sched/rt: print RT tasks when RT throttling is activated
[firefly-linux-kernel-4.4.55.git] / kernel / sched / rt.c
1 /*
2  * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
3  * policies)
4  */
5
6 #include "sched.h"
7
8 #include <linux/slab.h>
9 #include <linux/irq_work.h>
10
11 #include "walt.h"
12
13 int sched_rr_timeslice = RR_TIMESLICE;
14
15 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
16
17 struct rt_bandwidth def_rt_bandwidth;
18
19 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
20 {
21         struct rt_bandwidth *rt_b =
22                 container_of(timer, struct rt_bandwidth, rt_period_timer);
23         int idle = 0;
24         int overrun;
25
26         raw_spin_lock(&rt_b->rt_runtime_lock);
27         for (;;) {
28                 overrun = hrtimer_forward_now(timer, rt_b->rt_period);
29                 if (!overrun)
30                         break;
31
32                 raw_spin_unlock(&rt_b->rt_runtime_lock);
33                 idle = do_sched_rt_period_timer(rt_b, overrun);
34                 raw_spin_lock(&rt_b->rt_runtime_lock);
35         }
36         if (idle)
37                 rt_b->rt_period_active = 0;
38         raw_spin_unlock(&rt_b->rt_runtime_lock);
39
40         return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
41 }
42
43 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
44 {
45         rt_b->rt_period = ns_to_ktime(period);
46         rt_b->rt_runtime = runtime;
47
48         raw_spin_lock_init(&rt_b->rt_runtime_lock);
49
50         hrtimer_init(&rt_b->rt_period_timer,
51                         CLOCK_MONOTONIC, HRTIMER_MODE_REL);
52         rt_b->rt_period_timer.function = sched_rt_period_timer;
53 }
54
55 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
56 {
57         if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
58                 return;
59
60         raw_spin_lock(&rt_b->rt_runtime_lock);
61         if (!rt_b->rt_period_active) {
62                 rt_b->rt_period_active = 1;
63                 hrtimer_forward_now(&rt_b->rt_period_timer, rt_b->rt_period);
64                 hrtimer_start_expires(&rt_b->rt_period_timer, HRTIMER_MODE_ABS_PINNED);
65         }
66         raw_spin_unlock(&rt_b->rt_runtime_lock);
67 }
68
69 #if defined(CONFIG_SMP) && defined(HAVE_RT_PUSH_IPI)
70 static void push_irq_work_func(struct irq_work *work);
71 #endif
72
73 void init_rt_rq(struct rt_rq *rt_rq)
74 {
75         struct rt_prio_array *array;
76         int i;
77
78         array = &rt_rq->active;
79         for (i = 0; i < MAX_RT_PRIO; i++) {
80                 INIT_LIST_HEAD(array->queue + i);
81                 __clear_bit(i, array->bitmap);
82         }
83         /* delimiter for bitsearch: */
84         __set_bit(MAX_RT_PRIO, array->bitmap);
85
86 #if defined CONFIG_SMP
87         rt_rq->highest_prio.curr = MAX_RT_PRIO;
88         rt_rq->highest_prio.next = MAX_RT_PRIO;
89         rt_rq->rt_nr_migratory = 0;
90         rt_rq->overloaded = 0;
91         plist_head_init(&rt_rq->pushable_tasks);
92
93 #ifdef HAVE_RT_PUSH_IPI
94         rt_rq->push_flags = 0;
95         rt_rq->push_cpu = nr_cpu_ids;
96         raw_spin_lock_init(&rt_rq->push_lock);
97         init_irq_work(&rt_rq->push_work, push_irq_work_func);
98 #endif
99 #endif /* CONFIG_SMP */
100         /* We start is dequeued state, because no RT tasks are queued */
101         rt_rq->rt_queued = 0;
102
103         rt_rq->rt_time = 0;
104         rt_rq->rt_throttled = 0;
105         rt_rq->rt_runtime = 0;
106         raw_spin_lock_init(&rt_rq->rt_runtime_lock);
107 }
108
109 #ifdef CONFIG_RT_GROUP_SCHED
110 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
111 {
112         hrtimer_cancel(&rt_b->rt_period_timer);
113 }
114
115 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
116
117 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
118 {
119 #ifdef CONFIG_SCHED_DEBUG
120         WARN_ON_ONCE(!rt_entity_is_task(rt_se));
121 #endif
122         return container_of(rt_se, struct task_struct, rt);
123 }
124
125 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
126 {
127         return rt_rq->rq;
128 }
129
130 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
131 {
132         return rt_se->rt_rq;
133 }
134
135 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
136 {
137         struct rt_rq *rt_rq = rt_se->rt_rq;
138
139         return rt_rq->rq;
140 }
141
142 void free_rt_sched_group(struct task_group *tg)
143 {
144         int i;
145
146         if (tg->rt_se)
147                 destroy_rt_bandwidth(&tg->rt_bandwidth);
148
149         for_each_possible_cpu(i) {
150                 if (tg->rt_rq)
151                         kfree(tg->rt_rq[i]);
152                 if (tg->rt_se)
153                         kfree(tg->rt_se[i]);
154         }
155
156         kfree(tg->rt_rq);
157         kfree(tg->rt_se);
158 }
159
160 void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
161                 struct sched_rt_entity *rt_se, int cpu,
162                 struct sched_rt_entity *parent)
163 {
164         struct rq *rq = cpu_rq(cpu);
165
166         rt_rq->highest_prio.curr = MAX_RT_PRIO;
167         rt_rq->rt_nr_boosted = 0;
168         rt_rq->rq = rq;
169         rt_rq->tg = tg;
170
171         tg->rt_rq[cpu] = rt_rq;
172         tg->rt_se[cpu] = rt_se;
173
174         if (!rt_se)
175                 return;
176
177         if (!parent)
178                 rt_se->rt_rq = &rq->rt;
179         else
180                 rt_se->rt_rq = parent->my_q;
181
182         rt_se->my_q = rt_rq;
183         rt_se->parent = parent;
184         INIT_LIST_HEAD(&rt_se->run_list);
185 }
186
187 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
188 {
189         struct rt_rq *rt_rq;
190         struct sched_rt_entity *rt_se;
191         int i;
192
193         tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
194         if (!tg->rt_rq)
195                 goto err;
196         tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
197         if (!tg->rt_se)
198                 goto err;
199
200         init_rt_bandwidth(&tg->rt_bandwidth,
201                         ktime_to_ns(def_rt_bandwidth.rt_period), 0);
202
203         for_each_possible_cpu(i) {
204                 rt_rq = kzalloc_node(sizeof(struct rt_rq),
205                                      GFP_KERNEL, cpu_to_node(i));
206                 if (!rt_rq)
207                         goto err;
208
209                 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
210                                      GFP_KERNEL, cpu_to_node(i));
211                 if (!rt_se)
212                         goto err_free_rq;
213
214                 init_rt_rq(rt_rq);
215                 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
216                 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
217         }
218
219         return 1;
220
221 err_free_rq:
222         kfree(rt_rq);
223 err:
224         return 0;
225 }
226
227 #else /* CONFIG_RT_GROUP_SCHED */
228
229 #define rt_entity_is_task(rt_se) (1)
230
231 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
232 {
233         return container_of(rt_se, struct task_struct, rt);
234 }
235
236 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
237 {
238         return container_of(rt_rq, struct rq, rt);
239 }
240
241 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
242 {
243         struct task_struct *p = rt_task_of(rt_se);
244
245         return task_rq(p);
246 }
247
248 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
249 {
250         struct rq *rq = rq_of_rt_se(rt_se);
251
252         return &rq->rt;
253 }
254
255 void free_rt_sched_group(struct task_group *tg) { }
256
257 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
258 {
259         return 1;
260 }
261 #endif /* CONFIG_RT_GROUP_SCHED */
262
263 #ifdef CONFIG_SMP
264
265 static void pull_rt_task(struct rq *this_rq);
266
267 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
268 {
269         /* Try to pull RT tasks here if we lower this rq's prio */
270         return rq->rt.highest_prio.curr > prev->prio;
271 }
272
273 static inline int rt_overloaded(struct rq *rq)
274 {
275         return atomic_read(&rq->rd->rto_count);
276 }
277
278 static inline void rt_set_overload(struct rq *rq)
279 {
280         if (!rq->online)
281                 return;
282
283         cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
284         /*
285          * Make sure the mask is visible before we set
286          * the overload count. That is checked to determine
287          * if we should look at the mask. It would be a shame
288          * if we looked at the mask, but the mask was not
289          * updated yet.
290          *
291          * Matched by the barrier in pull_rt_task().
