick_broadcast_force_mask) &&
712                             dev->next_event.tv64 < bc->next_event.tv64)
713                                 tick_broadcast_set_event(bc, cpu, dev->next_event, 1);
714                 }
715                 /*
716                  * If the current CPU owns the hrtimer broadcast
717                  * mechanism, it cannot go deep idle and we remove the
718                  * CPU from the broadcast mask. We don't have to go
719                  * through the EXIT path as the local timer is not
720                  * shutdown.
721                  */
722                 ret = broadcast_needs_cpu(bc, cpu);
723                 if (ret)
724                         cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
725         } else {
726                 if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_oneshot_mask)) {
727                         clockevents_set_mode(dev, CLOCK_EVT_MODE_ONESHOT);
728                         /*
729                          * The cpu which was handling the broadcast
730                          * timer marked this cpu in the broadcast
731                          * pending mask and fired the broadcast
732                          * IPI. So we are going to handle the expired
733                          * event anyway via the broadcast IPI
734                          * handler. No need to reprogram the timer
735                          * with an already expired event.
736                          */
737                         if (cpumask_test_and_clear_cpu(cpu,
738                                        tick_broadcast_pending_mask))
739                                 goto out;
740
741                         /*
742                          * Bail out if there is no next event.
743                          */
744                         if (dev->next_event.tv64 == KTIME_MAX)
745                                 goto out;
746                         /*
747                          * If the pending bit is not set, then we are
748                          * either the CPU handling the broadcast
749                          * interrupt or we got woken by something else.
750                          *
751                          * We are not longer in the broadcast mask, so
752                          * if the cpu local expiry time is already
753                          * reached, we would reprogram the cpu local
754                          * timer with an already expired event.
755                          *
756                          * This can lead to a ping-pong when we return
757                          * to idle and therefor rearm the broadcast
758                          * timer before the cpu local timer was able
759                          * to fire. This happens because the forced
760                          * reprogramming makes sure that the event
761                          * will happen in the future and depending on
762                          * the min_delta setting this might be far
763                          * enough out that the ping-pong starts.
764                          *
765                          * If the cpu local next_event has expired
766                          * then we know that the broadcast timer
767                          * next_event has expired as well and
768                          * broadcast is about to be handled. So we
769                          * avoid reprogramming and enforce that the
770                          * broadcast handler, which did not run yet,
771                          * will invoke the cpu local handler.
772                          *
773                          * We cannot call the handler directly from
774                          * here, because we might be in a NOHZ phase
775                          * and we did not go through the irq_enter()
776                          * nohz fixups.
777                          */
778                         now = ktime_get();
779                         if (dev->next_event.tv64 <= now.tv64) {
780                                 cpumask_set_cpu(cpu, tick_broadcast_force_mask);
781                                 goto out;
782                         }
783                         /*
784                          * We got woken by something else. Reprogram
785                          * the cpu local timer device.
786                          */
787                         tick_program_event(dev->next_event, 1);
788                 }
789         }
790 out:
791         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
792         return ret;
793 }
794
795 /*
796  * Reset the one shot broadcast for a cpu
797  *
798  * Called with tick_broadcast_lock held
799  */
800 static void tick_broadcast_clear_oneshot(int cpu)
801 {
802         cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
803         cpumask_clear_cpu(cpu, tick_broadcast_pending_mask);
804 }
805
806 static void tick_broadcast_init_next_event(struct cpumask *mask,
807                                            ktime_t expires)
808 {
809         struct tick_device *td;
810         int cpu;
811
812         for_each_cpu(cpu, mask) {
813                 td = &per_cpu(tick_cpu_device, cpu);
814                 if (td->evtdev)
815                         td->evtdev->next_event = expires;
816         }
817 }
818
819 /**
820  * tick_broadcast_setup_oneshot - setup the broadcast device
821  */
822 void tick_broadcast_setup_oneshot(struct clock_event_device *bc)
823 {
824         int cpu = smp_processor_id();
825
826         /* Set it up only once ! */
827         if (bc->event_handler != tick_handle_oneshot_broadcast) {
828                 int was_periodic = bc->mode == CLOCK_EVT_MODE_PERIODIC;
829
830                 bc->event_handler = tick_handle_oneshot_broadcast;
831
832                 /*
833                  * We must be careful here. There might be other CPUs
834                  * waiting for periodic broadcast. We need to set the
835                  * oneshot_mask bits for those and program the
836                  * broadcast device to fire.
