317cef78a3883c120f2700ed21ba12aeaafac0b0
[firefly-linux-kernel-4.4.55.git] / kernel / perf_counter.c
1 /*
2  * Performance counter core code
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  *  For licensing details see kernel-base/COPYING
10  */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/sysfs.h>
19 #include <linux/dcache.h>
20 #include <linux/percpu.h>
21 #include <linux/ptrace.h>
22 #include <linux/vmstat.h>
23 #include <linux/hardirq.h>
24 #include <linux/rculist.h>
25 #include <linux/uaccess.h>
26 #include <linux/syscalls.h>
27 #include <linux/anon_inodes.h>
28 #include <linux/kernel_stat.h>
29 #include <linux/perf_counter.h>
30
31 #include <asm/irq_regs.h>
32
33 /*
34  * Each CPU has a list of per CPU counters:
35  */
36 DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
37
38 int perf_max_counters __read_mostly = 1;
39 static int perf_reserved_percpu __read_mostly;
40 static int perf_overcommit __read_mostly = 1;
41
42 static atomic_t nr_counters __read_mostly;
43 static atomic_t nr_mmap_tracking __read_mostly;
44 static atomic_t nr_munmap_tracking __read_mostly;
45 static atomic_t nr_comm_tracking __read_mostly;
46
47 int sysctl_perf_counter_priv __read_mostly; /* do we need to be privileged */
48 int sysctl_perf_counter_mlock __read_mostly = 512; /* 'free' kb per user */
49 int sysctl_perf_counter_limit __read_mostly = 100000; /* max NMIs per second */
50
51 /*
52  * Lock for (sysadmin-configurable) counter reservations:
53  */
54 static DEFINE_SPINLOCK(perf_resource_lock);
55
56 /*
57  * Architecture provided APIs - weak aliases:
58  */
59 extern __weak const struct pmu *hw_perf_counter_init(struct perf_counter *counter)
60 {
61         return NULL;
62 }
63
64 void __weak hw_perf_disable(void)               { barrier(); }
65 void __weak hw_perf_enable(void)                { barrier(); }
66
67 void __weak hw_perf_counter_setup(int cpu)      { barrier(); }
68
69 int __weak
70 hw_perf_group_sched_in(struct perf_counter *group_leader,
71                struct perf_cpu_context *cpuctx,
72                struct perf_counter_context *ctx, int cpu)
73 {
74         return 0;
75 }
76
77 void __weak perf_counter_print_debug(void)      { }
78
79 static DEFINE_PER_CPU(int, disable_count);
80
81 void __perf_disable(void)
82 {
83         __get_cpu_var(disable_count)++;
84 }
85
86 bool __perf_enable(void)
87 {
88         return !--__get_cpu_var(disable_count);
89 }
90
91 void perf_disable(void)
92 {
93         __perf_disable();
94         hw_perf_disable();
95 }
96
97 void perf_enable(void)
98 {
99         if (__perf_enable())
100                 hw_perf_enable();
101 }
102
103 static void get_ctx(struct perf_counter_context *ctx)
104 {
105         atomic_inc(&ctx->refcount);
106 }
107
108 static void free_ctx(struct rcu_head *head)
109 {
110         struct perf_counter_context *ctx;
111
112         ctx = container_of(head, struct perf_counter_context, rcu_head);
113         kfree(ctx);
114 }
115
116 static void put_ctx(struct perf_counter_context *ctx)
117 {
118         if (atomic_dec_and_test(&ctx->refcount)) {
119                 if (ctx->parent_ctx)
120                         put_ctx(ctx->parent_ctx);
121                 if (ctx->task)
122                         put_task_struct(ctx->task);
123                 call_rcu(&ctx->rcu_head, free_ctx);
124         }
125 }
126
127 /*
128  * Get the perf_counter_context for a task and lock it.
129  * This has to cope with with the fact that until it is locked,
130  * the context could get moved to another task.
131  */
132 static struct perf_counter_context *
133 perf_lock_task_context(struct task_struct *task, unsigned long *flags)
134 {
135         struct perf_counter_context *ctx;
136
137         rcu_read_lock();
138  retry:
139         ctx = rcu_dereference(task->perf_counter_ctxp);
140         if (ctx) {
141                 /*
142                  * If this context is a clone of another, it might
143                  * get swapped for another underneath us by
144                  * perf_counter_task_sched_out, though the
145                  * rcu_read_lock() protects us from any context
146                  * getting freed.  Lock the context and check if it
147                  * got swapped before we could get the lock, and retry
148                  * if so.  If we locked the right context, then it
149                  * can't get swapped on us any more.
150                  */
151                 spin_lock_irqsave(&ctx->lock, *flags);
152                 if (ctx != rcu_dereference(task->perf_counter_ctxp)) {
153                         spin_unlock_irqrestore(&ctx->lock, *flags);
154                         goto retry;
155                 }
156         }
157         rcu_read_unlock();
158         return ctx;
159 }
160
161 /*
162  * Get the context for a task and increment its pin_count so it
163  * can't get swapped to another task.  This also increments its
164  * reference count so that the context can't get freed.
165  */
166 static struct perf_counter_context *perf_pin_task_context(struct task_struct *task)
167 {
168         struct perf_counter_context *ctx;
169         unsigned long flags;
170
171         ctx = perf_lock_task_context(task, &flags);
172         if (ctx) {
173                 ++ctx->pin_count;
174                 get_ctx(ctx);
175                 spin_unlock_irqrestore(&ctx->lock, flags);
176         }
177         return ctx;
178 }
179
180 static void perf_unpin_context(struct perf_counter_context *ctx)
181 {
182         unsigned long flags;
183
184         spin_lock_irqsave(&ctx->lock, flags);
185         --ctx->pin_count;
186         spin_unlock_irqrestore(&ctx->lock, flags);
187         put_ctx(ctx);
188 }
189
190 /*
191  * Add a counter from the lists for its context.
192  * Must be called with ctx->mutex and ctx->lock held.
193  */
194 static void
195 list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
196 {
197         struct perf_counter *group_leader = counter->group_leader;
198
199         /*
200          * Depending on whether it is a standalone or sibling counter,
201          * add it straight to the context's counter list, or to the group
202          * leader's sibling list:
203          */
204         if (group_leader == counter)
205                 list_add_tail(&counter->list_entry, &ctx->counter_list);
206         else {
207                 list_add_tail(&counter->list_entry, &group_leader->sibling_list);
208                 group_leader->nr_siblings++;
209         }
210
211         list_add_rcu(&counter->event_entry, &ctx->event_list);
212         ctx->nr_counters++;
213 }
214
215 /*
216  * Remove a counter from the lists for its context.
217  * Must be called with ctx->mutex and ctx->lock held.
218  */
219 static void
220 list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
221 {
222         struct perf_counter *sibling, *tmp;
223
224         if (list_empty(&counter->list_entry))
225                 return;
226         ctx->nr_counters--;
227
228         list_del_init(&counter->list_entry);
229         list_del_rcu(&counter->event_entry);
230
231         if (counter->group_leader != counter)
232                 counter->group_leader->nr_siblings--;
233
234         /*
235          * If this was a group counter with sibling counters then
236          * upgrade the siblings to singleton counters by adding them
237          * to the context list directly:
238          */
239         list_for_each_entry_safe(sibling, tmp,
240                                  &counter->sibling_list, list_entry) {
241
242                 list_move_tail(&sibling->list_entry, &ctx->counter_list);
243                 sibling->group_leader = sibling;
244         }
245 }
246
247 static void
248 counter_sched_out(struct perf_counter *counter,
249                   struct perf_cpu_context *cpuctx,
250                   struct perf_counter_context *ctx)
251 {
252         if (counter->state != PERF_COUNTER_STATE_ACTIVE)
253                 return;
254
255         counter->state = PERF_COUNTER_STATE_INACTIVE;
256         counter->tstamp_stopped = ctx->time;
257         counter->pmu->disable(counter);
258         counter->oncpu = -1;
259
260         if (!is_software_counter(counter))
261                 cpuctx->active_oncpu--;
262         ctx->nr_active--;
263         if (counter->attr.exclusive || !cpuctx->active_oncpu)
264                 cpuctx->exclusive = 0;
265 }
266
267 static void
268 group_sched_out(struct perf_counter *group_counter,
269                 struct perf_cpu_context *cpuctx,
270                 struct perf_counter_context *ctx)
271 {
272         struct perf_counter *counter;
273
274         if (group_counter->state != PERF_COUNTER_STATE_ACTIVE)
275                 return;
276
277         counter_sched_out(group_counter, cpuctx, ctx);
278
279         /*
280          * Schedule out siblings (if any):
281          */
282         list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
283                 counter_sched_out(counter, cpuctx, ctx);
284
285         if (group_counter->attr.exclusive)
286                 cpuctx->exclusive = 0;
287 }
288
289 /*
290  * Cross CPU call to remove a performance counter
291  *
292  * We disable the counter on the hardware level first. After that we
293  * remove it from the context list.
294  */
295 static void __perf_counter_remove_from_context(void *info)
296 {
297         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
298         struct perf_counter *counter = info;
299         struct perf_counter_context *ctx = counter->ctx;
300
301         /*
302          * If this is a task context, we need to check whether it is
303          * the current task context of this cpu. If not it has been
304          * scheduled out before the smp call arrived.
305          */
306         if (ctx->task && cpuctx->task_ctx != ctx)
307                 return;
308
309         spin_lock(&ctx->lock);
310         /*
311          * Protect the list operation against NMI by disabling the
312          * counters on a global level.
313          */
314         perf_disable();
315
316         counter_sched_out(counter, cpuctx, ctx);
317
318         list_del_counter(counter, ctx);
319
320         if (!ctx->task) {
321                 /*
322                  * Allow more per task counters with respect to the
323                  * reservation:
324                  */
325                 cpuctx->max_pertask =
326                         min(perf_max_counters - ctx->nr_counters,
327                             perf_max_counters - perf_reserved_percpu);
328         }
329
330         perf_enable();
331         spin_unlock(&ctx->lock);
332 }
333
334
335 /*
336  * Remove the counter from a task's (or a CPU's) list of counters.
337  *
338  * Must be called with ctx->mutex held.
339  *
340  * CPU counters are removed with a smp call. For task counters we only
341  * call when the task is on a CPU.
342  *
343  * If counter->ctx is a cloned context, callers must make sure that
344  * every task struct that counter->ctx->task could possibly point to
345  * remains valid.  This is OK when called from perf_release since
346  * that only calls us on the top-level context, which can't be a clone.
347  * When called from perf_counter_exit_task, it's OK because the
348  * context has been detached from its task.
349  */
350 static void perf_counter_remove_from_context(struct perf_counter *counter)
351 {
352         struct perf_counter_context *ctx = counter->ctx;
353         struct task_struct *task = ctx->task;
354
355         if (!task) {
356                 /*
357                  * Per cpu counters are removed via an smp call and
358                  * the removal is always sucessful.
359                  */
360                 smp_call_function_single(counter->cpu,
361                                          __perf_counter_remove_from_context,
362                                          counter, 1);
363                 return;
364         }
365
366 retry:
367         task_oncpu_function_call(task, __perf_counter_remove_from_context,
368                                  counter);
369
370         spin_lock_irq(&ctx->lock);
371         /*
372          * If the context is active we need to retry the smp call.
373          */
374         if (ctx->nr_active && !list_empty(&counter->list_entry)) {
375                 spin_unlock_irq(&ctx->lock);
376                 goto retry;
377         }
378
379         /*
380          * The lock prevents that this context is scheduled in so we
381          * can remove the counter safely, if the call above did not
382          * succeed.
383          */
384         if (!list_empty(&counter->list_entry)) {
385                 list_del_counter(counter, ctx);
386         }
387         spin_unlock_irq(&ctx->lock);
388 }
389
390 static inline u64 perf_clock(void)
391 {
392         return cpu_clock(smp_processor_id());
393 }
394
395 /*
396  * Update the record of the current time in a context.
397  */
398 static void update_context_time(struct perf_counter_context *ctx)
399 {
400         u64 now = perf_clock();
401
402         ctx->time += now - ctx->timestamp;
403         ctx->timestamp = now;
404 }
405
406 /*
407  * Update the total_time_enabled and total_time_running fields for a counter.
408  */
409 static void update_counter_times(struct perf_counter *counter)
410 {
411         struct perf_counter_context *ctx = counter->ctx;
412         u64 run_end;
413
414         if (counter->state < PERF_COUNTER_STATE_INACTIVE)
415                 return;
416
417         counter->total_time_enabled = ctx->time - counter->tstamp_enabled;
418
419         if (counter->state == PERF_COUNTER_STATE_INACTIVE)
420                 run_end = counter->tstamp_stopped;
421         else
422                 run_end = ctx->time;
423
424         counter->total_time_running = run_end - counter->tstamp_running;
425 }
426
427 /*
428  * Update total_time_enabled and total_time_running for all counters in a group.
429  */
430 static void update_group_times(struct perf_counter *leader)
431 {
432         struct perf_counter *counter;
433
434         update_counter_times(leader);
435         list_for_each_entry(counter, &leader->sibling_list, list_entry)
436                 update_counter_times(counter);
437 }
438
439 /*
440  * Cross CPU call to disable a performance counter
441  */
442 static void __perf_counter_disable(void *info)
443 {
444         struct perf_counter *counter = info;
445         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
446         struct perf_counter_context *ctx = counter->ctx;
447
448         /*
449          * If this is a per-task counter, need to check whether this
450          * counter's task is the current task on this cpu.
451          */
452         if (ctx->task && cpuctx->task_ctx != ctx)
453                 return;
454
455         spin_lock(&ctx->lock);
456
457         /*
458          * If the counter is on, turn it off.
459          * If it is in error state, leave it in error state.
460          */
461         if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
462                 update_context_time(ctx);
463                 update_counter_times(counter);
464                 if (counter == counter->group_leader)
465                         group_sched_out(counter, cpuctx, ctx);
466                 else
467                         counter_sched_out(counter, cpuctx, ctx);
468                 counter->state = PERF_COUNTER_STATE_OFF;
469         }
470
471         spin_unlock(&ctx->lock);
472 }
473
474 /*
475  * Disable a counter.
476  *
477  * If counter->ctx is a cloned context, callers must make sure that
478  * every task struct that counter->ctx->task could possibly point to
479  * remains valid.  This condition is satisifed when called through
480  * perf_counter_for_each_child or perf_counter_for_each because they
481  * hold the top-level counter's child_mutex, so any descendant that
482  * goes to exit will block in sync_child_counter.
483  * When called from perf_pending_counter it's OK because counter->ctx
484  * is the current context on this CPU and preemption is disabled,
485  * hence we can't get into perf_counter_task_sched_out for this context.
486  */
487 static void perf_counter_disable(struct perf_counter *counter)
488 {
489         struct perf_counter_context *ctx = counter->ctx;
490         struct task_struct *task = ctx->task;
491
492         if (!task) {
493                 /*
494                  * Disable the counter on the cpu that it's on
495                  */
496                 smp_call_function_single(counter->cpu, __perf_counter_disable,
497                                          counter, 1);
498                 return;
499         }
500
501  retry:
502         task_oncpu_function_call(task, __perf_counter_disable, counter);
503
504         spin_lock_irq(&ctx->lock);
505         /*
506          * If the counter is still active, we need to retry the cross-call.
507          */
508         if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
509                 spin_unlock_irq(&ctx->lock);
510                 goto retry;
511         }
512
513         /*
514          * Since we have the lock this context can't be scheduled
515          * in, so we can change the state safely.