292          */
293         smp_wmb();
294         atomic_inc(&rq->rd->rto_count);
295 }
296
297 static inline void rt_clear_overload(struct rq *rq)
298 {
299         if (!rq->online)
300                 return;
301
302         /* the order here really doesn't matter */
303         atomic_dec(&rq->rd->rto_count);
304         cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
305 }
306
307 static void update_rt_migration(struct rt_rq *rt_rq)
308 {
309         if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
310                 if (!rt_rq->overloaded) {
311                         rt_set_overload(rq_of_rt_rq(rt_rq));
312                         rt_rq->overloaded = 1;
313                 }
314         } else if (rt_rq->overloaded) {
315                 rt_clear_overload(rq_of_rt_rq(rt_rq));
316                 rt_rq->overloaded = 0;
317         }
318 }
319
320 static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
321 {
322         struct task_struct *p;
323
324         if (!rt_entity_is_task(rt_se))
325                 return;
326
327         p = rt_task_of(rt_se);
328         rt_rq = &rq_of_rt_rq(rt_rq)->rt;
329
330         rt_rq->rt_nr_total++;
331         if (p->nr_cpus_allowed > 1)
332                 rt_rq->rt_nr_migratory++;
333
334         update_rt_migration(rt_rq);
335 }
336
337 static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
338 {
339         struct task_struct *p;
340
341         if (!rt_entity_is_task(rt_se))
342                 return;
343
344         p = rt_task_of(rt_se);
345         rt_rq = &rq_of_rt_rq(rt_rq)->rt;
346
347         rt_rq->rt_nr_total--;
348         if (p->nr_cpus_allowed > 1)
349                 rt_rq->rt_nr_migratory--;
350
351         update_rt_migration(rt_rq);
352 }
353
354 static inline int has_pushable_tasks(struct rq *rq)
355 {
356         return !plist_head_empty(&rq->rt.pushable_tasks);
357 }
358
359 static DEFINE_PER_CPU(struct callback_head, rt_push_head);
360 static DEFINE_PER_CPU(struct callback_head, rt_pull_head);
361
362 static void push_rt_tasks(struct rq *);
363 static void pull_rt_task(struct rq *);
364
365 static inline void queue_push_tasks(struct rq *rq)
366 {
367         if (!has_pushable_tasks(rq))
368                 return;
369
370         queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks);
371 }
372
373 static inline void queue_pull_task(struct rq *rq)
374 {
375         queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task);
376 }
377
378 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
379 {
380         plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
381         plist_node_init(&p->pushable_tasks, p->prio);
382         plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
383
384         /* Update the highest prio pushable task */
385         if (p->prio < rq->rt.highest_prio.next)
386                 rq->rt.highest_prio.next = p->prio;
387 }
388
389 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
390 {
391         plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
392
393         /* Update the new highest prio pushable task */
394         if (has_pushable_tasks(rq)) {
395                 p = plist_first_entry(&rq->rt.pushable_tasks,
396                                       struct task_struct, pushable_tasks);
397                 rq->rt.highest_prio.next = p->prio;
398         } else
399                 rq->rt.highest_prio.next = MAX_RT_PRIO;
400 }
401
402 #else
403
404 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
405 {
406 }
407
408 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
409 {
410 }
411
412 static inline
413 void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
414 {
415 }
416
417 static inline
418 void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
419 {
420 }
421
422 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
423 {
424         return false;
425 }
426
427 static inline void pull_rt_task(struct rq *this_rq)
428 {
429 }
430
431 static inline void queue_push_tasks(struct rq *rq)
432 {
433 }
434 #endif /* CONFIG_SMP */
435
436 static void enqueue_top_rt_rq(struct rt_rq *rt_rq);
437 static void dequeue_top_rt_rq(struct rt_rq *rt_rq);
438
439 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
440 {
441         return !list_empty(&rt_se->run_list);
442 }
443
444 #ifdef CONFIG_RT_GROUP_SCHED
445
446 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
447 {
448         if (!rt_rq->tg)
449                 return RUNTIME_INF;
450
451         return rt_rq->rt_runtime;
452 }
453
454 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
455 {
456         return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
457 }
458
459 typedef struct task_group *rt_rq_iter_t;
460
461 static inline struct task_group *next_task_group(struct task_group *tg)
462 {
463         do {
464                 tg = list_entry_rcu(tg->list.next,
465                         typeof(struct task_group), list);
466         } while (&tg->list != &task_groups && task_group_is_autogroup(tg));
467
468         if (&tg->list == &task_groups)
469                 tg = NULL;
470
471         return tg;
472 }
473
474 #define for_each_rt_rq(rt_rq, iter, rq)                                 \
475         for (iter = container_of(&task_groups, typeof(*iter), list);    \
476                 (iter = next_task_group(iter)) &&                       \
477                 (rt_rq = iter->rt_rq[cpu_of(rq)]);)
478
479 #define for_each_sched_rt_entity(rt_se) \
480         for (; rt_se; rt_se = rt_se->parent)
481
482 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
483 {
484         return rt_se->my_q;
485 }
486
487 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head);
488 static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
489
490 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
491 {
492         struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
493         struct rq *rq = rq_of_rt_rq(rt_rq);
494         struct sched_rt_entity *rt_se;
495
496         int cpu = cpu_of(rq);
497
498         rt_se = rt_rq->tg->rt_se[cpu];
499
500         if (rt_rq->rt_nr_running) {
501                 if (!rt_se)
502                         enqueue_top_rt_rq(rt_rq);
503                 else if (!on_rt_rq(rt_se))
504                         enqueue_rt_entity(rt_se, false);
505
506                 if (rt_rq->highest_prio.curr < curr->prio)
507                         resched_curr(rq);
508         }
509 }
510
511 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
512 {
513         struct sched_rt_entity *rt_se;
514         int cpu = cpu_of(rq_of_rt_rq(rt_rq));
515
516         rt_se = rt_rq->tg->rt_se[cpu];
517
518         if (!rt_se)
519                 dequeue_top_rt_rq(rt_rq);
520         else if (on_rt_rq(rt_se))
521                 dequeue_rt_entity(rt_se);
522 }
523
524 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
525 {
526         return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
527 }
528
529 static int rt_se_boosted(struct sched_rt_entity *rt_se)
530 {
531         struct rt_rq *rt_rq = group_rt_rq(rt_se);
532         struct task_struct *p;
533
534         if (rt_rq)
535                 return !!rt_rq->rt_nr_boosted;
536
537         p = rt_task_of(rt_se);
538         return p->prio != p->normal_prio;
539 }
540
541 #ifdef CONFIG_SMP
542 static inline const struct cpumask *sched_rt_period_mask(void)
543 {
544         return this_rq()->rd->span;
545 }
546 #else
547 static inline const struct cpumask *sched_rt_period_mask(void)
548 {
549         return cpu_online_mask;
550 }
551 #endif
552
553 static inline
554 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
555 {
556         return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
557 }
558
559 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
560 {
561         return &rt_rq->tg->rt_bandwidth;
562 }
563
564 #else /* !CONFIG_RT_GROUP_SCHED */
565
566 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
567 {
568         return rt_rq->rt_runtime;
569 }
570
571 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
572 {
573         return ktime_to_ns(def_rt_bandwidth.rt_period);
574 }
575
576 typedef struct rt_rq *rt_rq_iter_t;
577
578 #define for_each_rt_rq(rt_rq, iter, rq) \
579         for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
580
581 #define for_each_sched_rt_entity(rt_se) \
582         for (; rt_se; rt_se = NULL)
583
584 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
585 {
586         return NULL;
587 }
588
589 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
590 {
591         struct rq *rq = rq_of_rt_rq(rt_rq);
592
593         if (!rt_rq->rt_nr_running)
594                 return;
595
596         enqueue_top_rt_rq(rt_rq);
597         resched_curr(rq);
598 }
599
600 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
601 {
602         dequeue_top_rt_rq(rt_rq);
603 }
604
605 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
606 {
607         return rt_rq->rt_throttled;
608 }
609
610 static inline const struct cpumask *sched_rt_period_mask(void)
611 {
612         return cpu_online_mask;
613 }
614
615 static inline
616 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
617 {
618         return &cpu_rq(cpu)->rt;
619 }
620
621 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
622 {
623         return &def_rt_bandwidth;
624 }
625
626 #endif /* CONFIG_RT_GROUP_SCHED */
627
628 bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
629 {
630         struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
631
632         return (hrtimer_active(&rt_b->rt_period_timer) ||
633                 rt_rq->rt_time < rt_b->rt_runtime);
634 }
635
636 #ifdef CONFIG_SMP
637 /*
638  * We ran out of runtime, see if we can borrow some from our neighbours.
639  */
640 static void do_balance_runtime(struct rt_rq *rt_rq)
641 {
642         struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
643         struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
644         int i, weight;
645         u64 rt_period;
646
647         weight = cpumask_weight(rd->span);
648
649         raw_spin_lock(&rt_b->rt_runtime_lock);
650         rt_period = ktime_to_ns(rt_b->rt_period);
651         for_each_cpu(i, rd->span) {
652                 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
653                 s64 diff;
654
655                 if (iter == rt_rq)
656                         continue;
657
658                 raw_spin_lock(&iter->rt_runtime_lock);
659                 /*
660                  * Either all rqs have inf runtime and there's nothing to steal
661                  * or __disable_runtime() below sets a specific rq to inf to
662                  * indicate its been disabled and disalow stealing.
663                  */
664                 if (iter->rt_runtime == RUNTIME_INF)
665                         goto next;
666
667                 /*
668                  * From runqueues with spare time, take 1/n part of their
669                  * spare time, but no more than our period.
