kmod: remove unecessary explicit wide CPU affinity setting
[firefly-linux-kernel-4.4.55.git] / kernel / kmod.c
1 /*
2         kmod, the new module loader (replaces kerneld)
3         Kirk Petersen
4
5         Reorganized not to be a daemon by Adam Richter, with guidance
6         from Greg Zornetzer.
7
8         Modified to avoid chroot and file sharing problems.
9         Mikael Pettersson
10
11         Limit the concurrent number of kmod modprobes to catch loops from
12         "modprobe needs a service that is in a module".
13         Keith Owens <kaos@ocs.com.au> December 1999
14
15         Unblock all signals when we exec a usermode process.
16         Shuu Yamaguchi <shuu@wondernetworkresources.com> December 2000
17
18         call_usermodehelper wait flag, and remove exec_usermodehelper.
19         Rusty Russell <rusty@rustcorp.com.au>  Jan 2003
20 */
21 #include <linux/module.h>
22 #include <linux/sched.h>
23 #include <linux/syscalls.h>
24 #include <linux/unistd.h>
25 #include <linux/kmod.h>
26 #include <linux/slab.h>
27 #include <linux/completion.h>
28 #include <linux/cred.h>
29 #include <linux/file.h>
30 #include <linux/fdtable.h>
31 #include <linux/workqueue.h>
32 #include <linux/security.h>
33 #include <linux/mount.h>
34 #include <linux/kernel.h>
35 #include <linux/init.h>
36 #include <linux/resource.h>
37 #include <linux/notifier.h>
38 #include <linux/suspend.h>
39 #include <linux/rwsem.h>
40 #include <linux/ptrace.h>
41 #include <linux/async.h>
42 #include <asm/uaccess.h>
43
44 #include <trace/events/module.h>
45
46 extern int max_threads;
47
48 static struct workqueue_struct *khelper_wq;
49
50 #define CAP_BSET        (void *)1
51 #define CAP_PI          (void *)2
52
53 static kernel_cap_t usermodehelper_bset = CAP_FULL_SET;
54 static kernel_cap_t usermodehelper_inheritable = CAP_FULL_SET;
55 static DEFINE_SPINLOCK(umh_sysctl_lock);
56 static DECLARE_RWSEM(umhelper_sem);
57
58 #ifdef CONFIG_MODULES
59
60 /*
61         modprobe_path is set via /proc/sys.
62 */
63 char modprobe_path[KMOD_PATH_LEN] = "/sbin/modprobe";
64
65 static void free_modprobe_argv(struct subprocess_info *info)
66 {
67         kfree(info->argv[3]); /* check call_modprobe() */
68         kfree(info->argv);
69 }
70
71 static int call_modprobe(char *module_name, int wait)
72 {
73         struct subprocess_info *info;
74         static char *envp[] = {
75                 "HOME=/",
76                 "TERM=linux",
77                 "PATH=/sbin:/usr/sbin:/bin:/usr/bin",
78                 NULL
79         };
80
81         char **argv = kmalloc(sizeof(char *[5]), GFP_KERNEL);
82         if (!argv)
83                 goto out;
84
85         module_name = kstrdup(module_name, GFP_KERNEL);
86         if (!module_name)
87                 goto free_argv;
88
89         argv[0] = modprobe_path;
90         argv[1] = "-q";
91         argv[2] = "--";
92         argv[3] = module_name;  /* check free_modprobe_argv() */
93         argv[4] = NULL;
94
95         info = call_usermodehelper_setup(modprobe_path, argv, envp, GFP_KERNEL,
96                                          NULL, free_modprobe_argv, NULL);
97         if (!info)
98                 goto free_module_name;
99
100         return call_usermodehelper_exec(info, wait | UMH_KILLABLE);
101
102 free_module_name:
103         kfree(module_name);
104 free_argv:
105         kfree(argv);
106 out:
107         return -ENOMEM;
108 }
109
110 /**
111  * __request_module - try to load a kernel module
112  * @wait: wait (or not) for the operation to complete
113  * @fmt: printf style format string for the name of the module
114  * @...: arguments as specified in the format string
115  *
116  * Load a module using the user mode module loader. The function returns
117  * zero on success or a negative errno code or positive exit code from
118  * "modprobe" on failure. Note that a successful module load does not mean
119  * the module did not then unload and exit on an error of its own. Callers
120  * must check that the service they requested is now available not blindly
121  * invoke it.