516          */
517         if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
518                 update_counter_times(counter);
519                 counter->state = PERF_COUNTER_STATE_OFF;
520         }
521
522         spin_unlock_irq(&ctx->lock);
523 }
524
525 static int
526 counter_sched_in(struct perf_counter *counter,
527                  struct perf_cpu_context *cpuctx,
528                  struct perf_counter_context *ctx,
529                  int cpu)
530 {
531         if (counter->state <= PERF_COUNTER_STATE_OFF)
532                 return 0;
533
534         counter->state = PERF_COUNTER_STATE_ACTIVE;
535         counter->oncpu = cpu;   /* TODO: put 'cpu' into cpuctx->cpu */
536         /*
537          * The new state must be visible before we turn it on in the hardware:
538          */
539         smp_wmb();
540
541         if (counter->pmu->enable(counter)) {
542                 counter->state = PERF_COUNTER_STATE_INACTIVE;
543                 counter->oncpu = -1;
544                 return -EAGAIN;
545         }
546
547         counter->tstamp_running += ctx->time - counter->tstamp_stopped;
548
549         if (!is_software_counter(counter))
550                 cpuctx->active_oncpu++;
551         ctx->nr_active++;
552
553         if (counter->attr.exclusive)
554                 cpuctx->exclusive = 1;
555
556         return 0;
557 }
558
559 static int
560 group_sched_in(struct perf_counter *group_counter,
561                struct perf_cpu_context *cpuctx,
562                struct perf_counter_context *ctx,
563                int cpu)
564 {
565         struct perf_counter *counter, *partial_group;
566         int ret;
567
568         if (group_counter->state == PERF_COUNTER_STATE_OFF)
569                 return 0;
570
571         ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu);
572         if (ret)
573                 return ret < 0 ? ret : 0;
574
575         if (counter_sched_in(group_counter, cpuctx, ctx, cpu))
576                 return -EAGAIN;
577
578         /*
579          * Schedule in siblings as one group (if any):
580          */
581         list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
582                 if (counter_sched_in(counter, cpuctx, ctx, cpu)) {
583                         partial_group = counter;
584                         goto group_error;
585                 }
586         }
587
588         return 0;
589
590 group_error:
591         /*
592          * Groups can be scheduled in as one unit only, so undo any
593          * partial group before returning:
594          */
595         list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
596                 if (counter == partial_group)
597                         break;
598                 counter_sched_out(counter, cpuctx, ctx);
599         }
600         counter_sched_out(group_counter, cpuctx, ctx);
601
602         return -EAGAIN;
603 }
604
605 /*
606  * Return 1 for a group consisting entirely of software counters,
607  * 0 if the group contains any hardware counters.
608  */
609 static int is_software_only_group(struct perf_counter *leader)
610 {
611         struct perf_counter *counter;
612
613         if (!is_software_counter(leader))
614                 return 0;
615
616         list_for_each_entry(counter, &leader->sibling_list, list_entry)
617                 if (!is_software_counter(counter))
618                         return 0;
619
620         return 1;
621 }
622
623 /*
624  * Work out whether we can put this counter group on the CPU now.
625  */
626 static int group_can_go_on(struct perf_counter *counter,
627                            struct perf_cpu_context *cpuctx,
628                            int can_add_hw)
629 {
630         /*
631          * Groups consisting entirely of software counters can always go on.
632          */
633         if (is_software_only_group(counter))
634                 return 1;
635         /*
636          * If an exclusive group is already on, no other hardware
637          * counters can go on.
638          */
639         if (cpuctx->exclusive)
640                 return 0;
641         /*
642          * If this group is exclusive and there are already
643          * counters on the CPU, it can't go on.
644          */
645         if (counter->attr.exclusive && cpuctx->active_oncpu)
646                 return 0;
647         /*
648          * Otherwise, try to add it if all previous groups were able
649          * to go on.
650          */
651         return can_add_hw;
652 }
653
654 static void add_counter_to_ctx(struct perf_counter *counter,
655                                struct perf_counter_context *ctx)
656 {
657         list_add_counter(counter, ctx);
658         counter->tstamp_enabled = ctx->time;
659         counter->tstamp_running = ctx->time;
660         counter->tstamp_stopped = ctx->time;
661 }
662
663 /*
664  * Cross CPU call to install and enable a performance counter
665  *
666  * Must be called with ctx->mutex held
667  */
668 static void __perf_install_in_context(void *info)
669 {
670         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
671         struct perf_counter *counter = info;
672         struct perf_counter_context *ctx = counter->ctx;
673         struct perf_counter *leader = counter->group_leader;
674         int cpu = smp_processor_id();
675         int err;
676
677         /*
678          * If this is a task context, we need to check whether it is
679          * the current task context of this cpu. If not it has been
680          * scheduled out before the smp call arrived.
681          * Or possibly this is the right context but it isn't
682          * on this cpu because it had no counters.
683          */
684         if (ctx->task && cpuctx->task_ctx != ctx) {
685                 if (cpuctx->task_ctx || ctx->task != current)
686                         return;
687                 cpuctx->task_ctx = ctx;
688         }
689
690         spin_lock(&ctx->lock);
691         ctx->is_active = 1;
692         update_context_time(ctx);
693
694         /*
695          * Protect the list operation against NMI by disabling the
696          * counters on a global level. NOP for non NMI based counters.
697          */
698         perf_disable();
699
700         add_counter_to_ctx(counter, ctx);
701
702         /*
703          * Don't put the counter on if it is disabled or if
704          * it is in a group and the group isn't on.
705          */
706         if (counter->state != PERF_COUNTER_STATE_INACTIVE ||
707             (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE))
708                 goto unlock;
709
710         /*
711          * An exclusive counter can't go on if there are already active
712          * hardware counters, and no hardware counter can go on if there
713          * is already an exclusive counter on.
714          */
715         if (!group_can_go_on(counter, cpuctx, 1))
716                 err = -EEXIST;
717         else
718                 err = counter_sched_in(counter, cpuctx, ctx, cpu);
719
720         if (err) {
721                 /*
722                  * This counter couldn't go on.  If it is in a group
723                  * then we have to pull the whole group off.
724                  * If the counter group is pinned then put it in error state.
725                  */
726                 if (leader != counter)
727                         group_sched_out(leader, cpuctx, ctx);
728                 if (leader->attr.pinned) {
729                         update_group_times(leader);
730                         leader->state = PERF_COUNTER_STATE_ERROR;
731                 }
732         }
733
734         if (!err && !ctx->task && cpuctx->max_pertask)
735                 cpuctx->max_pertask--;
736
737  unlock:
738         perf_enable();
739
740         spin_unlock(&ctx->lock);
741 }
742
743 /*
744  * Attach a performance counter to a context
745  *
746  * First we add the counter to the list with the hardware enable bit
747  * in counter->hw_config cleared.
748  *
749  * If the counter is attached to a task which is on a CPU we use a smp
750  * call to enable it in the task context. The task might have been
751  * scheduled away, but we check this in the smp call again.
752  *
753  * Must be called with ctx->mutex held.
754  */
755 static void
756 perf_install_in_context(struct perf_counter_context *ctx,
757                         struct perf_counter *counter,
758                         int cpu)
759 {
760         struct task_struct *task = ctx->task;
761
762         if (!task) {
763                 /*
764                  * Per cpu counters are installed via an smp call and
765                  * the install is always sucessful.
766                  */
767                 smp_call_function_single(cpu, __perf_install_in_context,
768                                          counter, 1);
769                 return;
770         }
771
772 retry:
773         task_oncpu_function_call(task, __perf_install_in_context,
774                                  counter);
775
776         spin_lock_irq(&ctx->lock);
777         /*
778          * we need to retry the smp call.
779          */
780         if (ctx->is_active && list_empty(&counter->list_entry)) {
781                 spin_unlock_irq(&ctx->lock);
782                 goto retry;
783         }
784
785         /*
786          * The lock prevents that this context is scheduled in so we
787          * can add the counter safely, if it the call above did not
788          * succeed.
789          */
790         if (list_empty(&counter->list_entry))
791                 add_counter_to_ctx(counter, ctx);
792         spin_unlock_irq(&ctx->lock);
793 }
794
795 /*
796  * Cross CPU call to enable a performance counter
797  */
798 static void __perf_counter_enable(void *info)
799 {
800         struct perf_counter *counter = info;
801         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
802         struct perf_counter_context *ctx = counter->ctx;
803         struct perf_counter *leader = counter->group_leader;
804         int err;
805
806         /*
807          * If this is a per-task counter, need to check whether this
808          * counter's task is the current task on this cpu.
809          */
810         if (ctx->task && cpuctx->task_ctx != ctx) {
811                 if (cpuctx->task_ctx || ctx->task != current)
812                         return;
813                 cpuctx->task_ctx = ctx;
814         }
815
816         spin_lock(&ctx->lock);
817         ctx->is_active = 1;
818         update_context_time(ctx);
819
820         if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
821                 goto unlock;
822         counter->state = PERF_COUNTER_STATE_INACTIVE;
823         counter->tstamp_enabled = ctx->time - counter->total_time_enabled;
824
825         /*
826          * If the counter is in a group and isn't the group leader,
827          * then don't put it on unless the group is on.
828          */
829         if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)
830                 goto unlock;
831
832         if (!group_can_go_on(counter, cpuctx, 1)) {
833                 err = -EEXIST;
834         } else {
835                 perf_disable();
836                 if (counter == leader)
837                         err = group_sched_in(counter, cpuctx, ctx,
838                                              smp_processor_id());
839                 else
840                         err = counter_sched_in(counter, cpuctx, ctx,
841                                                smp_processor_id());
842                 perf_enable();
843         }
844
845         if (err) {
846                 /*
847                  * If this counter can't go on and it's part of a
848                  * group, then the whole group has to come off.
849                  */
850                 if (leader != counter)
851                         group_sched_out(leader, cpuctx, ctx);
852                 if (leader->attr.pinned) {
853                         update_group_times(leader);
854                         leader->state = PERF_COUNTER_STATE_ERROR;
855                 }
856         }
857
858  unlock:
859         spin_unlock(&ctx->lock);
860 }
861
862 /*
863  * Enable a counter.
864  *
865  * If counter->ctx is a cloned context, callers must make sure that
866  * every task struct that counter->ctx->task could possibly point to
867  * remains valid.  This condition is satisfied when called through
868  * perf_counter_for_each_child or perf_counter_for_each as described
869  * for perf_counter_disable.
870  */
871 static void perf_counter_enable(struct perf_counter *counter)
872 {
873         struct perf_counter_context *ctx = counter->ctx;
874         struct task_struct *task = ctx->task;
875
876         if (!task) {
877                 /*
878                  * Enable the counter on the cpu that it's on
879                  */
880                 smp_call_function_single(counter->cpu, __perf_counter_enable,
881                                          counter, 1);
882                 return;
883         }
884
885         spin_lock_irq(&ctx->lock);
886         if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
887                 goto out;
888
889         /*
890          * If the counter is in error state, clear that first.
891          * That way, if we see the counter in error state below, we
892          * know that it has gone back into error state, as distinct
893          * from the task having been scheduled away before the
894          * cross-call arrived.
895          */
896         if (counter->state == PERF_COUNTER_STATE_ERROR)
897                 counter->state = PERF_COUNTER_STATE_OFF;
898
899  retry:
900         spin_unlock_irq(&ctx->lock);
901         task_oncpu_function_call(task, __perf_counter_enable, counter);
902
903         spin_lock_irq(&ctx->lock);
904
905         /*
906          * If the context is active and the counter is still off,
907          * we need to retry the cross-call.
908          */
909         if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF)
910                 goto retry;
911
912         /*
913          * Since we have the lock this context can't be scheduled
914          * in, so we can change the state safely.
915          */
916         if (counter->state == PERF_COUNTER_STATE_OFF) {
917                 counter->state = PERF_COUNTER_STATE_INACTIVE;
918                 counter->tstamp_enabled =
919                         ctx->time - counter->total_time_enabled;
920         }
921  out:
922         spin_unlock_irq(&ctx->lock);
923 }
924
925 static int perf_counter_refresh(struct perf_counter *counter, int refresh)
926 {
927         /*
928          * not supported on inherited counters
929          */
930         if (counter->attr.inherit)
931                 return -EINVAL;
932
933         atomic_add(refresh, &counter->event_limit);
934         perf_counter_enable(counter);
935
936         return 0;
937 }
938
939 void __perf_counter_sched_out(struct perf_counter_context *ctx,
940                               struct perf_cpu_context *cpuctx)
941 {
942         struct perf_counter *counter;
943
944         spin_lock(&ctx->lock);
945         ctx->is_active = 0;
946         if (likely(!ctx->nr_counters))
947                 goto out;
948         update_context_time(ctx);
949
950         perf_disable();
951         if (ctx->nr_active) {
952                 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
953                         if (counter != counter->group_leader)
954                                 counter_sched_out(counter, cpuctx, ctx);
955                         else
956                                 group_sched_out(counter, cpuctx, ctx);
957                 }
958         }
959         perf_enable();
960  out:
961         spin_unlock(&ctx->lock);
962 }
963
964 /*
965  * Test whether two contexts are equivalent, i.e. whether they
966  * have both been cloned from the same version of the same context
967  * and they both have the same number of enabled counters.
968  * If the number of enabled counters is the same, then the set
969  * of enabled counters should be the same, because these are both
970  * inherited contexts, therefore we can't access individual counters
971  * in them directly with an fd; we can only enable/disable all
972  * counters via prctl, or enable/disable all counters in a family
973  * via ioctl, which will have the same effect on both contexts.
974  */
975 static int context_equiv(struct perf_counter_context *ctx1,
976                          struct perf_counter_context *ctx2)
977 {
978         return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
979                 && ctx1->parent_gen == ctx2->parent_gen
980                 && !ctx1->pin_count && !ctx2->pin_count;
981 }
982
983 /*
984  * Called from scheduler to remove the counters of the current task,
985  * with interrupts disabled.
986  *
987  * We stop each counter and update the counter value in counter->count.
988  *
989  * This does not protect us against NMI, but disable()
990  * sets the disabled bit in the control field of counter _before_
991  * accessing the counter control register. If a NMI hits, then it will
992  * not restart the counter.
993  */
994 void perf_counter_task_sched_out(struct task_struct *task,
995                                  struct task_struct *next, int cpu)
996 {
997         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
998         struct perf_counter_context *ctx = task->perf_counter_ctxp;
999         struct perf_counter_context *next_ctx;
1000         struct perf_counter_context *parent;
1001         struct pt_regs *regs;
1002         int do_switch = 1;
1003
1004         regs = task_pt_regs(task);
1005         perf_swcounter_event(PERF_COUNT_CONTEXT_SWITCHES, 1, 1, regs, 0);
1006
1007         if (likely(!ctx || !cpuctx->task_ctx))
1008                 return;
1009
1010         update_context_time(ctx);
1011
1012         rcu_read_lock();
1013         parent = rcu_dereference(ctx->parent_ctx);
1014         next_ctx = next->perf_counter_ctxp;
1015         if (parent && next_ctx &&
1016             rcu_dereference(next_ctx->parent_ctx) == parent) {
1017                 /*
1018                  * Looks like the two contexts are clones, so we might be
1019                  * able to optimize the context switch.  We lock both
1020                  * contexts and check that they are clones under the
1021                  * lock (including re-checking that neither has been
1022                  * uncloned in the meantime).  It doesn't matter which
1023                  * order we take the locks because no other cpu could
1024                  * be trying to lock both of these tasks.
1025                  */
1026                 spin_lock(&ctx->lock);
1027                 spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1028                 if (context_equiv(ctx, next_ctx)) {
1029                         /*
1030                          * XXX do we need a memory barrier of sorts
1031                          * wrt to rcu_dereference() of perf_counter_ctxp
1032                          */
1033                         task->perf_counter_ctxp = next_ctx;
1034                         next->perf_counter_ctxp = ctx;
1035                         ctx->task = next;
1036                         next_ctx->task = task;
1037                         do_switch = 0;
1038                 }
1039                 spin_unlock(&next_ctx->lock);
1040                 spin_unlock(&ctx->lock);
1041         }
1042         rcu_read_unlock();
1043
1044         if (do_switch) {
1045                 __perf_counter_sched_out(ctx, cpuctx);
1046                 cpuctx->task_ctx = NULL;
1047         }
1048 }
1049
1050 /*
1051  * Called with IRQs disabled
1052  */
1053 static void __perf_counter_task_sched_out(struct perf_counter_context *ctx)
1054 {
1055         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1056
1057         if (!cpuctx->task_ctx)
1058                 return;
1059
1060         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1061                 return;
1062
1063         __perf_counter_sched_out(ctx, cpuctx);
1064         cpuctx->task_ctx = NULL;
1065 }
1066
1067 /*
1068  * Called with IRQs disabled
1069  */
1070 static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx)
1071 {
1072         __perf_counter_sched_out(&cpuctx->ctx, cpuctx);
1073 }
1074
1075 static void
1076 __perf_counter_sched_in(struct perf_counter_context *ctx,
1077                         struct perf_cpu_context *cpuctx, int cpu)
1078 {
1079         struct perf_counter *counter;
1080         int can_add_hw = 1;
1081
1082         spin_lock(&ctx->lock);
1083         ctx->is_active = 1;
1084         if (likely(!ctx->nr_counters))
1085                 goto out;
1086
1087         ctx->timestamp = perf_clock();
1088
1089         perf_disable();
1090
1091         /*
1092          * First go through the list and put on any pinned groups
1093          * in order to give them the best chance of going on.