670                  */
671                 diff = iter->rt_runtime - iter->rt_time;
672                 if (diff > 0) {
673                         diff = div_u64((u64)diff, weight);
674                         if (rt_rq->rt_runtime + diff > rt_period)
675                                 diff = rt_period - rt_rq->rt_runtime;
676                         iter->rt_runtime -= diff;
677                         rt_rq->rt_runtime += diff;
678                         if (rt_rq->rt_runtime == rt_period) {
679                                 raw_spin_unlock(&iter->rt_runtime_lock);
680                                 break;
681                         }
682                 }
683 next:
684                 raw_spin_unlock(&iter->rt_runtime_lock);
685         }
686         raw_spin_unlock(&rt_b->rt_runtime_lock);
687 }
688
689 /*
690  * Ensure this RQ takes back all the runtime it lend to its neighbours.
691  */
692 static void __disable_runtime(struct rq *rq)
693 {
694         struct root_domain *rd = rq->rd;
695         rt_rq_iter_t iter;
696         struct rt_rq *rt_rq;
697
698         if (unlikely(!scheduler_running))
699                 return;
700
701         for_each_rt_rq(rt_rq, iter, rq) {
702                 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
703                 s64 want;
704                 int i;
705
706                 raw_spin_lock(&rt_b->rt_runtime_lock);
707                 raw_spin_lock(&rt_rq->rt_runtime_lock);
708                 /*
709                  * Either we're all inf and nobody needs to borrow, or we're
710                  * already disabled and thus have nothing to do, or we have
711                  * exactly the right amount of runtime to take out.
712                  */
713                 if (rt_rq->rt_runtime == RUNTIME_INF ||
714                                 rt_rq->rt_runtime == rt_b->rt_runtime)
715                         goto balanced;
716                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
717
718                 /*
719                  * Calculate the difference between what we started out with
720                  * and what we current have, that's the amount of runtime
721                  * we lend and now have to reclaim.
722                  */
723                 want = rt_b->rt_runtime - rt_rq->rt_runtime;
724
725                 /*
726                  * Greedy reclaim, take back as much as we can.
727                  */
728                 for_each_cpu(i, rd->span) {
729                         struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
730                         s64 diff;
731
732                         /*
733                          * Can't reclaim from ourselves or disabled runqueues.
734                          */
735                         if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
736                                 continue;
737
738                         raw_spin_lock(&iter->rt_runtime_lock);
739                         if (want > 0) {
740                                 diff = min_t(s64, iter->rt_runtime, want);
741                                 iter->rt_runtime -= diff;
742                                 want -= diff;
743                         } else {
744                                 iter->rt_runtime -= want;
745                                 want -= want;
746                         }
747                         raw_spin_unlock(&iter->rt_runtime_lock);
748
749                         if (!want)
750                                 break;
751                 }
752
753                 raw_spin_lock(&rt_rq->rt_runtime_lock);
754                 /*
755                  * We cannot be left wanting - that would mean some runtime
756                  * leaked out of the system.
757                  */
758                 BUG_ON(want);
759 balanced:
760                 /*
761                  * Disable all the borrow logic by pretending we have inf
762                  * runtime - in which case borrowing doesn't make sense.
763                  */
764                 rt_rq->rt_runtime = RUNTIME_INF;
765                 rt_rq->rt_throttled = 0;
766                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
767                 raw_spin_unlock(&rt_b->rt_runtime_lock);
768
769                 /* Make rt_rq available for pick_next_task() */
770                 sched_rt_rq_enqueue(rt_rq);
771         }
772 }
773
774 static void __enable_runtime(struct rq *rq)
775 {
776         rt_rq_iter_t iter;
777         struct rt_rq *rt_rq;
778
779         if (unlikely(!scheduler_running))
780                 return;
781
782         /*
783          * Reset each runqueue's bandwidth settings
784          */
785         for_each_rt_rq(rt_rq, iter, rq) {
786                 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
787
788                 raw_spin_lock(&rt_b->rt_runtime_lock);
789                 raw_spin_lock(&rt_rq->rt_runtime_lock);
790                 rt_rq->rt_runtime = rt_b->rt_runtime;
791                 rt_rq->rt_time = 0;
792                 rt_rq->rt_throttled = 0;
793                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
794                 raw_spin_unlock(&rt_b->rt_runtime_lock);
795         }
796 }
797
798 static void balance_runtime(struct rt_rq *rt_rq)
799 {
800         if (!sched_feat(RT_RUNTIME_SHARE))
801                 return;
802
803         if (rt_rq->rt_time > rt_rq->rt_runtime) {
804                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
805                 do_balance_runtime(rt_rq);
806                 raw_spin_lock(&rt_rq->rt_runtime_lock);
807         }
808 }
809 #else /* !CONFIG_SMP */
810 static inline void balance_runtime(struct rt_rq *rt_rq) {}
811 #endif /* CONFIG_SMP */
812
813 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
814 {
815         int i, idle = 1, throttled = 0;
816         const struct cpumask *span;
817
818         span = sched_rt_period_mask();
819 #ifdef CONFIG_RT_GROUP_SCHED
820         /*
821          * FIXME: isolated CPUs should really leave the root task group,
822          * whether they are isolcpus or were isolated via cpusets, lest
823          * the timer run on a CPU which does not service all runqueues,
824          * potentially leaving other CPUs indefinitely throttled.  If
825          * isolation is really required, the user will turn the throttle
826          * off to kill the perturbations it causes anyway.  Meanwhile,
827          * this maintains functionality for boot and/or troubleshooting.
828          */
829         if (rt_b == &root_task_group.rt_bandwidth)
830                 span = cpu_online_mask;
831 #endif
832         for_each_cpu(i, span) {
833                 int enqueue = 0;
834                 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
835                 struct rq *rq = rq_of_rt_rq(rt_rq);
836
837                 raw_spin_lock(&rq->lock);
838                 if (rt_rq->rt_time) {
839                         u64 runtime;
840
841                         raw_spin_lock(&rt_rq->rt_runtime_lock);
842                         if (rt_rq->rt_throttled)
843                                 balance_runtime(rt_rq);
844                         runtime = rt_rq->rt_runtime;
845                         rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
846                         if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
847                                 rt_rq->rt_throttled = 0;
848                                 enqueue = 1;
849
850                                 /*
851                                  * When we're idle and a woken (rt) task is
852                                  * throttled check_preempt_curr() will set
853                                  * skip_update and the time between the wakeup
854                                  * and this unthrottle will get accounted as
855                                  * 'runtime'.
856                                  */
857                                 if (rt_rq->rt_nr_running && rq->curr == rq->idle)
858                                         rq_clock_skip_update(rq, false);
859                         }
860                         if (rt_rq->rt_time || rt_rq->rt_nr_running)
861                                 idle = 0;
862                         raw_spin_unlock(&rt_rq->rt_runtime_lock);
863                 } else if (rt_rq->rt_nr_running) {
864                         idle = 0;
865                         if (!rt_rq_throttled(rt_rq))
866                                 enqueue = 1;
867                 }
868                 if (rt_rq->rt_throttled)
869                         throttled = 1;
870
871                 if (enqueue)
872                         sched_rt_rq_enqueue(rt_rq);
873                 raw_spin_unlock(&rq->lock);
874         }
875
876         if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
877                 return 1;
878
879         return idle;
880 }
881
882 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
883 {
884 #ifdef CONFIG_RT_GROUP_SCHED
885         struct rt_rq *rt_rq = group_rt_rq(rt_se);
886
887         if (rt_rq)
888                 return rt_rq->highest_prio.curr;
889 #endif
890
891         return rt_task_of(rt_se)->prio;
892 }
893
894 static void dump_throttled_rt_tasks(struct rt_rq *rt_rq)
895 {
896         struct rt_prio_array *array = &rt_rq->active;
897         struct sched_rt_entity *rt_se;
898         char buf[500];
899         char *pos = buf;
900         char *end = buf + sizeof(buf);
901         int idx;
902
903         pos += snprintf(pos, sizeof(buf),
904                 "sched: RT throttling activated for rt_rq %p (cpu %d)\n",
905                 rt_rq, cpu_of(rq_of_rt_rq(rt_rq)));
906
907         if (bitmap_empty(array->bitmap, MAX_RT_PRIO))
908                 goto out;
909
910         pos += snprintf(pos, end - pos, "potential CPU hogs:\n");
911         idx = sched_find_first_bit(array->bitmap);
912         while (idx < MAX_RT_PRIO) {
913                 list_for_each_entry(rt_se, array->queue + idx, run_list) {
914                         struct task_struct *p;
915
916                         if (!rt_entity_is_task(rt_se))
917                                 continue;
918
919                         p = rt_task_of(rt_se);
920                         if (pos < end)
921                                 pos += snprintf(pos, end - pos, "\t%s (%d)\n",
922                                         p->comm, p->pid);
923                 }
924                 idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx + 1);
925         }
926 out:
927         printk_deferred("%s", buf);
928 }
929
930 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
931 {
932         u64 runtime = sched_rt_runtime(rt_rq);
933
934         if (rt_rq->rt_throttled)
935                 return rt_rq_throttled(rt_rq);
936
937         if (runtime >= sched_rt_period(rt_rq))
938                 return 0;
939
940         balance_runtime(rt_rq);
941         runtime = sched_rt_runtime(rt_rq);
942         if (runtime == RUNTIME_INF)
943                 return 0;
944
945         if (rt_rq->rt_time > runtime) {
946                 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
947
948                 /*
949                  * Don't actually throttle groups that have no runtime assigned
950                  * but accrue some time due to boosting.
