Merge tag 'upstream-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jgarzik...
[firefly-linux-kernel-4.4.55.git] / kernel / sched / sched.h
1
2 #include <linux/sched.h>
3 #include <linux/mutex.h>
4 #include <linux/spinlock.h>
5 #include <linux/stop_machine.h>
6
7 #include "cpupri.h"
8
9 extern __read_mostly int scheduler_running;
10
11 /*
12  * Convert user-nice values [ -20 ... 0 ... 19 ]
13  * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
14  * and back.
15  */
16 #define NICE_TO_PRIO(nice)      (MAX_RT_PRIO + (nice) + 20)
17 #define PRIO_TO_NICE(prio)      ((prio) - MAX_RT_PRIO - 20)
18 #define TASK_NICE(p)            PRIO_TO_NICE((p)->static_prio)
19
20 /*
21  * 'User priority' is the nice value converted to something we
22  * can work with better when scaling various scheduler parameters,
23  * it's a [ 0 ... 39 ] range.
24  */
25 #define USER_PRIO(p)            ((p)-MAX_RT_PRIO)
26 #define TASK_USER_PRIO(p)       USER_PRIO((p)->static_prio)
27 #define MAX_USER_PRIO           (USER_PRIO(MAX_PRIO))
28
29 /*
30  * Helpers for converting nanosecond timing to jiffy resolution
31  */
32 #define NS_TO_JIFFIES(TIME)     ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
33
34 #define NICE_0_LOAD             SCHED_LOAD_SCALE
35 #define NICE_0_SHIFT            SCHED_LOAD_SHIFT
36
37 /*
38  * These are the 'tuning knobs' of the scheduler:
39  */
40
41 /*
42  * single value that denotes runtime == period, ie unlimited time.
43  */
44 #define RUNTIME_INF     ((u64)~0ULL)
45
46 static inline int rt_policy(int policy)
47 {
48         if (policy == SCHED_FIFO || policy == SCHED_RR)
49                 return 1;
50         return 0;
51 }
52
53 static inline int task_has_rt_policy(struct task_struct *p)
54 {
55         return rt_policy(p->policy);
56 }
57
58 /*
59  * This is the priority-queue data structure of the RT scheduling class:
60  */
61 struct rt_prio_array {
62         DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
63         struct list_head queue[MAX_RT_PRIO];
64 };
65
66 struct rt_bandwidth {
67         /* nests inside the rq lock: */
68         raw_spinlock_t          rt_runtime_lock;
69         ktime_t                 rt_period;
70         u64                     rt_runtime;
71         struct hrtimer          rt_period_timer;
72 };
73
74 extern struct mutex sched_domains_mutex;
75
76 #ifdef CONFIG_CGROUP_SCHED
77
78 #include <linux/cgroup.h>
79
80 struct cfs_rq;
81 struct rt_rq;
82
83 extern struct list_head task_groups;
84
85 struct cfs_bandwidth {
86 #ifdef CONFIG_CFS_BANDWIDTH
87         raw_spinlock_t lock;
88         ktime_t period;
89         u64 quota, runtime;
90         s64 hierarchal_quota;
91         u64 runtime_expires;
92
93         int idle, timer_active;
94         struct hrtimer period_timer, slack_timer;
95         struct list_head throttled_cfs_rq;
96
97         /* statistics */
98         int nr_periods, nr_throttled;
99         u64 throttled_time;
100 #endif
101 };
102
103 /* task group related information */
104 struct task_group {
105         struct cgroup_subsys_state css;
106
107 #ifdef CONFIG_FAIR_GROUP_SCHED
108         /* schedulable entities of this group on each cpu */
109         struct sched_entity **se;
110         /* runqueue "owned" by this group on each cpu */
111         struct cfs_rq **cfs_rq;
112         unsigned long shares;
113
114         atomic_t load_weight;
115         atomic64_t load_avg;
116         atomic_t runnable_avg;
117 #endif
118
119 #ifdef CONFIG_RT_GROUP_SCHED
120         struct sched_rt_entity **rt_se;
121         struct rt_rq **rt_rq;
122
123         struct rt_bandwidth rt_bandwidth;
124 #endif
125
126         struct rcu_head rcu;
127         struct list_head list;
128
129         struct task_group *parent;
130         struct list_head siblings;
131         struct list_head children;
132
133 #ifdef CONFIG_SCHED_AUTOGROUP
134         struct autogroup *autogroup;
135 #endif
136
137         struct cfs_bandwidth cfs_bandwidth;
138 };
139
140 #ifdef CONFIG_FAIR_GROUP_SCHED
141 #define ROOT_TASK_GROUP_LOAD    NICE_0_LOAD
142
143 /*
144  * A weight of 0 or 1 can cause arithmetics problems.
