drm/panel: add panel power delay for of_panel
[firefly-linux-kernel-4.4.55.git] / kernel / sched / rt.c
1 /*
2  * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
3  * policies)
4  */
5
6 #include "sched.h"
7
8 #include <linux/slab.h>
9 #include <linux/irq_work.h>
10
11 #include "walt.h"
12
13 int sched_rr_timeslice = RR_TIMESLICE;
14
15 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
16
17 struct rt_bandwidth def_rt_bandwidth;
18
19 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
20 {
21         struct rt_bandwidth *rt_b =
22                 container_of(timer, struct rt_bandwidth, rt_period_timer);
23         int idle = 0;
24         int overrun;
25
26         raw_spin_lock(&rt_b->rt_runtime_lock);
27         for (;;) {
28                 overrun = hrtimer_forward_now(timer, rt_b->rt_period);
29                 if (!overrun)
30                         break;
31
32                 raw_spin_unlock(&rt_b->rt_runtime_lock);
33                 idle = do_sched_rt_period_timer(rt_b, overrun);
34                 raw_spin_lock(&rt_b->rt_runtime_lock);
35         }
36         if (idle)
37                 rt_b->rt_period_active = 0;
38         raw_spin_unlock(&rt_b->rt_runtime_lock);
39
40         return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
41 }
42
43 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
44 {
45         rt_b->rt_period = ns_to_ktime(period);
46         rt_b->rt_runtime = runtime;
47
48         raw_spin_lock_init(&rt_b->rt_runtime_lock);
49
50         hrtimer_init(&rt_b->rt_period_timer,
51                         CLOCK_MONOTONIC, HRTIMER_MODE_REL);
52         rt_b->rt_period_timer.function = sched_rt_period_timer;
53 }
54
55 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
56 {
57         if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
58                 return;
59
60         raw_spin_lock(&rt_b->rt_runtime_lock);
61         if (!rt_b->rt_period_active) {
62                 rt_b->rt_period_active = 1;
63                 hrtimer_forward_now(&rt_b->rt_period_timer, rt_b->rt_period);
64                 hrtimer_start_expires(&rt_b->rt_period_timer, HRTIMER_MODE_ABS_PINNED);
65         }
66         raw_spin_unlock(&rt_b->rt_runtime_lock);
67 }
68
69 #if defined(CONFIG_SMP) && defined(HAVE_RT_PUSH_IPI)
70 static void push_irq_work_func(struct irq_work *work);
71 #endif
72
73 void init_rt_rq(struct rt_rq *rt_rq)
74 {
75         struct rt_prio_array *array;
76         int i;
77
78         array = &rt_rq->active;
79         for (i = 0; i < MAX_RT_PRIO; i++) {
80                 INIT_LIST_HEAD(array->queue + i);
81                 __clear_bit(i, array->bitmap);
82         }
83         /* delimiter for bitsearch: */
84         __set_bit(MAX_RT_PRIO, array->bitmap);
85
86 #if defined CONFIG_SMP
87         rt_rq->highest_prio.curr = MAX_RT_PRIO;
88         rt_rq->highest_prio.next = MAX_RT_PRIO;
89         rt_rq->rt_nr_migratory = 0;
90         rt_rq->overloaded = 0;
91         plist_head_init(&rt_rq->pushable_tasks);
92
93 #ifdef HAVE_RT_PUSH_IPI
94         rt_rq->push_flags = 0;
95         rt_rq->push_cpu = nr_cpu_ids;
96         raw_spin_lock_init(&rt_rq->push_lock);
97         init_irq_work(&rt_rq->push_work, push_irq_work_func);
98 #endif
99 #endif /* CONFIG_SMP */
100         /* We start is dequeued state, because no RT tasks are queued */
101         rt_rq->rt_queued = 0;
102
103         rt_rq->rt_time = 0;
104         rt_rq->rt_throttled = 0;
105         rt_rq->rt_runtime = 0;
106         raw_spin_lock_init(&rt_rq->rt_runtime_lock);
107 }
108
109 #ifdef CONFIG_RT_GROUP_SCHED
110 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
111 {
112         hrtimer_cancel(&rt_b->rt_period_timer);
113 }
114
115 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
116
117 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
118 {
119 #ifdef CONFIG_SCHED_DEBUG
120         WARN_ON_ONCE(!rt_entity_is_task(rt_se));
121 #endif
122         return container_of(rt_se, struct task_struct, rt);
123 }
124
125 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
126 {
127         return rt_rq->rq;
128 }
129
130 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
131 {
132         return rt_se->rt_rq;
133 }
134
135 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
136 {
137         struct rt_rq *rt_rq = rt_se->rt_rq;
138
139         return rt_rq->rq;
140 }
141
142 void free_rt_sched_group(struct task_group *tg)
143 {
144         int i;
145
146         if (tg->rt_se)
147                 destroy_rt_bandwidth(&tg->rt_bandwidth);
148
149         for_each_possible_cpu(i) {
150                 if (tg->rt_rq)
151                         kfree(tg->rt_rq[i]);
152                 if (tg->rt_se)
153                         kfree(tg->rt_se[i]);
154         }
155
156         kfree(tg->rt_rq);
157         kfree(tg->rt_se);
158 }
159
160 void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
161                 struct sched_rt_entity *rt_se, int cpu,
162                 struct sched_rt_entity *parent)
163 {
164         struct rq *rq = cpu_rq(cpu);
165
166         rt_rq->highest_prio.curr = MAX_RT_PRIO;
167         rt_rq->rt_nr_boosted = 0;
168         rt_rq->rq = rq;
169         rt_rq->tg = tg;
170
171         tg->rt_rq[cpu] = rt_rq;
172         tg->rt_se[cpu] = rt_se;
173
174         if (!rt_se)
175                 return;
176
177         if (!parent)
178                 rt_se->rt_rq = &rq->rt;
179         else
180                 rt_se->rt_rq = parent->my_q;
181
182         rt_se->my_q = rt_rq;
183         rt_se->parent = parent;
184         INIT_LIST_HEAD(&rt_se->run_list);
185 }
186
187 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
188 {
189         struct rt_rq *rt_rq;
190         struct sched_rt_entity *rt_se;
191         int i;
192
193         tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
194         if (!tg->rt_rq)
195                 goto err;
196         tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
197         if (!tg->rt_se)
198                 goto err;
199
200         init_rt_bandwidth(&tg->rt_bandwidth,
201                         ktime_to_ns(def_rt_bandwidth.rt_period), 0);
202
203         for_each_possible_cpu(i) {
204                 rt_rq = kzalloc_node(sizeof(struct rt_rq),
205                                      GFP_KERNEL, cpu_to_node(i));
206                 if (!rt_rq)
207                         goto err;
208
209                 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
210                                      GFP_KERNEL, cpu_to_node(i));
211                 if (!rt_se)
212                         goto err_free_rq;
213
214                 init_rt_rq(rt_rq);
215                 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
216                 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
217         }
218
219         return 1;
220
221 err_free_rq:
222         kfree(rt_rq);
223 err:
224         return 0;
225 }
226
227 #else /* CONFIG_RT_GROUP_SCHED */
228
229 #define rt_entity_is_task(rt_se) (1)
230
231 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
232 {
233         return container_of(rt_se, struct task_struct, rt);
234 }
235
236 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
237 {
238         return container_of(rt_rq, struct rq, rt);
239 }
240
241 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
242 {
243         struct task_struct *p = rt_task_of(rt_se);
244
245         return task_rq(p);
246 }
247
248 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
249 {
250         struct rq *rq = rq_of_rt_se(rt_se);
251
252         return &rq->rt;
253 }
254
255 void free_rt_sched_group(struct task_group *tg) { }
256
257 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
258 {
259         return 1;
260 }
261 #endif /* CONFIG_RT_GROUP_SCHED */
262
263 #ifdef CONFIG_SMP
264
265 static void pull_rt_task(struct rq *this_rq);
266
267 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
268 {
269         /* Try to pull RT tasks here if we lower this rq's prio */
270         return rq->rt.highest_prio.curr > prev->prio;
271 }
272
273 static inline int rt_overloaded(struct rq *rq)
274 {
275         return atomic_read(&rq->rd->rto_count);
276 }
277
278 static inline void rt_set_overload(struct rq *rq)
279 {
280         if (!rq->online)
281                 return;
282
283         cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
284         /*
285          * Make sure the mask is visible before we set
286          * the overload count. That is checked to determine
287          * if we should look at the mask. It would be a shame
288          * if we looked at the mask, but the mask was not
289          * updated yet.
290          *
291          * Matched by the barrier in pull_rt_task().