951                  */
952                 if (likely(rt_b->rt_runtime)) {
953                         static bool once = false;
954
955                         rt_rq->rt_throttled = 1;
956
957                         if (!once) {
958                                 once = true;
959                                 dump_throttled_rt_tasks(rt_rq);
960                         }
961                 } else {
962                         /*
963                          * In case we did anyway, make it go away,
964                          * replenishment is a joke, since it will replenish us
965                          * with exactly 0 ns.
966                          */
967                         rt_rq->rt_time = 0;
968                 }
969
970                 if (rt_rq_throttled(rt_rq)) {
971                         sched_rt_rq_dequeue(rt_rq);
972                         return 1;
973                 }
974         }
975
976         return 0;
977 }
978
979 /*
980  * Update the current task's runtime statistics. Skip current tasks that
981  * are not in our scheduling class.
982  */
983 static void update_curr_rt(struct rq *rq)
984 {
985         struct task_struct *curr = rq->curr;
986         struct sched_rt_entity *rt_se = &curr->rt;
987         u64 delta_exec;
988
989         if (curr->sched_class != &rt_sched_class)
990                 return;
991
992         delta_exec = rq_clock_task(rq) - curr->se.exec_start;
993         if (unlikely((s64)delta_exec <= 0))
994                 return;
995
996         schedstat_set(curr->se.statistics.exec_max,
997                       max(curr->se.statistics.exec_max, delta_exec));
998
999         curr->se.sum_exec_runtime += delta_exec;
1000         account_group_exec_runtime(curr, delta_exec);
1001
1002         curr->se.exec_start = rq_clock_task(rq);
1003         cpuacct_charge(curr, delta_exec);
1004
1005         sched_rt_avg_update(rq, delta_exec);
1006
1007         if (!rt_bandwidth_enabled())
1008                 return;
1009
1010         for_each_sched_rt_entity(rt_se) {
1011                 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1012
1013                 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
1014                         raw_spin_lock(&rt_rq->rt_runtime_lock);
1015                         rt_rq->rt_time += delta_exec;
1016                         if (sched_rt_runtime_exceeded(rt_rq))
1017                                 resched_curr(rq);
1018                         raw_spin_unlock(&rt_rq->rt_runtime_lock);
1019                 }
1020         }
1021 }
1022
1023 static void
1024 dequeue_top_rt_rq(struct rt_rq *rt_rq)
1025 {
1026         struct rq *rq = rq_of_rt_rq(rt_rq);
1027
1028         BUG_ON(&rq->rt != rt_rq);
1029
1030         if (!rt_rq->rt_queued)
1031                 return;
1032
1033         BUG_ON(!rq->nr_running);
1034
1035         sub_nr_running(rq, rt_rq->rt_nr_running);
1036         rt_rq->rt_queued = 0;
1037 }
1038
1039 static void
1040 enqueue_top_rt_rq(struct rt_rq *rt_rq)
1041 {
1042         struct rq *rq = rq_of_rt_rq(rt_rq);
1043
1044         BUG_ON(&rq->rt != rt_rq);
1045
1046         if (rt_rq->rt_queued)
1047                 return;
1048         if (rt_rq_throttled(rt_rq) || !rt_rq->rt_nr_running)
1049                 return;
1050
1051         add_nr_running(rq, rt_rq->rt_nr_running);
1052         rt_rq->rt_queued = 1;
1053 }
1054
1055 #if defined CONFIG_SMP
1056
1057 static void
1058 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1059 {
1060         struct rq *rq = rq_of_rt_rq(rt_rq);
1061
1062 #ifdef CONFIG_RT_GROUP_SCHED
1063         /*
1064          * Change rq's cpupri only if rt_rq is the top queue.
1065          */
1066         if (&rq->rt != rt_rq)
1067                 return;
1068 #endif
1069         if (rq->online && prio < prev_prio)
1070                 cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
1071 }
1072
1073 static void
1074 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1075 {
1076         struct rq *rq = rq_of_rt_rq(rt_rq);
1077
1078 #ifdef CONFIG_RT_GROUP_SCHED
1079         /*
1080          * Change rq's cpupri only if rt_rq is the top queue.
1081          */
1082         if (&rq->rt != rt_rq)
1083                 return;
1084 #endif
1085         if (rq->online && rt_rq->highest_prio.curr != prev_prio)
1086                 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
1087 }
1088
1089 #else /* CONFIG_SMP */
1090
1091 static inline
1092 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1093 static inline
1094 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1095
1096 #endif /* CONFIG_SMP */
1097
1098 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
1099 static void
1100 inc_rt_prio(struct rt_rq *rt_rq, int prio)
1101 {
1102         int prev_prio = rt_rq->highest_prio.curr;
1103
1104         if (prio < prev_prio)
1105                 rt_rq->highest_prio.curr = prio;
1106
1107         inc_rt_prio_smp(rt_rq, prio, prev_prio);
1108 }
1109
1110 static void
1111 dec_rt_prio(struct rt_rq *rt_rq, int prio)
1112 {
1113         int prev_prio = rt_rq->highest_prio.curr;
1114
1115         if (rt_rq->rt_nr_running) {
1116
1117                 WARN_ON(prio < prev_prio);
1118
1119                 /*
1120                  * This may have been our highest task, and therefore
1121                  * we may have some recomputation to do
1122                  */
1123                 if (prio == prev_prio) {
1124                         struct rt_prio_array *array = &rt_rq->active;
1125
1126                         rt_rq->highest_prio.curr =
1127                                 sched_find_first_bit(array->bitmap);
1128                 }
1129
1130         } else
1131                 rt_rq->highest_prio.curr = MAX_RT_PRIO;
1132
1133         dec_rt_prio_smp(rt_rq, prio, prev_prio);
1134 }
1135
1136 #else
1137
1138 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
1139 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
1140
1141 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
1142
1143 #ifdef CONFIG_RT_GROUP_SCHED
1144
1145 static void
1146 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1147 {
1148         if (rt_se_boosted(rt_se))
1149                 rt_rq->rt_nr_boosted++;
1150
1151         if (rt_rq->tg)
1152                 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
1153 }
1154
1155 static void
1156 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1157 {
1158         if (rt_se_boosted(rt_se))
1159                 rt_rq->rt_nr_boosted--;
1160
1161         WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
1162 }
1163
1164 #else /* CONFIG_RT_GROUP_SCHED */
1165
1166 static void
1167 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1168 {
1169         start_rt_bandwidth(&def_rt_bandwidth);
1170 }
1171
1172 static inline
1173 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1174
1175 #endif /* CONFIG_RT_GROUP_SCHED */
1176
1177 static inline
1178 unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se)
1179 {
1180         struct rt_rq *group_rq = group_rt_rq(rt_se);
1181
1182         if (group_rq)
1183                 return group_rq->rt_nr_running;
1184         else
1185                 return 1;
1186 }
1187
1188 static inline
1189 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1190 {
1191         int prio = rt_se_prio(rt_se);
1192
1193         WARN_ON(!rt_prio(prio));
1194         rt_rq->rt_nr_running += rt_se_nr_running(rt_se);
1195
1196         inc_rt_prio(rt_rq, prio);
1197         inc_rt_migration(rt_se, rt_rq);
1198         inc_rt_group(rt_se, rt_rq);
1199 }
1200
1201 static inline
1202 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1203 {
1204         WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1205         WARN_ON(!rt_rq->rt_nr_running);
1206         rt_rq->rt_nr_running -= rt_se_nr_running(rt_se);
1207
1208         dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1209         dec_rt_migration(rt_se, rt_rq);
1210         dec_rt_group(rt_se, rt_rq);
1211 }
1212
1213 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
1214 {
1215         struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1216         struct rt_prio_array *array = &rt_rq->active;
1217         struct rt_rq *group_rq = group_rt_rq(rt_se);
1218         struct list_head *queue = array->queue + rt_se_prio(rt_se);
1219
1220         /*
1221          * Don't enqueue the group if its throttled, or when empty.
1222          * The latter is a consequence of the former when a child group
1223          * get throttled and the current group doesn't have any other
1224          * active members.
1225          */
1226         if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
1227                 return;
1228
1229         if (head)
1230                 list_add(&rt_se->run_list, queue);
1231         else
1232                 list_add_tail(&rt_se->run_list, queue);
1233         __set_bit(rt_se_prio(rt_se), array->bitmap);
1234
1235         inc_rt_tasks(rt_se, rt_rq);
1236 }
1237
1238 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
1239 {
1240         struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1241         struct rt_prio_array *array = &rt_rq->active;
1242
1243         list_del_init(&rt_se->run_list);
1244         if (list_empty(array->queue + rt_se_prio(rt_se)))
1245                 __clear_bit(rt_se_prio(rt_se), array->bitmap);
1246
1247         dec_rt_tasks(rt_se, rt_rq);
1248 }
1249
1250 /*
1251  * Because the prio of an upper entry depends on the lower
1252  * entries, we must remove entries top - down.
