Linux 3.10.72
[firefly-linux-kernel-4.4.55.git] / kernel / sched / fair.c
1 /*
2  * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3  *
4  *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5  *
6  *  Interactivity improvements by Mike Galbraith
7  *  (C) 2007 Mike Galbraith <efault@gmx.de>
8  *
9  *  Various enhancements by Dmitry Adamushko.
10  *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11  *
12  *  Group scheduling enhancements by Srivatsa Vaddagiri
13  *  Copyright IBM Corporation, 2007
14  *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15  *
16  *  Scaled math optimizations by Thomas Gleixner
17  *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18  *
19  *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21  */
22
23 #include <linux/latencytop.h>
24 #include <linux/sched.h>
25 #include <linux/cpumask.h>
26 #include <linux/slab.h>
27 #include <linux/profile.h>
28 #include <linux/interrupt.h>
29 #include <linux/mempolicy.h>
30 #include <linux/migrate.h>
31 #include <linux/task_work.h>
32
33 #include <trace/events/sched.h>
34
35 #include "sched.h"
36
37 /*
38  * Targeted preemption latency for CPU-bound tasks:
39  * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
40  *
41  * NOTE: this latency value is not the same as the concept of
42  * 'timeslice length' - timeslices in CFS are of variable length
43  * and have no persistent notion like in traditional, time-slice
44  * based scheduling concepts.
45  *
46  * (to see the precise effective timeslice length of your workload,
47  *  run vmstat and monitor the context-switches (cs) field)
48  */
49 unsigned int sysctl_sched_latency = 6000000ULL;
50 unsigned int normalized_sysctl_sched_latency = 6000000ULL;
51
52 /*
53  * The initial- and re-scaling of tunables is configurable
54  * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
55  *
56  * Options are:
57  * SCHED_TUNABLESCALING_NONE - unscaled, always *1
58  * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
59  * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
60  */
61 enum sched_tunable_scaling sysctl_sched_tunable_scaling
62         = SCHED_TUNABLESCALING_LOG;
63
64 /*
65  * Minimal preemption granularity for CPU-bound tasks:
66  * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
67  */
68 unsigned int sysctl_sched_min_granularity = 750000ULL;
69 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
70
71 /*
72  * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
73  */
74 static unsigned int sched_nr_latency = 8;
75
76 /*
77  * After fork, child runs first. If set to 0 (default) then
78  * parent will (try to) run first.
79  */
80 unsigned int sysctl_sched_child_runs_first __read_mostly;
81
82 /*
83  * SCHED_OTHER wake-up granularity.
84  * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
85  *
86  * This option delays the preemption effects of decoupled workloads
87  * and reduces their over-scheduling. Synchronous workloads will still
88  * have immediate wakeup/sleep latencies.
89  */
90 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
91 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
92
93 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
94
95 /*
96  * The exponential sliding  window over which load is averaged for shares
97  * distribution.
98  * (default: 10msec)
99  */
100 unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
101
102 #ifdef CONFIG_CFS_BANDWIDTH
103 /*
104  * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
105  * each time a cfs_rq requests quota.
106  *
107  * Note: in the case that the slice exceeds the runtime remaining (either due
108  * to consumption or the quota being specified to be smaller than the slice)
109  * we will always only issue the remaining available time.
110  *
111  * default: 5 msec, units: microseconds
112   */
113 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
114 #endif
115
116 /*
117  * Increase the granularity value when there are more CPUs,
118  * because with more CPUs the 'effective latency' as visible
119  * to users decreases. But the relationship is not linear,
120  * so pick a second-best guess by going with the log2 of the
121  * number of CPUs.
122  *
123  * This idea comes from the SD scheduler of Con Kolivas:
124  */
125 static int get_update_sysctl_factor(void)
126 {
127         unsigned int cpus = min_t(int, num_online_cpus(), 8);
128         unsigned int factor;
129
130         switch (sysctl_sched_tunable_scaling) {
131         case SCHED_TUNABLESCALING_NONE:
132                 factor = 1;
133                 break;
134         case SCHED_TUNABLESCALING_LINEAR:
135                 factor = cpus;
136                 break;
137         case SCHED_TUNABLESCALING_LOG:
138         default:
139                 factor = 1 + ilog2(cpus);
140                 break;
141         }
142
143         return factor;
144 }
145
146 static void update_sysctl(void)
147 {
148         unsigned int factor = get_update_sysctl_factor();
149
150 #define SET_SYSCTL(name) \
151         (sysctl_##name = (factor) * normalized_sysctl_##name)
152         SET_SYSCTL(sched_min_granularity);
153         SET_SYSCTL(sched_latency);
154         SET_SYSCTL(sched_wakeup_granularity);
155 #undef SET_SYSCTL
156 }
157
158 void sched_init_granularity(void)
159 {
160         update_sysctl();
161 }
162
163 #if BITS_PER_LONG == 32
164 # define WMULT_CONST    (~0UL)
165 #else
166 # define WMULT_CONST    (1UL << 32)
167 #endif
168
169 #define WMULT_SHIFT     32
170
171 /*
172  * Shift right and round:
173  */
174 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
175
176 /*
177  * delta *= weight / lw
178  */
179 static unsigned long
180 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
181                 struct load_weight *lw)
182 {
183         u64 tmp;
184
185         /*
186          * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
187          * entities since MIN_SHARES = 2. Treat weight as 1 if less than
188          * 2^SCHED_LOAD_RESOLUTION.
189          */
190         if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
191                 tmp = (u64)delta_exec * scale_load_down(weight);
192         else
193                 tmp = (u64)delta_exec;
194
195         if (!lw->inv_weight) {
196                 unsigned long w = scale_load_down(lw->weight);
197
198                 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
199                         lw->inv_weight = 1;
200                 else if (unlikely(!w))
201                         lw->inv_weight = WMULT_CONST;
202                 else
203                         lw->inv_weight = WMULT_CONST / w;
204         }
205
206         /*
207          * Check whether we'd overflow the 64-bit multiplication:
208          */
209         if (unlikely(tmp > WMULT_CONST))
210                 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
211                         WMULT_SHIFT/2);
212         else
213                 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
214
215         return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
216 }
217
218
219 const struct sched_class fair_sched_class;
220
221 /**************************************************************
222  * CFS operations on generic schedulable entities:
223  */
224
225 #ifdef CONFIG_FAIR_GROUP_SCHED
226
227 /* cpu runqueue to which this cfs_rq is attached */
228 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
229 {
230         return cfs_rq->rq;
231 }
232
233 /* An entity is a task if it doesn't "own" a runqueue */
234 #define entity_is_task(se)      (!se->my_q)
235
236 static inline struct task_struct *task_of(struct sched_entity *se)
237 {
238 #ifdef CONFIG_SCHED_DEBUG
239         WARN_ON_ONCE(!entity_is_task(se));
240 #endif
241         return container_of(se, struct task_struct, se);
242 }
243
244 /* Walk up scheduling entities hierarchy */
245 #define for_each_sched_entity(se) \
246                 for (; se; se = se->parent)
247
248 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
249 {
250         return p->se.cfs_rq;
251 }
252
253 /* runqueue on which this entity is (to be) queued */
254 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
255 {
256         return se->cfs_rq;
257 }
258
259 /* runqueue "owned" by this group */
260 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
261 {
262         return grp->my_q;
263 }
264
265 static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
266                                        int force_update);
267
268 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
269 {
270         if (!cfs_rq->on_list) {
271                 /*
272                  * Ensure we either appear before our parent (if already
273                  * enqueued) or force our parent to appear after us when it is
274                  * enqueued.  The fact that we always enqueue bottom-up
275                  * reduces this to two cases.
276                  */
277                 if (cfs_rq->tg->parent &&
278                     cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
279                         list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
280                                 &rq_of(cfs_rq)->leaf_cfs_rq_list);
281                 } else {
282                         list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
283                                 &rq_of(cfs_rq)->leaf_cfs_rq_list);
284                 }
285
286                 cfs_rq->on_list = 1;
287                 /* We should have no load, but we need to update last_decay. */
288                 update_cfs_rq_blocked_load(cfs_rq, 0);
289         }
290 }
291
292 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
293 {
294         if (cfs_rq->on_list) {
295                 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
296                 cfs_rq->on_list = 0;
297         }
298 }
299
300 /* Iterate thr' all leaf cfs_rq's on a runqueue */
301 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
302         list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
303
304 /* Do the two (enqueued) entities belong to the same group ? */
305 static inline int
306 is_same_group(struct sched_entity *se, struct sched_entity *pse)
307 {
308         if (se->cfs_rq == pse->cfs_rq)
309                 return 1;
310
311         return 0;
312 }
313
314 static inline struct sched_entity *parent_entity(struct sched_entity *se)
315 {
316         return se->parent;
317 }
318
319 /* return depth at which a sched entity is present in the hierarchy */
320 static inline int depth_se(struct sched_entity *se)
321 {
322         int depth = 0;
323
324         for_each_sched_entity(se)
325                 depth++;
326
327         return depth;
328 }
329
330 static void
331 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
332 {
333         int se_depth, pse_depth;
334
335         /*
336          * preemption test can be made between sibling entities who are in the
337          * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
338          * both tasks until we find their ancestors who are siblings of common
339          * parent.
340          */
341
342         /* First walk up until both entities are at same depth */
343         se_depth = depth_se(*se);
344         pse_depth = depth_se(*pse);
345
346         while (se_depth > pse_depth) {
347                 se_depth--;
348                 *se = parent_entity(*se);
349         }
350
351         while (pse_depth > se_depth) {
352                 pse_depth--;
353                 *pse = parent_entity(*pse);
354         }
355
356         while (!is_same_group(*se, *pse)) {
357                 *se = parent_entity(*se);
358                 *pse = parent_entity(*pse);
359         }
360 }
361
362 #else   /* !CONFIG_FAIR_GROUP_SCHED */
363
364 static inline struct task_struct *task_of(struct sched_entity *se)
365 {
366         return container_of(se, struct task_struct, se);
367 }
368
369 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
370 {
371         return container_of(cfs_rq, struct rq, cfs);
372 }
373
374 #define entity_is_task(se)      1
375
376 #define for_each_sched_entity(se) \
377                 for (; se; se = NULL)
378
379 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
380 {
381         return &task_rq(p)->cfs;
382 }
383
384 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
385 {
386         struct task_struct *p = task_of(se);
387         struct rq *rq = task_rq(p);
388
389         return &rq->cfs;
390 }
391
392 /* runqueue "owned" by this group */
393 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
394 {
395         return NULL;
396 }
397
398 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
399 {
400 }
401
402 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
403 {
404 }
405
406 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
407                 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
408
409 static inline int
410 is_same_group(struct sched_entity *se, struct sched_entity *pse)
411 {
412         return 1;
413 }
414
415 static inline struct sched_entity *parent_entity(struct sched_entity *se)
416 {
417         return NULL;
418 }
419
420 static inline void
421 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
422 {
423 }
424
425 #endif  /* CONFIG_FAIR_GROUP_SCHED */
426
427 static __always_inline
428 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec);
429
430 /**************************************************************
431  * Scheduling class tree data structure manipulation methods:
432  */
433
434 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
435 {
436         s64 delta = (s64)(vruntime - max_vruntime);
437         if (delta > 0)
438                 max_vruntime = vruntime;
439
440         return max_vruntime;
441 }
442
443 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
444 {
445         s64 delta = (s64)(vruntime - min_vruntime);
446         if (delta < 0)
447                 min_vruntime = vruntime;
448
449         return min_vruntime;
450 }
451
452 static inline int entity_before(struct sched_entity *a,
453                                 struct sched_entity *b)
454 {
455         return (s64)(a->vruntime - b->vruntime) < 0;
456 }
457
458 static void update_min_vruntime(struct cfs_rq *cfs_rq)
459 {
460         u64 vruntime = cfs_rq->min_vruntime;
461
462         if (cfs_rq->curr)
463                 vruntime = cfs_rq->curr->vruntime;
464
465         if (cfs_rq->rb_leftmost) {
466                 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
467                                                    struct sched_entity,
468                                                    run_node);
469
470                 if (!cfs_rq->curr)
471                         vruntime = se->vruntime;
472                 else
473                         vruntime = min_vruntime(vruntime, se->vruntime);
474         }
475
476         /* ensure we never gain time by being placed backwards. */
477         cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
478 #ifndef CONFIG_64BIT
479         smp_wmb();
480         cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
481 #endif
482 }
483
484 /*
485  * Enqueue an entity into the rb-tree:
486  */
487 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
488 {
489         struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
490         struct rb_node *parent = NULL;
491         struct sched_entity *entry;
492         int leftmost = 1;
493
494         /*
495          * Find the right place in the rbtree:
496          */
497         while (*link) {
498                 parent = *link;
499                 entry = rb_entry(parent, struct sched_entity, run_node);
500                 /*
501                  * We dont care about collisions. Nodes with
502                  * the same key stay together.
503                  */
504                 if (entity_before(se, entry)) {
505                         link = &parent->rb_left;
506                 } else {
507                         link = &parent->rb_right;
508                         leftmost = 0;
509                 }
510         }
511
512         /*
513          * Maintain a cache of leftmost tree entries (it is frequently
514          * used):
515          */
516         if (leftmost)
517                 cfs_rq->rb_leftmost = &se->run_node;
518
519         rb_link_node(&se->run_node, parent, link);
520         rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
521 }
522
523 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
524 {
525         if (cfs_rq->rb_leftmost == &se->run_node) {
526                 struct rb_node *next_node;
527
528                 next_node = rb_next(&se->run_node);
529                 cfs_rq->rb_leftmost = next_node;
530         }
531
532         rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
533 }
534
535 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
536 {
537         struct rb_node *left = cfs_rq->rb_leftmost;
538
539         if (!left)
540                 return NULL;
541
542         return rb_entry(left, struct sched_entity, run_node);
543 }
544
545 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
546 {
547         struct rb_node *next = rb_next(&se->run_node);
548
549         if (!next)
550                 return NULL;
551
552         return rb_entry(next, struct sched_entity, run_node);
553 }
554
555 #ifdef CONFIG_SCHED_DEBUG
556 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
557 {
558         struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
559
560         if (!last)
561                 return NULL;
562
563         return rb_entry(last, struct sched_entity, run_node);
564 }
565
566 /**************************************************************
567  * Scheduling class statistics methods:
568  */
569
570 int sched_proc_update_handler(struct ctl_table *table, int write,
571                 void __user *buffer, size_t *lenp,
572                 loff_t *ppos)
573 {
574         int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
575         int factor = get_update_sysctl_factor();
576
577         if (ret || !write)
578                 return ret;
579
580         sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
581                                         sysctl_sched_min_granularity);
582
583 #define WRT_SYSCTL(name) \
584         (normalized_sysctl_##name = sysctl_##name / (factor))
585         WRT_SYSCTL(sched_min_granularity);
586         WRT_SYSCTL(sched_latency);
587         WRT_SYSCTL(sched_wakeup_granularity);
588 #undef WRT_SYSCTL
589
590         return 0;
591 }
592 #endif
593
594 /*
595  * delta /= w
596  */
597 static inline unsigned long
598 calc_delta_fair(unsigned long delta, struct sched_entity *se)
599 {
600         if (unlikely(se->load.weight != NICE_0_LOAD))
601                 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
602
603         return delta;
604 }
605
606 /*
607  * The idea is to set a period in which each task runs once.
608  *
609  * When there are too many tasks (sched_nr_latency) we have to stretch
610  * this period because otherwise the slices get too small.
611  *
612  * p = (nr <= nl) ? l : l*nr/nl
613  */
614 static u64 __sched_period(unsigned long nr_running)
615 {
616         u64 period = sysctl_sched_latency;
617         unsigned long nr_latency = sched_nr_latency;
618
619         if (unlikely(nr_running > nr_latency)) {
620                 period = sysctl_sched_min_granularity;
621                 period *= nr_running;
622         }
623
624         return period;
625 }
626
627 /*
628  * We calculate the wall-time slice from the period by taking a part
629  * proportional to the weight.
630  *
631  * s = p*P[w/rw]
632  */
633 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
634 {
635         u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
636
637         for_each_sched_entity(se) {
638                 struct load_weight *load;
639                 struct load_weight lw;
640
641                 cfs_rq = cfs_rq_of(se);
642                 load = &cfs_rq->load;
643
644                 if (unlikely(!se->on_rq)) {
645                         lw = cfs_rq->load;
646
647                         update_load_add(&lw, se->load.weight);
648                         load = &lw;
649                 }
650                 slice = calc_delta_mine(slice, se->load.weight, load);
651         }
652         return slice;
653 }
654
655 /*
656  * We calculate the vruntime slice of a to-be-inserted task.
657  *
658  * vs = s/w
659  */
660 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
661 {
662         return calc_delta_fair(sched_slice(cfs_rq, se), se);
663 }
664
665 /*
666  * Update the current task's runtime statistics. Skip current tasks that
667  * are not in our scheduling class.
668  */
669 static inline void
670 __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
671               unsigned long delta_exec)
672 {
673         unsigned long delta_exec_weighted;
674
675         schedstat_set(curr->statistics.exec_max,
676                       max((u64)delta_exec, curr->statistics.exec_max));
677
678         curr->sum_exec_runtime += delta_exec;
679         schedstat_add(cfs_rq, exec_clock, delta_exec);
680         delta_exec_weighted = calc_delta_fair(delta_exec, curr);
681
682         curr->vruntime += delta_exec_weighted;
683         update_min_vruntime(cfs_rq);
684 }
685
686 static void update_curr(struct cfs_rq *cfs_rq)
687 {
688         struct sched_entity *curr = cfs_rq->curr;
689         u64 now = rq_of(cfs_rq)->clock_task;
690         unsigned long delta_exec;
691
692         if (unlikely(!curr))
693                 return;
694
695         /*
696          * Get the amount of time the current task was running
697          * since the last time we changed load (this cannot
698          * overflow on 32 bits):
699          */
700         delta_exec = (unsigned long)(now - curr->exec_start);
701         if (!delta_exec)
702                 return;
703
704         __update_curr(cfs_rq, curr, delta_exec);
705         curr->exec_start = now;
706
707         if (entity_is_task(curr)) {
708                 struct task_struct *curtask = task_of(curr);
709
710                 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
711                 cpuacct_charge(curtask, delta_exec);
712                 account_group_exec_runtime(curtask, delta_exec);
713         }
714
715         account_cfs_rq_runtime(cfs_rq, delta_exec);
716 }
717
718 static inline void
719 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
720 {
721         schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock);
722 }
723
724 /*
725  * Task is being enqueued - update stats:
726  */
727 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
728 {
729         /*
730          * Are we enqueueing a waiting task? (for current tasks
731          * a dequeue/enqueue event is a NOP)
732          */
733         if (se != cfs_rq->curr)
734                 update_stats_wait_start(cfs_rq, se);
735 }
736
737 static void
738 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
739 {
740         schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
741                         rq_of(cfs_rq)->clock - se->statistics.wait_start));
742         schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
743         schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
744                         rq_of(cfs_rq)->clock - se->statistics.wait_start);
745 #ifdef CONFIG_SCHEDSTATS
746         if (entity_is_task(se)) {
747                 trace_sched_stat_wait(task_of(se),
748                         rq_of(cfs_rq)->clock - se->statistics.wait_start);
749         }
750 #endif
751         schedstat_set(se->statistics.wait_start, 0);
752 }
753
754 static inline void
755 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
756 {
757         /*
758          * Mark the end of the wait period if dequeueing a
759          * waiting task:
760          */
761         if (se != cfs_rq->curr)
762                 update_stats_wait_end(cfs_rq, se);
763 }
764
765 /*
766  * We are picking a new current task - update its stats:
767  */
768 static inline void
769 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
770 {
771         /*
772          * We are starting a new run period:
773          */
774         se->exec_start = rq_of(cfs_rq)->clock_task;
775 }
776
777 /**************************************************
778  * Scheduling class queueing methods:
779  */
780
781 #ifdef CONFIG_NUMA_BALANCING
782 /*
783  * numa task sample period in ms
784  */
785 unsigned int sysctl_numa_balancing_scan_period_min = 100;
786 unsigned int sysctl_numa_balancing_scan_period_max = 100*50;
787 unsigned int sysctl_numa_balancing_scan_period_reset = 100*600;
788
789 /* Portion of address space to scan in MB */
790 unsigned int sysctl_numa_balancing_scan_size = 256;
791
792 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
793 unsigned int sysctl_numa_balancing_scan_delay = 1000;
794
795 static void task_numa_placement(struct task_struct *p)
796 {
797         int seq;
798
799         if (!p->mm)     /* for example, ksmd faulting in a user's mm */
800                 return;
801         seq = ACCESS_ONCE(p->mm->numa_scan_seq);
802         if (p->numa_scan_seq == seq)
803                 return;
804         p->numa_scan_seq = seq;
805
806         /* FIXME: Scheduling placement policy hints go here */
807 }
808
809 /*
810  * Got a PROT_NONE fault for a page on @node.
811  */
812 void task_numa_fault(int node, int pages, bool migrated)
813 {
814         struct task_struct *p = current;
815
816         if (!sched_feat_numa(NUMA))
817                 return;
818
819         /* FIXME: Allocate task-specific structure for placement policy here */
820
821         /*
822          * If pages are properly placed (did not migrate) then scan slower.
823          * This is reset periodically in case of phase changes
824          */
825         if (!migrated)
826                 p->numa_scan_period = min(sysctl_numa_balancing_scan_period_max,
827                         p->numa_scan_period + jiffies_to_msecs(10));
828
829         task_numa_placement(p);
830 }
831
832 static void reset_ptenuma_scan(struct task_struct *p)
833 {
834         ACCESS_ONCE(p->mm->numa_scan_seq)++;
835         p->mm->numa_scan_offset = 0;
836 }
837
838 /*
839  * The expensive part of numa migration is done from task_work context.
840  * Triggered from task_tick_numa().
841  */
842 void task_numa_work(struct callback_head *work)
843 {
844         unsigned long migrate, next_scan, now = jiffies;
845         struct task_struct *p = current;
846         struct mm_struct *mm = p->mm;
847         struct vm_area_struct *vma;
848         unsigned long start, end;
849         long pages;
850
851         WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
852
853         work->next = work; /* protect against double add */
854         /*
855          * Who cares about NUMA placement when they're dying.
856          *
857          * NOTE: make sure not to dereference p->mm before this check,
858          * exit_task_work() happens _after_ exit_mm() so we could be called
859          * without p->mm even though we still had it when we enqueued this
860          * work.
861          */
862         if (p->flags & PF_EXITING)
863                 return;
864
865         /*
866          * We do not care about task placement until a task runs on a node
867          * other than the first one used by the address space. This is
868          * largely because migrations are driven by what CPU the task
869          * is running on. If it's never scheduled on another node, it'll
870          * not migrate so why bother trapping the fault.
871          */
872         if (mm->first_nid == NUMA_PTE_SCAN_INIT)
873                 mm->first_nid = numa_node_id();
874         if (mm->first_nid != NUMA_PTE_SCAN_ACTIVE) {
875                 /* Are we running on a new node yet? */
876                 if (numa_node_id() == mm->first_nid &&
877                     !sched_feat_numa(NUMA_FORCE))
878                         return;
879
880                 mm->first_nid = NUMA_PTE_SCAN_ACTIVE;
881         }
882
883         /*
884          * Reset the scan period if enough time has gone by. Objective is that
885          * scanning will be reduced if pages are properly placed. As tasks
886          * can enter different phases this needs to be re-examined. Lacking
887          * proper tracking of reference behaviour, this blunt hammer is used.
888          */
889         migrate = mm->numa_next_reset;
890         if (time_after(now, migrate)) {
891                 p->numa_scan_period = sysctl_numa_balancing_scan_period_min;
892                 next_scan = now + msecs_to_jiffies(sysctl_numa_balancing_scan_period_reset);
893                 xchg(&mm->numa_next_reset, next_scan);
894         }
895
896         /*
897          * Enforce maximal scan/migration frequency..
898          */
899         migrate = mm->numa_next_scan;
900         if (time_before(now, migrate))
901                 return;
902
903         if (p->numa_scan_period == 0)
904                 p->numa_scan_period = sysctl_numa_balancing_scan_period_min;
905
906         next_scan = now + msecs_to_jiffies(p->numa_scan_period);
907         if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
908                 return;
909
910         /*
911          * Do not set pte_numa if the current running node is rate-limited.