122  *
123  * If module auto-loading support is disabled then this function
124  * becomes a no-operation.
125  */
126 int __request_module(bool wait, const char *fmt, ...)
127 {
128         va_list args;
129         char module_name[MODULE_NAME_LEN];
130         unsigned int max_modprobes;
131         int ret;
132         static atomic_t kmod_concurrent = ATOMIC_INIT(0);
133 #define MAX_KMOD_CONCURRENT 50  /* Completely arbitrary value - KAO */
134         static int kmod_loop_msg;
135
136         /*
137          * We don't allow synchronous module loading from async.  Module
138          * init may invoke async_synchronize_full() which will end up
139          * waiting for this task which already is waiting for the module
140          * loading to complete, leading to a deadlock.
141          */
142         WARN_ON_ONCE(wait && current_is_async());
143
144         if (!modprobe_path[0])
145                 return 0;
146
147         va_start(args, fmt);
148         ret = vsnprintf(module_name, MODULE_NAME_LEN, fmt, args);
149         va_end(args);
150         if (ret >= MODULE_NAME_LEN)
151                 return -ENAMETOOLONG;
152
153         ret = security_kernel_module_request(module_name);
154         if (ret)
155                 return ret;
156
157         /* If modprobe needs a service that is in a module, we get a recursive
158          * loop.  Limit the number of running kmod threads to max_threads/2 or
159          * MAX_KMOD_CONCURRENT, whichever is the smaller.  A cleaner method
160          * would be to run the parents of this process, counting how many times
161          * kmod was invoked.  That would mean accessing the internals of the
162          * process tables to get the command line, proc_pid_cmdline is static
163          * and it is not worth changing the proc code just to handle this case. 
164          * KAO.
165          *
166          * "trace the ppid" is simple, but will fail if someone's
167          * parent exits.  I think this is as good as it gets. --RR
168          */
169         max_modprobes = min(max_threads/2, MAX_KMOD_CONCURRENT);
170         atomic_inc(&kmod_concurrent);
171         if (atomic_read(&kmod_concurrent) > max_modprobes) {
172                 /* We may be blaming an innocent here, but unlikely */
173                 if (kmod_loop_msg < 5) {
174                         printk(KERN_ERR
175                                "request_module: runaway loop modprobe %s\n",
176                                module_name);
177                         kmod_loop_msg++;
178                 }
179                 atomic_dec(&kmod_concurrent);
180                 return -ENOMEM;
181         }
182
183         trace_module_request(module_name, wait, _RET_IP_);
184
185         ret = call_modprobe(module_name, wait ? UMH_WAIT_PROC : UMH_WAIT_EXEC);
186
187         atomic_dec(&kmod_concurrent);
188         return ret;
189 }
190 EXPORT_SYMBOL(__request_module);
191 #endif /* CONFIG_MODULES */
192
193 static void call_usermodehelper_freeinfo(struct subprocess_info *info)
194 {
195         if (info->cleanup)
196                 (*info->cleanup)(info);
197         kfree(info);
198 }
199
200 static void umh_complete(struct subprocess_info *sub_info)
201 {
202         struct completion *comp = xchg(&sub_info->complete, NULL);
203         /*
204          * See call_usermodehelper_exec(). If xchg() returns NULL
205          * we own sub_info, the UMH_KILLABLE caller has gone away
206          * or the caller used UMH_NO_WAIT.
207          */
208         if (comp)
209                 complete(comp);
210         else
211                 call_usermodehelper_freeinfo(sub_info);
212 }
213
214 /*
215  * This is the task which runs the usermode application
216  */
217 static int call_usermodehelper_exec_async(void *data)
218 {
219         struct subprocess_info *sub_info = data;
220         struct cred *new;
221         int retval;
222
223         spin_lock_irq(&current->sighand->siglock);
224         flush_signal_handlers(current, 1);
225         spin_unlock_irq(&current->sighand->siglock);
226
227         /*
228          * Our parent is keventd, which runs with elevated scheduling priority.