1094          */
1095         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1096                 if (counter->state <= PERF_COUNTER_STATE_OFF ||
1097                     !counter->attr.pinned)
1098                         continue;
1099                 if (counter->cpu != -1 && counter->cpu != cpu)
1100                         continue;
1101
1102                 if (counter != counter->group_leader)
1103                         counter_sched_in(counter, cpuctx, ctx, cpu);
1104                 else {
1105                         if (group_can_go_on(counter, cpuctx, 1))
1106                                 group_sched_in(counter, cpuctx, ctx, cpu);
1107                 }
1108
1109                 /*
1110                  * If this pinned group hasn't been scheduled,
1111                  * put it in error state.
1112                  */
1113                 if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
1114                         update_group_times(counter);
1115                         counter->state = PERF_COUNTER_STATE_ERROR;
1116                 }
1117         }
1118
1119         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1120                 /*
1121                  * Ignore counters in OFF or ERROR state, and
1122                  * ignore pinned counters since we did them already.
1123                  */
1124                 if (counter->state <= PERF_COUNTER_STATE_OFF ||
1125                     counter->attr.pinned)
1126                         continue;
1127
1128                 /*
1129                  * Listen to the 'cpu' scheduling filter constraint
1130                  * of counters:
1131                  */
1132                 if (counter->cpu != -1 && counter->cpu != cpu)
1133                         continue;
1134
1135                 if (counter != counter->group_leader) {
1136                         if (counter_sched_in(counter, cpuctx, ctx, cpu))
1137                                 can_add_hw = 0;
1138                 } else {
1139                         if (group_can_go_on(counter, cpuctx, can_add_hw)) {
1140                                 if (group_sched_in(counter, cpuctx, ctx, cpu))
1141                                         can_add_hw = 0;
1142                         }
1143                 }
1144         }
1145         perf_enable();
1146  out:
1147         spin_unlock(&ctx->lock);
1148 }
1149
1150 /*
1151  * Called from scheduler to add the counters of the current task
1152  * with interrupts disabled.
1153  *
1154  * We restore the counter value and then enable it.
1155  *
1156  * This does not protect us against NMI, but enable()
1157  * sets the enabled bit in the control field of counter _before_
1158  * accessing the counter control register. If a NMI hits, then it will
1159  * keep the counter running.
1160  */
1161 void perf_counter_task_sched_in(struct task_struct *task, int cpu)
1162 {
1163         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1164         struct perf_counter_context *ctx = task->perf_counter_ctxp;
1165
1166         if (likely(!ctx))
1167                 return;
1168         if (cpuctx->task_ctx == ctx)
1169                 return;
1170         __perf_counter_sched_in(ctx, cpuctx, cpu);
1171         cpuctx->task_ctx = ctx;
1172 }
1173
1174 static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
1175 {
1176         struct perf_counter_context *ctx = &cpuctx->ctx;
1177
1178         __perf_counter_sched_in(ctx, cpuctx, cpu);
1179 }
1180
1181 #define MAX_INTERRUPTS (~0ULL)
1182
1183 static void perf_log_throttle(struct perf_counter *counter, int enable);
1184 static void perf_log_period(struct perf_counter *counter, u64 period);
1185
1186 static void perf_adjust_freq(struct perf_counter_context *ctx)
1187 {
1188         struct perf_counter *counter;
1189         u64 interrupts, sample_period;
1190         u64 events, period;
1191         s64 delta;
1192
1193         spin_lock(&ctx->lock);
1194         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1195                 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
1196                         continue;
1197
1198                 interrupts = counter->hw.interrupts;
1199                 counter->hw.interrupts = 0;
1200
1201                 if (interrupts == MAX_INTERRUPTS) {
1202                         perf_log_throttle(counter, 1);
1203                         counter->pmu->unthrottle(counter);
1204                         interrupts = 2*sysctl_perf_counter_limit/HZ;
1205                 }
1206
1207                 if (!counter->attr.freq || !counter->attr.sample_freq)
1208                         continue;
1209
1210                 events = HZ * interrupts * counter->hw.sample_period;
1211                 period = div64_u64(events, counter->attr.sample_freq);
1212
1213                 delta = (s64)(1 + period - counter->hw.sample_period);
1214                 delta >>= 1;
1215
1216                 sample_period = counter->hw.sample_period + delta;
1217
1218                 if (!sample_period)
1219                         sample_period = 1;
1220
1221                 perf_log_period(counter, sample_period);
1222
1223                 counter->hw.sample_period = sample_period;
1224         }
1225         spin_unlock(&ctx->lock);
1226 }
1227
1228 /*
1229  * Round-robin a context's counters:
1230  */
1231 static void rotate_ctx(struct perf_counter_context *ctx)
1232 {
1233         struct perf_counter *counter;
1234
1235         if (!ctx->nr_counters)
1236                 return;
1237
1238         spin_lock(&ctx->lock);
1239         /*
1240          * Rotate the first entry last (works just fine for group counters too):
1241          */
1242         perf_disable();
1243         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1244                 list_move_tail(&counter->list_entry, &ctx->counter_list);
1245                 break;
1246         }
1247         perf_enable();
1248
1249         spin_unlock(&ctx->lock);
1250 }
1251
1252 void perf_counter_task_tick(struct task_struct *curr, int cpu)
1253 {
1254         struct perf_cpu_context *cpuctx;
1255         struct perf_counter_context *ctx;
1256
1257         if (!atomic_read(&nr_counters))
1258                 return;
1259
1260         cpuctx = &per_cpu(perf_cpu_context, cpu);
1261         ctx = curr->perf_counter_ctxp;
1262
1263         perf_adjust_freq(&cpuctx->ctx);
1264         if (ctx)
1265                 perf_adjust_freq(ctx);
1266
1267         perf_counter_cpu_sched_out(cpuctx);
1268         if (ctx)
1269                 __perf_counter_task_sched_out(ctx);
1270
1271         rotate_ctx(&cpuctx->ctx);
1272         if (ctx)
1273                 rotate_ctx(ctx);
1274
1275         perf_counter_cpu_sched_in(cpuctx, cpu);
1276         if (ctx)
1277                 perf_counter_task_sched_in(curr, cpu);
1278 }
1279
1280 /*
1281  * Cross CPU call to read the hardware counter
1282  */
1283 static void __read(void *info)
1284 {
1285         struct perf_counter *counter = info;
1286         struct perf_counter_context *ctx = counter->ctx;
1287         unsigned long flags;
1288
1289         local_irq_save(flags);
1290         if (ctx->is_active)
1291                 update_context_time(ctx);
1292         counter->pmu->read(counter);
1293         update_counter_times(counter);
1294         local_irq_restore(flags);
1295 }
1296
1297 static u64 perf_counter_read(struct perf_counter *counter)
1298 {
1299         /*
1300          * If counter is enabled and currently active on a CPU, update the
1301          * value in the counter structure:
1302          */
1303         if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
1304                 smp_call_function_single(counter->oncpu,
1305                                          __read, counter, 1);
1306         } else if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
1307                 update_counter_times(counter);
1308         }
1309
1310         return atomic64_read(&counter->count);
1311 }
1312
1313 /*
1314  * Initialize the perf_counter context in a task_struct:
1315  */
1316 static void
1317 __perf_counter_init_context(struct perf_counter_context *ctx,
1318                             struct task_struct *task)
1319 {
1320         memset(ctx, 0, sizeof(*ctx));
1321         spin_lock_init(&ctx->lock);
1322         mutex_init(&ctx->mutex);
1323         INIT_LIST_HEAD(&ctx->counter_list);
1324         INIT_LIST_HEAD(&ctx->event_list);
1325         atomic_set(&ctx->refcount, 1);
1326         ctx->task = task;
1327 }
1328
1329 static struct perf_counter_context *find_get_context(pid_t pid, int cpu)
1330 {
1331         struct perf_counter_context *parent_ctx;
1332         struct perf_counter_context *ctx;
1333         struct perf_cpu_context *cpuctx;
1334         struct task_struct *task;
1335         unsigned long flags;
1336         int err;
1337
1338         /*
1339          * If cpu is not a wildcard then this is a percpu counter:
1340          */
1341         if (cpu != -1) {
1342                 /* Must be root to operate on a CPU counter: */
1343                 if (sysctl_perf_counter_priv && !capable(CAP_SYS_ADMIN))
1344                         return ERR_PTR(-EACCES);
1345
1346                 if (cpu < 0 || cpu > num_possible_cpus())
1347                         return ERR_PTR(-EINVAL);
1348
1349                 /*
1350                  * We could be clever and allow to attach a counter to an
1351                  * offline CPU and activate it when the CPU comes up, but
1352                  * that's for later.
1353                  */
1354                 if (!cpu_isset(cpu, cpu_online_map))
1355                         return ERR_PTR(-ENODEV);
1356
1357                 cpuctx = &per_cpu(perf_cpu_context, cpu);
1358                 ctx = &cpuctx->ctx;
1359                 get_ctx(ctx);
1360
1361                 return ctx;
1362         }
1363
1364         rcu_read_lock();
1365         if (!pid)
1366                 task = current;
1367         else
1368                 task = find_task_by_vpid(pid);
1369         if (task)
1370                 get_task_struct(task);
1371         rcu_read_unlock();
1372
1373         if (!task)
1374                 return ERR_PTR(-ESRCH);
1375
1376         /*
1377          * Can't attach counters to a dying task.
1378          */
1379         err = -ESRCH;
1380         if (task->flags & PF_EXITING)
1381                 goto errout;
1382
1383         /* Reuse ptrace permission checks for now. */
1384         err = -EACCES;
1385         if (!ptrace_may_access(task, PTRACE_MODE_READ))
1386                 goto errout;
1387
1388  retry:
1389         ctx = perf_lock_task_context(task, &flags);
1390         if (ctx) {
1391                 parent_ctx = ctx->parent_ctx;
1392                 if (parent_ctx) {
1393                         put_ctx(parent_ctx);
1394                         ctx->parent_ctx = NULL;         /* no longer a clone */
1395                 }
1396                 /*
1397                  * Get an extra reference before dropping the lock so that
1398                  * this context won't get freed if the task exits.
1399                  */
1400                 get_ctx(ctx);
1401                 spin_unlock_irqrestore(&ctx->lock, flags);
1402         }
1403
1404         if (!ctx) {
1405                 ctx = kmalloc(sizeof(struct perf_counter_context), GFP_KERNEL);
1406                 err = -ENOMEM;
1407                 if (!ctx)
1408                         goto errout;
1409                 __perf_counter_init_context(ctx, task);
1410                 get_ctx(ctx);
1411                 if (cmpxchg(&task->perf_counter_ctxp, NULL, ctx)) {
1412                         /*
1413                          * We raced with some other task; use
1414                          * the context they set.
1415                          */
1416                         kfree(ctx);
1417                         goto retry;
1418                 }
1419                 get_task_struct(task);
1420         }
1421
1422         put_task_struct(task);
1423         return ctx;
1424
1425  errout:
1426         put_task_struct(task);
1427         return ERR_PTR(err);
1428 }
1429
1430 static void free_counter_rcu(struct rcu_head *head)
1431 {
1432         struct perf_counter *counter;
1433
1434         counter = container_of(head, struct perf_counter, rcu_head);
1435         if (counter->ns)
1436                 put_pid_ns(counter->ns);
1437         kfree(counter);
1438 }
1439
1440 static void perf_pending_sync(struct perf_counter *counter);
1441
1442 static void free_counter(struct perf_counter *counter)
1443 {
1444         perf_pending_sync(counter);
1445
1446         atomic_dec(&nr_counters);
1447         if (counter->attr.mmap)
1448                 atomic_dec(&nr_mmap_tracking);
1449         if (counter->attr.munmap)
1450                 atomic_dec(&nr_munmap_tracking);
1451         if (counter->attr.comm)
1452                 atomic_dec(&nr_comm_tracking);
1453
1454         if (counter->destroy)
1455                 counter->destroy(counter);
1456
1457         put_ctx(counter->ctx);
1458         call_rcu(&counter->rcu_head, free_counter_rcu);
1459 }
1460
1461 /*
1462  * Called when the last reference to the file is gone.
1463  */
1464 static int perf_release(struct inode *inode, struct file *file)
1465 {
1466         struct perf_counter *counter = file->private_data;
1467         struct perf_counter_context *ctx = counter->ctx;
1468
1469         file->private_data = NULL;
1470
1471         WARN_ON_ONCE(ctx->parent_ctx);
1472         mutex_lock(&ctx->mutex);
1473         perf_counter_remove_from_context(counter);
1474         mutex_unlock(&ctx->mutex);
1475
1476         mutex_lock(&counter->owner->perf_counter_mutex);
1477         list_del_init(&counter->owner_entry);
1478         mutex_unlock(&counter->owner->perf_counter_mutex);
1479         put_task_struct(counter->owner);
1480
1481         free_counter(counter);
1482
1483         return 0;
1484 }
1485
1486 /*
1487  * Read the performance counter - simple non blocking version for now
1488  */
1489 static ssize_t
1490 perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count)
1491 {
1492         u64 values[3];
1493         int n;
1494
1495         /*
1496          * Return end-of-file for a read on a counter that is in
1497          * error state (i.e. because it was pinned but it couldn't be
1498          * scheduled on to the CPU at some point).
1499          */
1500         if (counter->state == PERF_COUNTER_STATE_ERROR)
1501                 return 0;
1502
1503         WARN_ON_ONCE(counter->ctx->parent_ctx);
1504         mutex_lock(&counter->child_mutex);
1505         values[0] = perf_counter_read(counter);
1506         n = 1;
1507         if (counter->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1508                 values[n++] = counter->total_time_enabled +
1509                         atomic64_read(&counter->child_total_time_enabled);
1510         if (counter->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1511                 values[n++] = counter->total_time_running +
1512                         atomic64_read(&counter->child_total_time_running);
1513         if (counter->attr.read_format & PERF_FORMAT_ID)
1514                 values[n++] = counter->id;
1515         mutex_unlock(&counter->child_mutex);
1516
1517         if (count < n * sizeof(u64))
1518                 return -EINVAL;
1519         count = n * sizeof(u64);
1520
1521         if (copy_to_user(buf, values, count))
1522                 return -EFAULT;
1523
1524         return count;
1525 }
1526
1527 static ssize_t
1528 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
1529 {
1530         struct perf_counter *counter = file->private_data;
1531
1532         return perf_read_hw(counter, buf, count);
1533 }
1534
1535 static unsigned int perf_poll(struct file *file, poll_table *wait)
1536 {
1537         struct perf_counter *counter = file->private_data;
1538         struct perf_mmap_data *data;
1539         unsigned int events = POLL_HUP;
1540
1541         rcu_read_lock();
1542         data = rcu_dereference(counter->data);
1543         if (data)
1544                 events = atomic_xchg(&data->poll, 0);
1545         rcu_read_unlock();
1546
1547         poll_wait(file, &counter->waitq, wait);
1548
1549         return events;
1550 }
1551
1552 static void perf_counter_reset(struct perf_counter *counter)
1553 {
1554         (void)perf_counter_read(counter);
1555         atomic64_set(&counter->count, 0);
1556         perf_counter_update_userpage(counter);
1557 }
1558
1559 static void perf_counter_for_each_sibling(struct perf_counter *counter,
1560                                           void (*func)(struct perf_counter *))
1561 {
1562         struct perf_counter_context *ctx = counter->ctx;
1563         struct perf_counter *sibling;
1564
1565         WARN_ON_ONCE(ctx->parent_ctx);
1566         mutex_lock(&ctx->mutex);
1567         counter = counter->group_leader;
1568
1569         func(counter);
1570         list_for_each_entry(sibling, &counter->sibling_list, list_entry)
1571                 func(sibling);
1572         mutex_unlock(&ctx->mutex);
1573 }
1574
1575 /*
1576  * Holding the top-level counter's child_mutex means that any
1577  * descendant process that has inherited this counter will block
1578  * in sync_child_counter if it goes to exit, thus satisfying the
1579  * task existence requirements of perf_counter_enable/disable.