912          * This loses statistics on the fault but if we are unwilling to
913          * migrate to this node, it is less likely we can do useful work
914          */
915         if (migrate_ratelimited(numa_node_id()))
916                 return;
917
918         start = mm->numa_scan_offset;
919         pages = sysctl_numa_balancing_scan_size;
920         pages <<= 20 - PAGE_SHIFT; /* MB in pages */
921         if (!pages)
922                 return;
923
924         down_read(&mm->mmap_sem);
925         vma = find_vma(mm, start);
926         if (!vma) {
927                 reset_ptenuma_scan(p);
928                 start = 0;
929                 vma = mm->mmap;
930         }
931         for (; vma; vma = vma->vm_next) {
932                 if (!vma_migratable(vma))
933                         continue;
934
935                 /* Skip small VMAs. They are not likely to be of relevance */
936                 if (vma->vm_end - vma->vm_start < HPAGE_SIZE)
937                         continue;
938
939                 /*
940                  * Skip inaccessible VMAs to avoid any confusion between
941                  * PROT_NONE and NUMA hinting ptes
942                  */
943                 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
944                         continue;
945
946                 do {
947                         start = max(start, vma->vm_start);
948                         end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
949                         end = min(end, vma->vm_end);
950                         pages -= change_prot_numa(vma, start, end);
951
952                         start = end;
953                         if (pages <= 0)
954                                 goto out;
955                 } while (end != vma->vm_end);
956         }
957
958 out:
959         /*
960          * It is possible to reach the end of the VMA list but the last few VMAs are
961          * not guaranteed to the vma_migratable. If they are not, we would find the
962          * !migratable VMA on the next scan but not reset the scanner to the start
963          * so check it now.
964          */
965         if (vma)
966                 mm->numa_scan_offset = start;
967         else
968                 reset_ptenuma_scan(p);
969         up_read(&mm->mmap_sem);
970 }
971
972 /*
973  * Drive the periodic memory faults..
974  */
975 void task_tick_numa(struct rq *rq, struct task_struct *curr)
976 {
977         struct callback_head *work = &curr->numa_work;
978         u64 period, now;
979
980         /*
981          * We don't care about NUMA placement if we don't have memory.
982          */
983         if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
984                 return;
985
986         /*
987          * Using runtime rather than walltime has the dual advantage that
988          * we (mostly) drive the selection from busy threads and that the
989          * task needs to have done some actual work before we bother with
990          * NUMA placement.
991          */
992         now = curr->se.sum_exec_runtime;
993         period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
994
995         if (now - curr->node_stamp > period) {
996                 if (!curr->node_stamp)
997                         curr->numa_scan_period = sysctl_numa_balancing_scan_period_min;
998                 curr->node_stamp = now;
999
1000                 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
1001                         init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
1002                         task_work_add(curr, work, true);
1003                 }
1004         }
1005 }
1006 #else
1007 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
1008 {
1009 }
1010 #endif /* CONFIG_NUMA_BALANCING */
1011
1012 static void
1013 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1014 {
1015         update_load_add(&cfs_rq->load, se->load.weight);
1016         if (!parent_entity(se))
1017                 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
1018 #ifdef CONFIG_SMP
1019         if (entity_is_task(se))
1020                 list_add(&se->group_node, &rq_of(cfs_rq)->cfs_tasks);
1021 #endif
1022         cfs_rq->nr_running++;
1023 }
1024
1025 static void
1026 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1027 {
1028         update_load_sub(&cfs_rq->load, se->load.weight);
1029         if (!parent_entity(se))
1030                 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
1031         if (entity_is_task(se))
1032                 list_del_init(&se->group_node);
1033         cfs_rq->nr_running--;
1034 }
1035
1036 #ifdef CONFIG_FAIR_GROUP_SCHED
1037 # ifdef CONFIG_SMP
1038 static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
1039 {
1040         long tg_weight;
1041
1042         /*
1043          * Use this CPU's actual weight instead of the last load_contribution
1044          * to gain a more accurate current total weight. See
1045          * update_cfs_rq_load_contribution().
1046          */
1047         tg_weight = atomic64_read(&tg->load_avg);
1048         tg_weight -= cfs_rq->tg_load_contrib;
1049         tg_weight += cfs_rq->load.weight;
1050
1051         return tg_weight;
1052 }
1053
1054 static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
1055 {
1056         long tg_weight, load, shares;
1057
1058         tg_weight = calc_tg_weight(tg, cfs_rq);
1059         load = cfs_rq->load.weight;
1060
1061         shares = (tg->shares * load);
1062         if (tg_weight)
1063                 shares /= tg_weight;
1064
1065         if (shares < MIN_SHARES)
1066                 shares = MIN_SHARES;
1067         if (shares > tg->shares)
1068                 shares = tg->shares;
1069
1070         return shares;
1071 }
1072 # else /* CONFIG_SMP */
1073 static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
1074 {
1075         return tg->shares;
1076 }
1077 # endif /* CONFIG_SMP */
1078 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
1079                             unsigned long weight)
1080 {
1081         if (se->on_rq) {
1082                 /* commit outstanding execution time */
1083                 if (cfs_rq->curr == se)
1084                         update_curr(cfs_rq);
1085                 account_entity_dequeue(cfs_rq, se);
1086         }
1087
1088         update_load_set(&se->load, weight);
1089
1090         if (se->on_rq)
1091                 account_entity_enqueue(cfs_rq, se);
1092 }
1093
1094 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
1095
1096 static void update_cfs_shares(struct cfs_rq *cfs_rq)
1097 {
1098         struct task_group *tg;
1099         struct sched_entity *se;
1100         long shares;
1101
1102         tg = cfs_rq->tg;
1103         se = tg->se[cpu_of(rq_of(cfs_rq))];
1104         if (!se || throttled_hierarchy(cfs_rq))
1105                 return;
1106 #ifndef CONFIG_SMP
1107         if (likely(se->load.weight == tg->shares))
1108                 return;
1109 #endif
1110         shares = calc_cfs_shares(cfs_rq, tg);
1111
1112         reweight_entity(cfs_rq_of(se), se, shares);
1113 }
1114 #else /* CONFIG_FAIR_GROUP_SCHED */
1115 static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
1116 {
1117 }
1118 #endif /* CONFIG_FAIR_GROUP_SCHED */
1119
1120 /* Only depends on SMP, FAIR_GROUP_SCHED may be removed when useful in lb */
1121 #if defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)
1122 /*
1123  * We choose a half-life close to 1 scheduling period.
1124  * Note: The tables below are dependent on this value.
1125  */
1126 #define LOAD_AVG_PERIOD 32
1127 #define LOAD_AVG_MAX 47742 /* maximum possible load avg */
1128 #define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
1129
1130 /* Precomputed fixed inverse multiplies for multiplication by y^n */
1131 static const u32 runnable_avg_yN_inv[] = {
1132         0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
1133         0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
1134         0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
1135         0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
1136         0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
1137         0x85aac367, 0x82cd8698,
1138 };
1139
1140 /*
1141  * Precomputed \Sum y^k { 1<=k<=n }.  These are floor(true_value) to prevent
1142  * over-estimates when re-combining.
1143  */
1144 static const u32 runnable_avg_yN_sum[] = {
1145             0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
1146          9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
1147         17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
1148 };
1149
1150 /*
1151  * Approximate:
1152  *   val * y^n,    where y^32 ~= 0.5 (~1 scheduling period)
1153  */
1154 static __always_inline u64 decay_load(u64 val, u64 n)
1155 {
1156         unsigned int local_n;
1157
1158         if (!n)
1159                 return val;
1160         else if (unlikely(n > LOAD_AVG_PERIOD * 63))
1161                 return 0;
1162
1163         /* after bounds checking we can collapse to 32-bit */
1164         local_n = n;
1165
1166         /*
1167          * As y^PERIOD = 1/2, we can combine
1168          *    y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
1169          * With a look-up table which covers k^n (n<PERIOD)
1170          *
1171          * To achieve constant time decay_load.
1172          */
1173         if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
1174                 val >>= local_n / LOAD_AVG_PERIOD;
1175                 local_n %= LOAD_AVG_PERIOD;
1176         }
1177
1178         val *= runnable_avg_yN_inv[local_n];
1179         /* We don't use SRR here since we always want to round down. */
1180         return val >> 32;
1181 }
1182
1183 /*
1184  * For updates fully spanning n periods, the contribution to runnable
1185  * average will be: \Sum 1024*y^n
1186  *
1187  * We can compute this reasonably efficiently by combining:
1188  *   y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for  n <PERIOD}
1189  */
1190 static u32 __compute_runnable_contrib(u64 n)
1191 {
1192         u32 contrib = 0;
1193
1194         if (likely(n <= LOAD_AVG_PERIOD))
1195                 return runnable_avg_yN_sum[n];
1196         else if (unlikely(n >= LOAD_AVG_MAX_N))
1197                 return LOAD_AVG_MAX;
1198
1199         /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
1200         do {
1201                 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
1202                 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
1203
1204                 n -= LOAD_AVG_PERIOD;
1205         } while (n > LOAD_AVG_PERIOD);
1206
1207         contrib = decay_load(contrib, n);
1208         return contrib + runnable_avg_yN_sum[n];
1209 }
1210
1211 /*
1212  * We can represent the historical contribution to runnable average as the
1213  * coefficients of a geometric series.  To do this we sub-divide our runnable
1214  * history into segments of approximately 1ms (1024us); label the segment that
1215  * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
1216  *
1217  * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
1218  *      p0            p1           p2
1219  *     (now)       (~1ms ago)  (~2ms ago)
1220  *
1221  * Let u_i denote the fraction of p_i that the entity was runnable.
1222  *
1223  * We then designate the fractions u_i as our co-efficients, yielding the
1224  * following representation of historical load:
1225  *   u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
1226  *
1227  * We choose y based on the with of a reasonably scheduling period, fixing:
1228  *   y^32 = 0.5
1229  *
1230  * This means that the contribution to load ~32ms ago (u_32) will be weighted
1231  * approximately half as much as the contribution to load within the last ms
1232  * (u_0).
1233  *
1234  * When a period "rolls over" and we have new u_0`, multiplying the previous
1235  * sum again by y is sufficient to update:
1236  *   load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
1237  *            = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
1238  */
1239 static __always_inline int __update_entity_runnable_avg(u64 now,
1240                                                         struct sched_avg *sa,
1241                                                         int runnable)
1242 {
1243         u64 delta, periods;
1244         u32 runnable_contrib;
1245         int delta_w, decayed = 0;
1246
1247         delta = now - sa->last_runnable_update;
1248         /*
1249          * This should only happen when time goes backwards, which it
1250          * unfortunately does during sched clock init when we swap over to TSC.
1251          */
1252         if ((s64)delta < 0) {
1253                 sa->last_runnable_update = now;
1254                 return 0;
1255         }
1256
1257         /*
1258          * Use 1024ns as the unit of measurement since it's a reasonable
1259          * approximation of 1us and fast to compute.
1260          */
1261         delta >>= 10;
1262         if (!delta)
1263                 return 0;
1264         sa->last_runnable_update = now;
1265
1266         /* delta_w is the amount already accumulated against our next period */
1267         delta_w = sa->runnable_avg_period % 1024;
1268         if (delta + delta_w >= 1024) {
1269                 /* period roll-over */
1270                 decayed = 1;
1271
1272                 /*
1273                  * Now that we know we're crossing a period boundary, figure
1274                  * out how much from delta we need to complete the current
1275                  * period and accrue it.
1276                  */
1277                 delta_w = 1024 - delta_w;
1278                 if (runnable)
1279                         sa->runnable_avg_sum += delta_w;
1280                 sa->runnable_avg_period += delta_w;
1281
1282                 delta -= delta_w;
1283
1284                 /* Figure out how many additional periods this update spans */
1285                 periods = delta / 1024;
1286                 delta %= 1024;
1287
1288                 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
1289                                                   periods + 1);
1290                 sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
1291                                                      periods + 1);
1292
1293                 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
1294                 runnable_contrib = __compute_runnable_contrib(periods);
1295                 if (runnable)
1296                         sa->runnable_avg_sum += runnable_contrib;
1297                 sa->runnable_avg_period += runnable_contrib;
1298         }
1299
1300         /* Remainder of delta accrued against u_0` */
1301         if (runnable)
1302                 sa->runnable_avg_sum += delta;
1303         sa->runnable_avg_period += delta;
1304
1305         return decayed;
1306 }
1307
1308 /* Synchronize an entity's decay with its parenting cfs_rq.*/
1309 static inline u64 __synchronize_entity_decay(struct sched_entity *se)
1310 {
1311         struct cfs_rq *cfs_rq = cfs_rq_of(se);
1312         u64 decays = atomic64_read(&cfs_rq->decay_counter);
1313
1314         decays -= se->avg.decay_count;
1315         if (!decays)
1316                 return 0;
1317
1318         se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
1319         se->avg.decay_count = 0;
1320
1321         return decays;
1322 }
1323
1324 #ifdef CONFIG_FAIR_GROUP_SCHED
1325 static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
1326                                                  int force_update)
1327 {
1328         struct task_group *tg = cfs_rq->tg;
1329         s64 tg_contrib;
1330
1331         tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
1332         tg_contrib -= cfs_rq->tg_load_contrib;
1333
1334         if (force_update || abs64(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
1335                 atomic64_add(tg_contrib, &tg->load_avg);
1336                 cfs_rq->tg_load_contrib += tg_contrib;
1337         }
1338 }
1339
1340 /*
1341  * Aggregate cfs_rq runnable averages into an equivalent task_group
1342  * representation for computing load contributions.
1343  */
1344 static inline void __update_tg_runnable_avg(struct sched_avg *sa,
1345                                                   struct cfs_rq *cfs_rq)
1346 {
1347         struct task_group *tg = cfs_rq->tg;
1348         long contrib;
1349
1350         /* The fraction of a cpu used by this cfs_rq */
1351         contrib = div_u64(sa->runnable_avg_sum << NICE_0_SHIFT,
1352                           sa->runnable_avg_period + 1);
1353         contrib -= cfs_rq->tg_runnable_contrib;
1354
1355         if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
1356                 atomic_add(contrib, &tg->runnable_avg);
1357                 cfs_rq->tg_runnable_contrib += contrib;
1358         }
1359 }
1360
1361 static inline void __update_group_entity_contrib(struct sched_entity *se)
1362 {
1363         struct cfs_rq *cfs_rq = group_cfs_rq(se);
1364         struct task_group *tg = cfs_rq->tg;
1365         int runnable_avg;
1366
1367         u64 contrib;
1368
1369         contrib = cfs_rq->tg_load_contrib * tg->shares;
1370         se->avg.load_avg_contrib = div64_u64(contrib,
1371                                              atomic64_read(&tg->load_avg) + 1);
1372
1373         /*
1374          * For group entities we need to compute a correction term in the case
1375          * that they are consuming <1 cpu so that we would contribute the same
1376          * load as a task of equal weight.
1377          *
1378          * Explicitly co-ordinating this measurement would be expensive, but
1379          * fortunately the sum of each cpus contribution forms a usable
1380          * lower-bound on the true value.
1381          *
1382          * Consider the aggregate of 2 contributions.  Either they are disjoint
1383          * (and the sum represents true value) or they are disjoint and we are
1384          * understating by the aggregate of their overlap.
1385          *
1386          * Extending this to N cpus, for a given overlap, the maximum amount we
1387          * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
1388          * cpus that overlap for this interval and w_i is the interval width.
1389          *
1390          * On a small machine; the first term is well-bounded which bounds the
1391          * total error since w_i is a subset of the period.  Whereas on a
1392          * larger machine, while this first term can be larger, if w_i is the
1393          * of consequential size guaranteed to see n_i*w_i quickly converge to
1394          * our upper bound of 1-cpu.
1395          */
1396         runnable_avg = atomic_read(&tg->runnable_avg);
1397         if (runnable_avg < NICE_0_LOAD) {
1398                 se->avg.load_avg_contrib *= runnable_avg;
1399                 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
1400         }
1401 }
1402 #else
1403 static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
1404                                                  int force_update) {}
1405 static inline void __update_tg_runnable_avg(struct sched_avg *sa,
1406                                                   struct cfs_rq *cfs_rq) {}
1407 static inline void __update_group_entity_contrib(struct sched_entity *se) {}
1408 #endif
1409
1410 static inline void __update_task_entity_contrib(struct sched_entity *se)
1411 {
1412         u32 contrib;
1413
1414         /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
1415         contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
1416         contrib /= (se->avg.runnable_avg_period + 1);
1417         se->avg.load_avg_contrib = scale_load(contrib);
1418 }
1419
1420 /* Compute the current contribution to load_avg by se, return any delta */
1421 static long __update_entity_load_avg_contrib(struct sched_entity *se)
1422 {
1423         long old_contrib = se->avg.load_avg_contrib;
1424
1425         if (entity_is_task(se)) {
1426                 __update_task_entity_contrib(se);
1427         } else {
1428                 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
1429                 __update_group_entity_contrib(se);
1430         }
1431
1432         return se->avg.load_avg_contrib - old_contrib;
1433 }
1434
1435 static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
1436                                                  long load_contrib)
1437 {
1438         if (likely(load_contrib < cfs_rq->blocked_load_avg))
1439                 cfs_rq->blocked_load_avg -= load_contrib;
1440         else
1441                 cfs_rq->blocked_load_avg = 0;
1442 }
1443
1444 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
1445
1446 /* Update a sched_entity's runnable average */
1447 static inline void update_entity_load_avg(struct sched_entity *se,
1448                                           int update_cfs_rq)
1449 {
1450         struct cfs_rq *cfs_rq = cfs_rq_of(se);
1451         long contrib_delta;
1452         u64 now;
1453
1454         /*
1455          * For a group entity we need to use their owned cfs_rq_clock_task() in
1456          * case they are the parent of a throttled hierarchy.
1457          */
1458         if (entity_is_task(se))
1459                 now = cfs_rq_clock_task(cfs_rq);
1460         else
1461                 now = cfs_rq_clock_task(group_cfs_rq(se));
1462
1463         if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
1464                 return;
1465
1466         contrib_delta = __update_entity_load_avg_contrib(se);
1467
1468         if (!update_cfs_rq)
1469                 return;
1470
1471         if (se->on_rq)
1472                 cfs_rq->runnable_load_avg += contrib_delta;
1473         else
1474                 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
1475 }
1476
1477 /*
1478  * Decay the load contributed by all blocked children and account this so that
1479  * their contribution may appropriately discounted when they wake up.
1480  */
1481 static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
1482 {
1483         u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
1484         u64 decays;
1485
1486         decays = now - cfs_rq->last_decay;
1487         if (!decays && !force_update)
1488                 return;
1489
1490         if (atomic64_read(&cfs_rq->removed_load)) {
1491                 u64 removed_load = atomic64_xchg(&cfs_rq->removed_load, 0);
1492                 subtract_blocked_load_contrib(cfs_rq, removed_load);
1493         }
1494
1495         if (decays) {
1496                 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
1497                                                       decays);
1498                 atomic64_add(decays, &cfs_rq->decay_counter);
1499                 cfs_rq->last_decay = now;
1500         }
1501
1502         __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
1503 }
1504
1505 static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
1506 {
1507         __update_entity_runnable_avg(rq->clock_task, &rq->avg, runnable);
1508         __update_tg_runnable_avg(&rq->avg, &rq->cfs);
1509 }
1510
1511 /* Add the load generated by se into cfs_rq's child load-average */
1512 static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
1513                                                   struct sched_entity *se,
1514                                                   int wakeup)
1515 {
1516         /*
1517          * We track migrations using entity decay_count <= 0, on a wake-up
1518          * migration we use a negative decay count to track the remote decays
1519          * accumulated while sleeping.
1520          */
1521         if (unlikely(se->avg.decay_count <= 0)) {
1522                 se->avg.last_runnable_update = rq_of(cfs_rq)->clock_task;
1523                 if (se->avg.decay_count) {
1524                         /*
1525                          * In a wake-up migration we have to approximate the
1526                          * time sleeping.  This is because we can't synchronize
1527                          * clock_task between the two cpus, and it is not
1528                          * guaranteed to be read-safe.  Instead, we can
1529                          * approximate this using our carried decays, which are
1530                          * explicitly atomically readable.
1531                          */
1532                         se->avg.last_runnable_update -= (-se->avg.decay_count)
1533                                                         << 20;
1534                         update_entity_load_avg(se, 0);
1535                         /* Indicate that we're now synchronized and on-rq */
1536                         se->avg.decay_count = 0;
1537                 }
1538                 wakeup = 0;
1539         } else {
1540                 __synchronize_entity_decay(se);
1541         }
1542
1543         /* migrated tasks did not contribute to our blocked load */
1544         if (wakeup) {
1545                 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
1546                 update_entity_load_avg(se, 0);
1547         }
1548
1549         cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
1550         /* we force update consideration on load-balancer moves */
1551         update_cfs_rq_blocked_load(cfs_rq, !wakeup);
1552 }
1553
1554 /*
1555  * Remove se's load from this cfs_rq child load-average, if the entity is
1556  * transitioning to a blocked state we track its projected decay using
1557  * blocked_load_avg.
1558  */
1559 static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
1560                                                   struct sched_entity *se,
1561                                                   int sleep)
1562 {
1563         update_entity_load_avg(se, 1);
1564         /* we force update consideration on load-balancer moves */
1565         update_cfs_rq_blocked_load(cfs_rq, !sleep);
1566
1567         cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
1568         if (sleep) {
1569                 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
1570                 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
1571         } /* migrations, e.g. sleep=0 leave decay_count == 0 */
1572 }
1573
1574 /*
1575  * Update the rq's load with the elapsed running time before entering
1576  * idle. if the last scheduled task is not a CFS task, idle_enter will
1577  * be the only way to update the runnable statistic.
1578  */
1579 void idle_enter_fair(struct rq *this_rq)
1580 {
1581         update_rq_runnable_avg(this_rq, 1);
1582 }
1583
1584 /*
1585  * Update the rq's load with the elapsed idle time before a task is
1586  * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
1587  * be the only way to update the runnable statistic.
1588  */
1589 void idle_exit_fair(struct rq *this_rq)
1590 {
1591         update_rq_runnable_avg(this_rq, 0);
1592 }
1593
1594 #else
1595 static inline void update_entity_load_avg(struct sched_entity *se,
1596                                           int update_cfs_rq) {}
1597 static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
1598 static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
1599                                            struct sched_entity *se,
1600                                            int wakeup) {}
1601 static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
1602                                            struct sched_entity *se,
1603                                            int sleep) {}
1604 static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
1605                                               int force_update) {}
1606 #endif
1607
1608 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
1609 {
1610 #ifdef CONFIG_SCHEDSTATS
1611         struct task_struct *tsk = NULL;
1612
1613         if (entity_is_task(se))
1614                 tsk = task_of(se);
1615
1616         if (se->statistics.sleep_start) {
1617                 u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start;
1618
1619                 if ((s64)delta < 0)
1620                         delta = 0;
1621
1622                 if (unlikely(delta > se->statistics.sleep_max))
1623                         se->statistics.sleep_max = delta;
1624
1625                 se->statistics.sleep_start = 0;
1626                 se->statistics.sum_sleep_runtime += delta;
1627
1628                 if (tsk) {
1629                         account_scheduler_latency(tsk, delta >> 10, 1);
1630                         trace_sched_stat_sleep(tsk, delta);
1631                 }
1632         }
1633         if (se->statistics.block_start) {
1634                 u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start;
1635
1636                 if ((s64)delta < 0)
1637                         delta = 0;
1638
1639                 if (unlikely(delta > se->statistics.block_max))
1640                         se->statistics.block_max = delta;
1641
1642                 se->statistics.block_start = 0;
1643                 se->statistics.sum_sleep_runtime += delta;
1644
1645                 if (tsk) {
1646                         if (tsk->in_iowait) {
1647                                 se->statistics.iowait_sum += delta;
1648                                 se->statistics.iowait_count++;
1649                                 trace_sched_stat_iowait(tsk, delta);
1650                         }
1651
1652                         trace_sched_stat_blocked(tsk, delta);
1653
1654                         /*
1655                          * Blocking time is in units of nanosecs, so shift by
1656                          * 20 to get a milliseconds-range estimation of the
1657                          * amount of time that the task spent sleeping:
1658                          */
1659                         if (unlikely(prof_on == SLEEP_PROFILING)) {
1660                                 profile_hits(SLEEP_PROFILING,
1661                                                 (void *)get_wchan(tsk),
1662                                                 delta >> 20);
1663                         }
1664                         account_scheduler_latency(tsk, delta >> 10, 0);
1665                 }
1666         }
1667 #endif
1668 }
1669
1670 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
1671 {
1672 #ifdef CONFIG_SCHED_DEBUG
1673         s64 d = se->vruntime - cfs_rq->min_vruntime;
1674
1675         if (d < 0)
1676                 d = -d;
1677
1678         if (d > 3*sysctl_sched_latency)
1679                 schedstat_inc(cfs_rq, nr_spread_over);
1680 #endif
1681 }
1682
1683 static void
1684 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
1685 {
1686         u64 vruntime = cfs_rq->min_vruntime;
1687
1688         /*
1689          * The 'current' period is already promised to the current tasks,
1690          * however the extra weight of the new task will slow them down a
1691          * little, place the new task so that it fits in the slot that
1692          * stays open at the end.