145  * A weight of a cfs_rq is the sum of weights of which entities
146  * are queued on this cfs_rq, so a weight of a entity should not be
147  * too large, so as the shares value of a task group.
148  * (The default weight is 1024 - so there's no practical
149  *  limitation from this.)
150  */
151 #define MIN_SHARES      (1UL <<  1)
152 #define MAX_SHARES      (1UL << 18)
153 #endif
154
155 /* Default task group.
156  *      Every task in system belong to this group at bootup.
157  */
158 extern struct task_group root_task_group;
159
160 typedef int (*tg_visitor)(struct task_group *, void *);
161
162 extern int walk_tg_tree_from(struct task_group *from,
163                              tg_visitor down, tg_visitor up, void *data);
164
165 /*
166  * Iterate the full tree, calling @down when first entering a node and @up when
167  * leaving it for the final time.
168  *
169  * Caller must hold rcu_lock or sufficient equivalent.
170  */
171 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
172 {
173         return walk_tg_tree_from(&root_task_group, down, up, data);
174 }
175
176 extern int tg_nop(struct task_group *tg, void *data);
177
178 extern void free_fair_sched_group(struct task_group *tg);
179 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
180 extern void unregister_fair_sched_group(struct task_group *tg, int cpu);
181 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
182                         struct sched_entity *se, int cpu,
183                         struct sched_entity *parent);
184 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
185 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
186
187 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
188 extern void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
189 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
190
191 extern void free_rt_sched_group(struct task_group *tg);
192 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
193 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
194                 struct sched_rt_entity *rt_se, int cpu,
195                 struct sched_rt_entity *parent);
196
197 #else /* CONFIG_CGROUP_SCHED */
198
199 struct cfs_bandwidth { };
200
201 #endif  /* CONFIG_CGROUP_SCHED */
202
203 /* CFS-related fields in a runqueue */
204 struct cfs_rq {
205         struct load_weight load;
206         unsigned int nr_running, h_nr_running;
207
208         u64 exec_clock;
209         u64 min_vruntime;
210 #ifndef CONFIG_64BIT
211         u64 min_vruntime_copy;
212 #endif
213
214         struct rb_root tasks_timeline;
215         struct rb_node *rb_leftmost;
216
217         /*
218          * 'curr' points to currently running entity on this cfs_rq.
219          * It is set to NULL otherwise (i.e when none are currently running).
220          */
221         struct sched_entity *curr, *next, *last, *skip;
222
223 #ifdef  CONFIG_SCHED_DEBUG
224         unsigned int nr_spread_over;
225 #endif
226
227 #ifdef CONFIG_SMP
228 /*
229  * Load-tracking only depends on SMP, FAIR_GROUP_SCHED dependency below may be
230  * removed when useful for applications beyond shares distribution (e.g.
231  * load-balance).
232  */
233 #ifdef CONFIG_FAIR_GROUP_SCHED
234         /*
235          * CFS Load tracking
236          * Under CFS, load is tracked on a per-entity basis and aggregated up.
237          * This allows for the description of both thread and group usage (in
238          * the FAIR_GROUP_SCHED case).
239          */
240         u64 runnable_load_avg, blocked_load_avg;
241         atomic64_t decay_counter, removed_load;
242         u64 last_decay;
243 #endif /* CONFIG_FAIR_GROUP_SCHED */
244 /* These always depend on CONFIG_FAIR_GROUP_SCHED */
245 #ifdef CONFIG_FAIR_GROUP_SCHED
246         u32 tg_runnable_contrib;
247         u64 tg_load_contrib;
248 #endif /* CONFIG_FAIR_GROUP_SCHED */
249
250         /*
251          *   h_load = weight * f(tg)
252          *
253          * Where f(tg) is the recursive weight fraction assigned to
254          * this group.
255          */
256         unsigned long h_load;
257 #endif /* CONFIG_SMP */
258
259 #ifdef CONFIG_FAIR_GROUP_SCHED
260         struct rq *rq;  /* cpu runqueue to which this cfs_rq is attached */
261
262         /*
263          * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
264          * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
265          * (like users, containers etc.)
266          *
267          * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
268          * list is used during load balance.