1580  */
1581 static void perf_counter_for_each_child(struct perf_counter *counter,
1582                                         void (*func)(struct perf_counter *))
1583 {
1584         struct perf_counter *child;
1585
1586         WARN_ON_ONCE(counter->ctx->parent_ctx);
1587         mutex_lock(&counter->child_mutex);
1588         func(counter);
1589         list_for_each_entry(child, &counter->child_list, child_list)
1590                 func(child);
1591         mutex_unlock(&counter->child_mutex);
1592 }
1593
1594 static void perf_counter_for_each(struct perf_counter *counter,
1595                                   void (*func)(struct perf_counter *))
1596 {
1597         struct perf_counter *child;
1598
1599         WARN_ON_ONCE(counter->ctx->parent_ctx);
1600         mutex_lock(&counter->child_mutex);
1601         perf_counter_for_each_sibling(counter, func);
1602         list_for_each_entry(child, &counter->child_list, child_list)
1603                 perf_counter_for_each_sibling(child, func);
1604         mutex_unlock(&counter->child_mutex);
1605 }
1606
1607 static int perf_counter_period(struct perf_counter *counter, u64 __user *arg)
1608 {
1609         struct perf_counter_context *ctx = counter->ctx;
1610         unsigned long size;
1611         int ret = 0;
1612         u64 value;
1613
1614         if (!counter->attr.sample_period)
1615                 return -EINVAL;
1616
1617         size = copy_from_user(&value, arg, sizeof(value));
1618         if (size != sizeof(value))
1619                 return -EFAULT;
1620
1621         if (!value)
1622                 return -EINVAL;
1623
1624         spin_lock_irq(&ctx->lock);
1625         if (counter->attr.freq) {
1626                 if (value > sysctl_perf_counter_limit) {
1627                         ret = -EINVAL;
1628                         goto unlock;
1629                 }
1630
1631                 counter->attr.sample_freq = value;
1632         } else {
1633                 counter->attr.sample_period = value;
1634                 counter->hw.sample_period = value;
1635
1636                 perf_log_period(counter, value);
1637         }
1638 unlock:
1639         spin_unlock_irq(&ctx->lock);
1640
1641         return ret;
1642 }
1643
1644 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1645 {
1646         struct perf_counter *counter = file->private_data;
1647         void (*func)(struct perf_counter *);
1648         u32 flags = arg;
1649
1650         switch (cmd) {
1651         case PERF_COUNTER_IOC_ENABLE:
1652                 func = perf_counter_enable;
1653                 break;
1654         case PERF_COUNTER_IOC_DISABLE:
1655                 func = perf_counter_disable;
1656                 break;
1657         case PERF_COUNTER_IOC_RESET:
1658                 func = perf_counter_reset;
1659                 break;
1660
1661         case PERF_COUNTER_IOC_REFRESH:
1662                 return perf_counter_refresh(counter, arg);
1663
1664         case PERF_COUNTER_IOC_PERIOD:
1665                 return perf_counter_period(counter, (u64 __user *)arg);
1666
1667         default:
1668                 return -ENOTTY;
1669         }
1670
1671         if (flags & PERF_IOC_FLAG_GROUP)
1672                 perf_counter_for_each(counter, func);
1673         else
1674                 perf_counter_for_each_child(counter, func);
1675
1676         return 0;
1677 }
1678
1679 int perf_counter_task_enable(void)
1680 {
1681         struct perf_counter *counter;
1682
1683         mutex_lock(&current->perf_counter_mutex);
1684         list_for_each_entry(counter, &current->perf_counter_list, owner_entry)
1685                 perf_counter_for_each_child(counter, perf_counter_enable);
1686         mutex_unlock(&current->perf_counter_mutex);
1687
1688         return 0;
1689 }
1690
1691 int perf_counter_task_disable(void)
1692 {
1693         struct perf_counter *counter;
1694
1695         mutex_lock(&current->perf_counter_mutex);
1696         list_for_each_entry(counter, &current->perf_counter_list, owner_entry)
1697                 perf_counter_for_each_child(counter, perf_counter_disable);
1698         mutex_unlock(&current->perf_counter_mutex);
1699
1700         return 0;
1701 }
1702
1703 /*
1704  * Callers need to ensure there can be no nesting of this function, otherwise
1705  * the seqlock logic goes bad. We can not serialize this because the arch
1706  * code calls this from NMI context.
1707  */
1708 void perf_counter_update_userpage(struct perf_counter *counter)
1709 {
1710         struct perf_counter_mmap_page *userpg;
1711         struct perf_mmap_data *data;
1712
1713         rcu_read_lock();
1714         data = rcu_dereference(counter->data);
1715         if (!data)
1716                 goto unlock;
1717
1718         userpg = data->user_page;
1719
1720         /*
1721          * Disable preemption so as to not let the corresponding user-space
1722          * spin too long if we get preempted.
1723          */
1724         preempt_disable();
1725         ++userpg->lock;
1726         barrier();
1727         userpg->index = counter->hw.idx;
1728         userpg->offset = atomic64_read(&counter->count);
1729         if (counter->state == PERF_COUNTER_STATE_ACTIVE)
1730                 userpg->offset -= atomic64_read(&counter->hw.prev_count);
1731
1732         barrier();
1733         ++userpg->lock;
1734         preempt_enable();
1735 unlock:
1736         rcu_read_unlock();
1737 }
1738
1739 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1740 {
1741         struct perf_counter *counter = vma->vm_file->private_data;
1742         struct perf_mmap_data *data;
1743         int ret = VM_FAULT_SIGBUS;
1744
1745         rcu_read_lock();
1746         data = rcu_dereference(counter->data);
1747         if (!data)
1748                 goto unlock;
1749
1750         if (vmf->pgoff == 0) {
1751                 vmf->page = virt_to_page(data->user_page);
1752         } else {
1753                 int nr = vmf->pgoff - 1;
1754
1755                 if ((unsigned)nr > data->nr_pages)
1756                         goto unlock;
1757
1758                 vmf->page = virt_to_page(data->data_pages[nr]);
1759         }
1760         get_page(vmf->page);
1761         ret = 0;
1762 unlock:
1763         rcu_read_unlock();
1764
1765         return ret;
1766 }
1767
1768 static int perf_mmap_data_alloc(struct perf_counter *counter, int nr_pages)
1769 {
1770         struct perf_mmap_data *data;
1771         unsigned long size;
1772         int i;
1773
1774         WARN_ON(atomic_read(&counter->mmap_count));
1775
1776         size = sizeof(struct perf_mmap_data);
1777         size += nr_pages * sizeof(void *);
1778
1779         data = kzalloc(size, GFP_KERNEL);
1780         if (!data)
1781                 goto fail;
1782
1783         data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
1784         if (!data->user_page)
1785                 goto fail_user_page;
1786
1787         for (i = 0; i < nr_pages; i++) {
1788                 data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
1789                 if (!data->data_pages[i])
1790                         goto fail_data_pages;
1791         }
1792
1793         data->nr_pages = nr_pages;
1794         atomic_set(&data->lock, -1);
1795
1796         rcu_assign_pointer(counter->data, data);
1797
1798         return 0;
1799
1800 fail_data_pages:
1801         for (i--; i >= 0; i--)
1802                 free_page((unsigned long)data->data_pages[i]);
1803
1804         free_page((unsigned long)data->user_page);
1805
1806 fail_user_page:
1807         kfree(data);
1808
1809 fail:
1810         return -ENOMEM;
1811 }
1812
1813 static void __perf_mmap_data_free(struct rcu_head *rcu_head)
1814 {
1815         struct perf_mmap_data *data;
1816         int i;
1817
1818         data = container_of(rcu_head, struct perf_mmap_data, rcu_head);
1819
1820         free_page((unsigned long)data->user_page);
1821         for (i = 0; i < data->nr_pages; i++)
1822                 free_page((unsigned long)data->data_pages[i]);
1823         kfree(data);
1824 }
1825
1826 static void perf_mmap_data_free(struct perf_counter *counter)
1827 {
1828         struct perf_mmap_data *data = counter->data;
1829
1830         WARN_ON(atomic_read(&counter->mmap_count));
1831
1832         rcu_assign_pointer(counter->data, NULL);
1833         call_rcu(&data->rcu_head, __perf_mmap_data_free);
1834 }
1835
1836 static void perf_mmap_open(struct vm_area_struct *vma)
1837 {
1838         struct perf_counter *counter = vma->vm_file->private_data;
1839
1840         atomic_inc(&counter->mmap_count);
1841 }
1842
1843 static void perf_mmap_close(struct vm_area_struct *vma)
1844 {
1845         struct perf_counter *counter = vma->vm_file->private_data;
1846
1847         WARN_ON_ONCE(counter->ctx->parent_ctx);
1848         if (atomic_dec_and_mutex_lock(&counter->mmap_count, &counter->mmap_mutex)) {
1849                 struct user_struct *user = current_user();
1850
1851                 atomic_long_sub(counter->data->nr_pages + 1, &user->locked_vm);
1852                 vma->vm_mm->locked_vm -= counter->data->nr_locked;
1853                 perf_mmap_data_free(counter);
1854                 mutex_unlock(&counter->mmap_mutex);
1855         }
1856 }
1857
1858 static struct vm_operations_struct perf_mmap_vmops = {
1859         .open  = perf_mmap_open,
1860         .close = perf_mmap_close,
1861         .fault = perf_mmap_fault,
1862 };
1863
1864 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
1865 {
1866         struct perf_counter *counter = file->private_data;
1867         unsigned long user_locked, user_lock_limit;
1868         struct user_struct *user = current_user();
1869         unsigned long locked, lock_limit;
1870         unsigned long vma_size;
1871         unsigned long nr_pages;
1872         long user_extra, extra;
1873         int ret = 0;
1874
1875         if (!(vma->vm_flags & VM_SHARED) || (vma->vm_flags & VM_WRITE))
1876                 return -EINVAL;
1877
1878         vma_size = vma->vm_end - vma->vm_start;
1879         nr_pages = (vma_size / PAGE_SIZE) - 1;
1880
1881         /*
1882          * If we have data pages ensure they're a power-of-two number, so we
1883          * can do bitmasks instead of modulo.
1884          */
1885         if (nr_pages != 0 && !is_power_of_2(nr_pages))
1886                 return -EINVAL;
1887
1888         if (vma_size != PAGE_SIZE * (1 + nr_pages))
1889                 return -EINVAL;
1890
1891         if (vma->vm_pgoff != 0)
1892                 return -EINVAL;
1893
1894         WARN_ON_ONCE(counter->ctx->parent_ctx);
1895         mutex_lock(&counter->mmap_mutex);
1896         if (atomic_inc_not_zero(&counter->mmap_count)) {
1897                 if (nr_pages != counter->data->nr_pages)
1898                         ret = -EINVAL;
1899                 goto unlock;
1900         }
1901
1902         user_extra = nr_pages + 1;
1903         user_lock_limit = sysctl_perf_counter_mlock >> (PAGE_SHIFT - 10);
1904
1905         /*
1906          * Increase the limit linearly with more CPUs:
1907          */
1908         user_lock_limit *= num_online_cpus();
1909
1910         user_locked = atomic_long_read(&user->locked_vm) + user_extra;
1911
1912         extra = 0;
1913         if (user_locked > user_lock_limit)
1914                 extra = user_locked - user_lock_limit;
1915
1916         lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
1917         lock_limit >>= PAGE_SHIFT;
1918         locked = vma->vm_mm->locked_vm + extra;
1919
1920         if ((locked > lock_limit) && !capable(CAP_IPC_LOCK)) {
1921                 ret = -EPERM;
1922                 goto unlock;
1923         }
1924
1925         WARN_ON(counter->data);
1926         ret = perf_mmap_data_alloc(counter, nr_pages);
1927         if (ret)
1928                 goto unlock;
1929
1930         atomic_set(&counter->mmap_count, 1);
1931         atomic_long_add(user_extra, &user->locked_vm);
1932         vma->vm_mm->locked_vm += extra;
1933         counter->data->nr_locked = extra;
1934 unlock:
1935         mutex_unlock(&counter->mmap_mutex);
1936
1937         vma->vm_flags &= ~VM_MAYWRITE;
1938         vma->vm_flags |= VM_RESERVED;
1939         vma->vm_ops = &perf_mmap_vmops;
1940
1941         return ret;
1942 }
1943
1944 static int perf_fasync(int fd, struct file *filp, int on)
1945 {
1946         struct inode *inode = filp->f_path.dentry->d_inode;
1947         struct perf_counter *counter = filp->private_data;
1948         int retval;
1949
1950         mutex_lock(&inode->i_mutex);
1951         retval = fasync_helper(fd, filp, on, &counter->fasync);
1952         mutex_unlock(&inode->i_mutex);
1953
1954         if (retval < 0)
1955                 return retval;
1956
1957         return 0;
1958 }
1959
1960 static const struct file_operations perf_fops = {
1961         .release                = perf_release,
1962         .read                   = perf_read,
1963         .poll                   = perf_poll,
1964         .unlocked_ioctl         = perf_ioctl,
1965         .compat_ioctl           = perf_ioctl,
1966         .mmap                   = perf_mmap,
1967         .fasync                 = perf_fasync,
1968 };
1969
1970 /*
1971  * Perf counter wakeup
1972  *
1973  * If there's data, ensure we set the poll() state and publish everything
1974  * to user-space before waking everybody up.
1975  */
1976
1977 void perf_counter_wakeup(struct perf_counter *counter)
1978 {
1979         wake_up_all(&counter->waitq);
1980
1981         if (counter->pending_kill) {
1982                 kill_fasync(&counter->fasync, SIGIO, counter->pending_kill);
1983                 counter->pending_kill = 0;
1984         }
1985 }
1986
1987 /*
1988  * Pending wakeups
1989  *
1990  * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
1991  *
1992  * The NMI bit means we cannot possibly take locks. Therefore, maintain a
1993  * single linked list and use cmpxchg() to add entries lockless.
1994  */
1995
1996 static void perf_pending_counter(struct perf_pending_entry *entry)
1997 {
1998         struct perf_counter *counter = container_of(entry,
1999                         struct perf_counter, pending);
2000
2001         if (counter->pending_disable) {
2002                 counter->pending_disable = 0;
2003                 perf_counter_disable(counter);
2004         }
2005
2006         if (counter->pending_wakeup) {
2007                 counter->pending_wakeup = 0;
2008                 perf_counter_wakeup(counter);
2009         }
2010 }
2011
2012 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2013
2014 static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
2015         PENDING_TAIL,
2016 };
2017
2018 static void perf_pending_queue(struct perf_pending_entry *entry,
2019                                void (*func)(struct perf_pending_entry *))
2020 {
2021         struct perf_pending_entry **head;
2022
2023         if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
2024                 return;
2025
2026         entry->func = func;
2027
2028         head = &get_cpu_var(perf_pending_head);
2029
2030         do {
2031                 entry->next = *head;
2032         } while (cmpxchg(head, entry->next, entry) != entry->next);
2033
2034         set_perf_counter_pending();
2035
2036         put_cpu_var(perf_pending_head);
2037 }
2038
2039 static int __perf_pending_run(void)
2040 {
2041         struct perf_pending_entry *list;
2042         int nr = 0;
2043
2044         list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2045         while (list != PENDING_TAIL) {
2046                 void (*func)(struct perf_pending_entry *);
2047                 struct perf_pending_entry *entry = list;
2048
2049                 list = list->next;
2050
2051                 func = entry->func;
2052                 entry->next = NULL;
2053                 /*
2054                  * Ensure we observe the unqueue before we issue the wakeup,
2055                  * so that we won't be waiting forever.
2056                  * -- see perf_not_pending().