229          * Avoid propagating that into the userspace child.
230          */
231         set_user_nice(current, 0);
232
233         retval = -ENOMEM;
234         new = prepare_kernel_cred(current);
235         if (!new)
236                 goto out;
237
238         spin_lock(&umh_sysctl_lock);
239         new->cap_bset = cap_intersect(usermodehelper_bset, new->cap_bset);
240         new->cap_inheritable = cap_intersect(usermodehelper_inheritable,
241                                              new->cap_inheritable);
242         spin_unlock(&umh_sysctl_lock);
243
244         if (sub_info->init) {
245                 retval = sub_info->init(sub_info, new);
246                 if (retval) {
247                         abort_creds(new);
248                         goto out;
249                 }
250         }
251
252         commit_creds(new);
253
254         retval = do_execve(getname_kernel(sub_info->path),
255                            (const char __user *const __user *)sub_info->argv,
256                            (const char __user *const __user *)sub_info->envp);
257 out:
258         sub_info->retval = retval;
259         /*
260          * call_usermodehelper_exec_sync() will call umh_complete
261          * if UHM_WAIT_PROC.
262          */
263         if (!(sub_info->wait & UMH_WAIT_PROC))
264                 umh_complete(sub_info);
265         if (!retval)
266                 return 0;
267         do_exit(0);
268 }
269
270 /* Keventd can't block, but this (a child) can. */
271 static int call_usermodehelper_exec_sync(void *data)
272 {
273         struct subprocess_info *sub_info = data;
274         pid_t pid;
275
276         /* If SIGCLD is ignored sys_wait4 won't populate the status. */
277         kernel_sigaction(SIGCHLD, SIG_DFL);
278         pid = kernel_thread(call_usermodehelper_exec_async, sub_info, SIGCHLD);
279         if (pid < 0) {
280                 sub_info->retval = pid;
281         } else {
282                 int ret = -ECHILD;
283                 /*
284                  * Normally it is bogus to call wait4() from in-kernel because
285                  * wait4() wants to write the exit code to a userspace address.
286                  * But call_usermodehelper_exec_sync() always runs as keventd,
287                  * and put_user() to a kernel address works OK for kernel
288                  * threads, due to their having an mm_segment_t which spans the
289                  * entire address space.
290                  *
291                  * Thus the __user pointer cast is valid here.
292                  */
293                 sys_wait4(pid, (int __user *)&ret, 0, NULL);
294
295                 /*
296                  * If ret is 0, either call_usermodehelper_exec_async failed and
297                  * the real error code is already in sub_info->retval or
298                  * sub_info->retval is 0 anyway, so don't mess with it then.
299                  */
300                 if (ret)
301                         sub_info->retval = ret;
302         }
303
304         umh_complete(sub_info);
305         do_exit(0);
306 }
307
308 /* This is run by khelper thread  */
309 static void call_usermodehelper_exec_work(struct work_struct *work)
310 {
311         struct subprocess_info *sub_info =
312                 container_of(work, struct subprocess_info, work);
313         pid_t pid;
314
315         if (sub_info->wait & UMH_WAIT_PROC)
316                 pid = kernel_thread(call_usermodehelper_exec_sync, sub_info,
317                                     CLONE_FS | CLONE_FILES | SIGCHLD);
318         else
319                 pid = kernel_thread(call_usermodehelper_exec_async, sub_info,
320                                     SIGCHLD);
321
322         if (pid < 0) {
323                 sub_info->retval = pid;
324                 umh_complete(sub_info);
325         }
326 }
327
328 /*
329  * If set, call_usermodehelper_exec() will exit immediately returning -EBUSY
330  * (used for preventing user land processes from being created after the user
331  * land has been frozen during a system-wide hibernation or suspend operation).
332  * Should always be manipulated under umhelper_sem acquired for write.
333  */
334 static enum umh_disable_depth usermodehelper_disabled = UMH_DISABLED;
335
336 /* Number of helpers running */
337 static atomic_t running_helpers = ATOMIC_INIT(0);
338
339 /*
340  * Wait queue head used by usermodehelper_disable() to wait for all running
341  * helpers to finish.