1253  */
1254 static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
1255 {
1256         struct sched_rt_entity *back = NULL;
1257
1258         for_each_sched_rt_entity(rt_se) {
1259                 rt_se->back = back;
1260                 back = rt_se;
1261         }
1262
1263         dequeue_top_rt_rq(rt_rq_of_se(back));
1264
1265         for (rt_se = back; rt_se; rt_se = rt_se->back) {
1266                 if (on_rt_rq(rt_se))
1267                         __dequeue_rt_entity(rt_se);
1268         }
1269 }
1270
1271 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
1272 {
1273         struct rq *rq = rq_of_rt_se(rt_se);
1274
1275         dequeue_rt_stack(rt_se);
1276         for_each_sched_rt_entity(rt_se)
1277                 __enqueue_rt_entity(rt_se, head);
1278         enqueue_top_rt_rq(&rq->rt);
1279 }
1280
1281 static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
1282 {
1283         struct rq *rq = rq_of_rt_se(rt_se);
1284
1285         dequeue_rt_stack(rt_se);
1286
1287         for_each_sched_rt_entity(rt_se) {
1288                 struct rt_rq *rt_rq = group_rt_rq(rt_se);
1289
1290                 if (rt_rq && rt_rq->rt_nr_running)
1291                         __enqueue_rt_entity(rt_se, false);
1292         }
1293         enqueue_top_rt_rq(&rq->rt);
1294 }
1295
1296 /*
1297  * Adding/removing a task to/from a priority array:
1298  */
1299 static void
1300 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1301 {
1302         struct sched_rt_entity *rt_se = &p->rt;
1303
1304         if (flags & ENQUEUE_WAKEUP)
1305                 rt_se->timeout = 0;
1306
1307         enqueue_rt_entity(rt_se, flags & ENQUEUE_HEAD);
1308         walt_inc_cumulative_runnable_avg(rq, p);
1309
1310         if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1311                 enqueue_pushable_task(rq, p);
1312 }
1313
1314 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1315 {
1316         struct sched_rt_entity *rt_se = &p->rt;
1317
1318         update_curr_rt(rq);
1319         dequeue_rt_entity(rt_se);
1320         walt_dec_cumulative_runnable_avg(rq, p);
1321
1322         dequeue_pushable_task(rq, p);
1323 }
1324
1325 /*
1326  * Put task to the head or the end of the run list without the overhead of
1327  * dequeue followed by enqueue.
1328  */
1329 static void
1330 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
1331 {
1332         if (on_rt_rq(rt_se)) {
1333                 struct rt_prio_array *array = &rt_rq->active;
1334                 struct list_head *queue = array->queue + rt_se_prio(rt_se);
1335
1336                 if (head)
1337                         list_move(&rt_se->run_list, queue);
1338                 else
1339                         list_move_tail(&rt_se->run_list, queue);
1340         }
1341 }
1342
1343 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
1344 {
1345         struct sched_rt_entity *rt_se = &p->rt;
1346         struct rt_rq *rt_rq;
1347
1348         for_each_sched_rt_entity(rt_se) {
1349                 rt_rq = rt_rq_of_se(rt_se);
1350                 requeue_rt_entity(rt_rq, rt_se, head);
1351         }
1352 }
1353
1354 static void yield_task_rt(struct rq *rq)
1355 {
1356         requeue_task_rt(rq, rq->curr, 0);
1357 }
1358
1359 #ifdef CONFIG_SMP
1360 static int find_lowest_rq(struct task_struct *task);
1361
1362 static int
1363 select_task_rq_rt(struct task_struct *p, int cpu, int sd_flag, int flags)
1364 {
1365         struct task_struct *curr;
1366         struct rq *rq;
1367
1368         /* For anything but wake ups, just return the task_cpu */
1369         if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
1370                 goto out;
1371
1372         rq = cpu_rq(cpu);
1373
1374         rcu_read_lock();
1375         curr = READ_ONCE(rq->curr); /* unlocked access */
1376
1377         /*
1378          * If the current task on @p's runqueue is an RT task, then
1379          * try to see if we can wake this RT task up on another
1380          * runqueue. Otherwise simply start this RT task
1381          * on its current runqueue.
1382          *
1383          * We want to avoid overloading runqueues. If the woken
1384          * task is a higher priority, then it will stay on this CPU
1385          * and the lower prio task should be moved to another CPU.
1386          * Even though this will probably make the lower prio task
1387          * lose its cache, we do not want to bounce a higher task
1388          * around just because it gave up its CPU, perhaps for a
1389          * lock?
1390          *
1391          * For equal prio tasks, we just let the scheduler sort it out.
1392          *
1393          * Otherwise, just let it ride on the affined RQ and the
1394          * post-schedule router will push the preempted task away
1395          *
1396          * This test is optimistic, if we get it wrong the load-balancer
1397          * will have to sort it out.
1398          */
1399         if (curr && unlikely(rt_task(curr)) &&
1400             (curr->nr_cpus_allowed < 2 ||
1401              curr->prio <= p->prio)) {
1402                 int target = find_lowest_rq(p);
1403
1404                 /*
1405                  * Don't bother moving it if the destination CPU is
1406                  * not running a lower priority task.
1407                  */
1408                 if (target != -1 &&
1409                     p->prio < cpu_rq(target)->rt.highest_prio.curr)
1410                         cpu = target;
1411         }
1412         rcu_read_unlock();
1413
1414 out:
1415         return cpu;
1416 }
1417
1418 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1419 {
1420         /*
1421          * Current can't be migrated, useless to reschedule,
1422          * let's hope p can move out.
1423          */
1424         if (rq->curr->nr_cpus_allowed == 1 ||
1425             !cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1426                 return;
1427
1428         /*
1429          * p is migratable, so let's not schedule it and
1430          * see if it is pushed or pulled somewhere else.
1431          */
1432         if (p->nr_cpus_allowed != 1
1433             && cpupri_find(&rq->rd->cpupri, p, NULL))
1434                 return;
1435
1436         /*
1437          * There appears to be other cpus that can accept
1438          * current and none to run 'p', so lets reschedule
1439          * to try and push current away:
1440          */
1441         requeue_task_rt(rq, p, 1);
1442         resched_curr(rq);
1443 }
1444
1445 #endif /* CONFIG_SMP */
1446
1447 /*
1448  * Preempt the current task with a newly woken task if needed:
1449  */
1450 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
1451 {
1452         if (p->prio < rq->curr->prio) {
1453                 resched_curr(rq);
1454                 return;
1455         }
1456
1457 #ifdef CONFIG_SMP
1458         /*
1459          * If:
1460          *
1461          * - the newly woken task is of equal priority to the current task
1462          * - the newly woken task is non-migratable while current is migratable
1463          * - current will be preempted on the next reschedule
1464          *
1465          * we should check to see if current can readily move to a different
1466          * cpu.  If so, we will reschedule to allow the push logic to try
1467          * to move current somewhere else, making room for our non-migratable
1468          * task.
1469          */
1470         if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1471                 check_preempt_equal_prio(rq, p);
1472 #endif
1473 }
1474
1475 #ifdef CONFIG_SMP
1476 static void sched_rt_update_capacity_req(struct rq *rq)
1477 {
1478         u64 total, used, age_stamp, avg;
1479         s64 delta;
1480
1481         if (!sched_freq())
1482                 return;
1483
1484         sched_avg_update(rq);
1485         /*
1486          * Since we're reading these variables without serialization make sure
1487          * we read them once before doing sanity checks on them.
1488          */
1489         age_stamp = READ_ONCE(rq->age_stamp);
1490         avg = READ_ONCE(rq->rt_avg);
1491         delta = rq_clock(rq) - age_stamp;
1492
1493         if (unlikely(delta < 0))
1494                 delta = 0;
1495
1496         total = sched_avg_period() + delta;
1497
1498         used = div_u64(avg, total);
1499         if (unlikely(used > SCHED_CAPACITY_SCALE))
1500                 used = SCHED_CAPACITY_SCALE;
1501
1502         set_rt_cpu_capacity(rq->cpu, 1, (unsigned long)(used));
1503 }
1504 #else
1505 static inline void sched_rt_update_capacity_req(struct rq *rq)
1506 { }
1507
1508 #endif
1509
1510 static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
1511                                                    struct rt_rq *rt_rq)
1512 {
1513         struct rt_prio_array *array = &rt_rq->active;
1514         struct sched_rt_entity *next = NULL;
1515         struct list_head *queue;
1516         int idx;
1517
1518         idx = sched_find_first_bit(array->bitmap);
1519         BUG_ON(idx >= MAX_RT_PRIO);
1520
1521         queue = array->queue + idx;
1522         next = list_entry(queue->next, struct sched_rt_entity, run_list);
1523
1524         return next;
1525 }
1526
1527 static struct task_struct *_pick_next_task_rt(struct rq *rq)
1528 {
1529         struct sched_rt_entity *rt_se;
1530         struct task_struct *p;
1531         struct rt_rq *rt_rq  = &rq->rt;
1532
1533         do {
1534                 rt_se = pick_next_rt_entity(rq, rt_rq);
1535                 BUG_ON(!rt_se);
1536                 rt_rq = group_rt_rq(rt_se);
1537         } while (rt_rq);
1538
1539         p = rt_task_of(rt_se);
1540         p->se.exec_start = rq_clock_task(rq);
1541
1542         return p;
1543 }
1544
1545 static struct task_struct *
1546 pick_next_task_rt(struct rq *rq, struct task_struct *prev)
1547 {
1548         struct task_struct *p;
1549         struct rt_rq *rt_rq = &rq->rt;
1550
1551         if (need_pull_rt_task(rq, prev)) {
1552                 /*
1553                  * This is OK, because current is on_cpu, which avoids it being
1554                  * picked for load-balance and preemption/IRQs are still
1555                  * disabled avoiding further scheduler activity on it and we're
1556                  * being very careful to re-start the picking loop.