269          */
270         int on_list;
271         struct list_head leaf_cfs_rq_list;
272         struct task_group *tg;  /* group that "owns" this runqueue */
273
274 #ifdef CONFIG_CFS_BANDWIDTH
275         int runtime_enabled;
276         u64 runtime_expires;
277         s64 runtime_remaining;
278
279         u64 throttled_clock, throttled_clock_task;
280         u64 throttled_clock_task_time;
281         int throttled, throttle_count;
282         struct list_head throttled_list;
283 #endif /* CONFIG_CFS_BANDWIDTH */
284 #endif /* CONFIG_FAIR_GROUP_SCHED */
285 };
286
287 static inline int rt_bandwidth_enabled(void)
288 {
289         return sysctl_sched_rt_runtime >= 0;
290 }
291
292 /* Real-Time classes' related field in a runqueue: */
293 struct rt_rq {
294         struct rt_prio_array active;
295         unsigned int rt_nr_running;
296 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
297         struct {
298                 int curr; /* highest queued rt task prio */
299 #ifdef CONFIG_SMP
300                 int next; /* next highest */
301 #endif
302         } highest_prio;
303 #endif
304 #ifdef CONFIG_SMP
305         unsigned long rt_nr_migratory;
306         unsigned long rt_nr_total;
307         int overloaded;
308         struct plist_head pushable_tasks;
309 #endif
310         int rt_throttled;
311         u64 rt_time;
312         u64 rt_runtime;
313         /* Nests inside the rq lock: */
314         raw_spinlock_t rt_runtime_lock;
315
316 #ifdef CONFIG_RT_GROUP_SCHED
317         unsigned long rt_nr_boosted;
318
319         struct rq *rq;
320         struct list_head leaf_rt_rq_list;
321         struct task_group *tg;
322 #endif
323 };
324
325 #ifdef CONFIG_SMP
326
327 /*
328  * We add the notion of a root-domain which will be used to define per-domain
329  * variables. Each exclusive cpuset essentially defines an island domain by
330  * fully partitioning the member cpus from any other cpuset. Whenever a new
331  * exclusive cpuset is created, we also create and attach a new root-domain
332  * object.
333  *
334  */
335 struct root_domain {
336         atomic_t refcount;
337         atomic_t rto_count;
338         struct rcu_head rcu;
339         cpumask_var_t span;
340         cpumask_var_t online;
341
342         /*
343          * The "RT overload" flag: it gets set if a CPU has more than
344          * one runnable RT task.
345          */
346         cpumask_var_t rto_mask;
347         struct cpupri cpupri;
348 };
349
350 extern struct root_domain def_root_domain;
351
352 #endif /* CONFIG_SMP */
353
354 /*
355  * This is the main, per-CPU runqueue data structure.
356  *
357  * Locking rule: those places that want to lock multiple runqueues
358  * (such as the load balancing or the thread migration code), lock
359  * acquire operations must be ordered by ascending &runqueue.
360  */
361 struct rq {
362         /* runqueue lock: */
363         raw_spinlock_t lock;
364
365         /*
366          * nr_running and cpu_load should be in the same cacheline because
367          * remote CPUs use both these fields when doing load calculation.
368          */
369         unsigned int nr_running;
370         #define CPU_LOAD_IDX_MAX 5
371         unsigned long cpu_load[CPU_LOAD_IDX_MAX];
372         unsigned long last_load_update_tick;
373 #ifdef CONFIG_NO_HZ
374         u64 nohz_stamp;
375         unsigned long nohz_flags;
376 #endif
377         int skip_clock_update;
378
379         /* capture load from *all* tasks on this cpu: */
380         struct load_weight load;
381         unsigned long nr_load_updates;
382         u64 nr_switches;
383
384         struct cfs_rq cfs;
385         struct rt_rq rt;
386
387 #ifdef CONFIG_FAIR_GROUP_SCHED
388         /* list of leaf cfs_rq on this cpu: */
389         struct list_head leaf_cfs_rq_list;
390 #ifdef CONFIG_SMP
391         unsigned long h_load_throttle;
392 #endif /* CONFIG_SMP */
393 #endif /* CONFIG_FAIR_GROUP_SCHED */
394
395 #ifdef CONFIG_RT_GROUP_SCHED
396         struct list_head leaf_rt_rq_list;
397 #endif
398
399         /*
400          * This is part of a global counter where only the total sum
401          * over all CPUs matters. A task can increase this counter on
402          * one CPU and if it got migrated afterwards it may decrease
403          * it on another CPU. Always updated under the runqueue lock:
404          */
405         unsigned long nr_uninterruptible;
406
407         struct task_struct *curr, *idle, *stop;
408         unsigned long next_balance;
409         struct mm_struct *prev_mm;
410
411         u64 clock;
412         u64 clock_task;
413
414         atomic_t nr_iowait;
415
416 #ifdef CONFIG_SMP
417         struct root_domain *rd;
418         struct sched_domain *sd;
419
420         unsigned long cpu_power;
421
422         unsigned char idle_balance;
423         /* For active balancing */
424         int post_schedule;
425         int active_balance;
426         int push_cpu;
427         struct cpu_stop_work active_balance_work;
428         /* cpu of this runqueue: */
429         int cpu;
430         int online;
431
432         struct list_head cfs_tasks;
433
434         u64 rt_avg;
435         u64 age_stamp;
436         u64 idle_stamp;
437         u64 avg_idle;
438 #endif
439