342  */
343 static DECLARE_WAIT_QUEUE_HEAD(running_helpers_waitq);
344
345 /*
346  * Used by usermodehelper_read_lock_wait() to wait for usermodehelper_disabled
347  * to become 'false'.
348  */
349 static DECLARE_WAIT_QUEUE_HEAD(usermodehelper_disabled_waitq);
350
351 /*
352  * Time to wait for running_helpers to become zero before the setting of
353  * usermodehelper_disabled in usermodehelper_disable() fails
354  */
355 #define RUNNING_HELPERS_TIMEOUT (5 * HZ)
356
357 int usermodehelper_read_trylock(void)
358 {
359         DEFINE_WAIT(wait);
360         int ret = 0;
361
362         down_read(&umhelper_sem);
363         for (;;) {
364                 prepare_to_wait(&usermodehelper_disabled_waitq, &wait,
365                                 TASK_INTERRUPTIBLE);
366                 if (!usermodehelper_disabled)
367                         break;
368
369                 if (usermodehelper_disabled == UMH_DISABLED)
370                         ret = -EAGAIN;
371
372                 up_read(&umhelper_sem);
373
374                 if (ret)
375                         break;
376
377                 schedule();
378                 try_to_freeze();
379
380                 down_read(&umhelper_sem);
381         }
382         finish_wait(&usermodehelper_disabled_waitq, &wait);
383         return ret;
384 }
385 EXPORT_SYMBOL_GPL(usermodehelper_read_trylock);
386
387 long usermodehelper_read_lock_wait(long timeout)
388 {
389         DEFINE_WAIT(wait);
390
391         if (timeout < 0)
392                 return -EINVAL;
393
394         down_read(&umhelper_sem);
395         for (;;) {
396                 prepare_to_wait(&usermodehelper_disabled_waitq, &wait,
397                                 TASK_UNINTERRUPTIBLE);
398                 if (!usermodehelper_disabled)
399                         break;
400
401                 up_read(&umhelper_sem);
402
403                 timeout = schedule_timeout(timeout);
404                 if (!timeout)
405                         break;
406
407                 down_read(&umhelper_sem);
408         }
409         finish_wait(&usermodehelper_disabled_waitq, &wait);
410         return timeout;
411 }
412 EXPORT_SYMBOL_GPL(usermodehelper_read_lock_wait);
413
414 void usermodehelper_read_unlock(void)
415 {
416         up_read(&umhelper_sem);
417 }
418 EXPORT_SYMBOL_GPL(usermodehelper_read_unlock);
419
420 /**
421  * __usermodehelper_set_disable_depth - Modify usermodehelper_disabled.
422  * @depth: New value to assign to usermodehelper_disabled.
423  *
424  * Change the value of usermodehelper_disabled (under umhelper_sem locked for
425  * writing) and wakeup tasks waiting for it to change.
426  */
427 void __usermodehelper_set_disable_depth(enum umh_disable_depth depth)
428 {
429         down_write(&umhelper_sem);
430         usermodehelper_disabled = depth;
431         wake_up(&usermodehelper_disabled_waitq);
432         up_write(&umhelper_sem);
433 }
434
435 /**
436  * __usermodehelper_disable - Prevent new helpers from being started.
437  * @depth: New value to assign to usermodehelper_disabled.
438  *
439  * Set usermodehelper_disabled to @depth and wait for running helpers to exit.
440  */
441 int __usermodehelper_disable(enum umh_disable_depth depth)
442 {
443         long retval;
444
445         if (!depth)
446                 return -EINVAL;
447
448         down_write(&umhelper_sem);
449         usermodehelper_disabled = depth;
450         up_write(&umhelper_sem);
451
452         /*
453          * From now on call_usermodehelper_exec() won't start any new
454          * helpers, so it is sufficient if running_helpers turns out to
455          * be zero at one point (it may be increased later, but that
456          * doesn't matter).