837                  */
838                 cpumask_copy(tmpmask, tick_broadcast_mask);
839                 cpumask_clear_cpu(cpu, tmpmask);
840                 cpumask_or(tick_broadcast_oneshot_mask,
841                            tick_broadcast_oneshot_mask, tmpmask);
842
843                 if (was_periodic && !cpumask_empty(tmpmask)) {
844                         clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT);
845                         tick_broadcast_init_next_event(tmpmask,
846                                                        tick_next_period);
847                         tick_broadcast_set_event(bc, cpu, tick_next_period, 1);
848                 } else
849                         bc->next_event.tv64 = KTIME_MAX;
850         } else {
851                 /*
852                  * The first cpu which switches to oneshot mode sets
853                  * the bit for all other cpus which are in the general
854                  * (periodic) broadcast mask. So the bit is set and
855                  * would prevent the first broadcast enter after this
856                  * to program the bc device.
857                  */
858                 tick_broadcast_clear_oneshot(cpu);
859         }
860 }
861
862 /*
863  * Select oneshot operating mode for the broadcast device
864  */
865 void tick_broadcast_switch_to_oneshot(void)
866 {
867         struct clock_event_device *bc;
868         unsigned long flags;
869
870         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
871
872         tick_broadcast_device.mode = TICKDEV_MODE_ONESHOT;
873         bc = tick_broadcast_device.evtdev;
874         if (bc)
875                 tick_broadcast_setup_oneshot(bc);
876
877         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
878 }
879
880
881 /*
882  * Remove a dead CPU from broadcasting
883  */
884 void tick_shutdown_broadcast_oneshot(unsigned int *cpup)
885 {
886         unsigned long flags;
887         unsigned int cpu = *cpup;
888
889         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
890
891         /*
892          * Clear the broadcast masks for the dead cpu, but do not stop
893          * the broadcast device!
894          */
895         cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
896         cpumask_clear_cpu(cpu, tick_broadcast_pending_mask);
897         cpumask_clear_cpu(cpu, tick_broadcast_force_mask);
898
899         broadcast_move_bc(cpu);
900
901         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
902 }
903
904 /*
905  * Check, whether the broadcast device is in one shot mode
906  */
907 int tick_broadcast_oneshot_active(void)
908 {
909         return tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT;
910 }
911
912 /*
913  * Check whether the broadcast device supports oneshot.
914  */
915 bool tick_broadcast_oneshot_available(void)
916 {
917         struct clock_event_device *bc = tick_broadcast_device.evtdev;
918
919         return bc ? bc->features & CLOCK_EVT_FEAT_ONESHOT : false;
920 }
921
922 #endif
923
924 void __init tick_broadcast_init(void)
925 {
926         zalloc_cpumask_var(&tick_broadcast_mask, GFP_NOWAIT);
927         zalloc_cpumask_var(&tick_broadcast_on, GFP_NOWAIT);
928         zalloc_cpumask_var(&tmpmask, GFP_NOWAIT);
929 #ifdef CONFIG_TICK_ONESHOT
930         zalloc_cpumask_var(&tick_broadcast_oneshot_mask, GFP_NOWAIT);
931         zalloc_cpumask_var(&tick_broadcast_pending_mask, GFP_NOWAIT);
932         zalloc_cpumask_var(&tick_broadcast_force_mask, GFP_NOWAIT);
933 #endif
934 }