440 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
441         u64 prev_irq_time;
442 #endif
443 #ifdef CONFIG_PARAVIRT
444         u64 prev_steal_time;
445 #endif
446 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
447         u64 prev_steal_time_rq;
448 #endif
449
450         /* calc_load related fields */
451         unsigned long calc_load_update;
452         long calc_load_active;
453
454 #ifdef CONFIG_SCHED_HRTICK
455 #ifdef CONFIG_SMP
456         int hrtick_csd_pending;
457         struct call_single_data hrtick_csd;
458 #endif
459         struct hrtimer hrtick_timer;
460 #endif
461
462 #ifdef CONFIG_SCHEDSTATS
463         /* latency stats */
464         struct sched_info rq_sched_info;
465         unsigned long long rq_cpu_time;
466         /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
467
468         /* sys_sched_yield() stats */
469         unsigned int yld_count;
470
471         /* schedule() stats */
472         unsigned int sched_count;
473         unsigned int sched_goidle;
474
475         /* try_to_wake_up() stats */
476         unsigned int ttwu_count;
477         unsigned int ttwu_local;
478 #endif
479
480 #ifdef CONFIG_SMP
481         struct llist_head wake_list;
482 #endif
483
484         struct sched_avg avg;
485 };
486
487 static inline int cpu_of(struct rq *rq)
488 {
489 #ifdef CONFIG_SMP
490         return rq->cpu;
491 #else
492         return 0;
493 #endif
494 }
495
496 DECLARE_PER_CPU(struct rq, runqueues);
497
498 #define cpu_rq(cpu)             (&per_cpu(runqueues, (cpu)))
499 #define this_rq()               (&__get_cpu_var(runqueues))
500 #define task_rq(p)              cpu_rq(task_cpu(p))
501 #define cpu_curr(cpu)           (cpu_rq(cpu)->curr)
502 #define raw_rq()                (&__raw_get_cpu_var(runqueues))
503
504 #ifdef CONFIG_SMP
505
506 #define rcu_dereference_check_sched_domain(p) \
507         rcu_dereference_check((p), \
508                               lockdep_is_held(&sched_domains_mutex))
509
510 /*
511  * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
512  * See detach_destroy_domains: synchronize_sched for details.
513  *
514  * The domain tree of any CPU may only be accessed from within
515  * preempt-disabled sections.
516  */
517 #define for_each_domain(cpu, __sd) \
518         for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
519                         __sd; __sd = __sd->parent)
520
521 #define for_each_lower_domain(sd) for (; sd; sd = sd->child)
522
523 /**
524  * highest_flag_domain - Return highest sched_domain containing flag.
525  * @cpu:        The cpu whose highest level of sched domain is to
526  *              be returned.
527  * @flag:       The flag to check for the highest sched_domain
528  *              for the given cpu.
529  *
530  * Returns the highest sched_domain of a cpu which contains the given flag.
531  */
532 static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
533 {
534         struct sched_domain *sd, *hsd = NULL;
535
536         for_each_domain(cpu, sd) {
537                 if (!(sd->flags & flag))
538                         break;
539                 hsd = sd;
540         }
541
542         return hsd;
543 }
544
545 DECLARE_PER_CPU(struct sched_domain *, sd_llc);
546 DECLARE_PER_CPU(int, sd_llc_id);
547
548 extern int group_balance_cpu(struct sched_group *sg);
549
550 #endif /* CONFIG_SMP */
551
552 #include "stats.h"
553 #include "auto_group.h"
554
555 #ifdef CONFIG_CGROUP_SCHED
556
557 /*
558  * Return the group to which this tasks belongs.
559  *
560  * We cannot use task_subsys_state() and friends because the cgroup
561  * subsystem changes that value before the cgroup_subsys::attach() method
562  * is called, therefore we cannot pin it and might observe the wrong value.
563  *
564  * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
565  * core changes this before calling sched_move_task().
566  *
567  * Instead we use a 'copy' which is updated from sched_move_task() while
568  * holding both task_struct::pi_lock and rq::lock.
569  */
570 static inline struct task_group *task_group(struct task_struct *p)
571 {
572         return p->sched_task_group;
573 }
574
575 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
576 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
577 {
578 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
579         struct task_group *tg = task_group(p);
580 #endif
581
582 #ifdef CONFIG_FAIR_GROUP_SCHED
583         p->se.cfs_rq = tg->cfs_rq[cpu];
584         p->se.parent = tg->se[cpu];
585 #endif
586
587 #ifdef CONFIG_RT_GROUP_SCHED
588         p->rt.rt_rq  = tg->rt_rq[cpu];
589         p->rt.parent = tg->rt_se[cpu];
590 #endif
591 }
592
593 #else /* CONFIG_CGROUP_SCHED */
594
595 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
596 static inline struct task_group *task_group(struct task_struct *p)
597 {
598         return NULL;
599 }
600
601 #endif /* CONFIG_CGROUP_SCHED */
602
603 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
604 {
605         set_task_rq(p, cpu);
606 #ifdef CONFIG_SMP
607         /*
608          * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
609          * successfuly executed on another CPU. We must ensure that updates of
610          * per-task data have been completed by this moment.