457          */
458         retval = wait_event_timeout(running_helpers_waitq,
459                                         atomic_read(&running_helpers) == 0,
460                                         RUNNING_HELPERS_TIMEOUT);
461         if (retval)
462                 return 0;
463
464         __usermodehelper_set_disable_depth(UMH_ENABLED);
465         return -EAGAIN;
466 }
467
468 static void helper_lock(void)
469 {
470         atomic_inc(&running_helpers);
471         smp_mb__after_atomic();
472 }
473
474 static void helper_unlock(void)
475 {
476         if (atomic_dec_and_test(&running_helpers))
477                 wake_up(&running_helpers_waitq);
478 }
479
480 /**
481  * call_usermodehelper_setup - prepare to call a usermode helper
482  * @path: path to usermode executable
483  * @argv: arg vector for process
484  * @envp: environment for process
485  * @gfp_mask: gfp mask for memory allocation
486  * @cleanup: a cleanup function
487  * @init: an init function
488  * @data: arbitrary context sensitive data
489  *
490  * Returns either %NULL on allocation failure, or a subprocess_info
491  * structure.  This should be passed to call_usermodehelper_exec to
492  * exec the process and free the structure.
493  *
494  * The init function is used to customize the helper process prior to
495  * exec.  A non-zero return code causes the process to error out, exit,
496  * and return the failure to the calling process
497  *
498  * The cleanup function is just before ethe subprocess_info is about to
499  * be freed.  This can be used for freeing the argv and envp.  The
500  * Function must be runnable in either a process context or the
501  * context in which call_usermodehelper_exec is called.
502  */
503 struct subprocess_info *call_usermodehelper_setup(char *path, char **argv,
504                 char **envp, gfp_t gfp_mask,
505                 int (*init)(struct subprocess_info *info, struct cred *new),
506                 void (*cleanup)(struct subprocess_info *info),
507                 void *data)
508 {
509         struct subprocess_info *sub_info;
510         sub_info = kzalloc(sizeof(struct subprocess_info), gfp_mask);
511         if (!sub_info)
512                 goto out;
513
514         INIT_WORK(&sub_info->work, call_usermodehelper_exec_work);
515         sub_info->path = path;
516         sub_info->argv = argv;
517         sub_info->envp = envp;
518
519         sub_info->cleanup = cleanup;
520         sub_info->init = init;
521         sub_info->data = data;
522   out:
523         return sub_info;
524 }
525 EXPORT_SYMBOL(call_usermodehelper_setup);
526
527 /**
528  * call_usermodehelper_exec - start a usermode application
529  * @sub_info: information about the subprocessa
530  * @wait: wait for the application to finish and return status.
531  *        when UMH_NO_WAIT don't wait at all, but you get no useful error back
532  *        when the program couldn't be exec'ed. This makes it safe to call
533  *        from interrupt context.
534  *
535  * Runs a user-space application.  The application is started
536  * asynchronously if wait is not set, and runs as a child of keventd.
537  * (ie. it runs with full root capabilities).
538  */
539 int call_usermodehelper_exec(struct subprocess_info *sub_info, int wait)
540 {
541         DECLARE_COMPLETION_ONSTACK(done);
542         int retval = 0;
543
544         if (!sub_info->path) {
545                 call_usermodehelper_freeinfo(sub_info);
546                 return -EINVAL;
547         }
548         helper_lock();
549         if (!khelper_wq || usermodehelper_disabled) {
550                 retval = -EBUSY;
551                 goto out;
552         }
553         /*
554          * Set the completion pointer only if there is a waiter.
555          * This makes it possible to use umh_complete to free
556          * the data structure in case of UMH_NO_WAIT.
557          */
558         sub_info->complete = (wait == UMH_NO_WAIT) ? NULL : &done;
559         sub_info->wait = wait;
560
561         queue_work(khelper_wq, &sub_info->work);
562         if (wait == UMH_NO_WAIT)        /* task has freed sub_info */
563                 goto unlock;
564
565         if (wait & UMH_KILLABLE) {
566                 retval = wait_for_completion_killable(&done);
567                 if (!retval)
568                         goto wait_done;
569
570                 /* umh_complete() will see NULL and free sub_info */
571                 if (xchg(&sub_info->complete, NULL))
572                         goto unlock;
573                 /* fallthrough, umh_complete() was already called */
574         }
575
576         wait_for_completion(&done);
577 wait_done:
578         retval = sub_info->retval;
579 out:
580         call_usermodehelper_freeinfo(sub_info);
581 unlock:
582         helper_unlock();
583         return retval;
584 }
585 EXPORT_SYMBOL(call_usermodehelper_exec);
586
587 /**
588  * call_usermodehelper() - prepare and start a usermode application
589  * @path: path to usermode executable
590  * @argv: arg vector for process
591  * @envp: environment for process
592  * @wait: wait for the application to finish and return status.
593  *        when UMH_NO_WAIT don't wait at all, but you get no useful error back
594  *        when the program couldn't be exec'ed. This makes it safe to call
595  *        from interrupt context.
596  *
597  * This function is the equivalent to use call_usermodehelper_setup() and
598  * call_usermodehelper_exec().
599  */
600 int call_usermodehelper(char *path, char **argv, char **envp, int wait)
601 {
602         struct subprocess_info *info;
603         gfp_t gfp_mask = (wait == UMH_NO_WAIT) ? GFP_ATOMIC : GFP_KERNEL;
604
605         info = call_usermodehelper_setup(path, argv, envp, gfp_mask,
606                                          NULL, NULL, NULL);
607         if (info == NULL)
608                 return -ENOMEM;
609
610         return call_usermodehelper_exec(info, wait);
611 }
612 EXPORT_SYMBOL(call_usermodehelper);
613
614 static int proc_cap_handler(struct ctl_table *table, int write,
615                          void __user *buffer, size_t *lenp, loff_t *ppos)
616 {
617         struct ctl_table t;
618         unsigned long cap_array[_KERNEL_CAPABILITY_U32S];
619         kernel_cap_t new_cap;
620         int err, i;
621
622         if (write && (!capable(CAP_SETPCAP) ||
623                       !capable(CAP_SYS_MODULE)))
624                 return -EPERM;
625
626         /*
627          * convert from the global kernel_cap_t to the ulong array to print to
628          * userspace if this is a read.
629          */
630         spin_lock(&umh_sysctl_lock);
631         for (i = 0; i < _KERNEL_CAPABILITY_U32S; i++)  {
632                 if (table->data == CAP_BSET)
633                         cap_array[i] = usermodehelper_bset.cap[i];
634                 else if (table->data == CAP_PI)
635                         cap_array[i] = usermodehelper_inheritable.cap[i];
636                 else
637                         BUG();
638         }
639         spin_unlock(&umh_sysctl_lock);
640
641         t = *table;
642         t.data = &cap_array;
643
644         /*
645          * actually read or write and array of ulongs from userspace.  Remember
646          * these are least significant 32 bits first
647          */
648         err = proc_doulongvec_minmax(&t, write, buffer, lenp, ppos);
649         if (err < 0)
650                 return err;
651
652         /*
653          * convert from the sysctl array of ulongs to the kernel_cap_t
654          * internal representation
655          */
656         for (i = 0; i < _KERNEL_CAPABILITY_U32S; i++)
657                 new_cap.cap[i] = cap_array[i];
658
659         /*
660          * Drop everything not in the new_cap (but don't add things)
661          */
662         spin_lock(&umh_sysctl_lock);
663         if (write) {
664                 if (table->data == CAP_BSET)
665                         usermodehelper_bset = cap_intersect(usermodehelper_bset, new_cap);
666                 if (table->data == CAP_PI)
667                         usermodehelper_inheritable = cap_intersect(usermodehelper_inheritable, new_cap);
668         }
669         spin_unlock(&umh_sysctl_lock);
670
671         return 0;
672 }
673
674 struct ctl_table usermodehelper_table[] = {
675         {
676                 .procname       = "bset",
677                 .data           = CAP_BSET,
678                 .maxlen         = _KERNEL_CAPABILITY_U32S * sizeof(unsigned long),
679                 .mode           = 0600,
680                 .proc_handler   = proc_cap_handler,
681         },
682         {
683                 .procname       = "inheritable",
684                 .data           = CAP_PI,
685                 .maxlen         = _KERNEL_CAPABILITY_U32S * sizeof(unsigned long),
686                 .mode           = 0600,
687                 .proc_handler   = proc_cap_handler,
688         },
689         { }
690 };
691
692 void __init usermodehelper_init(void)
693 {
694         khelper_wq = create_singlethread_workqueue("khelper");
695         BUG_ON(!khelper_wq);
696 }