292          */
293         smp_wmb();
294         atomic_inc(&rq->rd->rto_count);
295 }
296
297 static inline void rt_clear_overload(struct rq *rq)
298 {
299         if (!rq->online)
300                 return;
301
302         /* the order here really doesn't matter */
303         atomic_dec(&rq->rd->rto_count);
304         cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
305 }
306
307 static void update_rt_migration(struct rt_rq *rt_rq)
308 {
309         if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
310                 if (!rt_rq->overloaded) {
311                         rt_set_overload(rq_of_rt_rq(rt_rq));
312                         rt_rq->overloaded = 1;
313                 }
314         } else if (rt_rq->overloaded) {
315                 rt_clear_overload(rq_of_rt_rq(rt_rq));
316                 rt_rq->overloaded = 0;
317         }
318 }
319
320 static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
321 {
322         struct task_struct *p;
323
324         if (!rt_entity_is_task(rt_se))
325                 return;
326
327         p = rt_task_of(rt_se);
328         rt_rq = &rq_of_rt_rq(rt_rq)->rt;
329
330         rt_rq->rt_nr_total++;
331         if (p->nr_cpus_allowed > 1)
332                 rt_rq->rt_nr_migratory++;
333
334         update_rt_migration(rt_rq);
335 }
336
337 static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
338 {
339         struct task_struct *p;
340
341         if (!rt_entity_is_task(rt_se))
342                 return;
343
344         p = rt_task_of(rt_se);
345         rt_rq = &rq_of_rt_rq(rt_rq)->rt;
346
347         rt_rq->rt_nr_total--;
348         if (p->nr_cpus_allowed > 1)
349                 rt_rq->rt_nr_migratory--;
350
351         update_rt_migration(rt_rq);
352 }
353
354 static inline int has_pushable_tasks(struct rq *rq)
355 {
356         return !plist_head_empty(&rq->rt.pushable_tasks);
357 }
358
359 static DEFINE_PER_CPU(struct callback_head, rt_push_head);
360 static DEFINE_PER_CPU(struct callback_head, rt_pull_head);
361
362 static void push_rt_tasks(struct rq *);
363 static void pull_rt_task(struct rq *);
364
365 static inline void queue_push_tasks(struct rq *rq)
366 {
367         if (!has_pushable_tasks(rq))
368                 return;
369
370         queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks);
371 }
372
373 static inline void queue_pull_task(struct rq *rq)
374 {
375         queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task);
376 }
377
378 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
379 {
380         plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
381         plist_node_init(&p->pushable_tasks, p->prio);
382         plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
383
384         /* Update the highest prio pushable task */
385         if (p->prio < rq->rt.highest_prio.next)
386                 rq->rt.highest_prio.next = p->prio;
387 }
388
389 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
390 {
391         plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
392
393         /* Update the new highest prio pushable task */
394         if (has_pushable_tasks(rq)) {
395                 p = plist_first_entry(&rq->rt.pushable_tasks,
396                                       struct task_struct, pushable_tasks);
397                 rq->rt.highest_prio.next = p->prio;
398         } else
399                 rq->rt.highest_prio.next = MAX_RT_PRIO;
400 }
401
402 #else
403
404 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
405 {
406 }
407
408 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
409 {
410 }
411
412 static inline
413 void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
414 {
415 }
416
417 static inline
418 void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
419 {
420 }
421
422 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
423 {
424         return false;
425 }
426
427 static inline void pull_rt_task(struct rq *this_rq)
428 {
429 }
430
431 static inline void queue_push_tasks(struct rq *rq)
432 {
433 }
434 #endif /* CONFIG_SMP */
435
436 static void enqueue_top_rt_rq(struct rt_rq *rt_rq);
437 static void dequeue_top_rt_rq(struct rt_rq *rt_rq);
438
439 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
440 {
441         return !list_empty(&rt_se->run_list);
442 }
443
444 #ifdef CONFIG_RT_GROUP_SCHED
445
446 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
447 {
448         if (!rt_rq->tg)
449                 return RUNTIME_INF;
450
451         return rt_rq->rt_runtime;
452 }
453
454 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
455 {
456         return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
457 }
458
459 typedef struct task_group *rt_rq_iter_t;
460
461 static inline struct task_group *next_task_group(struct task_group *tg)
462 {
463         do {
464                 tg = list_entry_rcu(tg->list.next,
465                         typeof(struct task_group), list);
466         } while (&tg->list != &task_groups && task_group_is_autogroup(tg));
467
468         if (&tg->list == &task_groups)
469                 tg = NULL;
470
471         return tg;
472 }
473
474 #define for_each_rt_rq(rt_rq, iter, rq)                                 \
475         for (iter = container_of(&task_groups, typeof(*iter), list);    \
476                 (iter = next_task_group(iter)) &&                       \
477                 (rt_rq = iter->rt_rq[cpu_of(rq)]);)
478
479 #define for_each_sched_rt_entity(rt_se) \
480         for (; rt_se; rt_se = rt_se->parent)
481
482 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
483 {
484         return rt_se->my_q;
485 }
486
487 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head);
488 static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
489
490 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
491 {
492         struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
493         struct rq *rq = rq_of_rt_rq(rt_rq);
494         struct sched_rt_entity *rt_se;
495
496         int cpu = cpu_of(rq);
497
498         rt_se = rt_rq->tg->rt_se[cpu];
499
500         if (rt_rq->rt_nr_running) {
501                 if (!rt_se)
502                         enqueue_top_rt_rq(rt_rq);
503                 else if (!on_rt_rq(rt_se))
504                         enqueue_rt_entity(rt_se, false);
505
506                 if (rt_rq->highest_prio.curr < curr->prio)
507                         resched_curr(rq);
508         }
509 }
510
511 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
512 {
513         struct sched_rt_entity *rt_se;
514         int cpu = cpu_of(rq_of_rt_rq(rt_rq));
515
516         rt_se = rt_rq->tg->rt_se[cpu];
517
518         if (!rt_se)
519                 dequeue_top_rt_rq(rt_rq);
520         else if (on_rt_rq(rt_se))
521                 dequeue_rt_entity(rt_se);
522 }
523
524 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
525 {
526         return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
527 }
528
529 static int rt_se_boosted(struct sched_rt_entity *rt_se)
530 {
531         struct rt_rq *rt_rq = group_rt_rq(rt_se);
532         struct task_struct *p;
533
534         if (rt_rq)
535                 return !!rt_rq->rt_nr_boosted;
536
537         p = rt_task_of(rt_se);
538         return p->prio != p->normal_prio;
539 }
540
541 #ifdef CONFIG_SMP
542 static inline const struct cpumask *sched_rt_period_mask(void)
543 {
544         return this_rq()->rd->span;
545 }
546 #else
547 static inline const struct cpumask *sched_rt_period_mask(void)
548 {
549         return cpu_online_mask;
550 }
551 #endif
552
553 static inline
554 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
555 {
556         return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
557 }
558
559 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
560 {
561         return &rt_rq->tg->rt_bandwidth;
562 }
563
564 #else /* !CONFIG_RT_GROUP_SCHED */
565
566 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
567 {
568         return rt_rq->rt_runtime;
569 }
570
571 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
572 {
573         return ktime_to_ns(def_rt_bandwidth.rt_period);
574 }
575
576 typedef struct rt_rq *rt_rq_iter_t;
577
578 #define for_each_rt_rq(rt_rq, iter, rq) \
579         for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
580
581 #define for_each_sched_rt_entity(rt_se) \
582         for (; rt_se; rt_se = NULL)
583
584 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
585 {
586         return NULL;
587 }
588
589 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
590 {
591         struct rq *rq = rq_of_rt_rq(rt_rq);
592
593         if (!rt_rq->rt_nr_running)
594                 return;
595
596         enqueue_top_rt_rq(rt_rq);
597         resched_curr(rq);
598 }
599
600 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
601 {
602         dequeue_top_rt_rq(rt_rq);
603 }
604
605 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
606 {
607         return rt_rq->rt_throttled;
608 }
609
610 static inline const struct cpumask *sched_rt_period_mask(void)
611 {
612         return cpu_online_mask;
613 }
614
615 static inline
616 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
617 {
618         return &cpu_rq(cpu)->rt;
619 }
620
621 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
622 {
623         return &def_rt_bandwidth;
624 }
625
626 #endif /* CONFIG_RT_GROUP_SCHED */
627
628 bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
629 {
630         struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
631
632         return (hrtimer_active(&rt_b->rt_period_timer) ||
633                 rt_rq->rt_time < rt_b->rt_runtime);
634 }
635
636 #ifdef CONFIG_SMP
637 /*
638  * We ran out of runtime, see if we can borrow some from our neighbours.
639  */
640 static void do_balance_runtime(struct rt_rq *rt_rq)
641 {
642         struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
643         struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
644         int i, weight;
645         u64 rt_period;
646
647         weight = cpumask_weight(rd->span);
648
649         raw_spin_lock(&rt_b->rt_runtime_lock);
650         rt_period = ktime_to_ns(rt_b->rt_period);
651         for_each_cpu(i, rd->span) {
652                 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
653                 s64 diff;
654
655                 if (iter == rt_rq)
656                         continue;
657
658                 raw_spin_lock(&iter->rt_runtime_lock);
659                 /*
660                  * Either all rqs have inf runtime and there's nothing to steal
661                  * or __disable_runtime() below sets a specific rq to inf to
662                  * indicate its been disabled and disalow stealing.
663                  */
664                 if (iter->rt_runtime == RUNTIME_INF)
665                         goto next;
666
667                 /*
668                  * From runqueues with spare time, take 1/n part of their
669                  * spare time, but no more than our period.
670                  */
671                 diff = iter->rt_runtime - iter->rt_time;
672                 if (diff > 0) {
673                         diff = div_u64((u64)diff, weight);
674                         if (rt_rq->rt_runtime + diff > rt_period)
675                                 diff = rt_period - rt_rq->rt_runtime;
676                         iter->rt_runtime -= diff;
677                         rt_rq->rt_runtime += diff;
678                         if (rt_rq->rt_runtime == rt_period) {
679                                 raw_spin_unlock(&iter->rt_runtime_lock);
680                                 break;
681                         }
682                 }
683 next:
684                 raw_spin_unlock(&iter->rt_runtime_lock);
685         }
686         raw_spin_unlock(&rt_b->rt_runtime_lock);
687 }
688
689 /*
690  * Ensure this RQ takes back all the runtime it lend to its neighbours.
691  */
692 static void __disable_runtime(struct rq *rq)
693 {
694         struct root_domain *rd = rq->rd;
695         rt_rq_iter_t iter;
696         struct rt_rq *rt_rq;
697
698         if (unlikely(!scheduler_running))
699                 return;
700
701         for_each_rt_rq(rt_rq, iter, rq) {
702                 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
703                 s64 want;
704                 int i;
705
706                 raw_spin_lock(&rt_b->rt_runtime_lock);
707                 raw_spin_lock(&rt_rq->rt_runtime_lock);
708                 /*
709                  * Either we're all inf and nobody needs to borrow, or we're
710                  * already disabled and thus have nothing to do, or we have
711                  * exactly the right amount of runtime to take out.
712                  */
713                 if (rt_rq->rt_runtime == RUNTIME_INF ||
714                                 rt_rq->rt_runtime == rt_b->rt_runtime)
715                         goto balanced;
716                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
717
718                 /*
719                  * Calculate the difference between what we started out with
720                  * and what we current have, that's the amount of runtime
721                  * we lend and now have to reclaim.
722                  */
723                 want = rt_b->rt_runtime - rt_rq->rt_runtime;
724
725                 /*
726                  * Greedy reclaim, take back as much as we can.
727                  */
728                 for_each_cpu(i, rd->span) {
729                         struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
730                         s64 diff;
731
732                         /*
733                          * Can't reclaim from ourselves or disabled runqueues.
734                          */
735                         if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
736                                 continue;
737
738                         raw_spin_lock(&iter->rt_runtime_lock);
739                         if (want > 0) {
740                                 diff = min_t(s64, iter->rt_runtime, want);
741                                 iter->rt_runtime -= diff;
742                                 want -= diff;
743                         } else {
744                                 iter->rt_runtime -= want;
745                                 want -= want;
746                         }
747                         raw_spin_unlock(&iter->rt_runtime_lock);
748
749                         if (!want)
750                                 break;
751                 }
752
753                 raw_spin_lock(&rt_rq->rt_runtime_lock);
754                 /*
755                  * We cannot be left wanting - that would mean some runtime
756                  * leaked out of the system.
757                  */
758                 BUG_ON(want);
759 balanced:
760                 /*
761                  * Disable all the borrow logic by pretending we have inf
762                  * runtime - in which case borrowing doesn't make sense.
763                  */
764                 rt_rq->rt_runtime = RUNTIME_INF;
765                 rt_rq->rt_throttled = 0;
766                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
767                 raw_spin_unlock(&rt_b->rt_runtime_lock);
768
769                 /* Make rt_rq available for pick_next_task() */
770                 sched_rt_rq_enqueue(rt_rq);
771         }
772 }
773
774 static void __enable_runtime(struct rq *rq)
775 {
776         rt_rq_iter_t iter;
777         struct rt_rq *rt_rq;
778
779         if (unlikely(!scheduler_running))
780                 return;
781
782         /*
783          * Reset each runqueue's bandwidth settings
784          */
785         for_each_rt_rq(rt_rq, iter, rq) {
786                 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
787
788                 raw_spin_lock(&rt_b->rt_runtime_lock);
789                 raw_spin_lock(&rt_rq->rt_runtime_lock);
790                 rt_rq->rt_runtime = rt_b->rt_runtime;
791                 rt_rq->rt_time = 0;
792                 rt_rq->rt_throttled = 0;
793                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
794                 raw_spin_unlock(&rt_b->rt_runtime_lock);
795         }
796 }
797
798 static void balance_runtime(struct rt_rq *rt_rq)
799 {
800         if (!sched_feat(RT_RUNTIME_SHARE))
801                 return;
802
803         if (rt_rq->rt_time > rt_rq->rt_runtime) {
804                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
805                 do_balance_runtime(rt_rq);
806                 raw_spin_lock(&rt_rq->rt_runtime_lock);
807         }
808 }
809 #else /* !CONFIG_SMP */
810 static inline void balance_runtime(struct rt_rq *rt_rq) {}
811 #endif /* CONFIG_SMP */
812
813 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
814 {
815         int i, idle = 1, throttled = 0;
816         const struct cpumask *span;
817
818         span = sched_rt_period_mask();
819 #ifdef CONFIG_RT_GROUP_SCHED
820         /*
821          * FIXME: isolated CPUs should really leave the root task group,
822          * whether they are isolcpus or were isolated via cpusets, lest
823          * the timer run on a CPU which does not service all runqueues,
824          * potentially leaving other CPUs indefinitely throttled.  If
825          * isolation is really required, the user will turn the throttle
826          * off to kill the perturbations it causes anyway.  Meanwhile,
827          * this maintains functionality for boot and/or troubleshooting.
828          */
829         if (rt_b == &root_task_group.rt_bandwidth)
830                 span = cpu_online_mask;
831 #endif
832         for_each_cpu(i, span) {
833                 int enqueue = 0;
834                 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
835                 struct rq *rq = rq_of_rt_rq(rt_rq);
836
837                 raw_spin_lock(&rq->lock);
838                 if (rt_rq->rt_time) {
839                         u64 runtime;
840
841                         raw_spin_lock(&rt_rq->rt_runtime_lock);
842                         if (rt_rq->rt_throttled)
843                                 balance_runtime(rt_rq);
844                         runtime = rt_rq->rt_runtime;
845                         rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
846                         if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
847                                 rt_rq->rt_throttled = 0;
848                                 enqueue = 1;
849
850                                 /*
851                                  * When we're idle and a woken (rt) task is
852                                  * throttled check_preempt_curr() will set
853                                  * skip_update and the time between the wakeup
854                                  * and this unthrottle will get accounted as
855                                  * 'runtime'.
856                                  */
857                                 if (rt_rq->rt_nr_running && rq->curr == rq->idle)
858                                         rq_clock_skip_update(rq, false);
859                         }
860                         if (rt_rq->rt_time || rt_rq->rt_nr_running)
861                                 idle = 0;
862                         raw_spin_unlock(&rt_rq->rt_runtime_lock);
863                 } else if (rt_rq->rt_nr_running) {
864                         idle = 0;
865                         if (!rt_rq_throttled(rt_rq))
866                                 enqueue = 1;
867                 }
868                 if (rt_rq->rt_throttled)
869                         throttled = 1;
870
871                 if (enqueue)
872                         sched_rt_rq_enqueue(rt_rq);
873                 raw_spin_unlock(&rq->lock);
874         }
875
876         if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
877                 return 1;
878
879         return idle;
880 }
881
882 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
883 {
884 #ifdef CONFIG_RT_GROUP_SCHED
885         struct rt_rq *rt_rq = group_rt_rq(rt_se);
886
887         if (rt_rq)
888                 return rt_rq->highest_prio.curr;
889 #endif
890
891         return rt_task_of(rt_se)->prio;
892 }
893
894 static void dump_throttled_rt_tasks(struct rt_rq *rt_rq)
895 {
896         struct rt_prio_array *array = &rt_rq->active;
897         struct sched_rt_entity *rt_se;
898         char buf[500];
899         char *pos = buf;
900         char *end = buf + sizeof(buf);
901         int idx;
902
903         pos += snprintf(pos, sizeof(buf),
904                 "sched: RT throttling activated for rt_rq %p (cpu %d)\n",
905                 rt_rq, cpu_of(rq_of_rt_rq(rt_rq)));
906
907         if (bitmap_empty(array->bitmap, MAX_RT_PRIO))
908                 goto out;
909
910         pos += snprintf(pos, end - pos, "potential CPU hogs:\n");
911         idx = sched_find_first_bit(array->bitmap);
912         while (idx < MAX_RT_PRIO) {
913                 list_for_each_entry(rt_se, array->queue + idx, run_list) {
914                         struct task_struct *p;
915
916                         if (!rt_entity_is_task(rt_se))
917                                 continue;
918
919                         p = rt_task_of(rt_se);
920                         if (pos < end)
921                                 pos += snprintf(pos, end - pos, "\t%s (%d)\n",
922                                         p->comm, p->pid);
923                 }
924                 idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx + 1);
925         }
926 out:
927 #ifdef CONFIG_PANIC_ON_RT_THROTTLING
928         /*
929          * Use pr_err() in the BUG() case since printk_sched() will
930          * not get flushed and deadlock is not a concern.
931          */
932         pr_err("%s", buf);
933         BUG();
934 #else
935         printk_deferred("%s", buf);
936 #endif
937 }
938
939 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
940 {
941         u64 runtime = sched_rt_runtime(rt_rq);
942
943         if (rt_rq->rt_throttled)
944                 return rt_rq_throttled(rt_rq);
945
946         if (runtime >= sched_rt_period(rt_rq))
947                 return 0;
948
949         balance_runtime(rt_rq);
950         runtime = sched_rt_runtime(rt_rq);
951         if (runtime == RUNTIME_INF)
952                 return 0;
953
954         if (rt_rq->rt_time > runtime) {
955                 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
956
957                 /*
958                  * Don't actually throttle groups that have no runtime assigned
959                  * but accrue some time due to boosting.