611          */
612         smp_wmb();
613         task_thread_info(p)->cpu = cpu;
614 #endif
615 }
616
617 /*
618  * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
619  */
620 #ifdef CONFIG_SCHED_DEBUG
621 # include <linux/static_key.h>
622 # define const_debug __read_mostly
623 #else
624 # define const_debug const
625 #endif
626
627 extern const_debug unsigned int sysctl_sched_features;
628
629 #define SCHED_FEAT(name, enabled)       \
630         __SCHED_FEAT_##name ,
631
632 enum {
633 #include "features.h"
634         __SCHED_FEAT_NR,
635 };
636
637 #undef SCHED_FEAT
638
639 #if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
640 static __always_inline bool static_branch__true(struct static_key *key)
641 {
642         return static_key_true(key); /* Not out of line branch. */
643 }
644
645 static __always_inline bool static_branch__false(struct static_key *key)
646 {
647         return static_key_false(key); /* Out of line branch. */
648 }
649
650 #define SCHED_FEAT(name, enabled)                                       \
651 static __always_inline bool static_branch_##name(struct static_key *key) \
652 {                                                                       \
653         return static_branch__##enabled(key);                           \
654 }
655
656 #include "features.h"
657
658 #undef SCHED_FEAT
659
660 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
661 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
662 #else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
663 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
664 #endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
665
666 static inline u64 global_rt_period(void)
667 {
668         return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
669 }
670
671 static inline u64 global_rt_runtime(void)
672 {
673         if (sysctl_sched_rt_runtime < 0)
674                 return RUNTIME_INF;
675
676         return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
677 }
678
679
680
681 static inline int task_current(struct rq *rq, struct task_struct *p)
682 {
683         return rq->curr == p;
684 }
685
686 static inline int task_running(struct rq *rq, struct task_struct *p)
687 {
688 #ifdef CONFIG_SMP
689         return p->on_cpu;
690 #else
691         return task_current(rq, p);
692 #endif
693 }
694
695
696 #ifndef prepare_arch_switch
697 # define prepare_arch_switch(next)      do { } while (0)
698 #endif
699 #ifndef finish_arch_switch
700 # define finish_arch_switch(prev)       do { } while (0)
701 #endif
702 #ifndef finish_arch_post_lock_switch
703 # define finish_arch_post_lock_switch() do { } while (0)
704 #endif
705
706 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
707 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
708 {
709 #ifdef CONFIG_SMP
710         /*
711          * We can optimise this out completely for !SMP, because the
712          * SMP rebalancing from interrupt is the only thing that cares
713          * here.
714          */
715         next->on_cpu = 1;
716 #endif
717 }
718
719 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
720 {
721 #ifdef CONFIG_SMP
722         /*
723          * After ->on_cpu is cleared, the task can be moved to a different CPU.
724          * We must ensure this doesn't happen until the switch is completely
725          * finished.
726          */
727         smp_wmb();
728         prev->on_cpu = 0;
729 #endif
730 #ifdef CONFIG_DEBUG_SPINLOCK
731         /* this is a valid case when another task releases the spinlock */
732         rq->lock.owner = current;
733 #endif
734         /*
735          * If we are tracking spinlock dependencies then we have to
736          * fix up the runqueue lock - which gets 'carried over' from
737          * prev into current:
738          */
739         spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
740
741         raw_spin_unlock_irq(&rq->lock);
742 }
743
744 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
745 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
746 {
747 #ifdef CONFIG_SMP
748         /*
749          * We can optimise this out completely for !SMP, because the
750          * SMP rebalancing from interrupt is the only thing that cares
751          * here.
752          */
753         next->on_cpu = 1;
754 #endif
755         raw_spin_unlock(&rq->lock);
756 }
757
758 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
759 {
760 #ifdef CONFIG_SMP
761         /*
762          * After ->on_cpu is cleared, the task can be moved to a different CPU.
763          * We must ensure this doesn't happen until the switch is completely
764          * finished.