1557                  */
1558                 lockdep_unpin_lock(&rq->lock);
1559                 pull_rt_task(rq);
1560                 lockdep_pin_lock(&rq->lock);
1561                 /*
1562                  * pull_rt_task() can drop (and re-acquire) rq->lock; this
1563                  * means a dl or stop task can slip in, in which case we need
1564                  * to re-start task selection.
1565                  */
1566                 if (unlikely((rq->stop && task_on_rq_queued(rq->stop)) ||
1567                              rq->dl.dl_nr_running))
1568                         return RETRY_TASK;
1569         }
1570
1571         /*
1572          * We may dequeue prev's rt_rq in put_prev_task().
1573          * So, we update time before rt_nr_running check.
1574          */
1575         if (prev->sched_class == &rt_sched_class)
1576                 update_curr_rt(rq);
1577
1578         if (!rt_rq->rt_queued) {
1579                 /*
1580                  * The next task to be picked on this rq will have a lower
1581                  * priority than rt tasks so we can spend some time to update
1582                  * the capacity used by rt tasks based on the last activity.
1583                  * This value will be the used as an estimation of the next
1584                  * activity.
1585                  */
1586                 sched_rt_update_capacity_req(rq);
1587                 return NULL;
1588         }
1589
1590         put_prev_task(rq, prev);
1591
1592         p = _pick_next_task_rt(rq);
1593
1594         /* The running task is never eligible for pushing */
1595         dequeue_pushable_task(rq, p);
1596
1597         queue_push_tasks(rq);
1598
1599         return p;
1600 }
1601
1602 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
1603 {
1604         update_curr_rt(rq);
1605
1606         /*
1607          * The previous task needs to be made eligible for pushing
1608          * if it is still active
1609          */
1610         if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
1611                 enqueue_pushable_task(rq, p);
1612 }
1613
1614 #ifdef CONFIG_SMP
1615
1616 /* Only try algorithms three times */
1617 #define RT_MAX_TRIES 3
1618
1619 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1620 {
1621         if (!task_running(rq, p) &&
1622             cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
1623                 return 1;
1624         return 0;
1625 }
1626
1627 /*
1628  * Return the highest pushable rq's task, which is suitable to be executed
1629  * on the cpu, NULL otherwise
1630  */
1631 static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
1632 {
1633         struct plist_head *head = &rq->rt.pushable_tasks;
1634         struct task_struct *p;
1635
1636         if (!has_pushable_tasks(rq))
1637                 return NULL;
1638
1639         plist_for_each_entry(p, head, pushable_tasks) {
1640                 if (pick_rt_task(rq, p, cpu))
1641                         return p;
1642         }
1643
1644         return NULL;
1645 }
1646
1647 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1648
1649 static int find_lowest_rq(struct task_struct *task)
1650 {
1651         struct sched_domain *sd;
1652         struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask);
1653         int this_cpu = smp_processor_id();
1654         int cpu      = task_cpu(task);
1655
1656         /* Make sure the mask is initialized first */
1657         if (unlikely(!lowest_mask))
1658                 return -1;
1659
1660         if (task->nr_cpus_allowed == 1)
1661                 return -1; /* No other targets possible */
1662
1663         if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
1664                 return -1; /* No targets found */
1665
1666         /*
1667          * At this point we have built a mask of cpus representing the
1668          * lowest priority tasks in the system.  Now we want to elect
1669          * the best one based on our affinity and topology.
1670          *
1671          * We prioritize the last cpu that the task executed on since
1672          * it is most likely cache-hot in that location.
1673          */
1674         if (cpumask_test_cpu(cpu, lowest_mask))
1675                 return cpu;
1676
1677         /*
1678          * Otherwise, we consult the sched_domains span maps to figure
1679          * out which cpu is logically closest to our hot cache data.
1680          */
1681         if (!cpumask_test_cpu(this_cpu, lowest_mask))
1682                 this_cpu = -1; /* Skip this_cpu opt if not among lowest */
1683
1684         rcu_read_lock();
1685         for_each_domain(cpu, sd) {
1686                 if (sd->flags & SD_WAKE_AFFINE) {
1687                         int best_cpu;
1688
1689                         /*
1690                          * "this_cpu" is cheaper to preempt than a
1691                          * remote processor.
1692                          */
1693                         if (this_cpu != -1 &&
1694                             cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1695                                 rcu_read_unlock();
1696                                 return this_cpu;
1697                         }
1698
1699                         best_cpu = cpumask_first_and(lowest_mask,
1700                                                      sched_domain_span(sd));
1701                         if (best_cpu < nr_cpu_ids) {
1702                                 rcu_read_unlock();
1703                                 return best_cpu;
1704                         }
1705                 }
1706         }
1707         rcu_read_unlock();
1708
1709         /*
1710          * And finally, if there were no matches within the domains
1711          * just give the caller *something* to work with from the compatible
1712          * locations.
1713          */
1714         if (this_cpu != -1)
1715                 return this_cpu;
1716
1717         cpu = cpumask_any(lowest_mask);
1718         if (cpu < nr_cpu_ids)
1719                 return cpu;
1720         return -1;
1721 }
1722
1723 /* Will lock the rq it finds */
1724 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1725 {
1726         struct rq *lowest_rq = NULL;
1727         int tries;
1728         int cpu;
1729
1730         for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1731                 cpu = find_lowest_rq(task);
1732
1733                 if ((cpu == -1) || (cpu == rq->cpu))
1734                         break;
1735
1736                 lowest_rq = cpu_rq(cpu);
1737
1738                 if (lowest_rq->rt.highest_prio.curr <= task->prio) {
1739                         /*
1740                          * Target rq has tasks of equal or higher priority,
1741                          * retrying does not release any lock and is unlikely
1742                          * to yield a different result.
1743                          */
1744                         lowest_rq = NULL;
1745                         break;
1746                 }
1747
1748                 /* if the prio of this runqueue changed, try again */
1749                 if (double_lock_balance(rq, lowest_rq)) {
1750                         /*
1751                          * We had to unlock the run queue. In
1752                          * the mean time, task could have
1753                          * migrated already or had its affinity changed.
1754                          * Also make sure that it wasn't scheduled on its rq.
1755                          */
1756                         if (unlikely(task_rq(task) != rq ||
1757                                      !cpumask_test_cpu(lowest_rq->cpu,
1758                                                        tsk_cpus_allowed(task)) ||
1759                                      task_running(rq, task) ||
1760                                      !task_on_rq_queued(task))) {
1761
1762                                 double_unlock_balance(rq, lowest_rq);
1763                                 lowest_rq = NULL;
1764                                 break;
1765                         }
1766                 }
1767
1768                 /* If this rq is still suitable use it. */
1769                 if (lowest_rq->rt.highest_prio.curr > task->prio)
1770                         break;
1771
1772                 /* try again */
1773                 double_unlock_balance(rq, lowest_rq);
1774                 lowest_rq = NULL;
1775         }
1776
1777         return lowest_rq;
1778 }
1779
1780 static struct task_struct *pick_next_pushable_task(struct rq *rq)
1781 {
1782         struct task_struct *p;
1783
1784         if (!has_pushable_tasks(rq))
1785                 return NULL;
1786
1787         p = plist_first_entry(&rq->rt.pushable_tasks,
1788                               struct task_struct, pushable_tasks);
1789
1790         BUG_ON(rq->cpu != task_cpu(p));
1791         BUG_ON(task_current(rq, p));
1792         BUG_ON(p->nr_cpus_allowed <= 1);
1793
1794         BUG_ON(!task_on_rq_queued(p));
1795         BUG_ON(!rt_task(p));
1796
1797         return p;
1798 }
1799
1800 /*
1801  * If the current CPU has more than one RT task, see if the non
1802  * running task can migrate over to a CPU that is running a task
1803  * of lesser priority.
1804  */
1805 static int push_rt_task(struct rq *rq)
1806 {
1807         struct task_struct *next_task;
1808         struct rq *lowest_rq;
1809         int ret = 0;
1810
1811         if (!rq->rt.overloaded)
1812                 return 0;
1813
1814         next_task = pick_next_pushable_task(rq);
1815         if (!next_task)
1816                 return 0;
1817
1818 retry:
1819         if (unlikely(next_task == rq->curr)) {
1820                 WARN_ON(1);
1821                 return 0;
1822         }
1823
1824         /*
1825          * It's possible that the next_task slipped in of
1826          * higher priority than current. If that's the case
1827          * just reschedule current.
1828          */
1829         if (unlikely(next_task->prio < rq->curr->prio)) {
1830                 resched_curr(rq);
1831                 return 0;
1832         }
1833
1834         /* We might release rq lock */
1835         get_task_struct(next_task);
1836
1837         /* find_lock_lowest_rq locks the rq if found */
1838         lowest_rq = find_lock_lowest_rq(next_task, rq);
1839         if (!lowest_rq) {
1840                 struct task_struct *task;
1841                 /*
1842                  * find_lock_lowest_rq releases rq->lock
1843                  * so it is possible that next_task has migrated.