960                  */
961                 if (likely(rt_b->rt_runtime)) {
962                         static bool once = false;
963
964                         rt_rq->rt_throttled = 1;
965
966                         if (!once) {
967                                 once = true;
968                                 dump_throttled_rt_tasks(rt_rq);
969                         }
970                 } else {
971                         /*
972                          * In case we did anyway, make it go away,
973                          * replenishment is a joke, since it will replenish us
974                          * with exactly 0 ns.
975                          */
976                         rt_rq->rt_time = 0;
977                 }
978
979                 if (rt_rq_throttled(rt_rq)) {
980                         sched_rt_rq_dequeue(rt_rq);
981                         return 1;
982                 }
983         }
984
985         return 0;
986 }
987
988 /*
989  * Update the current task's runtime statistics. Skip current tasks that
990  * are not in our scheduling class.
991  */
992 static void update_curr_rt(struct rq *rq)
993 {
994         struct task_struct *curr = rq->curr;
995         struct sched_rt_entity *rt_se = &curr->rt;
996         u64 delta_exec;
997
998         if (curr->sched_class != &rt_sched_class)
999                 return;
1000
1001         delta_exec = rq_clock_task(rq) - curr->se.exec_start;
1002         if (unlikely((s64)delta_exec <= 0))
1003                 return;
1004
1005         schedstat_set(curr->se.statistics.exec_max,
1006                       max(curr->se.statistics.exec_max, delta_exec));
1007
1008         curr->se.sum_exec_runtime += delta_exec;
1009         account_group_exec_runtime(curr, delta_exec);
1010
1011         curr->se.exec_start = rq_clock_task(rq);
1012         cpuacct_charge(curr, delta_exec);
1013
1014         sched_rt_avg_update(rq, delta_exec);
1015
1016         if (!rt_bandwidth_enabled())
1017                 return;
1018
1019         for_each_sched_rt_entity(rt_se) {
1020                 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1021
1022                 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
1023                         raw_spin_lock(&rt_rq->rt_runtime_lock);
1024                         rt_rq->rt_time += delta_exec;
1025                         if (sched_rt_runtime_exceeded(rt_rq))
1026                                 resched_curr(rq);
1027                         raw_spin_unlock(&rt_rq->rt_runtime_lock);
1028                 }
1029         }
1030 }
1031
1032 static void
1033 dequeue_top_rt_rq(struct rt_rq *rt_rq)
1034 {
1035         struct rq *rq = rq_of_rt_rq(rt_rq);
1036
1037         BUG_ON(&rq->rt != rt_rq);
1038
1039         if (!rt_rq->rt_queued)
1040                 return;
1041
1042         BUG_ON(!rq->nr_running);
1043
1044         sub_nr_running(rq, rt_rq->rt_nr_running);
1045         rt_rq->rt_queued = 0;
1046 }
1047
1048 static void
1049 enqueue_top_rt_rq(struct rt_rq *rt_rq)
1050 {
1051         struct rq *rq = rq_of_rt_rq(rt_rq);
1052
1053         BUG_ON(&rq->rt != rt_rq);
1054
1055         if (rt_rq->rt_queued)
1056                 return;
1057         if (rt_rq_throttled(rt_rq) || !rt_rq->rt_nr_running)
1058                 return;
1059
1060         add_nr_running(rq, rt_rq->rt_nr_running);
1061         rt_rq->rt_queued = 1;
1062 }
1063
1064 #if defined CONFIG_SMP
1065
1066 static void
1067 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1068 {
1069         struct rq *rq = rq_of_rt_rq(rt_rq);
1070
1071 #ifdef CONFIG_RT_GROUP_SCHED
1072         /*
1073          * Change rq's cpupri only if rt_rq is the top queue.
1074          */
1075         if (&rq->rt != rt_rq)
1076                 return;
1077 #endif
1078         if (rq->online && prio < prev_prio)
1079                 cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
1080 }
1081
1082 static void
1083 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1084 {
1085         struct rq *rq = rq_of_rt_rq(rt_rq);
1086
1087 #ifdef CONFIG_RT_GROUP_SCHED
1088         /*
1089          * Change rq's cpupri only if rt_rq is the top queue.
1090          */
1091         if (&rq->rt != rt_rq)
1092                 return;
1093 #endif
1094         if (rq->online && rt_rq->highest_prio.curr != prev_prio)
1095                 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
1096 }
1097
1098 #else /* CONFIG_SMP */
1099
1100 static inline
1101 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1102 static inline
1103 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1104
1105 #endif /* CONFIG_SMP */
1106
1107 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
1108 static void
1109 inc_rt_prio(struct rt_rq *rt_rq, int prio)
1110 {
1111         int prev_prio = rt_rq->highest_prio.curr;
1112
1113         if (prio < prev_prio)
1114                 rt_rq->highest_prio.curr = prio;
1115
1116         inc_rt_prio_smp(rt_rq, prio, prev_prio);
1117 }
1118
1119 static void
1120 dec_rt_prio(struct rt_rq *rt_rq, int prio)
1121 {
1122         int prev_prio = rt_rq->highest_prio.curr;
1123
1124         if (rt_rq->rt_nr_running) {
1125
1126                 WARN_ON(prio < prev_prio);
1127
1128                 /*
1129                  * This may have been our highest task, and therefore
1130                  * we may have some recomputation to do
1131                  */
1132                 if (prio == prev_prio) {
1133                         struct rt_prio_array *array = &rt_rq->active;
1134
1135                         rt_rq->highest_prio.curr =
1136                                 sched_find_first_bit(array->bitmap);
1137                 }
1138
1139         } else
1140                 rt_rq->highest_prio.curr = MAX_RT_PRIO;
1141
1142         dec_rt_prio_smp(rt_rq, prio, prev_prio);
1143 }
1144
1145 #else
1146
1147 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
1148 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
1149
1150 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
1151
1152 #ifdef CONFIG_RT_GROUP_SCHED
1153
1154 static void
1155 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1156 {
1157         if (rt_se_boosted(rt_se))
1158                 rt_rq->rt_nr_boosted++;
1159
1160         if (rt_rq->tg)
1161                 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
1162 }
1163
1164 static void
1165 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1166 {
1167         if (rt_se_boosted(rt_se))
1168                 rt_rq->rt_nr_boosted--;
1169
1170         WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
1171 }
1172
1173 #else /* CONFIG_RT_GROUP_SCHED */
1174
1175 static void
1176 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1177 {
1178         start_rt_bandwidth(&def_rt_bandwidth);
1179 }
1180
1181 static inline
1182 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1183
1184 #endif /* CONFIG_RT_GROUP_SCHED */
1185
1186 static inline
1187 unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se)
1188 {
1189         struct rt_rq *group_rq = group_rt_rq(rt_se);
1190
1191         if (group_rq)
1192                 return group_rq->rt_nr_running;
1193         else
1194                 return 1;
1195 }
1196
1197 static inline
1198 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1199 {
1200         int prio = rt_se_prio(rt_se);
1201
1202         WARN_ON(!rt_prio(prio));
1203         rt_rq->rt_nr_running += rt_se_nr_running(rt_se);
1204
1205         inc_rt_prio(rt_rq, prio);
1206         inc_rt_migration(rt_se, rt_rq);
1207         inc_rt_group(rt_se, rt_rq);
1208 }
1209
1210 static inline
1211 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1212 {
1213         WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1214         WARN_ON(!rt_rq->rt_nr_running);
1215         rt_rq->rt_nr_running -= rt_se_nr_running(rt_se);
1216
1217         dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1218         dec_rt_migration(rt_se, rt_rq);
1219         dec_rt_group(rt_se, rt_rq);
1220 }
1221
1222 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
1223 {
1224         struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1225         struct rt_prio_array *array = &rt_rq->active;
1226         struct rt_rq *group_rq = group_rt_rq(rt_se);
1227         struct list_head *queue = array->queue + rt_se_prio(rt_se);
1228
1229         /*
1230          * Don't enqueue the group if its throttled, or when empty.
1231          * The latter is a consequence of the former when a child group
1232          * get throttled and the current group doesn't have any other
1233          * active members.
1234          */
1235         if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
1236                 return;
1237
1238         if (head)
1239                 list_add(&rt_se->run_list, queue);
1240         else
1241                 list_add_tail(&rt_se->run_list, queue);
1242         __set_bit(rt_se_prio(rt_se), array->bitmap);
1243
1244         inc_rt_tasks(rt_se, rt_rq);
1245 }
1246
1247 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
1248 {
1249         struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1250         struct rt_prio_array *array = &rt_rq->active;
1251
1252         list_del_init(&rt_se->run_list);
1253         if (list_empty(array->queue + rt_se_prio(rt_se)))
1254                 __clear_bit(rt_se_prio(rt_se), array->bitmap);
1255
1256         dec_rt_tasks(rt_se, rt_rq);
1257 }
1258
1259 /*
1260  * Because the prio of an upper entry depends on the lower
1261  * entries, we must remove entries top - down.
1262  */
1263 static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
1264 {
1265         struct sched_rt_entity *back = NULL;
1266
1267         for_each_sched_rt_entity(rt_se) {
1268                 rt_se->back = back;
1269                 back = rt_se;
1270         }
1271
1272         dequeue_top_rt_rq(rt_rq_of_se(back));
1273
1274         for (rt_se = back; rt_se; rt_se = rt_se->back) {
1275                 if (on_rt_rq(rt_se))
1276                         __dequeue_rt_entity(rt_se);
1277         }
1278 }
1279
1280 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
1281 {
1282         struct rq *rq = rq_of_rt_se(rt_se);
1283
1284         dequeue_rt_stack(rt_se);
1285         for_each_sched_rt_entity(rt_se)
1286                 __enqueue_rt_entity(rt_se, head);
1287         enqueue_top_rt_rq(&rq->rt);
1288 }
1289
1290 static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
1291 {
1292         struct rq *rq = rq_of_rt_se(rt_se);
1293
1294         dequeue_rt_stack(rt_se);
1295
1296         for_each_sched_rt_entity(rt_se) {
1297                 struct rt_rq *rt_rq = group_rt_rq(rt_se);
1298
1299                 if (rt_rq && rt_rq->rt_nr_running)
1300                         __enqueue_rt_entity(rt_se, false);
1301         }
1302         enqueue_top_rt_rq(&rq->rt);
1303 }
1304
1305 /*
1306  * Adding/removing a task to/from a priority array:
1307  */
1308 static void
1309 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1310 {
1311         struct sched_rt_entity *rt_se = &p->rt;
1312
1313         if (flags & ENQUEUE_WAKEUP)
1314                 rt_se->timeout = 0;
1315
1316         enqueue_rt_entity(rt_se, flags & ENQUEUE_HEAD);
1317         walt_inc_cumulative_runnable_avg(rq, p);
1318
1319         if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1320                 enqueue_pushable_task(rq, p);
1321 }
1322
1323 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1324 {
1325         struct sched_rt_entity *rt_se = &p->rt;
1326
1327         update_curr_rt(rq);
1328         dequeue_rt_entity(rt_se);
1329         walt_dec_cumulative_runnable_avg(rq, p);
1330
1331         dequeue_pushable_task(rq, p);
1332 }
1333
1334 /*
1335  * Put task to the head or the end of the run list without the overhead of
1336  * dequeue followed by enqueue.
1337  */
1338 static void
1339 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
1340 {
1341         if (on_rt_rq(rt_se)) {
1342                 struct rt_prio_array *array = &rt_rq->active;
1343                 struct list_head *queue = array->queue + rt_se_prio(rt_se);
1344
1345                 if (head)
1346                         list_move(&rt_se->run_list, queue);
1347                 else
1348                         list_move_tail(&rt_se->run_list, queue);
1349         }
1350 }
1351
1352 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
1353 {
1354         struct sched_rt_entity *rt_se = &p->rt;
1355         struct rt_rq *rt_rq;
1356
1357         for_each_sched_rt_entity(rt_se) {
1358                 rt_rq = rt_rq_of_se(rt_se);
1359                 requeue_rt_entity(rt_rq, rt_se, head);
1360         }
1361 }
1362
1363 static void yield_task_rt(struct rq *rq)
1364 {
1365         requeue_task_rt(rq, rq->curr, 0);
1366 }
1367
1368 #ifdef CONFIG_SMP
1369 static int find_lowest_rq(struct task_struct *task);
1370
1371 static int
1372 select_task_rq_rt(struct task_struct *p, int cpu, int sd_flag, int flags)
1373 {
1374         struct task_struct *curr;
1375         struct rq *rq;
1376
1377         /* For anything but wake ups, just return the task_cpu */
1378         if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
1379                 goto out;
1380
1381         rq = cpu_rq(cpu);
1382
1383         rcu_read_lock();
1384         curr = READ_ONCE(rq->curr); /* unlocked access */
1385
1386         /*
1387          * If the current task on @p's runqueue is an RT task, then
1388          * try to see if we can wake this RT task up on another
1389          * runqueue. Otherwise simply start this RT task
1390          * on its current runqueue.
1391          *
1392          * We want to avoid overloading runqueues. If the woken
1393          * task is a higher priority, then it will stay on this CPU
1394          * and the lower prio task should be moved to another CPU.
1395          * Even though this will probably make the lower prio task
1396          * lose its cache, we do not want to bounce a higher task
1397          * around just because it gave up its CPU, perhaps for a
1398          * lock?
1399          *
1400          * For equal prio tasks, we just let the scheduler sort it out.
1401          *
1402          * Otherwise, just let it ride on the affined RQ and the
1403          * post-schedule router will push the preempted task away
1404          *
1405          * This test is optimistic, if we get it wrong the load-balancer
1406          * will have to sort it out.
1407          */
1408         if (curr && unlikely(rt_task(curr)) &&
1409             (curr->nr_cpus_allowed < 2 ||
1410              curr->prio <= p->prio)) {
1411                 int target = find_lowest_rq(p);
1412
1413                 /*
1414                  * Don't bother moving it if the destination CPU is
1415                  * not running a lower priority task.
1416                  */
1417                 if (target != -1 &&
1418                     p->prio < cpu_rq(target)->rt.highest_prio.curr)
1419                         cpu = target;
1420         }
1421         rcu_read_unlock();
1422
1423 out:
1424         return cpu;
1425 }
1426
1427 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1428 {
1429         /*
1430          * Current can't be migrated, useless to reschedule,
1431          * let's hope p can move out.
1432          */
1433         if (rq->curr->nr_cpus_allowed == 1 ||
1434             !cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1435                 return;
1436
1437         /*
1438          * p is migratable, so let's not schedule it and
1439          * see if it is pushed or pulled somewhere else.
1440          */
1441         if (p->nr_cpus_allowed != 1
1442             && cpupri_find(&rq->rd->cpupri, p, NULL))
1443                 return;
1444
1445         /*
1446          * There appears to be other cpus that can accept
1447          * current and none to run 'p', so lets reschedule
1448          * to try and push current away:
1449          */
1450         requeue_task_rt(rq, p, 1);
1451         resched_curr(rq);
1452 }
1453
1454 #endif /* CONFIG_SMP */
1455
1456 /*
1457  * Preempt the current task with a newly woken task if needed:
1458  */
1459 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
1460 {
1461         if (p->prio < rq->curr->prio) {
1462                 resched_curr(rq);
1463                 return;
1464         }
1465
1466 #ifdef CONFIG_SMP
1467         /*
1468          * If:
1469          *
1470          * - the newly woken task is of equal priority to the current task
1471          * - the newly woken task is non-migratable while current is migratable
1472          * - current will be preempted on the next reschedule
1473          *
1474          * we should check to see if current can readily move to a different
1475          * cpu.  If so, we will reschedule to allow the push logic to try
1476          * to move current somewhere else, making room for our non-migratable
1477          * task.
1478          */
1479         if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1480                 check_preempt_equal_prio(rq, p);
1481 #endif
1482 }
1483
1484 #ifdef CONFIG_SMP
1485 static void sched_rt_update_capacity_req(struct rq *rq)
1486 {
1487         u64 total, used, age_stamp, avg;
1488         s64 delta;
1489
1490         if (!sched_freq())
1491                 return;
1492
1493         sched_avg_update(rq);
1494         /*
1495          * Since we're reading these variables without serialization make sure
1496          * we read them once before doing sanity checks on them.
1497          */
1498         age_stamp = READ_ONCE(rq->age_stamp);
1499         avg = READ_ONCE(rq->rt_avg);
1500         delta = rq_clock(rq) - age_stamp;
1501
1502         if (unlikely(delta < 0))
1503                 delta = 0;
1504
1505         total = sched_avg_period() + delta;
1506
1507         used = div_u64(avg, total);
1508         if (unlikely(used > SCHED_CAPACITY_SCALE))
1509                 used = SCHED_CAPACITY_SCALE;
1510
1511         set_rt_cpu_capacity(rq->cpu, 1, (unsigned long)(used));
1512 }
1513 #else
1514 static inline void sched_rt_update_capacity_req(struct rq *rq)
1515 { }
1516
1517 #endif
1518
1519 static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
1520                                                    struct rt_rq *rt_rq)
1521 {
1522         struct rt_prio_array *array = &rt_rq->active;
1523         struct sched_rt_entity *next = NULL;
1524         struct list_head *queue;
1525         int idx;
1526
1527         idx = sched_find_first_bit(array->bitmap);
1528         BUG_ON(idx >= MAX_RT_PRIO);
1529
1530         queue = array->queue + idx;
1531         next = list_entry(queue->next, struct sched_rt_entity, run_list);
1532
1533         return next;
1534 }
1535
1536 static struct task_struct *_pick_next_task_rt(struct rq *rq)
1537 {
1538         struct sched_rt_entity *rt_se;
1539         struct task_struct *p;
1540         struct rt_rq *rt_rq  = &rq->rt;
1541
1542         do {
1543                 rt_se = pick_next_rt_entity(rq, rt_rq);
1544                 BUG_ON(!rt_se);
1545                 rt_rq = group_rt_rq(rt_se);
1546         } while (rt_rq);
1547
1548         p = rt_task_of(rt_se);
1549         p->se.exec_start = rq_clock_task(rq);
1550
1551         return p;
1552 }
1553
1554 static struct task_struct *
1555 pick_next_task_rt(struct rq *rq, struct task_struct *prev)
1556 {
1557         struct task_struct *p;
1558         struct rt_rq *rt_rq = &rq->rt;
1559
1560         if (need_pull_rt_task(rq, prev)) {
1561                 /*
1562                  * This is OK, because current is on_cpu, which avoids it being
1563                  * picked for load-balance and preemption/IRQs are still
1564                  * disabled avoiding further scheduler activity on it and we're
1565                  * being very careful to re-start the picking loop.
1566                  */
1567                 lockdep_unpin_lock(&rq->lock);
1568                 pull_rt_task(rq);
1569                 lockdep_pin_lock(&rq->lock);
1570                 /*
1571                  * pull_rt_task() can drop (and re-acquire) rq->lock; this
1572                  * means a dl or stop task can slip in, in which case we need
1573                  * to re-start task selection.
1574                  */
1575                 if (unlikely((rq->stop && task_on_rq_queued(rq->stop)) ||
1576                              rq->dl.dl_nr_running))
1577                         return RETRY_TASK;
1578         }
1579
1580         /*
1581          * We may dequeue prev's rt_rq in put_prev_task().
1582          * So, we update time before rt_nr_running check.
1583          */
1584         if (prev->sched_class == &rt_sched_class)
1585                 update_curr_rt(rq);
1586
1587         if (!rt_rq->rt_queued) {
1588                 /*
1589                  * The next task to be picked on this rq will have a lower
1590                  * priority than rt tasks so we can spend some time to update
1591                  * the capacity used by rt tasks based on the last activity.
1592                  * This value will be the used as an estimation of the next
1593                  * activity.
1594                  */
1595                 sched_rt_update_capacity_req(rq);
1596                 return NULL;
1597         }
1598
1599         put_prev_task(rq, prev);
1600
1601         p = _pick_next_task_rt(rq);
1602
1603         /* The running task is never eligible for pushing */
1604         dequeue_pushable_task(rq, p);
1605
1606         queue_push_tasks(rq);
1607
1608         return p;
1609 }
1610
1611 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
1612 {
1613         update_curr_rt(rq);
1614
1615         /*
1616          * The previous task needs to be made eligible for pushing
1617          * if it is still active
1618          */
1619         if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
1620                 enqueue_pushable_task(rq, p);
1621 }
1622
1623 #ifdef CONFIG_SMP
1624
1625 /* Only try algorithms three times */
1626 #define RT_MAX_TRIES 3
1627
1628 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1629 {
1630         if (!task_running(rq, p) &&
1631             cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
1632                 return 1;
1633         return 0;
1634 }
1635
1636 /*
1637  * Return the highest pushable rq's task, which is suitable to be executed
1638  * on the cpu, NULL otherwise
1639  */
1640 static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
1641 {
1642         struct plist_head *head = &rq->rt.pushable_tasks;
1643         struct task_struct *p;
1644
1645         if (!has_pushable_tasks(rq))
1646                 return NULL;
1647
1648         plist_for_each_entry(p, head, pushable_tasks) {
1649                 if (pick_rt_task(rq, p, cpu))
1650                         return p;
1651         }
1652
1653         return NULL;
1654 }
1655
1656 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1657
1658 static int find_lowest_rq(struct task_struct *task)
1659 {
1660         struct sched_domain *sd;
1661         struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask);
1662         int this_cpu = smp_processor_id();
1663         int cpu      = task_cpu(task);
1664
1665         /* Make sure the mask is initialized first */
1666         if (unlikely(!lowest_mask))
1667                 return -1;
1668
1669         if (task->nr_cpus_allowed == 1)
1670                 return -1; /* No other targets possible */
1671
1672         if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
1673                 return -1; /* No targets found */
1674
1675         /*
1676          * At this point we have built a mask of cpus representing the
1677          * lowest priority tasks in the system.  Now we want to elect
1678          * the best one based on our affinity and topology.
1679          *
1680          * We prioritize the last cpu that the task executed on since
1681          * it is most likely cache-hot in that location.
1682          */
1683         if (cpumask_test_cpu(cpu, lowest_mask))
1684                 return cpu;
1685
1686         /*
1687          * Otherwise, we consult the sched_domains span maps to figure
1688          * out which cpu is logically closest to our hot cache data.
1689          */
1690         if (!cpumask_test_cpu(this_cpu, lowest_mask))
1691                 this_cpu = -1; /* Skip this_cpu opt if not among lowest */
1692
1693         rcu_read_lock();
1694         for_each_domain(cpu, sd) {
1695                 if (sd->flags & SD_WAKE_AFFINE) {
1696                         int best_cpu;
1697
1698                         /*
1699                          * "this_cpu" is cheaper to preempt than a
1700                          * remote processor.
1701                          */
1702                         if (this_cpu != -1 &&
1703                             cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1704                                 rcu_read_unlock();
1705                                 return this_cpu;
1706                         }
1707
1708                         best_cpu = cpumask_first_and(lowest_mask,
1709                                                      sched_domain_span(sd));
1710                         if (best_cpu < nr_cpu_ids) {
1711                                 rcu_read_unlock();
1712                                 return best_cpu;
1713                         }
1714                 }
1715         }
1716         rcu_read_unlock();
1717
1718         /*
1719          * And finally, if there were no matches within the domains
1720          * just give the caller *something* to work with from the compatible
1721          * locations.
1722          */
1723         if (this_cpu != -1)
1724                 return this_cpu;
1725
1726         cpu = cpumask_any(lowest_mask);
1727         if (cpu < nr_cpu_ids)
1728                 return cpu;
1729         return -1;
1730 }
1731
1732 /* Will lock the rq it finds */
1733 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1734 {
1735         struct rq *lowest_rq = NULL;
1736         int tries;
1737         int cpu;
1738
1739         for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1740                 cpu = find_lowest_rq(task);
1741
1742                 if ((cpu == -1) || (cpu == rq->cpu))
1743                         break;
1744
1745                 lowest_rq = cpu_rq(cpu);
1746
1747                 if (lowest_rq->rt.highest_prio.curr <= task->prio) {
1748                         /*
1749                          * Target rq has tasks of equal or higher priority,
1750                          * retrying does not release any lock and is unlikely
1751                          * to yield a different result.
1752                          */
1753                         lowest_rq = NULL;
1754                         break;
1755                 }
1756
1757                 /* if the prio of this runqueue changed, try again */
1758                 if (double_lock_balance(rq, lowest_rq)) {
1759                         /*
1760                          * We had to unlock the run queue. In
1761                          * the mean time, task could have
1762                          * migrated already or had its affinity changed.
1763                          * Also make sure that it wasn't scheduled on its rq.
1764                          */
1765                         if (unlikely(task_rq(task) != rq ||
1766                                      !cpumask_test_cpu(lowest_rq->cpu,
1767                                                        tsk_cpus_allowed(task)) ||
1768                                      task_running(rq, task) ||
1769                                      !task_on_rq_queued(task))) {
1770
1771                                 double_unlock_balance(rq, lowest_rq);
1772                                 lowest_rq = NULL;
1773                                 break;
1774                         }
1775                 }
1776
1777                 /* If this rq is still suitable use it. */
1778                 if (lowest_rq->rt.highest_prio.curr > task->prio)
1779                         break;
1780
1781                 /* try again */
1782                 double_unlock_balance(rq, lowest_rq);
1783                 lowest_rq = NULL;
1784         }
1785
1786         return lowest_rq;
1787 }
1788
1789 static struct task_struct *pick_next_pushable_task(struct rq *rq)
1790 {
1791         struct task_struct *p;
1792
1793         if (!has_pushable_tasks(rq))
1794                 return NULL;
1795
1796         p = plist_first_entry(&rq->rt.pushable_tasks,
1797                               struct task_struct, pushable_tasks);
1798
1799         BUG_ON(rq->cpu != task_cpu(p));
1800         BUG_ON(task_current(rq, p));
1801         BUG_ON(p->nr_cpus_allowed <= 1);
1802
1803         BUG_ON(!task_on_rq_queued(p));
1804         BUG_ON(!rt_task(p));
1805
1806         return p;
1807 }
1808
1809 /*
1810  * If the current CPU has more than one RT task, see if the non
1811  * running task can migrate over to a CPU that is running a task
1812  * of lesser priority.
1813  */
1814 static int push_rt_task(struct rq *rq)
1815 {
1816         struct task_struct *next_task;
1817         struct rq *lowest_rq;
1818         int ret = 0;
1819
1820         if (!rq->rt.overloaded)
1821                 return 0;
1822
1823         next_task = pick_next_pushable_task(rq);
1824         if (!next_task)
1825                 return 0;
1826
1827 retry:
1828         if (unlikely(next_task == rq->curr)) {
1829                 WARN_ON(1);
1830                 return 0;
1831         }
1832
1833         /*
1834          * It's possible that the next_task slipped in of
1835          * higher priority than current. If that's the case
1836          * just reschedule current.
1837          */
1838         if (unlikely(next_task->prio < rq->curr->prio)) {
1839                 resched_curr(rq);
1840                 return 0;
1841         }
1842
1843         /* We might release rq lock */
1844         get_task_struct(next_task);
1845
1846         /* find_lock_lowest_rq locks the rq if found */
1847         lowest_rq = find_lock_lowest_rq(next_task, rq);
1848         if (!lowest_rq) {
1849                 struct task_struct *task;
1850                 /*
1851                  * find_lock_lowest_rq releases rq->lock
1852                  * so it is possible that next_task has migrated.
1853                  *
1854                  * We need to make sure that the task is still on the same
1855                  * run-queue and is also still the next task eligible for
1856                  * pushing.
1857                  */
1858                 task = pick_next_pushable_task(rq);
1859                 if (task_cpu(next_task) == rq->cpu && task == next_task) {
1860                         /*
1861                          * The task hasn't migrated, and is still the next
1862                          * eligible task, but we failed to find a run-queue
1863                          * to push it to.  Do not retry in this case, since
1864                          * other cpus will pull from us when ready.
1865                          */
1866                         goto out;
1867                 }
1868
1869                 if (!task)
1870                         /* No more tasks, just exit */
1871                         goto out;
1872
1873                 /*
1874                  * Something has shifted, try again.
1875                  */
1876                 put_task_struct(next_task);
1877                 next_task = task;
1878                 goto retry;
1879         }
1880
1881         deactivate_task(rq, next_task, 0);
1882         set_task_cpu(next_task, lowest_rq->cpu);
1883         activate_task(lowest_rq, next_task, 0);
1884         ret = 1;
1885
1886         resched_curr(lowest_rq);
1887
1888         double_unlock_balance(rq, lowest_rq);
1889
1890 out:
1891         put_task_struct(next_task);
1892
1893         return ret;
1894 }
1895
1896 static void push_rt_tasks(struct rq *rq)
1897 {
1898         /* push_rt_task will return true if it moved an RT */
1899         while (push_rt_task(rq))
1900                 ;
1901 }
1902
1903 #ifdef HAVE_RT_PUSH_IPI
1904 /*
1905  * The search for the next cpu always starts at rq->cpu and ends
1906  * when we reach rq->cpu again. It will never return rq->cpu.
1907  * This returns the next cpu to check, or nr_cpu_ids if the loop
1908  * is complete.
1909  *
1910  * rq->rt.push_cpu holds the last cpu returned by this function,
1911  * or if this is the first instance, it must hold rq->cpu.
1912  */
1913 static int rto_next_cpu(struct rq *rq)
1914 {
1915         int prev_cpu = rq->rt.push_cpu;
1916         int cpu;
1917
1918         cpu = cpumask_next(prev_cpu, rq->rd->rto_mask);
1919
1920         /*
1921          * If the previous cpu is less than the rq's CPU, then it already
1922          * passed the end of the mask, and has started from the beginning.
1923          * We end if the next CPU is greater or equal to rq's CPU.
1924          */
1925         if (prev_cpu < rq->cpu) {
1926                 if (cpu >= rq->cpu)
1927                         return nr_cpu_ids;
1928
1929         } else if (cpu >= nr_cpu_ids) {
1930                 /*
1931                  * We passed the end of the mask, start at the beginning.
1932                  * If the result is greater or equal to the rq's CPU, then
1933                  * the loop is finished.
1934                  */
1935                 cpu = cpumask_first(rq->rd->rto_mask);
1936                 if (cpu >= rq->cpu)
1937                         return nr_cpu_ids;
1938         }
1939         rq->rt.push_cpu = cpu;
1940
1941         /* Return cpu to let the caller know if the loop is finished or not */
1942         return cpu;
1943 }
1944
1945 static int find_next_push_cpu(struct rq *rq)
1946 {
1947         struct rq *next_rq;
1948         int cpu;
1949
1950         while (1) {
1951                 cpu = rto_next_cpu(rq);
1952                 if (cpu >= nr_cpu_ids)
1953                         break;
1954                 next_rq = cpu_rq(cpu);
1955
1956                 /* Make sure the next rq can push to this rq */
1957                 if (next_rq->rt.highest_prio.next < rq->rt.highest_prio.curr)
1958                         break;
1959         }
1960
1961         return cpu;
1962 }
1963
1964 #define RT_PUSH_IPI_EXECUTING           1
1965 #define RT_PUSH_IPI_RESTART             2
1966
1967 static void tell_cpu_to_push(struct rq *rq)
1968 {
1969         int cpu;
1970
1971         if (rq->rt.push_flags & RT_PUSH_IPI_EXECUTING) {
1972                 raw_spin_lock(&rq->rt.push_lock);
1973                 /* Make sure it's still executing */
1974                 if (rq->rt.push_flags & RT_PUSH_IPI_EXECUTING) {
1975                         /*
1976                          * Tell the IPI to restart the loop as things have
1977                          * changed since it started.
1978                          */
1979                         rq->rt.push_flags |= RT_PUSH_IPI_RESTART;
1980                         raw_spin_unlock(&rq->rt.push_lock);
1981                         return;
1982                 }
1983                 raw_spin_unlock(&rq->rt.push_lock);
1984         }
1985
1986         /* When here, there's no IPI going around */
1987
1988         rq->rt.push_cpu = rq->cpu;
1989         cpu = find_next_push_cpu(rq);
1990         if (cpu >= nr_cpu_ids)
1991                 return;
1992
1993         rq->rt.push_flags = RT_PUSH_IPI_EXECUTING;
1994
1995         irq_work_queue_on(&rq->rt.push_work, cpu);
1996 }
1997
1998 /* Called from hardirq context */
1999 static void try_to_push_tasks(void *arg)
2000 {
2001         struct rt_rq *rt_rq = arg;
2002         struct rq *rq, *src_rq;
2003         int this_cpu;
2004         int cpu;
2005
2006         this_cpu = rt_rq->push_cpu;
2007
2008         /* Paranoid check */
2009         BUG_ON(this_cpu != smp_processor_id());
2010
2011         rq = cpu_rq(this_cpu);
2012         src_rq = rq_of_rt_rq(rt_rq);
2013
2014 again:
2015         if (has_pushable_tasks(rq)) {
2016                 raw_spin_lock(&rq->lock);
2017                 push_rt_task(rq);
2018                 raw_spin_unlock(&rq->lock);
2019         }
2020
2021         /* Pass the IPI to the next rt overloaded queue */
2022         raw_spin_lock(&rt_rq->push_lock);
2023         /*
2024          * If the source queue changed since the IPI went out,
2025          * we need to restart the search from that CPU again.
2026          */
2027         if (rt_rq->push_flags & RT_PUSH_IPI_RESTART) {
2028                 rt_rq->push_flags &= ~RT_PUSH_IPI_RESTART;
2029                 rt_rq->push_cpu = src_rq->cpu;
2030         }
2031
2032         cpu = find_next_push_cpu(src_rq);
2033
2034         if (cpu >= nr_cpu_ids)
2035                 rt_rq->push_flags &= ~RT_PUSH_IPI_EXECUTING;
2036         raw_spin_unlock(&rt_rq->push_lock);
2037
2038         if (cpu >= nr_cpu_ids)
2039                 return;
2040
2041         /*
2042          * It is possible that a restart caused this CPU to be
2043          * chosen again. Don't bother with an IPI, just see if we
2044          * have more to push.
2045          */
2046         if (unlikely(cpu == rq->cpu))
2047                 goto again;
2048
2049         /* Try the next RT overloaded CPU */
2050         irq_work_queue_on(&rt_rq->push_work, cpu);
2051 }
2052
2053 static void push_irq_work_func(struct irq_work *work)
2054 {
2055         struct rt_rq *rt_rq = container_of(work, struct rt_rq, push_work);
2056
2057         try_to_push_tasks(rt_rq);
2058 }
2059 #endif /* HAVE_RT_PUSH_IPI */
2060
2061 static void pull_rt_task(struct rq *this_rq)
2062 {
2063         int this_cpu = this_rq->cpu, cpu;
2064         bool resched = false;
2065         struct task_struct *p;
2066         struct rq *src_rq;
2067
2068         if (likely(!rt_overloaded(this_rq)))
2069                 return;
2070
2071         /*
2072          * Match the barrier from rt_set_overloaded; this guarantees that if we
2073          * see overloaded we must also see the rto_mask bit.
2074          */
2075         smp_rmb();
2076
2077 #ifdef HAVE_RT_PUSH_IPI
2078         if (sched_feat(RT_PUSH_IPI)) {
2079                 tell_cpu_to_push(this_rq);
2080                 return;
2081         }
2082 #endif
2083
2084         for_each_cpu(cpu, this_rq->rd->rto_mask) {
2085                 if (this_cpu == cpu)
2086                         continue;
2087
2088                 src_rq = cpu_rq(cpu);
2089
2090                 /*
2091                  * Don't bother taking the src_rq->lock if the next highest
2092                  * task is known to be lower-priority than our current task.
2093                  * This may look racy, but if this value is about to go
2094                  * logically higher, the src_rq will push this task away.
2095                  * And if its going logically lower, we do not care
2096                  */
2097                 if (src_rq->rt.highest_prio.next >=
2098                     this_rq->rt.highest_prio.curr)
2099                         continue;
2100
2101                 /*
2102                  * We can potentially drop this_rq's lock in
2103                  * double_lock_balance, and another CPU could
2104                  * alter this_rq
2105                  */
2106                 double_lock_balance(this_rq, src_rq);
2107
2108                 /*
2109                  * We can pull only a task, which is pushable
2110                  * on its rq, and no others.
2111                  */
2112                 p = pick_highest_pushable_task(src_rq, this_cpu);
2113
2114                 /*
2115                  * Do we have an RT task that preempts
2116                  * the to-be-scheduled task?
2117                  */
2118                 if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
2119                         WARN_ON(p == src_rq->curr);
2120                         WARN_ON(!task_on_rq_queued(p));
2121
2122                         /*
2123                          * There's a chance that p is higher in priority
2124                          * than what's currently running on its cpu.
2125                          * This is just that p is wakeing up and hasn't
2126                          * had a chance to schedule. We only pull
2127                          * p if it is lower in priority than the
2128                          * current task on the run queue
2129                          */
2130                         if (p->prio < src_rq->curr->prio)
2131                                 goto skip;
2132
2133                         resched = true;
2134
2135                         deactivate_task(src_rq, p, 0);
2136                         set_task_cpu(p, this_cpu);
2137                         activate_task(this_rq, p, 0);
2138                         /*
2139                          * We continue with the search, just in
2140                          * case there's an even higher prio task
2141                          * in another runqueue. (low likelihood
2142                          * but possible)
2143                          */
2144                 }
2145 skip:
2146                 double_unlock_balance(this_rq, src_rq);
2147         }
2148
2149         if (resched)
2150                 resched_curr(this_rq);
2151 }
2152
2153 /*
2154  * If we are not running and we are not going to reschedule soon, we should
2155  * try to push tasks away now
2156  */
2157 static void task_woken_rt(struct rq *rq, struct task_struct *p)
2158 {
2159         if (!task_running(rq, p) &&
2160             !test_tsk_need_resched(rq->curr) &&
2161             p->nr_cpus_allowed > 1 &&
2162             (dl_task(rq->curr) || rt_task(rq->curr)) &&
2163             (rq->curr->nr_cpus_allowed < 2 ||
2164              rq->curr->prio <= p->prio))
2165                 push_rt_tasks(rq);
2166 }
2167
2168 /* Assumes rq->lock is held */
2169 static void rq_online_rt(struct rq *rq)
2170 {
2171         if (rq->rt.overloaded)
2172                 rt_set_overload(rq);
2173
2174         __enable_runtime(rq);
2175
2176         cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
2177 }
2178
2179 /* Assumes rq->lock is held */
2180 static void rq_offline_rt(struct rq *rq)
2181 {
2182         if (rq->rt.overloaded)
2183                 rt_clear_overload(rq);
2184
2185         __disable_runtime(rq);
2186
2187         cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
2188 }
2189
2190 /*
2191  * When switch from the rt queue, we bring ourselves to a position
2192  * that we might want to pull RT tasks from other runqueues.
2193  */
2194 static void switched_from_rt(struct rq *rq, struct task_struct *p)
2195 {
2196         /*
2197          * If there are other RT tasks then we will reschedule
2198          * and the scheduling of the other RT tasks will handle
2199          * the balancing. But if we are the last RT task
2200          * we may need to handle the pulling of RT tasks
2201          * now.
2202          */
2203         if (!task_on_rq_queued(p) || rq->rt.rt_nr_running)
2204                 return;
2205
2206         queue_pull_task(rq);
2207 }
2208
2209 void __init init_sched_rt_class(void)
2210 {
2211         unsigned int i;
2212
2213         for_each_possible_cpu(i) {
2214                 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
2215                                         GFP_KERNEL, cpu_to_node(i));
2216         }
2217 }
2218 #endif /* CONFIG_SMP */
2219
2220 /*
2221  * When switching a task to RT, we may overload the runqueue
2222  * with RT tasks. In this case we try to push them off to
2223  * other runqueues.
2224  */
2225 static void switched_to_rt(struct rq *rq, struct task_struct *p)
2226 {
2227         /*
2228          * If we are already running, then there's nothing
2229          * that needs to be done. But if we are not running
2230          * we may need to preempt the current running task.
2231          * If that current running task is also an RT task
2232          * then see if we can move to another run queue.
2233          */
2234         if (task_on_rq_queued(p) && rq->curr != p) {
2235 #ifdef CONFIG_SMP
2236                 if (p->nr_cpus_allowed > 1 && rq->rt.overloaded)
2237                         queue_push_tasks(rq);
2238 #else
2239                 if (p->prio < rq->curr->prio)
2240                         resched_curr(rq);
2241 #endif /* CONFIG_SMP */
2242         }
2243 }
2244
2245 /*
2246  * Priority of the task has changed. This may cause
2247  * us to initiate a push or pull.
2248  */
2249 static void
2250 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
2251 {
2252         if (!task_on_rq_queued(p))
2253                 return;
2254
2255         if (rq->curr == p) {
2256 #ifdef CONFIG_SMP
2257                 /*
2258                  * If our priority decreases while running, we
2259                  * may need to pull tasks to this runqueue.
2260                  */
2261                 if (oldprio < p->prio)
2262                         queue_pull_task(rq);
2263
2264                 /*
2265                  * If there's a higher priority task waiting to run
2266                  * then reschedule.
2267                  */
2268                 if (p->prio > rq->rt.highest_prio.curr)
2269                         resched_curr(rq);
2270 #else
2271                 /* For UP simply resched on drop of prio */
2272                 if (oldprio < p->prio)
2273                         resched_curr(rq);
2274 #endif /* CONFIG_SMP */
2275         } else {
2276                 /*
2277                  * This task is not running, but if it is
2278                  * greater than the current running task
2279                  * then reschedule.
2280                  */
2281                 if (p->prio < rq->curr->prio)
2282                         resched_curr(rq);
2283         }
2284 }
2285
2286 static void watchdog(struct rq *rq, struct task_struct *p)
2287 {
2288         unsigned long soft, hard;
2289
2290         /* max may change after cur was read, this will be fixed next tick */
2291         soft = task_rlimit(p, RLIMIT_RTTIME);
2292         hard = task_rlimit_max(p, RLIMIT_RTTIME);
2293
2294         if (soft != RLIM_INFINITY) {
2295                 unsigned long next;
2296
2297                 if (p->rt.watchdog_stamp != jiffies) {
2298                         p->rt.timeout++;
2299                         p->rt.watchdog_stamp = jiffies;
2300                 }
2301
2302                 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
2303                 if (p->rt.timeout > next)
2304                         p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
2305         }
2306 }
2307
2308 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
2309 {
2310         struct sched_rt_entity *rt_se = &p->rt;
2311
2312         update_curr_rt(rq);
2313
2314         if (rq->rt.rt_nr_running)
2315                 sched_rt_update_capacity_req(rq);
2316
2317         watchdog(rq, p);
2318
2319         /*
2320          * RR tasks need a special form of timeslice management.
2321          * FIFO tasks have no timeslices.
2322          */
2323         if (p->policy != SCHED_RR)
2324                 return;
2325
2326         if (--p->rt.time_slice)
2327                 return;
2328
2329         p->rt.time_slice = sched_rr_timeslice;
2330
2331         /*
2332          * Requeue to the end of queue if we (and all of our ancestors) are not
2333          * the only element on the queue
2334          */
2335         for_each_sched_rt_entity(rt_se) {
2336                 if (rt_se->run_list.prev != rt_se->run_list.next) {
2337                         requeue_task_rt(rq, p, 0);
2338                         resched_curr(rq);
2339                         return;
2340                 }
2341         }
2342 }
2343
2344 static void set_curr_task_rt(struct rq *rq)
2345 {
2346         struct task_struct *p = rq->curr;
2347
2348         p->se.exec_start = rq_clock_task(rq);
2349
2350         /* The running task is never eligible for pushing */
2351         dequeue_pushable_task(rq, p);
2352 }
2353
2354 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
2355 {
2356         /*
2357          * Time slice is 0 for SCHED_FIFO tasks
2358          */
2359         if (task->policy == SCHED_RR)
2360                 return sched_rr_timeslice;
2361         else
2362                 return 0;
2363 }
2364
2365 const struct sched_class rt_sched_class = {
2366         .next                   = &fair_sched_class,
2367         .enqueue_task           = enqueue_task_rt,
2368         .dequeue_task           = dequeue_task_rt,
2369         .yield_task             = yield_task_rt,
2370
2371         .check_preempt_curr     = check_preempt_curr_rt,
2372
2373         .pick_next_task         = pick_next_task_rt,
2374         .put_prev_task          = put_prev_task_rt,
2375
2376 #ifdef CONFIG_SMP
2377         .select_task_rq         = select_task_rq_rt,
2378
2379         .set_cpus_allowed       = set_cpus_allowed_common,
2380         .rq_online              = rq_online_rt,
2381         .rq_offline             = rq_offline_rt,
2382         .task_woken             = task_woken_rt,
2383         .switched_from          = switched_from_rt,
2384 #endif
2385
2386         .set_curr_task          = set_curr_task_rt,
2387         .task_tick              = task_tick_rt,
2388
2389         .get_rr_interval        = get_rr_interval_rt,
2390
2391         .prio_changed           = prio_changed_rt,
2392         .switched_to            = switched_to_rt,
2393
2394         .update_curr            = update_curr_rt,
2395 };
2396
2397 #ifdef CONFIG_SCHED_DEBUG
2398 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2399
2400 void print_rt_stats(struct seq_file *m, int cpu)
2401 {
2402         rt_rq_iter_t iter;
2403         struct rt_rq *rt_rq;
2404
2405         rcu_read_lock();
2406         for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
2407                 print_rt_rq(m, cpu, rt_rq);
2408         rcu_read_unlock();
2409 }
2410 #endif /* CONFIG_SCHED_DEBUG */