765          */
766         smp_wmb();
767         prev->on_cpu = 0;
768 #endif
769         local_irq_enable();
770 }
771 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
772
773
774 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
775 {
776         lw->weight += inc;
777         lw->inv_weight = 0;
778 }
779
780 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
781 {
782         lw->weight -= dec;
783         lw->inv_weight = 0;
784 }
785
786 static inline void update_load_set(struct load_weight *lw, unsigned long w)
787 {
788         lw->weight = w;
789         lw->inv_weight = 0;
790 }
791
792 /*
793  * To aid in avoiding the subversion of "niceness" due to uneven distribution
794  * of tasks with abnormal "nice" values across CPUs the contribution that
795  * each task makes to its run queue's load is weighted according to its
796  * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
797  * scaled version of the new time slice allocation that they receive on time
798  * slice expiry etc.
799  */
800
801 #define WEIGHT_IDLEPRIO                3
802 #define WMULT_IDLEPRIO         1431655765
803
804 /*
805  * Nice levels are multiplicative, with a gentle 10% change for every
806  * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
807  * nice 1, it will get ~10% less CPU time than another CPU-bound task
808  * that remained on nice 0.
809  *
810  * The "10% effect" is relative and cumulative: from _any_ nice level,
811  * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
812  * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
813  * If a task goes up by ~10% and another task goes down by ~10% then
814  * the relative distance between them is ~25%.)
815  */
816 static const int prio_to_weight[40] = {
817  /* -20 */     88761,     71755,     56483,     46273,     36291,
818  /* -15 */     29154,     23254,     18705,     14949,     11916,
819  /* -10 */      9548,      7620,      6100,      4904,      3906,
820  /*  -5 */      3121,      2501,      1991,      1586,      1277,
821  /*   0 */      1024,       820,       655,       526,       423,
822  /*   5 */       335,       272,       215,       172,       137,
823  /*  10 */       110,        87,        70,        56,        45,
824  /*  15 */        36,        29,        23,        18,        15,
825 };
826
827 /*
828  * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
829  *
830  * In cases where the weight does not change often, we can use the
831  * precalculated inverse to speed up arithmetics by turning divisions
832  * into multiplications:
833  */
834 static const u32 prio_to_wmult[40] = {
835  /* -20 */     48388,     59856,     76040,     92818,    118348,
836  /* -15 */    147320,    184698,    229616,    287308,    360437,
837  /* -10 */    449829,    563644,    704093,    875809,   1099582,
838  /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
839  /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
840  /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
841  /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
842  /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
843 };
844
845 /* Time spent by the tasks of the cpu accounting group executing in ... */
846 enum cpuacct_stat_index {
847         CPUACCT_STAT_USER,      /* ... user mode */
848         CPUACCT_STAT_SYSTEM,    /* ... kernel mode */
849
850         CPUACCT_STAT_NSTATS,
851 };
852
853
854 #define sched_class_highest (&stop_sched_class)
855 #define for_each_class(class) \
856    for (class = sched_class_highest; class; class = class->next)
857
858 extern const struct sched_class stop_sched_class;
859 extern const struct sched_class rt_sched_class;
860 extern const struct sched_class fair_sched_class;
861 extern const struct sched_class idle_sched_class;
862
863
864 #ifdef CONFIG_SMP
865
866 extern void trigger_load_balance(struct rq *rq, int cpu);
867 extern void idle_balance(int this_cpu, struct rq *this_rq);
868
869 #else   /* CONFIG_SMP */
870
871 static inline void idle_balance(int cpu, struct rq *rq)
872 {
873 }
874
875 #endif
876
877 extern void sysrq_sched_debug_show(void);
878 extern void sched_init_granularity(void);
879 extern void update_max_interval(void);
880 extern void update_group_power(struct sched_domain *sd, int cpu);
881 extern int update_runtime(struct notifier_block *nfb, unsigned long action, void *hcpu);
882 extern void init_sched_rt_class(void);
883 extern void init_sched_fair_class(void);
884
885 extern void resched_task(struct task_struct *p);
886 extern void resched_cpu(int cpu);
887
888 extern struct rt_bandwidth def_rt_bandwidth;
889 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
890
891 extern void update_idle_cpu_load(struct rq *this_rq);
892
893 #ifdef CONFIG_CGROUP_CPUACCT
894 #include <linux/cgroup.h>
895 /* track cpu usage of a group of tasks and its child groups */
896 struct cpuacct {
897         struct cgroup_subsys_state css;
898         /* cpuusage holds pointer to a u64-type object on every cpu */
899         u64 __percpu *cpuusage;
900         struct kernel_cpustat __percpu *cpustat;
901 };
902
903 extern struct cgroup_subsys cpuacct_subsys;
904 extern struct cpuacct root_cpuacct;
905
906 /* return cpu accounting group corresponding to this container */
907 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
908 {
909         return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
910                             struct cpuacct, css);
911 }
912
913 /* return cpu accounting group to which this task belongs */
914 static inline struct cpuacct *task_ca(struct task_struct *tsk)
915 {