2057                  */
2058                 smp_wmb();
2059
2060                 func(entry);
2061                 nr++;
2062         }
2063
2064         return nr;
2065 }
2066
2067 static inline int perf_not_pending(struct perf_counter *counter)
2068 {
2069         /*
2070          * If we flush on whatever cpu we run, there is a chance we don't
2071          * need to wait.
2072          */
2073         get_cpu();
2074         __perf_pending_run();
2075         put_cpu();
2076
2077         /*
2078          * Ensure we see the proper queue state before going to sleep
2079          * so that we do not miss the wakeup. -- see perf_pending_handle()
2080          */
2081         smp_rmb();
2082         return counter->pending.next == NULL;
2083 }
2084
2085 static void perf_pending_sync(struct perf_counter *counter)
2086 {
2087         wait_event(counter->waitq, perf_not_pending(counter));
2088 }
2089
2090 void perf_counter_do_pending(void)
2091 {
2092         __perf_pending_run();
2093 }
2094
2095 /*
2096  * Callchain support -- arch specific
2097  */
2098
2099 __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2100 {
2101         return NULL;
2102 }
2103
2104 /*
2105  * Output
2106  */
2107
2108 struct perf_output_handle {
2109         struct perf_counter     *counter;
2110         struct perf_mmap_data   *data;
2111         unsigned long           head;
2112         unsigned long           offset;
2113         int                     nmi;
2114         int                     overflow;
2115         int                     locked;
2116         unsigned long           flags;
2117 };
2118
2119 static void perf_output_wakeup(struct perf_output_handle *handle)
2120 {
2121         atomic_set(&handle->data->poll, POLL_IN);
2122
2123         if (handle->nmi) {
2124                 handle->counter->pending_wakeup = 1;
2125                 perf_pending_queue(&handle->counter->pending,
2126                                    perf_pending_counter);
2127         } else
2128                 perf_counter_wakeup(handle->counter);
2129 }
2130
2131 /*
2132  * Curious locking construct.
2133  *
2134  * We need to ensure a later event doesn't publish a head when a former
2135  * event isn't done writing. However since we need to deal with NMIs we
2136  * cannot fully serialize things.
2137  *
2138  * What we do is serialize between CPUs so we only have to deal with NMI
2139  * nesting on a single CPU.
2140  *
2141  * We only publish the head (and generate a wakeup) when the outer-most
2142  * event completes.
2143  */
2144 static void perf_output_lock(struct perf_output_handle *handle)
2145 {
2146         struct perf_mmap_data *data = handle->data;
2147         int cpu;
2148
2149         handle->locked = 0;
2150
2151         local_irq_save(handle->flags);
2152         cpu = smp_processor_id();
2153
2154         if (in_nmi() && atomic_read(&data->lock) == cpu)
2155                 return;
2156
2157         while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2158                 cpu_relax();
2159
2160         handle->locked = 1;
2161 }
2162
2163 static void perf_output_unlock(struct perf_output_handle *handle)
2164 {
2165         struct perf_mmap_data *data = handle->data;
2166         unsigned long head;
2167         int cpu;
2168
2169         data->done_head = data->head;
2170
2171         if (!handle->locked)
2172                 goto out;
2173
2174 again:
2175         /*
2176          * The xchg implies a full barrier that ensures all writes are done
2177          * before we publish the new head, matched by a rmb() in userspace when
2178          * reading this position.
2179          */
2180         while ((head = atomic_long_xchg(&data->done_head, 0)))
2181                 data->user_page->data_head = head;
2182
2183         /*
2184          * NMI can happen here, which means we can miss a done_head update.
2185          */
2186
2187         cpu = atomic_xchg(&data->lock, -1);
2188         WARN_ON_ONCE(cpu != smp_processor_id());
2189
2190         /*
2191          * Therefore we have to validate we did not indeed do so.
2192          */
2193         if (unlikely(atomic_long_read(&data->done_head))) {
2194                 /*
2195                  * Since we had it locked, we can lock it again.
2196                  */
2197                 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2198                         cpu_relax();
2199
2200                 goto again;
2201         }
2202
2203         if (atomic_xchg(&data->wakeup, 0))
2204                 perf_output_wakeup(handle);
2205 out:
2206         local_irq_restore(handle->flags);
2207 }
2208
2209 static int perf_output_begin(struct perf_output_handle *handle,
2210                              struct perf_counter *counter, unsigned int size,
2211                              int nmi, int overflow)
2212 {
2213         struct perf_mmap_data *data;
2214         unsigned int offset, head;
2215
2216         /*
2217          * For inherited counters we send all the output towards the parent.
2218          */
2219         if (counter->parent)
2220                 counter = counter->parent;
2221
2222         rcu_read_lock();
2223         data = rcu_dereference(counter->data);
2224         if (!data)
2225                 goto out;
2226
2227         handle->data     = data;
2228         handle->counter  = counter;
2229         handle->nmi      = nmi;
2230         handle->overflow = overflow;
2231
2232         if (!data->nr_pages)
2233                 goto fail;
2234
2235         perf_output_lock(handle);
2236
2237         do {
2238                 offset = head = atomic_read(&data->head);
2239                 head += size;
2240         } while (atomic_long_cmpxchg(&data->head, offset, head) != offset);
2241
2242         handle->offset  = offset;
2243         handle->head    = head;
2244
2245         if ((offset >> PAGE_SHIFT) != (head >> PAGE_SHIFT))
2246                 atomic_set(&data->wakeup, 1);
2247
2248         return 0;
2249
2250 fail:
2251         perf_output_wakeup(handle);
2252 out:
2253         rcu_read_unlock();
2254
2255         return -ENOSPC;
2256 }
2257
2258 static void perf_output_copy(struct perf_output_handle *handle,
2259                              void *buf, unsigned int len)
2260 {
2261         unsigned int pages_mask;
2262         unsigned int offset;
2263         unsigned int size;
2264         void **pages;
2265
2266         offset          = handle->offset;
2267         pages_mask      = handle->data->nr_pages - 1;
2268         pages           = handle->data->data_pages;
2269
2270         do {
2271                 unsigned int page_offset;
2272                 int nr;
2273
2274                 nr          = (offset >> PAGE_SHIFT) & pages_mask;
2275                 page_offset = offset & (PAGE_SIZE - 1);
2276                 size        = min_t(unsigned int, PAGE_SIZE - page_offset, len);
2277
2278                 memcpy(pages[nr] + page_offset, buf, size);
2279
2280                 len         -= size;
2281                 buf         += size;
2282                 offset      += size;
2283         } while (len);
2284
2285         handle->offset = offset;
2286
2287         /*
2288          * Check we didn't copy past our reservation window, taking the
2289          * possible unsigned int wrap into account.
2290          */
2291         WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0);
2292 }
2293
2294 #define perf_output_put(handle, x) \
2295         perf_output_copy((handle), &(x), sizeof(x))
2296
2297 static void perf_output_end(struct perf_output_handle *handle)
2298 {
2299         struct perf_counter *counter = handle->counter;
2300         struct perf_mmap_data *data = handle->data;
2301
2302         int wakeup_events = counter->attr.wakeup_events;
2303
2304         if (handle->overflow && wakeup_events) {
2305                 int events = atomic_inc_return(&data->events);
2306                 if (events >= wakeup_events) {
2307                         atomic_sub(wakeup_events, &data->events);
2308                         atomic_set(&data->wakeup, 1);
2309                 }
2310         }
2311
2312         perf_output_unlock(handle);
2313         rcu_read_unlock();
2314 }
2315
2316 static u32 perf_counter_pid(struct perf_counter *counter, struct task_struct *p)
2317 {
2318         /*
2319          * only top level counters have the pid namespace they were created in
2320          */
2321         if (counter->parent)
2322                 counter = counter->parent;
2323
2324         return task_tgid_nr_ns(p, counter->ns);
2325 }
2326
2327 static u32 perf_counter_tid(struct perf_counter *counter, struct task_struct *p)
2328 {
2329         /*
2330          * only top level counters have the pid namespace they were created in
2331          */
2332         if (counter->parent)
2333                 counter = counter->parent;
2334
2335         return task_pid_nr_ns(p, counter->ns);
2336 }
2337
2338 static void perf_counter_output(struct perf_counter *counter,
2339                                 int nmi, struct pt_regs *regs, u64 addr)
2340 {
2341         int ret;
2342         u64 sample_type = counter->attr.sample_type;
2343         struct perf_output_handle handle;
2344         struct perf_event_header header;
2345         u64 ip;
2346         struct {
2347                 u32 pid, tid;
2348         } tid_entry;
2349         struct {
2350                 u64 id;
2351                 u64 counter;
2352         } group_entry;
2353         struct perf_callchain_entry *callchain = NULL;
2354         int callchain_size = 0;
2355         u64 time;
2356         struct {
2357                 u32 cpu, reserved;
2358         } cpu_entry;
2359
2360         header.type = 0;
2361         header.size = sizeof(header);
2362
2363         header.misc = PERF_EVENT_MISC_OVERFLOW;
2364         header.misc |= perf_misc_flags(regs);
2365
2366         if (sample_type & PERF_SAMPLE_IP) {
2367                 ip = perf_instruction_pointer(regs);
2368                 header.type |= PERF_SAMPLE_IP;
2369                 header.size += sizeof(ip);
2370         }
2371
2372         if (sample_type & PERF_SAMPLE_TID) {
2373                 /* namespace issues */
2374                 tid_entry.pid = perf_counter_pid(counter, current);
2375                 tid_entry.tid = perf_counter_tid(counter, current);
2376
2377                 header.type |= PERF_SAMPLE_TID;
2378                 header.size += sizeof(tid_entry);
2379         }
2380
2381         if (sample_type & PERF_SAMPLE_TIME) {
2382                 /*
2383                  * Maybe do better on x86 and provide cpu_clock_nmi()
2384                  */
2385                 time = sched_clock();
2386
2387                 header.type |= PERF_SAMPLE_TIME;
2388                 header.size += sizeof(u64);
2389         }
2390
2391         if (sample_type & PERF_SAMPLE_ADDR) {
2392                 header.type |= PERF_SAMPLE_ADDR;
2393                 header.size += sizeof(u64);
2394         }
2395
2396         if (sample_type & PERF_SAMPLE_CONFIG) {
2397                 header.type |= PERF_SAMPLE_CONFIG;
2398                 header.size += sizeof(u64);
2399         }
2400
2401         if (sample_type & PERF_SAMPLE_CPU) {
2402                 header.type |= PERF_SAMPLE_CPU;
2403                 header.size += sizeof(cpu_entry);
2404
2405                 cpu_entry.cpu = raw_smp_processor_id();
2406         }
2407
2408         if (sample_type & PERF_SAMPLE_GROUP) {
2409                 header.type |= PERF_SAMPLE_GROUP;
2410                 header.size += sizeof(u64) +
2411                         counter->nr_siblings * sizeof(group_entry);
2412         }
2413
2414         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
2415                 callchain = perf_callchain(regs);
2416
2417                 if (callchain) {
2418                         callchain_size = (1 + callchain->nr) * sizeof(u64);
2419
2420                         header.type |= PERF_SAMPLE_CALLCHAIN;
2421                         header.size += callchain_size;
2422                 }
2423         }
2424
2425         ret = perf_output_begin(&handle, counter, header.size, nmi, 1);
2426         if (ret)
2427                 return;
2428
2429         perf_output_put(&handle, header);
2430
2431         if (sample_type & PERF_SAMPLE_IP)
2432                 perf_output_put(&handle, ip);
2433
2434         if (sample_type & PERF_SAMPLE_TID)
2435                 perf_output_put(&handle, tid_entry);
2436
2437         if (sample_type & PERF_SAMPLE_TIME)
2438                 perf_output_put(&handle, time);
2439
2440         if (sample_type & PERF_SAMPLE_ADDR)
2441                 perf_output_put(&handle, addr);
2442
2443         if (sample_type & PERF_SAMPLE_CONFIG)
2444                 perf_output_put(&handle, counter->attr.config);
2445
2446         if (sample_type & PERF_SAMPLE_CPU)
2447                 perf_output_put(&handle, cpu_entry);
2448
2449         /*
2450          * XXX PERF_SAMPLE_GROUP vs inherited counters seems difficult.
2451          */
2452         if (sample_type & PERF_SAMPLE_GROUP) {
2453                 struct perf_counter *leader, *sub;
2454                 u64 nr = counter->nr_siblings;
2455
2456                 perf_output_put(&handle, nr);
2457
2458                 leader = counter->group_leader;
2459                 list_for_each_entry(sub, &leader->sibling_list, list_entry) {
2460                         if (sub != counter)
2461                                 sub->pmu->read(sub);
2462
2463                         group_entry.id = sub->id;
2464                         group_entry.counter = atomic64_read(&sub->count);
2465
2466                         perf_output_put(&handle, group_entry);
2467                 }
2468         }
2469
2470         if (callchain)
2471                 perf_output_copy(&handle, callchain, callchain_size);
2472
2473         perf_output_end(&handle);
2474 }
2475
2476 /*
2477  * comm tracking
2478  */
2479
2480 struct perf_comm_event {
2481         struct task_struct      *task;
2482         char                    *comm;
2483         int                     comm_size;
2484
2485         struct {
2486                 struct perf_event_header        header;
2487
2488                 u32                             pid;
2489                 u32                             tid;
2490         } event;
2491 };
2492
2493 static void perf_counter_comm_output(struct perf_counter *counter,
2494                                      struct perf_comm_event *comm_event)
2495 {
2496         struct perf_output_handle handle;
2497         int size = comm_event->event.header.size;
2498         int ret = perf_output_begin(&handle, counter, size, 0, 0);
2499
2500         if (ret)
2501                 return;
2502
2503         comm_event->event.pid = perf_counter_pid(counter, comm_event->task);
2504         comm_event->event.tid = perf_counter_tid(counter, comm_event->task);
2505
2506         perf_output_put(&handle, comm_event->event);
2507         perf_output_copy(&handle, comm_event->comm,
2508                                    comm_event->comm_size);
2509         perf_output_end(&handle);
2510 }
2511
2512 static int perf_counter_comm_match(struct perf_counter *counter,
2513                                    struct perf_comm_event *comm_event)
2514 {
2515         if (counter->attr.comm &&
2516             comm_event->event.header.type == PERF_EVENT_COMM)
2517                 return 1;
2518
2519         return 0;
2520 }
2521
2522 static void perf_counter_comm_ctx(struct perf_counter_context *ctx,
2523                                   struct perf_comm_event *comm_event)
2524 {
2525         struct perf_counter *counter;
2526
2527         if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2528                 return;
2529
2530         rcu_read_lock();
2531         list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2532                 if (perf_counter_comm_match(counter, comm_event))
2533                         perf_counter_comm_output(counter, comm_event);
2534         }
2535         rcu_read_unlock();
2536 }
2537
2538 static void perf_counter_comm_event(struct perf_comm_event *comm_event)
2539 {
2540         struct perf_cpu_context *cpuctx;
2541         struct perf_counter_context *ctx;
2542         unsigned int size;
2543         char *comm = comm_event->task->comm;
2544
2545         size = ALIGN(strlen(comm)+1, sizeof(u64));
2546
2547         comm_event->comm = comm;
2548         comm_event->comm_size = size;
2549
2550         comm_event->event.header.size = sizeof(comm_event->event) + size;
2551
2552         cpuctx = &get_cpu_var(perf_cpu_context);
2553         perf_counter_comm_ctx(&cpuctx->ctx, comm_event);
2554         put_cpu_var(perf_cpu_context);
2555
2556         rcu_read_lock();
2557         /*
2558          * doesn't really matter which of the child contexts the
2559          * events ends up in.
2560          */
2561         ctx = rcu_dereference(current->perf_counter_ctxp);
2562         if (ctx)
2563                 perf_counter_comm_ctx(ctx, comm_event);
2564         rcu_read_unlock();
2565 }
2566
2567 void perf_counter_comm(struct task_struct *task)
2568 {
2569         struct perf_comm_event comm_event;
2570
2571         if (!atomic_read(&nr_comm_tracking))
2572                 return;
2573
2574         comm_event = (struct perf_comm_event){
2575                 .task   = task,
2576                 .event  = {
2577                         .header = { .type = PERF_EVENT_COMM, },
2578                 },
2579         };
2580
2581         perf_counter_comm_event(&comm_event);
2582 }
2583
2584 /*
2585  * mmap tracking
2586  */
2587
2588 struct perf_mmap_event {
2589         struct file     *file;
2590         char            *file_name;
2591         int             file_size;
2592
2593         struct {
2594                 struct perf_event_header        header;
2595
2596                 u32                             pid;
2597                 u32                             tid;
2598                 u64                             start;
2599                 u64                             len;
2600                 u64                             pgoff;
2601         } event;
2602 };
2603
2604 static void perf_counter_mmap_output(struct perf_counter *counter,
2605                                      struct perf_mmap_event *mmap_event)
2606 {
2607         struct perf_output_handle handle;
2608         int size = mmap_event->event.header.size;
2609         int ret = perf_output_begin(&handle, counter, size, 0, 0);
2610
2611         if (ret)
2612                 return;
2613
2614         mmap_event->event.pid = perf_counter_pid(counter, current);
2615         mmap_event->event.tid = perf_counter_tid(counter, current);
2616
2617         perf_output_put(&handle, mmap_event->event);
2618         perf_output_copy(&handle, mmap_event->file_name,
2619                                    mmap_event->file_size);
2620         perf_output_end(&handle);
2621 }
2622
2623 static int perf_counter_mmap_match(struct perf_counter *counter,
2624                                    struct perf_mmap_event *mmap_event)
2625 {
2626         if (counter->attr.mmap &&
2627             mmap_event->event.header.type == PERF_EVENT_MMAP)
2628                 return 1;
2629
2630         if (counter->attr.munmap &&
2631             mmap_event->event.header.type == PERF_EVENT_MUNMAP)
2632                 return 1;
2633
2634         return 0;
2635 }
2636
2637 static void perf_counter_mmap_ctx(struct perf_counter_context *ctx,
2638                                   struct perf_mmap_event *mmap_event)
2639 {
2640         struct perf_counter *counter;
2641
2642         if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2643                 return;
2644
2645         rcu_read_lock();
2646         list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2647                 if (perf_counter_mmap_match(counter, mmap_event))
2648                         perf_counter_mmap_output(counter, mmap_event);
2649         }
2650         rcu_read_unlock();
2651 }
2652
2653 static void perf_counter_mmap_event(struct perf_mmap_event *mmap_event)
2654 {
2655         struct perf_cpu_context *cpuctx;
2656         struct perf_counter_context *ctx;
2657         struct file *file = mmap_event->file;
2658         unsigned int size;
2659         char tmp[16];
2660         char *buf = NULL;
2661         char *name;
2662
2663         if (file) {
2664                 buf = kzalloc(PATH_MAX, GFP_KERNEL);
2665                 if (!buf) {
2666                         name = strncpy(tmp, "//enomem", sizeof(tmp));
2667                         goto got_name;
2668                 }
2669                 name = d_path(&file->f_path, buf, PATH_MAX);
2670                 if (IS_ERR(name)) {
2671                         name = strncpy(tmp, "//toolong", sizeof(tmp));
2672                         goto got_name;
2673                 }
2674         } else {
2675                 name = strncpy(tmp, "//anon", sizeof(tmp));
2676                 goto got_name;
2677         }
2678
2679 got_name:
2680         size = ALIGN(strlen(name)+1, sizeof(u64));
2681
2682         mmap_event->file_name = name;
2683         mmap_event->file_size = size;
2684
2685         mmap_event->event.header.size = sizeof(mmap_event->event) + size;
2686
2687         cpuctx = &get_cpu_var(perf_cpu_context);
2688         perf_counter_mmap_ctx(&cpuctx->ctx, mmap_event);
2689         put_cpu_var(perf_cpu_context);
2690
2691         rcu_read_lock();
2692         /*
2693          * doesn't really matter which of the child contexts the
2694          * events ends up in.
2695          */
2696         ctx = rcu_dereference(current->perf_counter_ctxp);
2697         if (ctx)
2698                 perf_counter_mmap_ctx(ctx, mmap_event);
2699         rcu_read_unlock();
2700
2701         kfree(buf);
2702 }
2703
2704 void perf_counter_mmap(unsigned long addr, unsigned long len,
2705                        unsigned long pgoff, struct file *file)
2706 {
2707         struct perf_mmap_event mmap_event;
2708
2709         if (!atomic_read(&nr_mmap_tracking))
2710                 return;
2711
2712         mmap_event = (struct perf_mmap_event){
2713                 .file   = file,
2714                 .event  = {
2715                         .header = { .type = PERF_EVENT_MMAP, },
2716                         .start  = addr,
2717                         .len    = len,
2718                         .pgoff  = pgoff,
2719                 },
2720         };
2721
2722         perf_counter_mmap_event(&mmap_event);
2723 }
2724
2725 void perf_counter_munmap(unsigned long addr, unsigned long len,
2726                          unsigned long pgoff, struct file *file)
2727 {
2728         struct perf_mmap_event mmap_event;
2729
2730         if (!atomic_read(&nr_munmap_tracking))
2731                 return;
2732
2733         mmap_event = (struct perf_mmap_event){
2734                 .file   = file,
2735                 .event  = {
2736                         .header = { .type = PERF_EVENT_MUNMAP, },
2737                         .start  = addr,
2738                         .len    = len,
2739                         .pgoff  = pgoff,
2740                 },
2741         };
2742
2743         perf_counter_mmap_event(&mmap_event);
2744 }
2745
2746 /*
2747  * Log sample_period changes so that analyzing tools can re-normalize the
2748  * event flow.
2749  */
2750
2751 static void perf_log_period(struct perf_counter *counter, u64 period)
2752 {
2753         struct perf_output_handle handle;
2754         int ret;
2755
2756         struct {
2757                 struct perf_event_header        header;
2758                 u64                             time;
2759                 u64                             period;
2760         } freq_event = {
2761                 .header = {
2762                         .type = PERF_EVENT_PERIOD,
2763                         .misc = 0,
2764                         .size = sizeof(freq_event),
2765                 },
2766                 .time = sched_clock(),
2767                 .period = period,
2768         };
2769
2770         if (counter->hw.sample_period == period)
2771                 return;
2772
2773         ret = perf_output_begin(&handle, counter, sizeof(freq_event), 0, 0);
2774         if (ret)
2775                 return;
2776
2777         perf_output_put(&handle, freq_event);
2778         perf_output_end(&handle);
2779 }
2780
2781 /*
2782  * IRQ throttle logging
2783  */
2784
2785 static void perf_log_throttle(struct perf_counter *counter, int enable)
2786 {
2787         struct perf_output_handle handle;
2788         int ret;
2789
2790         struct {
2791                 struct perf_event_header        header;
2792                 u64                             time;
2793         } throttle_event = {
2794                 .header = {
2795                         .type = PERF_EVENT_THROTTLE + 1,
2796                         .misc = 0,
2797                         .size = sizeof(throttle_event),
2798                 },
2799                 .time = sched_clock(),
2800         };
2801
2802         ret = perf_output_begin(&handle, counter, sizeof(throttle_event), 1, 0);
2803         if (ret)
2804                 return;
2805
2806         perf_output_put(&handle, throttle_event);
2807         perf_output_end(&handle);
2808 }
2809
2810 /*
2811  * Generic counter overflow handling.
2812  */
2813
2814 int perf_counter_overflow(struct perf_counter *counter,
2815                           int nmi, struct pt_regs *regs, u64 addr)
2816 {
2817         int events = atomic_read(&counter->event_limit);
2818         int throttle = counter->pmu->unthrottle != NULL;
2819         int ret = 0;
2820
2821         if (!throttle) {
2822                 counter->hw.interrupts++;
2823         } else if (counter->hw.interrupts != MAX_INTERRUPTS) {
2824                 counter->hw.interrupts++;
2825                 if (HZ*counter->hw.interrupts > (u64)sysctl_perf_counter_limit) {
2826                         counter->hw.interrupts = MAX_INTERRUPTS;
2827                         perf_log_throttle(counter, 0);
2828                         ret = 1;
2829                 }
2830         }
2831
2832         /*
2833          * XXX event_limit might not quite work as expected on inherited
2834          * counters
2835          */
2836
2837         counter->pending_kill = POLL_IN;
2838         if (events && atomic_dec_and_test(&counter->event_limit)) {
2839                 ret = 1;
2840                 counter->pending_kill = POLL_HUP;
2841                 if (nmi) {
2842                         counter->pending_disable = 1;
2843                         perf_pending_queue(&counter->pending,
2844                                            perf_pending_counter);
2845                 } else
2846                         perf_counter_disable(counter);
2847         }
2848
2849         perf_counter_output(counter, nmi, regs, addr);
2850         return ret;
2851 }
2852
2853 /*
2854  * Generic software counter infrastructure
2855  */
2856
2857 static void perf_swcounter_update(struct perf_counter *counter)
2858 {
2859         struct hw_perf_counter *hwc = &counter->hw;
2860         u64 prev, now;
2861         s64 delta;
2862
2863 again:
2864         prev = atomic64_read(&hwc->prev_count);
2865         now = atomic64_read(&hwc->count);
2866         if (atomic64_cmpxchg(&hwc->prev_count, prev, now) != prev)
2867                 goto again;
2868
2869         delta = now - prev;
2870
2871         atomic64_add(delta, &counter->count);
2872         atomic64_sub(delta, &hwc->period_left);
2873 }
2874
2875 static void perf_swcounter_set_period(struct perf_counter *counter)
2876 {
2877         struct hw_perf_counter *hwc = &counter->hw;
2878         s64 left = atomic64_read(&hwc->period_left);
2879         s64 period = hwc->sample_period;
2880
2881         if (unlikely(left <= -period)) {
2882                 left = period;
2883                 atomic64_set(&hwc->period_left, left);
2884         }
2885
2886         if (unlikely(left <= 0)) {
2887                 left += period;
2888                 atomic64_add(period, &hwc->period_left);
2889         }
2890
2891         atomic64_set(&hwc->prev_count, -left);
2892         atomic64_set(&hwc->count, -left);
2893 }
2894
2895 static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer)
2896 {
2897         enum hrtimer_restart ret = HRTIMER_RESTART;
2898         struct perf_counter *counter;
2899         struct pt_regs *regs;
2900         u64 period;
2901
2902         counter = container_of(hrtimer, struct perf_counter, hw.hrtimer);
2903         counter->pmu->read(counter);
2904
2905         regs = get_irq_regs();
2906         /*
2907          * In case we exclude kernel IPs or are somehow not in interrupt
2908          * context, provide the next best thing, the user IP.
2909          */
2910         if ((counter->attr.exclude_kernel || !regs) &&
2911                         !counter->attr.exclude_user)
2912                 regs = task_pt_regs(current);
2913
2914         if (regs) {
2915                 if (perf_counter_overflow(counter, 0, regs, 0))
2916                         ret = HRTIMER_NORESTART;
2917         }
2918
2919         period = max_t(u64, 10000, counter->hw.sample_period);
2920         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
2921
2922         return ret;
2923 }
2924
2925 static void perf_swcounter_overflow(struct perf_counter *counter,
2926                                     int nmi, struct pt_regs *regs, u64 addr)
2927 {
2928         perf_swcounter_update(counter);
2929         perf_swcounter_set_period(counter);
2930         if (perf_counter_overflow(counter, nmi, regs, addr))
2931                 /* soft-disable the counter */
2932                 ;
2933
2934 }
2935
2936 static int perf_swcounter_is_counting(struct perf_counter *counter)
2937 {
2938         struct perf_counter_context *ctx;
2939         unsigned long flags;
2940         int count;
2941
2942         if (counter->state == PERF_COUNTER_STATE_ACTIVE)
2943                 return 1;
2944
2945         if (counter->state != PERF_COUNTER_STATE_INACTIVE)
2946                 return 0;
2947
2948         /*
2949          * If the counter is inactive, it could be just because
2950          * its task is scheduled out, or because it's in a group
2951          * which could not go on the PMU.  We want to count in
2952          * the first case but not the second.  If the context is
2953          * currently active then an inactive software counter must
2954          * be the second case.  If it's not currently active then
2955          * we need to know whether the counter was active when the
2956          * context was last active, which we can determine by
2957          * comparing counter->tstamp_stopped with ctx->time.
2958          *
2959          * We are within an RCU read-side critical section,
2960          * which protects the existence of *ctx.
2961          */
2962         ctx = counter->ctx;
2963         spin_lock_irqsave(&ctx->lock, flags);
2964         count = 1;
2965         /* Re-check state now we have the lock */
2966         if (counter->state < PERF_COUNTER_STATE_INACTIVE ||
2967             counter->ctx->is_active ||
2968             counter->tstamp_stopped < ctx->time)
2969                 count = 0;
2970         spin_unlock_irqrestore(&ctx->lock, flags);
2971         return count;
2972 }
2973
2974 static int perf_swcounter_match(struct perf_counter *counter,
2975                                 enum perf_event_types type,
2976                                 u32 event, struct pt_regs *regs)
2977 {
2978         u64 event_config;
2979
2980         event_config = ((u64) type << PERF_COUNTER_TYPE_SHIFT) | event;
2981
2982         if (!perf_swcounter_is_counting(counter))
2983                 return 0;
2984
2985         if (counter->attr.config != event_config)
2986                 return 0;
2987
2988         if (regs) {
2989                 if (counter->attr.exclude_user && user_mode(regs))
2990                         return 0;
2991
2992                 if (counter->attr.exclude_kernel && !user_mode(regs))
2993                         return 0;
2994         }
2995
2996         return 1;
2997 }
2998
2999 static void perf_swcounter_add(struct perf_counter *counter, u64 nr,
3000                                int nmi, struct pt_regs *regs, u64 addr)
3001 {
3002         int neg = atomic64_add_negative(nr, &counter->hw.count);
3003
3004         if (counter->hw.sample_period && !neg && regs)
3005                 perf_swcounter_overflow(counter, nmi, regs, addr);
3006 }
3007
3008 static void perf_swcounter_ctx_event(struct perf_counter_context *ctx,
3009                                      enum perf_event_types type, u32 event,
3010                                      u64 nr, int nmi, struct pt_regs *regs,
3011                                      u64 addr)
3012 {
3013         struct perf_counter *counter;
3014
3015         if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
3016                 return;
3017
3018         rcu_read_lock();
3019         list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
3020                 if (perf_swcounter_match(counter, type, event, regs))
3021                         perf_swcounter_add(counter, nr, nmi, regs, addr);
3022         }
3023         rcu_read_unlock();
3024 }
3025
3026 static int *perf_swcounter_recursion_context(struct perf_cpu_context *cpuctx)
3027 {
3028         if (in_nmi())
3029                 return &cpuctx->recursion[3];
3030
3031         if (in_irq())
3032                 return &cpuctx->recursion[2];
3033
3034         if (in_softirq())
3035                 return &cpuctx->recursion[1];
3036
3037         return &cpuctx->recursion[0];
3038 }
3039
3040 static void __perf_swcounter_event(enum perf_event_types type, u32 event,
3041                                    u64 nr, int nmi, struct pt_regs *regs,
3042                                    u64 addr)
3043 {
3044         struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
3045         int *recursion = perf_swcounter_recursion_context(cpuctx);
3046         struct perf_counter_context *ctx;
3047
3048         if (*recursion)
3049                 goto out;
3050
3051         (*recursion)++;
3052         barrier();
3053
3054         perf_swcounter_ctx_event(&cpuctx->ctx, type, event,
3055                                  nr, nmi, regs, addr);
3056         rcu_read_lock();
3057         /*
3058          * doesn't really matter which of the child contexts the
3059          * events ends up in.
3060          */
3061         ctx = rcu_dereference(current->perf_counter_ctxp);
3062         if (ctx)
3063                 perf_swcounter_ctx_event(ctx, type, event, nr, nmi, regs, addr);
3064         rcu_read_unlock();
3065
3066         barrier();
3067         (*recursion)--;
3068
3069 out:
3070         put_cpu_var(perf_cpu_context);
3071 }
3072
3073 void
3074 perf_swcounter_event(u32 event, u64 nr, int nmi, struct pt_regs *regs, u64 addr)
3075 {
3076         __perf_swcounter_event(PERF_TYPE_SOFTWARE, event, nr, nmi, regs, addr);
3077 }
3078
3079 static void perf_swcounter_read(struct perf_counter *counter)
3080 {
3081         perf_swcounter_update(counter);
3082 }
3083
3084 static int perf_swcounter_enable(struct perf_counter *counter)
3085 {
3086         perf_swcounter_set_period(counter);
3087         return 0;
3088 }
3089
3090 static void perf_swcounter_disable(struct perf_counter *counter)
3091 {
3092         perf_swcounter_update(counter);
3093 }
3094
3095 static const struct pmu perf_ops_generic = {
3096         .enable         = perf_swcounter_enable,
3097         .disable        = perf_swcounter_disable,
3098         .read           = perf_swcounter_read,
3099 };
3100
3101 /*
3102  * Software counter: cpu wall time clock
3103  */
3104
3105 static void cpu_clock_perf_counter_update(struct perf_counter *counter)
3106 {
3107         int cpu = raw_smp_processor_id();
3108         s64 prev;
3109         u64 now;
3110
3111         now = cpu_clock(cpu);
3112         prev = atomic64_read(&counter->hw.prev_count);
3113         atomic64_set(&counter->hw.prev_count, now);
3114         atomic64_add(now - prev, &counter->count);
3115 }
3116
3117 static int cpu_clock_perf_counter_enable(struct perf_counter *counter)
3118 {
3119         struct hw_perf_counter *hwc = &counter->hw;
3120         int cpu = raw_smp_processor_id();
3121
3122         atomic64_set(&hwc->prev_count, cpu_clock(cpu));
3123         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3124         hwc->hrtimer.function = perf_swcounter_hrtimer;
3125         if (hwc->sample_period) {
3126                 u64 period = max_t(u64, 10000, hwc->sample_period);
3127                 __hrtimer_start_range_ns(&hwc->hrtimer,
3128                                 ns_to_ktime(period), 0,
3129                                 HRTIMER_MODE_REL, 0);
3130         }
3131
3132         return 0;
3133 }
3134
3135 static void cpu_clock_perf_counter_disable(struct perf_counter *counter)
3136 {
3137         if (counter->hw.sample_period)
3138                 hrtimer_cancel(&counter->hw.hrtimer);
3139         cpu_clock_perf_counter_update(counter);
3140 }
3141
3142 static void cpu_clock_perf_counter_read(struct perf_counter *counter)
3143 {
3144         cpu_clock_perf_counter_update(counter);
3145 }
3146
3147 static const struct pmu perf_ops_cpu_clock = {
3148         .enable         = cpu_clock_perf_counter_enable,
3149         .disable        = cpu_clock_perf_counter_disable,
3150         .read           = cpu_clock_perf_counter_read,
3151 };
3152
3153 /*
3154  * Software counter: task time clock
3155  */
3156
3157 static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now)
3158 {
3159         u64 prev;
3160         s64 delta;
3161
3162         prev = atomic64_xchg(&counter->hw.prev_count, now);
3163         delta = now - prev;
3164         atomic64_add(delta, &counter->count);
3165 }
3166
3167 static int task_clock_perf_counter_enable(struct perf_counter *counter)
3168 {
3169         struct hw_perf_counter *hwc = &counter->hw;
3170         u64 now;
3171
3172         now = counter->ctx->time;
3173
3174         atomic64_set(&hwc->prev_count, now);
3175         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3176         hwc->hrtimer.function = perf_swcounter_hrtimer;
3177         if (hwc->sample_period) {
3178                 u64 period = max_t(u64, 10000, hwc->sample_period);
3179                 __hrtimer_start_range_ns(&hwc->hrtimer,
3180                                 ns_to_ktime(period), 0,
3181                                 HRTIMER_MODE_REL, 0);
3182         }
3183
3184         return 0;
3185 }
3186
3187 static void task_clock_perf_counter_disable(struct perf_counter *counter)
3188 {
3189         if (counter->hw.sample_period)
3190                 hrtimer_cancel(&counter->hw.hrtimer);
3191         task_clock_perf_counter_update(counter, counter->ctx->time);
3192
3193 }
3194
3195 static void task_clock_perf_counter_read(struct perf_counter *counter)
3196 {
3197         u64 time;
3198
3199         if (!in_nmi()) {
3200                 update_context_time(counter->ctx);
3201                 time = counter->ctx->time;
3202         } else {
3203                 u64 now = perf_clock();
3204                 u64 delta = now - counter->ctx->timestamp;
3205                 time = counter->ctx->time + delta;
3206         }
3207
3208         task_clock_perf_counter_update(counter, time);
3209 }
3210
3211 static const struct pmu perf_ops_task_clock = {
3212         .enable         = task_clock_perf_counter_enable,
3213         .disable        = task_clock_perf_counter_disable,
3214         .read           = task_clock_perf_counter_read,
3215 };
3216
3217 /*
3218  * Software counter: cpu migrations
3219  */
3220 void perf_counter_task_migration(struct task_struct *task, int cpu)
3221 {
3222         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
3223         struct perf_counter_context *ctx;
3224
3225         perf_swcounter_ctx_event(&cpuctx->ctx, PERF_TYPE_SOFTWARE,
3226                                  PERF_COUNT_CPU_MIGRATIONS,
3227                                  1, 1, NULL, 0);
3228
3229         ctx = perf_pin_task_context(task);
3230         if (ctx) {
3231                 perf_swcounter_ctx_event(ctx, PERF_TYPE_SOFTWARE,
3232                                          PERF_COUNT_CPU_MIGRATIONS,
3233                                          1, 1, NULL, 0);
3234                 perf_unpin_context(ctx);
3235         }
3236 }
3237
3238 #ifdef CONFIG_EVENT_PROFILE
3239 void perf_tpcounter_event(int event_id)
3240 {
3241         struct pt_regs *regs = get_irq_regs();
3242
3243         if (!regs)
3244                 regs = task_pt_regs(current);
3245
3246         __perf_swcounter_event(PERF_TYPE_TRACEPOINT, event_id, 1, 1, regs, 0);
3247 }
3248 EXPORT_SYMBOL_GPL(perf_tpcounter_event);
3249
3250 extern int ftrace_profile_enable(int);
3251 extern void ftrace_profile_disable(int);
3252
3253 static void tp_perf_counter_destroy(struct perf_counter *counter)
3254 {
3255         ftrace_profile_disable(perf_event_id(&counter->attr));
3256 }
3257
3258 static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
3259 {
3260         int event_id = perf_event_id(&counter->attr);
3261         int ret;
3262
3263         ret = ftrace_profile_enable(event_id);
3264         if (ret)
3265                 return NULL;
3266
3267         counter->destroy = tp_perf_counter_destroy;
3268         counter->hw.sample_period = counter->attr.sample_period;
3269
3270         return &perf_ops_generic;
3271 }
3272 #else
3273 static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
3274 {
3275         return NULL;
3276 }
3277 #endif
3278
3279 static const struct pmu *sw_perf_counter_init(struct perf_counter *counter)
3280 {
3281         const struct pmu *pmu = NULL;
3282
3283         /*
3284          * Software counters (currently) can't in general distinguish
3285          * between user, kernel and hypervisor events.
3286          * However, context switches and cpu migrations are considered
3287          * to be kernel events, and page faults are never hypervisor
3288          * events.
3289          */
3290         switch (perf_event_id(&counter->attr)) {
3291         case PERF_COUNT_CPU_CLOCK:
3292                 pmu = &perf_ops_cpu_clock;
3293
3294                 break;
3295         case PERF_COUNT_TASK_CLOCK:
3296                 /*
3297                  * If the user instantiates this as a per-cpu counter,
3298                  * use the cpu_clock counter instead.
3299                  */
3300                 if (counter->ctx->task)
3301                         pmu = &perf_ops_task_clock;
3302                 else
3303                         pmu = &perf_ops_cpu_clock;
3304
3305                 break;
3306         case PERF_COUNT_PAGE_FAULTS:
3307         case PERF_COUNT_PAGE_FAULTS_MIN:
3308         case PERF_COUNT_PAGE_FAULTS_MAJ:
3309         case PERF_COUNT_CONTEXT_SWITCHES:
3310         case PERF_COUNT_CPU_MIGRATIONS:
3311                 pmu = &perf_ops_generic;
3312                 break;
3313         }
3314
3315         return pmu;
3316 }
3317
3318 /*
3319  * Allocate and initialize a counter structure
3320  */
3321 static struct perf_counter *
3322 perf_counter_alloc(struct perf_counter_attr *attr,
3323                    int cpu,
3324                    struct perf_counter_context *ctx,
3325                    struct perf_counter *group_leader,
3326                    gfp_t gfpflags)
3327 {
3328         const struct pmu *pmu;
3329         struct perf_counter *counter;
3330         struct hw_perf_counter *hwc;
3331         long err;
3332
3333         counter = kzalloc(sizeof(*counter), gfpflags);
3334         if (!counter)
3335                 return ERR_PTR(-ENOMEM);
3336
3337         /*
3338          * Single counters are their own group leaders, with an
3339          * empty sibling list:
3340          */
3341         if (!group_leader)
3342                 group_leader = counter;
3343
3344         mutex_init(&counter->child_mutex);
3345         INIT_LIST_HEAD(&counter->child_list);
3346
3347         INIT_LIST_HEAD(&counter->list_entry);
3348         INIT_LIST_HEAD(&counter->event_entry);
3349         INIT_LIST_HEAD(&counter->sibling_list);
3350         init_waitqueue_head(&counter->waitq);
3351
3352         mutex_init(&counter->mmap_mutex);
3353
3354         counter->cpu                    = cpu;
3355         counter->attr           = *attr;
3356         counter->group_leader           = group_leader;
3357         counter->pmu                    = NULL;
3358         counter->ctx                    = ctx;
3359         counter->oncpu                  = -1;
3360
3361         counter->state = PERF_COUNTER_STATE_INACTIVE;
3362         if (attr->disabled)
3363                 counter->state = PERF_COUNTER_STATE_OFF;
3364
3365         pmu = NULL;
3366
3367         hwc = &counter->hw;
3368         if (attr->freq && attr->sample_freq)
3369                 hwc->sample_period = div64_u64(TICK_NSEC, attr->sample_freq);
3370         else
3371                 hwc->sample_period = attr->sample_period;
3372
3373         /*
3374          * we currently do not support PERF_SAMPLE_GROUP on inherited counters
3375          */
3376         if (attr->inherit && (attr->sample_type & PERF_SAMPLE_GROUP))
3377                 goto done;
3378
3379         if (perf_event_raw(attr)) {
3380                 pmu = hw_perf_counter_init(counter);
3381                 goto done;
3382         }
3383
3384         switch (perf_event_type(attr)) {
3385         case PERF_TYPE_HARDWARE:
3386                 pmu = hw_perf_counter_init(counter);
3387                 break;
3388
3389         case PERF_TYPE_SOFTWARE:
3390                 pmu = sw_perf_counter_init(counter);
3391                 break;
3392
3393         case PERF_TYPE_TRACEPOINT:
3394                 pmu = tp_perf_counter_init(counter);
3395                 break;
3396         }
3397 done:
3398         err = 0;
3399         if (!pmu)
3400                 err = -EINVAL;
3401         else if (IS_ERR(pmu))
3402                 err = PTR_ERR(pmu);
3403
3404         if (err) {
3405                 kfree(counter);
3406                 return ERR_PTR(err);
3407         }
3408
3409         counter->pmu = pmu;
3410
3411         atomic_inc(&nr_counters);
3412         if (counter->attr.mmap)
3413                 atomic_inc(&nr_mmap_tracking);
3414         if (counter->attr.munmap)
3415                 atomic_inc(&nr_munmap_tracking);
3416         if (counter->attr.comm)
3417                 atomic_inc(&nr_comm_tracking);
3418
3419         return counter;
3420 }
3421
3422 static atomic64_t perf_counter_id;
3423
3424 /**
3425  * sys_perf_counter_open - open a performance counter, associate it to a task/cpu
3426  *
3427  * @attr_uptr:  event type attributes for monitoring/sampling
3428  * @pid:                target pid
3429  * @cpu:                target cpu
3430  * @group_fd:           group leader counter fd
3431  */
3432 SYSCALL_DEFINE5(perf_counter_open,
3433                 const struct perf_counter_attr __user *, attr_uptr,
3434                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
3435 {
3436         struct perf_counter *counter, *group_leader;
3437         struct perf_counter_attr attr;
3438         struct perf_counter_context *ctx;
3439         struct file *counter_file = NULL;
3440         struct file *group_file = NULL;
3441         int fput_needed = 0;
3442         int fput_needed2 = 0;
3443         int ret;
3444
3445         /* for future expandability... */
3446         if (flags)
3447                 return -EINVAL;
3448
3449         if (copy_from_user(&attr, attr_uptr, sizeof(attr)) != 0)
3450                 return -EFAULT;
3451
3452         /*
3453          * Get the target context (task or percpu):
3454          */
3455         ctx = find_get_context(pid, cpu);
3456         if (IS_ERR(ctx))
3457                 return PTR_ERR(ctx);
3458
3459         /*
3460          * Look up the group leader (we will attach this counter to it):
3461          */
3462         group_leader = NULL;
3463         if (group_fd != -1) {
3464                 ret = -EINVAL;
3465                 group_file = fget_light(group_fd, &fput_needed);
3466                 if (!group_file)
3467                         goto err_put_context;
3468                 if (group_file->f_op != &perf_fops)
3469                         goto err_put_context;
3470
3471                 group_leader = group_file->private_data;
3472                 /*
3473                  * Do not allow a recursive hierarchy (this new sibling
3474                  * becoming part of another group-sibling):
3475                  */
3476                 if (group_leader->group_leader != group_leader)
3477                         goto err_put_context;
3478                 /*
3479                  * Do not allow to attach to a group in a different
3480                  * task or CPU context:
3481                  */
3482                 if (group_leader->ctx != ctx)
3483                         goto err_put_context;
3484                 /*
3485                  * Only a group leader can be exclusive or pinned
3486                  */
3487                 if (attr.exclusive || attr.pinned)
3488                         goto err_put_context;
3489         }
3490
3491         counter = perf_counter_alloc(&attr, cpu, ctx, group_leader,
3492                                      GFP_KERNEL);
3493         ret = PTR_ERR(counter);
3494         if (IS_ERR(counter))
3495                 goto err_put_context;
3496
3497         ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0);
3498         if (ret < 0)
3499                 goto err_free_put_context;
3500
3501         counter_file = fget_light(ret, &fput_needed2);
3502         if (!counter_file)
3503                 goto err_free_put_context;
3504
3505         counter->filp = counter_file;
3506         WARN_ON_ONCE(ctx->parent_ctx);
3507         mutex_lock(&ctx->mutex);
3508         perf_install_in_context(ctx, counter, cpu);
3509         ++ctx->generation;
3510         mutex_unlock(&ctx->mutex);
3511
3512         counter->owner = current;
3513         get_task_struct(current);
3514         mutex_lock(&current->perf_counter_mutex);
3515         list_add_tail(&counter->owner_entry, &current->perf_counter_list);
3516         mutex_unlock(&current->perf_counter_mutex);
3517
3518         counter->ns = get_pid_ns(current->nsproxy->pid_ns);
3519         counter->id = atomic64_inc_return(&perf_counter_id);
3520
3521         fput_light(counter_file, fput_needed2);
3522
3523 out_fput:
3524         fput_light(group_file, fput_needed);
3525
3526         return ret;
3527
3528 err_free_put_context:
3529         kfree(counter);
3530
3531 err_put_context:
3532         put_ctx(ctx);
3533
3534         goto out_fput;
3535 }
3536
3537 /*
3538  * inherit a counter from parent task to child task:
3539  */
3540 static struct perf_counter *
3541 inherit_counter(struct perf_counter *parent_counter,
3542               struct task_struct *parent,
3543               struct perf_counter_context *parent_ctx,
3544               struct task_struct *child,
3545               struct perf_counter *group_leader,
3546               struct perf_counter_context *child_ctx)
3547 {
3548         struct perf_counter *child_counter;
3549
3550         /*
3551          * Instead of creating recursive hierarchies of counters,
3552          * we link inherited counters back to the original parent,
3553          * which has a filp for sure, which we use as the reference
3554          * count:
3555          */
3556         if (parent_counter->parent)
3557                 parent_counter = parent_counter->parent;
3558
3559         child_counter = perf_counter_alloc(&parent_counter->attr,
3560                                            parent_counter->cpu, child_ctx,
3561                                            group_leader, GFP_KERNEL);
3562         if (IS_ERR(child_counter))
3563                 return child_counter;
3564         get_ctx(child_ctx);
3565
3566         /*
3567          * Make the child state follow the state of the parent counter,
3568          * not its attr.disabled bit.  We hold the parent's mutex,
3569          * so we won't race with perf_counter_{en, dis}able_family.
3570          */
3571         if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE)
3572                 child_counter->state = PERF_COUNTER_STATE_INACTIVE;
3573         else
3574                 child_counter->state = PERF_COUNTER_STATE_OFF;
3575
3576         /*
3577          * Link it up in the child's context:
3578          */
3579         add_counter_to_ctx(child_counter, child_ctx);
3580
3581         child_counter->parent = parent_counter;
3582         /*
3583          * inherit into child's child as well:
3584          */
3585         child_counter->attr.inherit = 1;
3586
3587         /*
3588          * Get a reference to the parent filp - we will fput it
3589          * when the child counter exits. This is safe to do because
3590          * we are in the parent and we know that the filp still
3591          * exists and has a nonzero count:
3592          */
3593         atomic_long_inc(&parent_counter->filp->f_count);
3594
3595         /*
3596          * Link this into the parent counter's child list
3597          */
3598         WARN_ON_ONCE(parent_counter->ctx->parent_ctx);
3599         mutex_lock(&parent_counter->child_mutex);
3600         list_add_tail(&child_counter->child_list, &parent_counter->child_list);
3601         mutex_unlock(&parent_counter->child_mutex);
3602
3603         return child_counter;
3604 }
3605
3606 static int inherit_group(struct perf_counter *parent_counter,
3607               struct task_struct *parent,
3608               struct perf_counter_context *parent_ctx,
3609               struct task_struct *child,
3610               struct perf_counter_context *child_ctx)
3611 {
3612         struct perf_counter *leader;
3613         struct perf_counter *sub;
3614         struct perf_counter *child_ctr;
3615
3616         leader = inherit_counter(parent_counter, parent, parent_ctx,
3617                                  child, NULL, child_ctx);
3618         if (IS_ERR(leader))
3619                 return PTR_ERR(leader);
3620         list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) {
3621                 child_ctr = inherit_counter(sub, parent, parent_ctx,
3622                                             child, leader, child_ctx);
3623                 if (IS_ERR(child_ctr))
3624                         return PTR_ERR(child_ctr);
3625         }
3626         return 0;
3627 }
3628
3629 static void sync_child_counter(struct perf_counter *child_counter,
3630                                struct perf_counter *parent_counter)
3631 {
3632         u64 child_val;
3633
3634         child_val = atomic64_read(&child_counter->count);
3635
3636         /*
3637          * Add back the child's count to the parent's count:
3638          */
3639         atomic64_add(child_val, &parent_counter->count);
3640         atomic64_add(child_counter->total_time_enabled,
3641                      &parent_counter->child_total_time_enabled);
3642         atomic64_add(child_counter->total_time_running,
3643                      &parent_counter->child_total_time_running);
3644
3645         /*
3646          * Remove this counter from the parent's list
3647          */
3648         WARN_ON_ONCE(parent_counter->ctx->parent_ctx);
3649         mutex_lock(&parent_counter->child_mutex);
3650         list_del_init(&child_counter->child_list);
3651         mutex_unlock(&parent_counter->child_mutex);
3652
3653         /*
3654          * Release the parent counter, if this was the last
3655          * reference to it.
3656          */
3657         fput(parent_counter->filp);
3658 }
3659
3660 static void
3661 __perf_counter_exit_task(struct perf_counter *child_counter,
3662                          struct perf_counter_context *child_ctx)
3663 {
3664         struct perf_counter *parent_counter;
3665
3666         update_counter_times(child_counter);
3667         perf_counter_remove_from_context(child_counter);
3668
3669         parent_counter = child_counter->parent;
3670         /*
3671          * It can happen that parent exits first, and has counters
3672          * that are still around due to the child reference. These
3673          * counters need to be zapped - but otherwise linger.
3674          */
3675         if (parent_counter) {
3676                 sync_child_counter(child_counter, parent_counter);
3677                 free_counter(child_counter);
3678         }
3679 }
3680
3681 /*
3682  * When a child task exits, feed back counter values to parent counters.
3683  */
3684 void perf_counter_exit_task(struct task_struct *child)
3685 {
3686         struct perf_counter *child_counter, *tmp;
3687         struct perf_counter_context *child_ctx;
3688         unsigned long flags;
3689
3690         if (likely(!child->perf_counter_ctxp))
3691                 return;
3692
3693         local_irq_save(flags);
3694         /*
3695          * We can't reschedule here because interrupts are disabled,
3696          * and either child is current or it is a task that can't be
3697          * scheduled, so we are now safe from rescheduling changing
3698          * our context.
3699          */
3700         child_ctx = child->perf_counter_ctxp;
3701         __perf_counter_task_sched_out(child_ctx);
3702
3703         /*
3704          * Take the context lock here so that if find_get_context is
3705          * reading child->perf_counter_ctxp, we wait until it has
3706          * incremented the context's refcount before we do put_ctx below.
3707          */
3708         spin_lock(&child_ctx->lock);
3709         child->perf_counter_ctxp = NULL;
3710         if (child_ctx->parent_ctx) {
3711                 /*
3712                  * This context is a clone; unclone it so it can't get
3713                  * swapped to another process while we're removing all
3714                  * the counters from it.
3715                  */
3716                 put_ctx(child_ctx->parent_ctx);
3717                 child_ctx->parent_ctx = NULL;
3718         }
3719         spin_unlock(&child_ctx->lock);
3720         local_irq_restore(flags);
3721
3722         mutex_lock(&child_ctx->mutex);
3723
3724 again:
3725         list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list,
3726                                  list_entry)
3727                 __perf_counter_exit_task(child_counter, child_ctx);
3728
3729         /*
3730          * If the last counter was a group counter, it will have appended all
3731          * its siblings to the list, but we obtained 'tmp' before that which
3732          * will still point to the list head terminating the iteration.
3733          */
3734         if (!list_empty(&child_ctx->counter_list))
3735                 goto again;
3736
3737         mutex_unlock(&child_ctx->mutex);
3738
3739         put_ctx(child_ctx);
3740 }
3741
3742 /*
3743  * free an unexposed, unused context as created by inheritance by
3744  * init_task below, used by fork() in case of fail.
3745  */
3746 void perf_counter_free_task(struct task_struct *task)
3747 {
3748         struct perf_counter_context *ctx = task->perf_counter_ctxp;
3749         struct perf_counter *counter, *tmp;
3750
3751         if (!ctx)
3752                 return;
3753
3754         mutex_lock(&ctx->mutex);
3755 again:
3756         list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry) {
3757                 struct perf_counter *parent = counter->parent;
3758
3759                 if (WARN_ON_ONCE(!parent))
3760                         continue;
3761
3762                 mutex_lock(&parent->child_mutex);
3763                 list_del_init(&counter->child_list);
3764                 mutex_unlock(&parent->child_mutex);
3765
3766                 fput(parent->filp);
3767
3768                 list_del_counter(counter, ctx);
3769                 free_counter(counter);
3770         }
3771
3772         if (!list_empty(&ctx->counter_list))
3773                 goto again;
3774
3775         mutex_unlock(&ctx->mutex);
3776
3777         put_ctx(ctx);
3778 }
3779
3780 /*
3781  * Initialize the perf_counter context in task_struct
3782  */
3783 int perf_counter_init_task(struct task_struct *child)
3784 {
3785         struct perf_counter_context *child_ctx, *parent_ctx;
3786         struct perf_counter_context *cloned_ctx;
3787         struct perf_counter *counter;
3788         struct task_struct *parent = current;
3789         int inherited_all = 1;
3790         int ret = 0;
3791
3792         child->perf_counter_ctxp = NULL;
3793
3794         mutex_init(&child->perf_counter_mutex);
3795         INIT_LIST_HEAD(&child->perf_counter_list);
3796
3797         if (likely(!parent->perf_counter_ctxp))
3798                 return 0;
3799
3800         /*
3801          * This is executed from the parent task context, so inherit
3802          * counters that have been marked for cloning.
3803          * First allocate and initialize a context for the child.
3804          */
3805
3806         child_ctx = kmalloc(sizeof(struct perf_counter_context), GFP_KERNEL);
3807         if (!child_ctx)
3808                 return -ENOMEM;
3809
3810         __perf_counter_init_context(child_ctx, child);
3811         child->perf_counter_ctxp = child_ctx;
3812         get_task_struct(child);
3813
3814         /*
3815          * If the parent's context is a clone, pin it so it won't get
3816          * swapped under us.
3817          */
3818         parent_ctx = perf_pin_task_context(parent);
3819
3820         /*
3821          * No need to check if parent_ctx != NULL here; since we saw
3822          * it non-NULL earlier, the only reason for it to become NULL
3823          * is if we exit, and since we're currently in the middle of
3824          * a fork we can't be exiting at the same time.
3825          */
3826
3827         /*
3828          * Lock the parent list. No need to lock the child - not PID
3829          * hashed yet and not running, so nobody can access it.
3830          */
3831         mutex_lock(&parent_ctx->mutex);
3832
3833         /*
3834          * We dont have to disable NMIs - we are only looking at
3835          * the list, not manipulating it:
3836          */
3837         list_for_each_entry_rcu(counter, &parent_ctx->event_list, event_entry) {
3838                 if (counter != counter->group_leader)
3839                         continue;
3840
3841                 if (!counter->attr.inherit) {
3842                         inherited_all = 0;
3843                         continue;
3844                 }
3845
3846                 ret = inherit_group(counter, parent, parent_ctx,
3847                                              child, child_ctx);
3848                 if (ret) {
3849                         inherited_all = 0;
3850                         break;
3851                 }
3852         }
3853
3854         if (inherited_all) {
3855                 /*
3856                  * Mark the child context as a clone of the parent
3857                  * context, or of whatever the parent is a clone of.
3858                  * Note that if the parent is a clone, it could get
3859                  * uncloned at any point, but that doesn't matter
3860                  * because the list of counters and the generation
3861                  * count can't have changed since we took the mutex.
3862                  */
3863                 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
3864                 if (cloned_ctx) {
3865                         child_ctx->parent_ctx = cloned_ctx;
3866                         child_ctx->parent_gen = parent_ctx->parent_gen;
3867                 } else {
3868                         child_ctx->parent_ctx = parent_ctx;
3869                         child_ctx->parent_gen = parent_ctx->generation;
3870                 }
3871                 get_ctx(child_ctx->parent_ctx);
3872         }
3873
3874         mutex_unlock(&parent_ctx->mutex);
3875
3876         perf_unpin_context(parent_ctx);
3877
3878         return ret;
3879 }
3880
3881 static void __cpuinit perf_counter_init_cpu(int cpu)
3882 {
3883         struct perf_cpu_context *cpuctx;
3884
3885         cpuctx = &per_cpu(perf_cpu_context, cpu);
3886         __perf_counter_init_context(&cpuctx->ctx, NULL);
3887
3888         spin_lock(&perf_resource_lock);
3889         cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu;
3890         spin_unlock(&perf_resource_lock);
3891
3892         hw_perf_counter_setup(cpu);
3893 }
3894
3895 #ifdef CONFIG_HOTPLUG_CPU
3896 static void __perf_counter_exit_cpu(void *info)
3897 {
3898         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
3899         struct perf_counter_context *ctx = &cpuctx->ctx;
3900         struct perf_counter *counter, *tmp;
3901
3902         list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry)
3903                 __perf_counter_remove_from_context(counter);
3904 }
3905 static void perf_counter_exit_cpu(int cpu)
3906 {
3907         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
3908         struct perf_counter_context *ctx = &cpuctx->ctx;
3909
3910         mutex_lock(&ctx->mutex);
3911         smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1);
3912         mutex_unlock(&ctx->mutex);
3913 }
3914 #else
3915 static inline void perf_counter_exit_cpu(int cpu) { }
3916 #endif
3917
3918 static int __cpuinit
3919 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
3920 {
3921         unsigned int cpu = (long)hcpu;
3922
3923         switch (action) {
3924
3925         case CPU_UP_PREPARE:
3926         case CPU_UP_PREPARE_FROZEN:
3927                 perf_counter_init_cpu(cpu);
3928                 break;
3929
3930         case CPU_DOWN_PREPARE:
3931         case CPU_DOWN_PREPARE_FROZEN:
3932                 perf_counter_exit_cpu(cpu);
3933                 break;
3934
3935         default:
3936                 break;
3937         }
3938
3939         return NOTIFY_OK;
3940 }
3941
3942 /*
3943  * This has to have a higher priority than migration_notifier in sched.c.
3944  */
3945 static struct notifier_block __cpuinitdata perf_cpu_nb = {
3946         .notifier_call          = perf_cpu_notify,
3947         .priority               = 20,
3948 };
3949
3950 void __init perf_counter_init(void)
3951 {
3952         perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
3953                         (void *)(long)smp_processor_id());
3954         register_cpu_notifier(&perf_cpu_nb);
3955 }
3956
3957 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
3958 {
3959         return sprintf(buf, "%d\n", perf_reserved_percpu);
3960 }
3961
3962 static ssize_t
3963 perf_set_reserve_percpu(struct sysdev_class *class,
3964                         const char *buf,
3965                         size_t count)
3966 {
3967         struct perf_cpu_context *cpuctx;
3968         unsigned long val;
3969         int err, cpu, mpt;
3970
3971         err = strict_strtoul(buf, 10, &val);
3972         if (err)
3973                 return err;
3974         if (val > perf_max_counters)
3975                 return -EINVAL;
3976
3977         spin_lock(&perf_resource_lock);
3978         perf_reserved_percpu = val;
3979         for_each_online_cpu(cpu) {
3980                 cpuctx = &per_cpu(perf_cpu_context, cpu);
3981                 spin_lock_irq(&cpuctx->ctx.lock);
3982                 mpt = min(perf_max_counters - cpuctx->ctx.nr_counters,
3983                           perf_max_counters - perf_reserved_percpu);
3984                 cpuctx->max_pertask = mpt;
3985                 spin_unlock_irq(&cpuctx->ctx.lock);
3986         }
3987         spin_unlock(&perf_resource_lock);
3988
3989         return count;
3990 }
3991
3992 static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
3993 {
3994         return sprintf(buf, "%d\n", perf_overcommit);
3995 }
3996
3997 static ssize_t
3998 perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
3999 {
4000         unsigned long val;
4001         int err;
4002
4003         err = strict_strtoul(buf, 10, &val);
4004         if (err)
4005                 return err;
4006         if (val > 1)
4007                 return -EINVAL;
4008
4009         spin_lock(&perf_resource_lock);
4010         perf_overcommit = val;
4011         spin_unlock(&perf_resource_lock);
4012
4013         return count;
4014 }
4015
4016 static SYSDEV_CLASS_ATTR(
4017                                 reserve_percpu,
4018                                 0644,
4019                                 perf_show_reserve_percpu,
4020                                 perf_set_reserve_percpu
4021                         );
4022
4023 static SYSDEV_CLASS_ATTR(
4024                                 overcommit,
4025                                 0644,
4026                                 perf_show_overcommit,
4027                                 perf_set_overcommit
4028                         );
4029
4030 static struct attribute *perfclass_attrs[] = {
4031         &attr_reserve_percpu.attr,
4032         &attr_overcommit.attr,
4033         NULL
4034 };
4035
4036 static struct attribute_group perfclass_attr_group = {
4037         .attrs                  = perfclass_attrs,
4038         .name                   = "perf_counters",
4039 };
4040
4041 static int __init perf_counter_sysfs_init(void)
4042 {
4043         return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
4044                                   &perfclass_attr_group);
4045 }
4046 device_initcall(perf_counter_sysfs_init);