1844                  *
1845                  * We need to make sure that the task is still on the same
1846                  * run-queue and is also still the next task eligible for
1847                  * pushing.
1848                  */
1849                 task = pick_next_pushable_task(rq);
1850                 if (task_cpu(next_task) == rq->cpu && task == next_task) {
1851                         /*
1852                          * The task hasn't migrated, and is still the next
1853                          * eligible task, but we failed to find a run-queue
1854                          * to push it to.  Do not retry in this case, since
1855                          * other cpus will pull from us when ready.
1856                          */
1857                         goto out;
1858                 }
1859
1860                 if (!task)
1861                         /* No more tasks, just exit */
1862                         goto out;
1863
1864                 /*
1865                  * Something has shifted, try again.
1866                  */
1867                 put_task_struct(next_task);
1868                 next_task = task;
1869                 goto retry;
1870         }
1871
1872         deactivate_task(rq, next_task, 0);
1873         set_task_cpu(next_task, lowest_rq->cpu);
1874         activate_task(lowest_rq, next_task, 0);
1875         ret = 1;
1876
1877         resched_curr(lowest_rq);
1878
1879         double_unlock_balance(rq, lowest_rq);
1880
1881 out:
1882         put_task_struct(next_task);
1883
1884         return ret;
1885 }
1886
1887 static void push_rt_tasks(struct rq *rq)
1888 {
1889         /* push_rt_task will return true if it moved an RT */
1890         while (push_rt_task(rq))
1891                 ;
1892 }
1893
1894 #ifdef HAVE_RT_PUSH_IPI
1895 /*
1896  * The search for the next cpu always starts at rq->cpu and ends
1897  * when we reach rq->cpu again. It will never return rq->cpu.
1898  * This returns the next cpu to check, or nr_cpu_ids if the loop
1899  * is complete.
1900  *
1901  * rq->rt.push_cpu holds the last cpu returned by this function,
1902  * or if this is the first instance, it must hold rq->cpu.
1903  */
1904 static int rto_next_cpu(struct rq *rq)
1905 {
1906         int prev_cpu = rq->rt.push_cpu;
1907         int cpu;
1908
1909         cpu = cpumask_next(prev_cpu, rq->rd->rto_mask);
1910
1911         /*
1912          * If the previous cpu is less than the rq's CPU, then it already
1913          * passed the end of the mask, and has started from the beginning.
1914          * We end if the next CPU is greater or equal to rq's CPU.
1915          */
1916         if (prev_cpu < rq->cpu) {
1917                 if (cpu >= rq->cpu)
1918                         return nr_cpu_ids;
1919
1920         } else if (cpu >= nr_cpu_ids) {
1921                 /*
1922                  * We passed the end of the mask, start at the beginning.
1923                  * If the result is greater or equal to the rq's CPU, then
1924                  * the loop is finished.
1925                  */
1926                 cpu = cpumask_first(rq->rd->rto_mask);
1927                 if (cpu >= rq->cpu)
1928                         return nr_cpu_ids;
1929         }
1930         rq->rt.push_cpu = cpu;
1931
1932         /* Return cpu to let the caller know if the loop is finished or not */
1933         return cpu;
1934 }
1935
1936 static int find_next_push_cpu(struct rq *rq)
1937 {
1938         struct rq *next_rq;
1939         int cpu;
1940
1941         while (1) {
1942                 cpu = rto_next_cpu(rq);
1943                 if (cpu >= nr_cpu_ids)
1944                         break;
1945                 next_rq = cpu_rq(cpu);
1946
1947                 /* Make sure the next rq can push to this rq */
1948                 if (next_rq->rt.highest_prio.next < rq->rt.highest_prio.curr)
1949                         break;
1950         }
1951
1952         return cpu;
1953 }
1954
1955 #define RT_PUSH_IPI_EXECUTING           1
1956 #define RT_PUSH_IPI_RESTART             2
1957
1958 static void tell_cpu_to_push(struct rq *rq)
1959 {
1960         int cpu;
1961
1962         if (rq->rt.push_flags & RT_PUSH_IPI_EXECUTING) {
1963                 raw_spin_lock(&rq->rt.push_lock);
1964                 /* Make sure it's still executing */
1965                 if (rq->rt.push_flags & RT_PUSH_IPI_EXECUTING) {
1966                         /*
1967                          * Tell the IPI to restart the loop as things have
1968                          * changed since it started.
1969                          */
1970                         rq->rt.push_flags |= RT_PUSH_IPI_RESTART;
1971                         raw_spin_unlock(&rq->rt.push_lock);
1972                         return;
1973                 }
1974                 raw_spin_unlock(&rq->rt.push_lock);
1975         }
1976
1977         /* When here, there's no IPI going around */
1978
1979         rq->rt.push_cpu = rq->cpu;
1980         cpu = find_next_push_cpu(rq);
1981         if (cpu >= nr_cpu_ids)
1982                 return;
1983
1984         rq->rt.push_flags = RT_PUSH_IPI_EXECUTING;
1985
1986         irq_work_queue_on(&rq->rt.push_work, cpu);
1987 }
1988
1989 /* Called from hardirq context */
1990 static void try_to_push_tasks(void *arg)
1991 {
1992         struct rt_rq *rt_rq = arg;
1993         struct rq *rq, *src_rq;
1994         int this_cpu;
1995         int cpu;
1996
1997         this_cpu = rt_rq->push_cpu;
1998
1999         /* Paranoid check */
2000         BUG_ON(this_cpu != smp_processor_id());
2001
2002         rq = cpu_rq(this_cpu);
2003         src_rq = rq_of_rt_rq(rt_rq);
2004
2005 again:
2006         if (has_pushable_tasks(rq)) {
2007                 raw_spin_lock(&rq->lock);
2008                 push_rt_task(rq);
2009                 raw_spin_unlock(&rq->lock);
2010         }
2011
2012         /* Pass the IPI to the next rt overloaded queue */
2013         raw_spin_lock(&rt_rq->push_lock);
2014         /*
2015          * If the source queue changed since the IPI went out,
2016          * we need to restart the search from that CPU again.
2017          */
2018         if (rt_rq->push_flags & RT_PUSH_IPI_RESTART) {
2019                 rt_rq->push_flags &= ~RT_PUSH_IPI_RESTART;
2020                 rt_rq->push_cpu = src_rq->cpu;
2021         }
2022
2023         cpu = find_next_push_cpu(src_rq);
2024
2025         if (cpu >= nr_cpu_ids)
2026                 rt_rq->push_flags &= ~RT_PUSH_IPI_EXECUTING;
2027         raw_spin_unlock(&rt_rq->push_lock);
2028
2029         if (cpu >= nr_cpu_ids)
2030                 return;
2031
2032         /*
2033          * It is possible that a restart caused this CPU to be
2034          * chosen again. Don't bother with an IPI, just see if we
2035          * have more to push.
2036          */
2037         if (unlikely(cpu == rq->cpu))
2038                 goto again;
2039
2040         /* Try the next RT overloaded CPU */
2041         irq_work_queue_on(&rt_rq->push_work, cpu);
2042 }
2043
2044 static void push_irq_work_func(struct irq_work *work)
2045 {
2046         struct rt_rq *rt_rq = container_of(work, struct rt_rq, push_work);
2047
2048         try_to_push_tasks(rt_rq);
2049 }
2050 #endif /* HAVE_RT_PUSH_IPI */
2051
2052 static void pull_rt_task(struct rq *this_rq)
2053 {
2054         int this_cpu = this_rq->cpu, cpu;
2055         bool resched = false;
2056         struct task_struct *p;
2057         struct rq *src_rq;
2058
2059         if (likely(!rt_overloaded(this_rq)))
2060                 return;
2061
2062         /*
2063          * Match the barrier from rt_set_overloaded; this guarantees that if we
2064          * see overloaded we must also see the rto_mask bit.
2065          */
2066         smp_rmb();
2067
2068 #ifdef HAVE_RT_PUSH_IPI
2069         if (sched_feat(RT_PUSH_IPI)) {
2070                 tell_cpu_to_push(this_rq);
2071                 return;
2072         }
2073 #endif
2074
2075         for_each_cpu(cpu, this_rq->rd->rto_mask) {
2076                 if (this_cpu == cpu)
2077                         continue;
2078
2079                 src_rq = cpu_rq(cpu);
2080
2081                 /*
2082                  * Don't bother taking the src_rq->lock if the next highest
2083                  * task is known to be lower-priority than our current task.
2084                  * This may look racy, but if this value is about to go
2085                  * logically higher, the src_rq will push this task away.
2086                  * And if its going logically lower, we do not care
2087                  */
2088                 if (src_rq->rt.highest_prio.next >=
2089                     this_rq->rt.highest_prio.curr)
2090                         continue;
2091
2092                 /*
2093                  * We can potentially drop this_rq's lock in
2094                  * double_lock_balance, and another CPU could
2095                  * alter this_rq
2096                  */
2097                 double_lock_balance(this_rq, src_rq);
2098
2099                 /*
2100                  * We can pull only a task, which is pushable
2101                  * on its rq, and no others.
2102                  */
2103                 p = pick_highest_pushable_task(src_rq, this_cpu);
2104
2105                 /*
2106                  * Do we have an RT task that preempts
2107                  * the to-be-scheduled task?
2108                  */
2109                 if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
2110                         WARN_ON(p == src_rq->curr);
2111                         WARN_ON(!task_on_rq_queued(p));
2112
2113                         /*
2114                          * There's a chance that p is higher in priority
2115                          * than what's currently running on its cpu.
2116                          * This is just that p is wakeing up and hasn't
2117                          * had a chance to schedule. We only pull
2118                          * p if it is lower in priority than the
2119                          * current task on the run queue
2120                          */
2121                         if (p->prio < src_rq->curr->prio)
2122                                 goto skip;
2123
2124                         resched = true;
2125
2126                         deactivate_task(src_rq, p, 0);
2127                         set_task_cpu(p, this_cpu);
2128                         activate_task(this_rq, p, 0);
2129                         /*
2130                          * We continue with the search, just in
2131                          * case there's an even higher prio task
2132                          * in another runqueue. (low likelihood
2133                          * but possible)
2134                          */
2135                 }
2136 skip:
2137                 double_unlock_balance(this_rq, src_rq);
2138         }
2139
2140         if (resched)
2141                 resched_curr(this_rq);
2142 }
2143
2144 /*
2145  * If we are not running and we are not going to reschedule soon, we should
2146  * try to push tasks away now
2147  */
2148 static void task_woken_rt(struct rq *rq, struct task_struct *p)
2149 {
2150         if (!task_running(rq, p) &&
2151             !test_tsk_need_resched(rq->curr) &&
2152             p->nr_cpus_allowed > 1 &&
2153             (dl_task(rq->curr) || rt_task(rq->curr)) &&
2154             (rq->curr->nr_cpus_allowed < 2 ||
2155              rq->curr->prio <= p->prio))
2156                 push_rt_tasks(rq);
2157 }
2158
2159 /* Assumes rq->lock is held */
2160 static void rq_online_rt(struct rq *rq)
2161 {
2162         if (rq->rt.overloaded)
2163                 rt_set_overload(rq);
2164
2165         __enable_runtime(rq);
2166
2167         cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
2168 }
2169
2170 /* Assumes rq->lock is held */
2171 static void rq_offline_rt(struct rq *rq)
2172 {
2173         if (rq->rt.overloaded)
2174                 rt_clear_overload(rq);
2175
2176         __disable_runtime(rq);
2177
2178         cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
2179 }
2180
2181 /*
2182  * When switch from the rt queue, we bring ourselves to a position
2183  * that we might want to pull RT tasks from other runqueues.
2184  */
2185 static void switched_from_rt(struct rq *rq, struct task_struct *p)
2186 {
2187         /*
2188          * If there are other RT tasks then we will reschedule
2189          * and the scheduling of the other RT tasks will handle
2190          * the balancing. But if we are the last RT task
2191          * we may need to handle the pulling of RT tasks
2192          * now.
2193          */
2194         if (!task_on_rq_queued(p) || rq->rt.rt_nr_running)
2195                 return;
2196
2197         queue_pull_task(rq);
2198 }
2199
2200 void __init init_sched_rt_class(void)
2201 {
2202         unsigned int i;
2203
2204         for_each_possible_cpu(i) {
2205                 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
2206                                         GFP_KERNEL, cpu_to_node(i));
2207         }
2208 }
2209 #endif /* CONFIG_SMP */
2210
2211 /*
2212  * When switching a task to RT, we may overload the runqueue
2213  * with RT tasks. In this case we try to push them off to
2214  * other runqueues.
2215  */
2216 static void switched_to_rt(struct rq *rq, struct task_struct *p)
2217 {
2218         /*
2219          * If we are already running, then there's nothing
2220          * that needs to be done. But if we are not running
2221          * we may need to preempt the current running task.
2222          * If that current running task is also an RT task
2223          * then see if we can move to another run queue.
2224          */
2225         if (task_on_rq_queued(p) && rq->curr != p) {
2226 #ifdef CONFIG_SMP
2227                 if (p->nr_cpus_allowed > 1 && rq->rt.overloaded)
2228                         queue_push_tasks(rq);
2229 #else
2230                 if (p->prio < rq->curr->prio)
2231                         resched_curr(rq);
2232 #endif /* CONFIG_SMP */
2233         }
2234 }
2235
2236 /*
2237  * Priority of the task has changed. This may cause
2238  * us to initiate a push or pull.
2239  */
2240 static void
2241 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
2242 {
2243         if (!task_on_rq_queued(p))
2244                 return;
2245
2246         if (rq->curr == p) {
2247 #ifdef CONFIG_SMP
2248                 /*
2249                  * If our priority decreases while running, we
2250                  * may need to pull tasks to this runqueue.
2251                  */
2252                 if (oldprio < p->prio)
2253                         queue_pull_task(rq);
2254
2255                 /*
2256                  * If there's a higher priority task waiting to run
2257                  * then reschedule.
2258                  */
2259                 if (p->prio > rq->rt.highest_prio.curr)
2260                         resched_curr(rq);
2261 #else
2262                 /* For UP simply resched on drop of prio */
2263                 if (oldprio < p->prio)
2264                         resched_curr(rq);
2265 #endif /* CONFIG_SMP */
2266         } else {
2267                 /*
2268                  * This task is not running, but if it is
2269                  * greater than the current running task
2270                  * then reschedule.
2271                  */
2272                 if (p->prio < rq->curr->prio)
2273                         resched_curr(rq);
2274         }
2275 }
2276
2277 static void watchdog(struct rq *rq, struct task_struct *p)
2278 {
2279         unsigned long soft, hard;
2280
2281         /* max may change after cur was read, this will be fixed next tick */
2282         soft = task_rlimit(p, RLIMIT_RTTIME);
2283         hard = task_rlimit_max(p, RLIMIT_RTTIME);
2284
2285         if (soft != RLIM_INFINITY) {
2286                 unsigned long next;
2287
2288                 if (p->rt.watchdog_stamp != jiffies) {
2289                         p->rt.timeout++;
2290                         p->rt.watchdog_stamp = jiffies;
2291                 }
2292
2293                 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
2294                 if (p->rt.timeout > next)
2295                         p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
2296         }
2297 }
2298
2299 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
2300 {
2301         struct sched_rt_entity *rt_se = &p->rt;
2302
2303         update_curr_rt(rq);
2304
2305         if (rq->rt.rt_nr_running)
2306                 sched_rt_update_capacity_req(rq);
2307
2308         watchdog(rq, p);
2309
2310         /*
2311          * RR tasks need a special form of timeslice management.
2312          * FIFO tasks have no timeslices.
2313          */
2314         if (p->policy != SCHED_RR)
2315                 return;
2316
2317         if (--p->rt.time_slice)
2318                 return;
2319
2320         p->rt.time_slice = sched_rr_timeslice;
2321
2322         /*
2323          * Requeue to the end of queue if we (and all of our ancestors) are not
2324          * the only element on the queue
2325          */
2326         for_each_sched_rt_entity(rt_se) {
2327                 if (rt_se->run_list.prev != rt_se->run_list.next) {
2328                         requeue_task_rt(rq, p, 0);
2329                         resched_curr(rq);
2330                         return;
2331                 }
2332         }
2333 }
2334
2335 static void set_curr_task_rt(struct rq *rq)
2336 {
2337         struct task_struct *p = rq->curr;
2338
2339         p->se.exec_start = rq_clock_task(rq);
2340
2341         /* The running task is never eligible for pushing */
2342         dequeue_pushable_task(rq, p);
2343 }
2344
2345 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
2346 {
2347         /*
2348          * Time slice is 0 for SCHED_FIFO tasks
2349          */
2350         if (task->policy == SCHED_RR)
2351                 return sched_rr_timeslice;
2352         else
2353                 return 0;
2354 }
2355
2356 const struct sched_class rt_sched_class = {
2357         .next                   = &fair_sched_class,
2358         .enqueue_task           = enqueue_task_rt,
2359         .dequeue_task           = dequeue_task_rt,
2360         .yield_task             = yield_task_rt,
2361
2362         .check_preempt_curr     = check_preempt_curr_rt,
2363
2364         .pick_next_task         = pick_next_task_rt,
2365         .put_prev_task          = put_prev_task_rt,
2366
2367 #ifdef CONFIG_SMP
2368         .select_task_rq         = select_task_rq_rt,
2369
2370         .set_cpus_allowed       = set_cpus_allowed_common,
2371         .rq_online              = rq_online_rt,
2372         .rq_offline             = rq_offline_rt,
2373         .task_woken             = task_woken_rt,
2374         .switched_from          = switched_from_rt,
2375 #endif
2376
2377         .set_curr_task          = set_curr_task_rt,
2378         .task_tick              = task_tick_rt,
2379
2380         .get_rr_interval        = get_rr_interval_rt,
2381
2382         .prio_changed           = prio_changed_rt,
2383         .switched_to            = switched_to_rt,
2384
2385         .update_curr            = update_curr_rt,
2386 };
2387
2388 #ifdef CONFIG_SCHED_DEBUG
2389 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2390
2391 void print_rt_stats(struct seq_file *m, int cpu)
2392 {
2393         rt_rq_iter_t iter;
2394         struct rt_rq *rt_rq;
2395
2396         rcu_read_lock();
2397         for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
2398                 print_rt_rq(m, cpu, rt_rq);
2399         rcu_read_unlock();
2400 }
2401 #endif /* CONFIG_SCHED_DEBUG */