916         return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
917                             struct cpuacct, css);
918 }
919
920 static inline struct cpuacct *parent_ca(struct cpuacct *ca)
921 {
922         if (!ca || !ca->css.cgroup->parent)
923                 return NULL;
924         return cgroup_ca(ca->css.cgroup->parent);
925 }
926
927 extern void cpuacct_charge(struct task_struct *tsk, u64 cputime);
928 #else
929 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
930 #endif
931
932 #ifdef CONFIG_PARAVIRT
933 static inline u64 steal_ticks(u64 steal)
934 {
935         if (unlikely(steal > NSEC_PER_SEC))
936                 return div_u64(steal, TICK_NSEC);
937
938         return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
939 }
940 #endif
941
942 static inline void inc_nr_running(struct rq *rq)
943 {
944         rq->nr_running++;
945 }
946
947 static inline void dec_nr_running(struct rq *rq)
948 {
949         rq->nr_running--;
950 }
951
952 extern void update_rq_clock(struct rq *rq);
953
954 extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
955 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
956
957 extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
958
959 extern const_debug unsigned int sysctl_sched_time_avg;
960 extern const_debug unsigned int sysctl_sched_nr_migrate;
961 extern const_debug unsigned int sysctl_sched_migration_cost;
962
963 static inline u64 sched_avg_period(void)
964 {
965         return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
966 }
967
968 #ifdef CONFIG_SCHED_HRTICK
969
970 /*
971  * Use hrtick when:
972  *  - enabled by features
973  *  - hrtimer is actually high res
974  */
975 static inline int hrtick_enabled(struct rq *rq)
976 {
977         if (!sched_feat(HRTICK))
978                 return 0;
979         if (!cpu_active(cpu_of(rq)))
980                 return 0;
981         return hrtimer_is_hres_active(&rq->hrtick_timer);
982 }
983
984 void hrtick_start(struct rq *rq, u64 delay);
985
986 #else
987
988 static inline int hrtick_enabled(struct rq *rq)
989 {
990         return 0;
991 }
992
993 #endif /* CONFIG_SCHED_HRTICK */
994
995 #ifdef CONFIG_SMP
996 extern void sched_avg_update(struct rq *rq);
997 static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
998 {
999         rq->rt_avg += rt_delta;
1000         sched_avg_update(rq);
1001 }
1002 #else
1003 static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { }
1004 static inline void sched_avg_update(struct rq *rq) { }
1005 #endif
1006
1007 extern void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period);
1008
1009 #ifdef CONFIG_SMP
1010 #ifdef CONFIG_PREEMPT
1011
1012 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
1013
1014 /*
1015  * fair double_lock_balance: Safely acquires both rq->locks in a fair
1016  * way at the expense of forcing extra atomic operations in all
1017  * invocations.  This assures that the double_lock is acquired using the
1018  * same underlying policy as the spinlock_t on this architecture, which
1019  * reduces latency compared to the unfair variant below.  However, it
1020  * also adds more overhead and therefore may reduce throughput.
1021  */
1022 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1023         __releases(this_rq->lock)
1024         __acquires(busiest->lock)
1025         __acquires(this_rq->lock)
1026 {
1027         raw_spin_unlock(&this_rq->lock);
1028         double_rq_lock(this_rq, busiest);
1029
1030         return 1;
1031 }
1032
1033 #else
1034 /*
1035  * Unfair double_lock_balance: Optimizes throughput at the expense of
1036  * latency by eliminating extra atomic operations when the locks are
1037  * already in proper order on entry.  This favors lower cpu-ids and will
1038  * grant the double lock to lower cpus over higher ids under contention,
1039  * regardless of entry order into the function.
1040  */
1041 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1042         __releases(this_rq->lock)
1043         __acquires(busiest->lock)
1044         __acquires(this_rq->lock)
1045 {
1046         int ret = 0;
1047
1048         if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1049                 if (busiest < this_rq) {
1050                         raw_spin_unlock(&this_rq->lock);
1051                         raw_spin_lock(&busiest->lock);
1052                         raw_spin_lock_nested(&this_rq->lock,
1053                                               SINGLE_DEPTH_NESTING);
1054                         ret = 1;
1055                 } else
1056                         raw_spin_lock_nested(&busiest->lock,
1057                                               SINGLE_DEPTH_NESTING);
1058         }
1059         return ret;
1060 }
1061
1062 #endif /* CONFIG_PREEMPT */
1063
1064 /*
1065  * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1066  */
1067 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1068 {
1069         if (unlikely(!irqs_disabled())) {
1070                 /* printk() doesn't work good under rq->lock */
1071                 raw_spin_unlock(&this_rq->lock);
1072                 BUG_ON(1);
1073         }
1074
1075         return _double_lock_balance(this_rq, busiest);
1076 }
1077
1078 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1079         __releases(busiest->lock)
1080 {
1081         raw_spin_unlock(&busiest->lock);
1082         lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1083 }
1084
1085 /*
1086  * double_rq_lock - safely lock two runqueues
1087  *
1088  * Note this does not disable interrupts like task_rq_lock,
1089  * you need to do so manually before calling.