1693          */
1694         if (initial && sched_feat(START_DEBIT))
1695                 vruntime += sched_vslice(cfs_rq, se);
1696
1697         /* sleeps up to a single latency don't count. */
1698         if (!initial) {
1699                 unsigned long thresh = sysctl_sched_latency;
1700
1701                 /*
1702                  * Halve their sleep time's effect, to allow
1703                  * for a gentler effect of sleepers:
1704                  */
1705                 if (sched_feat(GENTLE_FAIR_SLEEPERS))
1706                         thresh >>= 1;
1707
1708                 vruntime -= thresh;
1709         }
1710
1711         /* ensure we never gain time by being placed backwards. */
1712         se->vruntime = max_vruntime(se->vruntime, vruntime);
1713 }
1714
1715 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
1716
1717 static void
1718 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1719 {
1720         /*
1721          * Update the normalized vruntime before updating min_vruntime
1722          * through callig update_curr().
1723          */
1724         if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
1725                 se->vruntime += cfs_rq->min_vruntime;
1726
1727         /*
1728          * Update run-time statistics of the 'current'.
1729          */
1730         update_curr(cfs_rq);
1731         enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
1732         account_entity_enqueue(cfs_rq, se);
1733         update_cfs_shares(cfs_rq);
1734
1735         if (flags & ENQUEUE_WAKEUP) {
1736                 place_entity(cfs_rq, se, 0);
1737                 enqueue_sleeper(cfs_rq, se);
1738         }
1739
1740         update_stats_enqueue(cfs_rq, se);
1741         check_spread(cfs_rq, se);
1742         if (se != cfs_rq->curr)
1743                 __enqueue_entity(cfs_rq, se);
1744         se->on_rq = 1;
1745
1746         if (cfs_rq->nr_running == 1) {
1747                 list_add_leaf_cfs_rq(cfs_rq);
1748                 check_enqueue_throttle(cfs_rq);
1749         }
1750 }
1751
1752 static void __clear_buddies_last(struct sched_entity *se)
1753 {
1754         for_each_sched_entity(se) {
1755                 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1756                 if (cfs_rq->last == se)
1757                         cfs_rq->last = NULL;
1758                 else
1759                         break;
1760         }
1761 }
1762
1763 static void __clear_buddies_next(struct sched_entity *se)
1764 {
1765         for_each_sched_entity(se) {
1766                 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1767                 if (cfs_rq->next == se)
1768                         cfs_rq->next = NULL;
1769                 else
1770                         break;
1771         }
1772 }
1773
1774 static void __clear_buddies_skip(struct sched_entity *se)
1775 {
1776         for_each_sched_entity(se) {
1777                 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1778                 if (cfs_rq->skip == se)
1779                         cfs_rq->skip = NULL;
1780                 else
1781                         break;
1782         }
1783 }
1784
1785 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
1786 {
1787         if (cfs_rq->last == se)
1788                 __clear_buddies_last(se);
1789
1790         if (cfs_rq->next == se)
1791                 __clear_buddies_next(se);
1792
1793         if (cfs_rq->skip == se)
1794                 __clear_buddies_skip(se);
1795 }
1796
1797 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
1798
1799 static void
1800 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1801 {
1802         /*
1803          * Update run-time statistics of the 'current'.
1804          */
1805         update_curr(cfs_rq);
1806         dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
1807
1808         update_stats_dequeue(cfs_rq, se);
1809         if (flags & DEQUEUE_SLEEP) {
1810 #ifdef CONFIG_SCHEDSTATS
1811                 if (entity_is_task(se)) {
1812                         struct task_struct *tsk = task_of(se);
1813
1814                         if (tsk->state & TASK_INTERRUPTIBLE)
1815                                 se->statistics.sleep_start = rq_of(cfs_rq)->clock;
1816                         if (tsk->state & TASK_UNINTERRUPTIBLE)
1817                                 se->statistics.block_start = rq_of(cfs_rq)->clock;
1818                 }
1819 #endif
1820         }
1821
1822         clear_buddies(cfs_rq, se);
1823
1824         if (se != cfs_rq->curr)
1825                 __dequeue_entity(cfs_rq, se);
1826         se->on_rq = 0;
1827         account_entity_dequeue(cfs_rq, se);
1828
1829         /*
1830          * Normalize the entity after updating the min_vruntime because the
1831          * update can refer to the ->curr item and we need to reflect this
1832          * movement in our normalized position.
1833          */
1834         if (!(flags & DEQUEUE_SLEEP))
1835                 se->vruntime -= cfs_rq->min_vruntime;
1836
1837         /* return excess runtime on last dequeue */
1838         return_cfs_rq_runtime(cfs_rq);
1839
1840         update_min_vruntime(cfs_rq);
1841         update_cfs_shares(cfs_rq);
1842 }
1843
1844 /*
1845  * Preempt the current task with a newly woken task if needed:
1846  */
1847 static void
1848 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
1849 {
1850         unsigned long ideal_runtime, delta_exec;
1851         struct sched_entity *se;
1852         s64 delta;
1853
1854         ideal_runtime = sched_slice(cfs_rq, curr);
1855         delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
1856         if (delta_exec > ideal_runtime) {
1857                 resched_task(rq_of(cfs_rq)->curr);
1858                 /*
1859                  * The current task ran long enough, ensure it doesn't get
1860                  * re-elected due to buddy favours.
1861                  */
1862                 clear_buddies(cfs_rq, curr);
1863                 return;
1864         }
1865
1866         /*
1867          * Ensure that a task that missed wakeup preemption by a
1868          * narrow margin doesn't have to wait for a full slice.
1869          * This also mitigates buddy induced latencies under load.
1870          */
1871         if (delta_exec < sysctl_sched_min_granularity)
1872                 return;
1873
1874         se = __pick_first_entity(cfs_rq);
1875         delta = curr->vruntime - se->vruntime;
1876
1877         if (delta < 0)
1878                 return;
1879
1880         if (delta > ideal_runtime)
1881                 resched_task(rq_of(cfs_rq)->curr);
1882 }
1883
1884 static void
1885 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
1886 {
1887         /* 'current' is not kept within the tree. */
1888         if (se->on_rq) {
1889                 /*
1890                  * Any task has to be enqueued before it get to execute on
1891                  * a CPU. So account for the time it spent waiting on the
1892                  * runqueue.
1893                  */
1894                 update_stats_wait_end(cfs_rq, se);
1895                 __dequeue_entity(cfs_rq, se);
1896         }
1897
1898         update_stats_curr_start(cfs_rq, se);
1899         cfs_rq->curr = se;
1900 #ifdef CONFIG_SCHEDSTATS
1901         /*
1902          * Track our maximum slice length, if the CPU's load is at
1903          * least twice that of our own weight (i.e. dont track it
1904          * when there are only lesser-weight tasks around):
1905          */
1906         if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
1907                 se->statistics.slice_max = max(se->statistics.slice_max,
1908                         se->sum_exec_runtime - se->prev_sum_exec_runtime);
1909         }
1910 #endif
1911         se->prev_sum_exec_runtime = se->sum_exec_runtime;
1912 }
1913
1914 static int
1915 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
1916
1917 /*
1918  * Pick the next process, keeping these things in mind, in this order:
1919  * 1) keep things fair between processes/task groups
1920  * 2) pick the "next" process, since someone really wants that to run
1921  * 3) pick the "last" process, for cache locality
1922  * 4) do not run the "skip" process, if something else is available
1923  */
1924 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
1925 {
1926         struct sched_entity *se = __pick_first_entity(cfs_rq);
1927         struct sched_entity *left = se;
1928
1929         /*
1930          * Avoid running the skip buddy, if running something else can
1931          * be done without getting too unfair.
1932          */
1933         if (cfs_rq->skip == se) {
1934                 struct sched_entity *second = __pick_next_entity(se);
1935                 if (second && wakeup_preempt_entity(second, left) < 1)
1936                         se = second;
1937         }
1938
1939         /*
1940          * Prefer last buddy, try to return the CPU to a preempted task.
1941          */
1942         if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
1943                 se = cfs_rq->last;
1944
1945         /*
1946          * Someone really wants this to run. If it's not unfair, run it.
1947          */
1948         if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
1949                 se = cfs_rq->next;
1950
1951         clear_buddies(cfs_rq, se);
1952
1953         return se;
1954 }
1955
1956 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
1957
1958 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
1959 {
1960         /*
1961          * If still on the runqueue then deactivate_task()
1962          * was not called and update_curr() has to be done:
1963          */
1964         if (prev->on_rq)
1965                 update_curr(cfs_rq);
1966
1967         /* throttle cfs_rqs exceeding runtime */
1968         check_cfs_rq_runtime(cfs_rq);
1969
1970         check_spread(cfs_rq, prev);
1971         if (prev->on_rq) {
1972                 update_stats_wait_start(cfs_rq, prev);
1973                 /* Put 'current' back into the tree. */
1974                 __enqueue_entity(cfs_rq, prev);
1975                 /* in !on_rq case, update occurred at dequeue */
1976                 update_entity_load_avg(prev, 1);
1977         }
1978         cfs_rq->curr = NULL;
1979 }
1980
1981 static void
1982 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
1983 {
1984         /*
1985          * Update run-time statistics of the 'current'.
1986          */
1987         update_curr(cfs_rq);
1988
1989         /*
1990          * Ensure that runnable average is periodically updated.
1991          */
1992         update_entity_load_avg(curr, 1);
1993         update_cfs_rq_blocked_load(cfs_rq, 1);
1994         update_cfs_shares(cfs_rq);
1995
1996 #ifdef CONFIG_SCHED_HRTICK
1997         /*
1998          * queued ticks are scheduled to match the slice, so don't bother
1999          * validating it and just reschedule.
2000          */
2001         if (queued) {
2002                 resched_task(rq_of(cfs_rq)->curr);
2003                 return;
2004         }
2005         /*
2006          * don't let the period tick interfere with the hrtick preemption
2007          */
2008         if (!sched_feat(DOUBLE_TICK) &&
2009                         hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
2010                 return;
2011 #endif
2012
2013         if (cfs_rq->nr_running > 1)
2014                 check_preempt_tick(cfs_rq, curr);
2015 }
2016
2017
2018 /**************************************************
2019  * CFS bandwidth control machinery
2020  */
2021
2022 #ifdef CONFIG_CFS_BANDWIDTH
2023
2024 #ifdef HAVE_JUMP_LABEL
2025 static struct static_key __cfs_bandwidth_used;
2026
2027 static inline bool cfs_bandwidth_used(void)
2028 {
2029         return static_key_false(&__cfs_bandwidth_used);
2030 }
2031
2032 void cfs_bandwidth_usage_inc(void)
2033 {
2034         static_key_slow_inc(&__cfs_bandwidth_used);
2035 }
2036
2037 void cfs_bandwidth_usage_dec(void)
2038 {
2039         static_key_slow_dec(&__cfs_bandwidth_used);
2040 }
2041 #else /* HAVE_JUMP_LABEL */
2042 static bool cfs_bandwidth_used(void)
2043 {
2044         return true;
2045 }
2046
2047 void cfs_bandwidth_usage_inc(void) {}
2048 void cfs_bandwidth_usage_dec(void) {}
2049 #endif /* HAVE_JUMP_LABEL */
2050
2051 /*
2052  * default period for cfs group bandwidth.
2053  * default: 0.1s, units: nanoseconds
2054  */
2055 static inline u64 default_cfs_period(void)
2056 {
2057         return 100000000ULL;
2058 }
2059
2060 static inline u64 sched_cfs_bandwidth_slice(void)
2061 {
2062         return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
2063 }
2064
2065 /*
2066  * Replenish runtime according to assigned quota and update expiration time.
2067  * We use sched_clock_cpu directly instead of rq->clock to avoid adding
2068  * additional synchronization around rq->lock.
2069  *
2070  * requires cfs_b->lock
2071  */
2072 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
2073 {
2074         u64 now;
2075
2076         if (cfs_b->quota == RUNTIME_INF)
2077                 return;
2078
2079         now = sched_clock_cpu(smp_processor_id());
2080         cfs_b->runtime = cfs_b->quota;
2081         cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
2082 }
2083
2084 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
2085 {
2086         return &tg->cfs_bandwidth;
2087 }
2088
2089 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */
2090 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
2091 {
2092         if (unlikely(cfs_rq->throttle_count))
2093                 return cfs_rq->throttled_clock_task;
2094
2095         return rq_of(cfs_rq)->clock_task - cfs_rq->throttled_clock_task_time;
2096 }
2097
2098 /* returns 0 on failure to allocate runtime */
2099 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2100 {
2101         struct task_group *tg = cfs_rq->tg;
2102         struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
2103         u64 amount = 0, min_amount, expires;
2104
2105         /* note: this is a positive sum as runtime_remaining <= 0 */
2106         min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
2107
2108         raw_spin_lock(&cfs_b->lock);
2109         if (cfs_b->quota == RUNTIME_INF)
2110                 amount = min_amount;
2111         else {
2112                 /*
2113                  * If the bandwidth pool has become inactive, then at least one
2114                  * period must have elapsed since the last consumption.
2115                  * Refresh the global state and ensure bandwidth timer becomes
2116                  * active.
2117                  */
2118                 if (!cfs_b->timer_active) {
2119                         __refill_cfs_bandwidth_runtime(cfs_b);
2120                         __start_cfs_bandwidth(cfs_b);
2121                 }
2122
2123                 if (cfs_b->runtime > 0) {
2124                         amount = min(cfs_b->runtime, min_amount);
2125                         cfs_b->runtime -= amount;
2126                         cfs_b->idle = 0;
2127                 }
2128         }
2129         expires = cfs_b->runtime_expires;
2130         raw_spin_unlock(&cfs_b->lock);
2131
2132         cfs_rq->runtime_remaining += amount;
2133         /*
2134          * we may have advanced our local expiration to account for allowed
2135          * spread between our sched_clock and the one on which runtime was
2136          * issued.
2137          */
2138         if ((s64)(expires - cfs_rq->runtime_expires) > 0)
2139                 cfs_rq->runtime_expires = expires;
2140
2141         return cfs_rq->runtime_remaining > 0;
2142 }
2143
2144 /*
2145  * Note: This depends on the synchronization provided by sched_clock and the
2146  * fact that rq->clock snapshots this value.
2147  */
2148 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2149 {
2150         struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2151         struct rq *rq = rq_of(cfs_rq);
2152
2153         /* if the deadline is ahead of our clock, nothing to do */
2154         if (likely((s64)(rq->clock - cfs_rq->runtime_expires) < 0))
2155                 return;
2156
2157         if (cfs_rq->runtime_remaining < 0)
2158                 return;
2159
2160         /*
2161          * If the local deadline has passed we have to consider the
2162          * possibility that our sched_clock is 'fast' and the global deadline
2163          * has not truly expired.
2164          *
2165          * Fortunately we can check determine whether this the case by checking
2166          * whether the global deadline has advanced.
2167          */
2168
2169         if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
2170                 /* extend local deadline, drift is bounded above by 2 ticks */
2171                 cfs_rq->runtime_expires += TICK_NSEC;
2172         } else {
2173                 /* global deadline is ahead, expiration has passed */
2174                 cfs_rq->runtime_remaining = 0;
2175         }
2176 }
2177
2178 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
2179                                      unsigned long delta_exec)
2180 {
2181         /* dock delta_exec before expiring quota (as it could span periods) */
2182         cfs_rq->runtime_remaining -= delta_exec;
2183         expire_cfs_rq_runtime(cfs_rq);
2184
2185         if (likely(cfs_rq->runtime_remaining > 0))
2186                 return;
2187
2188         /*
2189          * if we're unable to extend our runtime we resched so that the active
2190          * hierarchy can be throttled
2191          */
2192         if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
2193                 resched_task(rq_of(cfs_rq)->curr);
2194 }
2195
2196 static __always_inline
2197 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec)
2198 {
2199         if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
2200                 return;
2201
2202         __account_cfs_rq_runtime(cfs_rq, delta_exec);
2203 }
2204
2205 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
2206 {
2207         return cfs_bandwidth_used() && cfs_rq->throttled;
2208 }
2209
2210 /* check whether cfs_rq, or any parent, is throttled */
2211 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
2212 {
2213         return cfs_bandwidth_used() && cfs_rq->throttle_count;
2214 }
2215
2216 /*
2217  * Ensure that neither of the group entities corresponding to src_cpu or
2218  * dest_cpu are members of a throttled hierarchy when performing group
2219  * load-balance operations.
2220  */
2221 static inline int throttled_lb_pair(struct task_group *tg,
2222                                     int src_cpu, int dest_cpu)
2223 {
2224         struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
2225
2226         src_cfs_rq = tg->cfs_rq[src_cpu];
2227         dest_cfs_rq = tg->cfs_rq[dest_cpu];
2228
2229         return throttled_hierarchy(src_cfs_rq) ||
2230                throttled_hierarchy(dest_cfs_rq);
2231 }
2232
2233 /* updated child weight may affect parent so we have to do this bottom up */
2234 static int tg_unthrottle_up(struct task_group *tg, void *data)
2235 {
2236         struct rq *rq = data;
2237         struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
2238
2239         cfs_rq->throttle_count--;
2240 #ifdef CONFIG_SMP
2241         if (!cfs_rq->throttle_count) {
2242                 /* adjust cfs_rq_clock_task() */
2243                 cfs_rq->throttled_clock_task_time += rq->clock_task -
2244                                              cfs_rq->throttled_clock_task;
2245         }
2246 #endif
2247
2248         return 0;
2249 }
2250
2251 static int tg_throttle_down(struct task_group *tg, void *data)
2252 {
2253         struct rq *rq = data;
2254         struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
2255
2256         /* group is entering throttled state, stop time */
2257         if (!cfs_rq->throttle_count)
2258                 cfs_rq->throttled_clock_task = rq->clock_task;
2259         cfs_rq->throttle_count++;
2260
2261         return 0;
2262 }
2263
2264 static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
2265 {
2266         struct rq *rq = rq_of(cfs_rq);
2267         struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2268         struct sched_entity *se;
2269         long task_delta, dequeue = 1;
2270
2271         se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
2272
2273         /* freeze hierarchy runnable averages while throttled */
2274         rcu_read_lock();
2275         walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
2276         rcu_read_unlock();
2277
2278         task_delta = cfs_rq->h_nr_running;
2279         for_each_sched_entity(se) {
2280                 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
2281                 /* throttled entity or throttle-on-deactivate */
2282                 if (!se->on_rq)
2283                         break;
2284
2285                 if (dequeue)
2286                         dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
2287                 qcfs_rq->h_nr_running -= task_delta;
2288
2289                 if (qcfs_rq->load.weight)
2290                         dequeue = 0;
2291         }
2292
2293         if (!se)
2294                 rq->nr_running -= task_delta;
2295
2296         cfs_rq->throttled = 1;
2297         cfs_rq->throttled_clock = rq->clock;
2298         raw_spin_lock(&cfs_b->lock);
2299         list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
2300         if (!cfs_b->timer_active)
2301                 __start_cfs_bandwidth(cfs_b);
2302         raw_spin_unlock(&cfs_b->lock);
2303 }
2304
2305 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
2306 {
2307         struct rq *rq = rq_of(cfs_rq);
2308         struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2309         struct sched_entity *se;
2310         int enqueue = 1;
2311         long task_delta;
2312
2313         se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
2314
2315         cfs_rq->throttled = 0;
2316         raw_spin_lock(&cfs_b->lock);
2317         cfs_b->throttled_time += rq->clock - cfs_rq->throttled_clock;
2318         list_del_rcu(&cfs_rq->throttled_list);
2319         raw_spin_unlock(&cfs_b->lock);
2320
2321         update_rq_clock(rq);
2322         /* update hierarchical throttle state */
2323         walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
2324
2325         if (!cfs_rq->load.weight)
2326                 return;
2327
2328         task_delta = cfs_rq->h_nr_running;
2329         for_each_sched_entity(se) {
2330                 if (se->on_rq)
2331                         enqueue = 0;
2332
2333                 cfs_rq = cfs_rq_of(se);
2334                 if (enqueue)
2335                         enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
2336                 cfs_rq->h_nr_running += task_delta;
2337
2338                 if (cfs_rq_throttled(cfs_rq))
2339                         break;
2340         }
2341
2342         if (!se)
2343                 rq->nr_running += task_delta;
2344
2345         /* determine whether we need to wake up potentially idle cpu */
2346         if (rq->curr == rq->idle && rq->cfs.nr_running)
2347                 resched_task(rq->curr);
2348 }
2349
2350 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
2351                 u64 remaining, u64 expires)
2352 {
2353         struct cfs_rq *cfs_rq;
2354         u64 runtime = remaining;
2355
2356         rcu_read_lock();
2357         list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
2358                                 throttled_list) {
2359                 struct rq *rq = rq_of(cfs_rq);
2360
2361                 raw_spin_lock(&rq->lock);
2362                 if (!cfs_rq_throttled(cfs_rq))
2363                         goto next;
2364
2365                 runtime = -cfs_rq->runtime_remaining + 1;
2366                 if (runtime > remaining)
2367                         runtime = remaining;
2368                 remaining -= runtime;
2369
2370                 cfs_rq->runtime_remaining += runtime;
2371                 cfs_rq->runtime_expires = expires;
2372
2373                 /* we check whether we're throttled above */
2374                 if (cfs_rq->runtime_remaining > 0)
2375                         unthrottle_cfs_rq(cfs_rq);
2376
2377 next:
2378                 raw_spin_unlock(&rq->lock);
2379
2380                 if (!remaining)
2381                         break;
2382         }
2383         rcu_read_unlock();
2384
2385         return remaining;
2386 }
2387
2388 /*
2389  * Responsible for refilling a task_group's bandwidth and unthrottling its
2390  * cfs_rqs as appropriate. If there has been no activity within the last
2391  * period the timer is deactivated until scheduling resumes; cfs_b->idle is
2392  * used to track this state.
2393  */
2394 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
2395 {
2396         u64 runtime, runtime_expires;
2397         int idle = 1, throttled;
2398
2399         raw_spin_lock(&cfs_b->lock);
2400         /* no need to continue the timer with no bandwidth constraint */
2401         if (cfs_b->quota == RUNTIME_INF)
2402                 goto out_unlock;
2403
2404         throttled = !list_empty(&cfs_b->throttled_cfs_rq);
2405         /* idle depends on !throttled (for the case of a large deficit) */
2406         idle = cfs_b->idle && !throttled;
2407         cfs_b->nr_periods += overrun;
2408
2409         /* if we're going inactive then everything else can be deferred */
2410         if (idle)
2411                 goto out_unlock;
2412
2413         /*
2414          * if we have relooped after returning idle once, we need to update our
2415          * status as actually running, so that other cpus doing
2416          * __start_cfs_bandwidth will stop trying to cancel us.
2417          */
2418         cfs_b->timer_active = 1;
2419
2420         __refill_cfs_bandwidth_runtime(cfs_b);
2421
2422         if (!throttled) {
2423                 /* mark as potentially idle for the upcoming period */
2424                 cfs_b->idle = 1;
2425                 goto out_unlock;
2426         }
2427
2428         /* account preceding periods in which throttling occurred */
2429         cfs_b->nr_throttled += overrun;
2430
2431         /*
2432          * There are throttled entities so we must first use the new bandwidth
2433          * to unthrottle them before making it generally available.  This
2434          * ensures that all existing debts will be paid before a new cfs_rq is
2435          * allowed to run.
2436          */
2437         runtime = cfs_b->runtime;
2438         runtime_expires = cfs_b->runtime_expires;
2439         cfs_b->runtime = 0;
2440
2441         /*
2442          * This check is repeated as we are holding onto the new bandwidth
2443          * while we unthrottle.  This can potentially race with an unthrottled
2444          * group trying to acquire new bandwidth from the global pool.
2445          */
2446         while (throttled && runtime > 0) {
2447                 raw_spin_unlock(&cfs_b->lock);
2448                 /* we can't nest cfs_b->lock while distributing bandwidth */
2449                 runtime = distribute_cfs_runtime(cfs_b, runtime,
2450                                                  runtime_expires);
2451                 raw_spin_lock(&cfs_b->lock);
2452
2453                 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
2454         }
2455
2456         /* return (any) remaining runtime */
2457         cfs_b->runtime = runtime;
2458         /*
2459          * While we are ensured activity in the period following an
2460          * unthrottle, this also covers the case in which the new bandwidth is
2461          * insufficient to cover the existing bandwidth deficit.  (Forcing the
2462          * timer to remain active while there are any throttled entities.)
2463          */
2464         cfs_b->idle = 0;
2465 out_unlock:
2466         if (idle)
2467                 cfs_b->timer_active = 0;
2468         raw_spin_unlock(&cfs_b->lock);
2469
2470         return idle;
2471 }
2472
2473 /* a cfs_rq won't donate quota below this amount */
2474 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
2475 /* minimum remaining period time to redistribute slack quota */
2476 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
2477 /* how long we wait to gather additional slack before distributing */
2478 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
2479
2480 /*
2481  * Are we near the end of the current quota period?
2482  *
2483  * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
2484  * hrtimer base being cleared by __hrtimer_start_range_ns. In the case of
2485  * migrate_hrtimers, base is never cleared, so we are fine.
2486  */
2487 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
2488 {
2489         struct hrtimer *refresh_timer = &cfs_b->period_timer;
2490         u64 remaining;
2491
2492         /* if the call-back is running a quota refresh is already occurring */
2493         if (hrtimer_callback_running(refresh_timer))
2494                 return 1;
2495
2496         /* is a quota refresh about to occur? */
2497         remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
2498         if (remaining < min_expire)
2499                 return 1;
2500
2501         return 0;
2502 }
2503
2504 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
2505 {
2506         u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
2507
2508         /* if there's a quota refresh soon don't bother with slack */
2509         if (runtime_refresh_within(cfs_b, min_left))
2510                 return;
2511
2512         start_bandwidth_timer(&cfs_b->slack_timer,
2513                                 ns_to_ktime(cfs_bandwidth_slack_period));
2514 }
2515
2516 /* we know any runtime found here is valid as update_curr() precedes return */
2517 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2518 {
2519         struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2520         s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
2521
2522         if (slack_runtime <= 0)
2523                 return;
2524
2525         raw_spin_lock(&cfs_b->lock);
2526         if (cfs_b->quota != RUNTIME_INF &&
2527             cfs_rq->runtime_expires == cfs_b->runtime_expires) {
2528                 cfs_b->runtime += slack_runtime;
2529
2530                 /* we are under rq->lock, defer unthrottling using a timer */
2531                 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
2532                     !list_empty(&cfs_b->throttled_cfs_rq))
2533                         start_cfs_slack_bandwidth(cfs_b);
2534         }
2535         raw_spin_unlock(&cfs_b->lock);
2536
2537         /* even if it's not valid for return we don't want to try again */
2538         cfs_rq->runtime_remaining -= slack_runtime;
2539 }
2540
2541 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2542 {
2543         if (!cfs_bandwidth_used())
2544                 return;
2545
2546         if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
2547                 return;
2548
2549         __return_cfs_rq_runtime(cfs_rq);
2550 }
2551
2552 /*
2553  * This is done with a timer (instead of inline with bandwidth return) since
2554  * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
2555  */
2556 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
2557 {
2558         u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
2559         u64 expires;
2560
2561         /* confirm we're still not at a refresh boundary */
2562         raw_spin_lock(&cfs_b->lock);
2563         if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
2564                 raw_spin_unlock(&cfs_b->lock);
2565                 return;
2566         }
2567
2568         if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
2569                 runtime = cfs_b->runtime;
2570                 cfs_b->runtime = 0;
2571         }
2572         expires = cfs_b->runtime_expires;
2573         raw_spin_unlock(&cfs_b->lock);
2574
2575         if (!runtime)
2576                 return;
2577
2578         runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
2579
2580         raw_spin_lock(&cfs_b->lock);
2581         if (expires == cfs_b->runtime_expires)
2582                 cfs_b->runtime = runtime;
2583         raw_spin_unlock(&cfs_b->lock);
2584 }
2585
2586 /*
2587  * When a group wakes up we want to make sure that its quota is not already
2588  * expired/exceeded, otherwise it may be allowed to steal additional ticks of
2589  * runtime as update_curr() throttling can not not trigger until it's on-rq.
2590  */
2591 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
2592 {
2593         if (!cfs_bandwidth_used())
2594                 return;
2595
2596         /* an active group must be handled by the update_curr()->put() path */
2597         if (!cfs_rq->runtime_enabled || cfs_rq->curr)
2598                 return;
2599
2600         /* ensure the group is not already throttled */
2601         if (cfs_rq_throttled(cfs_rq))
2602                 return;
2603
2604         /* update runtime allocation */
2605         account_cfs_rq_runtime(cfs_rq, 0);
2606         if (cfs_rq->runtime_remaining <= 0)
2607                 throttle_cfs_rq(cfs_rq);
2608 }
2609
2610 /* conditionally throttle active cfs_rq's from put_prev_entity() */
2611 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2612 {
2613         if (!cfs_bandwidth_used())
2614                 return;
2615
2616         if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
2617                 return;
2618
2619         /*
2620          * it's possible for a throttled entity to be forced into a running
2621          * state (e.g. set_curr_task), in this case we're finished.
2622          */
2623         if (cfs_rq_throttled(cfs_rq))
2624                 return;
2625
2626         throttle_cfs_rq(cfs_rq);
2627 }
2628
2629 static inline u64 default_cfs_period(void);
2630 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun);
2631 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b);
2632
2633 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
2634 {
2635         struct cfs_bandwidth *cfs_b =
2636                 container_of(timer, struct cfs_bandwidth, slack_timer);
2637         do_sched_cfs_slack_timer(cfs_b);
2638
2639         return HRTIMER_NORESTART;
2640 }
2641
2642 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
2643 {
2644         struct cfs_bandwidth *cfs_b =
2645                 container_of(timer, struct cfs_bandwidth, period_timer);
2646         ktime_t now;
2647         int overrun;
2648         int idle = 0;
2649
2650         for (;;) {
2651                 now = hrtimer_cb_get_time(timer);
2652                 overrun = hrtimer_forward(timer, now, cfs_b->period);
2653
2654                 if (!overrun)
2655                         break;
2656
2657                 idle = do_sched_cfs_period_timer(cfs_b, overrun);
2658         }
2659
2660         return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
2661 }
2662
2663 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2664 {
2665         raw_spin_lock_init(&cfs_b->lock);
2666         cfs_b->runtime = 0;
2667         cfs_b->quota = RUNTIME_INF;
2668         cfs_b->period = ns_to_ktime(default_cfs_period());
2669
2670         INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
2671         hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2672         cfs_b->period_timer.function = sched_cfs_period_timer;
2673         hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2674         cfs_b->slack_timer.function = sched_cfs_slack_timer;
2675 }
2676
2677 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2678 {
2679         cfs_rq->runtime_enabled = 0;
2680         INIT_LIST_HEAD(&cfs_rq->throttled_list);
2681 }
2682
2683 /* requires cfs_b->lock, may release to reprogram timer */
2684 void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2685 {
2686         /*
2687          * The timer may be active because we're trying to set a new bandwidth
2688          * period or because we're racing with the tear-down path
2689          * (timer_active==0 becomes visible before the hrtimer call-back
2690          * terminates).  In either case we ensure that it's re-programmed
2691          */
2692         while (unlikely(hrtimer_active(&cfs_b->period_timer)) &&
2693                hrtimer_try_to_cancel(&cfs_b->period_timer) < 0) {
2694                 /* bounce the lock to allow do_sched_cfs_period_timer to run */
2695                 raw_spin_unlock(&cfs_b->lock);
2696                 cpu_relax();
2697                 raw_spin_lock(&cfs_b->lock);
2698                 /* if someone else restarted the timer then we're done */
2699                 if (cfs_b->timer_active)
2700                         return;
2701         }
2702
2703         cfs_b->timer_active = 1;
2704         start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
2705 }
2706
2707 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2708 {
2709         hrtimer_cancel(&cfs_b->period_timer);
2710         hrtimer_cancel(&cfs_b->slack_timer);
2711 }
2712
2713 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
2714 {
2715         struct cfs_rq *cfs_rq;
2716
2717         for_each_leaf_cfs_rq(rq, cfs_rq) {
2718                 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2719
2720                 if (!cfs_rq->runtime_enabled)
2721                         continue;
2722
2723                 /*
2724                  * clock_task is not advancing so we just need to make sure
2725                  * there's some valid quota amount
2726                  */
2727                 cfs_rq->runtime_remaining = cfs_b->quota;
2728                 if (cfs_rq_throttled(cfs_rq))
2729                         unthrottle_cfs_rq(cfs_rq);
2730         }
2731 }
2732
2733 #else /* CONFIG_CFS_BANDWIDTH */
2734 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
2735 {
2736         return rq_of(cfs_rq)->clock_task;
2737 }
2738
2739 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
2740                                      unsigned long delta_exec) {}
2741 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
2742 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
2743 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
2744
2745 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
2746 {
2747         return 0;
2748 }
2749
2750 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
2751 {
2752         return 0;
2753 }
2754
2755 static inline int throttled_lb_pair(struct task_group *tg,
2756                                     int src_cpu, int dest_cpu)
2757 {
2758         return 0;
2759 }
2760
2761 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
2762
2763 #ifdef CONFIG_FAIR_GROUP_SCHED
2764 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
2765 #endif
2766
2767 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
2768 {
2769         return NULL;
2770 }
2771 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
2772 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
2773
2774 #endif /* CONFIG_CFS_BANDWIDTH */
2775
2776 /**************************************************
2777  * CFS operations on tasks:
2778  */
2779
2780 #ifdef CONFIG_SCHED_HRTICK
2781 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
2782 {
2783         struct sched_entity *se = &p->se;
2784         struct cfs_rq *cfs_rq = cfs_rq_of(se);
2785
2786         WARN_ON(task_rq(p) != rq);
2787
2788         if (cfs_rq->nr_running > 1) {
2789                 u64 slice = sched_slice(cfs_rq, se);
2790                 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
2791                 s64 delta = slice - ran;
2792
2793                 if (delta < 0) {
2794                         if (rq->curr == p)
2795                                 resched_task(p);
2796                         return;
2797                 }
2798
2799                 /*
2800                  * Don't schedule slices shorter than 10000ns, that just
2801                  * doesn't make sense. Rely on vruntime for fairness.
2802                  */
2803                 if (rq->curr != p)
2804                         delta = max_t(s64, 10000LL, delta);
2805
2806                 hrtick_start(rq, delta);
2807         }
2808 }
2809
2810 /*
2811  * called from enqueue/dequeue and updates the hrtick when the
2812  * current task is from our class and nr_running is low enough
2813  * to matter.
2814  */
2815 static void hrtick_update(struct rq *rq)
2816 {
2817         struct task_struct *curr = rq->curr;
2818
2819         if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
2820                 return;
2821
2822         if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
2823                 hrtick_start_fair(rq, curr);
2824 }
2825 #else /* !CONFIG_SCHED_HRTICK */
2826 static inline void
2827 hrtick_start_fair(struct rq *rq, struct task_struct *p)
2828 {
2829 }
2830
2831 static inline void hrtick_update(struct rq *rq)
2832 {
2833 }
2834 #endif
2835
2836 /*
2837  * The enqueue_task method is called before nr_running is
2838  * increased. Here we update the fair scheduling stats and
2839  * then put the task into the rbtree:
2840  */
2841 static void
2842 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
2843 {
2844         struct cfs_rq *cfs_rq;
2845         struct sched_entity *se = &p->se;
2846
2847         for_each_sched_entity(se) {
2848                 if (se->on_rq)
2849                         break;
2850                 cfs_rq = cfs_rq_of(se);
2851                 enqueue_entity(cfs_rq, se, flags);
2852
2853                 /*
2854                  * end evaluation on encountering a throttled cfs_rq
2855                  *
2856                  * note: in the case of encountering a throttled cfs_rq we will
2857                  * post the final h_nr_running increment below.
2858                 */
2859                 if (cfs_rq_throttled(cfs_rq))
2860                         break;
2861                 cfs_rq->h_nr_running++;
2862
2863                 flags = ENQUEUE_WAKEUP;
2864         }
2865
2866         for_each_sched_entity(se) {
2867                 cfs_rq = cfs_rq_of(se);
2868                 cfs_rq->h_nr_running++;
2869
2870                 if (cfs_rq_throttled(cfs_rq))
2871                         break;
2872
2873                 update_cfs_shares(cfs_rq);
2874                 update_entity_load_avg(se, 1);
2875         }
2876
2877         if (!se) {
2878                 update_rq_runnable_avg(rq, rq->nr_running);
2879                 inc_nr_running(rq);
2880         }
2881         hrtick_update(rq);
2882 }
2883
2884 static void set_next_buddy(struct sched_entity *se);
2885
2886 /*
2887  * The dequeue_task method is called before nr_running is
2888  * decreased. We remove the task from the rbtree and
2889  * update the fair scheduling stats:
2890  */
2891 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
2892 {
2893         struct cfs_rq *cfs_rq;
2894         struct sched_entity *se = &p->se;
2895         int task_sleep = flags & DEQUEUE_SLEEP;
2896
2897         for_each_sched_entity(se) {
2898                 cfs_rq = cfs_rq_of(se);
2899                 dequeue_entity(cfs_rq, se, flags);
2900
2901                 /*
2902                  * end evaluation on encountering a throttled cfs_rq
2903                  *
2904                  * note: in the case of encountering a throttled cfs_rq we will
2905                  * post the final h_nr_running decrement below.
2906                 */
2907                 if (cfs_rq_throttled(cfs_rq))
2908                         break;
2909                 cfs_rq->h_nr_running--;
2910
2911                 /* Don't dequeue parent if it has other entities besides us */
2912                 if (cfs_rq->load.weight) {
2913                         /*
2914                          * Bias pick_next to pick a task from this cfs_rq, as
2915                          * p is sleeping when it is within its sched_slice.
2916                          */
2917                         if (task_sleep && parent_entity(se))
2918                                 set_next_buddy(parent_entity(se));
2919
2920                         /* avoid re-evaluating load for this entity */
2921                         se = parent_entity(se);
2922                         break;
2923                 }
2924                 flags |= DEQUEUE_SLEEP;
2925         }
2926
2927         for_each_sched_entity(se) {
2928                 cfs_rq = cfs_rq_of(se);
2929                 cfs_rq->h_nr_running--;
2930
2931                 if (cfs_rq_throttled(cfs_rq))
2932                         break;
2933
2934                 update_cfs_shares(cfs_rq);
2935                 update_entity_load_avg(se, 1);
2936         }
2937
2938         if (!se) {
2939                 dec_nr_running(rq);
2940                 update_rq_runnable_avg(rq, 1);
2941         }
2942         hrtick_update(rq);
2943 }
2944
2945 #ifdef CONFIG_SMP
2946 /* Used instead of source_load when we know the type == 0 */
2947 static unsigned long weighted_cpuload(const int cpu)
2948 {
2949         return cpu_rq(cpu)->load.weight;
2950 }
2951
2952 /*
2953  * Return a low guess at the load of a migration-source cpu weighted
2954  * according to the scheduling class and "nice" value.
2955  *
2956  * We want to under-estimate the load of migration sources, to
2957  * balance conservatively.
2958  */
2959 static unsigned long source_load(int cpu, int type)
2960 {
2961         struct rq *rq = cpu_rq(cpu);
2962         unsigned long total = weighted_cpuload(cpu);
2963
2964         if (type == 0 || !sched_feat(LB_BIAS))
2965                 return total;
2966
2967         return min(rq->cpu_load[type-1], total);
2968 }
2969
2970 /*
2971  * Return a high guess at the load of a migration-target cpu weighted
2972  * according to the scheduling class and "nice" value.
2973  */
2974 static unsigned long target_load(int cpu, int type)
2975 {
2976         struct rq *rq = cpu_rq(cpu);
2977         unsigned long total = weighted_cpuload(cpu);
2978
2979         if (type == 0 || !sched_feat(LB_BIAS))
2980                 return total;
2981
2982         return max(rq->cpu_load[type-1], total);
2983 }
2984
2985 static unsigned long power_of(int cpu)
2986 {
2987         return cpu_rq(cpu)->cpu_power;
2988 }
2989
2990 static unsigned long cpu_avg_load_per_task(int cpu)
2991 {
2992         struct rq *rq = cpu_rq(cpu);
2993         unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
2994
2995         if (nr_running)
2996                 return rq->load.weight / nr_running;
2997
2998         return 0;
2999 }
3000
3001
3002 static void task_waking_fair(struct task_struct *p)
3003 {
3004         struct sched_entity *se = &p->se;
3005         struct cfs_rq *cfs_rq = cfs_rq_of(se);
3006         u64 min_vruntime;
3007
3008 #ifndef CONFIG_64BIT
3009         u64 min_vruntime_copy;
3010
3011         do {
3012                 min_vruntime_copy = cfs_rq->min_vruntime_copy;
3013                 smp_rmb();
3014                 min_vruntime = cfs_rq->min_vruntime;
3015         } while (min_vruntime != min_vruntime_copy);
3016 #else
3017         min_vruntime = cfs_rq->min_vruntime;
3018 #endif
3019
3020         se->vruntime -= min_vruntime;
3021 }
3022
3023 #ifdef CONFIG_FAIR_GROUP_SCHED
3024 /*
3025  * effective_load() calculates the load change as seen from the root_task_group
3026  *
3027  * Adding load to a group doesn't make a group heavier, but can cause movement
3028  * of group shares between cpus. Assuming the shares were perfectly aligned one
3029  * can calculate the shift in shares.
3030  *
3031  * Calculate the effective load difference if @wl is added (subtracted) to @tg
3032  * on this @cpu and results in a total addition (subtraction) of @wg to the
3033  * total group weight.
3034  *
3035  * Given a runqueue weight distribution (rw_i) we can compute a shares
3036  * distribution (s_i) using:
3037  *
3038  *   s_i = rw_i / \Sum rw_j                                             (1)
3039  *
3040  * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
3041  * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
3042  * shares distribution (s_i):
3043  *
3044  *   rw_i = {   2,   4,   1,   0 }
3045  *   s_i  = { 2/7, 4/7, 1/7,   0 }
3046  *
3047  * As per wake_affine() we're interested in the load of two CPUs (the CPU the
3048  * task used to run on and the CPU the waker is running on), we need to
3049  * compute the effect of waking a task on either CPU and, in case of a sync
3050  * wakeup, compute the effect of the current task going to sleep.
3051  *
3052  * So for a change of @wl to the local @cpu with an overall group weight change
3053  * of @wl we can compute the new shares distribution (s'_i) using:
3054  *
3055  *   s'_i = (rw_i + @wl) / (@wg + \Sum rw_j)                            (2)
3056  *
3057  * Suppose we're interested in CPUs 0 and 1, and want to compute the load
3058  * differences in waking a task to CPU 0. The additional task changes the
3059  * weight and shares distributions like:
3060  *
3061  *   rw'_i = {   3,   4,   1,   0 }
3062  *   s'_i  = { 3/8, 4/8, 1/8,   0 }
3063  *
3064  * We can then compute the difference in effective weight by using:
3065  *
3066  *   dw_i = S * (s'_i - s_i)                                            (3)
3067  *
3068  * Where 'S' is the group weight as seen by its parent.
3069  *
3070  * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
3071  * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
3072  * 4/7) times the weight of the group.
3073  */
3074 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
3075 {
3076         struct sched_entity *se = tg->se[cpu];
3077
3078         if (!tg->parent)        /* the trivial, non-cgroup case */
3079                 return wl;
3080
3081         for_each_sched_entity(se) {
3082                 long w, W;
3083
3084                 tg = se->my_q->tg;
3085
3086                 /*
3087                  * W = @wg + \Sum rw_j
3088                  */
3089                 W = wg + calc_tg_weight(tg, se->my_q);
3090
3091                 /*
3092                  * w = rw_i + @wl
3093                  */
3094                 w = se->my_q->load.weight + wl;
3095
3096                 /*
3097                  * wl = S * s'_i; see (2)
3098                  */
3099                 if (W > 0 && w < W)
3100                         wl = (w * tg->shares) / W;
3101                 else
3102                         wl = tg->shares;
3103
3104                 /*
3105                  * Per the above, wl is the new se->load.weight value; since
3106                  * those are clipped to [MIN_SHARES, ...) do so now. See
3107                  * calc_cfs_shares().
3108                  */
3109                 if (wl < MIN_SHARES)
3110                         wl = MIN_SHARES;
3111
3112                 /*
3113                  * wl = dw_i = S * (s'_i - s_i); see (3)
3114                  */
3115                 wl -= se->load.weight;
3116
3117                 /*
3118                  * Recursively apply this logic to all parent groups to compute
3119                  * the final effective load change on the root group. Since
3120                  * only the @tg group gets extra weight, all parent groups can
3121                  * only redistribute existing shares. @wl is the shift in shares
3122                  * resulting from this level per the above.
3123                  */
3124                 wg = 0;
3125         }
3126
3127         return wl;
3128 }
3129 #else
3130
3131 static inline unsigned long effective_load(struct task_group *tg, int cpu,
3132                 unsigned long wl, unsigned long wg)
3133 {
3134         return wl;
3135 }
3136
3137 #endif
3138
3139 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
3140 {
3141         s64 this_load, load;
3142         int idx, this_cpu, prev_cpu;
3143         unsigned long tl_per_task;
3144         struct task_group *tg;
3145         unsigned long weight;
3146         int balanced;
3147
3148         idx       = sd->wake_idx;
3149         this_cpu  = smp_processor_id();
3150         prev_cpu  = task_cpu(p);
3151         load      = source_load(prev_cpu, idx);
3152         this_load = target_load(this_cpu, idx);
3153
3154         /*
3155          * If sync wakeup then subtract the (maximum possible)
3156          * effect of the currently running task from the load
3157          * of the current CPU:
3158          */
3159         if (sync) {
3160                 tg = task_group(current);
3161                 weight = current->se.load.weight;
3162
3163                 this_load += effective_load(tg, this_cpu, -weight, -weight);
3164                 load += effective_load(tg, prev_cpu, 0, -weight);
3165         }
3166
3167         tg = task_group(p);
3168         weight = p->se.load.weight;
3169
3170         /*
3171          * In low-load situations, where prev_cpu is idle and this_cpu is idle
3172          * due to the sync cause above having dropped this_load to 0, we'll
3173          * always have an imbalance, but there's really nothing you can do
3174          * about that, so that's good too.
3175          *
3176          * Otherwise check if either cpus are near enough in load to allow this
3177          * task to be woken on this_cpu.
3178          */
3179         if (this_load > 0) {
3180                 s64 this_eff_load, prev_eff_load;
3181
3182                 this_eff_load = 100;
3183                 this_eff_load *= power_of(prev_cpu);
3184                 this_eff_load *= this_load +
3185                         effective_load(tg, this_cpu, weight, weight);
3186
3187                 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
3188                 prev_eff_load *= power_of(this_cpu);
3189                 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
3190
3191                 balanced = this_eff_load <= prev_eff_load;
3192         } else
3193                 balanced = true;
3194
3195         /*
3196          * If the currently running task will sleep within
3197          * a reasonable amount of time then attract this newly
3198          * woken task:
3199          */
3200         if (sync && balanced)
3201                 return 1;
3202
3203         schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
3204         tl_per_task = cpu_avg_load_per_task(this_cpu);
3205
3206         if (balanced ||
3207             (this_load <= load &&
3208              this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
3209                 /*
3210                  * This domain has SD_WAKE_AFFINE and
3211                  * p is cache cold in this domain, and
3212                  * there is no bad imbalance.
3213                  */
3214                 schedstat_inc(sd, ttwu_move_affine);
3215                 schedstat_inc(p, se.statistics.nr_wakeups_affine);
3216
3217                 return 1;
3218         }
3219         return 0;
3220 }
3221
3222 /*
3223  * find_idlest_group finds and returns the least busy CPU group within the
3224  * domain.
3225  */
3226 static struct sched_group *
3227 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
3228                   int this_cpu, int load_idx)
3229 {
3230         struct sched_group *idlest = NULL, *group = sd->groups;
3231         unsigned long min_load = ULONG_MAX, this_load = 0;
3232         int imbalance = 100 + (sd->imbalance_pct-100)/2;
3233
3234         do {
3235                 unsigned long load, avg_load;
3236                 int local_group;
3237                 int i;
3238
3239                 /* Skip over this group if it has no CPUs allowed */
3240                 if (!cpumask_intersects(sched_group_cpus(group),
3241                                         tsk_cpus_allowed(p)))
3242                         continue;
3243
3244                 local_group = cpumask_test_cpu(this_cpu,
3245                                                sched_group_cpus(group));
3246
3247                 /* Tally up the load of all CPUs in the group */
3248                 avg_load = 0;
3249
3250                 for_each_cpu(i, sched_group_cpus(group)) {
3251                         /* Bias balancing toward cpus of our domain */
3252                         if (local_group)
3253                                 load = source_load(i, load_idx);
3254                         else
3255                                 load = target_load(i, load_idx);
3256
3257                         avg_load += load;
3258                 }
3259
3260                 /* Adjust by relative CPU power of the group */
3261                 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
3262
3263                 if (local_group) {
3264                         this_load = avg_load;
3265                 } else if (avg_load < min_load) {
3266                         min_load = avg_load;
3267                         idlest = group;
3268                 }
3269         } while (group = group->next, group != sd->groups);
3270
3271         if (!idlest || 100*this_load < imbalance*min_load)
3272                 return NULL;
3273         return idlest;
3274 }
3275
3276 /*
3277  * find_idlest_cpu - find the idlest cpu among the cpus in group.
3278  */
3279 static int
3280 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
3281 {
3282         unsigned long load, min_load = ULONG_MAX;
3283         int idlest = -1;
3284         int i;
3285
3286         /* Traverse only the allowed CPUs */
3287         for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
3288                 load = weighted_cpuload(i);
3289
3290                 if (load < min_load || (load == min_load && i == this_cpu)) {
3291                         min_load = load;
3292                         idlest = i;
3293                 }
3294         }
3295
3296         return idlest;
3297 }
3298
3299 /*
3300  * Try and locate an idle CPU in the sched_domain.
3301  */
3302 static int select_idle_sibling(struct task_struct *p, int target)
3303 {
3304         struct sched_domain *sd;
3305         struct sched_group *sg;
3306         int i = task_cpu(p);
3307
3308         if (idle_cpu(target))
3309                 return target;
3310
3311         /*
3312          * If the prevous cpu is cache affine and idle, don't be stupid.
3313          */
3314         if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
3315                 return i;
3316
3317         /*
3318          * Otherwise, iterate the domains and find an elegible idle cpu.
3319          */
3320         sd = rcu_dereference(per_cpu(sd_llc, target));
3321         for_each_lower_domain(sd) {
3322                 sg = sd->groups;
3323                 do {
3324                         if (!cpumask_intersects(sched_group_cpus(sg),
3325                                                 tsk_cpus_allowed(p)))
3326                                 goto next;
3327
3328                         for_each_cpu(i, sched_group_cpus(sg)) {
3329                                 if (i == target || !idle_cpu(i))
3330                                         goto next;
3331                         }
3332
3333                         target = cpumask_first_and(sched_group_cpus(sg),
3334                                         tsk_cpus_allowed(p));
3335                         goto done;
3336 next:
3337                         sg = sg->next;
3338                 } while (sg != sd->groups);
3339         }
3340 done:
3341         return target;
3342 }
3343
3344 /*
3345  * sched_balance_self: balance the current task (running on cpu) in domains
3346  * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
3347  * SD_BALANCE_EXEC.
3348  *
3349  * Balance, ie. select the least loaded group.
3350  *
3351  * Returns the target CPU number, or the same CPU if no balancing is needed.
3352  *
3353  * preempt must be disabled.
3354  */
3355 static int
3356 select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
3357 {
3358         struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
3359         int cpu = smp_processor_id();
3360         int prev_cpu = task_cpu(p);
3361         int new_cpu = cpu;
3362         int want_affine = 0;
3363         int sync = wake_flags & WF_SYNC;
3364
3365         if (p->nr_cpus_allowed == 1)
3366                 return prev_cpu;
3367
3368         if (sd_flag & SD_BALANCE_WAKE) {
3369                 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
3370                         want_affine = 1;
3371                 new_cpu = prev_cpu;
3372         }
3373
3374         rcu_read_lock();
3375         for_each_domain(cpu, tmp) {
3376                 if (!(tmp->flags & SD_LOAD_BALANCE))
3377                         continue;
3378
3379                 /*
3380                  * If both cpu and prev_cpu are part of this domain,
3381                  * cpu is a valid SD_WAKE_AFFINE target.
3382                  */
3383                 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
3384                     cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
3385                         affine_sd = tmp;
3386                         break;
3387                 }
3388
3389                 if (tmp->flags & sd_flag)
3390                         sd = tmp;
3391         }
3392
3393         if (affine_sd) {
3394                 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
3395                         prev_cpu = cpu;
3396
3397                 new_cpu = select_idle_sibling(p, prev_cpu);
3398                 goto unlock;
3399         }
3400
3401         while (sd) {
3402                 int load_idx = sd->forkexec_idx;
3403                 struct sched_group *group;
3404                 int weight;
3405
3406                 if (!(sd->flags & sd_flag)) {
3407                         sd = sd->child;
3408                         continue;
3409                 }
3410
3411                 if (sd_flag & SD_BALANCE_WAKE)
3412                         load_idx = sd->wake_idx;
3413
3414                 group = find_idlest_group(sd, p, cpu, load_idx);
3415                 if (!group) {
3416                         sd = sd->child;
3417                         continue;
3418                 }
3419
3420                 new_cpu = find_idlest_cpu(group, p, cpu);
3421                 if (new_cpu == -1 || new_cpu == cpu) {
3422                         /* Now try balancing at a lower domain level of cpu */
3423                         sd = sd->child;
3424                         continue;
3425                 }
3426
3427                 /* Now try balancing at a lower domain level of new_cpu */
3428                 cpu = new_cpu;
3429                 weight = sd->span_weight;
3430                 sd = NULL;
3431                 for_each_domain(cpu, tmp) {
3432                         if (weight <= tmp->span_weight)
3433                                 break;
3434                         if (tmp->flags & sd_flag)
3435                                 sd = tmp;
3436                 }
3437                 /* while loop will break here if sd == NULL */
3438         }
3439 unlock:
3440         rcu_read_unlock();
3441
3442         return new_cpu;
3443 }
3444
3445 /*
3446  * Load-tracking only depends on SMP, FAIR_GROUP_SCHED dependency below may be
3447  * removed when useful for applications beyond shares distribution (e.g.
3448  * load-balance).
3449  */
3450 #ifdef CONFIG_FAIR_GROUP_SCHED
3451 /*
3452  * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
3453  * cfs_rq_of(p) references at time of call are still valid and identify the
3454  * previous cpu.  However, the caller only guarantees p->pi_lock is held; no
3455  * other assumptions, including the state of rq->lock, should be made.
3456  */
3457 static void
3458 migrate_task_rq_fair(struct task_struct *p, int next_cpu)
3459 {
3460         struct sched_entity *se = &p->se;
3461         struct cfs_rq *cfs_rq = cfs_rq_of(se);
3462
3463         /*
3464          * Load tracking: accumulate removed load so that it can be processed
3465          * when we next update owning cfs_rq under rq->lock.  Tasks contribute
3466          * to blocked load iff they have a positive decay-count.  It can never
3467          * be negative here since on-rq tasks have decay-count == 0.
3468          */
3469         if (se->avg.decay_count) {
3470                 se->avg.decay_count = -__synchronize_entity_decay(se);
3471                 atomic64_add(se->avg.load_avg_contrib, &cfs_rq->removed_load);
3472         }
3473 }
3474 #endif
3475 #endif /* CONFIG_SMP */
3476
3477 static unsigned long
3478 wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
3479 {
3480         unsigned long gran = sysctl_sched_wakeup_granularity;
3481
3482         /*
3483          * Since its curr running now, convert the gran from real-time
3484          * to virtual-time in his units.
3485          *
3486          * By using 'se' instead of 'curr' we penalize light tasks, so
3487          * they get preempted easier. That is, if 'se' < 'curr' then
3488          * the resulting gran will be larger, therefore penalizing the
3489          * lighter, if otoh 'se' > 'curr' then the resulting gran will
3490          * be smaller, again penalizing the lighter task.
3491          *
3492          * This is especially important for buddies when the leftmost
3493          * task is higher priority than the buddy.
3494          */
3495         return calc_delta_fair(gran, se);
3496 }
3497
3498 /*
3499  * Should 'se' preempt 'curr'.
3500  *
3501  *             |s1
3502  *        |s2
3503  *   |s3
3504  *         g
3505  *      |<--->|c
3506  *
3507  *  w(c, s1) = -1
3508  *  w(c, s2) =  0
3509  *  w(c, s3) =  1
3510  *
3511  */
3512 static int
3513 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
3514 {
3515         s64 gran, vdiff = curr->vruntime - se->vruntime;
3516
3517         if (vdiff <= 0)
3518                 return -1;
3519
3520         gran = wakeup_gran(curr, se);
3521         if (vdiff > gran)
3522                 return 1;
3523
3524         return 0;
3525 }
3526
3527 static void set_last_buddy(struct sched_entity *se)
3528 {
3529         if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
3530                 return;
3531
3532         for_each_sched_entity(se)
3533                 cfs_rq_of(se)->last = se;
3534 }
3535
3536 static void set_next_buddy(struct sched_entity *se)
3537 {
3538         if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
3539                 return;
3540
3541         for_each_sched_entity(se)
3542                 cfs_rq_of(se)->next = se;
3543 }
3544
3545 static void set_skip_buddy(struct sched_entity *se)
3546 {
3547         for_each_sched_entity(se)
3548                 cfs_rq_of(se)->skip = se;
3549 }
3550
3551 /*
3552  * Preempt the current task with a newly woken task if needed:
3553  */
3554 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
3555 {
3556         struct task_struct *curr = rq->curr;
3557         struct sched_entity *se = &curr->se, *pse = &p->se;
3558         struct cfs_rq *cfs_rq = task_cfs_rq(curr);
3559         int scale = cfs_rq->nr_running >= sched_nr_latency;
3560         int next_buddy_marked = 0;
3561
3562         if (unlikely(se == pse))
3563                 return;
3564
3565         /*
3566          * This is possible from callers such as move_task(), in which we
3567          * unconditionally check_prempt_curr() after an enqueue (which may have
3568          * lead to a throttle).  This both saves work and prevents false
3569          * next-buddy nomination below.
3570          */
3571         if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
3572                 return;
3573
3574         if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3575                 set_next_buddy(pse);
3576                 next_buddy_marked = 1;
3577         }
3578
3579         /*
3580          * We can come here with TIF_NEED_RESCHED already set from new task
3581          * wake up path.
3582          *
3583          * Note: this also catches the edge-case of curr being in a throttled
3584          * group (e.g. via set_curr_task), since update_curr() (in the
3585          * enqueue of curr) will have resulted in resched being set.  This
3586          * prevents us from potentially nominating it as a false LAST_BUDDY
3587          * below.
3588          */
3589         if (test_tsk_need_resched(curr))
3590                 return;
3591
3592         /* Idle tasks are by definition preempted by non-idle tasks. */
3593         if (unlikely(curr->policy == SCHED_IDLE) &&
3594             likely(p->policy != SCHED_IDLE))
3595                 goto preempt;
3596
3597         /*
3598          * Batch and idle tasks do not preempt non-idle tasks (their preemption
3599          * is driven by the tick):
3600          */
3601         if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
3602                 return;
3603
3604         find_matching_se(&se, &pse);
3605         update_curr(cfs_rq_of(se));
3606         BUG_ON(!pse);
3607         if (wakeup_preempt_entity(se, pse) == 1) {
3608                 /*
3609                  * Bias pick_next to pick the sched entity that is
3610                  * triggering this preemption.
3611                  */
3612                 if (!next_buddy_marked)
3613                         set_next_buddy(pse);
3614                 goto preempt;
3615         }
3616
3617         return;
3618
3619 preempt:
3620         resched_task(curr);
3621         /*
3622          * Only set the backward buddy when the current task is still
3623          * on the rq. This can happen when a wakeup gets interleaved
3624          * with schedule on the ->pre_schedule() or idle_balance()
3625          * point, either of which can * drop the rq lock.
3626          *
3627          * Also, during early boot the idle thread is in the fair class,
3628          * for obvious reasons its a bad idea to schedule back to it.
3629          */
3630         if (unlikely(!se->on_rq || curr == rq->idle))
3631                 return;
3632
3633         if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
3634                 set_last_buddy(se);
3635 }
3636
3637 static struct task_struct *pick_next_task_fair(struct rq *rq)
3638 {
3639         struct task_struct *p;
3640         struct cfs_rq *cfs_rq = &rq->cfs;
3641         struct sched_entity *se;
3642
3643         if (!cfs_rq->nr_running)
3644                 return NULL;
3645
3646         do {
3647                 se = pick_next_entity(cfs_rq);
3648                 set_next_entity(cfs_rq, se);
3649                 cfs_rq = group_cfs_rq(se);
3650         } while (cfs_rq);
3651
3652         p = task_of(se);
3653         if (hrtick_enabled(rq))
3654                 hrtick_start_fair(rq, p);
3655
3656         return p;
3657 }
3658
3659 /*
3660  * Account for a descheduled task:
3661  */
3662 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
3663 {
3664         struct sched_entity *se = &prev->se;
3665         struct cfs_rq *cfs_rq;
3666
3667         for_each_sched_entity(se) {
3668                 cfs_rq = cfs_rq_of(se);
3669                 put_prev_entity(cfs_rq, se);
3670         }
3671 }
3672
3673 /*
3674  * sched_yield() is very simple
3675  *
3676  * The magic of dealing with the ->skip buddy is in pick_next_entity.
3677  */
3678 static void yield_task_fair(struct rq *rq)
3679 {
3680         struct task_struct *curr = rq->curr;
3681         struct cfs_rq *cfs_rq = task_cfs_rq(curr);
3682         struct sched_entity *se = &curr->se;
3683
3684         /*
3685          * Are we the only task in the tree?
3686          */
3687         if (unlikely(rq->nr_running == 1))
3688                 return;
3689
3690         clear_buddies(cfs_rq, se);
3691
3692         if (curr->policy != SCHED_BATCH) {
3693                 update_rq_clock(rq);
3694                 /*
3695                  * Update run-time statistics of the 'current'.
3696                  */
3697                 update_curr(cfs_rq);
3698                 /*
3699                  * Tell update_rq_clock() that we've just updated,
3700                  * so we don't do microscopic update in schedule()
3701                  * and double the fastpath cost.
3702                  */
3703                  rq->skip_clock_update = 1;
3704         }
3705
3706         set_skip_buddy(se);
3707 }
3708
3709 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
3710 {
3711         struct sched_entity *se = &p->se;
3712
3713         /* throttled hierarchies are not runnable */
3714         if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
3715                 return false;
3716
3717         /* Tell the scheduler that we'd really like pse to run next. */
3718         set_next_buddy(se);
3719
3720         yield_task_fair(rq);
3721
3722         return true;
3723 }
3724
3725 #ifdef CONFIG_SMP
3726 /**************************************************
3727  * Fair scheduling class load-balancing methods.
3728  *
3729  * BASICS
3730  *
3731  * The purpose of load-balancing is to achieve the same basic fairness the
3732  * per-cpu scheduler provides, namely provide a proportional amount of compute
3733  * time to each task. This is expressed in the following equation:
3734  *
3735  *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
3736  *
3737  * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
3738  * W_i,0 is defined as:
3739  *
3740  *   W_i,0 = \Sum_j w_i,j                                             (2)
3741  *
3742  * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
3743  * is derived from the nice value as per prio_to_weight[].
3744  *
3745  * The weight average is an exponential decay average of the instantaneous
3746  * weight:
3747  *
3748  *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
3749  *
3750  * P_i is the cpu power (or compute capacity) of cpu i, typically it is the
3751  * fraction of 'recent' time available for SCHED_OTHER task execution. But it
3752  * can also include other factors [XXX].
3753  *
3754  * To achieve this balance we define a measure of imbalance which follows
3755  * directly from (1):
3756  *
3757  *   imb_i,j = max{ avg(W/P), W_i/P_i } - min{ avg(W/P), W_j/P_j }    (4)
3758  *
3759  * We them move tasks around to minimize the imbalance. In the continuous
3760  * function space it is obvious this converges, in the discrete case we get
3761  * a few fun cases generally called infeasible weight scenarios.
3762  *
3763  * [XXX expand on:
3764  *     - infeasible weights;
3765  *     - local vs global optima in the discrete case. ]
3766  *
3767  *
3768  * SCHED DOMAINS
3769  *
3770  * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
3771  * for all i,j solution, we create a tree of cpus that follows the hardware
3772  * topology where each level pairs two lower groups (or better). This results
3773  * in O(log n) layers. Furthermore we reduce the number of cpus going up the
3774  * tree to only the first of the previous level and we decrease the frequency
3775  * of load-balance at each level inv. proportional to the number of cpus in
3776  * the groups.
3777  *
3778  * This yields:
3779  *
3780  *     log_2 n     1     n
3781  *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
3782  *     i = 0      2^i   2^i
3783  *                               `- size of each group
3784  *         |         |     `- number of cpus doing load-balance
3785  *         |         `- freq
3786  *         `- sum over all levels
3787  *
3788  * Coupled with a limit on how many tasks we can migrate every balance pass,
3789  * this makes (5) the runtime complexity of the balancer.
3790  *
3791  * An important property here is that each CPU is still (indirectly) connected
3792  * to every other cpu in at most O(log n) steps:
3793  *
3794  * The adjacency matrix of the resulting graph is given by:
3795  *
3796  *             log_2 n     
3797  *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
3798  *             k = 0
3799  *
3800  * And you'll find that:
3801  *
3802  *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
3803  *
3804  * Showing there's indeed a path between every cpu in at most O(log n) steps.
3805  * The task movement gives a factor of O(m), giving a convergence complexity
3806  * of:
3807  *
3808  *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
3809  *
3810  *
3811  * WORK CONSERVING
3812  *
3813  * In order to avoid CPUs going idle while there's still work to do, new idle
3814  * balancing is more aggressive and has the newly idle cpu iterate up the domain
3815  * tree itself instead of relying on other CPUs to bring it work.
3816  *
3817  * This adds some complexity to both (5) and (8) but it reduces the total idle
3818  * time.
3819  *
3820  * [XXX more?]
3821  *
3822  *
3823  * CGROUPS
3824  *
3825  * Cgroups make a horror show out of (2), instead of a simple sum we get:
3826  *
3827  *                                s_k,i
3828  *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
3829  *                                 S_k
3830  *
3831  * Where
3832  *
3833  *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
3834  *
3835  * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
3836  *
3837  * The big problem is S_k, its a global sum needed to compute a local (W_i)
3838  * property.
3839  *
3840  * [XXX write more on how we solve this.. _after_ merging pjt's patches that
3841  *      rewrite all of this once again.]
3842  */ 
3843
3844 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
3845
3846 #define LBF_ALL_PINNED  0x01
3847 #define LBF_NEED_BREAK  0x02
3848 #define LBF_SOME_PINNED 0x04
3849
3850 struct lb_env {
3851         struct sched_domain     *sd;
3852
3853         struct rq               *src_rq;
3854         int                     src_cpu;
3855
3856         int                     dst_cpu;
3857         struct rq               *dst_rq;
3858
3859         struct cpumask          *dst_grpmask;
3860         int                     new_dst_cpu;
3861         enum cpu_idle_type      idle;
3862         long                    imbalance;
3863         /* The set of CPUs under consideration for load-balancing */
3864         struct cpumask          *cpus;
3865
3866         unsigned int            flags;
3867
3868         unsigned int            loop;
3869         unsigned int            loop_break;
3870         unsigned int            loop_max;
3871 };
3872
3873 /*
3874  * move_task - move a task from one runqueue to another runqueue.
3875  * Both runqueues must be locked.
3876  */
3877 static void move_task(struct task_struct *p, struct lb_env *env)
3878 {
3879         deactivate_task(env->src_rq, p, 0);
3880         set_task_cpu(p, env->dst_cpu);
3881         activate_task(env->dst_rq, p, 0);
3882         check_preempt_curr(env->dst_rq, p, 0);
3883 }
3884
3885 /*
3886  * Is this task likely cache-hot:
3887  */
3888 static int
3889 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
3890 {
3891         s64 delta;
3892
3893         if (p->sched_class != &fair_sched_class)
3894                 return 0;
3895
3896         if (unlikely(p->policy == SCHED_IDLE))
3897                 return 0;
3898
3899         /*
3900          * Buddy candidates are cache hot:
3901          */
3902         if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
3903                         (&p->se == cfs_rq_of(&p->se)->next ||
3904                          &p->se == cfs_rq_of(&p->se)->last))
3905                 return 1;
3906
3907         if (sysctl_sched_migration_cost == -1)
3908                 return 1;
3909         if (sysctl_sched_migration_cost == 0)
3910                 return 0;
3911
3912         delta = now - p->se.exec_start;
3913
3914         return delta < (s64)sysctl_sched_migration_cost;
3915 }
3916
3917 /*
3918  * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3919  */
3920 static
3921 int can_migrate_task(struct task_struct *p, struct lb_env *env)
3922 {
3923         int tsk_cache_hot = 0;
3924         /*
3925          * We do not migrate tasks that are:
3926          * 1) throttled_lb_pair, or
3927          * 2) cannot be migrated to this CPU due to cpus_allowed, or
3928          * 3) running (obviously), or
3929          * 4) are cache-hot on their current CPU.
3930          */
3931         if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
3932                 return 0;
3933
3934         if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
3935                 int cpu;
3936
3937                 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
3938
3939                 /*
3940                  * Remember if this task can be migrated to any other cpu in
3941                  * our sched_group. We may want to revisit it if we couldn't
3942                  * meet load balance goals by pulling other tasks on src_cpu.
3943                  *
3944                  * Also avoid computing new_dst_cpu if we have already computed
3945                  * one in current iteration.
3946                  */
3947                 if (!env->dst_grpmask || (env->flags & LBF_SOME_PINNED))
3948                         return 0;
3949
3950                 /* Prevent to re-select dst_cpu via env's cpus */
3951                 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
3952                         if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
3953                                 env->flags |= LBF_SOME_PINNED;
3954                                 env->new_dst_cpu = cpu;
3955                                 break;
3956                         }
3957                 }
3958
3959                 return 0;
3960         }
3961
3962         /* Record that we found atleast one task that could run on dst_cpu */
3963         env->flags &= ~LBF_ALL_PINNED;
3964
3965         if (task_running(env->src_rq, p)) {
3966                 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
3967                 return 0;
3968         }
3969
3970         /*
3971          * Aggressive migration if:
3972          * 1) task is cache cold, or
3973          * 2) too many balance attempts have failed.
3974          */
3975
3976         tsk_cache_hot = task_hot(p, env->src_rq->clock_task, env->sd);
3977         if (!tsk_cache_hot ||
3978                 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
3979
3980                 if (tsk_cache_hot) {
3981                         schedstat_inc(env->sd, lb_hot_gained[env->idle]);
3982                         schedstat_inc(p, se.statistics.nr_forced_migrations);
3983                 }
3984
3985                 return 1;
3986         }
3987
3988         schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
3989         return 0;
3990 }
3991
3992 /*
3993  * move_one_task tries to move exactly one task from busiest to this_rq, as
3994  * part of active balancing operations within "domain".
3995  * Returns 1 if successful and 0 otherwise.
3996  *
3997  * Called with both runqueues locked.
3998  */
3999 static int move_one_task(struct lb_env *env)
4000 {
4001         struct task_struct *p, *n;
4002
4003         list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
4004                 if (!can_migrate_task(p, env))
4005                         continue;
4006
4007                 move_task(p, env);
4008                 /*
4009                  * Right now, this is only the second place move_task()
4010                  * is called, so we can safely collect move_task()
4011                  * stats here rather than inside move_task().
4012                  */
4013                 schedstat_inc(env->sd, lb_gained[env->idle]);
4014                 return 1;
4015         }
4016         return 0;
4017 }
4018
4019 static unsigned long task_h_load(struct task_struct *p);
4020
4021 static const unsigned int sched_nr_migrate_break = 32;
4022
4023 /*
4024  * move_tasks tries to move up to imbalance weighted load from busiest to
4025  * this_rq, as part of a balancing operation within domain "sd".
4026  * Returns 1 if successful and 0 otherwise.
4027  *
4028  * Called with both runqueues locked.
4029  */
4030 static int move_tasks(struct lb_env *env)
4031 {
4032         struct list_head *tasks = &env->src_rq->cfs_tasks;
4033         struct task_struct *p;
4034         unsigned long load;
4035         int pulled = 0;
4036
4037         if (env->imbalance <= 0)
4038                 return 0;
4039
4040         while (!list_empty(tasks)) {
4041                 p = list_first_entry(tasks, struct task_struct, se.group_node);
4042
4043                 env->loop++;
4044                 /* We've more or less seen every task there is, call it quits */
4045                 if (env->loop > env->loop_max)
4046                         break;
4047
4048                 /* take a breather every nr_migrate tasks */
4049                 if (env->loop > env->loop_break) {
4050                         env->loop_break += sched_nr_migrate_break;
4051                         env->flags |= LBF_NEED_BREAK;
4052                         break;
4053                 }
4054
4055                 if (!can_migrate_task(p, env))
4056                         goto next;
4057
4058                 load = task_h_load(p);
4059
4060                 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
4061                         goto next;
4062
4063                 if ((load / 2) > env->imbalance)
4064                         goto next;
4065
4066                 move_task(p, env);
4067                 pulled++;
4068                 env->imbalance -= load;
4069
4070 #ifdef CONFIG_PREEMPT
4071                 /*
4072                  * NEWIDLE balancing is a source of latency, so preemptible
4073                  * kernels will stop after the first task is pulled to minimize
4074                  * the critical section.
4075                  */
4076                 if (env->idle == CPU_NEWLY_IDLE)
4077                         break;
4078 #endif
4079
4080                 /*
4081                  * We only want to steal up to the prescribed amount of
4082                  * weighted load.
4083                  */
4084                 if (env->imbalance <= 0)
4085                         break;
4086
4087                 continue;
4088 next:
4089                 list_move_tail(&p->se.group_node, tasks);
4090         }
4091
4092         /*
4093          * Right now, this is one of only two places move_task() is called,
4094          * so we can safely collect move_task() stats here rather than
4095          * inside move_task().
4096          */
4097         schedstat_add(env->sd, lb_gained[env->idle], pulled);
4098
4099         return pulled;
4100 }
4101
4102 #ifdef CONFIG_FAIR_GROUP_SCHED
4103 /*
4104  * update tg->load_weight by folding this cpu's load_avg
4105  */
4106 static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
4107 {
4108         struct sched_entity *se = tg->se[cpu];
4109         struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
4110
4111         /* throttled entities do not contribute to load */
4112         if (throttled_hierarchy(cfs_rq))
4113                 return;
4114
4115         update_cfs_rq_blocked_load(cfs_rq, 1);
4116
4117         if (se) {
4118                 update_entity_load_avg(se, 1);
4119                 /*
4120                  * We pivot on our runnable average having decayed to zero for
4121                  * list removal.  This generally implies that all our children
4122                  * have also been removed (modulo rounding error or bandwidth
4123                  * control); however, such cases are rare and we can fix these
4124                  * at enqueue.
4125                  *
4126                  * TODO: fix up out-of-order children on enqueue.
4127                  */
4128                 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
4129                         list_del_leaf_cfs_rq(cfs_rq);
4130         } else {
4131                 struct rq *rq = rq_of(cfs_rq);
4132                 update_rq_runnable_avg(rq, rq->nr_running);
4133         }
4134 }
4135
4136 static void update_blocked_averages(int cpu)
4137 {
4138         struct rq *rq = cpu_rq(cpu);
4139         struct cfs_rq *cfs_rq;
4140         unsigned long flags;
4141
4142         raw_spin_lock_irqsave(&rq->lock, flags);
4143         update_rq_clock(rq);
4144         /*
4145          * Iterates the task_group tree in a bottom up fashion, see
4146          * list_add_leaf_cfs_rq() for details.
4147          */
4148         for_each_leaf_cfs_rq(rq, cfs_rq) {
4149                 /*
4150                  * Note: We may want to consider periodically releasing
4151                  * rq->lock about these updates so that creating many task
4152                  * groups does not result in continually extending hold time.
4153                  */
4154                 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
4155         }
4156
4157         raw_spin_unlock_irqrestore(&rq->lock, flags);
4158 }
4159
4160 /*
4161  * Compute the cpu's hierarchical load factor for each task group.
4162  * This needs to be done in a top-down fashion because the load of a child
4163  * group is a fraction of its parents load.
4164  */
4165 static int tg_load_down(struct task_group *tg, void *data)
4166 {
4167         unsigned long load;
4168         long cpu = (long)data;
4169
4170         if (!tg->parent) {
4171                 load = cpu_rq(cpu)->load.weight;
4172         } else {
4173                 load = tg->parent->cfs_rq[cpu]->h_load;
4174                 load *= tg->se[cpu]->load.weight;
4175                 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
4176         }
4177
4178         tg->cfs_rq[cpu]->h_load = load;
4179
4180         return 0;
4181 }
4182
4183 static void update_h_load(long cpu)
4184 {
4185         struct rq *rq = cpu_rq(cpu);
4186         unsigned long now = jiffies;
4187
4188         if (rq->h_load_throttle == now)
4189                 return;
4190
4191         rq->h_load_throttle = now;
4192
4193         rcu_read_lock();
4194         walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
4195         rcu_read_unlock();
4196 }
4197
4198 static unsigned long task_h_load(struct task_struct *p)
4199 {
4200         struct cfs_rq *cfs_rq = task_cfs_rq(p);
4201         unsigned long load;
4202
4203         load = p->se.load.weight;
4204         load = div_u64(load * cfs_rq->h_load, cfs_rq->load.weight + 1);
4205
4206         return load;
4207 }
4208 #else
4209 static inline void update_blocked_averages(int cpu)
4210 {
4211 }
4212
4213 static inline void update_h_load(long cpu)
4214 {
4215 }
4216
4217 static unsigned long task_h_load(struct task_struct *p)
4218 {
4219         return p->se.load.weight;
4220 }
4221 #endif
4222
4223 /********** Helpers for find_busiest_group ************************/
4224 /*
4225  * sd_lb_stats - Structure to store the statistics of a sched_domain
4226  *              during load balancing.
4227  */
4228 struct sd_lb_stats {
4229         struct sched_group *busiest; /* Busiest group in this sd */
4230         struct sched_group *this;  /* Local group in this sd */
4231         unsigned long total_load;  /* Total load of all groups in sd */
4232         unsigned long total_pwr;   /*   Total power of all groups in sd */
4233         unsigned long avg_load;    /* Average load across all groups in sd */
4234
4235         /** Statistics of this group */
4236         unsigned long this_load;
4237         unsigned long this_load_per_task;
4238         unsigned long this_nr_running;
4239         unsigned long this_has_capacity;
4240         unsigned int  this_idle_cpus;
4241
4242         /* Statistics of the busiest group */
4243         unsigned int  busiest_idle_cpus;
4244         unsigned long max_load;
4245         unsigned long busiest_load_per_task;
4246         unsigned long busiest_nr_running;
4247         unsigned long busiest_group_capacity;
4248         unsigned long busiest_has_capacity;
4249         unsigned int  busiest_group_weight;
4250
4251         int group_imb; /* Is there imbalance in this sd */
4252 };
4253
4254 /*
4255  * sg_lb_stats - stats of a sched_group required for load_balancing
4256  */
4257 struct sg_lb_stats {
4258         unsigned long avg_load; /*Avg load across the CPUs of the group */
4259         unsigned long group_load; /* Total load over the CPUs of the group */
4260         unsigned long sum_nr_running; /* Nr tasks running in the group */
4261         unsigned long sum_weighted_load; /* Weighted load of group's tasks */
4262         unsigned long group_capacity;
4263         unsigned long idle_cpus;
4264         unsigned long group_weight;
4265         int group_imb; /* Is there an imbalance in the group ? */
4266         int group_has_capacity; /* Is there extra capacity in the group? */
4267 };
4268
4269 /**
4270  * get_sd_load_idx - Obtain the load index for a given sched domain.
4271  * @sd: The sched_domain whose load_idx is to be obtained.
4272  * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
4273  */
4274 static inline int get_sd_load_idx(struct sched_domain *sd,
4275                                         enum cpu_idle_type idle)
4276 {
4277         int load_idx;
4278
4279         switch (idle) {
4280         case CPU_NOT_IDLE:
4281                 load_idx = sd->busy_idx;
4282                 break;
4283
4284         case CPU_NEWLY_IDLE:
4285                 load_idx = sd->newidle_idx;
4286                 break;
4287         default:
4288                 load_idx = sd->idle_idx;
4289                 break;
4290         }
4291
4292         return load_idx;
4293 }
4294
4295 static unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
4296 {
4297         return SCHED_POWER_SCALE;
4298 }
4299
4300 unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
4301 {
4302         return default_scale_freq_power(sd, cpu);
4303 }
4304
4305 static unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
4306 {
4307         unsigned long weight = sd->span_weight;
4308         unsigned long smt_gain = sd->smt_gain;
4309
4310         smt_gain /= weight;
4311
4312         return smt_gain;
4313 }
4314
4315 unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
4316 {
4317         return default_scale_smt_power(sd, cpu);
4318 }
4319
4320 static unsigned long scale_rt_power(int cpu)
4321 {
4322         struct rq *rq = cpu_rq(cpu);
4323         u64 total, available, age_stamp, avg;
4324
4325         /*
4326          * Since we're reading these variables without serialization make sure
4327          * we read them once before doing sanity checks on them.
4328          */
4329         age_stamp = ACCESS_ONCE(rq->age_stamp);
4330         avg = ACCESS_ONCE(rq->rt_avg);
4331
4332         total = sched_avg_period() + (rq->clock - age_stamp);
4333
4334         if (unlikely(total < avg)) {
4335                 /* Ensures that power won't end up being negative */
4336                 available = 0;
4337         } else {
4338                 available = total - avg;
4339         }
4340
4341         if (unlikely((s64)total < SCHED_POWER_SCALE))
4342                 total = SCHED_POWER_SCALE;
4343
4344         total >>= SCHED_POWER_SHIFT;
4345
4346         return div_u64(available, total);
4347 }
4348
4349 static void update_cpu_power(struct sched_domain *sd, int cpu)
4350 {
4351         unsigned long weight = sd->span_weight;
4352         unsigned long power = SCHED_POWER_SCALE;
4353         struct sched_group *sdg = sd->groups;
4354
4355         if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
4356                 if (sched_feat(ARCH_POWER))
4357                         power *= arch_scale_smt_power(sd, cpu);
4358                 else
4359                         power *= default_scale_smt_power(sd, cpu);
4360
4361                 power >>= SCHED_POWER_SHIFT;
4362         }
4363
4364         sdg->sgp->power_orig = power;
4365
4366         if (sched_feat(ARCH_POWER))
4367                 power *= arch_scale_freq_power(sd, cpu);
4368         else
4369                 power *= default_scale_freq_power(sd, cpu);
4370
4371         power >>= SCHED_POWER_SHIFT;
4372
4373         power *= scale_rt_power(cpu);
4374         power >>= SCHED_POWER_SHIFT;
4375
4376         if (!power)
4377                 power = 1;
4378
4379         cpu_rq(cpu)->cpu_power = power;
4380         sdg->sgp->power = power;
4381 }
4382
4383 void update_group_power(struct sched_domain *sd, int cpu)
4384 {
4385         struct sched_domain *child = sd->child;
4386         struct sched_group *group, *sdg = sd->groups;
4387         unsigned long power;
4388         unsigned long interval;
4389
4390         interval = msecs_to_jiffies(sd->balance_interval);
4391         interval = clamp(interval, 1UL, max_load_balance_interval);
4392         sdg->sgp->next_update = jiffies + interval;
4393
4394         if (!child) {
4395                 update_cpu_power(sd, cpu);
4396                 return;
4397         }
4398
4399         power = 0;
4400
4401         if (child->flags & SD_OVERLAP) {
4402                 /*
4403                  * SD_OVERLAP domains cannot assume that child groups
4404                  * span the current group.
4405                  */
4406
4407                 for_each_cpu(cpu, sched_group_cpus(sdg))
4408                         power += power_of(cpu);
4409         } else  {
4410                 /*
4411                  * !SD_OVERLAP domains can assume that child groups
4412                  * span the current group.
4413                  */ 
4414
4415                 group = child->groups;
4416                 do {
4417                         power += group->sgp->power;
4418                         group = group->next;
4419                 } while (group != child->groups);
4420         }
4421
4422         sdg->sgp->power_orig = sdg->sgp->power = power;
4423 }
4424
4425 /*
4426  * Try and fix up capacity for tiny siblings, this is needed when
4427  * things like SD_ASYM_PACKING need f_b_g to select another sibling
4428  * which on its own isn't powerful enough.
4429  *
4430  * See update_sd_pick_busiest() and check_asym_packing().
4431  */
4432 static inline int
4433 fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
4434 {
4435         /*
4436          * Only siblings can have significantly less than SCHED_POWER_SCALE
4437          */
4438         if (!(sd->flags & SD_SHARE_CPUPOWER))
4439                 return 0;
4440
4441         /*
4442          * If ~90% of the cpu_power is still there, we're good.
4443          */
4444         if (group->sgp->power * 32 > group->sgp->power_orig * 29)
4445                 return 1;
4446
4447         return 0;
4448 }
4449
4450 /**
4451  * update_sg_lb_stats - Update sched_group's statistics for load balancing.
4452  * @env: The load balancing environment.
4453  * @group: sched_group whose statistics are to be updated.
4454  * @load_idx: Load index of sched_domain of this_cpu for load calc.
4455  * @local_group: Does group contain this_cpu.
4456  * @balance: Should we balance.
4457  * @sgs: variable to hold the statistics for this group.
4458  */
4459 static inline void update_sg_lb_stats(struct lb_env *env,
4460                         struct sched_group *group, int load_idx,
4461                         int local_group, int *balance, struct sg_lb_stats *sgs)
4462 {
4463         unsigned long nr_running, max_nr_running, min_nr_running;
4464         unsigned long load, max_cpu_load, min_cpu_load;
4465         unsigned int balance_cpu = -1, first_idle_cpu = 0;
4466         unsigned long avg_load_per_task = 0;
4467         int i;
4468
4469         if (local_group)
4470                 balance_cpu = group_balance_cpu(group);
4471
4472         /* Tally up the load of all CPUs in the group */
4473         max_cpu_load = 0;
4474         min_cpu_load = ~0UL;
4475         max_nr_running = 0;
4476         min_nr_running = ~0UL;
4477
4478         for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
4479                 struct rq *rq = cpu_rq(i);
4480
4481                 nr_running = rq->nr_running;
4482
4483                 /* Bias balancing toward cpus of our domain */
4484                 if (local_group) {
4485                         if (idle_cpu(i) && !first_idle_cpu &&
4486                                         cpumask_test_cpu(i, sched_group_mask(group))) {
4487                                 first_idle_cpu = 1;
4488                                 balance_cpu = i;
4489                         }
4490
4491                         load = target_load(i, load_idx);
4492                 } else {
4493                         load = source_load(i, load_idx);
4494                         if (load > max_cpu_load)
4495                                 max_cpu_load = load;
4496                         if (min_cpu_load > load)
4497                                 min_cpu_load = load;
4498
4499                         if (nr_running > max_nr_running)
4500                                 max_nr_running = nr_running;
4501                         if (min_nr_running > nr_running)
4502                                 min_nr_running = nr_running;
4503                 }
4504
4505                 sgs->group_load += load;
4506                 sgs->sum_nr_running += nr_running;
4507                 sgs->sum_weighted_load += weighted_cpuload(i);
4508                 if (idle_cpu(i))
4509                         sgs->idle_cpus++;
4510         }
4511
4512         /*
4513          * First idle cpu or the first cpu(busiest) in this sched group
4514          * is eligible for doing load balancing at this and above
4515          * domains. In the newly idle case, we will allow all the cpu's
4516          * to do the newly idle load balance.
4517          */
4518         if (local_group) {
4519                 if (env->idle != CPU_NEWLY_IDLE) {
4520                         if (balance_cpu != env->dst_cpu) {
4521                                 *balance = 0;
4522                                 return;
4523                         }
4524                         update_group_power(env->sd, env->dst_cpu);
4525                 } else if (time_after_eq(jiffies, group->sgp->next_update))
4526                         update_group_power(env->sd, env->dst_cpu);
4527         }
4528
4529         /* Adjust by relative CPU power of the group */
4530         sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / group->sgp->power;
4531
4532         /*
4533          * Consider the group unbalanced when the imbalance is larger
4534          * than the average weight of a task.
4535          *
4536          * APZ: with cgroup the avg task weight can vary wildly and
4537          *      might not be a suitable number - should we keep a
4538          *      normalized nr_running number somewhere that negates
4539          *      the hierarchy?
4540          */
4541         if (sgs->sum_nr_running)
4542                 avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
4543
4544         if ((max_cpu_load - min_cpu_load) >= avg_load_per_task &&
4545             (max_nr_running - min_nr_running) > 1)
4546                 sgs->group_imb = 1;
4547
4548         sgs->group_capacity = DIV_ROUND_CLOSEST(group->sgp->power,
4549                                                 SCHED_POWER_SCALE);
4550         if (!sgs->group_capacity)
4551                 sgs->group_capacity = fix_small_capacity(env->sd, group);
4552         sgs->group_weight = group->group_weight;
4553
4554         if (sgs->group_capacity > sgs->sum_nr_running)
4555                 sgs->group_has_capacity = 1;
4556 }
4557
4558 /**
4559  * update_sd_pick_busiest - return 1 on busiest group
4560  * @env: The load balancing environment.
4561  * @sds: sched_domain statistics
4562  * @sg: sched_group candidate to be checked for being the busiest
4563  * @sgs: sched_group statistics
4564  *
4565  * Determine if @sg is a busier group than the previously selected
4566  * busiest group.
4567  */
4568 static bool update_sd_pick_busiest(struct lb_env *env,
4569                                    struct sd_lb_stats *sds,
4570                                    struct sched_group *sg,
4571                                    struct sg_lb_stats *sgs)
4572 {
4573         if (sgs->avg_load <= sds->max_load)
4574                 return false;
4575
4576         if (sgs->sum_nr_running > sgs->group_capacity)
4577                 return true;
4578
4579         if (sgs->group_imb)
4580                 return true;
4581
4582         /*
4583          * ASYM_PACKING needs to move all the work to the lowest
4584          * numbered CPUs in the group, therefore mark all groups
4585          * higher than ourself as busy.
4586          */
4587         if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
4588             env->dst_cpu < group_first_cpu(sg)) {
4589                 if (!sds->busiest)
4590                         return true;
4591
4592                 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
4593                         return true;
4594         }
4595
4596         return false;
4597 }
4598
4599 /**
4600  * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
4601  * @env: The load balancing environment.
4602  * @balance: Should we balance.
4603  * @sds: variable to hold the statistics for this sched_domain.
4604  */
4605 static inline void update_sd_lb_stats(struct lb_env *env,
4606                                         int *balance, struct sd_lb_stats *sds)
4607 {
4608         struct sched_domain *child = env->sd->child;
4609         struct sched_group *sg = env->sd->groups;
4610         struct sg_lb_stats sgs;
4611         int load_idx, prefer_sibling = 0;
4612
4613         if (child && child->flags & SD_PREFER_SIBLING)
4614                 prefer_sibling = 1;
4615
4616         load_idx = get_sd_load_idx(env->sd, env->idle);
4617
4618         do {
4619                 int local_group;
4620
4621                 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
4622                 memset(&sgs, 0, sizeof(sgs));
4623                 update_sg_lb_stats(env, sg, load_idx, local_group, balance, &sgs);
4624
4625                 if (local_group && !(*balance))
4626                         return;
4627
4628                 sds->total_load += sgs.group_load;
4629                 sds->total_pwr += sg->sgp->power;
4630
4631                 /*
4632                  * In case the child domain prefers tasks go to siblings
4633                  * first, lower the sg capacity to one so that we'll try
4634                  * and move all the excess tasks away. We lower the capacity
4635                  * of a group only if the local group has the capacity to fit
4636                  * these excess tasks, i.e. nr_running < group_capacity. The
4637                  * extra check prevents the case where you always pull from the
4638                  * heaviest group when it is already under-utilized (possible
4639                  * with a large weight task outweighs the tasks on the system).
4640                  */
4641                 if (prefer_sibling && !local_group && sds->this_has_capacity)
4642                         sgs.group_capacity = min(sgs.group_capacity, 1UL);
4643
4644                 if (local_group) {
4645                         sds->this_load = sgs.avg_load;
4646                         sds->this = sg;
4647                         sds->this_nr_running = sgs.sum_nr_running;
4648                         sds->this_load_per_task = sgs.sum_weighted_load;
4649                         sds->this_has_capacity = sgs.group_has_capacity;
4650                         sds->this_idle_cpus = sgs.idle_cpus;
4651                 } else if (update_sd_pick_busiest(env, sds, sg, &sgs)) {
4652                         sds->max_load = sgs.avg_load;
4653                         sds->busiest = sg;
4654                         sds->busiest_nr_running = sgs.sum_nr_running;
4655                         sds->busiest_idle_cpus = sgs.idle_cpus;
4656                         sds->busiest_group_capacity = sgs.group_capacity;
4657                         sds->busiest_load_per_task = sgs.sum_weighted_load;
4658                         sds->busiest_has_capacity = sgs.group_has_capacity;
4659                         sds->busiest_group_weight = sgs.group_weight;
4660                         sds->group_imb = sgs.group_imb;
4661                 }
4662
4663                 sg = sg->next;
4664         } while (sg != env->sd->groups);
4665 }
4666
4667 /**
4668  * check_asym_packing - Check to see if the group is packed into the
4669  *                      sched doman.
4670  *
4671  * This is primarily intended to used at the sibling level.  Some
4672  * cores like POWER7 prefer to use lower numbered SMT threads.  In the
4673  * case of POWER7, it can move to lower SMT modes only when higher
4674  * threads are idle.  When in lower SMT modes, the threads will
4675  * perform better since they share less core resources.  Hence when we
4676  * have idle threads, we want them to be the higher ones.
4677  *
4678  * This packing function is run on idle threads.  It checks to see if
4679  * the busiest CPU in this domain (core in the P7 case) has a higher
4680  * CPU number than the packing function is being run on.  Here we are
4681  * assuming lower CPU number will be equivalent to lower a SMT thread
4682  * number.
4683  *
4684  * Returns 1 when packing is required and a task should be moved to
4685  * this CPU.  The amount of the imbalance is returned in *imbalance.
4686  *
4687  * @env: The load balancing environment.
4688  * @sds: Statistics of the sched_domain which is to be packed
4689  */
4690 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
4691 {
4692         int busiest_cpu;
4693
4694         if (!(env->sd->flags & SD_ASYM_PACKING))
4695                 return 0;
4696
4697         if (!sds->busiest)
4698                 return 0;
4699
4700         busiest_cpu = group_first_cpu(sds->busiest);
4701         if (env->dst_cpu > busiest_cpu)
4702                 return 0;
4703
4704         env->imbalance = DIV_ROUND_CLOSEST(
4705                 sds->max_load * sds->busiest->sgp->power, SCHED_POWER_SCALE);
4706
4707         return 1;
4708 }
4709
4710 /**
4711  * fix_small_imbalance - Calculate the minor imbalance that exists
4712  *                      amongst the groups of a sched_domain, during
4713  *                      load balancing.
4714  * @env: The load balancing environment.
4715  * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
4716  */
4717 static inline
4718 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
4719 {
4720         unsigned long tmp, pwr_now = 0, pwr_move = 0;
4721         unsigned int imbn = 2;
4722         unsigned long scaled_busy_load_per_task;
4723
4724         if (sds->this_nr_running) {
4725                 sds->this_load_per_task /= sds->this_nr_running;
4726                 if (sds->busiest_load_per_task >
4727                                 sds->this_load_per_task)
4728                         imbn = 1;
4729         } else {
4730                 sds->this_load_per_task =
4731                         cpu_avg_load_per_task(env->dst_cpu);
4732         }
4733
4734         scaled_busy_load_per_task = sds->busiest_load_per_task
4735                                          * SCHED_POWER_SCALE;
4736         scaled_busy_load_per_task /= sds->busiest->sgp->power;
4737
4738         if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
4739                         (scaled_busy_load_per_task * imbn)) {
4740                 env->imbalance = sds->busiest_load_per_task;
4741                 return;
4742         }
4743
4744         /*
4745          * OK, we don't have enough imbalance to justify moving tasks,
4746          * however we may be able to increase total CPU power used by
4747          * moving them.
4748          */
4749
4750         pwr_now += sds->busiest->sgp->power *
4751                         min(sds->busiest_load_per_task, sds->max_load);
4752         pwr_now += sds->this->sgp->power *
4753                         min(sds->this_load_per_task, sds->this_load);
4754         pwr_now /= SCHED_POWER_SCALE;
4755
4756         /* Amount of load we'd subtract */
4757         tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
4758                 sds->busiest->sgp->power;
4759         if (sds->max_load > tmp)
4760                 pwr_move += sds->busiest->sgp->power *
4761                         min(sds->busiest_load_per_task, sds->max_load - tmp);
4762
4763         /* Amount of load we'd add */
4764         if (sds->max_load * sds->busiest->sgp->power <
4765                 sds->busiest_load_per_task * SCHED_POWER_SCALE)
4766                 tmp = (sds->max_load * sds->busiest->sgp->power) /
4767                         sds->this->sgp->power;
4768         else
4769                 tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
4770                         sds->this->sgp->power;
4771         pwr_move += sds->this->sgp->power *
4772                         min(sds->this_load_per_task, sds->this_load + tmp);
4773         pwr_move /= SCHED_POWER_SCALE;
4774
4775         /* Move if we gain throughput */
4776         if (pwr_move > pwr_now)
4777                 env->imbalance = sds->busiest_load_per_task;
4778 }
4779
4780 /**
4781  * calculate_imbalance - Calculate the amount of imbalance present within the
4782  *                       groups of a given sched_domain during load balance.
4783  * @env: load balance environment
4784  * @sds: statistics of the sched_domain whose imbalance is to be calculated.
4785  */
4786 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
4787 {
4788         unsigned long max_pull, load_above_capacity = ~0UL;
4789
4790         sds->busiest_load_per_task /= sds->busiest_nr_running;
4791         if (sds->group_imb) {
4792                 sds->busiest_load_per_task =
4793                         min(sds->busiest_load_per_task, sds->avg_load);
4794         }
4795
4796         /*
4797          * In the presence of smp nice balancing, certain scenarios can have
4798          * max load less than avg load(as we skip the groups at or below
4799          * its cpu_power, while calculating max_load..)
4800          */
4801         if (sds->max_load < sds->avg_load) {
4802                 env->imbalance = 0;
4803                 return fix_small_imbalance(env, sds);
4804         }
4805
4806         if (!sds->group_imb) {
4807                 /*
4808                  * Don't want to pull so many tasks that a group would go idle.
4809                  */
4810                 load_above_capacity = (sds->busiest_nr_running -
4811                                                 sds->busiest_group_capacity);
4812
4813                 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
4814
4815                 load_above_capacity /= sds->busiest->sgp->power;
4816         }
4817
4818         /*
4819          * We're trying to get all the cpus to the average_load, so we don't
4820          * want to push ourselves above the average load, nor do we wish to
4821          * reduce the max loaded cpu below the average load. At the same time,
4822          * we also don't want to reduce the group load below the group capacity
4823          * (so that we can implement power-savings policies etc). Thus we look
4824          * for the minimum possible imbalance.
4825          * Be careful of negative numbers as they'll appear as very large values
4826          * with unsigned longs.
4827          */
4828         max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
4829
4830         /* How much load to actually move to equalise the imbalance */
4831         env->imbalance = min(max_pull * sds->busiest->sgp->power,
4832                 (sds->avg_load - sds->this_load) * sds->this->sgp->power)
4833                         / SCHED_POWER_SCALE;
4834
4835         /*
4836          * if *imbalance is less than the average load per runnable task
4837          * there is no guarantee that any tasks will be moved so we'll have
4838          * a think about bumping its value to force at least one task to be
4839          * moved
4840          */
4841         if (env->imbalance < sds->busiest_load_per_task)
4842                 return fix_small_imbalance(env, sds);
4843
4844 }
4845
4846 /******* find_busiest_group() helpers end here *********************/
4847
4848 /**
4849  * find_busiest_group - Returns the busiest group within the sched_domain
4850  * if there is an imbalance. If there isn't an imbalance, and
4851  * the user has opted for power-savings, it returns a group whose
4852  * CPUs can be put to idle by rebalancing those tasks elsewhere, if
4853  * such a group exists.
4854  *
4855  * Also calculates the amount of weighted load which should be moved
4856  * to restore balance.
4857  *
4858  * @env: The load balancing environment.
4859  * @balance: Pointer to a variable indicating if this_cpu
4860  *      is the appropriate cpu to perform load balancing at this_level.
4861  *
4862  * Returns:     - the busiest group if imbalance exists.
4863  *              - If no imbalance and user has opted for power-savings balance,
4864  *                 return the least loaded group whose CPUs can be
4865  *                 put to idle by rebalancing its tasks onto our group.
4866  */
4867 static struct sched_group *
4868 find_busiest_group(struct lb_env *env, int *balance)
4869 {
4870         struct sd_lb_stats sds;
4871
4872         memset(&sds, 0, sizeof(sds));
4873
4874         /*
4875          * Compute the various statistics relavent for load balancing at
4876          * this level.
4877          */
4878         update_sd_lb_stats(env, balance, &sds);
4879
4880         /*
4881          * this_cpu is not the appropriate cpu to perform load balancing at
4882          * this level.
4883          */
4884         if (!(*balance))
4885                 goto ret;
4886
4887         if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
4888             check_asym_packing(env, &sds))
4889                 return sds.busiest;
4890
4891         /* There is no busy sibling group to pull tasks from */
4892         if (!sds.busiest || sds.busiest_nr_running == 0)
4893                 goto out_balanced;
4894
4895         sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
4896
4897         /*
4898          * If the busiest group is imbalanced the below checks don't
4899          * work because they assumes all things are equal, which typically
4900          * isn't true due to cpus_allowed constraints and the like.
4901          */
4902         if (sds.group_imb)
4903                 goto force_balance;
4904
4905         /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
4906         if (env->idle == CPU_NEWLY_IDLE && sds.this_has_capacity &&
4907                         !sds.busiest_has_capacity)
4908                 goto force_balance;
4909
4910         /*
4911          * If the local group is more busy than the selected busiest group
4912          * don't try and pull any tasks.
4913          */
4914         if (sds.this_load >= sds.max_load)
4915                 goto out_balanced;
4916
4917         /*
4918          * Don't pull any tasks if this group is already above the domain
4919          * average load.
4920          */
4921         if (sds.this_load >= sds.avg_load)
4922                 goto out_balanced;
4923
4924         if (env->idle == CPU_IDLE) {
4925                 /*
4926                  * This cpu is idle. If the busiest group load doesn't
4927                  * have more tasks than the number of available cpu's and
4928                  * there is no imbalance between this and busiest group
4929                  * wrt to idle cpu's, it is balanced.
4930                  */
4931                 if ((sds.this_idle_cpus <= sds.busiest_idle_cpus + 1) &&
4932                     sds.busiest_nr_running <= sds.busiest_group_weight)
4933                         goto out_balanced;
4934         } else {
4935                 /*
4936                  * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
4937                  * imbalance_pct to be conservative.
4938                  */
4939                 if (100 * sds.max_load <= env->sd->imbalance_pct * sds.this_load)
4940                         goto out_balanced;
4941         }
4942
4943 force_balance:
4944         /* Looks like there is an imbalance. Compute it */
4945         calculate_imbalance(env, &sds);
4946         return sds.busiest;
4947
4948 out_balanced:
4949 ret:
4950         env->imbalance = 0;
4951         return NULL;
4952 }
4953
4954 /*
4955  * find_busiest_queue - find the busiest runqueue among the cpus in group.
4956  */
4957 static struct rq *find_busiest_queue(struct lb_env *env,
4958                                      struct sched_group *group)
4959 {
4960         struct rq *busiest = NULL, *rq;
4961         unsigned long max_load = 0;
4962         int i;
4963
4964         for_each_cpu(i, sched_group_cpus(group)) {
4965                 unsigned long power = power_of(i);
4966                 unsigned long capacity = DIV_ROUND_CLOSEST(power,
4967                                                            SCHED_POWER_SCALE);
4968                 unsigned long wl;
4969
4970                 if (!capacity)
4971                         capacity = fix_small_capacity(env->sd, group);
4972
4973                 if (!cpumask_test_cpu(i, env->cpus))
4974                         continue;
4975
4976                 rq = cpu_rq(i);
4977                 wl = weighted_cpuload(i);
4978
4979                 /*
4980                  * When comparing with imbalance, use weighted_cpuload()
4981                  * which is not scaled with the cpu power.
4982                  */
4983                 if (capacity && rq->nr_running == 1 && wl > env->imbalance)
4984                         continue;
4985
4986                 /*
4987                  * For the load comparisons with the other cpu's, consider
4988                  * the weighted_cpuload() scaled with the cpu power, so that
4989                  * the load can be moved away from the cpu that is potentially
4990                  * running at a lower capacity.
4991                  */
4992                 wl = (wl * SCHED_POWER_SCALE) / power;
4993
4994                 if (wl > max_load) {
4995                         max_load = wl;
4996                         busiest = rq;
4997                 }
4998         }
4999
5000         return busiest;
5001 }
5002
5003 /*
5004  * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
5005  * so long as it is large enough.
5006  */
5007 #define MAX_PINNED_INTERVAL     512
5008
5009 /* Working cpumask for load_balance and load_balance_newidle. */
5010 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
5011
5012 static int need_active_balance(struct lb_env *env)
5013 {
5014         struct sched_domain *sd = env->sd;
5015
5016         if (env->idle == CPU_NEWLY_IDLE) {
5017
5018                 /*
5019                  * ASYM_PACKING needs to force migrate tasks from busy but
5020                  * higher numbered CPUs in order to pack all tasks in the
5021                  * lowest numbered CPUs.
5022                  */
5023                 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
5024                         return 1;
5025         }
5026
5027         return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
5028 }
5029
5030 static int active_load_balance_cpu_stop(void *data);
5031
5032 /*
5033  * Check this_cpu to ensure it is balanced within domain. Attempt to move
5034  * tasks if there is an imbalance.
5035  */
5036 static int load_balance(int this_cpu, struct rq *this_rq,
5037                         struct sched_domain *sd, enum cpu_idle_type idle,
5038                         int *balance)
5039 {
5040         int ld_moved, cur_ld_moved, active_balance = 0;
5041         struct sched_group *group;
5042         struct rq *busiest;
5043         unsigned long flags;
5044         struct cpumask *cpus = __get_cpu_var(load_balance_mask);
5045
5046         struct lb_env env = {
5047                 .sd             = sd,
5048                 .dst_cpu        = this_cpu,
5049                 .dst_rq         = this_rq,
5050                 .dst_grpmask    = sched_group_cpus(sd->groups),
5051                 .idle           = idle,
5052                 .loop_break     = sched_nr_migrate_break,
5053                 .cpus           = cpus,
5054         };
5055
5056         /*
5057          * For NEWLY_IDLE load_balancing, we don't need to consider
5058          * other cpus in our group
5059          */
5060         if (idle == CPU_NEWLY_IDLE)
5061                 env.dst_grpmask = NULL;
5062
5063         cpumask_copy(cpus, cpu_active_mask);
5064
5065         schedstat_inc(sd, lb_count[idle]);
5066
5067 redo:
5068         group = find_busiest_group(&env, balance);
5069
5070         if (*balance == 0)
5071                 goto out_balanced;
5072
5073         if (!group) {
5074                 schedstat_inc(sd, lb_nobusyg[idle]);
5075                 goto out_balanced;
5076         }
5077
5078         busiest = find_busiest_queue(&env, group);
5079         if (!busiest) {
5080                 schedstat_inc(sd, lb_nobusyq[idle]);
5081                 goto out_balanced;
5082         }
5083
5084         BUG_ON(busiest == env.dst_rq);
5085
5086         schedstat_add(sd, lb_imbalance[idle], env.imbalance);
5087
5088         ld_moved = 0;
5089         if (busiest->nr_running > 1) {
5090                 /*
5091                  * Attempt to move tasks. If find_busiest_group has found
5092                  * an imbalance but busiest->nr_running <= 1, the group is
5093                  * still unbalanced. ld_moved simply stays zero, so it is
5094                  * correctly treated as an imbalance.
5095                  */
5096                 env.flags |= LBF_ALL_PINNED;
5097                 env.src_cpu   = busiest->cpu;
5098                 env.src_rq    = busiest;
5099                 env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
5100
5101                 update_h_load(env.src_cpu);
5102 more_balance:
5103                 local_irq_save(flags);
5104                 double_rq_lock(env.dst_rq, busiest);
5105
5106                 /*
5107                  * cur_ld_moved - load moved in current iteration
5108                  * ld_moved     - cumulative load moved across iterations
5109                  */
5110                 cur_ld_moved = move_tasks(&env);
5111                 ld_moved += cur_ld_moved;
5112                 double_rq_unlock(env.dst_rq, busiest);
5113                 local_irq_restore(flags);
5114
5115                 /*
5116                  * some other cpu did the load balance for us.
5117                  */
5118                 if (cur_ld_moved && env.dst_cpu != smp_processor_id())
5119                         resched_cpu(env.dst_cpu);
5120
5121                 if (env.flags & LBF_NEED_BREAK) {
5122                         env.flags &= ~LBF_NEED_BREAK;
5123                         goto more_balance;
5124                 }
5125
5126                 /*
5127                  * Revisit (affine) tasks on src_cpu that couldn't be moved to
5128                  * us and move them to an alternate dst_cpu in our sched_group
5129                  * where they can run. The upper limit on how many times we
5130                  * iterate on same src_cpu is dependent on number of cpus in our
5131                  * sched_group.
5132                  *
5133                  * This changes load balance semantics a bit on who can move
5134                  * load to a given_cpu. In addition to the given_cpu itself
5135                  * (or a ilb_cpu acting on its behalf where given_cpu is
5136                  * nohz-idle), we now have balance_cpu in a position to move
5137                  * load to given_cpu. In rare situations, this may cause
5138                  * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
5139                  * _independently_ and at _same_ time to move some load to
5140                  * given_cpu) causing exceess load to be moved to given_cpu.
5141                  * This however should not happen so much in practice and
5142                  * moreover subsequent load balance cycles should correct the
5143                  * excess load moved.
5144                  */
5145                 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) {
5146
5147                         env.dst_rq       = cpu_rq(env.new_dst_cpu);
5148                         env.dst_cpu      = env.new_dst_cpu;
5149                         env.flags       &= ~LBF_SOME_PINNED;
5150                         env.loop         = 0;
5151                         env.loop_break   = sched_nr_migrate_break;
5152
5153                         /* Prevent to re-select dst_cpu via env's cpus */
5154                         cpumask_clear_cpu(env.dst_cpu, env.cpus);
5155
5156                         /*
5157                          * Go back to "more_balance" rather than "redo" since we
5158                          * need to continue with same src_cpu.
5159                          */
5160                         goto more_balance;
5161                 }
5162
5163                 /* All tasks on this runqueue were pinned by CPU affinity */
5164                 if (unlikely(env.flags & LBF_ALL_PINNED)) {
5165                         cpumask_clear_cpu(cpu_of(busiest), cpus);
5166                         if (!cpumask_empty(cpus)) {
5167                                 env.loop = 0;
5168                                 env.loop_break = sched_nr_migrate_break;
5169                                 goto redo;
5170                         }
5171                         goto out_balanced;
5172                 }
5173         }
5174
5175         if (!ld_moved) {
5176                 schedstat_inc(sd, lb_failed[idle]);
5177                 /*
5178                  * Increment the failure counter only on periodic balance.
5179                  * We do not want newidle balance, which can be very
5180                  * frequent, pollute the failure counter causing
5181                  * excessive cache_hot migrations and active balances.
5182                  */
5183                 if (idle != CPU_NEWLY_IDLE)
5184                         sd->nr_balance_failed++;
5185
5186                 if (need_active_balance(&env)) {
5187                         raw_spin_lock_irqsave(&busiest->lock, flags);
5188
5189                         /* don't kick the active_load_balance_cpu_stop,
5190                          * if the curr task on busiest cpu can't be
5191                          * moved to this_cpu
5192                          */
5193                         if (!cpumask_test_cpu(this_cpu,
5194                                         tsk_cpus_allowed(busiest->curr))) {
5195                                 raw_spin_unlock_irqrestore(&busiest->lock,
5196                                                             flags);
5197                                 env.flags |= LBF_ALL_PINNED;
5198                                 goto out_one_pinned;
5199                         }
5200
5201                         /*
5202                          * ->active_balance synchronizes accesses to
5203                          * ->active_balance_work.  Once set, it's cleared
5204                          * only after active load balance is finished.
5205                          */
5206                         if (!busiest->active_balance) {
5207                                 busiest->active_balance = 1;
5208                                 busiest->push_cpu = this_cpu;
5209                                 active_balance = 1;
5210                         }
5211                         raw_spin_unlock_irqrestore(&busiest->lock, flags);
5212
5213                         if (active_balance) {
5214                                 stop_one_cpu_nowait(cpu_of(busiest),
5215                                         active_load_balance_cpu_stop, busiest,
5216                                         &busiest->active_balance_work);
5217                         }
5218
5219                         /*
5220                          * We've kicked active balancing, reset the failure
5221                          * counter.
5222                          */
5223                         sd->nr_balance_failed = sd->cache_nice_tries+1;
5224                 }
5225         } else
5226                 sd->nr_balance_failed = 0;
5227
5228         if (likely(!active_balance)) {
5229                 /* We were unbalanced, so reset the balancing interval */
5230                 sd->balance_interval = sd->min_interval;
5231         } else {
5232                 /*
5233                  * If we've begun active balancing, start to back off. This
5234                  * case may not be covered by the all_pinned logic if there
5235                  * is only 1 task on the busy runqueue (because we don't call
5236                  * move_tasks).
5237                  */
5238                 if (sd->balance_interval < sd->max_interval)
5239                         sd->balance_interval *= 2;
5240         }
5241
5242         goto out;
5243
5244 out_balanced:
5245         schedstat_inc(sd, lb_balanced[idle]);
5246
5247         sd->nr_balance_failed = 0;
5248
5249 out_one_pinned:
5250         /* tune up the balancing interval */
5251         if (((env.flags & LBF_ALL_PINNED) &&
5252                         sd->balance_interval < MAX_PINNED_INTERVAL) ||
5253                         (sd->balance_interval < sd->max_interval))
5254                 sd->balance_interval *= 2;
5255
5256         ld_moved = 0;
5257 out:
5258         return ld_moved;
5259 }
5260
5261 /*
5262  * idle_balance is called by schedule() if this_cpu is about to become
5263  * idle. Attempts to pull tasks from other CPUs.
5264  */
5265 void idle_balance(int this_cpu, struct rq *this_rq)
5266 {
5267         struct sched_domain *sd;
5268         int pulled_task = 0;
5269         unsigned long next_balance = jiffies + HZ;
5270
5271         this_rq->idle_stamp = this_rq->clock;
5272
5273         if (this_rq->avg_idle < sysctl_sched_migration_cost)
5274                 return;
5275
5276         /*
5277          * Drop the rq->lock, but keep IRQ/preempt disabled.
5278          */
5279         raw_spin_unlock(&this_rq->lock);
5280
5281         update_blocked_averages(this_cpu);
5282         rcu_read_lock();
5283         for_each_domain(this_cpu, sd) {
5284                 unsigned long interval;
5285                 int balance = 1;
5286
5287                 if (!(sd->flags & SD_LOAD_BALANCE))
5288                         continue;
5289
5290                 if (sd->flags & SD_BALANCE_NEWIDLE) {
5291                         /* If we've pulled tasks over stop searching: */
5292                         pulled_task = load_balance(this_cpu, this_rq,
5293                                                    sd, CPU_NEWLY_IDLE, &balance);
5294                 }
5295
5296                 interval = msecs_to_jiffies(sd->balance_interval);
5297                 if (time_after(next_balance, sd->last_balance + interval))
5298                         next_balance = sd->last_balance + interval;
5299                 if (pulled_task) {
5300                         this_rq->idle_stamp = 0;
5301                         break;
5302                 }
5303         }
5304         rcu_read_unlock();
5305
5306         raw_spin_lock(&this_rq->lock);
5307
5308         if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
5309                 /*
5310                  * We are going idle. next_balance may be set based on
5311                  * a busy processor. So reset next_balance.
5312                  */
5313                 this_rq->next_balance = next_balance;
5314         }
5315 }
5316
5317 /*
5318  * active_load_balance_cpu_stop is run by cpu stopper. It pushes
5319  * running tasks off the busiest CPU onto idle CPUs. It requires at
5320  * least 1 task to be running on each physical CPU where possible, and
5321  * avoids physical / logical imbalances.
5322  */
5323 static int active_load_balance_cpu_stop(void *data)
5324 {
5325         struct rq *busiest_rq = data;
5326         int busiest_cpu = cpu_of(busiest_rq);
5327         int target_cpu = busiest_rq->push_cpu;
5328         struct rq *target_rq = cpu_rq(target_cpu);
5329         struct sched_domain *sd;
5330
5331         raw_spin_lock_irq(&busiest_rq->lock);
5332
5333         /* make sure the requested cpu hasn't gone down in the meantime */
5334         if (unlikely(busiest_cpu != smp_processor_id() ||
5335                      !busiest_rq->active_balance))
5336                 goto out_unlock;
5337
5338         /* Is there any task to move? */
5339         if (busiest_rq->nr_running <= 1)
5340                 goto out_unlock;
5341
5342         /*
5343          * This condition is "impossible", if it occurs
5344          * we need to fix it. Originally reported by
5345          * Bjorn Helgaas on a 128-cpu setup.
5346          */
5347         BUG_ON(busiest_rq == target_rq);
5348
5349         /* move a task from busiest_rq to target_rq */
5350         double_lock_balance(busiest_rq, target_rq);
5351
5352         /* Search for an sd spanning us and the target CPU. */
5353         rcu_read_lock();
5354         for_each_domain(target_cpu, sd) {
5355                 if ((sd->flags & SD_LOAD_BALANCE) &&
5356                     cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
5357                                 break;
5358         }
5359
5360         if (likely(sd)) {
5361                 struct lb_env env = {
5362                         .sd             = sd,
5363                         .dst_cpu        = target_cpu,
5364                         .dst_rq         = target_rq,
5365                         .src_cpu        = busiest_rq->cpu,
5366                         .src_rq         = busiest_rq,
5367                         .idle           = CPU_IDLE,
5368                 };
5369
5370                 schedstat_inc(sd, alb_count);
5371
5372                 if (move_one_task(&env))
5373                         schedstat_inc(sd, alb_pushed);
5374                 else
5375                         schedstat_inc(sd, alb_failed);
5376         }
5377         rcu_read_unlock();
5378         double_unlock_balance(busiest_rq, target_rq);
5379 out_unlock:
5380         busiest_rq->active_balance = 0;
5381         raw_spin_unlock_irq(&busiest_rq->lock);
5382         return 0;
5383 }
5384
5385 #ifdef CONFIG_NO_HZ_COMMON
5386 /*
5387  * idle load balancing details
5388  * - When one of the busy CPUs notice that there may be an idle rebalancing
5389  *   needed, they will kick the idle load balancer, which then does idle
5390  *   load balancing for all the idle CPUs.
5391  */
5392 static struct {
5393         cpumask_var_t idle_cpus_mask;
5394         atomic_t nr_cpus;
5395         unsigned long next_balance;     /* in jiffy units */
5396 } nohz ____cacheline_aligned;
5397
5398 static inline int find_new_ilb(int call_cpu)
5399 {
5400         int ilb = cpumask_first(nohz.idle_cpus_mask);
5401
5402         if (ilb < nr_cpu_ids && idle_cpu(ilb))
5403                 return ilb;
5404
5405         return nr_cpu_ids;
5406 }
5407
5408 /*
5409  * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
5410  * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
5411  * CPU (if there is one).
5412  */
5413 static void nohz_balancer_kick(int cpu)
5414 {
5415         int ilb_cpu;
5416
5417         nohz.next_balance++;
5418
5419         ilb_cpu = find_new_ilb(cpu);
5420
5421         if (ilb_cpu >= nr_cpu_ids)
5422                 return;
5423
5424         if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
5425                 return;
5426         /*
5427          * Use smp_send_reschedule() instead of resched_cpu().
5428          * This way we generate a sched IPI on the target cpu which
5429          * is idle. And the softirq performing nohz idle load balance
5430          * will be run before returning from the IPI.
5431          */
5432         smp_send_reschedule(ilb_cpu);
5433         return;
5434 }
5435
5436 static inline void nohz_balance_exit_idle(int cpu)
5437 {
5438         if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
5439                 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
5440                 atomic_dec(&nohz.nr_cpus);
5441                 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
5442         }
5443 }
5444
5445 static inline void set_cpu_sd_state_busy(void)
5446 {
5447         struct sched_domain *sd;
5448         int cpu = smp_processor_id();
5449
5450         rcu_read_lock();
5451         sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd);
5452
5453         if (!sd || !sd->nohz_idle)
5454                 goto unlock;
5455         sd->nohz_idle = 0;
5456
5457         for (; sd; sd = sd->parent)
5458                 atomic_inc(&sd->groups->sgp->nr_busy_cpus);
5459 unlock:
5460         rcu_read_unlock();
5461 }
5462
5463 void set_cpu_sd_state_idle(void)
5464 {
5465         struct sched_domain *sd;
5466         int cpu = smp_processor_id();
5467
5468         rcu_read_lock();
5469         sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd);
5470
5471         if (!sd || sd->nohz_idle)
5472                 goto unlock;
5473         sd->nohz_idle = 1;
5474
5475         for (; sd; sd = sd->parent)
5476                 atomic_dec(&sd->groups->sgp->nr_busy_cpus);
5477 unlock:
5478         rcu_read_unlock();
5479 }
5480
5481 /*
5482  * This routine will record that the cpu is going idle with tick stopped.
5483  * This info will be used in performing idle load balancing in the future.
5484  */
5485 void nohz_balance_enter_idle(int cpu)
5486 {
5487         /*
5488          * If this cpu is going down, then nothing needs to be done.
5489          */
5490         if (!cpu_active(cpu))
5491                 return;
5492
5493         if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
5494                 return;
5495
5496         cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
5497         atomic_inc(&nohz.nr_cpus);
5498         set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
5499 }
5500
5501 static int __cpuinit sched_ilb_notifier(struct notifier_block *nfb,
5502                                         unsigned long action, void *hcpu)
5503 {
5504         switch (action & ~CPU_TASKS_FROZEN) {
5505         case CPU_DYING:
5506                 nohz_balance_exit_idle(smp_processor_id());
5507                 return NOTIFY_OK;
5508         default:
5509                 return NOTIFY_DONE;
5510         }
5511 }
5512 #endif
5513
5514 static DEFINE_SPINLOCK(balancing);
5515
5516 /*
5517  * Scale the max load_balance interval with the number of CPUs in the system.
5518  * This trades load-balance latency on larger machines for less cross talk.
5519  */
5520 void update_max_interval(void)
5521 {
5522         max_load_balance_interval = HZ*num_online_cpus()/10;
5523 }
5524
5525 /*
5526  * It checks each scheduling domain to see if it is due to be balanced,
5527  * and initiates a balancing operation if so.
5528  *
5529  * Balancing parameters are set up in init_sched_domains.
5530  */
5531 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
5532 {
5533         int balance = 1;
5534         struct rq *rq = cpu_rq(cpu);
5535         unsigned long interval;
5536         struct sched_domain *sd;
5537         /* Earliest time when we have to do rebalance again */
5538         unsigned long next_balance = jiffies + 60*HZ;
5539         int update_next_balance = 0;
5540         int need_serialize;
5541
5542         update_blocked_averages(cpu);
5543
5544         rcu_read_lock();
5545         for_each_domain(cpu, sd) {
5546                 if (!(sd->flags & SD_LOAD_BALANCE))
5547                         continue;
5548
5549                 interval = sd->balance_interval;
5550                 if (idle != CPU_IDLE)
5551                         interval *= sd->busy_factor;
5552
5553                 /* scale ms to jiffies */
5554                 interval = msecs_to_jiffies(interval);
5555                 interval = clamp(interval, 1UL, max_load_balance_interval);
5556
5557                 need_serialize = sd->flags & SD_SERIALIZE;
5558
5559                 if (need_serialize) {
5560                         if (!spin_trylock(&balancing))
5561                                 goto out;
5562                 }
5563
5564                 if (time_after_eq(jiffies, sd->last_balance + interval)) {
5565                         if (load_balance(cpu, rq, sd, idle, &balance)) {
5566                                 /*
5567                                  * The LBF_SOME_PINNED logic could have changed
5568                                  * env->dst_cpu, so we can't know our idle
5569                                  * state even if we migrated tasks. Update it.
5570                                  */
5571                                 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
5572                         }
5573                         sd->last_balance = jiffies;
5574                 }
5575                 if (need_serialize)
5576                         spin_unlock(&balancing);
5577 out:
5578                 if (time_after(next_balance, sd->last_balance + interval)) {
5579                         next_balance = sd->last_balance + interval;
5580                         update_next_balance = 1;
5581                 }
5582
5583                 /*
5584                  * Stop the load balance at this level. There is another
5585                  * CPU in our sched group which is doing load balancing more
5586                  * actively.
5587                  */
5588                 if (!balance)
5589                         break;
5590         }
5591         rcu_read_unlock();
5592
5593         /*
5594          * next_balance will be updated only when there is a need.
5595          * When the cpu is attached to null domain for ex, it will not be
5596          * updated.
5597          */
5598         if (likely(update_next_balance))
5599                 rq->next_balance = next_balance;
5600 }
5601
5602 #ifdef CONFIG_NO_HZ_COMMON
5603 /*
5604  * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
5605  * rebalancing for all the cpus for whom scheduler ticks are stopped.
5606  */
5607 static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
5608 {
5609         struct rq *this_rq = cpu_rq(this_cpu);
5610         struct rq *rq;
5611         int balance_cpu;
5612
5613         if (idle != CPU_IDLE ||
5614             !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
5615                 goto end;
5616
5617         for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
5618                 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
5619                         continue;
5620
5621                 /*
5622                  * If this cpu gets work to do, stop the load balancing
5623                  * work being done for other cpus. Next load
5624                  * balancing owner will pick it up.
5625                  */
5626                 if (need_resched())
5627                         break;
5628
5629                 rq = cpu_rq(balance_cpu);
5630
5631                 raw_spin_lock_irq(&rq->lock);
5632                 update_rq_clock(rq);
5633                 update_idle_cpu_load(rq);
5634                 raw_spin_unlock_irq(&rq->lock);
5635
5636                 rebalance_domains(balance_cpu, CPU_IDLE);
5637
5638                 if (time_after(this_rq->next_balance, rq->next_balance))
5639                         this_rq->next_balance = rq->next_balance;
5640         }
5641         nohz.next_balance = this_rq->next_balance;
5642 end:
5643         clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
5644 }
5645
5646 /*
5647  * Current heuristic for kicking the idle load balancer in the presence
5648  * of an idle cpu is the system.
5649  *   - This rq has more than one task.
5650  *   - At any scheduler domain level, this cpu's scheduler group has multiple
5651  *     busy cpu's exceeding the group's power.
5652  *   - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
5653  *     domain span are idle.
5654  */
5655 static inline int nohz_kick_needed(struct rq *rq, int cpu)
5656 {
5657         unsigned long now = jiffies;
5658         struct sched_domain *sd;
5659
5660         if (unlikely(idle_cpu(cpu)))
5661                 return 0;
5662
5663        /*
5664         * We may be recently in ticked or tickless idle mode. At the first
5665         * busy tick after returning from idle, we will update the busy stats.
5666         */
5667         set_cpu_sd_state_busy();
5668         nohz_balance_exit_idle(cpu);
5669
5670         /*
5671          * None are in tickless mode and hence no need for NOHZ idle load
5672          * balancing.
5673          */
5674         if (likely(!atomic_read(&nohz.nr_cpus)))
5675                 return 0;
5676
5677         if (time_before(now, nohz.next_balance))
5678                 return 0;
5679
5680         if (rq->nr_running >= 2)
5681                 goto need_kick;
5682
5683         rcu_read_lock();
5684         for_each_domain(cpu, sd) {
5685                 struct sched_group *sg = sd->groups;
5686                 struct sched_group_power *sgp = sg->sgp;
5687                 int nr_busy = atomic_read(&sgp->nr_busy_cpus);
5688
5689                 if (sd->flags & SD_SHARE_PKG_RESOURCES && nr_busy > 1)
5690                         goto need_kick_unlock;
5691
5692                 if (sd->flags & SD_ASYM_PACKING && nr_busy != sg->group_weight
5693                     && (cpumask_first_and(nohz.idle_cpus_mask,
5694                                           sched_domain_span(sd)) < cpu))
5695                         goto need_kick_unlock;
5696
5697                 if (!(sd->flags & (SD_SHARE_PKG_RESOURCES | SD_ASYM_PACKING)))
5698                         break;
5699         }
5700         rcu_read_unlock();
5701         return 0;
5702
5703 need_kick_unlock:
5704         rcu_read_unlock();
5705 need_kick:
5706         return 1;
5707 }
5708 #else
5709 static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
5710 #endif
5711
5712 /*
5713  * run_rebalance_domains is triggered when needed from the scheduler tick.
5714  * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
5715  */
5716 static void run_rebalance_domains(struct softirq_action *h)
5717 {
5718         int this_cpu = smp_processor_id();
5719         struct rq *this_rq = cpu_rq(this_cpu);
5720         enum cpu_idle_type idle = this_rq->idle_balance ?
5721                                                 CPU_IDLE : CPU_NOT_IDLE;
5722
5723         rebalance_domains(this_cpu, idle);
5724
5725         /*
5726          * If this cpu has a pending nohz_balance_kick, then do the
5727          * balancing on behalf of the other idle cpus whose ticks are
5728          * stopped.
5729          */
5730         nohz_idle_balance(this_cpu, idle);
5731 }
5732
5733 static inline int on_null_domain(int cpu)
5734 {
5735         return !rcu_dereference_sched(cpu_rq(cpu)->sd);
5736 }
5737
5738 /*
5739  * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
5740  */
5741 void trigger_load_balance(struct rq *rq, int cpu)
5742 {
5743         /* Don't need to rebalance while attached to NULL domain */
5744         if (time_after_eq(jiffies, rq->next_balance) &&
5745             likely(!on_null_domain(cpu)))
5746                 raise_softirq(SCHED_SOFTIRQ);
5747 #ifdef CONFIG_NO_HZ_COMMON
5748         if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
5749                 nohz_balancer_kick(cpu);
5750 #endif
5751 }
5752
5753 static void rq_online_fair(struct rq *rq)
5754 {
5755         update_sysctl();
5756 }
5757
5758 static void rq_offline_fair(struct rq *rq)
5759 {
5760         update_sysctl();
5761
5762         /* Ensure any throttled groups are reachable by pick_next_task */
5763         unthrottle_offline_cfs_rqs(rq);
5764 }
5765
5766 #endif /* CONFIG_SMP */
5767
5768 /*
5769  * scheduler tick hitting a task of our scheduling class:
5770  */
5771 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
5772 {
5773         struct cfs_rq *cfs_rq;
5774         struct sched_entity *se = &curr->se;
5775
5776         for_each_sched_entity(se) {
5777                 cfs_rq = cfs_rq_of(se);
5778                 entity_tick(cfs_rq, se, queued);
5779         }
5780
5781         if (sched_feat_numa(NUMA))
5782                 task_tick_numa(rq, curr);
5783
5784         update_rq_runnable_avg(rq, 1);
5785 }
5786
5787 /*
5788  * called on fork with the child task as argument from the parent's context
5789  *  - child not yet on the tasklist
5790  *  - preemption disabled
5791  */
5792 static void task_fork_fair(struct task_struct *p)
5793 {
5794         struct cfs_rq *cfs_rq;
5795         struct sched_entity *se = &p->se, *curr;
5796         int this_cpu = smp_processor_id();
5797         struct rq *rq = this_rq();
5798         unsigned long flags;
5799
5800         raw_spin_lock_irqsave(&rq->lock, flags);
5801
5802         update_rq_clock(rq);
5803
5804         cfs_rq = task_cfs_rq(current);
5805         curr = cfs_rq->curr;
5806
5807         /*
5808          * Not only the cpu but also the task_group of the parent might have
5809          * been changed after parent->se.parent,cfs_rq were copied to
5810          * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
5811          * of child point to valid ones.
5812          */
5813         rcu_read_lock();
5814         __set_task_cpu(p, this_cpu);
5815         rcu_read_unlock();
5816
5817         update_curr(cfs_rq);
5818
5819         if (curr)
5820                 se->vruntime = curr->vruntime;
5821         place_entity(cfs_rq, se, 1);
5822
5823         if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
5824                 /*
5825                  * Upon rescheduling, sched_class::put_prev_task() will place
5826                  * 'current' within the tree based on its new key value.
5827                  */
5828                 swap(curr->vruntime, se->vruntime);
5829                 resched_task(rq->curr);
5830         }
5831
5832         se->vruntime -= cfs_rq->min_vruntime;
5833
5834         raw_spin_unlock_irqrestore(&rq->lock, flags);
5835 }
5836
5837 /*
5838  * Priority of the task has changed. Check to see if we preempt
5839  * the current task.
5840  */
5841 static void
5842 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
5843 {
5844         if (!p->se.on_rq)
5845                 return;
5846
5847         /*
5848          * Reschedule if we are currently running on this runqueue and
5849          * our priority decreased, or if we are not currently running on
5850          * this runqueue and our priority is higher than the current's
5851          */
5852         if (rq->curr == p) {
5853                 if (p->prio > oldprio)
5854                         resched_task(rq->curr);
5855         } else
5856                 check_preempt_curr(rq, p, 0);
5857 }
5858
5859 static void switched_from_fair(struct rq *rq, struct task_struct *p)
5860 {
5861         struct sched_entity *se = &p->se;
5862         struct cfs_rq *cfs_rq = cfs_rq_of(se);
5863
5864         /*
5865          * Ensure the task's vruntime is normalized, so that when it's
5866          * switched back to the fair class the enqueue_entity(.flags=0) will
5867          * do the right thing.
5868          *
5869          * If it's on_rq, then the dequeue_entity(.flags=0) will already
5870          * have normalized the vruntime, if it's !on_rq, then only when
5871          * the task is sleeping will it still have non-normalized vruntime.
5872          */
5873         if (!p->on_rq && p->state != TASK_RUNNING) {
5874                 /*
5875                  * Fix up our vruntime so that the current sleep doesn't
5876                  * cause 'unlimited' sleep bonus.
5877                  */
5878                 place_entity(cfs_rq, se, 0);
5879                 se->vruntime -= cfs_rq->min_vruntime;
5880         }
5881
5882 #if defined(CONFIG_FAIR_GROUP_SCHED) && defined(CONFIG_SMP)
5883         /*
5884         * Remove our load from contribution when we leave sched_fair
5885         * and ensure we don't carry in an old decay_count if we
5886         * switch back.
5887         */
5888         if (p->se.avg.decay_count) {
5889                 struct cfs_rq *cfs_rq = cfs_rq_of(&p->se);
5890                 __synchronize_entity_decay(&p->se);
5891                 subtract_blocked_load_contrib(cfs_rq,
5892                                 p->se.avg.load_avg_contrib);
5893         }
5894 #endif
5895 }
5896
5897 /*
5898  * We switched to the sched_fair class.
5899  */
5900 static void switched_to_fair(struct rq *rq, struct task_struct *p)
5901 {
5902         if (!p->se.on_rq)
5903                 return;
5904
5905         /*
5906          * We were most likely switched from sched_rt, so
5907          * kick off the schedule if running, otherwise just see
5908          * if we can still preempt the current task.
5909          */
5910         if (rq->curr == p)
5911                 resched_task(rq->curr);
5912         else
5913                 check_preempt_curr(rq, p, 0);
5914 }
5915
5916 /* Account for a task changing its policy or group.
5917  *
5918  * This routine is mostly called to set cfs_rq->curr field when a task
5919  * migrates between groups/classes.
5920  */
5921 static void set_curr_task_fair(struct rq *rq)
5922 {
5923         struct sched_entity *se = &rq->curr->se;
5924
5925         for_each_sched_entity(se) {
5926                 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5927
5928                 set_next_entity(cfs_rq, se);
5929                 /* ensure bandwidth has been allocated on our new cfs_rq */
5930                 account_cfs_rq_runtime(cfs_rq, 0);
5931         }
5932 }
5933
5934 void init_cfs_rq(struct cfs_rq *cfs_rq)
5935 {
5936         cfs_rq->tasks_timeline = RB_ROOT;
5937         cfs_rq->min_vruntime = (u64)(-(1LL << 20));
5938 #ifndef CONFIG_64BIT
5939         cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
5940 #endif
5941 #if defined(CONFIG_FAIR_GROUP_SCHED) && defined(CONFIG_SMP)
5942         atomic64_set(&cfs_rq->decay_counter, 1);
5943         atomic64_set(&cfs_rq->removed_load, 0);
5944 #endif
5945 }
5946
5947 #ifdef CONFIG_FAIR_GROUP_SCHED
5948 static void task_move_group_fair(struct task_struct *p, int on_rq)
5949 {
5950         struct cfs_rq *cfs_rq;
5951         /*
5952          * If the task was not on the rq at the time of this cgroup movement
5953          * it must have been asleep, sleeping tasks keep their ->vruntime
5954          * absolute on their old rq until wakeup (needed for the fair sleeper
5955          * bonus in place_entity()).
5956          *
5957          * If it was on the rq, we've just 'preempted' it, which does convert
5958          * ->vruntime to a relative base.
5959          *
5960          * Make sure both cases convert their relative position when migrating
5961          * to another cgroup's rq. This does somewhat interfere with the
5962          * fair sleeper stuff for the first placement, but who cares.
5963          */
5964         /*
5965          * When !on_rq, vruntime of the task has usually NOT been normalized.
5966          * But there are some cases where it has already been normalized:
5967          *
5968          * - Moving a forked child which is waiting for being woken up by
5969          *   wake_up_new_task().
5970          * - Moving a task which has been woken up by try_to_wake_up() and
5971          *   waiting for actually being woken up by sched_ttwu_pending().
5972          *
5973          * To prevent boost or penalty in the new cfs_rq caused by delta
5974          * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
5975          */
5976         if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING))
5977                 on_rq = 1;
5978
5979         if (!on_rq)
5980                 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
5981         set_task_rq(p, task_cpu(p));
5982         if (!on_rq) {
5983                 cfs_rq = cfs_rq_of(&p->se);
5984                 p->se.vruntime += cfs_rq->min_vruntime;
5985 #ifdef CONFIG_SMP
5986                 /*
5987                  * migrate_task_rq_fair() will have removed our previous
5988                  * contribution, but we must synchronize for ongoing future
5989                  * decay.
5990                  */
5991                 p->se.avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
5992                 cfs_rq->blocked_load_avg += p->se.avg.load_avg_contrib;
5993 #endif
5994         }
5995 }
5996
5997 void free_fair_sched_group(struct task_group *tg)
5998 {
5999         int i;
6000
6001         destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
6002
6003         for_each_possible_cpu(i) {
6004                 if (tg->cfs_rq)
6005                         kfree(tg->cfs_rq[i]);
6006                 if (tg->se)
6007                         kfree(tg->se[i]);
6008         }
6009
6010         kfree(tg->cfs_rq);
6011         kfree(tg->se);
6012 }
6013
6014 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
6015 {
6016         struct cfs_rq *cfs_rq;
6017         struct sched_entity *se;
6018         int i;
6019
6020         tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
6021         if (!tg->cfs_rq)
6022                 goto err;
6023         tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
6024         if (!tg->se)
6025                 goto err;
6026
6027         tg->shares = NICE_0_LOAD;
6028
6029         init_cfs_bandwidth(tg_cfs_bandwidth(tg));
6030
6031         for_each_possible_cpu(i) {
6032                 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
6033                                       GFP_KERNEL, cpu_to_node(i));
6034                 if (!cfs_rq)
6035                         goto err;
6036
6037                 se = kzalloc_node(sizeof(struct sched_entity),
6038                                   GFP_KERNEL, cpu_to_node(i));
6039                 if (!se)
6040                         goto err_free_rq;
6041
6042                 init_cfs_rq(cfs_rq);
6043                 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
6044         }
6045
6046         return 1;
6047
6048 err_free_rq:
6049         kfree(cfs_rq);
6050 err:
6051         return 0;
6052 }
6053
6054 void unregister_fair_sched_group(struct task_group *tg, int cpu)
6055 {
6056         struct rq *rq = cpu_rq(cpu);
6057         unsigned long flags;
6058
6059         /*
6060         * Only empty task groups can be destroyed; so we can speculatively
6061         * check on_list without danger of it being re-added.
6062         */
6063         if (!tg->cfs_rq[cpu]->on_list)
6064                 return;
6065
6066         raw_spin_lock_irqsave(&rq->lock, flags);
6067         list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
6068         raw_spin_unlock_irqrestore(&rq->lock, flags);
6069 }
6070
6071 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
6072                         struct sched_entity *se, int cpu,
6073                         struct sched_entity *parent)
6074 {
6075         struct rq *rq = cpu_rq(cpu);
6076
6077         cfs_rq->tg = tg;
6078         cfs_rq->rq = rq;
6079         init_cfs_rq_runtime(cfs_rq);
6080
6081         tg->cfs_rq[cpu] = cfs_rq;
6082         tg->se[cpu] = se;
6083
6084         /* se could be NULL for root_task_group */
6085         if (!se)
6086                 return;
6087
6088         if (!parent)
6089                 se->cfs_rq = &rq->cfs;
6090         else
6091                 se->cfs_rq = parent->my_q;
6092
6093         se->my_q = cfs_rq;
6094         /* guarantee group entities always have weight */
6095         update_load_set(&se->load, NICE_0_LOAD);
6096         se->parent = parent;
6097 }
6098
6099 static DEFINE_MUTEX(shares_mutex);
6100
6101 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
6102 {
6103         int i;
6104         unsigned long flags;
6105
6106         /*
6107          * We can't change the weight of the root cgroup.
6108          */
6109         if (!tg->se[0])
6110                 return -EINVAL;
6111
6112         shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
6113
6114         mutex_lock(&shares_mutex);
6115         if (tg->shares == shares)
6116                 goto done;
6117
6118         tg->shares = shares;
6119         for_each_possible_cpu(i) {
6120                 struct rq *rq = cpu_rq(i);
6121                 struct sched_entity *se;
6122
6123                 se = tg->se[i];
6124                 /* Propagate contribution to hierarchy */
6125                 raw_spin_lock_irqsave(&rq->lock, flags);
6126                 for_each_sched_entity(se)
6127                         update_cfs_shares(group_cfs_rq(se));
6128                 raw_spin_unlock_irqrestore(&rq->lock, flags);
6129         }
6130
6131 done:
6132         mutex_unlock(&shares_mutex);
6133         return 0;
6134 }
6135 #else /* CONFIG_FAIR_GROUP_SCHED */
6136
6137 void free_fair_sched_group(struct task_group *tg) { }
6138
6139 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
6140 {
6141         return 1;
6142 }
6143
6144 void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
6145
6146 #endif /* CONFIG_FAIR_GROUP_SCHED */
6147
6148
6149 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
6150 {
6151         struct sched_entity *se = &task->se;
6152         unsigned int rr_interval = 0;
6153
6154         /*
6155          * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
6156          * idle runqueue:
6157          */
6158         if (rq->cfs.load.weight)
6159                 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
6160
6161         return rr_interval;
6162 }
6163
6164 /*
6165  * All the scheduling class methods:
6166  */
6167 const struct sched_class fair_sched_class = {
6168         .next                   = &idle_sched_class,
6169         .enqueue_task           = enqueue_task_fair,
6170         .dequeue_task           = dequeue_task_fair,
6171         .yield_task             = yield_task_fair,
6172         .yield_to_task          = yield_to_task_fair,
6173
6174         .check_preempt_curr     = check_preempt_wakeup,
6175
6176         .pick_next_task         = pick_next_task_fair,
6177         .put_prev_task          = put_prev_task_fair,
6178
6179 #ifdef CONFIG_SMP
6180         .select_task_rq         = select_task_rq_fair,
6181 #ifdef CONFIG_FAIR_GROUP_SCHED
6182         .migrate_task_rq        = migrate_task_rq_fair,
6183 #endif
6184         .rq_online              = rq_online_fair,
6185         .rq_offline             = rq_offline_fair,
6186
6187         .task_waking            = task_waking_fair,
6188 #endif
6189
6190         .set_curr_task          = set_curr_task_fair,
6191         .task_tick              = task_tick_fair,
6192         .task_fork              = task_fork_fair,
6193
6194         .prio_changed           = prio_changed_fair,
6195         .switched_from          = switched_from_fair,
6196         .switched_to            = switched_to_fair,
6197
6198         .get_rr_interval        = get_rr_interval_fair,
6199
6200 #ifdef CONFIG_FAIR_GROUP_SCHED
6201         .task_move_group        = task_move_group_fair,
6202 #endif
6203 };
6204
6205 #ifdef CONFIG_SCHED_DEBUG
6206 void print_cfs_stats(struct seq_file *m, int cpu)
6207 {
6208         struct cfs_rq *cfs_rq;
6209
6210         rcu_read_lock();
6211         for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
6212                 print_cfs_rq(m, cpu, cfs_rq);
6213         rcu_read_unlock();
6214 }
6215 #endif
6216
6217 __init void init_sched_fair_class(void)
6218 {
6219 #ifdef CONFIG_SMP
6220         open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
6221
6222 #ifdef CONFIG_NO_HZ_COMMON
6223         nohz.next_balance = jiffies;
6224         zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
6225         cpu_notifier(sched_ilb_notifier, 0);
6226 #endif
6227 #endif /* SMP */
6228
6229 }