1090  */
1091 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1092         __acquires(rq1->lock)
1093         __acquires(rq2->lock)
1094 {
1095         BUG_ON(!irqs_disabled());
1096         if (rq1 == rq2) {
1097                 raw_spin_lock(&rq1->lock);
1098                 __acquire(rq2->lock);   /* Fake it out ;) */
1099         } else {
1100                 if (rq1 < rq2) {
1101                         raw_spin_lock(&rq1->lock);
1102                         raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1103                 } else {
1104                         raw_spin_lock(&rq2->lock);
1105                         raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1106                 }
1107         }
1108 }
1109
1110 /*
1111  * double_rq_unlock - safely unlock two runqueues
1112  *
1113  * Note this does not restore interrupts like task_rq_unlock,
1114  * you need to do so manually after calling.
1115  */
1116 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1117         __releases(rq1->lock)
1118         __releases(rq2->lock)
1119 {
1120         raw_spin_unlock(&rq1->lock);
1121         if (rq1 != rq2)
1122                 raw_spin_unlock(&rq2->lock);
1123         else
1124                 __release(rq2->lock);
1125 }
1126
1127 #else /* CONFIG_SMP */
1128
1129 /*
1130  * double_rq_lock - safely lock two runqueues
1131  *
1132  * Note this does not disable interrupts like task_rq_lock,
1133  * you need to do so manually before calling.
1134  */
1135 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1136         __acquires(rq1->lock)
1137         __acquires(rq2->lock)
1138 {
1139         BUG_ON(!irqs_disabled());
1140         BUG_ON(rq1 != rq2);
1141         raw_spin_lock(&rq1->lock);
1142         __acquire(rq2->lock);   /* Fake it out ;) */
1143 }
1144
1145 /*
1146  * double_rq_unlock - safely unlock two runqueues
1147  *
1148  * Note this does not restore interrupts like task_rq_unlock,
1149  * you need to do so manually after calling.
1150  */
1151 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1152         __releases(rq1->lock)
1153         __releases(rq2->lock)
1154 {
1155         BUG_ON(rq1 != rq2);
1156         raw_spin_unlock(&rq1->lock);
1157         __release(rq2->lock);
1158 }
1159
1160 #endif
1161
1162 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
1163 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
1164 extern void print_cfs_stats(struct seq_file *m, int cpu);
1165 extern void print_rt_stats(struct seq_file *m, int cpu);
1166
1167 extern void init_cfs_rq(struct cfs_rq *cfs_rq);
1168 extern void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq);
1169
1170 extern void account_cfs_bandwidth_used(int enabled, int was_enabled);
1171
1172 #ifdef CONFIG_NO_HZ
1173 enum rq_nohz_flag_bits {
1174         NOHZ_TICK_STOPPED,
1175         NOHZ_BALANCE_KICK,
1176         NOHZ_IDLE,
1177 };
1178
1179 #define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
1180 #endif
1181
1182 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1183
1184 DECLARE_PER_CPU(u64, cpu_hardirq_time);
1185 DECLARE_PER_CPU(u64, cpu_softirq_time);
1186
1187 #ifndef CONFIG_64BIT
1188 DECLARE_PER_CPU(seqcount_t, irq_time_seq);
1189
1190 static inline void irq_time_write_begin(void)
1191 {
1192         __this_cpu_inc(irq_time_seq.sequence);
1193         smp_wmb();
1194 }
1195
1196 static inline void irq_time_write_end(void)
1197 {
1198         smp_wmb();
1199         __this_cpu_inc(irq_time_seq.sequence);
1200 }
1201
1202 static inline u64 irq_time_read(int cpu)
1203 {
1204         u64 irq_time;
1205         unsigned seq;
1206
1207         do {
1208                 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1209                 irq_time = per_cpu(cpu_softirq_time, cpu) +
1210                            per_cpu(cpu_hardirq_time, cpu);
1211         } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1212
1213         return irq_time;
1214 }
1215 #else /* CONFIG_64BIT */
1216 static inline void irq_time_write_begin(void)
1217 {
1218 }
1219
1220 static inline void irq_time_write_end(void)
1221 {
1222 }
1223
1224 static inline u64 irq_time_read(int cpu)
1225 {
1226         return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1227 }
1228 #endif /* CONFIG_64BIT */
1229 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */